WO2022227534A1 - 冰箱及其控制方法 - Google Patents

冰箱及其控制方法 Download PDF

Info

Publication number
WO2022227534A1
WO2022227534A1 PCT/CN2021/132819 CN2021132819W WO2022227534A1 WO 2022227534 A1 WO2022227534 A1 WO 2022227534A1 CN 2021132819 W CN2021132819 W CN 2021132819W WO 2022227534 A1 WO2022227534 A1 WO 2022227534A1
Authority
WO
WIPO (PCT)
Prior art keywords
defrosting
evaporator
temperature
conditions
refrigerator
Prior art date
Application number
PCT/CN2021/132819
Other languages
English (en)
French (fr)
Inventor
赵景璐
赵彩云
吴海滨
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2022227534A1 publication Critical patent/WO2022227534A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/10Sensors measuring the temperature of the evaporator

Definitions

  • the present invention relates to refrigeration equipment, in particular to a refrigerator and a control method thereof.
  • Some refrigerators in the prior art such as multi-system refrigerators, have a large load and a complex structure of the refrigeration system.
  • the defrost sensor in the foam layer or its cable it is easy for the defrost sensor in the foam layer or its cable to touch the part of the refrigeration system.
  • a defrost sensor or its cable may touch structures such as the return line and capillaries of the refrigeration system.
  • An object of the present invention is to overcome at least one technical defect in the prior art, and provide a refrigerator and a control method thereof.
  • a further object of the present invention is to provide a new defrosting judgment method, which enables the refrigerator to start defrosting accurately by a simple method without adding additional hardware structure.
  • a further object of the present invention is to simplify the piping arrangement process of the refrigeration system of the refrigerator.
  • Another further object of the present invention is to use the combination of control logic and inherent hardware structure to accurately determine the defrosting situation of the evaporator, so as to solve the defrosting delay exit and defrosting caused by the inaccurate detection value of the defrosting sensor. Problems such as long cycle and poor cooling effect.
  • a control method for a refrigerator the refrigerator has an evaporator and a defrost sensor disposed in the evaporator, and the control method includes: acquiring a temperature change record of the defrost sensor, and the temperature change record is used to indicate The detection value of the defrost sensor in the set time period when the compressor of the refrigerator enters the shutdown state; according to the temperature change record, it is judged whether the evaporator meets the conditions for starting defrosting; if so, the defrosting is started.
  • the step of judging whether the evaporator meets the conditions for starting defrosting according to the temperature change record includes: extracting multiple consecutive detection values previously detected by the defrost sensor from the temperature change record; judging the evaporator according to the multiple continuous detection values. Whether the conditions for starting defrosting are met.
  • the step of judging whether the evaporator meets the conditions for starting defrosting according to a plurality of consecutive detection values includes: judging whether the consecutive plurality of detection values is an incremental sequence; The increment is the sum of increments of each detection value in a plurality of consecutive detection values relative to the adjacent previous detection value; it is judged whether the evaporator meets the conditions for starting defrosting according to the total increment.
  • the step of judging whether the evaporator meets the conditions for initiating defrosting according to the total increment includes: judging whether the total increment reaches a preset increment threshold; if so, determining that the evaporator meets the conditions for initiating defrost.
  • the method further includes: if it is determined according to multiple consecutive detection values that the evaporator does not meet the conditions for starting defrosting, obtaining the defrosting interval of the evaporator. , the defrosting interval is used to indicate the accumulated time since the evaporator exited the defrosting last time; it is judged whether the defrosting interval reaches the preset interval threshold; if so, it is determined that the evaporator meets the conditions for starting defrosting.
  • the method further includes: when the evaporator starts defrosting, acquiring the temperature of the storage compartment of the refrigerator and the temperature of the power-on point corresponding to the storage compartment; judging the temperature of the storage compartment Whether the difference between the temperature at the start-up point is less than the preset temperature difference threshold; if it is less than the temperature of the storage compartment, the temperature of the storage compartment is continuously detected; according to the temperature of the storage compartment, it is judged whether the evaporator meets the conditions for exiting defrosting; , then exit the defrosting.
  • the step of judging whether the evaporator meets the conditions for exiting defrosting according to the temperature of the storage compartment includes: judging whether the difference between the temperature of the storage compartment and the temperature at the power-on point reaches a temperature difference threshold; if so, determining Evaporator meets the conditions to exit defrost
  • the method further includes: if the difference between the temperature of the storage compartment and the temperature at the power-on point is If the value is not less than the temperature difference threshold, the detection value of the defrost sensor is obtained; when the detection value of the defrost sensor is greater than the preset temperature threshold, it is determined that the evaporator meets the conditions for exiting defrost.
  • the method further includes: if the difference between the temperature of the storage compartment and the temperature at the power-on point is If the value is not less than the temperature difference threshold, the defrosting duration of the evaporator is obtained; when the defrosting duration reaches the preset duration threshold, it is determined that the evaporator meets the conditions for exiting defrosting.
  • a refrigerator which has an evaporator and a defrost sensor disposed in the evaporator, and further includes: a processor and a memory, wherein the memory stores a machine-executable program, and the machine-executable program When executed by a processor, it is used to implement the control method according to any of the above.
  • the refrigerator and the control method thereof of the present invention by collecting and analyzing the temperature change record of the defrosting sensor, it is only necessary to use the temperature change record to determine whether the evaporator meets the conditions for starting defrosting, which makes the refrigerator of the present invention provide
  • a new defrosting judgment method without adding additional hardware structure, can use a simple method to accurately start defrosting, reduce or avoid the evaporator defrosting in advance, the defrosting time is too long, and the defrosting frequency is high. It has the advantages of simple structure and saving hardware cost.
  • the refrigerator and the control method thereof of the present invention can use simple control logic to avoid problems such as poor refrigeration effect caused by inaccurate detection values of the defrost sensor, which greatly simplifies the piping arrangement of the refrigeration system of the refrigerator.
  • the scheme provides convenience for the design of refrigerator products.
  • the refrigerator and the control method thereof of the present invention when the evaporator starts to defrost, by collecting the temperature of the storage compartment of the refrigerator, the difference between the temperature of the storage compartment and the temperature at the power-on point is less than a predetermined value.
  • analyzing the temperature of the storage compartment during the defrosting process can determine whether the evaporator meets the conditions for exiting defrosting.
  • the refrigerator of the present invention can accurately determine the defrosting situation of the evaporator by combining the control logic and the inherent hardware structure, thereby solving the defrosting delay exit and defrosting caused by the inaccurate detection value of the defrosting sensor. Problems such as long cycle and poor cooling effect.
  • FIG. 1 is a schematic block diagram of a refrigerator according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a refrigerator according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a control method of a refrigerator according to an embodiment of the present invention.
  • FIG. 4 is a control flowchart of a refrigerator according to an embodiment of the present invention.
  • FIG. 1 is a schematic block diagram of a refrigerator 10 according to an embodiment of the present invention.
  • the refrigerator 10 may generally include an evaporator 150 , a defrost sensor 160 , a processor 130 and a memory 140 , and may further include a cabinet 110 .
  • the refrigerator 10 of this embodiment may be applicable to a domestic scene. In some embodiments, the refrigerator 10 may also be suitable for industrial scenarios, and only some operating parameters need to be adjusted accordingly.
  • FIG. 2 is a schematic structural diagram of the refrigerator 10 according to an embodiment of the present invention.
  • the interior of the box body 110 defines a storage compartment 111 .
  • the evaporator 150 is part of the refrigeration system of the refrigerator 10 .
  • the refrigeration system of the refrigerator 10 may be a compression refrigeration system.
  • the refrigeration system may also include a compressor, a condenser, and a throttling device.
  • the compressor When the refrigeration system is turned on, the compressor is turned on and performs work on the refrigerant.
  • the refrigerant undergoes exothermic condensation when flowing through the condenser, and absorbs heat and evaporates when flowing through the evaporator 150 .
  • the refrigeration system may utilize the refrigerant to absorb heat in the evaporator 150 and undergo a phase change to provide cooling for the storage compartment 111 .
  • each storage compartment 111 may be correspondingly provided with cooling supply to the storage compartment 111 an evaporator 150.
  • the evaporator 150 may include a refrigerating evaporator for supplying cooling to the refrigerating compartment, and may also include a freezing evaporator for supplying cooling to the freezing compartment.
  • the evaporator 150 in the following embodiments may refer to a refrigerated evaporator, and the defrost sensor 160 described below may refer to a refrigerated defrost sensor disposed in the refrigerated evaporator.
  • the chamber 111 may specifically refer to a refrigerated compartment corresponding to the refrigerated evaporator.
  • the defrost sensor 160 is disposed on the evaporator 150 , for example, can be disposed on the coil of the evaporator 150 or any other position, and is used to detect the temperature of the evaporator 150 .
  • the processor 130 and the memory 140 may form a control device of the refrigerator 10 and are arranged in the box body 110110 .
  • the control device may be the main control board.
  • the memory 140 stores a machine-executable program 141, and when the machine-executable program 141 is executed by the processor 130, is used to implement the control method of the refrigerator 10 in any of the following embodiments.
  • the processor 130 may be a central processing unit (CPU), or a digital processing unit (DSP), or the like.
  • the memory 140 is used to store programs executed by the processor 130 .
  • the memory 140 may be, but is not limited to, any medium that can be used to carry or store the desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory 140 may also be a combination of various memories 140. Since the machine executable program 141 is executed by the processor 130 to implement each process of the following method embodiments, and can achieve the same technical effect, in order to avoid repetition, details are not repeated here.
  • FIG. 3 is a schematic diagram of a control method of the refrigerator 10 according to an embodiment of the present invention.
  • the control method may generally include:
  • a temperature change record of the defrost sensor 160 is acquired, and the temperature change record is used to indicate the detection value of the defrost sensor 160 when the compressor of the refrigerator 10 enters a shutdown state within a set time period. That is, the temperature change record is used to record the temperature of the evaporator 150 every time the compressor is turned off within a set period of time.
  • the set time period can be determined according to the average single startup time of the compressor, as long as it is ensured that the number of times the compressor is turned off during the period of time at least meets the requirement of the number of samples.
  • Step S304 it is determined whether the evaporator 150 meets the conditions for starting defrosting. That is, in this embodiment, whether the evaporator 150 meets the conditions for starting defrosting can be determined according to the temperature change record of the defrost sensor 160, which breaks through the determination of the evaporator only based on the detection value of the defrost sensor 160 or the defrost cycle. 150 is shackled by the ideological shackles of whether it meets the conditions for starting defrost.
  • Step S306 if the evaporator 150 meets the conditions for starting defrosting, start defrosting.
  • start defrosting means that the refrigerator 10 performs a defrosting operation on the evaporator 150 to reduce or eliminate the frost condensed on the evaporator 150 .
  • the new defrosting judgment method can realize the accurate start of defrosting by a simple method without adding additional hardware structure, and has the advantages of simple structure and hardware cost saving.
  • the number of times the compressor is shut down within the set time period may reach at least three, four or five times. Take the compressor shutting down at least five times within the set time period as an example. For example, if the average single start-up duration of the compressor is 1h, the set time period can be any value within the range of 5-8h.
  • the above step S304 may include: extracting a plurality of consecutive detection values previously detected by the defrost sensor 160 from the temperature change record, and judging whether the evaporator 150 meets the conditions for starting defrost according to the consecutive plurality of detection values.
  • the number of "multiple consecutive detection values" may be preset according to actual conditions, for example, may be any value greater than or equal to 3. In this embodiment, the number of consecutive multiple detection values may be four.
  • the “multiple consecutive detection values detected by the defrost sensor 160 before” refers to the consecutive plurality of detection values detected by the defrost sensor 160 latest before the time when the temperature change record is acquired. For example, when the number of consecutive multiple detection values is 4, the consecutive multiple detection values refer to the temperatures of the four evaporators 150 corresponding to the last four times of shutdown of the compressor.
  • the step of judging whether the evaporator 150 meets the conditions for initiating defrosting according to a plurality of consecutive detection values may include: judging whether the consecutive plurality of detection values are an incremental sequence, and if so, calculating the total of the consecutive plurality of detection values Incremental amount, the total incremental amount is the sum of the incremental amount of each detection value in a plurality of consecutive detection values relative to the adjacent previous detection value, according to the total incremental amount to determine whether the evaporator 150 meets the conditions for starting defrosting.
  • Using the incremental sequence condition and the total incremental amount condition to perform double judgment on multiple consecutive detection values can improve the accuracy of the judgment process, so that the refrigerator 10 can perform the defrosting operation at a more appropriate time, so as to solve the problem of the detection value caused by the defrost sensor 160
  • the problem of improper defrosting start timing caused by inaccuracy is to ensure the refrigeration effect of the refrigerator 10 .
  • the step of judging whether the evaporator 150 meets the conditions for initiating defrosting according to the total increment may include: judging whether the total increment reaches a preset increment threshold, and if so, determining that the evaporator 150 meets the defrost activation condition conditions of.
  • the increment threshold may refer to the total increment of a plurality of consecutive detected values when the cooling efficiency of the evaporator 150 is about to decrease significantly. When the total increment reaches the preset increment threshold, it indicates that the cooling efficiency has dropped significantly and the cooling efficiency needs to be improved by performing a defrosting operation.
  • the increment threshold in this embodiment may be any value within the range of 0.1°C to 1.1°C, for example, it may be 0.6°C. The larger the total increment, the lower the cooling efficiency of the evaporator 150.
  • the control method may further include: if it is determined that the evaporator 150 does not meet the conditions for starting defrosting according to a plurality of consecutive detection values, acquiring the defrost value of the evaporator 150 interval, the defrosting interval is used to indicate the accumulated time since the evaporator 150 exited the defrosting last time, and judge whether the defrosting interval reaches the preset interval threshold. That is, when it is determined according to the temperature change record that the evaporator 150 does not meet the conditions for initiating defrosting, it can be further determined whether the defrosting interval of the evaporator 150 conforms to the conditions for initiating defrosting.
  • the interval threshold may refer to the defrosting cycle of the evaporator 150 , that is, the duration from the previous defrosting exit to the next starting defrost.
  • the interval threshold may be any value within the range of 100 to 300 minutes, for example, it may be 200 minutes.
  • the determination conditions for whether the evaporator 150 starts defrosting may be two, wherein the first determination condition is the temperature change recording condition of the defrost sensor 160, the second determination condition is the defrost interval condition of the evaporator 150, As long as any of the judgment conditions are met, defrosting can be started.
  • the determination condition for whether the evaporator 150 (the evaporator 150 is a refrigerated evaporator) starts defrosting may further include a third determination condition, for example, the evaporation may be determined according to the operation state of the refrigerating evaporator Whether the evaporator 150 starts defrosting, by acquiring the operation status of the refrigerating evaporator, if it is determined that the refrigerating evaporator starts defrosting, it can be determined that the evaporator 150 meets the conditions for starting defrosting.
  • a third determination condition for example, the evaporation may be determined according to the operation state of the refrigerating evaporator Whether the evaporator 150 starts defrosting, by acquiring the operation status of the refrigerating evaporator, if it is determined that the refrigerating evaporator starts defrosting, it can be determined that the evaporator 150 meets the conditions for starting defrosting.
  • the defrosting duration of the refrigerating evaporator can be any value in the range of 1-2 hours, for example, it can be 1 hour. It should be noted that, in some embodiments, when judging whether the evaporator 150 meets the conditions for initiating defrosting, the execution order of the above three judgment conditions can be arbitrarily set according to actual needs.
  • the accuracy of the determination process can be further improved by using a variety of determination conditions, thereby helping to reduce or avoid poor refrigeration effect caused by improper defrosting start timing. And other issues.
  • control method may further include: when the evaporator 150 starts to defrost, acquiring the temperature of the storage compartment 111 of the refrigerator 10 and the temperature at the power-on point corresponding to the storage compartment 111, and determining the storage compartment Whether the difference between the temperature of the room 111 and the temperature of the power-on point is less than the preset temperature difference threshold, if it is less than the temperature of the storage compartment 111, the temperature of the storage compartment 111 is continuously detected, and the evaporator 150 is determined according to the temperature of the storage compartment 111. If the defrosting conditions are met, the defrosting will be exited.
  • the temperature of the storage compartment 111 can be used as the judgment condition for exiting defrosting.
  • the above-mentioned temperature difference threshold may be any value within the range of 3 to 8°C, and may be, for example, 5°C.
  • the refrigerator 10 of the present embodiment can accurately determine the defrosting situation of the evaporator 150 by combining the control logic and the inherent hardware structure, so as to solve the defrosting delay caused by the inaccurate detection value of the defrosting sensor 160 Exit, long defrost cycle, poor cooling effect, etc.
  • the step of judging whether the evaporator 150 meets the conditions for exiting defrosting according to the temperature of the storage compartment 111 may include: judging whether the difference between the temperature of the storage compartment 111 and the power-on point temperature is not The temperature difference threshold is reached, and if so, it is determined that the evaporator 150 meets the conditions for exiting defrost. That is, when the difference between the temperature of the storage compartment 111 and the temperature at the power-on point is greater than or equal to the temperature difference threshold, the evaporator 150 may be instructed to exit the defrost, so that it can resume cooling.
  • the refrigerator 10 of the present embodiment only needs to analyze the temperature of the storage compartment 111, and no longer needs to determine whether the evaporator 150 should exit the defrost according to the detection value of the defrost sensor 160, thereby avoiding the defrost sensor. 160 has adverse consequences caused by inaccurate detection values, and the logic process is simple, which is beneficial to reduce the operating cost of the refrigerator 10 .
  • the control method may further include: if the temperature of the storage compartment 111 is the same as If the difference between the starting point temperatures is not less than the temperature difference threshold, the detection value of the defrost sensor 160 is obtained, and when the detection value of the defrost sensor 160 is greater than the preset temperature threshold, it is determined that the evaporator 150 meets the conditions for exiting defrost.
  • the temperature threshold may be any value within the range of 4°C to 8°C, for example, it may be 6°C.
  • the determination conditions for whether the evaporator 150 exits the defrost may be two, wherein the first determination condition is the temperature condition of the storage compartment 111, and the second determination condition is the temperature condition of the defrost sensor 160, as long as the conditions are satisfied Any judgment condition can exit the defrosting.
  • the control method may further include: if the temperature of the storage compartment 111 is If the difference between the temperature at the power-on point is not less than the temperature difference threshold, the defrosting duration of the evaporator 150 is obtained, and when the defrosting duration reaches the preset duration threshold, it is determined that the evaporator 150 meets the conditions for exiting defrosting.
  • the judging condition for whether the evaporator 150 exits from defrosting may further include a third judging condition, that is, the defrosting duration condition, as long as any one of the three judging conditions is satisfied, defrosting can be exited.
  • the duration threshold may be any value within the range of 100 to 300 minutes, for example, it may be 200 minutes. It should be noted that, in some embodiments, when judging whether the evaporator 150 meets the conditions for exiting defrost, the execution order of the above three judgment conditions can be arbitrarily set according to actual needs.
  • the accuracy of the determination process can be further improved by using a variety of determination conditions, thereby helping to reduce or avoid the defrost effect caused by improper defrost exit timing. poor, and the subsequent cooling effect is not good.
  • FIG. 4 is a control flowchart of the refrigerator 10 according to one embodiment of the present invention.
  • the control flow may generally include:
  • Step S402 acquiring a temperature change record of the defrost sensor 160 .
  • the temperature change record is used to indicate the detection value of the defrost sensor 160 in the set time period when the compressor of the refrigerator 10 enters the shutdown state.
  • Step S404 extracting a plurality of consecutive detection values previously detected by the defrost sensor 160 from the temperature change record.
  • step S406 it is judged whether the successive detection values are an incremental sequence, and if so, step S408 is performed, and if not, step S412 is performed.
  • Step S408 Calculate the total increment of multiple consecutive detection values.
  • the total increment is the sum of increments of each detection value in a plurality of consecutive detection values relative to the adjacent previous detection value.
  • step S410 it is judged whether the total increment amount reaches a preset increment threshold value, if yes, execute step S420, if not, execute step S412.
  • step S412 the defrosting interval of the evaporator 150 is obtained, and the defrosting interval is used to indicate the accumulated time period after the evaporator 150 exits the defrosting last time.
  • step S414 it is judged whether the defrosting interval reaches a preset interval threshold, if yes, then step S420 is executed, if not, step S416 is executed.
  • step S416 the operation state of the refrigerating evaporator is acquired.
  • step S4108 according to the operation state of the refrigerating evaporator, it is determined whether the defrosting of the refrigerating evaporator is activated, if yes, then step S420 is executed, if not, step S402 is executed.
  • step S420 it is determined that the evaporator 150 meets the conditions for starting defrosting.
  • Step S422 start defrosting.
  • step S424 when the evaporator 150 starts to defrost, the temperature of the storage compartment 111 of the refrigerator 10 and the temperature at the power-on point corresponding to the storage compartment 111 are acquired.
  • step S426 it is determined whether the difference between the temperature of the storage compartment 111 and the temperature at the power-on point is smaller than a preset temperature difference threshold, if it is smaller, then go to step S428, if not, go to step S432.
  • step S430 it is judged whether the difference between the temperature of the storage compartment 111 and the temperature at the power-on point reaches the temperature difference threshold, if so, step S440 is performed; if not, step S432 is performed.
  • step S432 the detection value of the defrost sensor 160 is acquired.
  • step S434 it is judged whether the detection value of the defrost sensor 160 is greater than the preset temperature threshold, and if so, step S440 is performed, and if not, step S436 is performed.
  • step S436 the defrosting duration of the evaporator 150 is obtained.
  • step S438 it is judged whether the defrosting duration reaches a preset duration threshold, if yes, then step S440 is executed; if not, step S426 is executed.
  • step S440 it is determined that the evaporator 150 meets the conditions for exiting defrost.
  • Step S442 exit defrosting.
  • a new defrosting judgment method on the basis of no additional hardware structure, can use a simple method to accurately start defrosting, reduce or avoid the evaporator 150 defrosting in advance, the defrosting time is too long, and the defrosting frequency is high. It has the advantages of simple structure and saving hardware cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Defrosting Systems (AREA)

Abstract

一种冰箱及其控制方法。冰箱具有蒸发器以及设置于蒸发器的化霜传感器。控制方法包括:获取化霜传感器的温度变化记录,温度变化记录用于标示设定时间段内化霜传感器在冰箱的压缩机进入关机状态时的检测值;根据温度变化记录判断蒸发器是否符合启动化霜的条件;若是,则启动化霜。本发明的冰箱提供了一种新的化霜判断方法,在不增加额外硬件结构的基础上,能够利用简单的方法实现准确地启动化霜,减少或避免蒸发器提前化霜、化霜时间过长、化霜频率高、制冷效果差等问题,具备结构简单、节省硬件成本的优点。

Description

冰箱及其控制方法 技术领域
本发明涉及制冷设备,特别是涉及一种冰箱及其控制方法。
背景技术
现有技术中的部分冰箱,例如多系统冰箱,由于负载较多且制冷系统的结构较为复杂,在生产过程中,容易发生发泡层内的化霜传感器或者其线缆触碰制冷系统的部分低温结构的情况。例如,化霜传感器或者其线缆可能会触碰制冷系统的回气管路和毛细管等结构。
由于制冷系统的上述部分结构温度较低,这可能会导致化霜传感器的周围温度较低,从而导致化霜传感器的检测值偏低。同时,随着使用时间的推移,发泡层的隔温效果会逐渐变差,而化霜传感器往往又靠近内胆设置,这导致化霜传感器容易受发泡层内的低温结构的影响,从而导致检测值偏低。
当化霜传感器的检测值偏低时,在蒸发器实际未达到启动化霜的条件时,会发生蒸发器提前化霜的现象,从而导致蒸发器的化霜时间过长、化霜频率过高、制冷效果差、间室温度难以达到理想的保鲜水平。
发明内容
本发明的一个目的是要克服现有技术中的至少一个技术缺陷,提供一种冰箱及其控制方法。
本发明一个进一步的目的是要提供一种新的化霜判断方法,在不增加额外硬件结构的基础上,利用简单的方法使冰箱准确地启动化霜。
本发明又一个进一步的目的是要简化冰箱的制冷系统的管路布置过程。
本发明另一个进一步的目的是要利用控制逻辑和固有的硬件结构相结合,准确地确定蒸发器的化霜情况,从而解决因化霜传感器检测值不准确所导致的化霜延迟退出、化霜周期长、制冷效果差等问题。
根据本发明的一方面,提供了一种冰箱的控制方法,冰箱具有蒸发器以及设置于蒸发器的化霜传感器,并且控制方法包括:获取化霜传感器的温度变化记录,温度变化记录用于标示设定时间段内化霜传感器在冰箱的压缩机进入关机状态时的检测值;根据温度变化记录判断蒸发器是否符合启动化霜的条件;若是,则启动化霜。
可选地,根据温度变化记录判断蒸发器是否符合启动化霜的条件的步骤包括:从温度变化记录中提取化霜传感器此前检测到的连续多个检测值;根据连续多个检测值判断蒸发器是否符合启动化霜的条件。
可选地,根据连续多个检测值判断蒸发器是否符合启动化霜的条件的步骤包括:判断连续多个检测值是否为递增数列;若是,则计算连续多个检测值的总递增量,总递增量为连续多个检测值中的每一检测值相对于相邻前一检测值的递增量之和;根据总递增量判断蒸发器是否符合启动化霜的条件。
可选地,根据总递增量判断蒸发器是否符合启动化霜的条件的步骤包括:判断总递增量是否达到预设的增量阈值;若是,则确定蒸发器符合启动化霜的条件。
可选地,在判断总递增量是否达到预设的增量阈值的步骤之后,还包括:若根据连续多个检测值确定蒸发器不符合启动化霜的条件,则获取蒸发器的化霜间隔,化霜间隔用于标示蒸发器自上一次退出化霜之后的累计时长;判断化霜间隔是否达到预设的间隔阈值;若是,则确定蒸发器符合启动化霜的条件。
可选地,在启动化霜之后,还包括:在蒸发器开始化霜时,获取冰箱的储物间室的温度以及与储物间室相对应的开机点温度;判断储物间室的温度与开机点温度之间的差值是否小于预设的温差阈值;若小于,则持续检测储物间室的温度;根据储物间室的温度判断蒸发器是否符合退出化霜的条件;若符合,则退出化霜。
可选地,根据储物间室的温度判断蒸发器是否符合退出化霜的条件的步骤包括:判断储物间室的温度与开机点温度之间的差值是否达到温差阈值;若是,则确定蒸发器符合退出化霜的条件
可选地,在判断储物间室的温度与开机点温度之间的差值是否小于预设的温差阈值的步骤之后,还包括:若储物间室的温度与开机点温度之间的差值不小于温差阈值,则获取化霜传感器的检测值;在化霜传感器的检测值大于预设的温度阈值时,确定蒸发器符合退出化霜的条件。
可选地,在判断储物间室的温度与开机点温度之间的差值是否小于预设的温差阈值的步骤之后,还包括:若储物间室的温度与开机点温度之间的差值不小于温差阈值,则获取蒸发器的化霜时长;在化霜时长达到预设的时长阈值时,确定蒸发器符合退出化霜的条件。
根据本发明的另一方面,还提供了一种冰箱,其具有蒸发器以及设置于蒸发器的化霜传感器,还包括:处理器以及存储器,存储器内存储有机器可执行程序,机器可执行程序被处理器执行时,用于实现根据上述任一项的控制方法。
本发明的冰箱及其控制方法,通过对化霜传感器的温度变化记录进行采集和分析,仅需要利用温度变化记录即可确定蒸发器是否符合启动化霜的条件,这使得本发明的冰箱提供了一种新的化霜判断方法,在不增加额外硬件结构的基础上,能够利用简单的方法实现准确地启动化霜,减少或避免蒸发器提前化霜、化霜时间过长、化霜频率高、制冷效果差等问题,具备结构简单、节省硬件成本的优点。
进一步地,本发明的冰箱及其控制方法,由于能够利用简单的控制逻辑规避因化霜传感器检测值不准确所导致的制冷效果差等问题,这极大地简化了冰箱的制冷系统的管路布置方案,给冰箱产品的设计提供便利性。
更进一步地,本发明的冰箱及其控制方法,在蒸发器开始化霜时,通过采集冰箱的储物间室的温度,在储物间室的温度与开机点温度之间的差值小于预设的温差阈值的情况下,针对化霜过程中的储物间室的温度进行分析,即可确定蒸发器是否符合退出化霜的条件。使用上述方法,本发明的冰箱利用控制逻辑和固有的硬件结构相结合,能够准确地确定蒸发器的化霜情况,从而解决因化霜传感器检测值不准确所导致的化霜延迟退出、化霜周期长、制冷效果差等问题。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的冰箱的示意性框图;
图2是根据本发明一个实施例的冰箱的示意性结构图;
图3是根据本发明一个实施例的冰箱的控制方法的示意图;
图4是根据本发明一个实施例的冰箱的控制流程图。
具体实施方式
图1是根据本发明一个实施例的冰箱10的示意性框图。冰箱10一般性地可包括蒸发器150、化霜传感器160、处理器130和存储器140,还可以进一步地包括箱体110。本实施例的冰箱10可以适用于家用场景。在一些实施例中,冰箱10也可以适用于工业场景,只需要相应调整部分运行参数即可。
图2是根据本发明一个实施例的冰箱10的示意性结构图。
箱体110的内部限定出储物间室111。本实施例的储物间室111可以为多个,且分别可以为冷藏间室、冷冻间室或者变温间室中的任意一个。
蒸发器150是冰箱10的制冷系统的一部分。冰箱10的制冷系统可以为压缩制冷系统。除了蒸发器150之外,制冷系统还可以包括压缩机、冷凝器和节流装置。在制冷系统处于开机状态下,压缩机开机并对制冷剂做功,制冷剂流经冷凝器时进行放热冷凝,且在流经蒸发器150时进行吸热蒸发。制冷系统可以利用制冷剂在蒸发器150内吸热发生相变从而为储物间室111供冷。
例如,在一些实施例中,储物间室111可以为两个,且可以分别为冷藏间室和冷冻间室,每一储物间室111可以对应设置有向该储物间室111供冷的一蒸发器150。蒸发器150可以包括用于向冷藏间室供冷的冷藏蒸发器,还可以包括用于向冷冻间室供冷的冷冻蒸发器。在不加额外说明的情况下,下述实施例中的蒸发器150可以专指冷藏蒸发器,下述化霜传感器160可以专指设置于冷藏蒸发器的冷藏化霜传感器,下述储物间室111可以专指与冷藏蒸发器相对应的冷藏间室。本领域技术人员在了解下述实施例的基础上应当完全有能力针对其他布置方式和供冷方式进行拓展,此处不再一一示例。
化霜传感器160设置于蒸发器150,例如,可以设置于蒸发器150的盘管上或者任意其他位置,用于检测蒸发器150的温度。
处理器130和存储器140可以形成冰箱10的控制装置,设置于箱体110110内。控制装置可以为主控板。其中存储器140内存储有机器可执行程序141,机器可执行程序141被处理器130执行时用于实现以下任一实施例的冰箱10的控制方法。处理器130可以是一个中央处理单元(CPU),或者为数字处理单元(DSP)等等。存储器140用于存储处理器130执行的程序。存储器140可以是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何介质,但不限于此。存储器140也可以是 各种存储器140的组合。由于机器可执行程序141被处理器130执行时实现下述方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
图3是根据本发明一个实施例的冰箱10的控制方法的示意图。该控制方法一般性地可包括:
步骤S302,获取化霜传感器160的温度变化记录,温度变化记录用于标示设定时间段内化霜传感器160在冰箱10的压缩机进入关机状态时的检测值。即,温度变化记录用于记录设定时间段内压缩机每次关机时的蒸发器150温度。其中,设定时间段可以根据压缩机的平均单次开机时长来确定,只要保证在该时间段内压缩机的关机次数至少达到采样的数量要求即可。
步骤S304,根据温度变化记录判断蒸发器150是否符合启动化霜的条件。即,本实施例中,蒸发器150是否符合启动化霜的条件可以根据化霜传感器160的温度变化记录来确定,这突破了仅根据化霜传感器160的检测值或者化霜周期来确定蒸发器150是否符合启动化霜的条件的思想桎梏。
步骤S306,若蒸发器150符合启动化霜的条件,则启动化霜。其中,“启动化霜”是指冰箱10针对该蒸发器150执行化霜操作,以减少或消除该蒸发器150上凝结的霜冻。
使用上述方法,通过对化霜传感器160的温度变化记录进行采集和分析,仅需要利用温度变化记录即可确定蒸发器150是否符合启动化霜的条件,这使得本实施例的冰箱10提供了一种新的化霜判断方法,在不增加额外硬件结构的基础上,能够利用简单的方法实现准确地启动化霜,具备结构简单、节省硬件成本的优点。
由于能够利用简单的控制逻辑规避因化霜传感器160检测值不准确所导致的制冷效果差等问题,这极大地简化了冰箱10的制冷系统的管路布置方案,给冰箱产品的设计提供便利性。
上述步骤S302中,在一些实施例中,例如,在设定时间段内压缩机的关机次数可以至少达到三次、四次或者五次。以设定时间段内压缩机的关机次数至少达到五次为例。例如,若压缩机的平均单次开机时长为1h,则设定时间段可以为5~8h范围内的任意值。
上述步骤S304可以包括:从温度变化记录中提取化霜传感器160此前检测到的连续多个检测值,根据连续多个检测值判断蒸发器150是否符合启 动化霜的条件。其中,“连续多个检测值”的数量可以根据实际情况进行预先设置,例如可以为大于等于3的任意值。本实施例中,连续多个检测值的数量可以为4。
“化霜传感器160此前检测到的连续多个检测值”是指在执行获取温度变化记录的时刻之前,化霜传感器160最新检测到的连续多个检测值。例如,当连续多个检测值的数量为4时,连续多个检测值是指与压缩机最后4次关机一一对应的4个蒸发器150温度。
通过对化霜传感器160此前检测到的连续多个检测值进行分析,可以间接地确定蒸发器150的制冷效率是否发生明显下降现象,从而确定蒸发器150是否需要化霜以提高制冷效率。
在一些实施例中,根据连续多个检测值判断蒸发器150是否符合启动化霜的条件的步骤可以包括:判断连续多个检测值是否为递增数列,若是,则计算连续多个检测值的总递增量,总递增量为连续多个检测值中的每一检测值相对于相邻前一检测值的递增量之和,根据总递增量判断蒸发器150是否符合启动化霜的条件。
当连续多个检测值为递增数列时,表明随着时间的推移,蒸发器150在压缩机关机时的温度逐渐提高,这可以间接地反映出蒸发器150的制冷效率可能已发生明显下降现象,此时通过进一步地对总递增量进行分析,可以确定制冷效率是否已然明显下降、且确定是否需要通过执行化霜操作来提升制冷效率。
利用递增数列条件和总递增量条件针对连续多个检测值进行双重判定,可以提高判定过程的准确性,使得冰箱10能够在较为恰当的时机执行化霜操作,从而解决因化霜传感器160检测值不准确所导致的化霜启动时机不当问题,以保证冰箱10的制冷效果。
在一些实施例中,根据总递增量判断蒸发器150是否符合启动化霜的条件的步骤可以包括:判断总递增量是否达到预设的增量阈值,若是,则确定蒸发器150符合启动化霜的条件。增量阈值可以指蒸发器150的制冷效率即将发生明显下降时连续多个检测值的总递增量。当总递增量达到预设的增量阈值时,表明制冷效率已然明显下降且需要通过执行化霜操作来提升制冷效率。本实施例的增量阈值可以为0.1~1.1℃范围内的任意值,例如可以为0.6℃。总递增量越大,蒸发器150的制冷效率越低。
在判断总递增量是否达到预设的增量阈值的步骤之后,控制方法还可以包括:若根据连续多个检测值确定蒸发器150不符合启动化霜的条件,则获取蒸发器150的化霜间隔,化霜间隔用于标示蒸发器150自上一次退出化霜之后的累计时长,判断化霜间隔是否达到预设的间隔阈值,若是,则确定蒸发器150符合启动化霜的条件。即,在根据温度变化记录确定出蒸发器150不符合启动化霜的条件时,可以进一步地判断蒸发器150的化霜间隔是否符合启动化霜的条件。其中,间隔阈值可以指蒸发器150的化霜周期,即,自前一次退出化霜至下一次启动化霜之间的持续时长。本实施例中,间隔阈值可以为100~300min范围内的任意值,例如可以为200min。
也就是说,蒸发器150是否启动化霜的判定条件可以为两个,其中,第一判定条件是化霜传感器160的温度变化记录条件,第二判定条件是蒸发器150的化霜间隔条件,只要满足任一判定条件,均可启动化霜。
在一些进一步的实施例中,蒸发器150(该蒸发器150为冷藏蒸发器)是否启动化霜的判定条件还可以包括第三判定条件,例如,可以根据冷冻蒸发器的运行状态来确定该蒸发器150是否启动化霜,通过获取冷冻蒸发器的运行状态,若确定出冷冻蒸发器启动化霜,则可以确定该蒸发器150符合启动化霜的条件。在一些实施例中,当冷藏蒸发器跟随冷冻蒸发器同步启动化霜时,冷藏蒸发器的化霜时长可以为1~2h范围内的任意值,例如可以为1h。需要说明的是,在一些实施例中,在判断蒸发器150是否符合启动化霜的条件时,上述三个判定条件的执行顺序可以根据实际需要进行任意设置。
通过利用多个判定条件来判定蒸发器150是否应当启动化霜,可以利用多样化的判定条件进一步提高判定过程的准确性,从而有利于减少或避免因化霜启动时机不当所导致的制冷效果差等问题。
在上述步骤S306之后,控制方法还可以包括:在蒸发器150开始化霜时,获取冰箱10的储物间室111的温度以及与储物间室111相对应的开机点温度,判断储物间室111的温度与开机点温度之间的差值是否小于预设的温差阈值,若小于,则持续检测储物间室111的温度,根据储物间室111的温度判断蒸发器150是否符合退出化霜的条件,若符合,则退出化霜。即,在蒸发器150开始化霜时,若储物间室111的温度与开机点温度之间的差值小于温差阈值,则可以利用储物间室111的温度作为退出化霜的判定条件。上述温差阈值可以为3~8℃范围内的任意值,例如可以为5℃。
也就是说,本实施例中,在蒸发器150开始化霜时,通过采集冰箱10的储物间室111的温度,在储物间室111的温度与开机点温度之间的差值小于预设的温差阈值的情况下,针对化霜过程中的储物间室111的温度进行分析,即可确定蒸发器150是否符合退出化霜的条件。使用上述方法,本实施例的冰箱10利用控制逻辑和固有的硬件结构相结合,能够准确地确定蒸发器150的化霜情况,从而解决因化霜传感器160检测值不准确所导致的化霜延迟退出、化霜周期长、制冷效果差等问题。
例如,在一些实施例中,根据储物间室111的温度判断蒸发器150是否符合退出化霜的条件的步骤可以包括:判断储物间室111的温度与开机点温度之间的差值是否达到温差阈值,若是,则确定蒸发器150符合退出化霜的条件。即,当储物间室111的温度与开机点温度之间的差值大于等于温差阈值时,可以指示蒸发器150退出化霜,使其恢复供冷。
使用上述方法,本实施例的冰箱10仅需要针对储物间室111的温度进行分析,而不再需要根据化霜传感器160的检测值确定蒸发器150是否应当退出化霜,规避了化霜传感器160检测值不准确所导致的不良后果,且逻辑过程简单,有利于降低冰箱10的运行成本。
在一些实施例中,在判断储物间室111的温度与开机点温度之间的差值是否小于预设的温差阈值的步骤之后,控制方法还可以包括:若储物间室111的温度与开机点温度之间的差值不小于温差阈值,则获取化霜传感器160的检测值,在化霜传感器160的检测值大于预设的温度阈值时,确定蒸发器150符合退出化霜的条件。本实施例中,温度阈值可以为4~8℃范围内的任意值,例如可以为6℃。
也就是说,蒸发器150是否退出化霜的判定条件可以为两个,其中,第一判定条件是储物间室111的温度条件,第二判定条件是化霜传感器160的温度条件,只要满足任一判定条件,均可退出化霜。
在又一些实施例中,在判断储物间室111的温度与开机点温度之间的差值是否小于预设的温差阈值的步骤之后,控制方法还可以包括:若储物间室111的温度与开机点温度之间的差值不小于温差阈值,则获取蒸发器150的化霜时长,在化霜时长达到预设的时长阈值时,确定蒸发器150符合退出化霜的条件。也就是说,蒸发器150是否退出化霜的判定条件还可以包括第三判定条件,即,化霜时长条件,只要满足三个判定条件的任一个,均可退出 化霜。其中,时长阈值可以为100~300min范围内的任意值,例如可以为200min。需要说明的是,在一些实施例中,在判断蒸发器150是否符合退出化霜的条件时,上述三个判定条件的执行顺序可以根据实际需要进行任意设置。
通过利用多个判定条件来判定蒸发器150是否应当退出化霜,可以利用多样化的判定条件进一步提高判定过程的准确性,从而有利于减少或避免因化霜退出时机不当所导致的化霜效果差、以及后续制冷效果不佳等问题。
图4是根据本发明一个实施例的冰箱10的控制流程图。该控制流程一般性地可包括:
步骤S402,获取化霜传感器160的温度变化记录。温度变化记录用于标示设定时间段内化霜传感器160在冰箱10的压缩机进入关机状态时的检测值。
步骤S404,从温度变化记录中提取化霜传感器160此前检测到的连续多个检测值。
步骤S406,判断连续多个检测值是否为递增数列,若是,则执行步骤S408,若否,则执行步骤S412。
步骤S408,计算连续多个检测值的总递增量。总递增量为连续多个检测值中的每一检测值相对于相邻前一检测值的递增量之和。
步骤S410,判断总递增量是否达到预设的增量阈值,若是,则执行步骤S420,若否,则执行步骤S412。
步骤S412,获取蒸发器150的化霜间隔,化霜间隔用于标示蒸发器150自上一次退出化霜之后的累计时长。
步骤S414,判断化霜间隔是否达到预设的间隔阈值,若是,则执行步骤S420,若否,则执行步骤S416。
步骤S416,获取冷冻蒸发器的运行状态。
步骤S418,根据冷冻蒸发器的运行状态判断冷冻蒸发器是否启动化霜,若是,则执行步骤S420,若否,则执行步骤S402。
步骤S420,确定蒸发器150符合启动化霜的条件。
步骤S422,启动化霜。
步骤S424,在蒸发器150开始化霜时,获取冰箱10的储物间室111的温度以及与储物间室111相对应的开机点温度。
步骤S426,判断储物间室111的温度与开机点温度之间的差值是否小于预设的温差阈值,若小于,则执行步骤S428,若否,则执行步骤S432。
步骤S428,持续检测储物间室111的温度。
步骤S430,判断储物间室111的温度与开机点温度之间的差值是否达到温差阈值,若是,则执行步骤S440,若否,则执行步骤S432。
步骤S432,获取化霜传感器160的检测值。
步骤S434,判断化霜传感器160的检测值是否大于预设的温度阈值,若是,则执行步骤S440,若否,则执行步骤S436。
步骤S436,获取蒸发器150的化霜时长。
步骤S438,判断化霜时长是否达到预设的时长阈值,若是,则执行步骤S440,若否,则执行步骤S426。
步骤S440,确定蒸发器150符合退出化霜的条件。
步骤S442,退出化霜。
使用上述方法,通过对化霜传感器160的温度变化记录进行采集和分析,仅需要利用温度变化记录即可确定蒸发器150是否符合启动化霜的条件,这使得本实施例的冰箱10提供了一种新的化霜判断方法,在不增加额外硬件结构的基础上,能够利用简单的方法实现准确地启动化霜,减少或避免蒸发器150提前化霜、化霜时间过长、化霜频率高、制冷效果差等问题,具备结构简单、节省硬件成本的优点。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种冰箱的控制方法,所述冰箱具有蒸发器以及设置于所述蒸发器的化霜传感器,并且所述控制方法包括:
    获取所述化霜传感器的温度变化记录,所述温度变化记录用于标示设定时间段内所述化霜传感器在所述冰箱的压缩机进入关机状态时的检测值;
    根据所述温度变化记录判断所述蒸发器是否符合启动化霜的条件;
    若是,则启动化霜。
  2. 根据权利要求1所述的控制方法,其中,
    根据所述温度变化记录判断所述蒸发器是否符合启动化霜的条件的步骤包括:
    从所述温度变化记录中提取所述化霜传感器此前检测到的连续多个检测值;
    根据所述连续多个检测值判断所述蒸发器是否符合启动化霜的条件。
  3. 根据权利要求2所述的控制方法,其中,
    根据所述连续多个检测值判断所述蒸发器是否符合启动化霜的条件的步骤包括:
    判断所述连续多个检测值是否为递增数列;
    若是,则计算所述连续多个检测值的总递增量,所述总递增量为所述连续多个检测值中的每一检测值相对于相邻前一检测值的递增量之和;
    根据所述总递增量判断所述蒸发器是否符合启动化霜的条件。
  4. 根据权利要求3所述的控制方法,其中,
    根据所述总递增量判断所述蒸发器是否符合启动化霜的条件的步骤包括:
    判断所述总递增量是否达到预设的增量阈值;
    若是,则确定所述蒸发器符合启动化霜的条件。
  5. 根据权利要求4所述的控制方法,在判断所述总递增量是否达到预设的增量阈值的步骤之后,还包括:
    若根据所述连续多个检测值确定所述蒸发器不符合启动化霜的条件,则获取所述蒸发器的化霜间隔,所述化霜间隔用于标示所述蒸发器自上一次退出化霜之后的累计时长;
    判断所述化霜间隔是否达到预设的间隔阈值;
    若是,则确定所述蒸发器符合启动化霜的条件。
  6. 根据权利要求1所述的控制方法,在启动化霜之后,还包括:
    在所述蒸发器开始化霜时,获取所述冰箱的储物间室的温度以及与所述储物间室相对应的开机点温度;
    判断所述储物间室的温度与所述开机点温度之间的差值是否小于预设的温差阈值;
    若小于,则持续检测所述储物间室的温度;
    根据所述储物间室的温度判断所述蒸发器是否符合退出化霜的条件;
    若符合,则退出化霜。
  7. 根据权利要求6所述的控制方法,其中,
    根据所述储物间室的温度判断所述蒸发器是否符合退出化霜的条件的步骤包括:
    判断所述储物间室的温度与所述开机点温度之间的差值是否达到所述温差阈值;
    若是,则确定所述蒸发器符合退出化霜的条件。
  8. 根据权利要求6所述的控制方法,在判断所述储物间室的温度与所述开机点温度之间的差值是否小于预设的温差阈值的步骤之后,还包括:
    若所述储物间室的温度与所述开机点温度之间的差值不小于所述温差阈值,则获取所述化霜传感器的检测值;
    在所述化霜传感器的检测值大于预设的温度阈值时,确定所述蒸发器符合退出化霜的条件。
  9. 根据权利要求6所述的控制方法,在判断所述储物间室的温度与所述开机点温度之间的差值是否小于预设的温差阈值的步骤之后,还包括:
    若所述储物间室的温度与所述开机点温度之间的差值不小于所述温差 阈值,则获取所述蒸发器的化霜时长;
    在所述化霜时长达到预设的时长阈值时,确定所述蒸发器符合退出化霜的条件。
  10. 一种冰箱,其具有蒸发器以及设置于所述蒸发器的化霜传感器,还包括:
    处理器以及存储器,所述存储器内存储有机器可执行程序,所述机器可执行程序被所述处理器执行时,用于实现根据权利要求1-9中任一项所述的控制方法。
PCT/CN2021/132819 2021-04-29 2021-11-24 冰箱及其控制方法 WO2022227534A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110476781.1 2021-04-29
CN202110476781.1A CN115265050A (zh) 2021-04-29 2021-04-29 冰箱及其控制方法

Publications (1)

Publication Number Publication Date
WO2022227534A1 true WO2022227534A1 (zh) 2022-11-03

Family

ID=83744762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132819 WO2022227534A1 (zh) 2021-04-29 2021-11-24 冰箱及其控制方法

Country Status (2)

Country Link
CN (1) CN115265050A (zh)
WO (1) WO2022227534A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6032471A (en) * 1998-10-31 2000-03-07 Daewoo Electronics Co., Ltd. Defrost control method for use in a refrigerator
US20020088238A1 (en) * 2001-01-05 2002-07-11 Holmes John S. Deterministic refrigerator defrost method and apparatus
CN107120899A (zh) * 2017-04-27 2017-09-01 海信(山东)冰箱有限公司 一种风冷冰箱及其化霜控制方法
CN108759256A (zh) * 2018-06-28 2018-11-06 海信(山东)冰箱有限公司 一种冰箱的化霜方法及冰箱
CN110793255A (zh) * 2018-08-03 2020-02-14 博西华电器(江苏)有限公司 制冷器具及其控制方法
CN110873504A (zh) * 2018-08-31 2020-03-10 沈阳海尔电冰箱有限公司 冰箱的化霜控制方法和冰箱

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106052295B (zh) * 2016-06-14 2018-06-12 南京创维家用电器有限公司 冰箱的控制方法及装置
CN106766577B (zh) * 2016-12-16 2019-12-06 青岛海尔股份有限公司 风冷冰箱的结霜程度检测方法与装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6032471A (en) * 1998-10-31 2000-03-07 Daewoo Electronics Co., Ltd. Defrost control method for use in a refrigerator
US20020088238A1 (en) * 2001-01-05 2002-07-11 Holmes John S. Deterministic refrigerator defrost method and apparatus
CN107120899A (zh) * 2017-04-27 2017-09-01 海信(山东)冰箱有限公司 一种风冷冰箱及其化霜控制方法
CN108759256A (zh) * 2018-06-28 2018-11-06 海信(山东)冰箱有限公司 一种冰箱的化霜方法及冰箱
CN110793255A (zh) * 2018-08-03 2020-02-14 博西华电器(江苏)有限公司 制冷器具及其控制方法
CN110873504A (zh) * 2018-08-31 2020-03-10 沈阳海尔电冰箱有限公司 冰箱的化霜控制方法和冰箱

Also Published As

Publication number Publication date
CN115265050A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
CN110953792B (zh) 冰箱及其控制方法
CN104748502A (zh) 防止和/或减少结露的冰箱及其控制方法
US20160195330A1 (en) Refrigerator and method for controlling the same
JP2013228130A (ja) 冷凍装置
CN111692707A (zh) 一种空调外机除霜控制方法、装置、存储介质及空调器
WO2012016402A1 (zh) 冰箱全天候节能方法、装置和全天候节能冰箱
CN108195132A (zh) 单系统直冷变频冰箱、制冷控制系统及制冷控制方法
WO2017049962A1 (zh) 冰箱及其控制方法
CN105526762B (zh) 双压缩机双制冷回路冰箱的温度及耦合运行控制方法
CN112197489B (zh) 蒸发器除霜方法、装置、冰箱、计算机设备和存储介质
KR20140019594A (ko) 냉장고의 운전제어 방법
CN106766533A (zh) 用于冰箱的制冷控制方法及冰箱
CN106642921B (zh) 用于冰箱的制冷控制方法及冰箱
US9976791B2 (en) Refrigerator and method of controlling the same
WO2022227534A1 (zh) 冰箱及其控制方法
KR101594386B1 (ko) 복수의 증발기들을 구비하는 냉장고의 제상제어 방법
CN109855356B (zh) 冰箱及冰箱内蒸发器结霜程度判断方法
CN115265048B (zh) 冰箱及其控制方法
CN115265046B (zh) 冰箱及其控制方法
JP2020051722A (ja) 異常判定装置、この異常判定装置を備える冷凍装置、及び圧縮機の異常判定方法
CN113048709B (zh) 冰箱及其控制方法
CN113865249B (zh) 风冷冰箱的化霜控制方法与风冷冰箱
CN113048716B (zh) 控制方法和冰箱
CN114484970B (zh) 冰箱及其控制方法
WO2023050886A1 (zh) 一种双系统冰箱的冷冻参数调整方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21938993

Country of ref document: EP

Kind code of ref document: A1