WO2022227598A1 - 矩形波导微带0°相差高隔离度宽带功分器 - Google Patents

矩形波导微带0°相差高隔离度宽带功分器 Download PDF

Info

Publication number
WO2022227598A1
WO2022227598A1 PCT/CN2021/137937 CN2021137937W WO2022227598A1 WO 2022227598 A1 WO2022227598 A1 WO 2022227598A1 CN 2021137937 W CN2021137937 W CN 2021137937W WO 2022227598 A1 WO2022227598 A1 WO 2022227598A1
Authority
WO
WIPO (PCT)
Prior art keywords
microstrip
power
phase difference
waveguide
power division
Prior art date
Application number
PCT/CN2021/137937
Other languages
English (en)
French (fr)
Inventor
党章
朱海帆
黄建
刘祚麟
李博
赵鹏
Original Assignee
西南电子技术研究所(中国电子科技集团公司第十研究所)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西南电子技术研究所(中国电子科技集团公司第十研究所) filed Critical 西南电子技术研究所(中国电子科技集团公司第十研究所)
Priority to US17/923,918 priority Critical patent/US20240055749A1/en
Publication of WO2022227598A1 publication Critical patent/WO2022227598A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
    • H01P5/107Hollow-waveguide/strip-line transitions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port

Definitions

  • the invention belongs to the field of microwave devices, in particular to a high isolation broadband rectangular waveguide microstrip power divider technology that can be widely used in communication, radar, electronic countermeasures, telemetry and remote sensing, industrial production and other fields.
  • Power divider or power divider is one of the most widely used devices in microwave systems, and is an important component in various microwave systems.
  • a power divider is a device that divides the energy of one input signal into two or multiple channels to output equal or unequal energy, and can also combine the energy of multiple signals into one output in turn, which can also be called a combiner at this time.
  • the main technical parameters are power loss (including insertion loss, distribution loss and reflection loss), voltage standing wave ratio of each port, isolation between distribution branch ports, power capacity and frequency bandwidth.
  • the isolation between the distribution branch ports is an important indicator of the power divider, ensuring that the input power from each distribution branch port can only be output from the main circuit port, and should not be output from other branches, which requires the branch circuit There is sufficient isolation between them.
  • the waveguide microstrip power divider plays an indispensable role in the fields of communication systems, radar arrays, and telemetry and remote sensing. Especially in systems that require high power, a single chip often cannot achieve the required high power, which requires a power divider for power synthesis to achieve the required power. In order to prevent mutual interference between signals during use, we need our power divider to have better isolation. Using the waveguide microstrip power divider for power synthesis is directly related to the maximum power that the entire system can achieve.
  • the isolation, phase consistency, insertion loss and other indicators of the waveguide microstrip power divider are directly related to the high-power system. Power synthesis effect.
  • the current microwave circuit is developing towards the trend of easy integration, but the high power, low insertion loss and high frequency band of the waveguide microstrip power divider play an irreplaceable role in the power divider made of other structures.
  • a power divider with a working frequency higher than 300MHz is defined as a microwave power divider. Synthesize one output. During the whole process, the frequency of the microwave signal does not change, only the amplitude and phase change. For example, it is widely used in high-power applications, and power dividers based on waveguide transmission structures, such as H-plane T-branch, E-plane T-branch, magic T, etc. There are various circuit forms of power dividers, such as Wilkinson bridge, Lange bridge, branch line bridge, T-section, Y-structure, magic T and so on. According to the needs of the application, a variety of microwave transmission lines including microstrip line, stripline, coaxial line, CPW, SIW, rectangular waveguide, etc.
  • the three-port power divider such as the T-type structure can know that the isolation effect is not good, which will lead to signal crosstalk at the output port, so it is generally used in the front end of the power division network.
  • the bandwidth of the Y-section relative to the T-section is not very good, and usually needs to add some matching originals.
  • metal diaphragms or metal cylinders are also added to the E arm, which makes the manufacture of the magic T more difficult.
  • Planar structures include microstrip lines, coplanar waveguides, slot lines, and the like.
  • the traditional planar transmission line power divider (such as Wilkinson, branch line bridge, ring bridge, etc.) has a low quality factor and is easy to achieve broadband, but has the disadvantages of large loss and small power capacity.
  • Non-planar structures include rectangular waveguides, coaxial lines, dielectric waveguides, and the like. The planar structure is suitable for the hybrid integration of the system. However, this structure also has its own defects.
  • the planar structure Due to the existence of conductor loss, radiation loss, and dielectric loss, the planar structure is not conducive to working in the millimeter-wave frequency band, and cannot form a high-Q value. part. As a three-dimensional structure, non-planar structures are difficult to effectively integrate with planar structures or active devices.
  • the main mode of rectangular waveguide is TE 10 mode; the main mode of microstrip is quasi-TEM mode.
  • the rectangular waveguide has high power capacity as the main port, and the microstrip line is the branch end for easy integration of semiconductor devices.
  • a common method for this type of power divider is to insert a plurality of symmetrically distributed microstrip probes inside the waveguide to realize signal transition and complete power distribution at the same time. Because it is a one-time transition and power division, it has the advantages of compact circuit form and small insertion loss. However, due to the lack of isolation circuit in the power divider that simply inserts the microstrip probe into the rectangular waveguide, the isolation between the microstrip branch ports is theoretically only 6dB, which is difficult to apply to the phased array feeder network, balanced mixing, high In systems that have high requirements on isolation between channels (usually ⁇ 15dB), such as power synthesis.
  • the existing rectangular waveguide microstrip power divider can be divided into three types: 0°, 90°, and 180°.
  • the rectangular waveguide microstrip 0° phase-difference power splitter uses a microstrip probe symmetrically inserted in the center of the broad side of the rectangular waveguide. Since the probe is parallel to the TE 10 mode electric field line transmitted in it, the waveguide and the High-efficiency conversion of signals between microstrip lines.
  • the radio frequency signal in the rectangular waveguide is equally divided into two paths of the same phase (0° phase difference) and enters the microstrip line respectively.
  • the radio frequency signal in the rectangular waveguide is equally divided into two paths of the same phase (0° phase difference) and enters the microstrip line respectively.
  • it is often necessary to have good isolation between the allocated ports that is, it is required that the radio frequency signals of the two microstrip probes cannot enter each other's microstrips.
  • the strip line otherwise, the purpose of isolation cannot be achieved because the input signals of the two microstrip probes will be coupled with each other.
  • the patent application with the application number of 202110047178.1 discloses a method for increasing isolation, which is based on a microstrip power division probe and a microstrip isolation probe.
  • the effect of the formed T-shaped coupling circuit on the direction of the electric field line of the probe end face realizes the isolation between the two microstrip power division ports.
  • the isolation method of this patent application needs to be realized by adding isolation terminals, which is only valid for 180° phase difference power dividers, not suitable for port isolation of waveguide microstrip 0° phase difference power dividers, and the isolation bandwidth is limited.
  • the embodiments of the present invention provide a rectangular waveguide microstrip 0° phase difference broadband power splitter with high isolation and good amplitude and phase balance.
  • a thin-film resistor is introduced at the position of , to absorb the vertical component of the electric field that causes the mutual coupling of the two microstrip probes, thereby realizing the isolation between the two microstrip power division ports.
  • a rectangular waveguide microstrip 0° phase difference high isolation broadband power divider comprising: according to the center of the narrow side and the wide side of the input rectangular waveguide 4, divided into two parts that are fixedly connected by screws The left wave conductor 1, the upper wave conductor 2 and the lower wave conductor 3 that constitute the complete power divider, wherein the upper wave conductor 2 and the lower wave conductor 3 are back-to-back mirror-symmetrical, wherein the "["-shaped slot on the end plane of the left wave conductor 1
  • the upper waveguide 2 and the lower waveguide 3 are divided at the center of the broad side, and a rectangular slot is formed through the symmetrical " ⁇ "-shaped notch and the "["-shaped opening slot, which constitutes a radio frequency signal input as the power divider.
  • the output end 6 is divided, and the ceramic substrate 7 supporting the thin film resistor 8 that enhances the isolation characteristics of the power divider is embedded in the position where the terminal end of the rectangular slot faces the power divider microstrip probe 9, and the input signal transmitted in the rectangular waveguide 4 is inlaid.
  • the electric field line of the TE 10 electromagnetic field mode is perpendicular to the surface of the thin film resistor 8, and through two symmetrical power division microstrip probes 9, the power division microstrip probe 9 of the three-segment impedance is connected to the impedance through the microstrip power division line 10.
  • the RF signal input into the rectangular waveguide 4 is equally divided into two channels, and the power is divided into the 0° phase difference power division output terminal 6 through the microstrip power division line 10 to achieve the effect of power division.
  • the embodiment of the present invention has the following beneficial effects:
  • the upper wave conductor 2 and the lower wave conductor 3 are divided according to the "["-shaped slot on the end plane of the left wave conductor 1 with the center of the broad side, wherein the upper wave conductor 2 and the lower wave conductor 3 are back-to-back.
  • Mirror symmetry, and the 0° phase difference power division output end 6 passes through the middle opening slot of the upper and lower terminals, and passes through the coaxial inner conductor 5 to the microstrip power division line 10 .
  • the electric field at the end face of the probe will be coupled and deflected under the influence of another symmetrical microstrip probe, forming an electric field component perpendicular to the two microstrip probes. Since the coupled electric field component is parallel to the thin-film resistor, it is absorbed and cannot enter the other microstrip probe facing it, thereby realizing the isolation between the two microstrip power division output terminals. Due to the strong heat dissipation capability of the ceramic substrate, it has a large power capacity specialty. This kind of transition from waveguide to microstrip is used to realize power division, so that the power divider has a small insertion loss while maintaining a good return loss.
  • the “[”-shaped slot on the end plane of the left waveguide 1 divides the upper waveguide 2 and the lower waveguide 3 with the center of the broad side, and the “ ⁇ ”-shaped gap is symmetrical with the above-mentioned
  • the "["-shaped opening slots together form a rectangular slot, which constitutes the input rectangular waveguide 4 as the input of the RF signal of the power divider, and takes the center of the broad side of the same side as the symmetry plane, through the upper waveguide 2 and the lower waveguide 3 face to face two
  • the microstrip power splitting line 10 constitutes two 0° phase-difference power splitting output ends 6 of the splitter, and an enhanced power splitter is embedded in the position where the terminal end of the rectangular slot faces the power splitting microstrip probe 9
  • the ceramic substrate 7 supporting the thin film resistor 8 with the isolation characteristics of the device.
  • the microstrip power splitting line 10 is used to connect the three-stage impedance power splitting microstrip probe 9 for impedance matching; Two symmetrical power-division microstrip probes 9 divide the radio frequency signal input into the rectangular waveguide 4 into two equal paths, and respectively enter the 0° phase difference power division output end 6 through the microstrip power division line 10 to realize the power division Effect.
  • the signals from the two 0° phase difference power division output terminals 6 are coupled and deflected by electric field on the end faces of the two symmetrical power division microstrip probes 9, and the formed electric field component is absorbed by the surface of the thin film resistor 8 parallel to the surface of the two microstrip probes.
  • the 0° phase difference power division output terminals of the signal power division between the lines are isolated, and finally the two 0° phase difference power division output terminals 6 are isolated and output equal power and the same phase distribution signal.
  • the signals of the two 0° phase difference power division output terminals 6 are coupled and deflected by electric fields at the end faces of the two symmetrical power division microstrip probes 9 , and the formed electric field components are parallel to the surface of the thin film resistor 8 by the Absorption, to achieve the isolation between the 0° phase difference power division output terminals of the signal power division between the two microstrip lines.
  • the radio frequency signal input into the rectangular waveguide 4 is equally divided into two channels, and the power is divided into the 0° phase difference power division output terminal 6 through the microstrip power division line 10 to realize the power division.
  • the 6 ports of the 0° phase difference power division output are isolated and output equal power distribution signals.
  • the isolation of the rectangular waveguide microstrip 0° phase difference power divider achieves a good effect under the action of the thin film resistor 8, and at the same time improves the overall performance index of the power divider, and realizes the impedance matching of each port in a wide frequency band. ; Compared with the waveguide type directional coupler, it has better isolation, smaller size, improved bandwidth and performance, and the isolation circuit has a simple and compact form, and is easy to process and assemble.
  • FIG. 1 is a schematic structural diagram of a rectangular waveguide microstrip 0° phase difference high isolation broadband power splitter according to an embodiment of the present invention
  • FIG. 2 is a structural schematic diagram of the left waveguide in FIG. 1;
  • Fig. 3 is the top view three-dimensional schematic diagram of the upper waveguide in Fig. 1;
  • Fig. 4 is the top three-dimensional schematic diagram of the lower waveguide in Fig. 1;
  • Fig. 5 is the circuit principle schematic diagram of Fig. 1;
  • FIG. 6 is an electric field line diagram of the TE 10 mode of FIG. 1;
  • FIG. 7 is a schematic diagram of the effect of port echo, port transmission, and port isolation in FIG. 1 .
  • a rectangular waveguide microstrip 0° phase difference high isolation broadband power divider includes: according to the center of the narrow side and the broad side of the input rectangular waveguide 4, it is divided into two parts that are fixed and connected by screws.
  • the upper waveguide 2 and the lower waveguide 3 are divided at the center of the broad side, and a rectangular slot is formed through the symmetrical " ⁇ "-shaped notch and the "["-shaped opening slot, which constitutes the input of the RF signal input of the power divider.
  • the rectangular waveguide 4, and the center of the broad side of the same side as the symmetry plane, through the upper waveguide 2 and the lower waveguide 3 face to face two microstrip power splitting lines 10 constitute two phase-equal 0° phase-difference power splits of the splitter.
  • the output end 6 is inlaid with a ceramic substrate 7 supporting a thin film resistor 8 that enhances the isolation characteristics of the power divider at the position where the terminal end of the rectangular slot faces the power division microstrip probe 9, and the TE transmitted in the rectangular waveguide 4 is input.
  • the electric field line of the electromagnetic field mode is not affected by being perpendicular to the surface of the thin film resistor 8, and is carried out through two symmetrical power division microstrip probes 9, and the microstrip power division line 10 is connected to the three-section impedance power division microstrip probe 9 Impedance matching; divide the RF signal input into the rectangular waveguide 4 into two equal paths, and enter the 0° phase difference power division output terminal 6 through the microstrip power division line 10 to achieve the effect of power division.
  • the signals from the two 0° phase difference power division output terminals 6 are coupled and deflected by electric field on the end faces of the two symmetrical power division microstrip probes 9, and the formed electric field component is absorbed by the surface of the thin film resistor 8 parallel to the surface of the two microstrip probes.
  • the 0° phase difference power division output terminals of the signal power division between the lines are isolated, and finally the two 0° phase difference power division output terminals 6 are isolated and output equal power and the same phase distribution signal.
  • the phase difference power division output end 6 passes through the coaxial inner conductor 5 to the microstrip power division line 10 through the opening slot in the middle of the upper and lower terminals.
  • the ceramic substrate 7 is made of aluminum nitride ceramics, and the fixing of the ceramic substrate 7 is realized by opening a slot on the narrow side wall of the left waveguide 1 .
  • the thin film resistor 8 and the power division microstrip probe 9 are perpendicular to each other and are non-contact, and only absorb the vertical component of the electric field between the two power division microstrip probes 9 .
  • the power dividing microstrip probe 9 completes the impedance matching with the 50 ⁇ microstrip power dividing line 10 after passing through the three-segment impedance transformation line and is connected to it. After the interconnection between the microstrip power split line 10 and the test coaxial connector is completed, the coaxial connector with the same characteristic impedance of 50 ⁇ is terminated. standard, so it needs to be matched to 50 ⁇ ).
  • a hole is designed in the middle of the terminal design of the 50 ⁇ microstrip power splitting line 10, and the coaxial inner conductors 5 of the two 0° phase difference power splitting output ends 6 pass through the holes from the back of the upper wave conductor 2 and the lower wave conductor 3 respectively and then solder. to the microstrip power branch line 10.
  • the side surface of the left waveguide 1 is provided with a waveguide flange mounting screw hole 11 .
  • the electric field line of the TE 10 electromagnetic field mode transmitted in the input rectangular waveguide 4 is shown by the arrow line in Figure 6 (the electric field line of force is parallel to the narrow side of the rectangular waveguide); since the power division microstrip probe 9 is parallel to the electric field of the TE 10 electromagnetic field mode
  • the line of force realizes high-efficiency signal conversion between the waveguide and the microstrip line; the two power-division microstrip probes 9 placed face to face are symmetrically arranged with the center of the wide side of the input rectangular waveguide 4, from the end face of the input rectangular waveguide 4
  • a radio frequency signal is sent, and a thin film resistor 8 supported by a vertical ceramic substrate 7 is added to the middle of the end face of the power division microstrip probe 9 to form a non-contact coupling structure with the end face of the power division microstrip probe 9 .
  • the two end-face electric fields will bend under the influence of each other to form two electric field components parallel to the thin-film resistor 8. Since the magnitudes are equal but the directions are opposite Therefore, they cancel each other out, and the rest of the electric field components perpendicular to it will be superimposed in the same direction to excite the TE 10 mode, which is the inverse process of the power divider - the power combiner.
  • the radio frequency signal of the TE 10 mode transmitted in the input end 4 of the waveguide will not be absorbed by the thin film resistor 8 under normal conditions, that is, it will not affect the normal power of the power divider.
  • the input RF signal enters the rectangular waveguide 1 from the power division microstrip probe 9, the electric field on its end face will be coupled and deflected under the influence of another power division microstrip probe 9 that is symmetrical with it.
  • An electric field component perpendicular to the two microstrip probes is formed as indicated by the arrow lines in Fig. 5 .
  • the coupled electric field component is parallel to the thin film resistor 8, it is absorbed and cannot enter the power division microstrip probe 9, thereby achieving isolation between the two 0° phase difference power division output terminals 6; when the input radio frequency signal is transmitted from the power division microstrip probe 9 entering the rectangular waveguide 1 has the same effect; when the input RF signal enters the waveguide from the power division microstrip probe 9 at the same time, the two end-face electric fields will bend under the influence of each other, forming two parallel thin film resistors.
  • the effect of the high isolation rectangular waveguide microstrip 0° phase difference power divider is shown in Figure 7.
  • the echo at the input end of the waveguide is better than -15dB, and the output end of the 0° phase difference power divider outputs -3dB of equal amplitude and in-phase. Power distribution, and the echo is better than -18dB.
  • the relative bandwidth for isolation higher than 15dB is as high as 25%.

Landscapes

  • Waveguide Aerials (AREA)

Abstract

本发明公开了一种矩形波导微带0°相差高隔离度宽带功分器,左波导体端平面上的"["形槽以宽边中心剖分上波导体和下波导体,通过其中的"式I"形缺口与"["形开口槽共同构成作为功分器射频信号输入的输入矩形波导,通过面对面两个微带功分线构成功分器的两个相位相等的0°相差功分输出端,输入矩形波导中传输的TE 10电磁场模式电场力线垂直于薄膜电阻的表面,经两个对称的功分微带探针,通过微带功分线连接三段式阻抗的功分微带探针进行阻抗匹配,把输入矩形波导中的射频信号等分为两路,通过微带功分线分别功分进入0°相差功分输出端,实现功分的效果。

Description

矩形波导微带0°相差高隔离度宽带功分器
相关申请的交叉引用
本申请基于2021年4月30日提交的发明名称为“矩形波导微带0°相差高隔离度宽带功分器”的中国专利申请CN202110483083.4,并且要求该专利申请的优先权,通过引用将其所公开的内容全部并入本申请。
技术领域
本发明属于微波器件领域,特别涉及一种可以广泛应用于通信、雷达、电子对抗、遥测遥感、工业生产等领域的高隔离度宽带矩形波导微带功分器技术。
背景技术
功率分配器即功分器是微波系统中应用最多的器件之一,是各种微波系统中的重要组成部件。功分器是一种将一路输入信号能量分成两路或多路输出相等或不相等能量的器件,也可反过来将多路信号能量合成一路输出,此时可也称为合路器。主要技术参数有功率损耗(包括插入损耗、分配损耗和反射损耗)、各端口的电压驻波比,分配支路端口间的隔离度、功率容量和频带宽度等。其中分配支路端口间的隔离度是功分器的一个重要指标,确保从每个分配支路端口输入功率只能从主路端口输出,而不应该从其他支路输出,这就要求支路之间有足够的隔离度。
近年来人们对新型功分器提出了更新更严格的要求:更小的体积,更高的功率容量,更便于集成芯片的功分器。波导微带功分器作为可以直接集成芯片的微波器件,在通讯系统、雷达阵列、以及遥测遥感等领域中,都扮演着不可或缺的地位。尤其是在需要大功率的系统中,单个芯片往往达不到所需的高功率,这就需要用功分器进行功率合成来达到需要的功率。使用过程中为了防止信号间的相互窜扰,这时就需要我们的功分器有更好的隔离度。用波导微带功分器进行功率合成,直接关系到整个系统的所能达到的最大功率,波导微带功分器的隔离度、相位一致性、插损等指标,直接关系到了大功率系统的功率合成效果。现在的微波电路在向着易于集成的趋势发展,但是波导微带功分器的高功率、低插损、高频段,起着用其它结构所制作而成的功分器不能替代的作用。
一般将工作频率高于300MHz的功分器定义为微波功分器,主要功能是将微波信号分为2路或以上不同功率大小的相干信号,同时也可反过来将多路不同功率的微波信号合成一路输出。整个过程中微波信号的频率无变化,只有幅度与相位发生了改变,比如广泛应用于 高功率场合,基于波导传输结构的功率分配器,如H面T分支、E面T分支、魔T等。功分器的电路形式多种多样,常见的如Wilkinson电桥、Lange电桥,分支线电桥,T型节,Y型结构,魔T等。按应用的需求,可以采用包括微带线,带状线,同轴线,CPW,SIW,矩形波导等在内的多种微波传输线独立或混合实现。T型结构等三端口功分器根据互易性定理可知其的隔离效果不会好,这就会导致输出端口的信号串扰,所以其一般用于功分网络的前端。Y性节相对于T型节的带宽不是很好,通常需要加一些匹配原件。为了获得好的魔T性能,现有技术除了在魔T接头处加入匹配元件外,还在E臂上加了金属膜片或金属柱体,这给魔T的制作增加了一定的难度。
各种导波结构可分为两大类,即平面结构和非平面结构。平面结构包括微带线、共面波导、槽线等等。传统平面传输线功分器(如威尔金森、分支线电桥、环形电桥等),品质因数低,易实现宽带,但具有损耗大,功率容量小等缺点。非平面结构包括矩形波导、同轴线、介质波导等等。平面结构适合系统的混合集成,然而,这种结构也存在着自身的缺陷,由于导体损耗、辐射损耗、介质损耗的存在,使得平面结构不利于工作在毫米波频段,也无法构成高Q值的部件。作为一种立体结构,非平面结构很难与平面结构或有源器件有效集成。对于矩形波导与微带的混合型功率分配器,矩形波导的主模是TE 10模;微带的主模是准TEM模。其中矩形波导作为主端口具备高功率容量,微带线为分支端易于集成半导体器件。该类功率分配器常用的方法是在波导内部插入多个对称分布的微带探针,实现信号过渡的同时完成功率分配。因为是一次性过渡与功分,因而具备电路形式紧凑,插入损耗小等优点。但由于这种在矩形波导内单纯插入微带探针的功率分配器缺少隔离电路,造成微带分支端口间的隔离度理论上只有6dB,难以应用于相控阵馈线网络,平衡混频,高功率合成等对通道间隔离度有较高要求(通常要求≥15dB)的系统中。
按微带探针插入波导的位置与方向不同,现有的对于矩形波导微带功率分配器可分为0°、90°、180°相差三种。其中矩形波导微带0°相差功分器,采用在矩形波导的同一侧宽边的中心对称地插入微带探针,由于探针平行于其中传输的TE 10模式电场力线,实现了波导与微带线间信号的高效率转换。同时由于是在矩形波导的同一侧宽边插入了两个微带探针并且对称,因此,矩形波导中的射频信号被等分为了同相位(0°相差)的两路分别进入微带线中;在功分器的电路性能中,除了所述的功率分配特性以外,往往还需要分配的端口之间具有良好的隔离度,即要求两个微带探针的射频信号不能互相进入对方的微带线中;否则由于两个微带探针的输入信号会相互耦合,无法达到隔离的目的。
现有已知的提升波导微带功分器隔离度的相关技术,例如申请号为202110047178.1的专利申请中公开了一种增加隔离度的方法,基于微带功分探针与微带隔离探针构成的T形耦合电路对探针端面电场力线方向的影响,实现两个微带功分端口间隔离。但是该专利申请隔离的方式需要通过增加隔离端来实现,仅针对180°相差功分器有效,并不适用于波导微带0°相差功分器的端口隔离,并且隔离度实现带宽有限。
发明内容
针对上述技术问题,本发明实施例提供了一种隔离度高,具有良好的幅度和相位平衡性的矩形波导微带0°相差宽带功分器,通过在矩形波导内垂直于微带探针端面的位置引入薄膜电阻,对造成两个微带探针相互耦合的电场垂直分量进行吸收,从而实现两个微带功分端口间隔离。
本发明实施例采用的技术方案为:一种矩形波导微带0°相差高隔离度宽带功分器,包括:按输入矩形波导4的窄边与宽边的中心,剖分为通过螺钉固连构成完整功分器的左波导体1、上波导体2和下波导体3,其中上波导体2与下波导体3背靠背镜像对称,其中,左波导体1端平面上的“[”形槽以宽边中心剖分上波导体2和下波导体3,通过其中上下相向对称的“∟”形缺口与所述“[”形开口槽共同形成矩形槽,构成作为功分器射频信号输入的输入矩形波导4,并以同一侧宽边的中心为对称面,通过上波导体2与下波导体3面对面两个微带功分线10构成功分器的两个相位相等的0°相差功分输出端6,并在所述矩形槽的终端面朝功分微带探针9的位置上镶嵌有增强功分器隔离特性的支撑薄膜电阻8的陶瓷基板7,输入矩形波导4中传输的TE 10电磁场模式电场力线垂直于薄膜电阻8的表面,经两个对称的功分微带探针9,通过微带功分线10连接三段式阻抗的功分微带探针9进行阻抗匹配,把输入矩形波导4中的射频信号等分为两路,通过微带功分线10分别功分进入0°相差功分输出端6,实现功分的效果。
本发明实施例相比于现有技术具有如下的有益效果:
隔离度高。在本发明的实施例中,采用按左波导体1端平面上的“[”形槽以宽边中心剖分上波导体2和下波导体3,其中上波导体2与下波导体3背靠背镜像对称,且0°相差功分输出端6通过上下终端中间开口槽,穿过同轴内导体5至微带功分线10。通过在传播TE 10模式的输入矩形波导4中加入垂直于功分微带探针9端面的薄膜电阻8并用陶瓷基板7加以支撑,由于薄膜电阻垂直于TE 10电磁场模式的电场力线,因此正常情况矩形波导中TE 10模式的射频信号不会被薄膜电阻吸收,即不会对功分器的损耗以及正常功分特性造成影响。当输入射频 信号从一个微带探针进入矩形波导后,探针端面电场在与之对称的另外一个微带探针影响下会发生耦合偏转,形成垂直于两个微带探针的电场分量。由于该耦合电场分量平行于薄膜电阻,因而被吸收无法进入与之面对面的另一个微带探针,从而实现两个微带功分输出端间隔离,由于陶瓷基板散热能力强因而具有功率容量大的特点。这种采用波导到微带过渡的同时实现功分,使功分器在保持较好回波损耗的同时具有较小的插入损耗。
根据本发明的实施例,左波导体1端平面上的“[”形槽以宽边中心剖分上波导体2和下波导体3,通过其中上下相向对称的“∟”形缺口与所述“[”形开口槽共同形成矩形槽,构成作为功分器射频信号输入的输入矩形波导4,并以同一侧宽边的中心为对称面,通过上波导体2与下波导体3面对面两个微带功分线10构成功分器的两个相位相等的0°相差功分输出端6,并在所述矩形槽的终端面朝功分微带探针9的位置上镶嵌有增强功分器隔离特性的支撑薄膜电阻8的陶瓷基板7。采用微带功分线10连接三段式阻抗的功分微带探针9进行阻抗匹配;输入矩形波导4中传输的TE 10电磁场模式电场力线垂直于薄膜电阻8的表面不受影响,经两个对称的功分微带探针9,把输入矩形波导4中的射频信号等分为两路,通过微带功分线10分别功分进入0°相差功分输出端6,实现功分的效果。两个0°相差功分输出端6的信号在两个对称功分微带探针9的端面发生电场耦合偏转,形成的电场分量平行于薄膜电阻8的表面被其吸收,实现两个微带线间信号功分的0°相差功分输出端间隔离,最终实现从两个0°相差功分输出端6隔离输出等功率同相位分配信号。
根据本发明的实施例,两个0°相差功分输出端6的信号在两个对称功分微带探针9的端面发生电场耦合偏转,形成的电场分量平行于薄膜电阻8的表面被其吸收,实现两个微带线间信号功分的0°相差功分输出端间隔离。经两个对称的功分微带探针9,把输入矩形波导4中的射频信号等分为两路,通过微带功分线10分别功分进入0°相差功分输出端6,实现功分的效果,最后分别从0°相差功分输出端6端口隔离输出等功率分配信号。矩形波导微带0°相差功分器的隔离度在薄膜电阻8的作用下达到了很好的效果,同时提升了功率分配器的整体性能指标,在很宽的频带内实现了各端口的阻抗匹配;它与波导型定向耦合器相比,隔离度更好、尺寸更小、提高了带宽和性能,并且隔离电路形式简单紧凑,结构加工与装配方便。
附图说明
图1是根据本发明实施例的矩形波导微带0°相差高隔离度宽带功分器的构造示意图;图2是图1中的左波导体的构造示意图;
图3是图1中的上波导体的顶视三维示意图;
图4是图1中的下波导体的俯视三维示意图;
图5是图1的电路原理示意图;
图6是图1的TE 10模式的电场力线图;
图7是图1的端口回波,端口传输,端口隔离度效果示意图。
图中:1.左波导体,2.上波导体,3.下波导体,4.输入矩形波导,5.同轴内导体,6.0°相差功分输出端,7.陶瓷基板,8.薄膜电阻,9.功分微带探针,10.微带功分线,11.波导法兰安装螺孔。
以下结合附图对本发明的内容做进一步的阐述。
具体实施方式
参阅图1-图6。在以下描述的优选实施例中,一种矩形波导微带0°相差高隔离度宽带功分器,包括:按输入矩形波导4的窄边与宽边的中心,剖分为通过螺钉固连构成完整功分器的左波导体1、上波导体2和下波导体3,其中上波导体2与下波导体3背靠背镜像对称,其中,左波导体1端平面上的“[”形槽以宽边中心剖分上波导体2和下波导体3,通过其中上下相向对称的“∟”形缺口与所述“[”形开口槽共同形成矩形槽,构成作为功分器射频信号输入的输入矩形波导4,并以同一侧宽边的中心为对称面,通过上波导体2与下波导体3面对面两个微带功分线10构成功分器的两个相位相等的0°相差功分输出端6,并在所述矩形槽的终端面朝功分微带探针9的位置上镶嵌有增强功分器隔离特性的支撑薄膜电阻8的陶瓷基板7,输入矩形波导4中传输的TE 10电磁场模式电场力线垂直于薄膜电阻8的表面不受影响,经两个对称的功分微带探针9,微带功分线10连接三段式阻抗的功分微带探针9进行阻抗匹配;把输入矩形波导4中的射频信号等分为两路,通过微带功分线10分别功分进入0°相差功分输出端6,实现功分的效果。
两个0°相差功分输出端6的信号在两个对称功分微带探针9的端面发生电场耦合偏转,形成的电场分量平行于薄膜电阻8的表面被其吸收,实现两个微带线间信号功分的0°相差功分输出端间隔离,最终实现从两个0°相差功分输出端6隔离输出等功率同相位分配信号。
相差功分输出端6通过上下终端中间开口槽,穿过同轴内导体5至微带功分线10。
所述陶瓷基板7采用氮化铝陶瓷,陶瓷基板7的固定采用在左波导体1窄边壁上开槽实现。
所述薄膜电阻8与功分微带探针9相互垂直且为非接触的,只对两个功分微带探针9间电场的垂直分量进行吸收。
功分微带探针9经过三段式阻抗变换线后完成与50Ω微带功分线10的阻抗匹配并与之连接。完成微带功分线10与测试同轴接头的互联后,端接特性阻抗同样为50Ω的同轴连接器0°相差功分输出端6功分输出测试(这里的50Ω特性阻抗为行业测试系统标准,因此需要匹配到50Ω)。在50Ω的微带功分线10的终端设计中间开孔,两个0°相差功分输出端6的同轴内导体5分别从上波导体2与下波导体3背面穿过开孔后焊接至微带功分线10上。左波导体1侧面设有波导法兰安装螺孔11。
输入矩形波导4中传输的TE 10电磁场模式电场力线如图6中箭头线所示(电场力线平行于矩形波导窄边);由于功分微带探针9平行于TE 10电磁场模式的电场力线,实现了波导与微带线间信号的高效率转换;两个面对面放置的功分微带探针9,以输入矩形波导4宽边的中心呈对称排布,从输入矩形波导4端面送入射频信号,并在功分微带探针9端面中间的位置加入垂直向的陶瓷基板7支撑的薄膜电阻8,与功分微带探针9的端面构成非接触的耦合结构。当输入射频信号从两个功分微带探针9同时进入波导,两路端面电场都将在彼此的影响下发生弯转形成两个平行于薄膜电阻8的电场分量,由于大小相等但方向相反因而相互抵消,其余与之垂直的电场分量将发生同向叠加激励出TE 10模式,这是功分器的逆过程——功率合成器。
由于薄膜电阻8正交于TE 10电磁场模式的电场力线,因此正常情况波导输入端4中传输的TE 10模式的射频信号不会被薄膜电阻8吸收,即不会对功分器的正常功分特性与损耗造成任何影响;当输入射频信号从功分微带探针9进入矩形波导1后,其端面电场在与之对称的另外一个功分微带探针9影响下会发生耦合偏转,形成如图5中箭头线所示的垂直于两个微带探针的电场分量。由于该耦合电场分量平行于薄膜电阻8,因而被吸收无法进入功分微带探针9,从而实现两个0°相差功分输出端6间隔离;当输入射频信号从功分微带探针9进入矩形波导1与之有相同的效果;当输入射频信号从功分微带探针9同时进入波导,两路端面电场都将在彼此的影响下发生弯转,形成两个平行于薄膜电阻8大小相等但方向相反的电场分量;因而发生相消而无法被薄膜电阻8吸收,其余与之垂直的电场分量将发生同向叠加激励出TE 10模式,这其实就是功分器的逆过程——功率合成器。
高隔离度的矩形波导微带0°相差功分器效果如图7中所示,波导输入端4回波优于-15dB,0°相差功分输出端6功分输出-3dB的等幅同相功率分配,且回波优于-18dB。隔离 度高于15dB的相对带宽高达25%。显然,采用本发明的功分器结构,输出端之间的隔离度可以满足宽带相控阵馈线网络,平衡混频,高功率合成等电路的要求。
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。

Claims (10)

  1. 一种矩形波导微带0°相差高隔离度宽带功分器,包括:按输入矩形波导(4)的窄边与宽边的中心,剖分为通过螺钉固连构成完整功分器的左波导体(1)、上波导体(2)和下波导体(3),其中上波导体(2)与下波导体(3)背靠背镜像对称,其中,左波导体(1)和上波导体(2)、下波导体(3)相互独立,且上波导体(2)和下波导体(3)通过矩形槽的右半部分“[”形槽的宽边剖分,通过其中上下相向对称的
    Figure PCTCN2021137937-appb-100001
    形缺口与“[”形开口槽共同形成矩形槽,构成作为功分器射频信号输入的输入矩形波导(4),并以同一侧宽边的中心为对称面,通过上波导体(2)与下波导体(3)面对面两个微带功分线(10)构成功分器的两个相位相等的0°相差功分输出端(6),并在所述矩形槽的终端面朝功分微带探针(9)的位置上镶嵌有增强功分器隔离特性的支撑薄膜电阻(8)的陶瓷基板(7),输入矩形波导(4)中传输的TE 10电磁场模式电场力线垂直于薄膜电阻(8)的表面,经两个对称的功分微带探针(9),通过微带功分线(10)连接三段式阻抗的功分微带探针(9)进行阻抗匹配,把输入矩形波导(4)中的射频信号等分为两路,通过微带功分线(10)分别功分进入0°相差功分输出端(6),实现功分的效果。
  2. 如权利要求1所述的矩形波导微带0°相差高隔离度宽带功分器,其中,两个0°相差功分输出端(6)的信号在两个对称功分微带探针(9)的端面发生电场耦合偏转,形成的电场分量平行于薄膜电阻(8)的表面被其吸收,实现两个微带线间信号功分的0°相差功分输出端间隔离,最终实现从两个0°相差功分输出端(6)隔离输出等功率同相位分配信号。
  3. 如权利要求1所述的矩形波导微带0°相差高隔离度宽带功分器,其中,相差功分输出端(6)通过上下终端中间开口槽,穿过同轴内导体(5)至微带功分线(10)。
  4. 如权利要求1所述的矩形波导微带0°相差高隔离度宽带功分器,其中,所述陶瓷基板(7)采用氮化铝陶瓷,陶瓷基板(7)的固定采用在左波导体(1)窄边壁上开槽实现。
  5. 如权利要求1所述的矩形波导微带0°相差高隔离度宽带功分器,其中,所述薄膜电阻(8)与功分微带探针(9)相互垂直且为非接触的,只对两个功分微带探针(9)间电场的垂直分量进行吸收。
  6. 如权利要求1所述的矩形波导微带0°相差高隔离度宽带功分器,其中,功分微带探针(9)经过三段式阻抗变换线后完成与50Ω的微带功分线(10)阻抗匹配并与之连接。
  7. 如权利要求6所述的矩形波导微带0°相差高隔离度宽带功分器,其中,完成微带功分线(10)与测试同轴接头的互联后,端接特性阻抗同样为50Ω的同轴连接器0°相差功分输出端(6)功分输出测试。
  8. 如权利要求7所述的矩形波导微带0°相差高隔离度宽带功分器,其中,在50Ω的微带功分线(10)的终端设计中间开孔,两个0°相差功分输出端(6)的同轴内导体(5)分别从上波导体(2)与下波导体(3)背面穿过开孔后焊接至微带功分线(10)上。
  9. 如权利要求1所述的矩形波导微带0°相差高隔离度宽带功分器,其中,射频信号从输入矩形波导(4)进入,其中传输的TE 10电磁场模式电场力线平行于功分微带探针(9),实现波导与微带线间信号的高效率转换;当输入射频信号从两个功分微带探针(9)同时进入波导,两路端面电场都将在彼此的影响下发生弯转形成两个平行于薄膜电阻(8)的电场分量,由于大小相等但方向相反因而相互抵消,其余与之垂直的电场分量将发生同向叠加激励出TE 10模式,这是功分器的逆过程——功率合成器。
  10. 如权利要求1所述的矩形波导微带0°相差高隔离度宽带功分器,其中,两个面对面放置的功分微带探针(9),以输入矩形波导(4)宽边的中心呈对称排布,从输入矩形波导(4)端面送入射频信号,并在功分微带探针(9)端面中间的位置加入垂直向的陶瓷基板(7)支撑的薄膜电阻(8),与功分微带探针(9)的端面构成非接触的耦合结构。
PCT/CN2021/137937 2021-04-30 2021-12-14 矩形波导微带0°相差高隔离度宽带功分器 WO2022227598A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/923,918 US20240055749A1 (en) 2021-04-30 2021-12-14 Rectangular Waveguide-to-Microstrip in-phase High-isolation Broadband Power Divider

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110483083.4A CN113258244B (zh) 2021-04-30 2021-04-30 矩形波导微带0°相差高隔离度宽带功分器
CN202110483083.4 2021-04-30

Publications (1)

Publication Number Publication Date
WO2022227598A1 true WO2022227598A1 (zh) 2022-11-03

Family

ID=77223426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137937 WO2022227598A1 (zh) 2021-04-30 2021-12-14 矩形波导微带0°相差高隔离度宽带功分器

Country Status (3)

Country Link
US (1) US20240055749A1 (zh)
CN (1) CN113258244B (zh)
WO (1) WO2022227598A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113258244B (zh) * 2021-04-30 2021-12-07 西南电子技术研究所(中国电子科技集团公司第十研究所) 矩形波导微带0°相差高隔离度宽带功分器
CN115764225B (zh) * 2022-11-11 2024-03-22 中国电子科技集团公司第十研究所 一种波导功分器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101242020A (zh) * 2008-02-29 2008-08-13 电子科技大学 毫米波3dB功率分配/合成网络
CN111864327A (zh) * 2020-08-25 2020-10-30 成都玖信科技有限公司 一种微带薄膜电阻及其波导功率合成网络
CN112103608A (zh) * 2020-09-29 2020-12-18 中国航空工业集团公司雷华电子技术研究所 一种高隔离度的功分功合器
CN113258244A (zh) * 2021-04-30 2021-08-13 西南电子技术研究所(中国电子科技集团公司第十研究所) 矩形波导微带0°相差高隔离度宽带功分器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5075648A (en) * 1989-03-30 1991-12-24 Electromagnetic Sciences, Inc. Hybrid mode rf phase shifter and variable power divider using the same
EP1346431A1 (en) * 2000-12-21 2003-09-24 Paratek Microwave, Inc. Waveguide to microstrip transition
CN101826648B (zh) * 2009-03-04 2013-02-06 中国科学院微电子研究所 基于波导的功率合成器
CN104393384B (zh) * 2014-11-13 2017-09-26 华南理工大学 一种高隔离的小型化径向功率分配/合成器
CN206225518U (zh) * 2016-12-06 2017-06-06 南京华瓯电子科技有限公司 Ka全频段小型化高隔离波导功分器
CN108808195B (zh) * 2018-06-27 2020-11-27 中国电子科技集团公司第二十九研究所 一分多波导转微带毫米波功分器
CN108767406A (zh) * 2018-07-06 2018-11-06 电子科技大学 微波高隔离度多路腔体功率分配器
CN111697304A (zh) * 2020-06-18 2020-09-22 广州程星通信科技有限公司 一种托盘式空间功率合成器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101242020A (zh) * 2008-02-29 2008-08-13 电子科技大学 毫米波3dB功率分配/合成网络
CN111864327A (zh) * 2020-08-25 2020-10-30 成都玖信科技有限公司 一种微带薄膜电阻及其波导功率合成网络
CN112103608A (zh) * 2020-09-29 2020-12-18 中国航空工业集团公司雷华电子技术研究所 一种高隔离度的功分功合器
CN113258244A (zh) * 2021-04-30 2021-08-13 西南电子技术研究所(中国电子科技集团公司第十研究所) 矩形波导微带0°相差高隔离度宽带功分器

Also Published As

Publication number Publication date
CN113258244B (zh) 2021-12-07
US20240055749A1 (en) 2024-02-15
CN113258244A (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
Chiu et al. Investigation of a Wideband 90$^{\circ} $ Hybrid Coupler With an Arbitrary Coupling Level
WO2022227598A1 (zh) 矩形波导微带0°相差高隔离度宽带功分器
US8868021B1 (en) Ultra-broadband planar millimeter-wave mixer with multi-octave IF bandwidth
CN112909471B (zh) 一种高隔离度的矩形波导-微带功分器
Fan et al. Uniplanar power dividers using coupled CPW and asymmetrical CPS for MICs and MMICs
Heimer et al. Uniplanar hybrid couplers using asymmetrical coplanar striplines
CN112103608B (zh) 一种高隔离度的功分功合器
US5412354A (en) Single layer double ring hybrid magic-tee
JP3249536B2 (ja) ミリメートル電波用の周波数コンバータ
KR101529749B1 (ko) 광대역 발룬
Ogawa et al. New MIC power dividers using coupled microstrip-slot lines: Two-sided MIC power dividers
Mandal et al. A compact planar orthomode transducer
CN109585994B (zh) 小型化双层半模基片集成波导六端口器件
CN115473025B (zh) 基于微带-波导混合集成的波导差端口魔t
CN109301419B (zh) 一种共面波导超宽带和差器
EP0774171B1 (en) Bypassable power divider/combiner
CN108493562A (zh) 一种基于矩形波导的Gysel型功分器及其组件
Sanchez-Martinez et al. Generalized analytical design of broadband planar baluns based on wire-bonded multiconductor transmission lines
Nakahara et al. A novel compact planar magic-T using CPS and microstrip-to-CPS transition
CN113612000B (zh) 矩形波导工字形隔离网络双微带转换器
El-Agamy et al. A Miniaturized Broadband Planar Gysel High Power Combiner for Power Amplifiers
Yukawa et al. Uniaxially symmetrical T-junction omt with 45-degree tilted branch waveguide ports
Stones Analysis and design of a novel microstrip-to-waveguide transition/combiner
CN112563711B (zh) 矩形贴片-半模基片集成波导杂交型90度定向耦合器
CN113708026B (zh) 基于缝隙线的差分90度谢夫曼移相器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17923918

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21939057

Country of ref document: EP

Kind code of ref document: A1