WO2022227857A1 - 温度检测电路及耳机 - Google Patents

温度检测电路及耳机 Download PDF

Info

Publication number
WO2022227857A1
WO2022227857A1 PCT/CN2022/079008 CN2022079008W WO2022227857A1 WO 2022227857 A1 WO2022227857 A1 WO 2022227857A1 CN 2022079008 W CN2022079008 W CN 2022079008W WO 2022227857 A1 WO2022227857 A1 WO 2022227857A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
temperature
charge
discharge management
storage unit
Prior art date
Application number
PCT/CN2022/079008
Other languages
English (en)
French (fr)
Inventor
郭世文
吴海全
余新
彭久高
Original Assignee
深圳市冠旭电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市冠旭电子股份有限公司 filed Critical 深圳市冠旭电子股份有限公司
Publication of WO2022227857A1 publication Critical patent/WO2022227857A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1091Details not provided for in groups H04R1/1008 - H04R1/1083
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of circuits, and in particular, to a temperature detection circuit and an earphone.
  • a Bluetooth headset usually includes a charge and discharge management circuit, an energy storage unit and a load circuit.
  • the charge and discharge management circuit is respectively connected with the energy storage unit and the load circuit.
  • the charge and discharge management circuit can output electrical energy to the energy storage unit and the load circuit.
  • the energy storage unit can output electrical energy to the load circuit through the charge and discharge management circuit. Works when the load circuit is energized.
  • the Bluetooth headset also has a temperature-sensitive circuit, and the resistance of the temperature-sensitive circuit changes with the temperature of the energy storage unit.
  • One end of the temperature sensitive circuit is connected to the ground wire, and the other end is connected to the voltage output end of the charge and discharge management circuit through a resistor.
  • the voltage detection terminal of the charge-discharge management circuit is connected between the resistor and the temperature-sensitive circuit for detecting the voltage of the temperature-sensitive circuit, so as to determine the resistance of the temperature-sensitive circuit according to the voltage of the temperature-sensitive circuit, thereby obtaining the temperature of the energy storage unit.
  • the temperature-sensitive circuit is connected to the voltage output terminal of the charge-discharge management circuit through a resistor, when the voltage output by the voltage output terminal of the charge-discharge management circuit changes, the voltage of the temperature-sensitive circuit also changes, which will affect the The accuracy of the temperature detection of the energy storage unit.
  • One of the purposes of the embodiments of the present application is to provide a temperature detection circuit and an earphone, which can improve the accuracy of detecting the temperature of the energy storage unit.
  • a temperature detection circuit including: a charge and discharge management circuit, a first battery system, and a first processing circuit;
  • the first battery system includes a first energy storage unit and a first temperature-sensitive circuit, the first temperature-sensitive circuit is attached to the outer surface of the first energy-storage unit, and the resistance of the first temperature-sensitive circuit varies with the temperature of the first energy storage unit changes;
  • the first end of the charge and discharge management circuit is connected to the first energy storage unit, the second end of the charge and discharge management circuit is connected to the first end of the first processing circuit; the charge and discharge management circuit is in the In the charge management state, the charge and discharge management circuit outputs electrical energy to the first energy storage unit and the first processing circuit; when the charge and discharge management circuit is in the discharge management state, the first energy storage unit passes through the the charge and discharge management circuit outputs electrical energy to the first processing circuit;
  • the first end of the first temperature-sensitive circuit is connected to the ground wire GND, and the second end of the first temperature-sensitive circuit is connected to the second end of the first processing circuit.
  • the resistance value of the first temperature sensitive circuit is detected, and the temperature of the first energy storage unit is determined according to the resistance value of the first temperature sensitive circuit.
  • the temperature detection circuit further includes: a second battery system and a second processing circuit;
  • the second battery system includes a second energy storage unit and a second temperature-sensitive circuit, the second temperature-sensitive circuit is attached to the outer surface of the second energy-storage unit, and the resistance of the second temperature-sensitive circuit varies with changes in temperature of the second energy storage unit;
  • the first end of the charge and discharge management circuit is connected to the second energy storage unit, the second end of the charge and discharge management circuit is connected to the first end of the second processing circuit; the charge and discharge management circuit is in the In the charge management state, the charge and discharge management circuit outputs electrical energy to the second energy storage unit and the second processing circuit; when the charge and discharge management circuit is in the discharge management state, the second energy storage unit passes through the the charge and discharge management circuit outputs electrical energy to the second processing circuit;
  • the first end of the second temperature sensitive circuit is connected to the ground wire GND, the second end of the second temperature sensitive circuit is connected to the second end of the second processing circuit, and the second processing circuit works At the time of detection, the resistance value of the second temperature-sensitive circuit is detected, and the temperature of the second energy storage unit is determined according to the resistance value of the second temperature-sensitive circuit.
  • the temperature detection circuit further includes: a third temperature sensitive circuit and a resistor R1;
  • the third temperature-sensitive circuit is attached to the outer surface of the charge-discharge management circuit, and the resistance of the third temperature-sensitive circuit changes with the temperature of the charge-discharge management circuit;
  • the first end of the third temperature sensitive circuit is connected to the ground wire GND, and the second end of the third temperature sensitive circuit is connected to the third end of the first processing circuit;
  • the first end of the resistor R1 is connected to the second end of the third temperature sensitive circuit, the second end of the resistor R1 is connected to the third end of the charge and discharge management circuit, the charge and discharge management circuit
  • the third terminal is used to output the preset voltage
  • the third end of the charge-discharge management circuit is connected to the fourth end of the first processing circuit.
  • the voltage of the third end of the first processing circuit is different from the voltage of the first processing circuit.
  • the ratio of the magnitude of the voltage at the fourth terminal of the processing circuit determines the temperature of the charge and discharge management circuit.
  • the temperature detection circuit further includes: a first follower circuit
  • the first end of the first follower circuit is connected to the second end of the third temperature sensitive circuit, and the second end of the first follower circuit is connected to the third end of the first processing circuit.
  • the first follower circuit includes: an operational amplifier A1, a resistor R2 and a resistor R3;
  • the non-inverting input terminal of the operational amplifier A1 is connected to the second terminal of the third temperature sensitive circuit, the inverting input terminal of the operational amplifier A1 is connected to the output terminal of the operational amplifier A1, and the The output end is connected to the first end of the resistor R2;
  • the second end of the resistor R2 is connected to the third end of the first processing circuit
  • the first end of the resistor R3 is connected to the second end of the resistor R2, and the second end of the resistor R3 is connected to the ground line GND.
  • the temperature detection circuit further includes: a second follower circuit
  • the first end of the second follower circuit is connected to the third end of the charge and discharge management circuit, and the second end of the second follower circuit is connected to the fourth end of the first processing circuit.
  • the second follower circuit includes: an operational amplifier A2, a resistor R4 and a resistor R5;
  • the non-inverting input terminal of the operational amplifier A2 is connected to the third terminal of the charge and discharge management circuit, the inverting input terminal of the operational amplifier A2 is connected to the output terminal of the operational amplifier A2, and the output of the operational amplifier A2 The terminal is connected to the first terminal of the resistor R4;
  • the second end of the resistor R4 is connected to the fourth end of the first processing circuit
  • the first end of the resistor R5 is connected to the second end of the resistor R4, and the second end of the resistor R5 is connected to the ground line GND.
  • the temperature detection circuit further includes: a controller;
  • the first end of the controller is connected to the fifth end of the first processing circuit to input the temperature of the first energy storage unit, and the second end of the controller is connected to the fifth end of the second processing circuit. Three-terminal connection to input the temperature of the second energy storage unit;
  • the third end of the controller is connected to the fourth end of the charge and discharge management circuit, so that when at least one of the temperature of the first energy storage unit and the temperature of the second energy storage unit exceeds a temperature threshold , the controller controls the charge and discharge management circuit to be disconnected.
  • the temperature detection circuit further includes: a controller;
  • the first end of the controller is connected to the fifth end of the first processing circuit to input the temperature of the first energy storage unit and the temperature of the charge and discharge management circuit;
  • the third end of the controller is connected to the fourth end of the charge and discharge management circuit, so that when at least one of the temperature of the first energy storage unit and the temperature of the charge and discharge management circuit exceeds a temperature threshold, The controller controls the charge and discharge management circuit to be disconnected.
  • an earphone including the temperature detection circuit described in the first aspect.
  • the temperature detection circuit includes a charge and discharge management circuit, a first battery system and a first processing circuit.
  • the first battery system includes a first energy storage unit and a first temperature sensitive circuit.
  • the charge and discharge management circuit When the charge and discharge management circuit is in the charge management state, the charge and discharge management circuit outputs electrical energy to the first energy storage unit and the first processing circuit; when the charge and discharge management circuit is in the discharge management state, the first energy storage unit sends the first energy storage unit to the first energy storage unit through the charge and discharge management circuit.
  • a processing circuit outputs electrical energy.
  • the first processing circuit detects the resistance value of the first temperature-sensitive circuit when it is powered on and works, and determines the temperature of the first energy storage unit according to the resistance value of the first temperature-sensitive circuit.
  • the resistance value of the first temperature sensitive circuit is detected by the first processing circuit, and the first temperature sensitive circuit does not need to be connected to the voltage output terminal of the charge and discharge management circuit. In this way, the voltage output terminal of the charge and discharge management circuit can be avoided.
  • the change of the output voltage affects the detection of the resistance value of the first temperature sensitive circuit, so that the accuracy of detecting the temperature of the first energy storage unit can be improved.
  • FIG. 1 is a schematic diagram of the circuit structure of a Bluetooth headset provided by the related art
  • FIG. 2 is a schematic structural diagram of a first temperature detection circuit provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a second temperature detection circuit provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a third temperature detection circuit provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a fourth temperature detection circuit provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a fifth temperature detection circuit provided by an embodiment of the present application.
  • FIG. 7 is a circuit diagram of a first follower circuit and a second follower circuit provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a sixth temperature detection circuit provided by an embodiment of the present application.
  • Bluetooth headset 12. Charge and discharge management circuit; 14. Energy storage unit; 16. Load circuit; 18. Temperature sensitive circuit;
  • temperature detection circuit 210, charge and discharge management circuit; 212, charge management circuit; 214, discharge management circuit; 216, third temperature sensitive circuit; 220, first battery system; 222, first energy storage unit; 224, 230, a first processing circuit; 240, a second battery system; 242, a second energy storage unit; 244, a second temperature sensitive circuit; 250, a second processing circuit; 262, a first follower circuit; 264, a second follower circuit; 270, a controller.
  • FIG. 1 is a schematic diagram of a circuit structure of a Bluetooth headset 10 provided by the related art.
  • the Bluetooth headset 10 generally includes a charge and discharge management circuit 12 , an energy storage unit 14 and a load circuit 16 .
  • the charge and discharge management circuit 12 is respectively connected to the energy storage unit 14 and the load circuit 16 .
  • the charge and discharge management circuit 12 can obtain external power and output power to the energy storage unit 14 and the load circuit 16 .
  • the energy storage unit 14 is charged.
  • the charge and discharge management circuit 12 is in a discharge management state, the energy storage unit 14 can output electrical energy to the load circuit 16 through the charge and discharge management circuit 12 .
  • the energy storage unit 14 is discharged.
  • the load circuit 16 may be a working circuit of the Bluetooth headset 10, and the load circuit 16 works when powered on.
  • the Bluetooth headset 10 further has a temperature-sensitive circuit 18 .
  • the temperature-sensitive circuit 18 can be attached to the surface of the energy storage unit 14 , so that the resistance of the temperature-sensitive circuit 18 changes with the temperature of the energy storage unit 14 .
  • the temperature sensitive circuit 18 generally includes NTC (Negative Temperature Coefficient, negative temperature coefficient) temperature-sensitive resistor, so that when the temperature of the energy storage unit 14 is higher, the resistance value of the temperature-sensitive circuit 18 is smaller.
  • One end of the temperature sensitive circuit 18 is connected to the ground line GND, and the other end is connected to the voltage output terminal REGN of the charge and discharge management circuit 12 through a resistor R.
  • the voltage detection terminal TS of the charge-discharge management circuit 12 is also connected between the resistor R and the temperature-sensitive circuit 18 , so as to detect the voltage of the temperature-sensitive circuit 18 .
  • the voltage output terminal REGN of the charge and discharge management circuit 12 outputs a voltage, and the voltage is divided by the resistor R and the temperature sensitive circuit 18 .
  • the resistance of the temperature-sensitive circuit 18 changes accordingly, and the voltage of the temperature-sensitive circuit 18 changes accordingly. In this way, by detecting the voltage of the temperature sensitive circuit 18 , the resistance of the temperature sensitive circuit 18 can be determined according to the voltage of the temperature sensitive circuit 18 , and then the temperature of the energy storage unit 14 can be obtained.
  • the temperature-sensitive circuit 18 is connected to the voltage output terminal of the charge-discharge management circuit 12 through a resistance, when the resistance of the temperature-sensitive circuit 18 does not change, if the magnitude of the voltage output by the voltage output terminal of the charge-discharge management circuit 12 changes , the voltage of the temperature sensitive circuit 18 will also change, which will affect the accuracy of the temperature detection of the energy storage unit 14 .
  • the embodiments of the present application provide a temperature detection circuit and an earphone, which can improve the accuracy of detecting the temperature of the energy storage unit.
  • connection between two electrical devices refers to an electrical connection.
  • the electrical connection here refers to a wired or wireless connection between two electrical devices to transmit electrical signals.
  • the "attachment” between the temperature-sensitive circuit and other electrical devices refers to insulating attachment, so that the resistance of the temperature-sensitive circuit changes with the temperature of the electrical device to which the temperature-sensitive circuit is attached.
  • FIG. 2 is a schematic structural diagram of a temperature detection circuit 20 provided by an embodiment of the present application.
  • the temperature detection circuit 20 can be applied to an earphone, and the earphone can be an earphone with a noise reduction function or a smart earphone, which is not described here. limited.
  • the temperature detection circuit 20 includes a charge and discharge management circuit 210 , a first battery system 220 and a first processing circuit 230 .
  • the first battery system 220 includes a first energy storage unit 222 and a first temperature sensitive circuit 224 .
  • the first energy storage unit 222 is used to store and release electrical energy, and may include one or more parallel-connected rechargeable batteries, supercapacitors, and the like.
  • the first temperature sensitive circuit 224 is attached to the outer surface of the first energy storage unit 222 and is connected to the first energy storage unit 222 in an insulating manner. The resistance of the first temperature sensitive circuit 224 varies with the temperature of the first energy storage unit 222 .
  • the first temperature-sensitive circuit 224 may include an NTC temperature-sensitive resistor, so that when the temperature of the first energy storage unit 222 is higher, the resistance value of the first temperature-sensitive circuit 224 is smaller.
  • the first end of the first temperature sensitive circuit 224 is connected to the ground line GND.
  • the charge and discharge management circuit 210 is used for charge management and discharge management of the first energy storage unit 222 .
  • the charge and discharge management circuit 210 may have a power input terminal VDD, and the power input terminal VDD of the charge and discharge management circuit 210 is used for connecting with an external power source to obtain electric energy from the external power source.
  • the charge and discharge management circuit 210 also has a first terminal and a second terminal. The first end of the charge and discharge management circuit 210 is connected to the first energy storage unit 222 , and the second end of the charge and discharge management circuit 210 is connected to the first end of the first processing circuit 230 .
  • the power input terminal VDD of the charge and discharge management circuit 210 is connected to an external power source.
  • the power input terminal VDD of the charge and discharge management circuit 210 inputs electrical energy, and the charge and discharge management circuit 210 outputs electrical energy to the first energy storage unit 222 and the first processing circuit 230 , the first energy storage unit 222 is charged, and the first processing circuit 230 energized to work.
  • the charge and discharge management circuit 210 is in a discharge management state, the power input terminal VDD of the charge and discharge management circuit 210 is not connected to an external power source.
  • the first energy storage unit 222 outputs electrical energy to the first processing circuit 230 through the charge and discharge management circuit 210, so that the first processing circuit 230 is powered on to work.
  • the first processing circuit 230 also has a second terminal. The second end of the first processing circuit 230 is connected to the second end of the first temperature sensitive circuit 224 .
  • the first processing circuit 230 detects the resistance value of the first temperature sensitive circuit 224 during operation, and determines the temperature of the first energy storage unit 222 according to the resistance value of the first temperature sensitive circuit 224 .
  • the charge and discharge management circuit 210 When the temperature detection circuit 20 is working, if the charge and discharge management circuit 210 is in a charge management state, the charge and discharge management circuit 210 outputs electrical energy to the first energy storage unit 222 and the first processing circuit 230 . At this time, the first energy storage unit 222 is charged; the first processing circuit 230 is powered on to work, detects the resistance value of the first temperature sensitive circuit 224 , and determines the temperature of the first energy storage unit 222 . If the charge and discharge management circuit 210 is in the discharge management state, the first energy storage unit 222 outputs electrical energy to the first processing circuit 230 through the charge and discharge management circuit 210 .
  • the first energy storage unit 222 is discharged; the first processing circuit 230 is powered on to work, detects the resistance value of the first temperature sensitive circuit 224 , and determines the temperature of the first energy storage unit 222 . In this way, the first processing circuit 230 can detect and obtain the temperature of the first energy storage unit 222 in the charging state and the temperature in the discharging state.
  • the first temperature sensitive circuit 224 does not need to be connected to the voltage output terminal of the charge and discharge management circuit 210 , which can avoid the change in the magnitude of the voltage output by the voltage output terminal of the charge and discharge management circuit 210 to detect the resistance of the first temperature sensitive circuit 224 Therefore, the accuracy of detecting the temperature of the first energy storage unit 222 can be improved.
  • the first energy storage unit 222 includes a positive electrode and a negative electrode.
  • the positive electrode of the first energy storage unit 222 is connected to the first end of the charge-discharge management circuit 210
  • the negative electrode of the first energy storage unit 222 is connected to the ground wire GND.
  • the power input terminal VDD of the charge-discharge management circuit 210 is connected to an external power source
  • the voltage of the first terminal of the charge-discharge management circuit 210 is higher than the voltage of the positive electrode of the first energy storage unit 222 .
  • the first energy storage unit 222 is charged.
  • the voltage of the first terminal of the charge-discharge management circuit 210 is lower than the voltage of the positive electrode of the first energy storage unit 222. At this time, the first energy storage unit 222 discharges to the first processing circuit 230 through the charge and discharge management circuit 210 .
  • the first processing circuit 230 may also have positive and negative electrodes.
  • the positive electrode of the first processing circuit 230 constitutes the first terminal of the first processing circuit 230 and is connected to the second terminal of the charge-discharge management circuit 210 .
  • the negative electrode of the first processing circuit 230 is connected to the ground line GND.
  • the first processing circuit 230 may include a first processor and a first memory coupled to the first processor.
  • the first processor can output a voltage to the first temperature-sensitive circuit 224, and detect the magnitude of the voltage and the magnitude of the current in the first temperature-sensitive circuit 224, so as to determine the first temperature according to the voltage and current.
  • the resistance value of the sensitive circuit 224 is not limited to the first processor.
  • the first memory may store the corresponding relationship between the resistance value of the first temperature-sensitive circuit 224 and the temperature of the first energy storage unit 222, so that after the processor determines the resistance value of the first temperature-sensitive circuit 224, it can The corresponding relationship between the resistance value of the sensitive circuit 224 and the temperature of the first energy storage unit 222 determines the temperature of the first energy storage unit 222 .
  • FIG. 3 is a schematic structural diagram of another temperature detection circuit 20 provided by an embodiment of the present application. As shown in FIG. 3 , the temperature detection circuit 20 may further include a second battery system 240 and a second processing circuit 250 .
  • the second battery system 240 includes a second energy storage unit 242 and a second temperature sensitive circuit 244 .
  • the second energy storage unit 242 is also used to store and release electrical energy, and may include one or more parallel-connected rechargeable batteries, supercapacitors, and the like.
  • the second temperature sensitive circuit 244 is attached to the outer surface of the second energy storage unit 242 and is connected to the second energy storage unit 242 in an insulating manner.
  • the resistance of the second temperature sensitive circuit 244 varies with the temperature of the second energy storage unit 242 .
  • the second temperature-sensitive circuit 244 may include an NTC temperature-sensitive resistor, so that when the temperature of the second energy storage unit 242 is higher, the resistance value of the second temperature-sensitive circuit 244 is smaller.
  • the first end of the second temperature sensitive circuit 244 is connected to the ground line GND.
  • the first end of the charge and discharge management circuit 210 is connected to the second energy storage unit 242 , and the second end of the charge and discharge management circuit 210 is connected to the first end of the second processing circuit 250 .
  • the power input terminal VDD of the charge and discharge management circuit 210 is connected to an external power source.
  • the power input terminal VDD of the charge and discharge management circuit 210 inputs electrical energy, and the charge and discharge management circuit 210 outputs electrical energy to the second energy storage unit 242 and the second processing circuit 250 , the second energy storage unit 242 is charged, and the second processing circuit 250 energized to work.
  • the power input terminal VDD of the charge and discharge management circuit 210 is not connected to an external power source.
  • the second energy storage unit 242 outputs electrical energy to the second processing circuit 250 through the charge and discharge management circuit 210, so that the second processing circuit 250 is powered on to work.
  • the first end of the charge and discharge management circuit 210 is connected to the first energy storage unit 222 and the second energy storage unit 242
  • the second end of the charge and discharge management circuit 210 is connected to the first processing circuit 230
  • the first end of the is connected to the first end of the second processing circuit 250 .
  • the charge and discharge management circuit 210 when the charge and discharge management circuit 210 is in the charge management state, the first energy storage unit 222 and the second energy storage unit 242 are charged simultaneously; when the charge and discharge management circuit 210 is in the discharge management state, the first energy storage unit 222 and the second energy storage unit 242 are charged at the same time; The two energy storage units 242 simultaneously output power to the first processing circuit 230 and the second processing circuit 250 .
  • the second processing circuit 250 also has a second terminal. The second end of the second processing circuit 250 is connected to the second end of the second temperature sensitive circuit 244 .
  • the second processing circuit 250 detects the resistance value of the second temperature sensitive circuit 244 during operation, and determines the temperature of the second energy storage unit 242 according to the resistance value of the second temperature sensitive circuit 244 .
  • the charge and discharge management circuit 210 When the temperature detection circuit 20 is operating, if the charge and discharge management circuit 210 is in a charge management state, the charge and discharge management circuit 210 outputs electrical energy to the second energy storage unit 242 and the second processing circuit 250 . At this time, the second energy storage unit 242 is charged; the second processing circuit 250 is powered on to work, detects the resistance value of the second temperature sensitive circuit 244 , and determines the temperature of the second energy storage unit 242 . If the charge and discharge management circuit 210 is in the discharge management state, the second energy storage unit 242 outputs electrical energy to the second processing circuit 250 through the charge and discharge management circuit 210 .
  • the second energy storage unit 242 is discharged; the second processing circuit 250 is powered on to work, detects the resistance value of the second temperature sensitive circuit 244 , and determines the temperature of the second energy storage unit 242 .
  • the second processing circuit 250 can detect and obtain the temperature of the second energy storage unit 242 in the charging state and the temperature in the discharging state.
  • the second temperature sensitive circuit 244 does not need to be connected to the voltage output terminal of the charge and discharge management circuit 210 , which can avoid the change in the magnitude of the voltage output by the voltage output terminal of the charge and discharge management circuit 210 to detect the resistance of the second temperature sensitive circuit 244 Therefore, the accuracy of detecting the temperature of the second energy storage unit 242 can be improved.
  • the temperature detection circuit 20 has two battery systems, and can perform temperature detection for charging and discharging of the first energy storage unit 222 and the second energy storage unit 242, thereby improving the safety of the electrical appliance applying the temperature detection circuit 20 sex.
  • the second energy storage unit 242 includes a positive electrode and a negative electrode.
  • the positive electrode of the second energy storage unit 242 is connected to the first end of the charge-discharge management circuit 210
  • the negative electrode of the second energy storage unit 242 is connected to the ground wire GND.
  • the voltage of the first terminal of the charge and discharge management circuit 210 is higher than the voltage of the positive electrode of the second energy storage unit 242 .
  • the second energy storage unit 242 is charged.
  • the voltage of the first terminal of the charge-discharge management circuit 210 is lower than the voltage of the positive electrode of the second energy storage unit 242.
  • the second energy storage unit 242 discharges to the second processing circuit 250 through the charge and discharge management circuit 210 .
  • the second processing circuit 250 may also have positive and negative electrodes.
  • the anode of the second processing circuit 250 constitutes the first terminal of the second processing circuit 250 and is connected to the second terminal of the charge-discharge management circuit 210 .
  • the negative electrode of the second processing circuit 250 is connected to the ground line GND.
  • the second processing circuit 250 may include a second processor and a second memory coupled to the second processor.
  • the second processor can output a voltage to the second temperature-sensitive circuit 244, and detect the voltage and the current in the second temperature-sensitive circuit 244, so as to determine the second temperature according to the voltage and current.
  • the second memory may store the corresponding relationship between the resistance value of the second temperature sensitive circuit 244 and the temperature of the second energy storage unit 242, so that after the processor determines the resistance value of the second temperature sensitive circuit 244, it can The corresponding relationship between the resistance value of the sensitive circuit 244 and the temperature of the second energy storage unit 242 determines the temperature of the second energy storage unit 242 .
  • FIG. 4 is a schematic structural diagram of another temperature detection circuit 20 provided by an embodiment of the present application.
  • the charge and discharge management circuit 210 includes a charge management circuit 212 and a discharge management circuit 214 .
  • the charge management circuit 212 has a first terminal, a second terminal and a third terminal.
  • the first terminal of the charging management circuit 212 is the power input terminal VDD of the charging and discharging management circuit 210, and is used for connecting with an external power source.
  • the charging management circuit 212 further has a second terminal and a third terminal, and both the second terminal and the third terminal of the charging management circuit 212 are used for outputting electric energy.
  • the second end of the charging management circuit 212 is connected to the first energy storage unit 222 and the second energy storage unit 242 for outputting electrical energy to the first energy storage unit 222 and the second energy storage unit 242 .
  • the third terminal of the charging management circuit 212 is connected to the first terminal of the first processing circuit 230 and the first terminal of the second processing circuit 250 for outputting power to the first processing circuit 230 and the second processing circuit 250 .
  • the discharge management circuit 214 has a first terminal and a second terminal. The first end of the discharge management circuit 214 is connected to the first energy storage unit 222 and the second energy storage unit 242 . The second end of the discharge management circuit 214 is connected to the first end of the first processing circuit 230 and the first end of the second processing circuit 250 .
  • the charge and discharge management circuit 210 When the charge and discharge management circuit 210 is in the charge management state, the first terminal and the second terminal of the charge management circuit 212 are connected to each other, and the first terminal and the third terminal of the charge management circuit 212 are connected to each other. 214 Disconnect. At this time, the charge management circuit 212 in the charge and discharge management circuit 210 outputs electrical energy to the first energy storage unit 222 , the second energy storage unit 242 , the first processing circuit 230 and the second processing circuit 250 . When the charge and discharge management circuit 210 is in the discharge management state, the first terminal and the second terminal of the discharge management circuit 214 are turned on, the first terminal and the second terminal of the charge management circuit 212 are disconnected, and the charge management circuit 212 disconnected between the first and third ends. At this time, the first energy storage unit 222 and the second energy storage unit 242 output electrical energy to the first processing circuit 230 and the second processing circuit 250 through the discharge management circuit 214 in the charge and discharge management circuit 210 .
  • FIG. 5 is a schematic structural diagram of another temperature detection circuit 20 provided by an embodiment of the present application. As shown in FIG. 5 , the temperature detection circuit 20 further includes a third temperature sensitive circuit 216 and a resistor R1 .
  • the third temperature-sensitive circuit 216 is attached to the outer surface of the charge-discharge management circuit 210 and is connected to the charge-discharge management circuit 210 in isolation.
  • the resistance of the third temperature sensitive circuit 216 varies with the temperature of the charge and discharge management circuit 210 .
  • the third temperature-sensitive circuit 216 may include an NTC temperature-sensitive resistor, so that when the temperature of the charge-discharge management circuit 210 is higher, the resistance value of the third temperature-sensitive circuit 216 is smaller.
  • the first end of the third temperature sensitive circuit 216 is connected to the ground line GND, and the second end of the third temperature sensitive circuit 216 is connected to the third end of the first processing circuit 230 .
  • the third temperature sensitive circuit 216 and the charge and discharge management circuit 210 may be integrated into a charge and discharge management chip, which will not be described here.
  • the first end of the resistor R1 is connected to the second end of the third temperature sensitive circuit 216
  • the second end of the resistor R1 is connected to the third end of the charge and discharge management circuit 210 .
  • the third terminal of the charge and discharge management circuit 210 is the voltage output terminal REGN of the charge and discharge management circuit 210 for outputting a preset voltage.
  • the third terminal of the charge and discharge management circuit 210 is connected to the fourth terminal of the first processing circuit 230 .
  • the ratio of the magnitudes of the voltages at the terminals determines the temperature of the charge and discharge management circuit 210 .
  • the third terminal of the charge and discharge management circuit 210 When the temperature detection circuit 20 operates, the third terminal of the charge and discharge management circuit 210 outputs a voltage, and the voltage is divided by the resistor R1 and the third temperature sensitive circuit 216 .
  • the third terminal of the charge and discharge management circuit 210 is connected to the fourth terminal of the first processing circuit 230 , so the voltage of the fourth terminal of the first processing circuit 230 is equal to the voltage of the third terminal of the charge and discharge management circuit 210 voltage magnitude.
  • the second terminal of the third temperature sensitive circuit 216 is connected to the third terminal of the first processing circuit 230 , so the voltage of the third terminal of the first processing circuit 230 is equal to the voltage of the third temperature sensitive circuit 216 .
  • the ratio of the voltage of the third terminal of the first processing circuit 230 to the voltage of the fourth terminal of the first processing circuit 230 is equal to the voltage of the third temperature sensitive circuit 216 and the output of the third terminal of the charge-discharge management circuit 210
  • the ratio of the magnitude of the voltage is equal to the ratio of the resistance value of the third temperature sensitive circuit 216 to the sum of the resistance value of the third temperature sensitive circuit 216 and the resistance value of the resistor R1 .
  • the ratio of the voltage of the third terminal of the first processing circuit 230 to the voltage of the fourth terminal of the first processing circuit 230 is only related to the resistance value of the third temperature sensitive circuit 216 .
  • the first processing circuit 230 determines the temperature of the charge and discharge management circuit 210 according to the ratio of the voltage of the third terminal of the first processing circuit 230 to the voltage of the fourth terminal of the first processing circuit 230, which can avoid the third voltage of the charge and discharge management circuit 210.
  • the change in the magnitude of the voltage output from the terminal affects the detection of the resistance value of the third temperature-sensitive circuit 216 , so that the accuracy of detecting the temperature of the charge-discharge management circuit 210 can be improved.
  • FIG. 6 is a schematic structural diagram of another temperature detection circuit 20 provided by an embodiment of the present application. As shown in FIG. 6 , the temperature detection circuit 20 further includes a first follower circuit 262 and a second follower circuit 264 .
  • the first follower circuit 262 has a first terminal and a second terminal.
  • the first end of the first follower circuit 262 is connected to the second end of the third temperature sensitive circuit 216, and the second end of the first follower circuit 262 is connected to the third end of the first processing circuit 230, so that the third temperature sensitive circuit
  • the second terminal of 216 is connected to the third terminal of the first processing circuit 230 through the first follower circuit 262 .
  • the second follower circuit 264 has a first terminal and a second terminal.
  • the first end of the second follower circuit 264 is connected to the third end of the charge and discharge management circuit 210 , and the second end of the second follower circuit 264 is connected to the fourth end of the first processing circuit 230 , so that the charge and discharge management circuit 210
  • the third terminal is connected to the fourth terminal of the first processing circuit 230 through the second follower circuit 264 .
  • FIG. 7 is a circuit diagram of a first follower circuit 262 and a second follower circuit 264 provided by an embodiment of the present application.
  • the first follower circuit 262 includes an operational amplifier A1 , a resistor R2 , and a resistor R3 ;
  • the second follower circuit 264 includes an operational amplifier A2 , a resistor R4 , and a resistor R5 .
  • the non-inverting input terminal of the operational amplifier A1 is connected to the second terminal of the third temperature sensitive circuit 216, the inverting input terminal of the operational amplifier A1 is connected to the output terminal of the operational amplifier A1, and the output terminal of the operational amplifier A1 is connected to the first terminal of the resistor R2. connect.
  • the second end of the resistor R2 is connected to the third end of the first processing circuit 230 .
  • the first end of the resistor R3 is connected to the second end of the resistor R2, and the second end of the resistor R3 is connected to the ground line GND.
  • the first follower circuit 262 composed of the operational amplifier A1, the resistor R2 and the resistor R3, on the one hand, the operational amplifier A1 in the first follower circuit 262 can play the role of buffering and isolation, and improve the stability of the circuit;
  • the resistor R2 and the resistor R3 in the first follower circuit 262 have a voltage dividing function, which can reduce the voltage of the third terminal of the first processing circuit 230 , thereby protecting the first processing circuit 230 .
  • the non-inverting input terminal of the operational amplifier A2 is connected to the third terminal of the charge and discharge management circuit 210, the inverting input terminal of the operational amplifier A2 is connected to the output terminal of the operational amplifier A2, and the output terminal of the operational amplifier A2 is connected to the first terminal of the resistor R4. .
  • the second end of the resistor R4 is connected to the fourth end of the first processing circuit 230 .
  • the first end of the resistor R5 is connected to the second end of the resistor R4, and the second end of the resistor R5 is connected to the ground line GND.
  • the second follower circuit 264 composed of the operational amplifier A2, the resistor R4 and the resistor R5, on the one hand, the operational amplifier A2 in the second follower circuit 264 can play the role of buffering and isolation to improve the stability of the circuit;
  • the resistor R4 and the resistor R5 in the second follower circuit 264 have a voltage dividing function, which can reduce the voltage of the fourth terminal of the first processing circuit 230 , thereby protecting the first processing circuit 230 .
  • the ratio of the voltage of the third terminal of the first processing circuit 230 to the voltage of the fourth terminal of the first processing circuit 230 is equal to the resistance value of the third temperature sensitive circuit 216 relative to the third temperature sensitive circuit.
  • the ratio of the resistance value of 216 to the sum of the resistance values of the resistor R1, the resistance value of the resistor R2 can be equal to the resistance value of the resistor R4, and the resistance value of the resistor R3 can be equal to the resistance value of the resistor R5.
  • the resistance values of the resistor R2 and the resistor R4 may be 200K ⁇ (kiloohms), respectively, and the resistance values of the resistor R3 and the resistor R5 may be 100K ⁇ , respectively.
  • the voltage of the third terminal of the first processing circuit 230 is one third of the voltage of the third temperature sensitive circuit 216 ; the voltage of the fourth terminal of the first processing circuit 230 is the first voltage of the charge-discharge management circuit 210 .
  • the operational amplifier A1 and the operational amplifier A2 can be integrated into a single chip microcomputer U1.
  • the model of the microcontroller U1 can be RS358AXM MSOP-8.
  • FIG. 8 is a schematic structural diagram of another temperature detection circuit 20 provided by an embodiment of the present application. As shown in FIG. 8 , in some embodiments, the temperature detection circuit 20 further includes a controller 270 .
  • the first processing circuit 230 is used to detect the resistance value of the first temperature sensitive circuit, and determine the temperature of the first energy storage unit 222 according to the resistance value of the first temperature sensitive circuit 224 .
  • the first processing circuit 230 is further configured to determine the temperature of the charge and discharge management circuit 210 according to the ratio of the voltage of the third terminal of the first processing circuit 230 to the voltage of the fourth terminal of the first processing circuit 230 .
  • the second processing circuit 250 is configured to detect the resistance value of the second temperature sensitive circuit 244 and determine the temperature of the second energy storage unit 242 according to the resistance value of the second temperature sensitive circuit 244 .
  • the controller 270 has a first terminal, a second terminal and a third terminal.
  • the first terminal of the controller 270 is connected to the fifth terminal of the first processing circuit 230 for inputting the temperature of the first energy storage unit 222 and the management of charge and discharge. temperature of circuit 210 .
  • the first processing circuit 230 outputs the temperature of the first energy storage unit 222 and the temperature of the charge and discharge management circuit 210 to the controller 270 the first end of .
  • the second terminal of the controller 270 is connected to the third terminal of the second processing circuit 250 for inputting the temperature of the second energy storage unit 242 .
  • the second processing circuit 250 outputs the temperature of the second energy storage unit 242 to the second end of the controller 270 .
  • the third terminal of the controller 270 is connected to the fourth terminal of the charge and discharge management circuit 210 .
  • the controller 270 may be preset with a temperature threshold. When at least one of the temperature of the first energy storage unit 222, the temperature of the second energy storage unit 242, and the temperature of the charge-discharge management circuit 210 exceeds the temperature threshold, the controller 270 controls the charging. Discharge management circuit 210 is turned off.
  • the temperature detection circuit 20 includes a charge and discharge management circuit 210 , a first battery system 220 , a second battery system 240 , a first processing circuit 230 , a second processing circuit 250 and a controller 270 .
  • the first end of the controller 270 is connected to the fifth end of the first processing circuit 230
  • the second end of the controller 270 is connected to the third end of the second processing circuit 250
  • the third end of the controller 270 is connected to the charger
  • the fourth terminal of the discharge management circuit 210 is connected.
  • the controller 270 controls the charge and discharge management circuit 210 to disconnect, and the first energy storage unit 222 and the second energy storage unit 242 are disconnected.
  • the energy unit 242 cannot be charged or discharged through the charge and discharge management circuit 210 .
  • the temperature detection circuit 20 includes a charge-discharge management circuit 210 , a first battery system 220 , a first processing circuit 230 , a third temperature-sensitive circuit 216 , a resistor R1 and a controller 270 .
  • the first terminal of the controller 270 is connected to the fifth terminal of the first processing circuit 230 , and the third terminal of the controller 270 is connected to the fourth terminal of the charge-discharge management circuit 210 . If at least one of the temperature of the first energy storage unit 222 and the temperature of the charge and discharge management circuit 210 exceeds the temperature threshold, the controller 270 controls the charge and discharge management circuit 210 to turn off, and the first energy storage unit 222 cannot pass the charge and discharge management Circuit 210 performs charging or discharging.
  • the temperature detection circuit 20 includes a charge and discharge management circuit 210, a first battery system 220, a second battery system 240, a first processing circuit 230, a second processing circuit 250, and a third temperature sensitive circuit 216 , resistor R1 and controller 270 .
  • the controller 270 controls the charge-discharge management circuit 210 to turn off, The first energy storage unit 222 and the second energy storage unit 242 cannot be charged or discharged through the charge and discharge management circuit 210 .
  • the temperature detection circuit 20 includes a charge and discharge management circuit 210 , a first battery system 220 and a first processing circuit 230 .
  • the first battery system 220 includes a first energy storage unit 222 and a first temperature sensitive circuit 224 .
  • the charge and discharge management circuit 210 When the charge and discharge management circuit 210 is in the charge management state, the charge and discharge management circuit 210 outputs electrical energy to the first energy storage unit 222 and the first processing circuit 230; when the charge and discharge management circuit 210 is in the discharge management state, the first energy storage unit 222 passes The charge and discharge management circuit 210 outputs power to the first processing circuit 230 .
  • the first processing circuit 230 detects the resistance value of the first temperature sensitive circuit 224 when it is powered on and works, and determines the temperature of the first energy storage unit 222 according to the resistance value of the first temperature sensitive circuit 224 .
  • the resistance value of the first temperature-sensitive circuit 224 is detected by the first processing circuit 230, and the first temperature-sensitive circuit 224 does not need to be connected to the voltage output terminal of the charge-discharge management circuit 210. In this way, the voltage output terminal of the charge-discharge management circuit 210 can be avoided. Changes in the magnitude of the output voltage affect the detection of the resistance value of the first temperature sensitive circuit 224 , so that the accuracy of detecting the temperature of the first energy storage unit 222 can be improved.
  • the temperature detection circuit 20 may further include a second battery system 240 and a second processing circuit 250 .
  • the second battery system 240 includes a second energy storage unit 242 and a second temperature sensitive circuit 244 .
  • the resistance value of the second temperature sensitive circuit 244 is detected by the second processing circuit 250, and the second temperature sensitive circuit 244 does not need to be connected to the voltage output terminal of the charge and discharge management circuit 210. In this way, the voltage output terminal of the charge and discharge management circuit 210 can be avoided.
  • the change of the output voltage has an influence on the detection of the resistance value of the second temperature sensitive circuit 244 , so that the accuracy of detecting the temperature of the second energy storage unit 242 can be improved.
  • the temperature detection circuit 20 has two battery systems, and can perform temperature detection for charging and discharging of the first energy storage unit 222 and the second energy storage unit 242 , thereby improving the safety of the electrical appliance applying the temperature detection circuit 20 .
  • the temperature detection circuit 20 further includes a resistor R1 and a third temperature sensitive circuit 216 .
  • the third temperature sensitive circuit 216 is attached to the outer surface of the charge and discharge management circuit 210 .
  • the ratio of the voltage of the third terminal of the first processing circuit 230 to the voltage of the fourth terminal of the first processing circuit 230 is equal to the resistance value of the third temperature sensitive circuit 216 relative to the resistance value of the third temperature sensitive circuit 216 and the resistance of the resistor R1. The ratio of the sum of the values.
  • the temperature detection circuit 20 can also detect the temperature of the charge and discharge management circuit 210 , so that the safety of the electrical appliance to which the temperature detection circuit 20 is applied can be improved.
  • the first processing circuit 230 determines the temperature of the charge and discharge management circuit 210 according to the ratio of the voltage of the third terminal of the first processing circuit 230 to the voltage of the fourth terminal of the first processing circuit 230, which can avoid the temperature of the charge and discharge management circuit 210.
  • the change in the magnitude of the voltage output by the third terminal affects the detection of the resistance value of the third temperature-sensitive circuit 216 , so that the accuracy of detecting the temperature of the charge-discharge management circuit 210 can be improved.
  • the first follower circuit 262 and the second follower circuit 264 can play the role of buffering and isolation, improve the stability of the circuit, and protect the first processing circuit 230 .
  • An embodiment of the present application further provides an earphone, and the earphone includes the temperature detection circuit 20 described in any one of the foregoing embodiments.
  • the earphone may be a Bluetooth earphone, or other earphones that need to perform temperature detection of the energy storage unit.
  • the earphone is an earphone with a noise reduction function, and may also be a smart earphone.
  • the temperature detection circuit 20 includes a charge and discharge management circuit 210 , a first battery system 220 and a first processing circuit 230 .
  • the first battery system 220 includes a first energy storage unit 222 and a first temperature-sensitive circuit 224.
  • the first temperature-sensitive circuit 224 is attached to the outer surface of the first energy storage unit 222.
  • the resistance of the first temperature-sensitive circuit 224 varies with the first temperature-sensitive circuit 224.
  • the temperature of the energy storage unit 222 changes.
  • the first end of the charge and discharge management circuit 210 is connected to the first energy storage unit 222
  • the second end of the charge and discharge management circuit 210 is connected to the first end of the first processing circuit 230 .
  • the charge and discharge management circuit 210 When the charge and discharge management circuit 210 is in the charge management state, the charge and discharge management circuit 210 outputs electrical energy to the first energy storage unit 222 and the first processing circuit 230 .
  • the first energy storage unit 222 When the charge and discharge management circuit 210 is in the discharge management state, the first energy storage unit 222 outputs electrical energy to the first processing circuit 230 through the charge and discharge management circuit 210 .
  • the first end of the first temperature sensitive circuit 224 is connected to the ground wire GND, and the second end of the first temperature sensitive circuit 224 is connected to the second end of the first processing circuit 230.
  • the first processing circuit 230 works, it detects the first temperature.
  • the resistance value of the temperature sensitive circuit 224 is determined, and the temperature of the first energy storage unit 222 is determined according to the resistance value of the first temperature sensitive circuit 224 .
  • the temperature detection circuit 20 further includes: a second battery system 240 and a second processing circuit 250 .
  • the second battery system 240 includes a second energy storage unit 242 and a second temperature-sensitive circuit 244.
  • the second temperature-sensitive circuit 244 is attached to the outer surface of the second energy storage unit 242.
  • the resistance of the second temperature-sensitive circuit 244 varies with the second temperature-sensitive circuit 244.
  • the temperature of the energy storage unit 242 changes.
  • the first end of the charge and discharge management circuit 210 is connected to the second energy storage unit 242 , and the second end of the charge and discharge management circuit 210 is connected to the first end of the second processing circuit 250 .
  • the charge and discharge management circuit 210 When the charge and discharge management circuit 210 is in the charge management state, the charge and discharge management circuit 210 outputs electrical energy to the second energy storage unit 242 and the second processing circuit 250 .
  • the second energy storage unit 242 When the charge and discharge management circuit 210 is in the discharge management state, the second energy storage unit 242 outputs electrical energy to the second processing circuit 250 through the charge and discharge management circuit 210 .
  • the first end of the second temperature-sensitive circuit 244 is connected to the ground wire GND, and the second end of the second temperature-sensitive circuit 244 is connected to the second end of the second processing circuit 250.
  • the second processing circuit 250 works, it detects the second temperature
  • the resistance value of the temperature sensitive circuit 244 is determined, and the temperature of the second energy storage unit 242 is determined according to the resistance value of the second temperature sensitive circuit 244 .
  • the temperature detection circuit 20 further includes: a third temperature sensitive circuit 216 and a resistor R1.
  • the third temperature-sensitive circuit 216 is attached to the outer surface of the charge-discharge management circuit 210 , and the resistance of the third temperature-sensitive circuit 216 changes with the temperature of the charge-discharge management circuit 210 .
  • the first end of the third temperature sensitive circuit 216 is connected to the ground line GND, and the second end of the third temperature sensitive circuit 216 is connected to the third end of the first processing circuit 230 .
  • the first end of the resistor R1 is connected to the second end of the third temperature sensitive circuit 216, the second end of the resistor R1 is connected to the third end of the charge and discharge management circuit 210, and the third end of the charge and discharge management circuit 210 is used to output the Set the voltage.
  • the third terminal of the charge and discharge management circuit 210 is connected to the fourth terminal of the first processing circuit 230 .
  • the ratio of the magnitudes of the voltages at the terminals determines the temperature of the charge and discharge management circuit 210 .
  • the temperature detection circuit 20 further includes: a first follower circuit 262 .
  • the first end of the first follower circuit 262 is connected to the second end of the third temperature sensitive circuit 216 , and the second end of the first follower circuit 262 is connected to the third end of the first processing circuit 230 .
  • the first follower circuit 262 includes: an operational amplifier A1, a resistor R2, and a resistor R3.
  • the non-inverting input terminal of the operational amplifier A1 is connected to the second terminal of the third temperature sensitive circuit 216, the inverting input terminal of the operational amplifier A1 is connected to the output terminal of the operational amplifier A1, and the output terminal of the operational amplifier A1 is connected to the first terminal of the resistor R2. connect.
  • the second end of the resistor R2 is connected to the third end of the first processing circuit 230 .
  • the first end of the resistor R3 is connected to the second end of the resistor R2, and the second end of the resistor R3 is connected to the ground line GND.
  • the temperature detection circuit 20 further includes: a second follower circuit 264 .
  • the first terminal of the second follower circuit 264 is connected to the third terminal of the charge and discharge management circuit 210 , and the second terminal of the second follower circuit 264 is connected to the fourth terminal of the first processing circuit 230 .
  • the second follower circuit 264 includes: an operational amplifier A2, a resistor R4, and a resistor R5.
  • the non-inverting input terminal of the operational amplifier A2 is connected to the third terminal of the charge and discharge management circuit 210, the inverting input terminal of the operational amplifier A2 is connected to the output terminal of the operational amplifier A2, and the output terminal of the operational amplifier A2 is connected to the first terminal of the resistor R4. .
  • the second end of the resistor R4 is connected to the fourth end of the first processing circuit 230 .
  • the first end of the resistor R5 is connected to the second end of the resistor R4, and the second end of the resistor R5 is connected to the ground line GND.
  • the temperature detection circuit 20 further includes: a controller 270 .
  • the first terminal of the controller 270 is connected to the fifth terminal of the first processing circuit 230 to input the temperature of the first energy storage unit 222
  • the second terminal of the controller 270 is connected to the third terminal of the second processing circuit 250 to input the temperature of the first energy storage unit 222 . Enter the temperature of the second energy storage unit 242 .
  • the third end of the controller 270 is connected to the fourth end of the charge and discharge management circuit 210, so that when at least one of the temperature of the first energy storage unit 222 and the temperature of the second energy storage unit 242 exceeds the temperature threshold, the controller 270
  • the charge and discharge management circuit 210 is controlled to be turned off.
  • the temperature detection circuit 20 further includes: a controller 270 .
  • the first terminal of the controller 270 is connected to the fifth terminal of the first processing circuit 230 to input the temperature of the first energy storage unit 222 and the temperature of the charge-discharge management circuit 210 .
  • the third end of the controller 270 is connected to the fourth end of the charge and discharge management circuit 210, so that when at least one of the temperature of the first energy storage unit 222 and the temperature of the charge and discharge management circuit 210 exceeds the temperature threshold, the controller 270 controls the The charge and discharge management circuit 210 is turned off.
  • the temperature detection circuit 20 includes a charge and discharge management circuit 210 , a first battery system 220 and a first processing circuit 230 .
  • the first battery system 220 includes a first energy storage unit 222 and a first temperature sensitive circuit 224 .
  • the charge and discharge management circuit 210 When the charge and discharge management circuit 210 is in the charge management state, the charge and discharge management circuit 210 outputs electrical energy to the first energy storage unit 222 and the first processing circuit 230; when the charge and discharge management circuit 210 is in the discharge management state, the first energy storage unit 222 passes The charge and discharge management circuit 210 outputs power to the first processing circuit 230 .
  • the first processing circuit 230 detects the resistance value of the first temperature sensitive circuit 224 when it is powered on and works, and determines the temperature of the first energy storage unit 222 according to the resistance value of the first temperature sensitive circuit 224 .
  • the resistance value of the first temperature-sensitive circuit 224 is detected by the first processing circuit 230, and the first temperature-sensitive circuit 224 does not need to be connected to the voltage output terminal of the charge-discharge management circuit 210. In this way, the voltage output terminal of the charge-discharge management circuit 210 can be avoided. Changes in the magnitude of the output voltage affect the detection of the resistance value of the first temperature sensitive circuit 224 , so that the accuracy of detecting the temperature of the first energy storage unit 222 can be improved.
  • the temperature detection circuit 20 may further include a second battery system 240 and a second processing circuit 250 .
  • the second battery system 240 includes a second energy storage unit 242 and a second temperature sensitive circuit 244 .
  • the resistance value of the second temperature sensitive circuit 244 is detected by the second processing circuit 250, and the second temperature sensitive circuit 244 does not need to be connected to the voltage output terminal of the charge and discharge management circuit 210. In this way, the voltage output terminal of the charge and discharge management circuit 210 can be avoided.
  • the change of the output voltage has an influence on the detection of the resistance value of the second temperature sensitive circuit 244 , so that the accuracy of detecting the temperature of the second energy storage unit 242 can be improved.
  • the temperature detection circuit 20 has two battery systems, and can perform temperature detection for charging and discharging of the first energy storage unit 222 and the second energy storage unit 242 , thereby improving the safety of the electrical appliance applying the temperature detection circuit 20 .
  • the temperature detection circuit 20 further includes a resistor R1 and a third temperature sensitive circuit 216 .
  • the third temperature sensitive circuit 216 is attached to the outer surface of the charge and discharge management circuit 210 .
  • the ratio of the voltage of the third terminal of the first processing circuit 230 to the voltage of the fourth terminal of the first processing circuit 230 is equal to the resistance value of the third temperature sensitive circuit 216 relative to the resistance value of the third temperature sensitive circuit 216 and the resistance of the resistor R1. The ratio of the sum of the values.
  • the temperature detection circuit 20 can also detect the temperature of the charge and discharge management circuit 210 , so that the safety of the electrical appliance to which the temperature detection circuit 20 is applied can be improved.
  • the first processing circuit 230 determines the temperature of the charge and discharge management circuit 210 according to the ratio of the voltage of the third terminal of the first processing circuit 230 to the voltage of the fourth terminal of the first processing circuit 230 , which can avoid the temperature of the charge and discharge management circuit 210 .
  • the change in the magnitude of the voltage output by the third terminal affects the detection of the resistance value of the third temperature-sensitive circuit 216 , so that the accuracy of detecting the temperature of the charge-discharge management circuit 210 can be improved.
  • the first follower circuit 262 and the second follower circuit 264 can play the role of buffering and isolation, improve the stability of the circuit, and protect the first processing circuit 230 .
  • the earphone is one of the application scenarios of the temperature detection circuit 20 provided in the embodiment of the present application, however, it does not mean that the temperature detection circuit 20 can only be applied to the earphone.
  • the temperature detection circuit 20 can be applied to any electrical appliance that requires an energy storage unit to provide electrical energy, such as a mobile terminal such as a Bluetooth speaker and a mobile phone.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请公开了一种温度检测电路及耳机,属于电路技术领域。所述耳机例如可以是智能耳机或降噪耳机。所述温度检测电路包括充放电管理电路、第一电池系统和第一处理电路。第一电池系统包括第一储能单元和第一温敏电路。充放电管理电路处于充电管理状态时,充放电管理电路向第一储能单元和第一处理电路输出电能;充放电管理电路处于放电管理状态时,第一储能单元通过充放电管理电路向第一处理电路输出电能。第一处理电路通电工作时检测第一温敏电路的阻值,并根据第一温敏电路的阻值确定第一储能单元的温度。该温度检测电路,由第一处理电路检测第一温敏电路的阻值,可以提高检测第一储能单元的温度的准确性。

Description

温度检测电路及耳机
本申请要求于2021年04月25日在中国国家知识产权局专利局提交的、申请号为202110447442.0、申请名称为“温度检测电路及耳机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电路技术领域,特别涉及一种温度检测电路及耳机。
背景技术
蓝牙耳机通常包括充放电管理电路、储能单元和负载电路。充放电管理电路分别与储能单元、负载电路连接。充放电管理电路处于充电管理状态时,充放电管理电路可以向储能单元和负载电路输出电能,充放电管理电路处于放电管理状态时,储能单元可以通过充放电管理电路向负载电路输出电能。负载电路通电时工作。
相关技术中,蓝牙耳机还具有温敏电路,温敏电路的电阻大小随储能单元的温度变化而变化。温敏电路的一端与地线连接,另一端通过电阻与充放电管理电路的电压输出端连接。充放电管理电路的电压检测端连接于电阻与温敏电路之间,用于检测温敏电路的电压,从而根据温敏电路的电压确定温敏电路的电阻,进而得到储能单元的温度。
然而,由于温敏电路通过电阻与充放电管理电路的电压输出端连接,因此当充放电管理电路的电压输出端输出的电压大小发生变化时,温敏电路的电压也会发生变化,从而会影响储能单元的温度检测的准确性。
技术问题
本申请实施例的目的之一在于:提供一种温度检测电路及耳机,可以提高检测储能单元的温度的准确性。
技术解决方案
第一方面,提供了一种温度检测电路,包括:充放电管理电路、第一电池系统和第一处理电路;
所述第一电池系统包括第一储能单元和第一温敏电路,所述第一温敏电路贴置于所述第一储能单元的外表面,所述第一温敏电路的电阻随所述第一储能单元的温度的变化而变化;
所述充放电管理电路的第一端与所述第一储能单元连接,所述充放电管理电路的第二端与所述第一处理电路的第一端连接;所述充放电管理电路处于充电管理状态时,所述充放电管理电路向所述第一储能单元和所述第一处理电路输出电能;所述充放电管理电路处于放电管理状态时,所述第一储能单元通过所述充放电管理电路向所述第一处理电路输出电能;
所述第一温敏电路的第一端与地线GND连接,所述第一温敏电路的第二端与所述第一处理电路的第二端连接,所述第一处理电路工作时,检测所述第一温敏电路的电阻值,并根据所述第一温敏电路的电阻值确定所述第一储能单元的温度。
可选地,所述温度检测电路还包括:第二电池系统和第二处理电路;
所述第二电池系统包括第二储能单元和第二温敏电路,所述第二温敏电路贴置于所述第二储能单元的外表面,所述第二温敏电路的电阻随所述第二储能单元的温度的变化而变化;
所述充放电管理电路的第一端与所述第二储能单元连接,所述充放电管理电路的第二端与所述第二处理电路的第一端连接;所述充放电管理电路处于充电管理状态时,所述充放电管理电路向所述第二储能单元和所述第二处理电路输出电能;所述充放电管理电路处于放电管理状态时,所述第二储能单元通过所述充放电管理电路向所述第二处理电路输出电能;
所述第二温敏电路的第一端与所述地线GND连接,所述第二温敏电路的第二端与所述第二处理电路的第二端连接,所述第二处理电路工作时,检测所述第二温敏电路的电阻值,并根据所述第二温敏电路的电阻值确定所述第二储能单元的温度。
可选地,所述温度检测电路还包括:第三温敏电路和电阻R1;
所述第三温敏电路贴置于所述充放电管理电路的外表面,所述第三温敏电路的电阻随所述充放电管理电路的温度的变化而变化;
所述第三温敏电路的第一端与所述地线GND连接,所述第三温敏电路的第二端与所述第一处理电路的第三端连接;
所述电阻R1的第一端与所述第三温敏电路的第二端连接,所述电阻R1的第二端与所述充放电管理电路的第三端连接,所述充放电管理电路的第三端用于输出预设电压;
所述充放电管理电路的第三端与所述第一处理电路的第四端连接,所述第一处理电路工作时,根据所述第一处理电路的第三端的电压大小与所述第一处理电路的第四端的电压大小的比值确定所述充放电管理电路的温度。
可选地,所述温度检测电路还包括:第一跟随电路;
所述第一跟随电路的第一端与所述第三温敏电路的第二端连接,所述第一跟随电路的第二端与所述第一处理电路的第三端连接。
可选地,所述第一跟随电路包括:运算放大器A1、电阻R2和电阻R3;
所述运算放大器A1的同相输入端与所述第三温敏电路的第二端连接,所述运算放大器A1的反相输入端与所述运算放大器A1的输出端连接,所述运算放大器A1的输出端与所述电阻R2的第一端连接;
所述电阻R2的第二端与所述第一处理电路的第三端连接;
所述电阻R3的第一端与所述电阻R2的第二端连接,所述电阻R3的第二端与所述地线GND连接。
可选地,所述温度检测电路还包括:第二跟随电路;
所述第二跟随电路的第一端与所述充放电管理电路的第三端连接,所述第二跟随电路的第二端与所述第一处理电路的第四端连接。
可选地,所述第二跟随电路包括:运算放大器A2、电阻R4和电阻R5;
所述运算放大器A2的同相输入端与所述充放电管理电路的第三端连接,所述运算放大器A2的反相输入端与所述运算放大器A2的输出端连接,所述运算放大器A2的输出端与所述电阻R4的第一端连接;
所述电阻R4的第二端与所述第一处理电路的第四端连接;
所述电阻R5的第一端与所述电阻R4的第二端连接,所述电阻R5的第二端与所述地线GND连接。
可选地,所述温度检测电路还包括:控制器;
所述控制器的第一端与所述第一处理电路的第五端连接,以输入所述第一储能单元的温度,所述控制器的第二端与所述第二处理电路的第三端连接,以输入所述第二储能单元的温度;
所述控制器的第三端与所述充放电管理电路的第四端连接,以当所述第一储能单元的温度、所述第二储能单元的温度中的至少一个超过温度阈值时,所述控制器控制所述充放电管理电路断开。
可选地,所述温度检测电路还包括:控制器;
所述控制器的第一端与所述第一处理电路的第五端连接,以输入所述第一储能单元的温度及所述充放电管理电路的温度;
所述控制器的第三端与所述充放电管理电路的第四端连接,以当所述第一储能单元的温度、所述充放电管理电路的温度中的至少一个超过温度阈值时,所述控制器控制所述充放电管理电路断开。
第二方面,提供了一种耳机,包括如第一方面所述的温度检测电路。
有益效果
在本申请中,温度检测电路包括充放电管理电路、第一电池系统和第一处理电路。第一电池系统包括第一储能单元和第一温敏电路。充放电管理电路处于充电管理状态时,充放电管理电路向第一储能单元和第一处理电路输出电能;充放电管理电路处于放电管理状态时,第一储能单元通过充放电管理电路向第一处理电路输出电能。第一处理电路通电工作时检测第一温敏电路的阻值,并根据第一温敏电路的阻值确定第一储能单元的温度。该温度检测电路,由第一处理电路检测第一温敏电路的阻值,第一温敏电路不需要与充放电管理电路的电压输出端连接,如此,可以避免充放电管理电路的电压输出端输出的电压大小发生变化对检测第一温敏电路的阻值的影响,从而可以提高检测第一储能单元的温度的准确性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是相关技术提供的一种蓝牙耳机的电路结构示意图;
图2是本申请实施例提供的第一种温度检测电路的结构示意图;
图3是本申请实施例提供的第二种温度检测电路的结构示意图;
图4是本申请实施例提供的第三种温度检测电路的结构示意图;
图5是本申请实施例提供的第四种温度检测电路的结构示意图;
图6是本申请实施例提供的第五种温度检测电路的结构示意图;
图7是本申请实施例提供的一种第一跟随电路和第二跟随电路的电路图;
图8是本申请实施例提供的第六种温度检测电路的结构示意图。
其中,各附图标号所代表的含义分别为:
相关技术:
10、蓝牙耳机;12、充放电管理电路;14、储能单元;16、负载电路;18、温敏电路;
本申请:
20、温度检测电路;210、充放电管理电路;212、充电管理电路;214、放电管理电路;216、第三温敏电路;220、第一电池系统;222、第一储能单元;224、第一温敏电路;230、第一处理电路;240、第二电池系统;242、第二储能单元;244、第二温敏电路;250、第二处理电路;262、第一跟随电路;264、第二跟随电路;270、控制器。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
应当理解的是,本申请提及的“多个”是指两个或两个以上。在本申请的描述中,除非另有说明,“/”表示或的意思,比如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,比如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,为了便于清楚描述本申请的技术方案,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
在对本申请实施例进行详细地解释说明之前,先对本申请实施例的应用场景予以说明。
图1是相关技术提供的一种蓝牙耳机10的电路结构示意图。请参见图1,蓝牙耳机10通常包括充放电管理电路12、储能单元14和负载电路16。充放电管理电路12分别与储能单元14、负载电路16连接。当充放电管理电路12处于充电管理状态时,充放电管理电路12可以获取外部电能,并向储能单元14和负载电路16输出电能。此时,储能单元14充电。当充放电管理电路12处于放电管理状态时,储能单元14可以通过充放电管理电路12向负载电路16输出电能。此时,储能单元14放电。负载电路16可以是蓝牙耳机10的工作电路,负载电路16通电时工作。
如图1所示,相关技术中,蓝牙耳机10还具有温敏电路18。温敏电路18可以贴置于储能单元14的表面,以使温敏电路18的电阻大小随储能单元14的温度变化而变化。温敏电路18一般包括NTC(Negative Temperature Coefficient,负温度系数)温敏电阻,以当储能单元14的温度越高,温敏电路18的电阻值越小。温敏电路18的一端与地线GND连接,另一端则通过电阻R与充放电管理电路12的电压输出端REGN连接。同时,充放电管理电路12的电压检测端TS还连接于电阻R与温敏电路18之间,从而检测温敏电路18的电压。当充放电管理电路12工作时,充放电管理电路12的电压输出端REGN输出电压,该电压由电阻R和温敏电路18进行分压。当储能单元14的温度发生变化,温敏电路18的电阻大小会随之发生变化,温敏电路18的电压也会随之发生变换。如此,通过检测温敏电路18的电压,即可根据温敏电路18的电压确定温敏电路18的电阻,进而得到储能单元14的温度。
然而,由于温敏电路18通过电阻与充放电管理电路12的电压输出端连接,因此在温敏电路18的电阻未发生变化时,若充放电管理电路12的电压输出端输出的电压大小发生变化时,温敏电路18的电压也会发生变化,这样会影响储能单元14的温度检测的准确性。
为此,本申请实施例提供了一种温度检测电路及耳机,可以提高检测储能单元的温度的准确性。
下面对本申请实施例提供的温度检测电路进行详细地解释说明。在本申请的各实施例中,两个电学器件之间的连接均指电连接。这里的电连接是指两个电学器件之间通过有线或无线连接,以进行电信号的传输。温敏电路与其它电学器件之间的“贴置”则指绝缘贴附,以使温敏电路的电阻大小随温敏电路所贴置的电学器件的温度的变化而变化。
图2是本申请实施例提供的一种温度检测电路20的结构示意图,该温度检测电路20可以应用于耳机,该耳机可以是具有降噪功能的耳机,也可以是智能耳机,在此不做限定。如图2所示,该温度检测电路20包括充放电管理电路210、第一电池系统220和第一处理电路230。
第一电池系统220包括第一储能单元222和第一温敏电路224。第一储能单元222用于存储电能和释放电能,可以包括一个或多个并联的可充电电池、超级电容等。第一温敏电路224贴置于第一储能单元222的外表面,与第一储能单元222绝缘连接。第一温敏电路224的电阻随第一储能单元222的温度的变化而变化。一般地,如图2所示,第一温敏电路224可以包括NTC温敏电阻,以当第一储能单元222的温度越高,第一温敏电路224的电阻值越小。第一温敏电路224的第一端与地线GND连接。
充放电管理电路210用于对第一储能单元222进行充电管理和放电管理。充放电管理电路210可以具有电源输入端VDD,充放电管理电路210的电源输入端VDD用于与外接电源连接,以获取外接电源中的电能。充放电管理电路210还具有第一端和第二端。其中,充放电管理电路210的第一端与第一储能单元222连接,充放电管理电路210的第二端与第一处理电路230的第一端连接。当充放电管理电路210处于充电管理状态时,充放电管理电路210的电源输入端VDD与外接电源连接。此时,充放电管理电路210的电源输入端VDD输入电能,且充放电管理电路210向第一储能单元222和第一处理电路230输出电能,第一储能单元222充电,第一处理电路230通电工作。当充放电管理电路210处于放电管理状态时,充放电管理电路210的电源输入端VDD不与外接电源连接。此时,第一储能单元222通过充放电管理电路210输出电能至第一处理电路230,使第一处理电路230通电工作。
第一处理电路230还具有第二端。第一处理电路230的第二端与第一温敏电路224的第二端连接。第一处理电路230工作时检测第一温敏电路224的电阻值,并根据第一温敏电路224的电阻值确定第一储能单元222的温度。
该温度检测电路20工作时,若充放电管理电路210处于充电管理状态,则充放电管理电路210向第一储能单元222和第一处理电路230输出电能。此时,第一储能单元222充电;第一处理电路230通电工作,检测第一温敏电路224的电阻值,并确定第一储能单元222的温度。若充放电管理电路210处于放电管理状态,则第一储能单元222通过充放电管理电路210向第一处理电路230输出电能。此时,第一储能单元222放电;第一处理电路230通电工作,检测第一温敏电路224的电阻值,并确定第一储能单元222的温度。如此,第一处理电路230即可检测得到第一储能单元222在充电状态的温度和放电状态的温度。同时,第一温敏电路224不需要与充放电管理电路210的电压输出端连接,可以避免充放电管理电路210的电压输出端输出的电压大小发生变化对检测第一温敏电路224的阻值的影响,从而可以提高检测第一储能单元222的温度的准确性。
在一些实施例中,依旧如图2所示,第一储能单元222包括正极和负极。第一储能单元222的正极与充放电管理电路210的第一端连接,第一储能单元222的负极则与地线GND连接。当充放电管理电路210的电源输入端VDD与外接电源连接时,充放电管理电路210的第一端的电压高于第一储能单元222的正极的电压,此时,充放电管理电路210向第一储能单元222充电。当充放电管理电路210的电源输入端VDD不与外接电源连接时,充放电管理电路210的第一端的电压低于第一储能单元222的正极的电压,此时,第一储能单元222通过充放电管理电路210向第一处理电路230放电。第一处理电路230也可以具有正极和负极。第一处理电路230的正极构成第一处理电路230的第一端,与充放电管理电路210的第二端连接。第一处理电路230的负极与地线GND连接。
一般地,第一处理电路230可以包括第一处理器和与第一处理器连接的第一存储器。第一处理电路230工作时,第一处理器可以向第一温敏电路224输出电压,并检测该电压大小及第一温敏电路224中的电流大小,从而根据该电压及电流确定第一温敏电路224的电阻值。第一存储器中可以存储有第一温敏电路224的电阻值与第一储能单元222的温度的对应关系,从而当处理器确定第一温敏电路224的电阻值后,可以根据第一温敏电路224的电阻值与第一储能单元222的温度的对应关系确定第一储能单元222的温度。
图3是本申请实施例提供的另一种温度检测电路20的结构示意图。如图3所示,该温度检测电路20还可以包括第二电池系统240和第二处理电路250。
第二电池系统240包括第二储能单元242和第二温敏电路244。第二储能单元242也用于存储电能和释放电能,可以包括一个或多个并联的可充电电池、超级电容等。第二温敏电路244贴置于第二储能单元242的外表面,与第二储能单元242绝缘连接。第二温敏电路244的电阻随第二储能单元242的温度的变化而变化。一般地,如图3所示,第二温敏电路244可以包括NTC温敏电阻,以当第二储能单元242的温度越高,第二温敏电路244的电阻值越小。第二温敏电路244的第一端与地线GND连接。
充放电管理电路210的第一端与第二储能单元242连接,充放电管理电路210的第二端与第二处理电路250的第一端连接。当充放电管理电路210处于充电管理状态时,充放电管理电路210的电源输入端VDD与外接电源连接。此时,充放电管理电路210的电源输入端VDD输入电能,且充放电管理电路210向第二储能单元242和第二处理电路250输出电能,第二储能单元242充电,第二处理电路250通电工作。当充放电管理电路210处于放电管理状态时,充放电管理电路210的电源输入端VDD不与外接电源连接。此时,第二储能单元242通过充放电管理电路210输出电能至第二处理电路250,使第二处理电路250通电工作。在图2所示的实施例中,充放电管理电路210的第一端与第一储能单元222和第二储能单元242连接,充放电管理电路210的第二端与第一处理电路230的第一端和第二处理电路250的第一端连接。因此,当充放电管理电路210处于充电管理状态时,第一储能单元222和第二储能单元242同时充电;当充放电管理电路210处于放电管理状态时,第一储能单元222和第二储能单元242同时向第一处理电路230和第二处理电路250输出电能。
第二处理电路250还具有第二端。第二处理电路250的第二端与第二温敏电路244的第二端连接。第二处理电路250工作时检测第二温敏电路244的电阻值,并根据第二温敏电路244的电阻值确定第二储能单元242的温度。
该温度检测电路20工作时,若充放电管理电路210处于充电管理状态,则充放电管理电路210向第二储能单元242和第二处理电路250输出电能。此时,第二储能单元242充电;第二处理电路250通电工作,检测第二温敏电路244的电阻值,并确定第二储能单元242的温度。若充放电管理电路210处于放电管理状态,则第二储能单元242通过充放电管理电路210向第二处理电路250输出电能。此时,第二储能单元242放电;第二处理电路250通电工作,检测第二温敏电路244的电阻值,并确定第二储能单元242的温度。第二处理电路250即可检测得到第二储能单元242在充电状态的温度和放电状态的温度。同时,第二温敏电路244不需要与充放电管理电路210的电压输出端连接,可以避免充放电管理电路210的电压输出端输出的电压大小发生变化对检测第二温敏电路244的阻值的影响,从而可以提高检测第二储能单元242的温度的准确性。如此,该温度检测电路20具有两个电池系统,且可以针对第一储能单元222和第二储能单元242进行充电和放电的温度检测,从而可以提高应用该温度检测电路20的电器的安全性。
在一些实施例中,依旧如图3所示,第二储能单元242包括正极和负极。第二储能单元242的正极与充放电管理电路210的第一端连接,第二储能单元242的负极则与地线GND连接。当充放电管理电路210的电源输入端VDD与外接电源连接时,充放电管理电路210的第一端的电压高于第二储能单元242的正极的电压,此时,充放电管理电路210向第二储能单元242充电。当充放电管理电路210的电源输入端VDD不与外接电源连接时,充放电管理电路210的第一端的电压低于第二储能单元242的正极的电压,此时,第二储能单元242通过充放电管理电路210向第二处理电路250放电。第二处理电路250也可以具有正极和负极。第二处理电路250的正极构成第二处理电路250的第一端,与充放电管理电路210的第二端连接。第二处理电路250的负极与地线GND连接。
一般地,第二处理电路250可以包括第二处理器和与第二处理器连接的第二存储器。第二处理电路250工作时,第二处理器可以向第二温敏电路244输出电压,并检测该电压大小及第二温敏电路244中的电流大小,从而根据该电压及电流确定第二温敏电路244的电阻值。第二存储器中可以存储有第二温敏电路244的电阻值与第二储能单元242的温度的对应关系,从而当处理器确定第二温敏电路244的电阻值后,可以根据第二温敏电路244的电阻值与第二储能单元242的温度的对应关系确定第二储能单元242的温度。
图4是本申请实施例提供的又一种温度检测电路20的结构示意图。如图4所述,充放电管理电路210包括充电管理电路212和放电管理电路214。
充电管理电路212具有第一端、第二端和第三端。充电管理电路212的第一端即为充放电管理电路210的电源输入端VDD,用于与外接电源连接。充电管理电路212还具有第二端和第三端,充电管理电路212的第二端和第三端均用于输出电能。其中,充电管理电路212的第二端与第一储能单元222及第二储能单元242连接,用于向第一储能单元222和第二储能单元242输出电能。充电管理电路212的第三端与第一处理电路230的第一端及第二处理电路250的第一端连接,用于向第一处理电路230和第二处理电路250输出电能。放电管理电路214具有第一端和第二端。放电管理电路214的第一端与第一储能单元222及第二储能单元242连接。放电管理电路214的第二端与第一处理电路230的第一端及第二处理电路250的第一端连接。
当充放电管理电路210处于充电管理状态时,充电管理电路212的第一端和第二端之间导通,且充电管理电路212的第一端和第三端之间导通,放电管理电路214断开。此时,充放电管理电路210中的充电管理电路212向第一储能单元222、第二储能单元242、第一处理电路230和第二处理电路250输出电能。当充放电管理电路210处于放电管理状态时,放电管理电路214的第一端和第二端之间导通,充电管理电路212的第一端和第二端之间断开,且充电管理电路212的第一端和第三端之间断开。此时,第一储能单元222和第二储能单元242通过充放电管理电路210中的放电管理电路214向第一处理电路230和第二处理电路250输出电能。
图5是本申请实施例提供的又一种温度检测电路20的结构示意图。如图5所示,该温度检测电路20还包括第三温敏电路216和电阻R1。
第三温敏电路216贴置于充放电管理电路210的外表面,与充放电管理电路210绝缘连接。第三温敏电路216的电阻随充放电管理电路210的温度的变化而变化。一般地,如图5所示,第三温敏电路216可以包括NTC温敏电阻,以当充放电管理电路210的温度越高,第三温敏电路216的电阻值越小。第三温敏电路216的第一端与地线GND连接,第三温敏电路216的第二端与第一处理电路230的第三端连接。在一些实施例中,第三温敏电路216可以与充放电管理电路210集成为一个充放电管理芯片,在此不做赘述。电阻R1的第一端与第三温敏电路216的第二端连接,电阻R1的第二端与充放电管理电路210的第三端连接。充放电管理电路210的第三端为充放电管理电路210的电压输出端REGN,用于输出预设电压。充放电管理电路210的第三端与第一处理电路230的第四端连接,第一处理电路230工作时,根据第一处理电路230的第三端的电压大小与第一处理电路230的第四端的电压大小的比值确定充放电管理电路210的温度。
该温度检测电路20工作时,充放电管理电路210的第三端输出电压,该电压由电阻R1和第三温敏电路216进行分压。在本申请实施例中,充放电管理电路210的第三端与第一处理电路230的第四端连接,因此第一处理电路230的第四端的电压大小等于充放电管理电路210的第三端的电压大小。第三温敏电路216的第二端与第一处理电路230的第三端连接,因此第一处理电路230的第三端的电压大小等于第三温敏电路216的电压大小。如此,第一处理电路230的第三端的电压大小与第一处理电路230的第四端的电压大小的比值,即等于第三温敏电路216的电压大小与充放电管理电路210的第三端输出的电压大小的比值,也即等于第三温敏电路216的电阻值相对第三温敏电路216的阻值与电阻R1的阻值之和的比值。如此,第一处理电路230的第三端的电压大小与第一处理电路230的第四端的电压大小的比值仅与第三温敏电路216的电阻值相关。第一处理电路230根据第一处理电路230的第三端的电压大小与第一处理电路230的第四端的电压大小的比值确定充放电管理电路210的温度,可以避免充放电管理电路210的第三端输出的电压大小的变化对检测第三温敏电路216的阻值的影响,从而可以提高检测充放电管理电路210的温度的准确性。
进一步地,图6是本申请实施例提供的又一种温度检测电路20的结构示意图。如图6所示,该温度检测电路20还包括第一跟随电路262和第二跟随电路264。
第一跟随电路262具有第一端和第二端。第一跟随电路262的第一端与第三温敏电路216的第二端连接,第一跟随电路262的第二端与第一处理电路230的第三端连接,以使第三温敏电路216的第二端通过第一跟随电路262与第一处理电路230的第三端连接。第二跟随电路264具有第一端和第二端。第二跟随电路264的第一端与充放电管理电路210的第三端连接,第二跟随电路264的第二端与第一处理电路230的第四端连接,以使充放电管理电路210的第三端通过第二跟随电路264与第一处理电路230的第四端连接。
图7是本申请实施例提供的一种第一跟随电路262和第二跟随电路264的电路图。在一些实施例中,如图7所示,第一跟随电路262包括运算放大器A1和电阻R2、电阻R3;第二跟随电路264包括运算放大器A2和电阻R4、电阻R5。
运算放大器A1的同相输入端与第三温敏电路216的第二端连接,运算放大器A1的反相输入端与运算放大器A1的输出端连接,运算放大器A1的输出端与电阻R2的第一端连接。电阻R2的第二端与第一处理电路230的第三端连接。电阻R3的第一端与电阻R2的第二端连接,电阻R3的第二端与地线GND连接。如此,由运算放大器A1和电阻R2、电阻R3构成的第一跟随电路262,一方面,第一跟随电路262中的运算放大器A1可以起到缓冲及隔离的作用,提高电路的稳定性;另一方面,第一跟随电路262中的电阻R2和电阻R3具有分压作用,可以减小第一处理电路230的第三端的电压大小,从而保护第一处理电路230。
运算放大器A2的同相输入端与充放电管理电路210的第三端连接,运算放大器A2的反相输入端与运算放大器A2的输出端连接,运算放大器A2的输出端与电阻R4的第一端连接。电阻R4的第二端与第一处理电路230的第四端连接。电阻R5的第一端与电阻R4的第二端连接,电阻R5的第二端与地线GND连接。如此,由运算放大器A2和电阻R4、电阻R5构成的第二跟随电路264,一方面,第二跟随电路264中的运算放大器A2可以起到缓冲及隔离的作用,提高电路的稳定性;另一方面,第二跟随电路264中的电阻R4和电阻R5具有分压作用,可以减小第一处理电路230的第四端的电压大小,从而保护第一处理电路230。
在本申请实施例中,为使第一处理电路230的第三端的电压大小与第一处理电路230的第四端的电压大小的比值等于第三温敏电路216的电阻值相对第三温敏电路216的阻值与电阻R1的阻值之和的比值,电阻R2的阻值可以等于电阻R4的阻值,电阻R3的阻值可以等于电阻R5的阻值。例如,电阻R2和电阻R4的阻值可以分别是200KΩ(千欧),电阻R3和电阻R5的阻值可以分别是100 KΩ。如此,第一处理电路230的第三端的电压大小即为第三温敏电路216的电压大小的三分之一;第一处理电路230的第四端的电压大小即为充放电管理电路210的第三端输出的电压大小的三分之一。
在一些实施例中,依旧如图7所示,运算放大器A1和运算放大器A2可以集成为单片机U1。单片机U1的型号可以是RS358AXM MSOP-8。
图8是本申请实施例提供的又一种温度检测电路20的结构示意图。如图8所示,在一些实施例中,温度检测电路20还包括控制器270。
如上描述可知,第一处理电路230用于检测第一温敏电路的电阻值,并根据第一温敏电路224的电阻值确定第一储能单元222的温度。第一处理电路230还用于根据第一处理电路230的第三端的电压大小与第一处理电路230的第四端的电压大小的比值确定充放电管理电路210的温度。第二处理电路250用于检测第二温敏电路244的电阻值,并根据第二温敏电路244的电阻值确定第二储能单元242的温度。
控制器270具有第一端、第二端和第三端,控制器270的第一端与第一处理电路230的第五端连接,用于输入第一储能单元222的温度和充放电管理电路210的温度。换句话说,第一处理电路230确定第一储能单元222的温度和充放电管理电路210的温度后,将第一储能单元222的温度和充放电管理电路210的温度输出至控制器270的第一端。控制器270的第二端与第二处理电路250的第三端连接,用于输入第二储能单元242的温度。换句话说,第二处理电路250确定第二储能单元242的温度后,将第二储能单元242的温度输出至控制器270的第二端。控制器270的第三端与充放电管理电路210的第四端连接。控制器270可以预设有温度阈值,当第一储能单元222的温度、第二储能单元242的温度、充放电管理电路210的温度中的至少一个超过温度阈值时,控制器270控制充放电管理电路210断开。
在一个具体的实施例中,该温度检测电路20包括充放电管理电路210、第一电池系统220、第二电池系统240、第一处理电路230、第二处理电路250和控制器270。此时,控制器270的第一端与第一处理电路230的第五端连接,控制器270的第二端与第二处理电路250的第三端连接,控制器270的第三端与充放电管理电路210的第四端连接。若第一储能单元222的温度、第二储能单元242的温度中的至少一个超过温度阈值时,则控制器270控制充放电管理电路210断开,第一储能单元222和第二储能单元242无法通过充放电管理电路210进行充电或放电。在另一个具体的实施例中,该温度检测电路20包括充放电管理电路210、第一电池系统220、第一处理电路230、第三温敏电路216、电阻R1和控制器270。此时,控制器270的第一端与第一处理电路230的第五端连接,控制器270的第三端与充放电管理电路210的第四端连接。若第一储能单元222的温度、充放电管理电路210的温度中的至少一个超过温度阈值时,则控制器270控制充放电管理电路210断开,第一储能单元222无法通过充放电管理电路210进行充电或放电。在又一个具体的实施例中,该温度检测电路20包括充放电管理电路210、第一电池系统220、第二电池系统240、第一处理电路230、第二处理电路250、第三温敏电路216、电阻R1和控制器270。此时,若第一储能单元222的温度、第二储能单元242的温度、充放电管理电路210的温度中的至少一个超过温度阈值时,控制器270控制充放电管理电路210断开,第一储能单元222和第二储能单元242无法通过充放电管理电路210进行充电或放电。
在本申请实施例中,温度检测电路20包括充放电管理电路210、第一电池系统220和第一处理电路230。第一电池系统220包括第一储能单元222和第一温敏电路224。充放电管理电路210处于充电管理状态时,充放电管理电路210向第一储能单元222和第一处理电路230输出电能;充放电管理电路210处于放电管理状态时,第一储能单元222通过充放电管理电路210向第一处理电路230输出电能。第一处理电路230通电工作时检测第一温敏电路224的阻值,并根据第一温敏电路224的阻值确定第一储能单元222的温度。由第一处理电路230检测第一温敏电路224的阻值,第一温敏电路224不需要与充放电管理电路210的电压输出端连接,如此,可以避免充放电管理电路210的电压输出端输出的电压大小发生变化对检测第一温敏电路224的阻值的影响,从而可以提高检测第一储能单元222的温度的准确性。
另外,温度检测电路20还可以包括第二电池系统240和第二处理电路250。第二电池系统240包括第二储能单元242和第二温敏电路244。由第二处理电路250检测第二温敏电路244的阻值,第二温敏电路244不需要与充放电管理电路210的电压输出端连接,如此,可以避免充放电管理电路210的电压输出端输出的电压大小发生变化对检测第二温敏电路244的阻值的影响,从而可以提高检测第二储能单元242的温度的准确性。该温度检测电路20具有两个电池系统,且可以针对第一储能单元222和第二储能单元242进行充电和放电的温度检测,从而可以提高应用该温度检测电路20的电器的安全性。温度检测电路20还包括电阻R1和第三温敏电路216。第三温敏电路216贴置于充放电管理电路210的外表面。第一处理电路230的第三端的电压大小与第一处理电路230的第四端的电压大小的比值等于第三温敏电路216的电阻值相对第三温敏电路216的阻值与电阻R1的阻值之和的比值。如此,该温度检测电路20还可以检测充放电管理电路210的温度,从而可以提高应用该温度检测电路20的电器的安全性。同时,第一处理电路230根据第一处理电路230的第三端的电压大小与第一处理电路230的第四端的电压大小的比值确定充放电管理电路210的温度,可以避免充放电管理电路210的第三端输出的电压大小的变化对检测第三温敏电路216的阻值的影响,从而可以提高检测充放电管理电路210的温度的准确性。第一跟随电路262和第二跟随电路264可以起到缓冲及隔离的作用,提高电路的稳定性,并保护第一处理电路230。
本申请实施例还提供一种耳机,该耳机包括如上述任意一个实施例中所述的温度检测电路20。可选地,该耳机可以是蓝牙耳机,也可以是其他需要进行储能单元的温度检测的耳机。在一些实施例中,该耳机是一种具有降噪功能的耳机,也可以是一种智能耳机。
该温度检测电路20包括充放电管理电路210、第一电池系统220和第一处理电路230。第一电池系统220包括第一储能单元222和第一温敏电路224,第一温敏电路224贴置于第一储能单元222的外表面,第一温敏电路224的电阻随第一储能单元222的温度的变化而变化。充放电管理电路210的第一端与第一储能单元222连接,充放电管理电路210的第二端与第一处理电路230的第一端连接。充放电管理电路210处于充电管理状态时,充放电管理电路210向第一储能单元222和第一处理电路230输出电能。充放电管理电路210处于放电管理状态时,第一储能单元222通过充放电管理电路210向第一处理电路230输出电能。第一温敏电路224的第一端与地线GND连接,第一温敏电路224的第二端与第一处理电路230的第二端连接,第一处理电路230工作时,检测第一温敏电路224的电阻值,并根据第一温敏电路224的电阻值确定第一储能单元222的温度。
在一些实施例中,温度检测电路20还包括:第二电池系统240和第二处理电路250。
第二电池系统240包括第二储能单元242和第二温敏电路244,第二温敏电路244贴置于第二储能单元242的外表面,第二温敏电路244的电阻随第二储能单元242的温度的变化而变化。
充放电管理电路210的第一端与第二储能单元242连接,充放电管理电路210的第二端与第二处理电路250的第一端连接。充放电管理电路210处于充电管理状态时,充放电管理电路210向第二储能单元242和第二处理电路250输出电能。充放电管理电路210处于放电管理状态时,第二储能单元242通过充放电管理电路210向第二处理电路250输出电能。
第二温敏电路244的第一端与地线GND连接,第二温敏电路244的第二端与第二处理电路250的第二端连接,第二处理电路250工作时,检测第二温敏电路244的电阻值,并根据第二温敏电路244的电阻值确定第二储能单元242的温度。
在一些实施例中,温度检测电路20还包括:第三温敏电路216和电阻R1。
第三温敏电路216贴置于充放电管理电路210的外表面,第三温敏电路216的电阻随充放电管理电路210的温度的变化而变化。
第三温敏电路216的第一端与地线GND连接,第三温敏电路216的第二端与第一处理电路230的第三端连接。
电阻R1的第一端与第三温敏电路216的第二端连接,电阻R1的第二端与充放电管理电路210的第三端连接,充放电管理电路210的第三端用于输出预设电压。
充放电管理电路210的第三端与第一处理电路230的第四端连接,第一处理电路230工作时,根据第一处理电路230的第三端的电压大小与第一处理电路230的第四端的电压大小的比值确定充放电管理电路210的温度。
在一些实施例中,温度检测电路20还包括:第一跟随电路262。
第一跟随电路262的第一端与第三温敏电路216的第二端连接,第一跟随电路262的第二端与第一处理电路230的第三端连接。
在一些实施例中,第一跟随电路262包括:运算放大器A1、电阻R2和电阻R3。
运算放大器A1的同相输入端与第三温敏电路216的第二端连接,运算放大器A1的反相输入端与运算放大器A1的输出端连接,运算放大器A1的输出端与电阻R2的第一端连接。
电阻R2的第二端与第一处理电路230的第三端连接。
电阻R3的第一端与电阻R2的第二端连接,电阻R3的第二端与地线GND连接。
在一些实施例中,温度检测电路20还包括:第二跟随电路264。
第二跟随电路264的第一端与充放电管理电路210的第三端连接,第二跟随电路264的第二端与第一处理电路230的第四端连接。
在一些实施例中,第二跟随电路264包括:运算放大器A2、电阻R4和电阻R5。
运算放大器A2的同相输入端与充放电管理电路210的第三端连接,运算放大器A2的反相输入端与运算放大器A2的输出端连接,运算放大器A2的输出端与电阻R4的第一端连接。
电阻R4的第二端与第一处理电路230的第四端连接。
电阻R5的第一端与电阻R4的第二端连接,电阻R5的第二端与地线GND连接。
在一些实施例中,温度检测电路20还包括:控制器270。
控制器270的第一端与第一处理电路230的第五端连接,以输入第一储能单元222的温度,控制器270的第二端与第二处理电路250的第三端连接,以输入第二储能单元242的温度。
控制器270的第三端与充放电管理电路210的第四端连接,以当第一储能单元222的温度、第二储能单元242的温度中的至少一个超过温度阈值时,控制器270控制充放电管理电路210断开。
在一些实施例中,温度检测电路20还包括:控制器270。
控制器270的第一端与第一处理电路230的第五端连接,以输入第一储能单元222的温度及充放电管理电路210的温度。
控制器270的第三端与充放电管理电路210的第四端连接,以当第一储能单元222的温度、充放电管理电路210的温度中的至少一个超过温度阈值时,控制器270控制充放电管理电路210断开。
在本申请实施例中,温度检测电路20包括充放电管理电路210、第一电池系统220和第一处理电路230。第一电池系统220包括第一储能单元222和第一温敏电路224。充放电管理电路210处于充电管理状态时,充放电管理电路210向第一储能单元222和第一处理电路230输出电能;充放电管理电路210处于放电管理状态时,第一储能单元222通过充放电管理电路210向第一处理电路230输出电能。第一处理电路230通电工作时检测第一温敏电路224的阻值,并根据第一温敏电路224的阻值确定第一储能单元222的温度。由第一处理电路230检测第一温敏电路224的阻值,第一温敏电路224不需要与充放电管理电路210的电压输出端连接,如此,可以避免充放电管理电路210的电压输出端输出的电压大小发生变化对检测第一温敏电路224的阻值的影响,从而可以提高检测第一储能单元222的温度的准确性。
另外,温度检测电路20还可以包括第二电池系统240和第二处理电路250。第二电池系统240包括第二储能单元242和第二温敏电路244。由第二处理电路250检测第二温敏电路244的阻值,第二温敏电路244不需要与充放电管理电路210的电压输出端连接,如此,可以避免充放电管理电路210的电压输出端输出的电压大小发生变化对检测第二温敏电路244的阻值的影响,从而可以提高检测第二储能单元242的温度的准确性。该温度检测电路20具有两个电池系统,且可以针对第一储能单元222和第二储能单元242进行充电和放电的温度检测,从而可以提高应用该温度检测电路20的电器的安全性。温度检测电路20还包括电阻R1和第三温敏电路216。第三温敏电路216贴置于充放电管理电路210的外表面。第一处理电路230的第三端的电压大小与第一处理电路230的第四端的电压大小的比值等于第三温敏电路216的电阻值相对第三温敏电路216的阻值与电阻R1的阻值之和的比值。如此,该温度检测电路20还可以检测充放电管理电路210的温度,从而可以提高应用该温度检测电路20的电器的安全性。同时,第一处理电路230根据第一处理电路230的第三端的电压大小与第一处理电路230的第四端的电压大小的比值确定充放电管理电路210的温度,可以避免充放电管理电路210的第三端输出的电压大小的变化对检测第三温敏电路216的阻值的影响,从而可以提高检测充放电管理电路210的温度的准确性。第一跟随电路262和第二跟随电路264可以起到缓冲及隔离的作用,提高电路的稳定性,并保护第一处理电路230。
需要理解的是,耳机是本申请实施例提供的温度检测电路20的应用场景之一,然而并不代表该温度检测电路20仅可以应用于耳机。本领域技术人员可以理解的,该温度检测电路20可以应用于任何需要储能单元提供电能的用电器,如蓝牙音箱、手机等移动终端。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种温度检测电路,其特征在于,包括:充放电管理电路、第一电池系统和第一处理电路;
    所述第一电池系统包括第一储能单元和第一温敏电路,所述第一温敏电路贴置于所述第一储能单元的外表面,所述第一温敏电路的电阻随所述第一储能单元的温度的变化而变化;
    所述充放电管理电路的第一端与所述第一储能单元连接,所述充放电管理电路的第二端与所述第一处理电路的第一端连接;所述充放电管理电路处于充电管理状态时,所述充放电管理电路向所述第一储能单元和所述第一处理电路输出电能;所述充放电管理电路处于放电管理状态时,所述第一储能单元通过所述充放电管理电路向所述第一处理电路输出电能;
    所述第一温敏电路的第一端与地线GND连接,所述第一温敏电路的第二端与所述第一处理电路的第二端连接,所述第一处理电路工作时,检测所述第一温敏电路的电阻值,并根据所述第一温敏电路的电阻值确定所述第一储能单元的温度。
  2. 如权利要求1所述的温度检测电路,其特征在于,所述温度检测电路还包括:第二电池系统和第二处理电路;
    所述第二电池系统包括第二储能单元和第二温敏电路,所述第二温敏电路贴置于所述第二储能单元的外表面,所述第二温敏电路的电阻随所述第二储能单元的温度的变化而变化;
    所述充放电管理电路的第一端与所述第二储能单元连接,所述充放电管理电路的第二端与所述第二处理电路的第一端连接;所述充放电管理电路处于充电管理状态时,所述充放电管理电路向所述第二储能单元和所述第二处理电路输出电能;所述充放电管理电路处于放电管理状态时,所述第二储能单元通过所述充放电管理电路向所述第二处理电路输出电能;
    所述第二温敏电路的第一端与所述地线GND连接,所述第二温敏电路的第二端与所述第二处理电路的第二端连接,所述第二处理电路工作时,检测所述第二温敏电路的电阻值,并根据所述第二温敏电路的电阻值确定所述第二储能单元的温度。
  3. 如权利要求1或2所述的温度检测电路,其特征在于,所述温度检测电路还包括:第三温敏电路和电阻R1;
    所述第三温敏电路贴置于所述充放电管理电路的外表面,所述第三温敏电路的电阻随所述充放电管理电路的温度的变化而变化;
    所述第三温敏电路的第一端与所述地线GND连接,所述第三温敏电路的第二端与所述第一处理电路的第三端连接;
    所述电阻R1的第一端与所述第三温敏电路的第二端连接,所述电阻R1的第二端与所述充放电管理电路的第三端连接,所述充放电管理电路的第三端用于输出预设电压;
    所述充放电管理电路的第三端与所述第一处理电路的第四端连接,所述第一处理电路工作时,根据所述第一处理电路的第三端的电压大小与所述第一处理电路的第四端的电压大小的比值确定所述充放电管理电路的温度。
  4. 如权利要求3所述的温度检测电路,其特征在于,所述温度检测电路还包括:第一跟随电路;
    所述第一跟随电路的第一端与所述第三温敏电路的第二端连接,所述第一跟随电路的第二端与所述第一处理电路的第三端连接。
  5. 如权利要求4所述的温度检测电路,其特征在于,所述第一跟随电路包括:运算放大器A1、电阻R2和电阻R3;
    所述运算放大器A1的同相输入端与所述第三温敏电路的第二端连接,所述运算放大器A1的反相输入端与所述运算放大器A1的输出端连接,所述运算放大器A1的输出端与所述电阻R2的第一端连接;
    所述电阻R2的第二端与所述第一处理电路的第三端连接;
    所述电阻R3的第一端与所述电阻R2的第二端连接,所述电阻R3的第二端与所述地线GND连接。
  6. 如权利要求3所述的温度检测电路,其特征在于,所述温度检测电路还包括:第二跟随电路;
    所述第二跟随电路的第一端与所述充放电管理电路的第三端连接,所述第二跟随电路的第二端与所述第一处理电路的第四端连接。
  7. 如权利要求6所述的温度检测电路,其特征在于,所述第二跟随电路包括:运算放大器A2、电阻R4和电阻R5;
    所述运算放大器A2的同相输入端与所述充放电管理电路的第三端连接,所述运算放大器A2的反相输入端与所述运算放大器A2的输出端连接,所述运算放大器A2的输出端与所述电阻R4的第一端连接;
    所述电阻R4的第二端与所述第一处理电路的第四端连接;
    所述电阻R5的第一端与所述电阻R4的第二端连接,所述电阻R5的第二端与所述地线GND连接。
  8. 如权利要求2所述的温度检测电路,其特征在于,所述温度检测电路还包括:控制器;
    所述控制器的第一端与所述第一处理电路的第五端连接,以输入所述第一储能单元的温度,所述控制器的第二端与所述第二处理电路的第三端连接,以输入所述第二储能单元的温度;
    所述控制器的第三端与所述充放电管理电路的第四端连接,以当所述第一储能单元的温度、所述第二储能单元的温度中的至少一个超过温度阈值时,所述控制器控制所述充放电管理电路断开。
  9. 如权利要求3所述的温度检测电路,其特征在于,所述温度检测电路还包括:控制器;
    所述控制器的第一端与所述第一处理电路的第五端连接,以输入所述第一储能单元的温度及所述充放电管理电路的温度;
    所述控制器的第三端与所述充放电管理电路的第四端连接,以当所述第一储能单元的温度、所述充放电管理电路的温度中的至少一个超过温度阈值时,所述控制器控制所述充放电管理电路断开。
  10. 一种耳机,其特征在于,包括如权利要求1至9任意一项所述的温度检测电路。
PCT/CN2022/079008 2021-04-25 2022-03-03 温度检测电路及耳机 WO2022227857A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110447442.0 2021-04-25
CN202110447442.0A CN113607297A (zh) 2021-04-25 2021-04-25 温度检测电路及耳机

Publications (1)

Publication Number Publication Date
WO2022227857A1 true WO2022227857A1 (zh) 2022-11-03

Family

ID=78303338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079008 WO2022227857A1 (zh) 2021-04-25 2022-03-03 温度检测电路及耳机

Country Status (2)

Country Link
CN (1) CN113607297A (zh)
WO (1) WO2022227857A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113607297A (zh) * 2021-04-25 2021-11-05 深圳市冠旭电子股份有限公司 温度检测电路及耳机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206742917U (zh) * 2017-05-18 2017-12-12 东莞市沃泰通新能源有限公司 储能系统
CN108225599A (zh) * 2017-11-14 2018-06-29 中国科学院电工研究所无锡分所 一种超级电容温度检测控制装置
KR20200058837A (ko) * 2018-11-20 2020-05-28 한국전기연구원 발열체를 구비한 방한 의류
CN212343382U (zh) * 2020-07-07 2021-01-12 深圳市科奈信科技有限公司 一种无线耳机及电路板布局结构
CN212779641U (zh) * 2020-08-14 2021-03-23 河南及时星应急救援装备有限公司 单片机io供电测温电路及温度传感器
CN113607297A (zh) * 2021-04-25 2021-11-05 深圳市冠旭电子股份有限公司 温度检测电路及耳机

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101373900A (zh) * 2007-08-22 2009-02-25 广达电脑股份有限公司 电池模块及其充放电方法
US9007033B2 (en) * 2011-08-23 2015-04-14 O2Micro, Inc. Battery temperature detection and parasitic resistance compensation system
TWI481889B (zh) * 2013-11-22 2015-04-21 Wistron Corp 充電電池溫度偵測方法、電源管理裝置及電子系統
CN104596665B (zh) * 2014-12-30 2017-07-28 西安易朴通讯技术有限公司 一种充电时检测电池温度的方法
CN206533166U (zh) * 2017-03-03 2017-09-29 成都瑞心达科技有限公司 电池监控装置及可穿戴设备
CN109473736B (zh) * 2017-09-08 2021-12-03 上海比亚迪有限公司 电池的电阻检测方法、充放电控制方法、装置及电子设备
CN109510282A (zh) * 2018-12-26 2019-03-22 张洋 钛酸锂电池过充电过放电保护电路
CN215296490U (zh) * 2021-04-25 2021-12-24 深圳市冠旭电子股份有限公司 温度检测电路及耳机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206742917U (zh) * 2017-05-18 2017-12-12 东莞市沃泰通新能源有限公司 储能系统
CN108225599A (zh) * 2017-11-14 2018-06-29 中国科学院电工研究所无锡分所 一种超级电容温度检测控制装置
KR20200058837A (ko) * 2018-11-20 2020-05-28 한국전기연구원 발열체를 구비한 방한 의류
CN212343382U (zh) * 2020-07-07 2021-01-12 深圳市科奈信科技有限公司 一种无线耳机及电路板布局结构
CN212779641U (zh) * 2020-08-14 2021-03-23 河南及时星应急救援装备有限公司 单片机io供电测温电路及温度传感器
CN113607297A (zh) * 2021-04-25 2021-11-05 深圳市冠旭电子股份有限公司 温度检测电路及耳机

Also Published As

Publication number Publication date
CN113607297A (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
JP7267325B2 (ja) バッテリ、端末、および充電システム
CN101350532B (zh) 带有旁路的过电压保护电池充电器
US9059596B2 (en) Battery charging circuit
WO2021197226A1 (zh) 一种电池充放电电路的控制方法及相关装置
TWI657641B (zh) 充電電路及電池充電保護控制方法
TWI396357B (zh) 充電系統與電池電量的管理方法
JP2015154711A (ja) バッテリー管理システム
WO2017201740A1 (zh) 电池保护板、电池和移动终端
TWI628894B (zh) 充電器電路和功率系統
WO2022227857A1 (zh) 温度检测电路及耳机
WO2017201737A1 (zh) 电池保护板、电池和移动终端
CN110879350A (zh) 一种电池均衡电路的检测方法及电池管理系统
TWI610486B (zh) Active balance charging device
TWI499160B (zh) Battery status monitoring circuit and battery device
JP6151338B2 (ja) 充電制御回路、充電制御方法、及び関連する電源管理集積回路
CN215296490U (zh) 温度检测电路及耳机
TWI509940B (zh) 電池電壓平衡電路
US20220393495A1 (en) Wearable earphone charger
WO2017201735A1 (zh) 电池保护板、电池和移动终端
TWM583546U (zh) 過量充電偵測裝置
CN103855769B (zh) 同时支持无绳电话充电与有绳手柄摘挂机检测的电路结构
TWI811295B (zh) 電池裝置及其控制方法
CN210129746U (zh) 过量充电检测装置
CN203747463U (zh) 同时支持无绳电话充电与有绳手柄摘挂机检测的电路结构
JPH0837735A (ja) 携帯電話機の電池パック充電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22794336

Country of ref document: EP

Kind code of ref document: A1