WO2017219433A1 - 波导式的头戴显示器的光学装置 - Google Patents

波导式的头戴显示器的光学装置 Download PDF

Info

Publication number
WO2017219433A1
WO2017219433A1 PCT/CN2016/090941 CN2016090941W WO2017219433A1 WO 2017219433 A1 WO2017219433 A1 WO 2017219433A1 CN 2016090941 W CN2016090941 W CN 2016090941W WO 2017219433 A1 WO2017219433 A1 WO 2017219433A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
optical waveguide
head mounted
mounted display
Prior art date
Application number
PCT/CN2016/090941
Other languages
English (en)
French (fr)
Inventor
郎欢标
Original Assignee
东莞市长资实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞市长资实业有限公司 filed Critical 东莞市长资实业有限公司
Publication of WO2017219433A1 publication Critical patent/WO2017219433A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0081Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. enlarging, the entrance or exit pupil
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0028Light guide, e.g. taper
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/003Lens or lenticular sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • G02B2027/0125Field-of-view increase by wavefront division
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer

Definitions

  • the present invention relates to the field of display device technology, and more particularly to an optical device for a waveguide type head mounted display.
  • the mainstream waveguide technology of the existing head-mounted display is mainly divided into two types: a holographic waveguide and a semi-transmissive array waveguide.
  • the holographic waveguide type head mounted display has a basic structure characterized in that it uses at least one reflective holographic grating (blazed grating) to deflect the beam by an angle and reflect it into the waveguide sheet, and performs multiple times in the waveguide sheet. The reflection is transmitted, and at least one holographic reflection grating (blazed grating) is used to take the beam out of the waveguide.
  • blazed grating reflective holographic grating
  • blazed grating holographic reflection grating
  • two reflective holographic diffraction gratings (or blazed gratings) 14 and 15 are bonded to the left and right sides of the outer side of the waveguide sheet 13, and the holographic grating 14 firstly makes an angle to the exit pupil beam of the eyepiece 12.
  • the reflection is deflected, and the deflected reflected light enters the inside of the waveguide sheet 13, and then is totally totally reflected between the inner and outer side walls 13a and 13b of the waveguide sheet 13, and finally incident on the left hologram grating 15, and the hologram grating 15 is again
  • the incident beam is deflected at an angle in the opposite direction to the holographic grating 14, and finally the beam enters the human eye in a direction perpendicular to the waveguide and forms a magnified virtual image in the display farther forward.
  • the structure has the characteristics of thin thickness and light weight.
  • the utilization rate of the system's light energy is relatively low, the accuracy of the grating is relatively high, and the stray light and dispersion introduced by diffraction are more serious and corrected.
  • the method is complicated, and it is relatively suitable for image display of monochromatic light (such as green light).
  • monochromatic light such as green light
  • the 2 is a structure of an optical device of a two-piece waveguide head mounted display proposed by Sony Corporation, which is composed of two upper and lower waveguide plates.
  • the lower waveguide sheet reflects and transmits only green light, and the holographic gratings at the left and right ends of the lower waveguide sheet only reflect and deflect green light while transmitting red and blue light.
  • the upper waveguide piece transmits red blue light, and the holographic gratings at the left and right ends of the upper waveguide piece reflect and deflect red blue light.
  • the red-blue beam of the upper waveguide and the green beam of the lower waveguide are recombined by the two sets of holographic gratings on the left in front of the eye to reflect and deflect, to form a full-color pattern.
  • the main drawbacks of the two-piece waveguide head-mounted display are:
  • the colors are transmitted separately, that is, the upper and lower waveguide sheets conduct different colors of light, and are gathered in front of the eyes by two gratings.
  • the problem that is easy to cause is that there are two optical path differences of the thickness of the waveguide in the upper and lower waveguides, and the two colors of light are superimposed together, and the image surface is likely to cause a chromatic aberration of red and blue.
  • the holographic grating sheet and the waveguide sheet cannot be integrally formed, and complex and precise assembly processes are required to meet the production conditions.
  • the red and blue light of the upper waveguide sheet and the green light of the lower waveguide sheet require very precise coincidence correction and very precise Align to correct the chromatic aberration. If the processing accuracy error of the grating itself is slightly larger, the error will have a certain deviation from the deflection angle of the reflected light.
  • the error of accumulating 4 slices is not only easy to cause chromatic aberration, but also the quality problem of ghosting.
  • the accuracy of the grating fabrication is limited by the defects of the optical waveguide structure, resulting in a problem that the angle of the field of view is not sufficiently large.
  • the semipermeable membrane array waveguide type display disclosed in US20080025667 The optical waveguide sheet in the optical device is located at an oblique position of the human eye by an equidistant or variable pitch arrangement of the semipermeable membrane 22 obliquely embedded in the base; the display screen is placed on the right side of the waveguide, the eyepiece system Located between the micro display screen and the tilting prism 66, the exit pupil plane is located inside the vertical extended waveguide; the divergent light of the line field of view of the micro display screen passes through the eyepiece system and becomes parallel light of the angular field of view distribution, and the angular field of view The parallel light is coupled into the tilting prism 66 through the plane 72.
  • the parallel beam is coupled into the optical waveguide sheet 20, and multiple total reflections are performed inside the waveguide sheet, and finally through the semi-transparent.
  • the reflection deflection of the film array wave is incident on the human eye to obtain display information on the micro display screen.
  • the semi-permeable membrane array 22 described in the patent is actually a piece of flat glass plated with a transflective film, arranged neatly at a certain inclination angle.
  • the semi-transmissive film array waveguide type head-mounted display optical device has a waveguide technology that utilizes the refraction and reflection of the semi-permeable film array 22 obliquely embedded in the waveguide substrate to achieve an expansion of the eyepiece.
  • a waveguide technology that utilizes the refraction and reflection of the semi-permeable film array 22 obliquely embedded in the waveguide substrate to achieve an expansion of the eyepiece.
  • the beams entering the eyelids are spliced by beams of equally spaced semi-permeable membranes, errors in the spacing and tilt angle of the semipermeable membrane can cause image ghosting, pixel loss, and image zigzag periodicity. The deformation. In addition, the angle of view of the image is also narrow.
  • the waveguide sheet is formed by the semi-transparent film arranged at equal or variable pitch obliquely embedded in the substrate, the arrangement of the semi-transmissive film array requires very precise positional degree and surface precision, due to its manufacturing process. Complex factors, low efficiency of products, etc., its technical solutions are also not conducive to large-scale production and application.
  • Google Corporation of the United States also proposed a waveguide type head-mounted display technology based on a one-dimensional and two-dimensional reflective surface structure array with the publication number of US8189263, which is close to the coupling input surface of the display screen.
  • the reflecting surface structure of 220 is a one-dimensional array, and the reflecting surface structure is composed of equally spaced inclined faces and planes.
  • the coupling output surface 210 of the other end close to the human eye is a two-dimensional array of reflective surface structures, which are formed by a small prism-shaped reflecting surface structure, which are arranged at a certain distance and at equal intervals.
  • the shape of the microprism is also composed of a slope and a plane.
  • the plane in the microprism of the coupling output 210 allows the light outside the waveguide to pass directly, and the human eye can directly see the waveguide.
  • the outer scene on the other hand, the bevel in the microprism coupled to the output end 210, which can couple the screen from the left display panel and totally reflect the light multiple times in the waveguide, perform total reflection and couple it to the human eye. , forming a virtual image in front of the human eye. Thereby forming an augmented reality effect of the real scene and the virtual scene superimposed.
  • a reflective surface structure 220 coupled to the input end is formed by equally spaced bevels and planes.
  • the planar portion of the reflective surface structure cannot reflect the light emitted from the display screen sheet, and cannot deflect the complete light and is inside the waveguide sheet. Multiple total reflections are conducted to the coupled output on the right, resulting in partial loss of the image that is transmitted to the human eye. It is equivalent to setting a black and white field diaphragm on the display screen. This structure causes the pixel portion of the display to be lost and the resolution to be lowered.
  • the reflective surface structure 210 coupled to the output end is formed by a two-dimensional prism-shaped reflective surface structure, separated by a certain distance, equally spaced, and staggered.
  • the gaps between the reflective surface structures are planar.
  • the input light from the left side of the waveguide sheet is coupled and totally reflected from the display screen. Part of the light is incident on the gap plane between the reflective surface structures. After reflection, it will continue to be totally reflected in the waveguide to the next position, and it will undergo at least two full reflections or multiple total reflections until it hits the slope on the next reflective surface structure.
  • the other part of the light incident on the inclined surface of the reflective surface structure adjacent to the eye is directly coupled to the human eye by the total reflection of the inclined surface.
  • This structure is equivalent to separating the originally ordered pixels on the display screen into different positions and projecting onto the human eye. Some pixels need to be separated by another distance to be seen at another position, and the light is coupled to the human eye. Is a non-sequential beam. Therefore, the coupling output surface 210 of the two-dimensional array of reflective surface structures is relatively easy to form ghosts and stray light, and the image on the display screen that is seen by the human eye is blurred.
  • the reflective surface structure 220 coupled to the input end and the reflective surface structure 210 coupled to the output end are not completely conductive because the coupled input end is a reflective surface structure composed of equally spaced slopes and planes.
  • the image light of the display screen is connected to the coupled output end, and the coupled output end is arranged at an equal interval by a two-dimensional array of multiple reflective surface structures.
  • the structures of the discrete reflective surface structures are connected by a plane, resulting in coupling.
  • the image light at the output cannot be transmitted to the human eyeglasses in an orderly manner.
  • the overall light transmission scheme composed of the two there are obvious technical defects such as partial loss of light transmission and low image resolution, which makes it impossible for the user to completely see the image on the display screen.
  • the present invention provides an optical device for a waveguide type head mounted display, comprising a display device and an optical waveguide sheet, the side portion of the optical waveguide sheet near the ear side being provided for outputting the display device
  • the image light is input into the light coupling input structure inside the optical waveguide sheet, and the light coupling input structure is disposed opposite to the display device, and the outer side surface and the inner side surface of the optical waveguide sheet are respectively reflected from each other to be input through the light coupling input structure.
  • the image light is subjected to at least one optically reflective surface for total reflection transmission, and the outer surface of the optical waveguide sheet is disposed at a position of the human eye region with a reflection for the image light being only one reflection and the reflected image light
  • An ordered zigzag-shaped V-shaped first microstructured array surface wherein an inner side of the optical waveguide sheet is provided with an output surface at a position of the human eye region, wherein the first microstructured array surface has at least two Sawtooths are arranged in sequence, and a V-shaped groove composed of two inclined faces is arranged between two adjacent sawtooth teeth, and one of the inclined faces is set
  • the light reflecting slope, the light reflecting slope in each V-shaped groove of the first microstructure array surface sequentially reflects the image light reflected by the optical reflecting surface of the inner side of the optical waveguide sheet in a single reflection and performs in a reverse direction
  • the reflection of a particular angle is deflected so that it is output from the output face to ultimately output a complete image.
  • the present invention provides an optical device of another waveguide type head mounted display, comprising a display device and an optical waveguide sheet, the side portion of the optical waveguide sheet near the ear side being provided for outputting the display device
  • the image light is input to a light-coupling input structure inside the optical waveguide sheet, and the light-coupled input structure is disposed opposite to the display device, and at least on the outer side surface and the inner side surface of the optical waveguide sheet
  • the image light input by the light-coupled input structure performs an optical reflection surface of at least one total reflection transmission
  • the inner side surface of the optical waveguide sheet is provided with a position for the human eye region to provide reflection of the image light thereon only for one reflection and Make the reflected image light orderly a zigzag-shaped V-shaped first microstructured array surface, wherein the first microstructured array surface has at least two sequentially arranged serrations, and a V-shaped portion composed of two inclined surfaces is disposed between adjacent two sawtooth teeth a groove, and one of the
  • the present invention provides an optical device for another waveguide type head mounted display, comprising a display device and an optical waveguide sheet, characterized in that: the side end portion of the optical waveguide sheet near the ear side is provided for Inputting an image light outputted by the display device to a light coupling input structure inside the optical waveguide sheet, the light coupling input structure being disposed opposite to the display device, at least on an outer side surface and an inner side surface of the optical waveguide sheet Providing an optical reflecting surface for transmitting at least one total reflection of the image light input through the light-coupled input structure, wherein the inner side surface of the optical waveguide sheet is provided with a zigzag-shaped V-shaped first microstructure facing the position of the human eye region An array surface, a compensation sheet is disposed on an outer side of the first microstructure array surface, and the compensation sheet is provided with a fourth microstructure array surface on an inner side surface of the first microstructure array surface of the optical waveguide sheet, wherein the The first microstructure array surface and the fourth microstructure array
  • the present invention proposes a novel waveguide technology for performing reflection deflection using a sawtooth V-groove microstructure array, which replaces the holographic grating sheet and semipermeable membrane in the existing waveguide technology by using a sawtooth V-groove microstructure array.
  • Arrays and arrays of one- and two-dimensional reflective surface structures It can eliminate the chromatic aberration formed by diffraction of the holographic grating and the ghost or pixel loss caused by the image mosaic error of the semi-transmissive film array, and the one-dimensional and two-dimensional reflective surface structure array cannot be completed due to the loss of the pixel portion of the display and the resolution reduction. Look at the problem with the image on the display.
  • the zigzag V-groove microstructure array of the present invention is capable of deflecting the transmitted light to a specific angle, and the deflected light is output through the optical waveguide sheet, and finally enters the human eye, far in front of the human eye.
  • An enlarged virtual image is presented, and the reflection of the light on it is only a reflection, and the reflected light is ordered, which in turn reflects and transmits the beam of the transmitted image to the human eye, and some pixels are not missing between the saw teeth.
  • Light which can be coupled to output a complete image, and the pixels of the image are not disturbed during transmission.
  • 1 is an optical device of a waveguide type head mounted display disclosed by Sony Corporation as CN1774661A;
  • 2 is an optical device of a holographic waveguide type head-mounted display based on red, green and blue three-color light proposed by Sony Corporation;
  • Figure 3 is an optical device of a semipermeable membrane array waveguide type head-mounted display of the publication US20080025667 proposed by the Israeli company Lumus;
  • FIG. 5 is a schematic overall structural view of an optical device of a head mounted display according to Embodiment 1 of the present invention.
  • FIG. 6 is a top plan view showing a partial structure of an optical device of a head mounted display according to Embodiment 1 of the present invention.
  • FIG. 7 is a partial rear view of an optical device of a head mounted display according to Embodiment 1 of the present invention.
  • FIG. 8 is an isometric side view of an optical device of a head mounted display according to Embodiment 1 of the present invention.
  • FIG. 9 is an enlarged view of a first microstructure array surface according to Embodiment 1 of the present invention.
  • FIG. 10 is a light path diagram of a chief ray of an optical device of a head mounted display from a point O of the center of the display screen according to the first embodiment of the present invention
  • FIG. 11 is an optical path diagram of an optical device of a head mounted display according to Embodiment 1 of the present invention.
  • FIG. 12 is a MTF graph of an optical device of a head mounted display according to Embodiment 1 of the present invention.
  • FIG. 13 is a ray tracing diagram of an optical device of a head mounted display in a photometric analysis software according to Embodiment 1 of the present invention.
  • FIG. 14 is a lighting effect diagram of an optical device of a head mounted display on a human eye image surface according to Embodiment 1 of the present invention.
  • FIG. 15 is a light path diagram of an optical device of a head mounted display according to Embodiment 2 of the present invention.
  • FIG. 16 is a light path diagram of an optical device of a head mounted display according to Embodiment 3 of the present invention.
  • FIG. 17 is a light path diagram of an optical device of a head mounted display according to Embodiment 4 of the present invention.
  • FIG. 18 is an optical path diagram of an optical device of a head mounted display according to Embodiment 5 of the present invention.
  • FIG. 19 is a light path diagram of an optical device of a head mounted display according to Embodiment 6 of the present invention.
  • FIG. 20 is a light path diagram of an optical device of a head mounted display according to Embodiment 7 of the present invention.
  • FIG. 21 is an optical path diagram of an optical device of a head mounted display according to Embodiment 8 of the present invention.
  • FIG. 22 is a light path diagram of an optical device of a head mounted display according to Embodiment 9 of the present invention.
  • FIG. 24 is a light path diagram of an optical device of a head mounted display according to Embodiment 11 of the present invention.
  • Figure 25 is an enlarged view of a portion C of Figure 24;
  • 26 is a light path diagram of an optical device of a head mounted display according to Embodiment 12 of the present invention.
  • Figure 27 is an enlarged view of a portion C of Figure 26;
  • FIG. 29 is a light path diagram of an optical device of a head mounted display according to Embodiment 14 of the present invention.
  • FIG. 30 is a light path diagram of an optical device of a head mounted display according to Embodiment 15 of the present invention.
  • FIG. 31 is a light path diagram of an optical device of a head mounted display according to Embodiment 16 of the present invention.
  • FIG. 33 is a light path diagram of an optical device of a head mounted display according to Embodiment 18 of the present invention.
  • Figure 34 is a light path diagram of an optical device of a head mounted display according to a nineteenth embodiment of the present invention.
  • 35 is a light path diagram of an optical device of a head mounted display according to Embodiment 20 of the present invention.
  • 36 is a light path diagram of an optical device of a head mounted display according to a twenty-first embodiment of the present invention.
  • Figure 37 is an enlarged view of the portion E of Figure 36;
  • Figure 39 is an enlarged view of a portion F in Figure 38.
  • Embodiment 1 of the present invention provides an optical device of a waveguide type head mounted display.
  • the optical device may be mounted on a spectacle frame 6, the optical device including a display device, and imaging. Eyepiece group 2 and optical waveguide sheet 3.
  • the display device may be configured as at least one display screen sheet 1.
  • the outline shape of the display screen sheet 1 may be a flat shape, an arc shape, or a spherical shape.
  • the display screen here preferably a 2/3" display, may be an OLED display (organic light-emitting display), an LCD (liquid crystal display), and other LCOS (silicon-based liquid crystal display).
  • the side end portion of the optical waveguide sheet 3 near the ear side is provided with a light coupling input structure for inputting image light output from the display screen sheet 1 into the optical waveguide sheet 3.
  • the optical waveguide sheet 3 is provided with an optical reflection surface 33 on the outer side surface thereof.
  • the inner side surface of the optical waveguide sheet 3 is provided with an optical reflecting surface 34. The two optical reflecting surfaces can cooperate with each other to reflect light, so that the image light input through the light-coupled input structure is transmitted at least once and totally, and outside the optical waveguide sheet 3.
  • the position of the side facing the human eye area is provided with a zigzag V-groove first microstructure array surface 35 for making the reflection of the image light thereon only one reflection and ordering the reflected image light, the optical waveguide sheet 3
  • the inner side is provided with an output face 36 at the position of the human eye area.
  • the optical reflecting surface 34 on the inner side surface of the optical waveguide sheet 3 and the optical reflecting surface 33 on the outer side surface of the optical waveguide sheet may be disposed in parallel or non-parallel.
  • the two optical reflecting surfaces can be respectively set as a plane, a curved surface or a free curved surface.
  • the optical reflecting surface 33 and the optical reflecting surface 34 are preferably disposed in parallel planes.
  • the light-coupling input structure includes a coupling input portion 30 disposed at a side end portion of the optical waveguide sheet 3 near the ear side, a coupling input surface 31 disposed at the end of the coupling input portion 30, and a pair Image light input from the coupled input surface 31
  • the total reflection deflection is deflected to enter the first total reflection surface 32 of the optical reflection surface 33 on the outer side of the optical waveguide sheet 3, and the first total reflection surface 32 is disposed on the side of the coupling input portion 30 (ie, the outer side is steep) It is disposed obliquely to the outer side surface of the optical waveguide sheet 3, and the coupling input surface 31 faces the display screen sheet 1.
  • the coupling input face 31 can be configured as a plane, a cylindrical surface, a spherical surface, an aspheric surface, a free curved surface, a hybrid curved surface, a beveled surface, a Fresnel surface, or a ruled surface with a V-groove profile.
  • the coupling input face 31 is similar to the bell mouth shape.
  • the first total reflection surface 32 may be provided as a plane or a curved surface. In the present embodiment, the first total reflection surface 32 is preferably disposed in a plane.
  • the output face 36 can be configured as a convex aspherical, spherical or Fresnel face with power.
  • the output face 36 is preferably provided as a convex aspherical surface.
  • the first microstructure array surface 35 has at least two serrations 351 arranged in sequence, and a V-shaped groove 352 composed of a slope 353 and a slope 354 is provided between adjacent two serrations, and the slope 353 is provided.
  • the reflective film is plated to form a light reflecting slope, and the light reflecting slope in each V-shaped groove 352 of the first microstructure array surface 35 sequentially reflects the image light reflected by the optical reflecting surface 34 of the inner side of the optical waveguide sheet 3
  • the secondary reflections and a specific angle of reflection deflection in the opposite direction are output from the output face 36 to ultimately output a complete image.
  • All of the saw teeth of the first microstructured array face 35 form an equally spaced or tapered pitch inclined sawtooth structure with a pitch of between 20 and 200 microns per saw tooth.
  • the microstructured array face is an equally spaced oblique zigzag microstructured array face, preferably the sawtooth pitch is 50 microns. Since the first microstructure array surface 35 is plated with a reflective film, the human eye can not see the image of the real scene outside the waveguide sheet, and only the enlarged image displayed on the display screens on both sides of the spectacle frame 6 can be realized. Realistic features.
  • the imaging eyepiece set 2 is located between the light-coupled input structure and the display screen sheet 1.
  • the imaging eyepiece set 2 has at least one lens, and the face shape of the lens can be set to be an aspherical surface, a spherical surface, a Fresnel surface or a binary optical surface.
  • the imaging eyepiece group 2 is composed of three aspherical imaging lenses 21, 24, 23 which correct aberrations and distortions, amplify the display pattern of the display device, and compress the outgoing beam. After the compression, a light beam close to the parallel light is incident into the optical waveguide sheet 3.
  • the optical path of the chief ray from the center O of the display screen is as shown in FIG.
  • the OP is the optical axis passing through the center O of the display screen
  • the TU is the vertical optical axis passing through the human eye.
  • the OP is also the chief ray passing through the center of the display screen, and passes through the first total reflection surface 32 of the optical waveguide 3.
  • the reflected light enters the inside of the optical waveguide sheet 3, and at least one total reflection between the optical reflection surface 33 and the optical reflection surface 34, the reflected light is PQ, QR and RS, respectively, and finally incident on the zigzag V
  • the main rays are deflected by an angle after being reflected, and finally directed toward the human eye in the direction of the SU.
  • the angle between the center point slice of the first total reflection surface 32 and the central optical axis OP of the display screen is ⁇
  • the light reflection slope 353 in the V-shaped groove of the first microstructure array surface 35 is perpendicular to the human eye.
  • the angle of the optical axis TU is ⁇
  • the central optical axis OP of the display screen is sequentially reflected by the first total reflection surface 32 and the optical reflection surfaces 33, 34 and finally incident on the V-shaped groove of the first microstructure array surface 35.
  • a zigzag V-groove microstructure array surface 35 can be designed.
  • can be selected to be between 15° and 40°, and preferably 33° here.
  • FIG. 11 is an optical path diagram of an optical device of a waveguide type head mounted display according to a first embodiment of the present invention, wherein the eyelid is an exit pupil position of the optical system, and preferably has a diameter of 5 mm.
  • the distance between the eyelid and the optical waveguide sheet 3 is between 15 and 18 mm, and in this embodiment it is preferred that the distance is 16.8 mm.
  • the principle is: a display screen near the ear side of the eyeglass frame, the displayed image is first amplified by the imaging eyepiece group 21, 24, 23 and then coupled into the coupling input surface 31 of the optical waveguide, through the first total reflection surface After the reflection of 32 is turned, the light enters into the optical waveguide sheet 3 and is totally reflected between the optical reflecting surfaces 33, 34, and finally the image is transmitted to the outer side of the optical waveguide sheet 3 to face the zigzag of the human eye.
  • the zigzag V-groove first microstructure array surface 35 redirects the transmitted light to a specific angle opposite to the opposite direction, and the deflected light is perpendicular to the optical waveguide sheet.
  • the light is in the first
  • the reflection on a microstructured array surface 35 is only a single reflection, and the reflected light is ordered, which in turn reflects and transmits the light beam of the conductive image to the human eye, and the light of some pixels is not missed between the saw teeth. Coupled to output a complete image, the pixels of the image will not be disturbed during transmission.
  • the display screen preferably has a diagonal dimension of 2/3" and a circle diameter of 18 mm is used in the imaging design process.
  • the resolution of the sagittal direction of the outermost field of view (1 field of view) is about 0.34 in the case of 30 line pairs. All other fields of view (field of view within 0 to 1) have resolutions above 0.5, and the resolution is fully satisfactory.
  • a three-dimensional model of the optical device of the waveguide type head mounted display according to the first embodiment is placed in a photometric analysis software for ray tracing and photometric analysis.
  • the display screen is set to a light-emitting surface with radial stripes, assuming a luminous flux of 10 lumens.
  • the zigzag-shaped V-grooved first microstructure array surface 35 outside the waveguide sheet is set to be specularly reflected.
  • an equivalent lens is set to simulate the human eye optical system, and the illumination effect on the simulated human eye image surface is shown in FIG.
  • the spot on the surface of the simulated human eye is also a radial stripe whose length and width are consistent with the length and width of the display screen. It can be seen that the spot on the image surface of the simulated human eye is relatively clean, without ghosting and stray light. .
  • Embodiment 2 of the present invention provides an optical device of a waveguide type head mounted display, which is an improvement made on the basis of Embodiment 1. In addition to realizing the function of virtual reality, it can also realize the function of augmented reality. .
  • the inclined surface of the V-shaped groove of the zigzag-shaped V-shaped first microstructure array surface 35 of the optical waveguide sheet 3 is plated with a partial reflection film or a semi-transparent film, and is in close contact with the first microstructure array surface.
  • a compensation mirror 4 is further disposed on the outer side of the 35, and the compensation mirror 4 is provided with a zigzag-shaped V-shaped third microstructure array surface 41 on the inner side of the first microstructure array surface 35 of the optical waveguide sheet 3, the third micro The structure array surface 41 also has at least two serrations arranged in sequence, and a V-shaped groove formed by two inclined surfaces between the adjacent two saw teeth, the sawtooth shape and the optical waveguide of the third microstructure array surface 41 of the compensation mirror 4
  • the sawtooth shape of the first microstructured array face 35 of the sheet 3 is completely mirrored, and the anti-reflection film is provided on the slope of the V-shaped groove of the third microstructured array face 41.
  • the compensating mirror 4 and the optical waveguide sheet 3 are in close contact with each other, the light of the real scene from the far side outside the optical waveguide sheet 3 is first refracted by the third microstructure array surface 41 located on the compensating mirror 4, and the refracted light is refracted. Then, it is again refracted by the first microstructure array face 35 located on the optical waveguide sheet 3. Since the sawtooth shapes of the two microstructure array faces are completely mirrored, the refraction angles of the two microstructured array faces are completely compensated, and the incident from the outside scene is compensated.
  • the optical path of the light in the mirror 4 is linearly forward along the original path, is not deflected, and is incident on the output face 36 of the optical waveguide sheet 3, incident on the eye, so that a distant real scene outside the optical waveguide sheet 3 can be seen.
  • This particular embodiment can be used in addition to the compensating mirror 4 to see the distant real scene outside the waveguide sheet.
  • the rest is the same as in the first embodiment, and it is also possible to simultaneously see an enlarged image on the display screen.
  • the image displayed on the display screen near the ear side of the spectacle frame is first amplified by the imaging eyepiece set 21, 24, 23 and then coupled into the coupling input face 31 of the optical waveguide, after the reflection of the first total reflection surface 32 is turned, The input light enters the optical waveguide sheet 3 and is totally reflected between the optical reflecting surfaces 33, 34, and finally the image is transmitted to the zigzag V-groove first microstructure array surface 35 facing the human eye. on.
  • the transmitted light is deflected at a specific angle, and the deflected light is perpendicular to the optical waveguide sheet.
  • the direction of the side, output from the output face 36, and finally into the pupil of the human eye forms an enlarged image farther in front of the optical waveguide. Therefore, the image seen by the human eye is a superposition of the real scene and the image in the display screen, which superimposes the picture in the virtual computer into the real scene of reality to realize the function of augmented reality.
  • Embodiment 3 of the present invention provides an optical device of a waveguide type head mounted display, the number of times that light is reflected in the optical waveguide sheet, the length of the optical waveguide sheet, and the number of lenses of the imaging eyepiece group can be based on the angle of view and The imaging size is determined.
  • the coupling input surfaces of the display screen and the optical waveguide are placed at an angle, and the light beam of the display screen is directly projected onto the optical reflection surface of the outer surface of the optical waveguide for total reflection transmission.
  • This embodiment is referred to herein as a direct-injection waveguide head-mounted display optical solution.
  • the optical device of the waveguide type head mounted display according to the embodiment is a system with a relatively long focal length and a relatively small viewing angle, which eliminates the imaging eyepiece group, and the number of times of light reflection inside the optical waveguide sheet is also It is one less than the first embodiment and the second embodiment.
  • This embodiment is a direct-lit waveguide head mounted display optical solution consisting of a display screen 1 and an optical waveguide 300.
  • the light-coupling input structure of the optical waveguide sheet 300 includes a coupling input portion 320 disposed at a side end portion of the optical waveguide sheet 300 near the ear side and a coupling input surface 321 disposed at the end of the coupling input portion 320, and the display screen sheet is placed obliquely and coupled.
  • the input surface is directly opposite the display screen, and the image light outputted by the display screen is directly projected onto the optical reflecting surface 322 on the outer side of the optical waveguide sheet through the coupling input surface 321 .
  • the optical waveguide sheet 300 is not provided with a first total reflection surface, and a position of the display screen sheet 1 is provided with a coupling input surface 321 which may be a plane or a curved surface, which is preferably a plane here.
  • the outer side and the inner side of the optical waveguide sheet 320 are respectively provided with completely parallel optical reflecting surfaces 322 and 323, which may be planar or curved. In the specific embodiment, the two optical reflecting surfaces are preferably planar.
  • the outer side of the optical waveguide sheet 300 is provided with a zigzag-shaped V-shaped first microstructured array surface 324 facing the human eye, on which a reflective film is plated.
  • the working principle of the specific embodiment is that the light emitted from the display screen is first coupled into the optical waveguide 300 through the coupling input surface 321 of the optical waveguide, and directly incident on the optical reflecting surfaces 322 and 323 on the inner and outer sides of the optical waveguide. Between the two total reflections of the optical reflecting surfaces 322 and 323, the reflected light is incident on the first microstructure array surface 324 of the zigzag V-groove, and the first microstructure array surface 324 moves the incident light in the opposite direction. An angle of reflection deflection, the reflected light is output from the output face 325 in a direction perpendicular to the optical waveguide sheet, into the human eye, thereby presenting an enlarged virtual image at a distance directly in front of the human eye.
  • the optical device of the waveguide type head-mounted display can directly set the power to one side of the optical waveguide sheet in addition to the condensing and image magnification using the imaging eyepiece group.
  • Upper for example, the output surface of the optical waveguide sheet near the eyelid position is provided with a convex aspheric surface, and the coupling input surface of the optical waveguide sheet near the display screen sheet is also set to be aspherical, or the first of the optical waveguide sheets
  • the total reflection surface is set to a free-form surface), which also reduces the number of imaging eyepieces while the field of view and magnification remain the same.
  • Embodiment 4 of the present invention provides an optical device of a waveguide type head mounted display.
  • the fourth embodiment sets the optical waveguide piece 420 to the coupling input surface 421 of the display screen to be aspherical.
  • a first total reflection surface 422 is disposed outside the coupling input surface 421.
  • the outer and inner sides of the optical waveguide sheet 420 are respectively provided with completely parallel optical reflecting surfaces 423 and 424, which may be planar or curved. In the specific embodiment, the two optical reflecting surfaces are preferably planar.
  • the outer side surface of the optical waveguide sheet 420 is provided with a zigzag-shaped V-shaped first microstructure array surface 425 facing the position of the human eye, and is coated with a reflective film.
  • the working principle of the specific embodiment is that the light emitted from the display screen sheet is first concentrated by the coupling input surface 421 of the optical waveguide sheet, and is incident on the first total reflection surface 422 of the optical waveguide sheet. After the reflection, the light beam enters. Between the optical reflecting surfaces 423 and 424 on the inner and outer sides of the optical waveguide sheet, after two total reflections of the optical reflecting surfaces 423 and 424, the light beam is incident on the first microstructure array surface 425 of the zigzag V-groove, first The microstructured array face 425 deflects the incident beam at an angle in the opposite direction. Finally, the reflected beam is output from the output face 426 in a direction perpendicular to the optical waveguide sheet, into the human eye, thereby being directly in front of the human eye. A magnified virtual image is shown in the distance.
  • Embodiment 5 of the present invention provides an optical device of a waveguide type head mounted display, in which an output surface of an outer surface of the optical waveguide sheet close to a human eye position may be disposed in a plane, which coincides with an inner side surface of the optical waveguide sheet 530. As shown in Fig. 18, the position near the eyelid for outputting the light beam is flat, and no convex optical aspherical surface is provided, which coincides with the inner side surface of the optical waveguide sheet.
  • the working principle of this embodiment is that the light emitted from the display screen 1 is concentrated by the eyepiece group 52 (composed of the lenses 521, 522 and 523), and is concentrated into a substantially parallel beam, and the concentrated beam passes through the optical waveguide.
  • the coupling input surface 531 of the sheet 530 is directly incident between the optical reflecting surfaces 532 and 533 on the inner and outer sides of the optical waveguide sheet. After two total reflections of the optical reflecting surfaces 532 and 533, the reflected light beam is incident on the first microstructure array surface 534 of the zigzag V-groove, the first microstructure array surface 534 making the incident beam at an angle in the opposite direction.
  • the reflection is deflected, and finally the reflected beam is outputted in the direction perpendicular to the optical waveguide sheet 530 from the output surface of the optical waveguide sheet 530 into the human eye, thereby presenting an enlarged virtual image at a distance directly in front of the human eye.
  • Embodiment 6 of the present invention provides an optical device of a waveguide type head mounted display, wherein a first total reflection surface of the optical waveguide sheet close to the imaging eyepiece group may be set as a free-form surface total reflection surface, which is except for the imaging eyepiece.
  • the incident light beam is introduced between the outer and inner optical reflection surfaces of the optical waveguide sheet, and it also bears a certain power, which can reduce the number of lenses in the imaging eyepiece group, for example, three pieces are reduced.
  • the output surface of the two sheets, while the inner side of the optical waveguide sheet is close to the eyelid, need not be provided as a convex aspheric surface with power.
  • the imaging eyepiece group 62 of the optical device of the waveguide type head mounted display adopts a two-piece structure of lenses 621 and 622, respectively, and the optical waveguide sheet 630 is adjacent to the imaging eyepiece group.
  • the first total reflection surface 632 is disposed as a free-form total reflection surface, which is introduced between the optical reflection surfaces 633 and 634 which are completely parallel to the outer side and the inner side of the optical waveguide sheet 630 except for the light beam incident from the imaging eyepiece group 62. It also assumes a certain power and magnifies the image.
  • the first total reflection surface 632 is a free-form surface total reflection surface, and the inclination angle thereof is a condition of total reflection, and may be an off-axis quadratic surface or a polynomial curved surface having a toroidal surface and a different radius of curvature in the XY direction.
  • This embodiment is preferably a double cone coefficient curve having a different radius of curvature and a taper coefficient in the X and Y directions.
  • the working principle of the present embodiment is that the light emitted from the display screen 1 is concentrated by the imaging eyepiece group 62, and the concentrated beam passes through the coupling input surface 631 of the optical waveguide sheet and is incident on the first total reflection surface 632.
  • the first total reflection surface 632 further converges the light and deflects the light beam into total reflection, and is input between the optical reflection surfaces 633 and 634 on the inner and outer sides of the optical waveguide sheet.
  • the beam is transmitted in the waveguide and passes through the optically reflective surface After two total reflections of 633 and 634, incident on the zigzag V-groove first microstructure array face 635, the first microstructure array face 635 deflects the incident beam at an angle in the opposite direction, and finally reflects the beam.
  • the output surface of the optical waveguide sheet 630 is outputted into the human eye, thereby presenting an enlarged virtual image at a distance directly in front of the human eye.
  • Embodiment 7 of the present invention provides an optical device of a waveguide type head mounted display, the optical waveguide sheet of which can be combined with a lens group to form a head mounted display that can be zoomed.
  • the optical device of the waveguide type head mounted display of the present embodiment is provided with two sets of lenses between the display screen 1 and the coupling input surface 831 of the optical waveguide 830.
  • One of the groups is the compensation lens group 81 and the other group is the variable power lens group 82.
  • a set of lenses, which are front fixed lens groups 84, are placed between the eyelids and the output face 836 of the optical waveguide sheet.
  • the front fixed lens group 84 is preferably composed of two lenses, which may also have only one lens, which is set as the case may be.
  • the variable power lens group 82 and the compensation lens group 81 are preferably composed of only one mirror in the present embodiment, which may also be two or more lenses, which are determined according to resolution, angle of view, and zoom factor.
  • Embodiment 8 of the present invention provides an optical device of a waveguide type head mounted display, the optical waveguide sheet of which can be combined with a negative lens to be suitable for a person with myopia.
  • the optical device of the waveguide type head mounted display can adopt the structure of the optical waveguide sheet described in the above embodiment in the optical waveguide sheet 920, and between the output surface 926 of the inner side surface of the optical waveguide sheet 920 and the eyelid.
  • a negative lens 93 is provided for correcting the vision of the myopic user.
  • the focal length of the specific negative lens can be adjusted according to the degree of myopia of the user, so that the user can clearly see that the display screen is located directly in front of the human eye. Virtual image.
  • Embodiment 9 of the present invention provides an optical device of a waveguide type head mounted display, the optical waveguide sheet of which can be combined with a positive lens mirror to be suitable for a crowd of presbyopic flowers.
  • Figure 22 As shown in the optical device of the waveguide type head-mounted display, the optical waveguide sheet 1000 can adopt the structure of the optical waveguide sheet described in the above embodiment, and an output surface 1006 between the inner side surface of the optical waveguide sheet 1000 and the eyelid is disposed.
  • the positive lens 103 is used for correcting the vision of the presbyopic user.
  • the focal length of the positive lens can be adjusted according to the user's presbyopia, so that the user can clearly see the virtual image in the display screen that is enlarged in front of the human eye.
  • Embodiment 10 of the present invention provides an optical device of a waveguide type head mounted display, wherein the optical waveguide sheet is provided with a zigzag V-groove first microstructure array surface facing the outer side of the eyelid.
  • a second microstructured array surface having a zigzag V-groove may also be provided on the outer side of the side of the display screen.
  • the light-coupling input structure of the optical waveguide sheet 73 includes a coupling input surface provided on the inner side surface of the optical waveguide sheet 73 and close to the side of the ear, and a sawtooth provided on the outer side of the optical waveguide sheet and close to the side of the ear.
  • a V-shaped second microstructure array surface 732 having at least two serrations arranged in sequence, and a V-shaped groove formed by two inclined surfaces between adjacent two serrations, and wherein A bevel is set to the light reflection bevel.
  • the second microstructure array surface and the coupling input surface face the display screen 1 , and the light reflection slope of each V-shaped groove of the second microstructure array surface 732 sequentially displays the image of the screen 1 into the optical waveguide The light reflection deflects into the optically reflective surface 731 on the inner side of the optical waveguide sheet.
  • the zigzag inclined surface of the second microstructured array surface 732 on the outer side of the optical waveguide sheet 73 near the side of the display screen sheet is opposite to the oblique direction of the zigzag inclined surface of the first microstructured array surface 734 on the side of the eyelid, second The microstructured array face 732 functions to replace the first total reflection surface described in the above embodiments.
  • the entire optical waveguide sheet is directly formed into a flat sheet type, and the optical waveguide sheet can be made thinner.
  • the optical axes of the imaging eyepiece group 72 and the display screen sheet 1 may be placed perpendicular to the optical waveguide sheet 72.
  • the light emitted from the display screen 1 passes through the imaging eyepiece group 72 (composed of the lenses 721, 722, and 723) for image magnification and beam collimation, and the coupling is normally incident into the optical waveguide sheet 73, and the zigzag V-groove second
  • the microstructured array surface 732 deflects the incident light at an angle, and the reflected light is transmitted to the left along the inside of the optical waveguide sheet 73, and after being reflected by the optical reflecting surfaces 733 and 731, At a slanted angle, it is incident on a zigzag-shaped V-groove first microstructure array surface 734 located directly in front of the eyelid and on the outer side of the optical waveguide sheet, and then reflected and deflected in the opposite direction through the first microstructure array surface 734. Finally, the reflected light is output in the direction perpendicular
  • Embodiment 11 of the present invention provides an optical device of a waveguide type head mounted display, which differs from the above embodiment in a zigzag V-groove type for reflecting and deflecting light in an optical waveguide sheet.
  • a microstructured array face is located on the inner side of the optical waveguide sheet and adjacent to the area of the eyelid.
  • the optical device of the waveguide type head mounted display is composed of a display screen sheet 1 and an optical waveguide sheet 1120.
  • the side end portion of the optical waveguide sheet 1120 near the ear side is provided with a light coupling input structure for inputting image light output from the display device into the optical waveguide sheet, at least in the outer side surface and the inner side surface of the optical waveguide 1120 sheet.
  • An optical reflecting surface 1123 for transmitting at least one total reflection of the image light input through the light-coupled input structure is disposed on an outer side thereof, and an inner side surface of the optical waveguide sheet 1120 is disposed at a position of the human eye region for causing image light in the image
  • the upper reflection is only a sawtooth V-groove first microstructured array face 1125 that is reflected once and that causes the reflected image light to be ordered.
  • the light-coupling input structure includes a coupling input portion disposed at a side end portion of the optical waveguide sheet near the ear side, a coupling input surface 1121 disposed at an end of the coupling input portion, and a full image light input from the coupling input surface
  • the reflective deflection deflects the first total reflection surface 1122 of the optical reflection surface of the outer surface of the optical waveguide sheet.
  • the first total reflection surface 1122 is disposed on the side of the coupling input portion and is disposed obliquely to the outer surface of the optical waveguide sheet 1120.
  • the input face 1121 faces the display screen slice 1.
  • the coupling input surface 1121 is preferably configured as an aspherical coupling input surface, and may of course be a plane, a cylindrical surface, a spherical surface, a free curved surface, a mixed curved surface, a beveled surface, a Fresnel surface or a V-groove contour. Straight face.
  • the first total reflection surface 1122 is preferably disposed as a right-angle prism type first total reflection surface, and may of course be a plane, a free-form surface, a toroidal surface, an off-axis quadric surface having different curvature radii in the X and Y directions, a polynomial surface or A biconical coefficient surface with different curvature radius and taper coefficient in the X and Y directions.
  • a partial enlarged view C of the first microstructured array face 1125 is shown in FIG. 25, the first microstructured array face 1125 has at least two serrations arranged in sequence, and an inverted V-shaped groove is provided between adjacent two sawtooth teeth.
  • the V-shaped groove is composed of inclined faces 1125a and 1125b.
  • the inclined surface 1125b is perpendicular to the light RP totally reflected in the optical waveguide sheet, and no reflective film is disposed thereon. After the light RP is refracted by the inclined surface 1125b, the light RP is emitted along the original path into the air medium.
  • the upper surface of the inclined surface 1125a is plated with a reflective film, thereby forming a light reflecting inclined surface, which reflects the incident light RP again, and the reflected light is incident into the eyelid along the PO direction.
  • the virtual image in the front of the human eye forms an enlarged virtual image in the display screen.
  • the total reflection of the light beam between its optical reflecting surfaces 1123 and 1124 may be multiple total reflection.
  • the present embodiment shortens the left and right lengths of the optical waveguide sheet, so that the light beam The total reflection between its optical reflecting surfaces 1123 and 1124 is only one total reflection.
  • Embodiment 12 of the present invention provides an optical device of a waveguide type head mounted display, which can realize a partial transmission function in addition to reflecting and deflecting light transmitted in the optical waveguide sheet to the human eye.
  • the real scene outside the optical waveguide sheet is introduced into the eyelid through the optical waveguide sheet.
  • the human eye can see the virtual image in the display screen and the real scene in front of it, realizing the function of augmented reality.
  • the optical waveguide sheet 1220 is provided with an aspherical coupling input surface 1221, a first total reflection surface 1222, optical reflection surfaces 1224 and 1223 located inside and outside the optical waveguide sheet, and a zigzag V-groove.
  • the first microstructured array face 1225 is provided with an aspherical coupling input surface 1221, a first total reflection surface 1222, optical reflection surfaces 1224 and 1223 located inside and outside the optical waveguide sheet, and a zigzag V-groove.
  • Figure 27 is an enlarged view of a partial view D.
  • the serrated ends of the adjacent two V-shaped grooves in the first microstructured array face 1225 are provided in the pair of optical waveguide sheets.
  • the image light transmitted by total reflection is not reflective and is transmissive to the plane 1225c of the real scene outside the optical waveguide sheet such that the first microstructure array surface 1225 forms a partially reflective and partially transmissive hybrid microstructure array surface.
  • the inclined surface 1225b of the V-shaped groove is perpendicular to the light RP totally reflected in the optical waveguide sheet, and there is no plating reversed thereon Film.
  • the inclined surface 1225a is coated with a reflective film to form a light reflecting inclined surface, which reflects the incident light RP again, and reflects The rear light is incident on the eyelid in the direction of the PO, and a virtual image enlarged in the display screen is formed in front of the human eye.
  • the angle between the inclined surface 1225a and the optical axis OO' is the same as that described in the eleventh embodiment, which is half the angle between the light ray RP and the optical axis OO'.
  • the light ray R'P' is an edge ray passing through the apex E of the adjacent zigzag microstructure. After passing through the slope 1225b, it is also incident on the P' point on the other side slope 1225a, so that no incident plane is incident.
  • the 1225c that is, the plane 1225c has no reflection effect on the light transmitted by the total reflection in the waveguide. Therefore, in the present embodiment and the prior embodiment shown in FIG. 4, the gap between the reflective surface structures is different. implementation plan. In the prior embodiment shown in Fig. 4, the position of the gap between the reflecting surface structures is a plane which has a reflection effect on the light transmitted in the optical waveguide sheet, and interferes with the image finally outputted.
  • the image in the display screen 1 is imaged outside the far side of the human eye, and on the other hand, from the optical
  • the light TT' incident on the outside of the waveguide can be directly passed through the optical waveguide through the plane 1225c into the eyelid, and the human eye can also see the real scene outside the optical waveguide. Therefore, the waveguide type head mounted display technology of the present embodiment can realize the function of augmented reality.
  • Embodiment 13 of the present invention provides an optical device of a waveguide type head mounted display, which is different from the above-described embodiment 11 in that when the focal length is long and the displayed image is small, a direct cast type can be used.
  • the waveguide head-mounted display optical solution As shown in FIG. 28, the light-coupling input structure of the optical waveguide sheet includes a coupling input portion disposed at a side end portion of the optical waveguide sheet near the ear side and a coupling input surface 1521 disposed at an end of the coupling input portion, and the coupling input surface 1521 is positive.
  • the image light outputted by the display screen is directly projected onto the optical reflecting surface 1522 on the outer side of the optical waveguide after passing through the coupling input surface 1521.
  • each V-shaped groove is composed of two left and right inclined surfaces, and the inclined surface on the left side is plated with a reflection film, and the angle with the optical axis passing through the eyelid is the optical axis of the incident light and the eyelid. Half of the angle. The slope on the right is perpendicular to the incident light.
  • the principle of the first microstructured array face 1524 is consistent with that described in the specific embodiment eleven.
  • Embodiment 14 of the present invention provides an optical device of a waveguide type head mounted display, which is different from the above-described embodiment 12 in that when the focal length is long and the displayed image is small, the above embodiment can be used.
  • the first microstructure array surface 1624 can also realize a partial transmission function, which simultaneously realizes the outside of the waveguide sheet.
  • the scene is introduced into the eyelid through the waveguide piece.
  • the human eye can see the virtual image in the screen 1 and the real scene in front of it, realizing the function of augmented reality.
  • the principle of the zigzag V-groove first microstructured array face 1624 is consistent with that described in the specific embodiment twelve.
  • Embodiment 15 of the present invention provides an optical device of a waveguide type head mounted display, wherein a zigzag V-groove first microstructure array surface of the optical waveguide sheet may be located on an inner side of the optical waveguide sheet, close to the eye Awkward area.
  • a direct-injection waveguide head-mounted display optical scheme can be used, and the optical waveguide sheet can also be combined with the zoom lens group to realize optical zoom display.
  • the compensating lens group 172 and the variable power lens group 173 are sequentially disposed between the display screen sheet 1 and the light-coupling input structure of the optical waveguide sheet 1740.
  • a front fixed lens group 175 is disposed between the first microstructured array face 1744 of the waveguide piece 1740 and the eyelid.
  • the compensating lens group 172 and the variator lens group 173 move at a non-linear rate along a direction perpendicular to the optical axis of the display screen sheet 1 by a dashed arrow, a change in the focal length of the optical system can be achieved, thereby realizing display.
  • the size of the image changes.
  • the front fixed lens group 175 may preferably be composed of two lenses, which may also have only one lens, which is set as the case may be.
  • the compensating lens group 172 and the variable power lens group 173 are preferably composed of only one lens, which may also be two or more lenses, which are determined according to resolution, angle of view, and zoom factor.
  • Embodiment 16 of the present invention provides an optical device of a waveguide type head mounted display, wherein a zigzag V-groove first microstructure array surface of the optical waveguide sheet may be located on an inner side of the optical waveguide sheet, close to the eye Awkward area.
  • a direct-injection waveguide head-mounted display optical scheme can be used, and the optical waveguide sheet can also be combined with the zoom lens group to realize optical zoom display. As shown in FIG.
  • the compensation lens group 182 and the variable power lens group 183 are sequentially disposed between the display screen sheet 1 and the light-coupling input structure of the optical waveguide sheet 1840, in the optical A front fixed lens group 185 is disposed between the first microstructured array face 1844 of the waveguide sheet 1840 and the eyelid.
  • the optical waveguide sheet 1840 is partially transmissive, and the human eye can simultaneously see the virtual image in the display screen and the real scene in front, realizing the function of augmented reality.
  • the compensating lens group 182 and the variable power lens group 183 move at a non-linear rate along a direction perpendicular to the optical axis direction of the display screen sheet 1 by a dashed arrow, optical zooming of the system can be realized, thereby realizing display The size of the image changes.
  • Embodiment 17 of the present invention provides an optical device of a waveguide type head mounted display, wherein the optical waveguide sheet is used for reflecting and deflecting light, and the zigzag V-groove first microstructure array surface is located on the optical waveguide sheet.
  • the inner side surface, the area close to the eyelid, the optical waveguide sheet can be combined with a negative lens to be suitable for people with myopia.
  • a negative lens 193 is disposed between the zigzag-shaped V-shaped first microstructure array surface 1925 of the optical waveguide sheet 1920 and the eyelid.
  • the focal length of the specific negative lens can be adjusted according to the degree of myopia of the user, so that the user can clearly see the virtual image enlarged in front of the human eye in the display screen.
  • Embodiment 18 of the present invention provides an optical device of a waveguide type head mounted display, wherein the optical waveguide sheet is used for reflecting and deflecting light, and the zigzag V-groove first microstructure array surface is located on the optical waveguide sheet.
  • the inner side surface, the area close to the eyelid, the optical waveguide sheet can be combined with a positive lens to be suitable for a crowd of presbyopic flowers.
  • the optical waveguide sheet 2020 is partially transmissive, human eyes. At the same time, the virtual image in the display screen and the real scene in front of the screen can be seen.
  • a zigzag V-groove first microstructure array surface 2025 and the eyelid are provided with a positive lens 203 for correcting the presbyopic user.
  • the eyesight, the focal length of the specific positive lens can be adjusted according to the user's presbyopia. In this way, the user can clearly see the virtual image in the display screen that is enlarged in front of the human eye.
  • Embodiment 19 of the present invention provides an optical device of a waveguide type head mounted display, the first waveguide array face 2135 of the zigzag V-groove for reflecting and deflecting light is located in the optical waveguide piece The inner side, the area close to the eyelids.
  • the optical waveguide sheet can be provided with a first total reflection surface similar to a right-angle prism, and combined with a high-definition eyepiece group to achieve maximum magnification and image resolution.
  • the optical device of the waveguide type head mounted display is composed of a display screen sheet 1, an eyepiece group 212 (consisting of lenses 2121, 2122, 2123) and reflective optics.
  • the waveguide sheet 2130 is composed of a first total reflection surface 2132 similar to a right-angle prism, and is combined with the high-definition eyepiece group 212 to achieve maximum magnification and image resolution.
  • Embodiment 20 of the present invention provides an optical device of a waveguide type head mounted display, wherein the optical waveguide sheet is used for reflecting and deflecting light, and the zigzag V-groove first microstructure array surface 2235 is located at the optical waveguide sheet.
  • the optical device of the waveguide type head mounted display is composed of a display screen piece 1, an eyepiece group 222 (consisting of lenses 2221, 2222, 2223) and a partially transmissive type.
  • the optical waveguide sheet 2230 is composed of.
  • the optical waveguide sheet 2230 is provided with a first total reflection surface 2232 similar to a right-angle prism, and combined with the high-definition eyepiece group 222, to achieve maximum magnification and image resolution.
  • Embodiment 21 of the present invention provides an optical device of a waveguide type head mounted display, which is an improvement of the optical device of the waveguide type head mounted display according to the eleventh embodiment, and the above implementation
  • the first microstructured array surface 1125 of the zigzag-shaped V-groove located on the inner side surface of the optical waveguide sheet and the region close to the eyelid, and the inclined surface thereof 1125a needs to be coated with a reflective film, and the process is complicated.
  • the present embodiment proposes a method of providing a higher refractive index compensator.
  • the beam transmitted from the optical waveguide sheet can be deflected by a total reflection method and input into the eyelid without plating on any inclined surface.
  • the waveguide type head mounted display optical device of the present embodiment is composed of a display screen piece 1, an optical waveguide piece 1320, and a compensating piece 133 coupled therewith, and the optical waveguide piece 1320 is close to the ear side.
  • the side end portion is provided with a light coupling input structure for inputting image light outputted by the display device into the optical waveguide sheet
  • the light coupling input structure comprises a coupling input portion disposed at a side end portion of the optical waveguide sheet near the ear side, and is disposed at the side a coupling input surface 1321 at the end of the coupling input portion and a first total reflection surface 1322 for deflecting the total reflection of the image light input from the coupling input surface into the optical reflection surface of the outer surface of the optical waveguide sheet, the first full
  • the reflecting surface 1322 is disposed on the side of the coupling input portion and disposed obliquely to the outer side surface of the optical waveguide sheet, and the coupling input surface 1321 is opposed to the display screen sheet 1.
  • the waveguide type head mounted display optical device can also adopt the direct throw type light coupling input structure described in the above embodiments.
  • the first total reflection surface 1322 can be set as a plane, a free curved surface, a toroidal surface, an off-axis quadric surface having different curvature radii in the X and Y directions, a polynomial curved surface, a radius of curvature and a taper coefficient in the X and Y directions are different.
  • the coupling input face 1321 can be configured as a plane, a cylindrical surface, a spherical surface, an aspheric surface, a free curved surface, a mixed curved surface, a beveled surface, a Fresnel surface, or a ruled surface with a V-groove profile.
  • an optical reflecting surface 1323 for transmitting at least one total reflection of the image light input through the light-coupling input structure is provided at least on the outer side surface thereof, and the inner side surface of the optical waveguide sheet 1320 is positive.
  • a first micro-structure array surface 1325 having a zigzag-shaped V-groove is disposed at a position of the human eye region, and a compensation sheet 133 is disposed on an outer side of the first microstructure array surface 1325, and the first microstructure of the compensation sheet 133 faces the optical waveguide sheet 1320.
  • the inner surface of the array surface 1325 is provided with a zigzag-shaped V-shaped fourth microstructured array surface 1331.
  • the compensation sheet 133 has a refractive index higher than that of the optical waveguide sheet 1320.
  • the first microstructure array surface 1325 has at least two serrations 1320 arranged in sequence, and adjacent serrations 1320 are provided with slopes 1325a and 1325b.
  • a V-shaped groove the sawtooth shape of the fourth microstructure array surface 1331 is adapted to the sawtooth shape of the first microstructure array surface 1325, and the fourth microstructure array surface 1331 also has at least two serrations 1330 arranged in sequence.
  • the sawtooth 1330 of the fourth microstructured array face 1331 is formed by the inclined faces 1330a and 1330b, and a V-shaped groove corresponding to the sawtooth 1320 of the first microstructured array face 1325 is disposed between the adjacent two sawtooth 1330, and the first microstructure array
  • the face 1325 is spaced apart from the fourth microstructured array face 1331 to form an air gap having a lower refractive index than the compensation sheet, and the air gap may have an interval of 4 to 7 micrometers, and is preferably 5 micrometers in a specific embodiment.
  • the light RP totally reflected from the optical reflecting surface 1323 of the optical waveguide sheet 1320 passes through the inclined surface 1325b of the first microstructured array surface 1325, passes through the air gap, and then passes through the inclined surface 1330b of the compensation sheet, and is incident on the compensation sheet.
  • the inclined surface 1330a since the outer side of the inclined surface 1330a is an air gap with a lower refractive index, the position of the P point reaches the total reflection condition, so the light RP is totally reflected by the inclined surface 1330a, and the totally reflected light is output downward and enters into the eyelid. Therefore, after the compensation sheet 133 having a higher refractive index is added, no reflective film is required for any of the inclined surfaces of the optical waveguide sheet and the compensation sheet.
  • the inclined surface 1325b of the first microstructure array 1325 and the inclined surface 1330b of the fourth microstructure array surface 1331 are perpendicular to the light ray RP, the inclined surface 1325a of the first microstructure array surface 1325 and the inclined surface 1330a of the fourth microstructure array surface 1331 and the light
  • Embodiment 22 of the present invention provides an optical device of a waveguide type head mounted display, which is an improvement made to the optical device of the waveguide type head mounted display described in the above twelfth embodiment.
  • the embodiment also proposes a method for setting a higher refractive index compensation sheet as in the above-mentioned embodiment 21, and the light beam transmitted from the optical waveguide sheet can be deflected and input into the eyelid by using total reflection. It is not necessary to plate a reflective film on the inclined surface of any microstructured array surface, and the process is simple.
  • the optical device of the waveguide type head mounted display is composed of a display screen piece 1, an optical waveguide piece 1420, and a compensating piece 143 coupled therewith.
  • the structure of the optical waveguide piece 1420 is the same as that of the above embodiment twelve.
  • the structure of the optical waveguide sheet is mostly the same, It has an aspherical coupling input surface 1421, a first total reflection surface 1422, an optical reflection surface 1423 located on an outer side surface of the optical waveguide sheet 1420, and a first microstructure array of a zigzag V-groove on the inner side surface of the optical waveguide sheet.
  • a fourth microstructured array face 1430 is provided on the face of the compensation sheet 143 toward the first microstructured array face 1425.
  • the V-shaped groove is formed by the inclined faces 1425a and 1425b, and the zigzag ends between the adjacent two V-shaped grooves are provided with the pair of optical waveguides.
  • the image light transmitted by the on-chip total reflection has no reflection and is capable of transmitting the plane 1425c of the real scene outside the optical waveguide sheet.
  • the serrations are formed by the inclined surfaces 1430a and 1430b, and the adjacent two saw teeth are provided with no reflection effect on the image light transmitted by the total reflection in the optical waveguide sheet and can be transmitted through the optical A plane 1430c of the real scene outside the waveguide.
  • the sawtooth shape of the fourth microstructured array face 1430 matches the sawtooth shape of the first microstructured array face 1425.
  • the first microstructured array face and the fourth microstructured array face combine to form a partially reflective and partially transmissive hybrid microstructured array face.
  • the compensation sheet 143 has a refractive index higher than that of the optical waveguide sheet, and the first microstructure array surface and the fourth microstructure array surface are spaced apart to form an air gap having a lower refractive index than the compensation sheet, and the air gap interval It may be 4 to 7 microns, and the specific embodiment is preferably 5 microns.
  • the light RP totally reflected from the optical reflecting surface 1423 of the optical waveguide passes through the inclined surface 1425b, passes through the air gap, passes through the inclined surface 1430b of the compensation sheet, and is incident on the other inclined surface 1430a of the compensation sheet, because the inclined surface 1430a
  • the outer side is an air gap with a lower refractive index, and the position of the P point reaches the total reflection condition, so the light RP is totally reflected by the inclined surface 1430a, and the totally reflected light is output downward and enters into the eyelid. Therefore, after the compensation sheet 143 having a higher refractive index is added, the inclined surface of the optical waveguide sheet and the compensation sheet does not need to be plated with a reflection film.
  • the right bevel 1425b of the first microstructure array 1425 and the right bevel 1430b of the compensation sheet 143 are perpendicular to the ray RP.
  • the angle between the left bevel 1425a of the first microstructure array 1425 and the left bevel 1430a of the compensation sheet 143 and the optical axis OO' is the same as that described in the twelfth embodiment, which is the ray RP and the optical axis OO. Half of the angle.
  • the light ray R'P' is an edge ray passing through the apex E of the adjacent zigzag microstructure, and after passing through the slope 1425b, the air gap, and the slope 1430b, it is also incident on the other side slope 1430a.
  • the point, therefore, is not incident on the plane 1425c, that is, the plane 1425c has no reflection effect on the light transmitted by the total reflection in the waveguide sheet, and therefore, this is a gap between the reflection surface structures as compared with the prior art scheme shown in FIG.
  • the planar waveguide technology is a completely different implementation.
  • the position of the gap between the reflecting surface structures of the prior embodiment shown in Fig. 4 is also a reflection of the light transmitted in the waveguide, which may interfere with the image finally outputted into the eyelid.
  • the image in the display screen 1 is imaged far in front of the human eye.
  • the light TT' incident from the outside of the optical waveguide sheet can pass through the optical waveguide sheet through the planes 1425c and 1430c into the eyelid, and the human eye can also see the real scene outside the waveguide sheet. Therefore, the waveguide type head mounted display technology of the present embodiment can realize the function of augmented reality.
  • the optical waveguide sheet and the microstructure array surface may be an integrally formed structure.
  • high-precision mold can be directly injection-molded, and the micro-array array surface and the optical waveguide sheet are integrally injection-molded, the production cost is low, the product precision is high, the production is fast, and mass production and popularization are easily realized.
  • the optical waveguide sheet and the microstructured array surface may also be independent structures, and the microstructure array surface may be disposed as an optical component connected to the optical waveguide sheet, and the optical component is configured as an optical film, the optical The film is attached to the optical waveguide sheet by optical bonding.
  • the optical film can be fabricated by roll forming or compression molding, the corresponding reflective sawtooth is engraved on the optical film, and the reflective film is printed on the corresponding inclined surface, and then pasted and adhered to the optical waveguide sheet by optical adhesive bonding.
  • the refractive index of the optical adhesive and the refractive index of the optical waveguide sheet are substantially the same.

Abstract

一种波导式的头戴显示器的光学装置,至少包括显示装置(1)和光学波导片(3)。光学波导片靠近耳朵一侧的侧端部位设有光线耦合输入结构(30),光线耦合输入结构与显示装置相对设置,光学波导片的至少一个侧面设有光学反射面(33, 34),光学波导片的外侧面设有锯齿形V槽状的微结构阵列面(35),锯齿形V槽状的微结构阵列面能够将传输过来的光线进行一个特定角度的反射偏转,偏转后的光线透过光学波导片输出,最后进入人眼中,在人眼正前方远处呈现一个放大的虚像。光线在锯齿形V槽状的微结构阵列面上的反射仅仅是一次反射,其反射的光线是有序的,其依次将传导图像的光束反射输出至人眼中,锯齿之间不会遗漏某些像素的光线,其可耦合输出完整的图像,传输过程中图像的像素不会被打乱。

Description

波导式的头戴显示器的光学装置 技术领域
本发明涉及显示设备技术领域,更具体地说,是涉及一种波导式的头戴显示器的光学装置。
背景技术
随着VR(虚拟现实)以及AR(增强现实)显示技术在娱乐、医疗、工业、和军事领域的快速发展及普及,波导式的头戴显示器由于其光学波导片较薄(其厚度可以做得和普通的眼镜片类似)、比较容易获得高清晰度大视野的图像、加工相对容易、重量轻,获得了行业的广泛青睐并将成为未来较长时间的一个发展方向。
目前,现有头戴显示器主流的波导技术主要分为全息波导和半透膜阵列波导两类。
其中,全息波导式的头戴显示器,其基本结构的特征为:其采用至少一片反射式的全息光栅(闪耀光栅)将光束偏转一个角度并反射进波导片中,在波导片内进行多次全反射传输,以及采用至少一片全息反射光栅(闪耀光栅)再将光束从波导片中取出。其所代表的有日本索尼提出的公开号为CN1774661A的专利技术。如附图1所示,其波导片13外侧的左右两边粘合了2片反射式的全息衍射光栅(或闪耀光栅)14和15,全息光栅14首先对目镜12的出瞳光束进行一个角度的反射偏转,偏转后的反射光进入到波导片13的内部,随后在波导片13内外两侧壁13a和13b之间进行多次全反射,最后入射到左边的全息光栅15上,全息光栅15再对入射过来的光束沿着与全息光栅14相反的方向进行一个角度的反射偏转,最后光束沿着垂直于波导片的方向进入到人眼并在正前方的远处形成一个显示器中放大的虚像。
该结构具有厚度薄、重量轻的特点。但系统光能利用率比较低,对光栅的精度要求比较高,衍射引入的杂光和色散比较严重而且矫正 方法复杂,相对只比较适合单色光(譬如绿光)的图像显示。对于多色光,需要采用上下两片波导片、以及在波导片两端放置上下两组全息光栅的组合才能达到比较好的彩色图案显示的效果。
附图2为索尼公司提出的双片式波导头戴式显示器的光学装置的结构,其由上下两片波导片组成。下方的波导片只反射和传输绿光,下方波导片左右两端的全息光栅只反射和偏转绿光,同时透过红蓝光。而上方的波导片传输红蓝光,上方波导片左右两端的全息光栅反射和偏转红蓝光。上方波导片的红蓝光束,及下方波导片的绿色光束,通过左侧位于眼睛前面的两组全息光栅反射和偏转之后重新组合在一起,才能形成一个全彩的图案。
双片式波导头戴式显示器的主要缺陷为:
1.在这个结构中,颜色是分开传导的,也就是上方一片和下方一片波导片传导不同颜色的光,到眼睛前面再通过2块光栅会聚到一起。容易造成的不良问题是:上下两片波导存在2个波导厚度的光程差,将2种颜色的光叠加在一起,像面容易造成红蓝分开的色差。
2.左右需要4片全息光栅,生产效率低下,品质良率控制难,造成制作成本高,不利于大批量的生产与应用。
3.对全息光栅的加工精度要求非常高,需要极为精密及繁杂的制作工艺,生产品质一致性控制难。
4.全息光栅片与波导片无法采用一体成型,需要复杂及精密的组装工艺才可满足生产条件,上方波导片的红蓝光,和下面波导片的绿光需要非常精密的重合校正、非常精准的对齐,才能矫正色差。如果光栅本身的加工精度误差稍大,其误差会对反射光的偏转角会产生一定的偏差,累计4片的误差,除了容易产生色差问题之外,还容易存在重影的品质问题。并且,受光栅制作精度误差与光学波导结构的缺陷的制约,从而造成视场的角度不够大的问题。
另一种,现有波导式头戴显示器的另一种技术方案为半透膜阵列波导式的头戴显示器技术,其所代表的有图3所示的以色列公司Lumus提出的公布号为US7577326和US20080025667的专利技术。其中,公布号为US20080025667所述的半透膜阵列波导式头戴显示 器,其光学装置中的光学波导片位于人眼出瞳的位置由等间距或者变间距排布半透膜22倾斜地内嵌于基底构成;显示屏幕片放置于波导片的右侧,目镜系统位于微显示屏和倾斜棱镜66之间,其出瞳平面位于垂直扩展波导内部;微显示屏的线视场分布的发散光通过目镜系统后变为角视场分布的平行光,各角视场平行光先后经过平面72耦合到倾斜棱镜66中,经过第一全反射面68的全反射之后,平行光束耦合进光学波导片20中,并在波导片内部进行多次全反射,最后通过半透膜阵列波的反射偏转,入射到人眼中,从而获得微显示屏上的显示信息。该专利所述的半透膜阵列22,其实为一片片镀有半透半反膜的平板玻璃,按照一定的倾斜角度整齐地排列放置。
所述半透膜阵列波导式的头戴显示器光学装置,其波导技术利用倾斜地内嵌于波导基底内的半透膜阵列22的折射和反射实现了目镜出瞳的扩展。与上述索尼提出的图1和图2的采用全息光栅的波导技术相比,由于没有光栅的衍射形成色差,其色散小,容易实现彩色图像显示。但是该项技术对于半透膜阵列22的间距、以及半透膜倾斜角度的要求也非常严格。由于进入到眼瞳中的光束是由等间隔的半透膜反射的光束拼接而成的,半透膜的间距和倾斜角度的误差会导致图像的重影、像素丢失、以及图像锯齿形周期性的变形。另外图像的视角也比较窄。制作方面,由于波导片由等间距或者变间距排布的半透膜倾斜地内嵌于基底构成,其半透膜阵列的排列需要非常精准的位置度及面型精密性,由于其及制作工艺复杂,成品效率不高等因素,其技术方案也不利于大批量的生产与应用。
另外,如附图4所示,美国的Google公司还提出了提出公布号为US8189263的一种基于一维和二维反射面结构阵列的波导式头戴显示器技术,其靠近显示屏幕片的耦合输入面220的反射面结构为一维阵列,所述的反射面结构,其由等间隔的斜面和平面构成。另一端靠近人眼的耦合输出面210,则为二维的反射面结构阵列,其由一颗颗小的棱镜状的反射面结构,错开一定距离、等间隔排列而成。微棱镜的形状也是由斜面和平面构成。一方面,耦合输出端210的微棱镜中的平面可以让波导片外侧的光直接穿过,人眼可以直接看到波导片 外侧的场景,另一方面,耦合输出端210的微棱镜中的斜面,可以将从左边显示屏幕片耦合进来、并在波导片中全反射多次的光线,进行全反射并耦合输出到人眼,在人眼的正前方形成一个虚像。从而形成真实场景与虚拟场景叠加的增强现实的效果。
但是这种波导技术有明显的技术缺陷:
其一,耦合输入端的反射面结构220,其由等间隔的斜面和平面构成,反射面结构上的平面部分由于不能反射从显示屏幕片发出的光线、无法将完整的光线偏转并在波导片内部多次全反射传导到右边的耦合输出端,导致传导到人眼的图像部分丢失。其相当于在显示屏幕片上设置了一个黑白相间的视场光阑,这种结构会导致显示器的像素部分丢失和分辨率降低。
其二,耦合输出端的反射面结构210,由于其为二维的反射面结构阵列,其由一颗颗小的棱镜状的反射面结构、隔开一定距离、等间隔、错开排列而成。这些反射面结构之间的空隙为平面,如其专利中所描述的,从波导片左边耦合输入并全反射从显示屏发出的光线,部分光线入射到这些反射面结构之间空隙平面上,经平面反射后还会继续在波导片内全反射到下一个位置,其至少再经过两次的全反射或多次的全反射,直到碰到下一个反射面结构上的斜面才能被反射耦合输出到人眼,而相邻位置入射到反射面结构的斜面上的另一部分光线,则直接被斜面全反射耦合输出到人眼。这种结构相当于将显示屏幕片上原本有序排列的像素分离成不同的位置投射到人体眼睛上,部分像素需要相隔很远的距离在另外一个位置才能看到,其耦合输出到人眼的光是呈非序列的光束。因此这种二维的反射面结构阵列的耦合输出面210,其比较容易会形成重影和杂光,导致人眼看到的显示屏幕片上的图像是模糊不清。
其三,根据US8189263专利图示的结构,结合耦合输入端的反射面结构220和耦合输出端的反射面结构210,因耦合输入端是由等间隔斜面和平面组成的反射面结构,导致无法完整传导这显示屏的图像光线到耦合输出端,又因耦合输出端由二维的多颗反射面结构阵列、呈等间隔排列,这些分立的反射面结构之间的由平面相连,导致耦合 输出端的图像光线无法有序传导到人体眼镜中。结合两者组成的整体光传导方案,其明显存在部分光线传导丢失及图像分辨率低的技术缺陷,导致使用者无法完整看清楚显示屏上的影像。
发明内容
本发明的目的在于克服现有技术中的上述缺陷,提供一种采用锯齿形V槽状的微结构阵列进行反射偏转的新波导技术的波导式的头戴显示器的光学装置。
为实现上述目的,本发明提供了一种波导式的头戴显示器的光学装置,包括显示装置和光学波导片,所述光学波导片靠近耳朵一侧的侧端部位设有用于将显示装置输出的图像光线输入到光学波导片内部的光线耦合输入结构,所述光线耦合输入结构与显示装置相对设置,所述光学波导片的外侧面和内侧面分别设有互相反射从而将经过光线耦合输入结构输入的图像光线进行至少一次全反射传输的光学反射面,所述光学波导片的外侧面正对人眼区域的位置设有用于使图像光线在其上的反射仅仅是一次反射且使反射的图像光线有序的锯齿形V槽状的第一微结构阵列面,所述光学波导片的内侧面正对人眼区域的位置设有输出面,其中,所述第一微结构阵列面具有至少两个依次设置的锯齿,相邻两个锯齿之间设有由两个斜面构成的V形槽,并且其中一个斜面设置为光线反射斜面,所述第一微结构阵列面的每个V形槽中的光线反射斜面依次将光学波导片内侧面的光学反射面反射过来的图像光线以单次反射并以相反的方向进行一个特定角度的反射偏转从而使其从输出面输出,以最终输出完整图像。
为实现上述目的,本发明提供了另一种波导式的头戴显示器的光学装置,包括显示装置和光学波导片,所述光学波导片靠近耳朵一侧的侧端部位设有用于将显示装置输出的图像光线输入到光学波导片内部的光线耦合输入结构,所述光线耦合输入结构与显示装置相对设置,在所述光学波导片的外侧面和内侧面中,至少在其外侧面设有将经过光线耦合输入结构输入的图像光线进行至少一次全反射传输的光学反射面,所述光学波导片的内侧面正对人眼区域的位置设有用于使图像光线在其上的反射仅仅是一次反射且使反射的图像光线有序 的锯齿形V槽状的第一微结构阵列面,其中,所述第一微结构阵列面具有至少两个依次设置的锯齿,相邻两个锯齿之间设有由两个斜面构成的V形槽,并且其中一个斜面设置为光线反射斜面,所述第一微结构阵列面的每个V形槽中的光线反射斜面依次将光学波导片外侧面的光学反射面反射过来且穿过第一微结构阵列面的同一V形槽的另一斜面出射到空气介质中的图像光线以单次反射并以相反的方向进行一个特定角度的反射偏转从而输出完整图像。
为实现上述目的,本发明提供了另一种波导式的头戴显示器的光学装置,包括显示装置和光学波导片,其特征在于:所述光学波导片靠近耳朵一侧的侧端部位设有用于将显示装置输出的图像光线输入到光学波导片内部的光线耦合输入结构,所述光线耦合输入结构与显示装置相对设置,在所述光学波导片的外侧面和内侧面中,至少在其外侧面设有将经过光线耦合输入结构输入的图像光线进行至少一次全反射传输的光学反射面,所述光学波导片的内侧面正对人眼区域的位置设有锯齿形V槽状的第一微结构阵列面,所述第一微结构阵列面的外侧设有补偿片,所述补偿片朝向光学波导片的第一微结构阵列面的内侧面上设有第四微结构阵列面,其中,所述第一微结构阵列面和第四微结构阵列面分别具有至少两个依次设置的锯齿,所述第一微结构阵列面的相邻两个锯齿之间设有由两个斜面构成的V形槽,所述第四微结构阵列面的锯齿形状与第一微结构阵列面的锯齿形状相适配,所述第四微结构阵列面的锯齿由另外两个斜面构成,所述第一微结构阵列面与第四微结构阵列面间隔设置形成有折射率低于补偿片的空气隙,所述光学波导片外侧面的光学反射面反射过来的图像光线依次穿过第一微结构阵列面的V形槽的一斜面、空气隙和第四微结构阵列面的锯齿的一斜面后在第四微结构阵列面的同一锯齿的另一斜面上全反射偏转从而输出完整图像。
与现有技术相比,本发明的有益效果在于:
1、本发明提出了一种采用锯齿形V槽状微结构阵列进行反射偏转的新的波导技术,采用锯齿形V槽状的微结构阵列代替现有波导技术中的全息光栅片、半透膜阵列以及一维和二维反射面结构阵列,其 能够消除全息光栅由于衍射形成的色差和半透膜阵列由于图像拼接误差所形成的重影或者像素丢失,以及一维和二维反射面结构阵列由于显示器的像素部分丢失和分辨率降低从而导致无法完整看清楚显示屏上的影像的问题。
2、本发明的锯齿形V槽状的微结构阵列能够将传输过来的光线进行一个特定角度的反射偏转,偏转后的光线透过光学波导片输出,最后进入人眼中,在人眼正前方远处呈现一个放大的虚像,光线在其上的反射仅仅是一次反射,其反射的光线是有序的,其依次将传导图像的光束反射输出至人眼中,锯齿之间不会遗漏某些像素的光线,其可耦合输出完整的图像,传输过程中图像的像素不会被打乱。
附图说明
为了更清楚地说明本发明实施例或者现有技术中的技术方案,下面将对实施例或者现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是索尼公司提出的公开号为CN1774661A的波导式头戴显示器的光学装置;
图2是索尼公司提出的基于红绿蓝三色光的全息波导式头戴显示器的光学装置;
图3是以色列公司Lumus提出的公布号为US20080025667的半透膜阵列波导式头戴显示器的光学装置;
图4是Google公司提出的公布号为US8189263的一种基于一维和二维反射面结构阵列的波导式头戴显示器技术;
图5是本发明实施例一提供的一种头戴式显示器的光学装置整体结构示意图;
图6是本发明实施例一提供的一种头戴式显示器的光学装置的局部结构俯视图;
图7是本发明实施例一提供的一种头戴式显示器的光学装置的局部结构后视图;
图8是本发明实施例一提供的一种头戴式显示器的光学装置的等轴侧视图;
图9是本发明实施例一提供的第一微结构阵列面的放大图;
图10是本发明实施例一提供的一种头戴式显示器的光学装置从显示屏幕片中心O点出发的主光线的光路图;
图11是本发明实施例一提供的一种头戴式显示器的光学装置的光路图;
图12是本发明实施例一提供的一种头戴式显示器的光学装置的MTF曲线图;
图13是本发明实施例一提供的一种头戴式显示器的光学装置在光度分析软件中的光线追迹图;
图14是本发明实施例一提供的一种头戴式显示器的光学装置在人眼像面上的照明效果图;
图15是本发明实施例二提供的一种头戴式显示器的光学装置的光路图;
图16是本发明实施例三提供的一种头戴式显示器的光学装置的光路图;
图17是本发明实施例四提供的一种头戴式显示器的光学装置的光路图;
图18是本发明实施例五提供的一种头戴式显示器的光学装置的光路图;
图19是本发明实施例六提供的一种头戴式显示器的光学装置的光路图;
图20是本发明实施例七提供的一种头戴式显示器的光学装置的光路图;
图21是本发明实施例八提供的一种头戴式显示器的光学装置的光路图;
图22是本发明实施例九提供的一种头戴式显示器的光学装置的光路图;
图23是本发明实施例十提供的一种头戴式显示器的光学装置的 光路图;
图24是本发明实施例十一提供的一种头戴式显示器的光学装置的光路图;
图25是图24中C部位的放大图;
图26是本发明实施例十二提供的一种头戴式显示器的光学装置的光路图;
图27是图26中C部位的放大图;
图28是本发明实施例十三提供的一种头戴式显示器的光学装置的光路图;
图29是本发明实施例十四提供的一种头戴式显示器的光学装置的光路图;
图30是本发明实施例十五提供的一种头戴式显示器的光学装置的光路图;
图31是本发明实施例十六提供的一种头戴式显示器的光学装置的光路图;
图32是本发明实施例十七提供的另一种头戴式显示器的光学装置的光路图;
图33是本发明实施例十八提供的一种头戴式显示器的光学装置的光路图;
图34是本发明实施例十九提供的一种头戴式显示器的光学装置的光路图;
图35是本发明实施例二十提供的一种头戴式显示器的光学装置的光路图;
图36是本发明实施例二十一提供的一种头戴式显示器的光学装置的光路图;
图37是图36中E部位的放大图;
图38是本发明实施例二十二提供的一种头戴式显示器的光学装置的光路图;
图39是图38中F部位的放大图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
本发明的实施例一提供了一种波导式的头戴显示器的光学装置,请参考图5、图6和图7,该光学装置可以安装在眼镜架6上,该光学装置包括显示装置、成像目镜组2和光学波导片3。
其中,显示装置可以设置为至少一片显示屏幕片1,显示屏幕片1的轮廓形状可以为平板状、圆弧状或者球体状。所述显示屏幕片,这里优选为2/3”的显示器,其可以为OLED显示器(有机发光显示屏)、LCD(液晶显示屏)以及其他的LCOS(硅基液晶显示屏)。
光学波导片3靠近耳朵一侧的侧端部位设有用于将显示屏幕片1输出的图像光线输入到光学波导片3内部的光线耦合输入结构,光学波导片3的外侧面设有光学反射面33,光学波导片3的内侧面设有光学反射面34,两个光学反射面能够互相配合反射光线,从而将经过光线耦合输入结构输入的图像光线进行至少一次全反射传输,光学波导片3的外侧面正对人眼区域的位置设有用于使图像光线在其上的反射仅仅是一次反射且使反射的图像光线有序的锯齿形V槽状的第一微结构阵列面35,光学波导片3的内侧面正对人眼区域的位置设有输出面36。
光学波导片3内侧面的光学反射面34与光学波导片外侧面的光学反射面33可以平行设置或者非平行设置。两光学反射面可以分别设置为平面、带有弧度的曲面或者自由曲面。在本实施例中,光学反射面33与光学反射面34优选设置为平行平面。
具体的,在本实施例中,光线耦合输入结构包括设置在光学波导片3靠近耳朵一侧的侧端部位的耦合输入部30、设置在耦合输入部30末端的耦合输入面31和用于对从耦合输入面31输入的图像光线 进行全反射偏转使其偏转进入到光学波导片3外侧面的光学反射面33的第一全反射面32,第一全反射面32设置在耦合输入部30的侧面(即外侧较陡位置)并与光学波导片3的外侧面倾斜设置,耦合输入面31正对着显示屏幕片1。
耦合输入面31可以设置为平面、圆柱面、球面、非球面、自由曲面、混合曲面、斜面、菲涅尔曲面或者带有V槽轮廓的直纹面。在本实施例中,耦合输入面31类似于喇叭口形状。
第一全反射面32可以设置为平面或者曲面。在本实施例中,第一全反射面32优选设置为平面。
输出面36可以设置为凸出的带有光焦度的非球面、球面或者菲涅尔面。在本实施例中,输出面36优选设置为凸出的非球面。
如图9和图10所示,第一微结构阵列面35具有至少两个依次设置的锯齿351,相邻两个锯齿之间设有由斜面353和斜面354构成的V形槽352,斜面353镀有反射膜,从而形成光线反射斜面,第一微结构阵列面35的每个V形槽352中的光线反射斜面依次将光学波导片3内侧面的光学反射面34反射过来的图像光线以单次反射并以相反的方向进行一个特定角度的反射偏转从而使其从输出面36输出,以最终输出完整图像。
第一微结构阵列面35的所有锯齿组成一个等间距或者渐变间距的倾斜锯齿结构,每个锯齿的间距介于20~200微米之间。本实施方案优选该微结构阵列面为等间距的倾斜锯齿形微结构阵列面,优选该锯齿间距为50微米。由于第一微结构阵列面35镀有反射膜,这时人眼看不到波导片外侧的真实场景的图像,而只能看到位于眼镜架6两边的显示屏幕片中放大的图像,可以实现虚拟现实的功能。
成像目镜组2位于光线耦合输入结构与显示屏幕片1之间,成像目镜组2具有至少一片透镜,透镜的面型可以设置为非球面、球面、菲涅尔面或者二元光学面。在本实施例中,成像目镜组2由三片非球面的成像透镜21、24、23组成,其将像差和畸变进行矫正,并将显示装置的显示图案进行放大,以及出射光束进行压缩,压缩后以接近于平行光的光束入射到光学波导片3中。
本实施例一所述波导式的头戴显示器的光学装置,从显示屏幕片的中心O点出发的主光线的光路图如图10所示。假设OP为经过显示屏幕片中心O点的光轴、TU为经过人眼瞳的垂直光轴,OP同时为经过显示屏幕片中心的主光线,其经过光学波导片3的第一全反射面32的反射,反射之后的光线进入到光学波导片3内部,并在光学反射面33与光学反射面34之间进行至少一次全反射,反射光线分别为PQ、QR及RS,最后入射到锯齿形V槽状的微结构阵列面35上,经反射后主光线偏转一个角度,最后以SU的方向射向人眼。假设第一全反射面32的中心点切面与显示屏幕片的中心光轴OP的夹角为θ,第一微结构阵列面35的V形槽中的光线反射斜面353与经过人眼瞳的垂直光轴TU的夹角为α,显示屏幕片的中心光轴OP依次经过第一全反射面32和光学反射面33、34的反射后最终射入到第一微结构阵列面35的V形槽中的光线反射斜面353上的反射光线RS与经过人眼瞳的垂直光轴TU的夹角为β,那么存在以下的关系:β=2θ;α=π/2-θ。
根据第一全反射面32中心点切面与光轴OP的夹角θ,可以设计出锯齿形V槽状的微结构阵列面35。其中可以选择θ在15°~40°之间,这里优选其为33°。
图11为具体实施例一所述波导式的头戴显示器的光学装置在成像设计软件中的光路图,其中眼瞳为该光学系统的出瞳位置,这里优选其直径为5mm。眼瞳与光学波导片3的距离在15~18mm之间,本具体实施方案优选该距离为16.8mm。
其原理为:靠近眼镜架耳朵一侧位置的显示屏幕片,其显示的图像先通过成像目镜组21、24、23放大之后耦合到光学波导片的耦合输入面31中,经过第一全反射面32的反射转折之后,光线进入到光学波导片3中并在光学反射面33、34之间进行全反射,最后图像传输到光学波导片3的外侧面正对人眼的锯齿形V槽状的第一微结构阵列面35上,锯齿形V槽状的第一微结构阵列面35再将传输过来的光线,进行一个特定角度相反方向的反射偏转,偏转后的光线沿着垂直于光学波导片内侧面的方向、从输出面36输出,最后进入到人眼的瞳孔中,在人眼正前方的远处形成一个放大的图像。其中,光线在第 一微结构阵列面35上的反射仅仅是一次反射,其反射的光线是有序的,其依次将传导图像的光束反射输出至人眼中,锯齿之间不会遗漏某些像素的光线,其可耦合输出完整的图像,传输过程中图像的像素不会被打乱。
所述显示屏幕片优选其对角线尺寸为2/3”,在成像设计过程采用了像圆直径为18mm。
图12为本具体实施例一所述波导式的头戴显示器的光学装置的MTF曲线,在30线对时,除了最外视场(1视场)的弧矢方向的分辨率为0.34左右,其他所有的视场(0~1内的视场)的分辨率都在0.5以上,解像率完全可以满足要求。
如图13所示,将本具体实施例一所述波导式的头戴显示器的光学装置的三维模型放入到光度分析软件中进行光线追迹和光度分析。其中将显示屏幕片设置为带有辐射状条纹的发光面,假设其光通量为10流明。同时将波导片外侧的锯齿形V槽状的第一微结构阵列面35设置为镜面反射。并且设置一个等效透镜来模拟人眼光学系统,模拟人眼像面上的照明效果如图14所示。模拟人眼像面上的光斑也是个辐射状的条纹,其长宽方向与显示屏幕片的长宽方向一致,可以看到模拟人眼的像面上的光斑比较干净,没有重影和杂光。
实施例二
本发明的实施例二提供了一种波导式的头戴显示器的光学装置,是在实施例一的基础上做出的改进,除了实现虚拟现实的功能之外,其还可以实现增强现实的功能。请参考图15,光学波导片3的锯齿形V槽状的第一微结构阵列面35的V形槽的斜面镀有部分反射膜或者半反半透膜,紧贴着第一微结构阵列面35的外侧还设置有一个补偿镜4,补偿镜4朝向光学波导片3的第一微结构阵列面35的内侧面上设有锯齿形V槽状的第三微结构阵列面41,第三微结构阵列面41也具有至少两个依次设置的锯齿,相邻两个锯齿之间设有由两个斜面构成的V形槽,补偿镜4的第三微结构阵列面41的锯齿形状与光学波导片3的第一微结构阵列面35的锯齿形状完全镜像,第三微结构阵列面41的V形槽的斜面上设有增透膜。
当补偿镜4与光学波导片3紧贴在一起时,从光学波导片3外侧的远处真实场景的光线,先通过位于补偿镜4的第三微结构阵列面41进行折射,折射后的光线再通过位于光学波导片3的第一微结构阵列面35再次折射,由于两个微结构阵列面的锯齿形状完全镜像,两个微结构阵列面的折射角度正好完全补偿,从外侧场景入射到补偿镜4中的光线的光路沿原路直线向前,没有被偏转,再通过位于光学波导片3的输出面36,入射到眼睛,从而可以看到光学波导片3外侧的远处的真实场景。
该具体实施方案除了采用补偿镜4可以看到波导片外侧的远处的真实场景之外。其余部分与实施例一相同,其还可以同时看到显示屏幕片上放大的图像。靠近眼镜架耳朵一侧位置的显示屏幕片显示的图像先通过成像目镜组21、24、23放大之后耦合到光学波导片的耦合输入面31中,经过第一全反射面32的反射转折之后,输入光线进入到光学波导片3中并在光学反射面33、34之间进行全反射,最后图像传输到光学波导片外侧面正对人眼的锯齿形V槽状的第一微结构阵列面35上。由于第一微结构阵列面35上镀有部分反射膜或者半反半透膜,其再将传输过来的光线,进行一个特定角度的部分反射偏转,偏转后的光线沿着垂直于光学波导片内侧面的方向、从输出面36输出,最后进入到人眼的瞳孔中,在垂直于光学波导片的正前方远处形成一个放大的图像。所以人眼看到的图像是真实场景和显示屏幕片中的图像的叠加,其将虚拟的计算机中的画面,叠加到现实的真实场景中,实现增强现实的功能。
实施例三
本发明的实施例三提供了一种波导式的头戴显示器的光学装置,其光线在光学波导片中反射的次数、光学波导片的长短以及成像目镜组镜片的数量,可以根据视场角和成像大小来确定。所述显示屏幕片和光学波导片的耦合输入面均倾斜一个角度放置,显示屏幕片的光束直接投射到光学波导片的外侧面的光学反射面进行全反射传输。这里称这种实施方案为直投式的波导头戴显示器光学方案。
当视场要求比较小、成像较小时,可以设计焦距比较长的系统, 目镜组可以少用一些镜片,甚至不用目镜组,另外,光学波导片的光学反射面的反射次数也可以少一些。如图16所示,本实施例所述的波导式的头戴显示器的光学装置为焦距比较长、视角比较小的系统,其取消了成像目镜组,另外光线在光学波导片内部的反射次数也比上述实施例一和实施例二少了一次。
本具体实施方案为直投式的波导头戴显示器光学方案,其由显示屏幕片1和光学波导片300组成。光学波导片300的光线耦合输入结构包括设置在光学波导片300靠近耳朵一侧的侧端部位的耦合输入部320和设置在耦合输入部320末端的耦合输入面321,显示屏幕片倾斜放置,耦合输入面正对着显示屏幕片,显示屏幕片输出的图像光线经过耦合输入面321后直接投射到光学波导片外侧面的光学反射面322。
在本实施例中,光学波导片300不设置第一全反射面,其对着显示屏幕片1的位置设置有一个耦合输入面321,其可以为平面或者弧面,这里优选其为平面。光学波导片320的外侧和内侧分别设置有完全平行的光学反射面322和323,其可以为平面,也可以为弧面,本具体实施方案优选该两个光学反射面为平面。光学波导片300的外侧正对人眼的位置设置有锯齿形V槽状的第一微结构阵列面324,其上镀有反射膜。
本具体实施方案的工作原理为:从显示屏幕片发出的光经过光学波导片的耦合输入面321先耦合到光学波导片300中,直接入射到光学波导片内外两侧的光学反射面322和323之间,经过光学反射面322和323的两次全反射之后,反射光线入射到锯齿形V槽状的第一微结构阵列面324上,第一微结构阵列面324将入射光线往相反方向进行一个角度的反射偏转,反射光线沿着垂直于光学波导片的方向,从输出面325输出,进入到人眼中,从而在人眼的正前方的远处呈一个放大的虚像。
实施例四
波导式的头戴显示器的光学装置除了采用成像目镜组进行聚光和图像放大之外,也可以直接将光焦度设置在光学波导片的某一个面 上(譬如:将光学波导片靠近眼瞳位置的输出面设置一个凸出的非球面,并将光学波导片靠近显示屏幕片的耦合输入面也设置为非球面,或者将光学波导片的第一全反射面设置为自由曲面),这样也可以减少成像目镜的数量,而视场和放大倍率保持不变。
本发明的实施例四提供了一种波导式的头戴显示器的光学装置,如图17所示,具体实施方案四将光学波导片420靠近显示屏幕片的耦合输入面421设置为非球面,其耦合输入面421的外侧设置了第一全反射面422。另外,光学波导片420的外侧和内侧分别设置有完全平行的光学反射面423和424,其可以为平面,也可以为弧面,本具体实施方案优选该两个光学反射面为平面。所述光学波导片420的外侧面正对人眼的位置设置有锯齿形V槽状的第一微结构阵列面425,其上镀有反射膜。
本具体实施方案的工作原理为:从显示屏幕片发出的光经过光学波导片的耦合输入面421先进行会聚,并入射到光学波导片的第一全反射面422上,经过反射后光束进入到光学波导片内外两侧的光学反射面423和424之间,经过光学反射面423和424的两次全反射之后,光束入射到锯齿形V槽状的第一微结构阵列面425上,第一微结构阵列面425将入射光束往相反方向进行一个角度的反射偏转,最后反射光束沿着垂直于光学波导片的方向,从输出面426输出,进入到人眼中,从而在人眼的正前方的远处呈一个放大的虚像。
实施例五
本发明的实施例五提供了一种波导式的头戴显示器的光学装置,其光学波导片的外侧面靠近人眼位置的输出面可以设置成平面,其与光学波导片530的内侧面重合。如图18所示,其靠近眼瞳用来输出光束的位置是平的,不设置任何凸起的带有光焦度的非球面,其与光学波导片的内侧面重合。
本具体实施方案的工作原理为:从显示屏幕片1发出的光,通过目镜组52(由透镜521、522和523组成)进行会聚,会聚成基本上平行的光束,会聚后的光束经过光学波导片530的耦合输入面531,直接入射到光学波导片内外两侧的光学反射面532和533之间,经过 光学反射面532和533的两次全反射之后,反射光束入射到锯齿形V槽状的第一微结构阵列面534上,第一微结构阵列面534将入射光束往相反的方向进行一个角度的反射偏转,最后反射光束沿着垂直于光学波导片530的方向,从经光学波导片530的输出面输出,进入到人眼中,从而在人眼的正前方的远处呈一个放大的虚像。
实施例六
本发明的实施例六提供了一种波导式的头戴显示器的光学装置,其光学波导片中靠近成像目镜组的第一全反射面可以设置为自由曲面全反射面,其除了将从成像目镜组入射过来的光束导入到光学波导片的外侧和内侧完全平行的光学反射面之间,其还承担了一定的光焦度,其可以减少成像目镜组中的镜片的数量,譬如将三片减为两片,同时光学波导片的内侧面靠近眼瞳的位置的输出面不需要设置为带有光焦度的凸起的非球面。
如图19所示,在本实施例中,该波导式的头戴显示器的光学装置的成像目镜组62采用两片式的结构,分别为透镜621和622,另外光学波导片630靠近成像目镜组的第一全反射面632设置成自由曲面全反射面,其除了将从成像目镜组62入射过来的光束导入到光学波导片630的外侧和内侧完全平行的光学反射面633和634之间外,其还承担了一定的光焦度,将图像进行放大。此外,光学波导片的内侧面靠近眼瞳的位置不设置任何带有光焦度的凸面,其靠近眼瞳用来输出光束的位置是平的,输出面与光学波导片的内侧面相重合。第一全反射面632为自由曲面全反射面,其倾斜角达到全反射的条件,其可以为超环面、XY方向曲率半径不同的离轴二次曲面或者多项式曲面。本具体实施方案优选其为双锥系数曲线,其X和Y方向的曲率半径和锥度系数不同。
本具体实施方案的工作原理为:从显示屏幕片1发出的光,通过成像目镜组62进行会聚,会聚后的光束经过光学波导片的耦合输入面631,入射到第一全反射面632上,第一全反射面632将光线进一步会聚,并将光束进行全反射偏转,输入到光学波导片内外两侧的光学反射面633和634之间。光束在波导片中传输,并经过光学反射面 633和634的两次全反射之后,入射到锯齿形V槽状的第一微结构阵列面635上,第一微结构阵列面635将入射光束往相反方向进行一个角度的反射偏转,最后反射光束沿着垂直于光学波导片的方向,经光学波导片630的输出面输出,进入到人眼中,从而在人眼的正前方的远处呈一个放大的虚像。
实施例七
本发明的实施例七提供了一种波导式的头戴显示器的光学装置,其光学波导片可以与透镜组相结合,形成可以变焦的头戴显示器。如图20所示,在实施例一的基础上,本实施例的波导式的头戴显示器的光学装置在显示屏幕片1和光学波导片830的耦合输入面831之间改为设置两组透镜,其中一组为补偿透镜组81,另一组为变倍透镜组82。另外,在眼瞳与光学波导片的输出面836之间放置了一组镜片,其为前固定透镜组84。当变倍透镜组82、补偿透镜组81沿着光轴方向按虚线箭头所示的规律呈非线性速率的移动时,可以实现光学系统焦距长短的变化,从而实现显示图像大小的变化。
所述前固定透镜组84优选由两片透镜组成,其也可以只有一片透镜,根据具体情况设置。所述变倍透镜组82和补偿透镜组81在本具体实施方案中优选只有一片镜组成,其也可以为两片以上的透镜,根据分辨率、视场角和变焦倍数来确定。
实施例八
本发明的实施例八提供了一种波导式的头戴显示器的光学装置,其光学波导片可以与负透镜组合,以适用于近视的人群。如图21所示,该波导式的头戴显示器的光学装置在光学波导片920可以采用上述实施例所述的光学波导片的结构,光学波导片920内侧面的输出面926与眼瞳之间设置了一个负透镜93,其用于矫正近视眼使用者的视力,具体负透镜的焦距可以根据使用者的近视度数来调整,这样使用者可以清楚看到显示屏幕片中位于人眼正前方放大的虚像。
实施例九
本发明的实施例九提供了一种波导式的头戴显示器的光学装置,其光学波导片可以与正透镜镜组合,以适用于老花的人群。如图22 所示,该波导式的头戴显示器的光学装置在光学波导片1000可以采用上述实施例所述的光学波导片的结构,光学波导片1000内侧面的输出面1006与眼瞳之间设置了一个正透镜103,其用于矫正老花眼使用者的视力,具体正透镜的焦距可以根据使用者的老花度数来调整,这样使用者可以清楚看到显示屏幕片中位于人眼正前方放大的虚像。
实施例十
本发明的实施例十提供了一种波导式的头戴显示器的光学装置,其光学波导片除了正对眼瞳的外侧面设置有锯齿形V槽状的第一微结构阵列面之外,其靠近显示屏幕片一边的外侧面也可以设置有锯齿形V槽状的第二微结构阵列面。
如图23所示,光学波导片73的光线耦合输入结构包括设置在光学波导片73的内侧面且靠近耳朵一侧的耦合输入面和设置在光学波导片的外侧面且靠近耳朵一侧的锯齿形V槽状的第二微结构阵列面732,第二微结构阵列面732具有至少两个依次设置的锯齿,相邻两个锯齿之间设有由两个斜面构成的V形槽,并且其中一个斜面设置为光线反射斜面。第二微结构阵列面和耦合输入面正对着显示屏幕片1,第二微结构阵列面732的每个V形槽的光线反射斜面依次将显示屏幕片1射入到光学波导片内的图像光线反射偏转进入到光学波导片内侧面的光学反射面731。
光学波导片73靠近显示屏幕片一边的外侧面上的第二微结构阵列面732的锯齿形斜面与位于眼瞳一侧的第一微结构阵列面734的锯齿形斜面的倾斜方向相反,第二微结构阵列面732的作用为用来代替上述实施方案所述的第一全反射面。这样整个光学波导片直接做成平片式的,光学波导片可以做得更薄。
在本实施例中,其成像目镜组72和显示屏幕片1的光轴可以垂直于光学波导片72放置。从显示屏幕片1发出的光线经过成像目镜组72(由透镜721、722和723组成)进行图像放大和光束准直之外,耦合垂直入射到光学波导片73中,锯齿形V槽状的第二微结构阵列面732将入射光线进行一个角度的反射偏转,反射光线往左沿着光学波导片73的内部传输,经过光学反射面733和731的互相反射后, 以一个倾斜的角度入射到位于眼瞳正前方、光学波导片外侧面的锯齿形V槽状的第一微结构阵列面734上,再经过第一微结构阵列面734往相反的方向进行反射偏转,最后反射光线以垂直于光学波导片73的方向,经过输出面735输出,进入到人眼中,并在人眼正前方的远处形成一个放大的虚像。
实施例十一
本发明的实施例十一提供了一种波导式的头戴显示器的光学装置,与上述实施例不同的是,在光学波导片中,其用于反射和偏转光线的锯齿形V槽状的第一微结构阵列面位于光学波导片的内侧面且靠近眼瞳的区域。
如图24所示,该波导式的头戴显示器的光学装置由显示屏幕片1、光学波导片1120组成。所述光学波导片1120靠近耳朵一侧的侧端部位设有用于将显示装置输出的图像光线输入到光学波导片内部的光线耦合输入结构,在光学波导1120片的外侧面和内侧面中,至少在其外侧面设有将经过光线耦合输入结构输入的图像光线进行至少一次全反射传输的光学反射面1123,光学波导片1120的内侧面正对人眼区域的位置设有用于使图像光线在其上的反射仅仅是一次反射且使反射的图像光线有序的锯齿形V槽状的第一微结构阵列面1125。
所述光线耦合输入结构包括设置在光学波导片靠近耳朵一侧的侧端部位的耦合输入部、设置在耦合输入部末端的耦合输入面1121和用于对从耦合输入面输入的图像光线进行全反射偏转使其偏转进入到光学波导片外侧面的光学反射面的第一全反射面1122,第一全反射面1122设置在耦合输入部的侧面并与光学波导片1120的外侧面倾斜设置,耦合输入面1121正对着显示屏幕片1。
在本实施例中,耦合输入面1121优选设置为一个非球面耦合输入面,当然也可以为平面、圆柱面、球面、自由曲面、混合曲面、斜面、菲涅尔曲面或者带有V槽轮廓的直纹面。第一全反射面1122优选设置为直角棱镜式第一全反射面,当然也可以为平面、自由曲面、超环面、X和Y方向的曲率半径不同的离轴二次曲面、多项式曲面或 者X和Y方向的曲率半径及锥度系数均不同的双锥系数曲面。
第一微结构阵列面1125的局部放大图C如图25所示,第一微结构阵列面1125具有至少两个依次设置的锯齿,相邻两个锯齿之间设有倒置的V形槽,所述V形槽由斜面1125a和1125b构成,斜面1125b垂直于在光学波导片中全反射过来的光线RP,其上方没有镀反射膜,光线RP经过斜面1125b折射之后,沿原路出射到空气介质中,并入射到另一侧斜面1125a上,斜面1125a的上面镀有反射膜,从而形成光线反射斜面,其将入射光线RP再次反射,反射后的光线沿着PO的方向入射到眼瞳中,在人眼的正前方形成一个显示屏幕片中放大的虚像。假设光线RP与经过眼瞳的光轴OO’的夹角为b,斜面1125a与经过眼瞳的光轴OO’的夹角为a,那么a与b的关系为:a=b/2。
在光学波导片1120中,光线束在其光学反射面1123和1124之间的全反射可以为多次全反射,为了便于说明问题,本具体实施方案将光学波导片的左右长度缩短,使得光线束在其光学反射面1123和1124之间的全反射只为一次全反射。
实施例十二
本发明的实施例十二提供了一种波导式的头戴显示器的光学装置,其除了实现将光学波导片内传输的光线反射和偏转至人眼之外,还可以实现部分透射的功能,其同时将光学波导片外侧的真实场景透过光学波导片导入到眼瞳中。人眼同时可以看到显示屏幕片中的虚拟图像和正前方的真实场景,实现增强现实的功能。
如图26所示,所述光学波导片1220设有一个非球面耦合输入面1221、第一全反射面1222、位于光学波导片内外侧的光学反射面1224和1223、以及锯齿形V槽状的第一微结构阵列面1225。
图27为局部图D的放大图,与上述实施例十一不同的是,所述第一微结构阵列面1225中相邻两个V形槽之间的锯齿端部设有对光学波导片内全反射传输的图像光线没有反射作用且能够透射光学波导片外侧的真实场景的平面1225c,从而使第一微结构阵列面1225形成部分反射及部分透射的混合微结构阵列面。所述V形槽的斜面1225b垂直于在光学波导片中全反射过来的光线RP,其上方没有镀反 射膜。光线RP经过斜面1225b折射之后,沿原路出射到空气介质中,并入射到另一侧斜面1225a上,斜面1225a上面镀有反射膜,从而形成光线反射斜面,其将入射光线RP再次反射,反射后的光线沿着PO的方向入射到眼瞳中,在人眼的正前方形成一个显示屏幕片中放大的虚像。所述斜面1225a与光轴OO’的夹角与具体实施方案十一中所述的一样,其为光线RP与光轴OO’的夹角的一半。
图27中,所述光线R’P’为经过相邻锯齿形微结构顶点E的边缘光线,经过斜面1225b之后,其也入射到另一侧斜面1225a上的P’点,因此没有入射到平面1225c上,即平面1225c对波导片内全反射传输的光线没有反射作用,因此本实施例与图4所示的现有实施方案,其反射面结构之间的空隙为平面的波导技术为不同的实施方案。图4所示的现有实施方案,其反射面结构之间的空隙为平面的位置对光学波导片内传输的光线具有反射作用,对最后输出的图像产生干扰。
除了第一微结构阵列面1225的斜面对光学波导片内传播的光束进行序列的反射偏转,将显示屏幕片1中的图像成像于人眼正前方的远处之外,另一方面,从光学波导片外侧入射的光线TT’则可以经过平面1225c直接穿过光学波导片进入到眼瞳中,人眼同时也可以看到光学波导片外侧的真实场景。因此本具体实施方案所述波导式的头戴显示技术可以实现增强现实的功能。
实施例十三
本发明的实施例十三提供了一种波导式的头戴显示器的光学装置,与上述实施例十一不同的是,当其焦距较长,显示的图像较小时,这时可以使用直投式的波导头戴显示器光学方案。如图28所示,光学波导片的光线耦合输入结构包括设置在光学波导片靠近耳朵一侧的侧端部位的耦合输入部和设置在耦合输入部末端的耦合输入面1521,耦合输入面1521正对着显示屏幕片,显示屏幕片输出的图像光线经过耦合输入面1521后直接投射到光学波导片外侧面的光学反射面1522。
图28中,每个V形槽的锯齿由左右两个斜面构成,左侧的斜面镀有反射膜,其与经过眼瞳的光轴的夹角,为入射光线与眼瞳的光轴 的夹角的一半。右侧的斜面则垂直于入射光线。所述第一微结构阵列面1524的原理与具体实施方案十一所述的一致。
实施例十四
本发明的实施例十四提供了一种波导式的头戴显示器的光学装置,与上述实施例十二不同的是,当其焦距较长,显示的图像较小时,这时可以使用上述实施例十三所述的直投式的波导头戴显示器光学方案。
如图29所示,所述第一微结构阵列面1624除了实现将光学波导片内传输的光线反射和偏转至人眼之外,还可以实现部分透射的功能,其同时将波导片外侧的真实场景透过波导片,导入到眼瞳中。人眼同时可以看到显示屏幕片1中的虚拟图像和正前方的真实场景,实现增强现实的功能。所述锯齿形V槽状的第一微结构阵列面1624的原理与具体实施方案十二所述的一致。
实施例十五
本发明的实施例十五提供了一种波导式的头戴显示器的光学装置,所述光学波导片的锯齿形V槽状的第一微结构阵列面可以位于光学波导片的内侧面、靠近眼瞳的区域。当其焦距较长,显示的图像较小时,可以采用直投式的波导头戴显示器光学方案,其光学波导片也可以结合变焦透镜组实现光学变焦的显示。如图30所示,在上述实施例十三的基础上,所述显示屏幕片1与光学波导片1740的光线耦合输入结构之间依次设有补偿透镜组172和变倍透镜组173,在光学波导片1740的第一微结构阵列面1744和眼瞳之间设置有前固定透镜组175。当补偿透镜组172和变倍透镜组173沿着垂直于显示屏幕片1的光轴方向按虚线箭头所示的规律呈非线性速率的移动时,可以实现光学系统焦距长短的变化,从而实现显示图像大小的变化。
所述前固定透镜组175可以优选由两片透镜组成,其也可以只有一片透镜,根据具体情况设置。所述补偿透镜组172和变倍透镜组173优选只由一片透镜组成,其也可以为两片以上的透镜,根据分辨率、视场角和变焦倍数来确定。
实施例十六
本发明的实施例十六提供了一种波导式的头戴显示器的光学装置,所述光学波导片的锯齿形V槽状的第一微结构阵列面可以位于光学波导片的内侧面、靠近眼瞳的区域。当其焦距较长,显示的图像较小时,可以采用直投式的波导头戴显示器光学方案,其光学波导片也可以结合变焦透镜组实现光学变焦的显示。如图31所示,在上述实施例十四的基础上,所述显示屏幕片1与光学波导片1840的光线耦合输入结构之间依次设有补偿透镜组182和变倍透镜组183,在光学波导片1840的第一微结构阵列面1844和眼瞳之间设置有前固定透镜组185。
所述光学波导片1840为部分透射式的,人眼同时可以看到显示屏幕片中的虚拟图像和正前方的真实场景,实现增强现实的功能。另外,当补偿透镜组182和变倍透镜组183沿着垂直于显示屏幕片1的光轴方向按虚线箭头所示的规律呈非线性速率的移动时,可以实现系统的光学变焦,从而实现显示图像大小的变化。
实施例十七
本发明的实施例十七提供了一种波导式的头戴显示器的光学装置,所述光学波导片用于反射和偏转光线的锯齿形V槽状的第一微结构阵列面位于光学波导片的内侧面、靠近眼瞳的区域,所述光学波导片可以与负透镜组合,以适用于近视的人群。如图32所示,在上述实施例十一的基础上,所述光学波导片1920的锯齿形V槽状的第一微结构阵列面1925与眼瞳之间设置了一个负透镜193,其用于矫正近视眼使用者的视力,具体负透镜的焦距可以根据使用者的近视度数来调整,这样使用者可以清楚看到显示屏幕片中位于人眼正前方放大的虚像。
实施例十八
本发明的实施例十八提供了一种波导式的头戴显示器的光学装置,所述光学波导片用于反射和偏转光线的锯齿形V槽状的第一微结构阵列面位于光学波导片的内侧面、靠近眼瞳的区域,所述光学波导片可以与正透镜组合,以适用于老花的人群。如图33所示,在上述实施例十二的基础上,所述光学波导片2020为部分透射式的,人眼 同时可以看到显示屏幕片中的虚拟图像和正前方的真实场景,其锯齿形V槽状的第一微结构阵列面2025与眼瞳之间设置了一个正透镜203,其用于矫正老花眼使用者的视力,具体正透镜的焦距可以根据使用者的老花度数来调整。这样使用者可以清楚看到显示屏幕片中位于人眼正前方放大的虚像。
实施例十九
本发明的实施例十九提供了一种波导式的头戴显示器的光学装置,所述光学波导片用于反射和偏转光线的锯齿形V槽状的第一微结构阵列面2135位于光学波导片的内侧面、靠近眼瞳的区域。所述光学波导片可以设置一个类似直角棱镜的第一全反射面,同时结合高清晰目镜组,实现最大的放大倍率和图像分辨率。如图34所示,在上述实施例十一的基础上,该波导式的头戴显示器的光学装置由显示屏幕片1、目镜组212(由透镜2121、2122、2123组成)和反射式的光学波导片2130组成,所述光学波导片2130设置了一个类似直角棱镜的第一全反射面2132,同时结合高清晰目镜组212,实现最大的放大倍率和图像分辨率。
实施例二十
本发明的实施例二十提供了一种波导式的头戴显示器的光学装置,所述光学波导片用于反射和偏转光线的锯齿形V槽状的第一微结构阵列面2235位于光学波导片的内侧面、靠近眼瞳的区域。如图35所示,在上述实施例十二的基础上,该波导式的头戴显示器的光学装置由显示屏幕片1、目镜组222(由透镜2221、2222、2223组成)和部分透射式的光学波导片2230组成。所述光学波导片2230设置了一个类似直角棱镜的第一全反射面2232,同时结合高清晰目镜组222,实现最大的放大倍率和图像分辨率。
实施例二十一
本发明的实施例二十一提供了一种波导式的头戴显示器的光学装置,其是针对上述实施例十一所述的波导式的头戴显示器的光学装置所做出的改进,上述实施例十一所述的位于光学波导片的内侧面、靠近眼瞳的区域的锯齿形V槽状的第一微结构阵列面1125,其斜面 1125a需要镀反射膜,工艺比较复杂。本具体实施方案提出了设置一种较高折射率补偿片的方法,可以采用全反射的方法将光学波导片中传输过来的光束进行偏转并输入到眼瞳中,不用在任何斜面上镀膜。
如图36所示,本具体实施方案所述的波导式的头戴显示器光学装置由显示屏幕片1、光学波导片1320和与其配套组合的补偿片133组成,光学波导片1320靠近耳朵一侧的侧端部位设有用于将显示装置输出的图像光线输入到光学波导片内部的光线耦合输入结构,光线耦合输入结构包括设置在光学波导片靠近耳朵一侧的侧端部位的耦合输入部、设置在耦合输入部末端的耦合输入面1321和用于对从耦合输入面输入的图像光线进行全反射偏转使其偏转进入到光学波导片外侧面的光学反射面的第一全反射面1322,第一全反射面1322设置在耦合输入部的侧面并与光学波导片的外侧面倾斜设置,耦合输入面1321正对着显示屏幕片1。当然,该波导式的头戴显示器光学装置也可以采用上面实施例所述的直投式的光线耦合输入结构。
所述第一全反射面1322可以设置为平面、自由曲面、超环面、X和Y方向的曲率半径不同的离轴二次曲面、多项式曲面、X和Y方向的曲率半径及锥度系数均不同的双锥系数曲面或者带有棱镜结构反射面。
所述耦合输入面1321可以设置为平面、圆柱面、球面、非球面、自由曲面、混合曲面、斜面、菲涅尔曲面或者带有V槽轮廓的直纹面。在本实施例中,优选设置为非球面的耦合输入面。
在光学波导片1320的外侧面和内侧面中,至少在其外侧面设有将经过光线耦合输入结构输入的图像光线进行至少一次全反射传输的光学反射面1323,光学波导片1320的内侧面正对人眼区域的位置设有锯齿形V槽状的第一微结构阵列面1325,第一微结构阵列面1325的外侧设有补偿片133,补偿片133朝向光学波导片1320的第一微结构阵列面1325的内侧面上设有锯齿形V槽状的第四微结构阵列面1331。所述补偿片133的折射率高于光学波导片1320的折射率。
如图37所示,第一微结构阵列面1325具有至少两个依次设置的锯齿1320,相邻两个锯齿1320之间设有由斜面1325a和1325b构成 的V形槽,所述第四微结构阵列面1331的锯齿形状与第一微结构阵列面1325的锯齿形状相适配,第四微结构阵列面1331也具有至少两个依次设置的锯齿1330,第四微结构阵列面1331的锯齿1330由斜面1330a和1330b构成,相邻两个锯齿1330之间设有与第一微结构阵列面1325的锯齿1320相对应的V形槽,第一微结构阵列面1325与第四微结构阵列面1331间隔设置形成有折射率低于补偿片的空气隙,所述空气隙的间隔可以为4~7微米,具体实施方案优选为5微米。
从光学波导片1320的光学反射面1323处全反射过来的光线RP,经过第一微结构阵列面1325的斜面1325b之后,穿过空气隙,再穿过补偿片的斜面1330b,入射到补偿片的斜面1330a上,由于斜面1330a的外侧是折射率较低的空气隙,P点位置达到全反射条件,因此光线RP被斜面1330a全反射,全反射后的光线向下输出,进入到眼瞳中。因此加了折射率较高的补偿片133之后,光学波导片及补偿片的任何斜面都不需要镀反射膜。
所述第一微结构阵列1325的斜面1325b和第四微结构阵列面1331的斜面1330b垂直于光线RP,第一微结构阵列面1325的斜面1325a和第四微结构阵列面1331的斜面1330a与光轴OO’的夹角A与具体实施方案十一中所述的一样,其为光线RP与光轴OO’的夹角B的一半,即A=B/2。
实施例二十二
本发明的实施例二十二提供了一种波导式的头戴显示器的光学装置,其是针对上述实施例十二所述的波导式的头戴显示器的光学装置所做出的改进,本具体实施方案跟上述实施例二十一一样也提出了设置一种较高折射率补偿片的方法,可以采用全反射的方法将光学波导片中传输过来的光束进行偏转并输入到眼瞳中,不用在任何微结构阵列面的斜面上镀反射膜,工艺简单。
如图38所示,该波导式的头戴显示器的光学装置由显示屏幕片1、光学波导片1420及与其配套组合的补偿片143组成,所述光学波导片1420的结构与上述实施例十二的光学波导片的结构大部分相同, 其具有一个非球面耦合输入面1421、第一全反射面1422、位于光学波导片1420的外侧面的光学反射面1423以及位于光学波导片的内侧面的锯齿形V槽状的第一微结构阵列面1425。补偿片143朝向第一微结构阵列面1425的面上设有第四微结构阵列面1430。
如图39所示,在光学波导片1420的第一微结构阵列面1425中,其V形槽由斜面1425a和1425b构成,相邻两个V形槽之间的锯齿端部设有对光学波导片内全反射传输的图像光线没有反射作用且能够透射光学波导片外侧的真实场景的平面1425c。在补偿片143的第四微结构阵列面1430中,其锯齿由斜面1430a和1430b构成,相邻两个锯齿之间设有对光学波导片内全反射传输的图像光线没有反射作用且能够透射光学波导片外侧的真实场景的平面1430c。所述第四微结构阵列面1430的锯齿形状与第一微结构阵列面1425的锯齿形状相适配。第一微结构阵列面和第四微结构阵列面组合形成部分反射及部分透射的混合微结构阵列面。
所述补偿片143的折射率高于光学波导片的折射率,第一微结构阵列面与第四微结构阵列面间隔设置形成有折射率低于补偿片的空气隙,所述空气隙的间隔可以为4~7微米,具体实施方案优选为5微米。
从光学波导片光学反射面1423处全反射过来的光线RP,经过斜面1425b之后,穿过空气隙,再穿过补偿片的斜面1430b,入射到补偿片的另一侧斜面1430a上,由于斜面1430a的外侧是折射率较低的空气隙,P点位置达到全反射条件,因此光线RP被斜面1430a全反射,全反射后的光线向下输出,进入到眼瞳中。因此加了折射率较高的补偿片143之后,光学波导片及补偿片的任何斜面都不需要镀反射膜。
图39中,所述第一微结构阵列1425的右侧斜面1425b和补偿片143的右侧斜面1430b垂直于光线RP。所述第一微结构阵列1425的左侧斜面1425a和补偿片143的左侧斜面1430a与光轴OO’的夹角与具体实施方案十二中所述的一样,其为光线RP与光轴OO’的夹角的一半。
图39中,所述光线R’P’为经过相邻锯齿形微结构顶点E的边缘光线,经过斜面1425b、空气隙、以及斜面1430b之后,其也入射到另一侧斜面1430a上的P’点,因此没有入射到平面1425c上,即平面1425c对波导片内全反射传输的光线没有反射作用,因此,这与图4所示的现有技术方案相比,其反射面结构之间的空隙为平面的波导技术为完全不同的实施方案。图4所示的现有实施方案的反射面结构之间的空隙为平面的位置对波导片内传输的光线也具有反射作用,会对最后输出到眼瞳中的图像产生干扰。
除了锯齿形微结构的斜面对波导片内传播的光束进行序列的反射偏转,将显示屏幕片1中的图像成像于人眼正前方的远处。另一方面,从光学波导片外侧入射的光线TT’则可以经过平面1425c和1430c直接穿过光学波导片进入到眼瞳中,人眼同时也可以看到波导片外侧的真实场景。因此本具体实施方案所述波导式的头戴显示技术可以实现增强现实的功能。
在此需要说明的是,在上述各个实施例中,所述光学波导片与微结构阵列面可以为一体成型结构。在制作成本及生产工艺上,可以采用高精密模具直接注塑成型实现,微结构阵列面与光学波导片一体注塑成型,制作成本低,产品精度高,生产快捷,容易实现批量生产与普及化应用。
当然,所述光学波导片和微结构阵列面也可以为独立结构,所述微结构阵列面可以设置为连接在光学波导片上的一种光学组件,所述光学组件设置为光学薄膜,所述光学薄膜通过光学胶粘连在光学波导片上。所述光学薄膜可以通过辊压成型或压模的方法制作,光学薄膜上刻好相应的反射锯齿,并在相应的斜面印制反射膜,裁剪后通过光学胶粘贴的方法粘贴在光学波导片上,但是光学胶的折射率和光学波导片的折射率要基本相同。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含 在本发明的保护范围之内。

Claims (59)

  1. 一种波导式的头戴显示器的光学装置,包括显示装置和光学波导片,其特征在于:所述光学波导片靠近耳朵一侧的侧端部位设有用于将显示装置输出的图像光线输入到光学波导片内部的光线耦合输入结构,所述光线耦合输入结构与显示装置相对设置,所述光学波导片的外侧面和内侧面分别设有互相反射从而将经过光线耦合输入结构输入的图像光线进行至少一次全反射传输的光学反射面,所述光学波导片的外侧面正对人眼区域的位置设有用于使图像光线在其上的反射仅仅是一次反射且使反射的图像光线有序的锯齿形V槽状的第一微结构阵列面,所述光学波导片的内侧面正对人眼区域的位置设有输出面,其中,所述第一微结构阵列面具有至少两个依次设置的锯齿,相邻两个锯齿之间设有由两个斜面构成的V形槽,并且其中一个斜面设置为光线反射斜面,所述第一微结构阵列面的每个V形槽中的光线反射斜面依次将光学波导片内侧面的光学反射面反射过来的图像光线以单次反射并以相反的方向进行一个特定角度的反射偏转从而使其从输出面输出,以最终输出完整图像。
  2. 根据权利要求1所述的波导式的头戴显示器的光学装置,其特征在于:所述光线耦合输入结构包括设置在光学波导片靠近耳朵一侧的侧端部位的耦合输入部、设置在耦合输入部末端的耦合输入面和用于对从耦合输入面输入的图像光线进行全反射偏转使其偏转进入到光学波导片外侧面的光学反射面的第一全反射面,所述第一全反射面设置在耦合输入部的侧面并与光学波导片的外侧面倾斜设置,所述耦合输入面正对着显示装置。
  3. 根据权利要求2所述的波导式的头戴显示器的光学装置,其特征在于:所述第一全反射面设置为平面、自由曲面、超环面、X和Y方向的曲率半径不同的离轴二次曲面、多项式曲面或者X和Y方向的曲率半径及锥度系数均不同的双锥系数曲面。
  4. 根据权利要求2所述的波导式的头戴显示器的光学装置,其特征在于:所述第一全反射面的中心点切面与显示装置的中心光轴的 夹角为θ,所述第一微结构阵列面的V形槽中的光线反射斜面与经过人眼瞳的垂直光轴的夹角为α,所述显示装置的中心光轴依次经过第一全反射面和光学反射面的反射后最终射入到第一微结构阵列面的V形槽中的光线反射斜面上的反射光线与经过人眼瞳的垂直光轴的夹角为β,其中,三个夹角存在以下关系:β=2θ;α=π/2-θ。
  5. 根据权利要求4所述的波导式的头戴显示器的光学装置,其特征在于:所述第一全反射面的中心点切面与显示装置的中心光轴的夹角为θ为15°~40°。
  6. 根据权利要求5所述的波导式的头戴显示器的光学装置,其特征在于:所述第一全反射面的中心点切面与显示装置的中心光轴的夹角为θ为33°。
  7. 根据权利要求1所述的波导式的头戴显示器的光学装置,其特征在于:所述光线耦合输入结构包括设置在光学波导片靠近耳朵一侧的侧端部位的耦合输入部和设置在耦合输入部末端的耦合输入面,所述耦合输入面正对着显示装置,所述显示装置输出的图像光线经过耦合输入面后直接投射到光学波导片外侧面的光学反射面。
  8. 根据权利要求1所述的波导式的头戴显示器的光学装置,其特征在于:所述光线耦合输入结构包括设置在光学波导片的内侧面且靠近耳朵一侧的耦合输入面和设置在光学波导片的外侧面且靠近耳朵一侧的锯齿形V槽状的第二微结构阵列面,所述第二微结构阵列面具有至少两个依次设置的锯齿,相邻两个锯齿之间设有由两个斜面构成的V形槽,并且其中一个斜面设置为光线反射斜面,所述第二微结构阵列面的锯齿形状与光学波导片的第一微结构阵列面的锯齿形状对称设置,两者的V形槽的斜面倾斜方向刚好相反,所述第二微结构阵列面和耦合输入面正对着显示装置,所述第二微结构阵列面的每个V形槽的光线反射斜面依次将显示装置射入到光学波导片内的图像光线反射偏转进入到光学波导片内侧面的光学反射面。
  9. 根据权利要求1所述的波导式的头戴显示器的光学装置,其特征在于:所述耦合输入面设置为平面、圆柱面、球面、非球面、自由曲面、混合曲面、斜面、菲涅尔曲面或者带有V槽轮廓的直纹面。
  10. 根据权利要求1所述的波导式的头戴显示器的光学装置,其特征在于:所述光学波导片内侧面的光学反射面与光学波导片外侧面的光学反射面平行设置或者非平行设置,两光学反射面为平面、带有弧度的曲面或者自由曲面。
  11. 根据权利要求1所述的波导式的头戴显示器的光学装置,其特征在于:所述输出面设置为凸出的带有光焦度的非球面、球面、菲涅尔面或者与光学波导片重合的平面。
  12. 根据权利要求1所述的波导式的头戴显示器的光学装置,其特征在于:所述第一微结构阵列面的所有锯齿组成一个等间距或者渐变间距的倾斜锯齿结构。
  13. 根据权利要求1所述的波导式的头戴显示器的光学装置,其特征在于:所述光线反射斜面设置为带有反射膜、部分反射膜或者半反半透膜的光线反射斜面。
  14. 根据权利要求14所述的波导式的头戴显示器的光学装置,其特征在于:当所述光线反射斜面设置为带有部分反射膜或者半反半透膜的光线反射斜面时,所述光学波导片的第一微结构阵列面的外侧设有与其紧贴组合的补偿镜,所述补偿镜朝向光学波导片的第一微结构阵列面的内侧面上设有锯齿形V槽状的第三微结构阵列面,所述第三微结构阵列面具有至少两个依次设置的锯齿,相邻两个锯齿之间设有由两个斜面构成的V形槽,所述补偿镜的第三微结构阵列面的锯齿形状与光学波导片的第一微结构阵列面的锯齿形状完全镜像,所述第三微结构阵列面的V形槽的斜面上设有增透膜,所述补偿镜的第三微结构阵列面与光学波导片的第一微结构阵列面的正负折射角度正好完全补偿,从而使光路沿原路直线向前。
  15. 根据权利要求1所述的波导式的头戴显示器的光学装置,其特征在于:所述显示装置设置为至少一片显示屏幕片,所述显示屏幕片的轮廓形状为平板状、圆弧状或者球体状,所述显示屏幕片包括OLED显示器、LCD显示器或者LCOS显示屏。
  16. 根据权利要求1所述的波导式的头戴显示器的光学装置,其特征在于:所述光线耦合输入结构与显示装置之间设有成像目镜组, 所述成像目镜组具有至少一片透镜,所述透镜的面型设置为非球面、球面、菲涅尔面或者二元光学面。
  17. 根据权利要求17所述的波导式的头戴显示器的光学装置,其特征在于:所述成像目镜组由三片非球面的透镜组成,其将像差进行矫正,并将显示装置的显示图像进行放大,以及对出射光束进行角度压缩,角度压缩后以接近于平行光的光束入射到光学波导片中。
  18. 根据权利要求1所述的波导式的头戴显示器的光学装置,其特征在于:所述显示装置与光线耦合输入结构之间依次设有补偿透镜组和变倍透镜组,所述补偿透镜组和变倍透镜组能够沿着光轴方向做非线性速率的移动,以实现光学系统焦距长短的变化,从而改变显示图像大小。
  19. 根据权利要求19所述的波导式的头戴显示器的光学装置,其特征在于:所述光学波导片的输出面和人眼之间设有前固定透镜组。
  20. 根据权利要求1所述的波导式的头戴显示器的光学装置,其特征在于:所述光学波导片的输出面和人眼之间设有用于矫正近视眼使用者的视力的负透镜或者用于矫正老花眼使用者的视力的正透镜。
  21. 根据权利要求1所述的波导式的头戴显示器的光学装置,其特征在于:所述光学波导片与第一微结构阵列面为一体成型结构。
  22. 根据权利要求1所述的波导式的头戴显示器的光学装置,其特征在于:所述光学波导片和第一微结构阵列面分别为独立结构,所述第一微结构阵列面设置为连接在光学波导片上的一种光学组件。
  23. 根据权利要求23所述的波导式的头戴显示器的光学装置,其特征在于:所述光学组件设置为光学薄膜,所述光学薄膜通过光学胶粘连在光学波导片上。
  24. 根据权利要求24所述的波导式的头戴显示器的光学装置,其特征在于:所述光学胶的折射率和光学波导片的折射率相同。
  25. 一种波导式的头戴显示器的光学装置,包括显示装置和光学波导片,其特征在于:所述光学波导片靠近耳朵一侧的侧端部位设有用于将显示装置输出的图像光线输入到光学波导片内部的光线耦合输入结构,所述光线耦合输入结构与显示装置相对设置,在所述光学 波导片的外侧面和内侧面中,至少在其外侧面设有将经过光线耦合输入结构输入的图像光线进行至少一次全反射传输的光学反射面,所述光学波导片的内侧面正对人眼区域的位置设有用于使图像光线在其上的反射仅仅是一次反射且使反射的图像光线有序的锯齿形V槽状的第一微结构阵列面,其中,所述第一微结构阵列面具有至少两个依次设置的锯齿,相邻两个锯齿之间设有由两个斜面构成的V形槽,并且其中一个斜面设置为光线反射斜面,所述第一微结构阵列面的每个V形槽中的光线反射斜面依次将光学波导片外侧面的光学反射面反射过来且穿过第一微结构阵列面的同一V形槽的另一斜面出射到空气介质中的图像光线以单次反射并以相反的方向进行一个特定角度的反射偏转从而输出完整图像。
  26. 根据权利要求26所述的波导式的头戴显示器的光学装置,其特征在于:所述光线耦合输入结构包括设置在光学波导片靠近耳朵一侧的侧端部位的耦合输入部、设置在耦合输入部末端的耦合输入面和用于对从耦合输入面输入的图像光线进行全反射偏转使其偏转进入到光学波导片外侧面的光学反射面的第一全反射面,所述第一全反射面设置在耦合输入部的侧面并与光学波导片的外侧面倾斜设置,所述耦合输入面正对着显示装置。
  27. 根据权利要求27所述的波导式的头戴显示器的光学装置,其特征在于:所述第一全反射面设置为平面、自由曲面、超环面、X和Y方向的曲率半径不同的离轴二次曲面、多项式曲面、X和Y方向的曲率半径及锥度系数均不同的双锥系数曲面或者带有棱镜结构的反射面。
  28. 根据权利要求26所述的波导式的头戴显示器的光学装置,其特征在于:所述光线耦合输入结构包括设置在光学波导片靠近耳朵一侧的侧端部位的耦合输入部和设置在耦合输入部末端的耦合输入面,所述耦合输入面正对着显示装置,所述显示装置输出的图像光线经过耦合输入面后直接投射到光学波导片外侧面的光学反射面。
  29. 根据权利要求26所述的波导式的头戴显示器的光学装置,其特征在于:所述第一微结构阵列面中相邻两个V形槽之间的锯齿端 部设有对光学波导片内全反射传输的图像光线没有反射作用且能够透射光学波导片外侧的真实场景的平面,从而使第一微结构阵列面形成部分反射及部分透射的混合微结构阵列面。
  30. 根据权利要求26所述的波导式的头戴显示器的光学装置,其特征在于:所述垂直穿过第一微结构阵列面的V形槽的另一斜面的反射光线与经过人眼瞳的垂直光轴的夹角为b,所述第一微结构阵列面的V形槽中的光线反射斜面与经过人眼瞳的垂直光轴的夹角为a,其中,两个夹角存在以下关系:a=b/2。
  31. 根据权利要求26所述的波导式的头戴显示器的光学装置,其特征在于:所述耦合输入面设置为平面、圆柱面、球面、非球面、自由曲面、混合曲面、斜面、菲涅尔曲面或者带有V槽轮廓的直纹面。
  32. 根据权利要求26所述的波导式的头戴显示器的光学装置,其特征在于:当所述光学波导片的内侧面和外侧面均设有光学反射面时,所述光学波导片内侧面的光学反射面与光学波导片外侧面的光学反射面平行设置或者非平行设置,两光学反射面为平面、带有弧度的曲面或者自由曲面。
  33. 根据权利要求26所述的波导式的头戴显示器的光学装置,其特征在于:所述光线反射斜面设置为带有反射膜、部分反射膜或者半反半透膜的光线反射斜面。
  34. 根据权利要求26所述的波导式的头戴显示器的光学装置,其特征在于:所述显示装置设置为至少一片显示屏幕片,所述显示屏幕片的轮廓形状为平板状、圆弧状或者球体状,所述显示屏幕片包括OLED显示器、LCD显示器或者LCOS显示屏。
  35. 根据权利要求26所述的波导式的头戴显示器的光学装置,其特征在于:所述光线耦合输入结构与显示装置之间设有成像目镜组,所述成像目镜组具有至少一片透镜,所述透镜的面型设置为非球面、球面、菲涅尔面或者二元光学面。
  36. 根据权利要求36所述的波导式的头戴显示器的光学装置,其特征在于:所述成像目镜组由三片非球面的透镜组成,其将像差进行矫正,并将显示装置的显示图像进行放大,以及对出射光束进行角 度压缩,角度压缩后以接近于平行光的光束入射到光学波导片中。
  37. 根据权利要求26所述的波导式的头戴显示器的光学装置,其特征在于:所述显示装置与光线耦合输入结构之间依次设有补偿透镜组和变倍透镜组,所述补偿透镜组和变倍透镜组能够沿着光轴方向做非线性速率的移动,以实现光学系统焦距长短的变化,从而改变显示图像大小。
  38. 根据权利要求38所述的波导式的头戴显示器的光学装置,其特征在于:所述光学波导片的第一微结构阵列面和人眼之间设有前固定透镜组。
  39. 根据权利要求26所述的波导式的头戴显示器的光学装置,其特征在于:所述光学波导片的输出面和人眼之间设有用于矫正近视眼使用者的视力的负透镜或者用于矫正老花眼使用者的视力的正透镜。
  40. 根据权利要求26所述的波导式的头戴显示器的光学装置,其特征在于:所述光学波导片与第一微结构阵列面为一体成型结构。
  41. 根据权利要求26所述的波导式的头戴显示器的光学装置,其特征在于:所述光学波导片和第一微结构阵列面分别为独立结构,所述第一微结构阵列面设置为连接在光学波导片上的一种光学组件。
  42. 根据权利要求42所述的波导式的头戴显示器的光学装置,其特征在于:所述光学组件设置为光学薄膜,所述光学薄膜通过光学胶粘连在光学波导片上。
  43. 根据权利要求43所述的波导式的头戴显示器的光学装置,其特征在于:所述光学胶的折射率和光学波导片的折射率相同。
  44. 一种波导式的头戴显示器的光学装置,包括显示装置和光学波导片,其特征在于:所述光学波导片靠近耳朵一侧的侧端部位设有用于将显示装置输出的图像光线输入到光学波导片内部的光线耦合输入结构,所述光线耦合输入结构与显示装置相对设置,在所述光学波导片的外侧面和内侧面中,至少在其外侧面设有将经过光线耦合输入结构输入的图像光线进行至少一次全反射传输的光学反射面,所述光学波导片的内侧面正对人眼区域的位置设有锯齿形V槽状的第一 微结构阵列面,所述第一微结构阵列面的外侧设有补偿片,所述补偿片朝向光学波导片的第一微结构阵列面的内侧面上设有第四微结构阵列面,其中,所述第一微结构阵列面和第四微结构阵列面分别具有至少两个依次设置的锯齿,所述第一微结构阵列面的相邻两个锯齿之间设有由两个斜面构成的V形槽,所述第四微结构阵列面的锯齿形状与第一微结构阵列面的锯齿形状相适配,所述第四微结构阵列面的锯齿由另外两个斜面构成,所述第一微结构阵列面与第四微结构阵列面间隔设置形成有折射率低于补偿片的空气隙,所述光学波导片外侧面的光学反射面反射过来的图像光线依次穿过第一微结构阵列面的V形槽的一斜面、空气隙和第四微结构阵列面的锯齿的一斜面后在第四微结构阵列面的同一锯齿的另一斜面上全反射偏转从而输出完整图像。
  45. 根据权利要求45所述的波导式的头戴显示器的光学装置,其特征在于:所述光线耦合输入结构包括设置在光学波导片靠近耳朵一侧的侧端部位的耦合输入部、设置在耦合输入部末端的耦合输入面和用于对从耦合输入面输入的图像光线进行全反射偏转使其偏转进入到光学波导片外侧面的光学反射面的第一全反射面,所述第一全反射面设置在耦合输入部的侧面并与光学波导片的外侧面倾斜设置,所述耦合输入面正对着显示装置。
  46. 根据权利要求46所述的波导式的头戴显示器的光学装置,其特征在于:所述第一全反射面设置为平面、自由曲面、超环面、X和Y方向的曲率半径不同的离轴二次曲面、多项式曲面、X和Y方向的曲率半径及锥度系数均不同的双锥系数曲面或者带有棱镜结构反射面。
  47. 根据权利要求45所述的波导式的头戴显示器的光学装置,其特征在于:所述光线耦合输入结构包括设置在光学波导片靠近耳朵一侧的侧端部位的耦合输入部和设置在耦合输入部末端的耦合输入面,所述耦合输入面正对着显示装置,所述显示装置输出的图像光线经过耦合输入面后直接投射到光学波导片外侧面的光学反射面。
  48. 根据权利要求45所述的波导式的头戴显示器的光学装置, 其特征在于:所述第一微结构阵列面的相邻两个V形槽之间的锯齿端部和所述第四微结构阵列面的相邻两个锯齿之间分别设有对光学波导片内全反射传输的图像光线没有反射作用且能够透射光学波导片外侧的真实场景的平面,从而使第一微结构阵列面和第四微结构阵列面组合形成部分反射及部分透射的混合微结构阵列面。
  49. 根据权利要求45所述的波导式的头戴显示器的光学装置,其特征在于:所述垂直穿过第一微结构阵列面的V形槽的斜面和第四微结构阵列面的锯齿的斜面的反射光线与经过人眼瞳的垂直光轴的夹角为B,所述第一微结构阵列面的V形槽的另一斜面、第四微结构阵列面的锯齿的另一斜面分别与经过人眼瞳的垂直光轴的夹角为A,其中,两个夹角存在以下关系:A=B/2。
  50. 根据权利要求45所述的波导式的头戴显示器的光学装置,其特征在于:所述耦合输入面设置为平面、圆柱面、球面、非球面、自由曲面、混合曲面、斜面、菲涅尔曲面或者带有V槽轮廓的直纹面。
  51. 根据权利要求45所述的波导式的头戴显示器的光学装置,其特征在于:当所述光学波导片的内侧面和外侧面均设有光学反射面时,所述光学波导片内侧面的光学反射面与光学波导片外侧面的光学反射面平行设置或者非平行设置,两光学反射面为平面、带有弧度的曲面或者自由曲面。
  52. 根据权利要求45所述的波导式的头戴显示器的光学装置,其特征在于:所述空气隙的间隔为4~7微米。
  53. 根据权利要求45所述的波导式的头戴显示器的光学装置,其特征在于:所述补偿片的折射率高于光学波导片的折射率。
  54. 根据权利要求45所述的波导式的头戴显示器的光学装置,其特征在于:所述显示装置设置为至少一片显示屏幕片,所述显示屏幕片的轮廓形状为平板状、圆弧状或者球体状,所述显示屏幕片包括OLED显示器、LCD显示器或者LCOS显示屏。
  55. 根据权利要求45所述的波导式的头戴显示器的光学装置,其特征在于:所述光线耦合输入结构与显示装置之间设有成像目镜组,所述成像目镜组具有至少一片透镜,所述透镜的面型设置为非球面、 球面、菲涅尔面或者二元光学面。
  56. 根据权利要求45所述的波导式的头戴显示器的光学装置,其特征在于:所述光学波导片与第一微结构阵列面为一体成型结构。
  57. 根据权利要求45所述的波导式的头戴显示器的光学装置,其特征在于:所述光学波导片和第一微结构阵列面分别为独立结构,所述第一微结构阵列面设置为连接在光学波导片上的一种光学组件。
  58. 根据权利要求58所述的波导式的头戴显示器的光学装置,其特征在于:所述光学组件设置为光学薄膜,所述光学薄膜通过光学胶粘连在光学波导片上。
  59. 根据权利要求59所述的波导式的头戴显示器的光学装置,其特征在于:所述光学胶的折射率和光学波导片的折射率相同。
PCT/CN2016/090941 2016-06-20 2016-07-22 波导式的头戴显示器的光学装置 WO2017219433A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610459460.XA CN105929545B (zh) 2016-06-20 2016-06-20 波导式的头戴显示器的光学装置
CN201610459460.X 2016-06-20

Publications (1)

Publication Number Publication Date
WO2017219433A1 true WO2017219433A1 (zh) 2017-12-28

Family

ID=56831682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/090941 WO2017219433A1 (zh) 2016-06-20 2016-07-22 波导式的头戴显示器的光学装置

Country Status (2)

Country Link
CN (1) CN105929545B (zh)
WO (1) WO2017219433A1 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108037580A (zh) * 2018-01-09 2018-05-15 中山日荣塑料电子制品有限公司 一种导光式显微镜
WO2020041620A1 (en) * 2018-08-23 2020-02-27 The Regents Of The University Of California Cmos-compatible single-layer waveguide display for augmented and virtual reality
WO2020126672A1 (de) * 2018-12-21 2020-06-25 tooz technologies GmbH Optisches system zum erzeugen eines virtuellen bildes und verfahren zum herstellen einer auskoppelanordnung eines optischen systems
CN111965826A (zh) * 2020-08-27 2020-11-20 Oppo广东移动通信有限公司 智能眼镜的控制方法、装置、存储介质及智能眼镜
CN112213855A (zh) * 2019-07-11 2021-01-12 苏州苏大维格科技集团股份有限公司 显示装置及光波导镜片
CN112272789A (zh) * 2018-06-15 2021-01-26 大陆汽车有限责任公司 具有可变的投影距离的用于生成虚拟图像的设备
CN112987302A (zh) * 2021-02-05 2021-06-18 业成科技(成都)有限公司 头戴式显示装置及其显示系统
EP3940433A1 (en) * 2020-07-16 2022-01-19 Coretronic Corporation Waveguide and head-mounted display device
CN114047624A (zh) * 2022-01-12 2022-02-15 深圳纳德光学有限公司 一种目镜光学结构、目镜系统及光学设备
EP3964879A1 (en) * 2020-08-28 2022-03-09 Coretronic Corporation Manufacturing method of waveguide and head mounted display device having waveguide
CN114236682A (zh) * 2022-01-20 2022-03-25 上海理湃光晶技术有限公司 一种光学扩展波导
WO2022166819A1 (zh) * 2021-02-04 2022-08-11 维沃移动通信有限公司 图像处理方法、装置和电子设备
CN115390182A (zh) * 2022-08-29 2022-11-25 深圳珑璟光电科技有限公司 光波导的制作方法、制作设备、光波导及近眼显示设备
CN115857177A (zh) * 2023-02-08 2023-03-28 北京灵犀微光科技有限公司 一种增强现实显示设备

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106708264A (zh) * 2016-12-16 2017-05-24 联想(北京)有限公司 显示装置和穿戴式电子设备
US10310268B2 (en) * 2016-12-06 2019-06-04 Microsoft Technology Licensing, Llc Waveguides with peripheral side geometries to recycle light
US10838110B2 (en) * 2017-03-03 2020-11-17 Microsoft Technology Licensing, Llc Metasurface optical coupling elements for a display waveguide
JP6852501B2 (ja) * 2017-03-28 2021-03-31 セイコーエプソン株式会社 表示装置
CN108474951B (zh) * 2017-05-02 2020-12-25 深圳市柔宇科技股份有限公司 全息波导显示系统
WO2019136601A1 (zh) * 2018-01-09 2019-07-18 歌尔科技有限公司 Ar光学系统以及ar显示设备
US11822082B2 (en) 2018-01-09 2023-11-21 Goer Optical Technology Co., Ltd. AR display method, apparatus and device provided micro mirror array
CN108089255A (zh) * 2018-01-17 2018-05-29 上海渺视光学科技有限公司 具有微结构的曲面增强现实平面波导光学器件
CN108089254A (zh) * 2018-01-17 2018-05-29 上海渺视光学科技有限公司 具有微结构的增强现实平面波导光学器件
CN107991778A (zh) * 2018-01-17 2018-05-04 上海渺视光学科技有限公司 一种多层微棱镜波导结构近眼显示视频眼镜
CN108020883A (zh) * 2018-01-17 2018-05-11 上海渺视光学科技有限公司 具有多层微结构的增强现实平面波导光学器件
CN108008538A (zh) * 2018-01-17 2018-05-08 上海渺视光学科技有限公司 微棱镜波导结构近眼显示视频眼镜
JPWO2019163215A1 (ja) * 2018-02-22 2021-02-25 マクセル株式会社 画像形成装置
CN108803024A (zh) * 2018-03-08 2018-11-13 成都理想境界科技有限公司 一种实现光场显示的近眼显示设备、近眼显示装置和屏幕
CN108398791B (zh) * 2018-03-29 2022-11-25 陈超平 一种基于偏光隐形眼镜的近眼显示装置
CN108627910B (zh) * 2018-05-15 2023-10-24 深圳珑璟光电技术有限公司 一种光波导装置
CN108873355A (zh) * 2018-08-29 2018-11-23 深圳珑璟光电技术有限公司 一种近眼显示装置
CN109579728B (zh) * 2018-11-01 2021-11-30 北京华捷艾米科技有限公司 基于全息波导的散斑结构光投影模组
CN111142255A (zh) * 2018-11-02 2020-05-12 成都理想境界科技有限公司 一种ar光学显示模组及显示设备
CN111142256A (zh) * 2018-11-02 2020-05-12 成都理想境界科技有限公司 一种vr光学显示模组及显示设备
CN110146983B (zh) * 2018-12-29 2024-01-09 深圳珑璟光电科技有限公司 一种头戴显示装置
CN111610631B (zh) 2019-02-22 2021-08-17 京东方科技集团股份有限公司 光学系统以及近眼显示装置
CN109901259B (zh) * 2019-04-07 2021-03-05 深圳市美誉镜界光电科技有限公司 光波导结构、ar设备光学成像系统及ar设备
CN211698438U (zh) 2019-11-07 2020-10-16 中强光电股份有限公司 近眼光学系统
CN110703447A (zh) * 2019-11-29 2020-01-17 联想(北京)有限公司 一种头戴式设备
CN113740954A (zh) * 2020-05-27 2021-12-03 宇目(厦门)科技有限公司 光波导结构及其制备方法
CN111751082B (zh) * 2020-06-24 2022-06-21 歌尔光学科技有限公司 组装精度的检测方法和检测装置
WO2022078023A1 (zh) * 2020-10-14 2022-04-21 Oppo广东移动通信有限公司 镜头、投影光机以及近眼显示系统
WO2022141382A1 (zh) * 2020-12-31 2022-07-07 深圳纳德光学有限公司 一种大视场角的目镜光学系统及头戴显示装置
WO2022141386A1 (zh) * 2020-12-31 2022-07-07 深圳纳德光学有限公司 一种大视场角的目镜光学系统及头戴显示装置
WO2022141385A1 (zh) * 2020-12-31 2022-07-07 深圳纳德光学有限公司 一种大视场角的目镜光学系统及头戴显示装置
CN112987401A (zh) * 2021-03-01 2021-06-18 捷开通讯(深圳)有限公司 反射式显示器
CN113504647B (zh) * 2021-07-07 2022-09-30 合肥视涯显示科技有限公司 一种可穿戴显示装置及其驱动方法
CN113820865B (zh) * 2021-09-26 2023-06-27 维沃移动通信有限公司 投影装置及智能眼镜
WO2024059310A1 (en) * 2022-09-15 2024-03-21 Applied Materials, Inc. Methods to measure light loss and efficiency of diffraction gratings on optical substrates

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102455461A (zh) * 2010-10-21 2012-05-16 精工爱普生株式会社 导光板以及具备该导光板的虚像显示装置
CN103513423A (zh) * 2013-09-27 2014-01-15 上海理工大学 透视显示器件
CN103649823A (zh) * 2011-05-27 2014-03-19 谷歌公司 图像中继波导及其产生方法
CN104614858A (zh) * 2015-01-25 2015-05-13 上海理湃光晶技术有限公司 增强现实的锯齿结构平面波导目视光学显示器件
WO2016088389A1 (ja) * 2014-12-04 2016-06-09 大日本印刷株式会社 半透過型反射シート、導光板および表示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20020625A1 (it) * 2002-07-17 2004-01-19 Fiat Ricerche Guida di luce per dispositivi di visualizzazione di tipo "head-mounted" o "head-up"
FR2925171B1 (fr) * 2007-12-13 2010-04-16 Optinvent Guide optique et systeme optique de vision oculaire
US8059342B2 (en) * 2009-04-03 2011-11-15 Vuzix Corporation Beam segmentor for enlarging viewing aperture of microdisplay
RU2594370C2 (ru) * 2014-07-11 2016-08-20 Самсунг Электроникс Ко., Лтд. Световодная структура, оптическое устройство и система формирования изображений
US20170315358A1 (en) * 2014-09-01 2017-11-02 Sharp Kabushiki Kaisha Light guide and virtual image display device
CN104536088B (zh) * 2015-01-24 2018-05-08 上海理湃光晶技术有限公司 齿形镶嵌平面波导光学器件
CN104597565A (zh) * 2015-01-25 2015-05-06 上海理湃光晶技术有限公司 增强现实的齿形镶嵌平面波导光学器件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102455461A (zh) * 2010-10-21 2012-05-16 精工爱普生株式会社 导光板以及具备该导光板的虚像显示装置
CN103649823A (zh) * 2011-05-27 2014-03-19 谷歌公司 图像中继波导及其产生方法
CN103513423A (zh) * 2013-09-27 2014-01-15 上海理工大学 透视显示器件
WO2016088389A1 (ja) * 2014-12-04 2016-06-09 大日本印刷株式会社 半透過型反射シート、導光板および表示装置
CN104614858A (zh) * 2015-01-25 2015-05-13 上海理湃光晶技术有限公司 增强现实的锯齿结构平面波导目视光学显示器件

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108037580A (zh) * 2018-01-09 2018-05-15 中山日荣塑料电子制品有限公司 一种导光式显微镜
CN112272789A (zh) * 2018-06-15 2021-01-26 大陆汽车有限责任公司 具有可变的投影距离的用于生成虚拟图像的设备
CN112272789B (zh) * 2018-06-15 2022-10-04 大陆汽车有限责任公司 具有可变的投影距离的用于生成虚拟图像的设备
WO2020041620A1 (en) * 2018-08-23 2020-02-27 The Regents Of The University Of California Cmos-compatible single-layer waveguide display for augmented and virtual reality
WO2020126672A1 (de) * 2018-12-21 2020-06-25 tooz technologies GmbH Optisches system zum erzeugen eines virtuellen bildes und verfahren zum herstellen einer auskoppelanordnung eines optischen systems
CN112213855B (zh) * 2019-07-11 2022-07-12 苏州苏大维格科技集团股份有限公司 显示装置及光波导镜片
CN112213855A (zh) * 2019-07-11 2021-01-12 苏州苏大维格科技集团股份有限公司 显示装置及光波导镜片
EP3940433A1 (en) * 2020-07-16 2022-01-19 Coretronic Corporation Waveguide and head-mounted display device
CN111965826A (zh) * 2020-08-27 2020-11-20 Oppo广东移动通信有限公司 智能眼镜的控制方法、装置、存储介质及智能眼镜
CN111965826B (zh) * 2020-08-27 2022-11-15 Oppo广东移动通信有限公司 智能眼镜的控制方法、装置、存储介质及智能眼镜
TWI781462B (zh) * 2020-08-28 2022-10-21 中強光電股份有限公司 波導的製作方法以及具有波導的頭戴式顯示裝置
EP3964879A1 (en) * 2020-08-28 2022-03-09 Coretronic Corporation Manufacturing method of waveguide and head mounted display device having waveguide
US11960085B2 (en) 2020-08-28 2024-04-16 Coretronic Corporation Waveguide and head mounted display device having waveguide
WO2022166819A1 (zh) * 2021-02-04 2022-08-11 维沃移动通信有限公司 图像处理方法、装置和电子设备
CN112987302B (zh) * 2021-02-05 2022-10-18 业成科技(成都)有限公司 头戴式显示装置及其显示系统
CN112987302A (zh) * 2021-02-05 2021-06-18 业成科技(成都)有限公司 头戴式显示装置及其显示系统
CN114047624A (zh) * 2022-01-12 2022-02-15 深圳纳德光学有限公司 一种目镜光学结构、目镜系统及光学设备
CN114236682A (zh) * 2022-01-20 2022-03-25 上海理湃光晶技术有限公司 一种光学扩展波导
CN114236682B (zh) * 2022-01-20 2022-12-09 上海理湃光晶技术有限公司 一种光学扩展波导
CN115390182A (zh) * 2022-08-29 2022-11-25 深圳珑璟光电科技有限公司 光波导的制作方法、制作设备、光波导及近眼显示设备
CN115857177A (zh) * 2023-02-08 2023-03-28 北京灵犀微光科技有限公司 一种增强现实显示设备

Also Published As

Publication number Publication date
CN105929545A (zh) 2016-09-07
CN105929545B (zh) 2019-03-26

Similar Documents

Publication Publication Date Title
WO2017219433A1 (zh) 波导式的头戴显示器的光学装置
US11867906B2 (en) Wearable AR system and AR display device
JP7121116B2 (ja) 拡張現実システムのための導波路ベース光学システム及び方法
US11726325B2 (en) Near-eye optical imaging system, near-eye display device and head-mounted display device
CN206020813U (zh) 波导式的头戴显示器的光学装置
WO2010061835A1 (ja) 映像表示装置およびヘッドマウントディスプレイ
WO2022142602A1 (zh) 光学器件、系统及光学设备
CN211318883U (zh) 一种高分辨率大视场角及大出瞳直径的ar光学系统
CN215117019U (zh) 一种光学镜组及近眼显示装置
WO2022032985A1 (zh) 光学器件、系统及光学设备
US20210239981A1 (en) Optical System and Near-Eye Display Device
CN111158147A (zh) 一种高分辨率大视场角及大出瞳直径的ar光学系统
CN116209940A (zh) 具有圆筒状波导的光学系统
CN201173997Y (zh) 单芯片的眼镜式显示装置
CN201156110Y (zh) 眼镜式显示装置
CN101646970B (zh) 眼镜式显示装置
CN114755827B (zh) 头戴式显示设备
CN113126191B (zh) 一种光学器件及光学系统
US20220099971A9 (en) Head-mounted display having volume substrate-guided holographic continuous lens optics with laser illuminated microdisplay
CN113031279A (zh) 一种出瞳形状为长方形的近眼显示装置
CN112462564A (zh) 激光光学投影模块及包含其的穿戴装置
KR20080082068A (ko) 헤드마운트 디스플레이의 광학시스템
KR100597451B1 (ko) 단판양안식 헤드마운트 디스플레이 광학시스템
EP4160296A1 (en) Augmented reality display device
TWI829434B (zh) 光學鏡頭模組、光機模組以及頭戴式顯示裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16905973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16905973

Country of ref document: EP

Kind code of ref document: A1