WO2022227386A1 - 涡旋压缩机及空调器 - Google Patents

涡旋压缩机及空调器 Download PDF

Info

Publication number
WO2022227386A1
WO2022227386A1 PCT/CN2021/120332 CN2021120332W WO2022227386A1 WO 2022227386 A1 WO2022227386 A1 WO 2022227386A1 CN 2021120332 W CN2021120332 W CN 2021120332W WO 2022227386 A1 WO2022227386 A1 WO 2022227386A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
groove
oil groove
scroll compressor
axis
Prior art date
Application number
PCT/CN2021/120332
Other languages
English (en)
French (fr)
Inventor
罗承卓
谭琴
宋红飞
Original Assignee
广东美的环境科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202120907175.6U external-priority patent/CN214698344U/zh
Priority claimed from CN202110466464.1A external-priority patent/CN113187728A/zh
Application filed by 广东美的环境科技有限公司 filed Critical 广东美的环境科技有限公司
Publication of WO2022227386A1 publication Critical patent/WO2022227386A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • the invention relates to the technical field of compressors, in particular to a scroll compressor and an air conditioner.
  • the present invention aims to at least partially solve one of the technical problems existing in the prior art.
  • the present invention proposes a scroll compressor, which can solve the problem of insufficient oil supply in the bearing lubrication system existing in the pressure difference oil supply method of the scroll compressor.
  • the present invention also provides an air conditioner with the above scroll compressor.
  • the compression assembly includes: a casing with lubricating oil inside; a compression assembly arranged in the casing, the compression assembly including a main frame, a moving plate and a static plate; the main frame is erected There is a first support part and a groove; the moving plate is arranged on the main frame, one end of the moving plate is provided with a second support part, the second support part is located in the groove, the static plate A compression cavity is formed by engaging with the other end of the moving plate; the motor is arranged in the casing and has a crankshaft; the crankshaft is provided with a central oil hole, and the central oil hole is used for supplying the lubricating oil from the The inside of the casing flows into the compression assembly, the crankshaft includes a long shaft and an eccentric shaft, the long shaft passes through the first support portion, and the outer peripheral wall of the long shaft is provided with an oil outlet and a first oil groove, The oil outlet is communicated with the central oil hole, the first oil groove
  • the crankshaft By arranging a crankshaft with a central oil hole, the crankshaft includes a long shaft rotatably matched with the main frame and an eccentric shaft rotatably matched with the moving plate, and the outer peripheral wall of the long shaft is provided with an oil outlet and a first oil groove extending along the direction of the eccentric shaft, The first oil groove communicates with the groove, the outer peripheral wall of the eccentric shaft is provided with a second oil groove extending in the direction of the long axis, the second oil groove communicates with the groove, and the scroll compressor drains the lubricating oil inside the casing through the central oil hole to the groove.
  • the lubricating oil is guided through the oil outlet hole and the first oil groove to lubricate the mating area between the first support part of the main frame and the long shaft of the crankshaft, and the lubricating oil is guided through the second oil groove Lubricate the fitting area between the second support part of the moving plate and the eccentric shaft of the crankshaft, so as to divert the lubricating oil to the load area of the crankshaft, solve the problem of insufficient oil supply in the lubricating system of the supporting parts, and improve the efficiency of the crankshaft and the supporting parts. Reliability improves the operation stability of the scroll compressor.
  • a first pressure chamber is formed inside the casing, a second pressure chamber is formed between the inner peripheral wall of the main frame and the outer peripheral wall of the rotor, and the pressure of the first pressure chamber is When the pressure of the second pressure chamber is greater than that of the second pressure chamber, the scroll compressor realizes oil supply through the pressure difference between the first pressure chamber and the second pressure chamber.
  • the minimum distance between the oil outlet hole and the end of the matching area away from the eccentric shaft is L, and satisfies: L ⁇ 2mm.
  • the cross-sectional area of the first oil groove is S1, and satisfies: S1 ⁇ 1mm 2 ;
  • the cross-sectional area of the second oil groove is S2, and satisfies: S2 ⁇ 1mm 2 .
  • the first oil groove extends along the axial direction of the long axis
  • the second oil groove extends along the axial direction of the eccentric shaft
  • a projection on the axial direction perpendicular to the long axis On the surface, the line connecting the center of the long-axis projection of the coordinate system and the center of the eccentric axis projection is the y-axis, and the line passing through the center of the long-axis projection and perpendicular to the y-axis is the x-axis
  • the zero-degree angle is the direction of the y-axis toward the center of the projection of the eccentric axis
  • the clockwise direction is the direction of increasing angle.
  • the projection of the first oil groove is located in the range of 0 ⁇ 15°
  • the projection of the second oil groove is located at 180° within the range of ⁇ 15°.
  • the first oil groove is helical
  • the second oil groove is helical
  • the direction of rotation is opposite to that of the first oil groove; wherein, when the crankshaft rotates, the first oil groove The oil flows in the direction of the eccentric shaft, and the oil in the second oil groove flows in the direction of the long axis.
  • the shaft diameter of the long shaft is d1
  • the pitch of the first oil groove is m1
  • the shaft diameter of the eccentric shaft is d2
  • the pitch of the second oil groove is m2, and satisfies: 5 ⁇ m2/d2 ⁇ 10.
  • the second oil groove is helical, and on a projection plane perpendicular to the axial direction of the long axis, the center of the projection of the long axis and the projection of the eccentric axis of the coordinate system are defined.
  • the line connecting the center of the circle is the y-axis
  • the line passing through the center of the projection of the long axis and perpendicular to the y-axis is the x-axis
  • the zero-degree angle is the direction of the y-axis toward the center of the eccentric axis projected
  • the clockwise is the angle increasing direction; wherein, when the rotation direction of the crankshaft is clockwise, the projection of the second oil groove is not within the range of 0° to 145°; when the rotation direction of the crankshaft is counterclockwise, the second oil groove
  • the projection of the oil sump does not lie within the range of 180° to 325°.
  • the long shaft is provided with a plurality of the oil outlet holes, and the first oil groove communicates with the plurality of the oil outlet holes.
  • the long shaft is provided with a plurality of the oil outlet holes and a plurality of the first oil grooves, and the first oil grooves are in one-to-one correspondence with the oil outlet holes.
  • the outer peripheral wall of the long shaft is provided with a first ring groove
  • the oil outlet hole is provided in the first ring groove
  • the first oil groove communicates with the first ring groove
  • an inner peripheral wall of the first support portion is provided with a second annular groove
  • the oil outlet hole is located at a notch of the second annular groove
  • the first oil groove is connected to the second annular groove.
  • the two ring grooves are connected.
  • the shaft diameter of the long axis is d1, and satisfies: d1 ⁇ 18mm.
  • the displacement of the scroll compressor is V and satisfies: V ⁇ 18cm 3 .
  • An air conditioner according to an embodiment of the second aspect of the present invention includes the scroll compressor described in the above embodiments.
  • the scroll compressor is provided with a crankshaft with a central oil hole.
  • the crankshaft includes a long shaft rotatably matched with the main frame and an eccentric shaft rotatably matched with the moving plate.
  • the outer peripheral wall of the long shaft There is an oil outlet and a first oil groove extending in the direction of the eccentric shaft.
  • the first oil groove is communicated with the groove.
  • the outer peripheral wall of the eccentric shaft is provided with a second oil groove extending in the direction of the long axis.
  • the second oil groove communicates with the groove, and the vortex
  • the rotary compressor drains the lubricating oil inside the casing to the groove through the central oil hole, and when lubricating the compression assembly, the lubricating oil is guided through the oil outlet hole and the first oil groove to the first supporting part of the main frame and the length of the crankshaft.
  • the mating area between the shafts is lubricated, and the lubricating oil is guided through the second oil groove to lubricate the mating area between the second support part of the moving plate and the eccentric shaft of the crankshaft, so as to drain the lubricating oil to the load area of the crankshaft to solve the problem of supporting
  • the problem of insufficient oil supply in the component lubrication system improves the reliability of the crankshaft and supporting components, improves the operation stability of the scroll compressor, and further improves the operation stability of the air conditioner.
  • FIG. 1 is a schematic structural diagram of a scroll compressor according to an embodiment of the present invention.
  • Fig. 2 is the enlarged view of A place in Fig. 1;
  • FIG. 3 is an enlarged schematic view of a main frame and a crankshaft of a scroll compressor according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a moving plate of a scroll compressor according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a stationary plate of a scroll compressor according to an embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view of a crankshaft of a scroll compressor according to an embodiment of the present invention.
  • Fig. 7 is the front view of Fig. 6;
  • FIG. 8 is a schematic structural diagram of a crankshaft of a scroll compressor according to another embodiment of the present invention.
  • FIG. 9 is a schematic cross-sectional view of a crankshaft of a scroll compressor according to another embodiment of the present invention.
  • Fig. 10 is the front view of Fig. 9;
  • FIG. 11 is a schematic cross-sectional view of a crankshaft of a scroll compressor according to another embodiment of the present invention.
  • FIG. 12 is a schematic cross-sectional view of a crankshaft of a scroll compressor according to another embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a crankshaft of a scroll compressor according to another embodiment of the present invention.
  • FIG. 14 is a schematic top view of a crankshaft of a scroll compressor according to another embodiment of the present invention.
  • FIG. 15 is a schematic top view of a crankshaft of a scroll compressor according to another embodiment of the present invention.
  • FIG. 16 is a schematic top view of a crankshaft of a scroll compressor according to another embodiment of the present invention.
  • suction pipe 110 suction pipe 110; exhaust pipe 120; base 130; first pressure chamber 140;
  • Compression assembly 200 main frame 210; first bearing seat 211; first bearing 212; groove 213; movable plate 220; first scroll part 221; second bearing seat 222; second bearing 223; Second scroll part 231; compression chamber 240; second pressure chamber 250; third pressure chamber 260;
  • Motor 300 Stator 310; Rotor 320; Crankshaft 330; Central oil hole 331; Inlet 3311; Outlet 3312; Long shaft 332; Second oil tank 3331.
  • the azimuth description such as the azimuth or positional relationship indicated by upper and lower, is based on the azimuth or positional relationship shown in the accompanying drawings, which is only for the convenience of describing the present invention and simplifying the description. , rather than indicating or implying that the indicated device or element must have a particular orientation, be constructed and operate in a particular orientation, and therefore should not be construed as limiting the invention.
  • a scroll compressor 1000 according to an embodiment of the present invention is applied to air conditioners such as hanging machines, cabinet machines, and duct machines.
  • the scroll compressor 1000 of this embodiment includes a casing 100 , a compression assembly 200 and a motor 300 .
  • the casing 100 is an airtight container provided with a suction pipe 110 and an exhaust pipe 120 .
  • the bottom of the casing 100 is provided with a base 130 , and the base 130 can fix the scroll compressor 1000 and improve the operation stability of the scroll compressor 1000 .
  • There is lubricating oil inside the casing 100 and the lubricating oil is used to lubricate the compression assembly 200 .
  • the compression assembly 200 of this embodiment includes a main frame 210 , a moving plate 220 and a static plate 230 , and the main frame 210 and the static plate 230 are fixedly connected in the casing 100 .
  • the movable plate 220 includes a first scroll portion 221 facing the stationary plate 230
  • the stationary plate 230 includes a second scroll portion 231 toward the movable plate 220 , the first scroll portion 221 and the second scroll portion 221 .
  • the scroll portion 231 meshes to form the compression chamber 240 .
  • the compression chamber 240 changes in volume, shape, etc. with the rotation of the moving plate 220, so as to realize the process of gas entry, flow and pressure discharge.
  • the compression assembly 200 cooperates with the suction pipe 110 and the exhaust pipe 120 to realize the intake and exhaust of the scroll compressor 1000 .
  • the main frame 210 of this embodiment is provided with a first bearing seat 211 , the first bearing seat 211 is mounted with a first bearing 212 , and the first bearing 212 may be a sliding bearing or a bushing.
  • the first bearing seat 211 may be installed with one or more first bearings 212 .
  • the multiple first bearings 212 are arranged side by side or at intervals along the axial direction of the first bearing seat 211 .
  • the main frame 210 has a groove 213 , the groove 213 is formed above the first bearing seat 211 , and the first bearing seat 211 communicates with the groove 213 .
  • the moving plate 220 of the present embodiment is disposed on the main frame 210 and located above the first bearing seat 211 .
  • a second bearing seat 222 is provided at one end of the movable plate 220 away from the first scroll part 221 , and a second bearing 223 is mounted on the second bearing seat 222 .
  • the second bearing 223 may be a sliding bearing or a bushing.
  • the second bearing seat 222 is located in the groove 213 , the second bearing seat 222 rotates in the groove 213 , and a third pressure chamber 260 is formed between the second bearing seat 222 and the groove 213 .
  • the motor 300 of this embodiment includes a stator 310 , a rotor 320 and a crankshaft 330 .
  • the stator 310 is fixedly connected to the housing 100
  • the rotor 320 is fixedly connected to the crankshaft 330 .
  • the rotor 320 cooperates with the stator 310 to drive the crankshaft 330 to rotate.
  • a central oil hole 331 is provided in the crankshaft 330 , and the central oil hole 331 penetrates the interior of the crankshaft 330 in the up-down direction.
  • the lower end of the central oil hole 331 is provided with an inlet 3311, and the inlet 3311 is directly inserted into the lubricating oil, or inserted into the lubricating oil through a conduit.
  • the upper end of the central oil hole 331 is provided with an outlet 3312, the outlet 3312 is connected to the compression assembly 200, and the lubricating oil is supplied to the outlet 3312 through the inlet 3311, so that the lubricating oil enters the compression assembly 200 from the oil pool at the bottom of the casing 100, which is the compression assembly 200 fuel supply.
  • the scroll compressor 1000 when the scroll compressor 1000 adopts the differential pressure oil supply mode, the pressure chamber formed between the main frame 210 and the moving plate 220 is under the action of the throttling device therein, and the pressure of the compression chamber 240 is affected Under the action of high pressure inside the housing 100 , the lubricating oil in the oil pool is pressed into the central oil hole 331 , and oil is supplied to the compression assembly 200 through the central oil hole 331 .
  • the scroll compressor 1000 may also adopt other oil supply methods, which are not specifically limited herein.
  • the crankshaft 330 of this embodiment includes a long shaft 332 and an eccentric shaft 333, the eccentric shaft 333 is eccentrically arranged relative to the long shaft 332, the long shaft 332 is located at the lower end, and the eccentric shaft 333 is located at the upper end.
  • the long shaft 332 passes through the first bearing seat 211 , and the long shaft 332 is rotatably connected with the first bearing 212 , thereby ensuring the rotational stability between the long shaft 332 and the main frame 210 .
  • the long shaft 332 can also be rotatably connected to the first support portion of the structure such as the mounting hole formed in the center of the main frame 210 .
  • the eccentric shaft 333 passes through the second bearing seat 222 , and the eccentric shaft 333 is rotatably connected with the second bearing 223 , thereby ensuring the rotational stability between the eccentric shaft 333 and the moving plate 220 . It can be understood that the eccentric shaft 333 can also be rotatably connected to the second support portion of the structure such as the mounting hole at the end of the movable plate 220 away from the first scroll portion 221 .
  • a first oil outlet hole 3321 and a first oil groove 3322 are provided on the outer peripheral wall of the long shaft 332 in this embodiment.
  • the first oil outlet hole 3321 communicates with the central oil hole 331
  • the first oil groove 3322 communicates with the first oil outlet hole 3321 and extends toward the direction of the eccentric shaft 333 .
  • the lubricating oil in the central oil hole 331 flows out through the first oil outlet hole 3321, and is directed upward through the first oil groove 3322, thereby lubricating the first bearing seat 211 and the first bearing 212, and lifting the crankshaft 330 and the first bearing 212 lubrication effect.
  • the first oil groove 3322 communicates with the groove 213 , and the lubricating oil can be guided to the groove 213 through the first oil groove 3322 , so as to ensure the lubrication between the second support portion and the main frame 210 .
  • the first oil outlet 3321 and the first oil groove 3322 are both located in the matching area between the long shaft 332 and the first bearing 212, or in the matching area between the long shaft 332 and the first support part, so as to avoid the first oil outlet 3321 or the first oil outlet 3321 or the first bearing 212.
  • An oil groove 3322 is communicated with the interior of the casing 100, so that the pressure is released and the pressure difference is reduced, which affects the scroll compressor 1000 to achieve oil supply.
  • the outer peripheral wall of the eccentric shaft 333 in this embodiment is provided with a second oil groove 3331, the second oil groove 3331 is formed on the end face of the eccentric shaft 333 away from the long axis 332, and the second oil groove 3331 faces the long axis 332 in the direction of extension. There is a gap between the upper end surface of the eccentric shaft 333 and the second bearing seat 222 .
  • the lubricating oil in the central oil hole 331 flows out from the outlet 3312 , it is guided to the outer peripheral wall of the eccentric shaft 333 through the gap, and downward through the second oil groove 3331
  • the second oil groove 3331 communicates with the groove 213 , and the lubricating oil can be guided to the groove 213 through the second oil groove 3331 , thereby ensuring the lubrication between the second support portion and the main frame 210 .
  • the outer peripheral wall of the eccentric shaft 333 may also be provided with a second oil outlet hole (not shown in the figure), and the second oil outlet hole communicates with the central oil hole 331 , the second oil outlet hole is communicated with the second oil groove 3331, so that the lubricating oil in the central oil hole 331 flows out through the second oil outlet hole, and is guided downward through the second oil groove 3331, so as to realize the lubrication of the second bearing seat 222 Lubrication with the second bearing 223 further improves the lubricating effect of the crankshaft 330 and the second bearing 223 .
  • the crankshaft 330 with the central oil hole 331 is provided.
  • the crankshaft 330 includes a long shaft 332 rotatably matched with the main frame 210 and an eccentric shaft 333 rotatably matched with the moving plate 220.
  • the long shaft 332 A first oil outlet hole 3321 and a first oil groove 3322 extending along the direction of the eccentric shaft 333 are provided on the outer peripheral wall of the .
  • the outer peripheral wall of the eccentric shaft 333 is provided with a second oil groove 3331 extending in the direction of the long axis 332 .
  • the scroll compressor 1000 drains the lubricating oil inside the casing 100 to the groove 213 through the central oil hole 331, and when lubricating the compression assembly 200, the first oil outlet hole 3321 and the first oil groove 3322 guide the lubricating oil to the main engine.
  • the first bearing 212 of the frame 210 is lubricated, and the lubricating oil is guided through the second oil groove 3331 to lubricate the second bearing 223 of the moving plate 220, so as to divert the lubricating oil to the load area of the crankshaft 330, which solves the problem of using the differential pressure oil supply method.
  • the scroll compressor 1000 has a problem of insufficient oil supply to the bearing lubrication system due to the small pressure difference, which improves the fluidity and lubrication effect of the lubricating oil, improves the reliability of the crankshaft 330 and the bearing lubrication system, and improves the scroll compressor 1000. operation stability.
  • the surface hardness of the crankshaft 330 is designed to be equal to or greater than 50 HRC, so that the wear resistance and reliability of the crankshaft 330 can be improved.
  • the scroll compressor 1000 of the present embodiment adopts the method of supplying oil by pressure difference. It should be noted that a first pressure chamber 140 is formed inside the housing 100 , and a second pressure chamber 250 is formed between the inner peripheral wall of the main frame 210 and the outer peripheral wall of the moving plate 220 .
  • the third pressure chamber 260 communicates with the second pressure chamber 250 , and the throttling device before the third pressure chamber 260 and the second pressure chamber 250 will affect the pressure of the second pressure chamber 250 , and the intake pressure of the compression chamber 240 will also The pressure of the second pressure chamber 250 is affected, so the pressure of the second pressure chamber 250 is lower than the pressure of the third pressure chamber 260 , and the pressure of the third pressure chamber 260 is the same as the pressure of the first pressure chamber 140 . Therefore, the scroll compressor 1000 realizes oil supply through the pressure difference between the first pressure chamber 140 and the second pressure chamber 250 .
  • first pressure chamber 140 and the third pressure chamber 260 are high pressure spaces
  • the second pressure chamber 250 is a medium pressure space
  • the compression chamber 240 is a low pressure space.
  • the second oil groove 3331 of 333 there is no other passage to communicate the first pressure chamber 140, the third pressure chamber 260 and the second pressure chamber 250.
  • the lubricating oil in the oil pool is supplied upward from the central oil hole 331 to the third pressure chamber 260 through the pressure difference between the high-pressure space and the medium-pressure space, and then diverts to the second pressure chamber 250, and then passes through the middle oil hole 331.
  • the pressure difference between the pressure space and the low pressure space continues to supply lubricating oil from the second pressure chamber 250 to the compression chamber 240.
  • the compression chamber 240 compresses the gas and part of the lubricating oil into high-pressure gas under the action of the moving plate 220 and the static plate 230 and discharges it. So as to realize the circulation process of differential pressure oil supply.
  • This embodiment can ensure the pressure difference between the first pressure chamber 140 , the third pressure chamber 260 , the second pressure chamber 250 and the compression chamber 240 , prevent pressure relief, make the fluidity of the lubricating oil stronger, and effectively avoid compression Insufficient oil supply to cavity 240 and bearings.
  • the end of the mating area of the long shaft 332 and the first bearing 212 away from the eccentric shaft 333 is the first end, and the distance between the first oil outlet hole 3321 and the first end along the long shaft 332 is the first end.
  • the minimum distance in the axial direction is L, and satisfies: L ⁇ 2mm.
  • the minimum distance L between the first oil outlet hole 3321 and the first end along the axial direction of the long axis 332 can be set to 2 mm, 3 mm, 4 mm, etc., which is not specifically limited herein.
  • both the first oil groove 3322 and the first oil outlet hole 3321 need to be located in the matching area between the long shaft 332 and the first bearing 212, and in order to avoid the first oil groove 3322 and the first oil outlet hole 3321
  • the scroll compressor 1000 needs to be provided with a certain distance of a sealed space.
  • the first oil outlet hole 3321 communicates with the first oil outlet hole 3321 and supplies lubricating oil through the first oil outlet hole 3321 , the first oil outlet hole 3321 is closer to the long axis 332 than the end of the first oil groove 3322 The lower end of the mating area with the first bearing 212 . Therefore, when the minimum distance L between the first oil outlet hole 3321 and the lower end of the mating region between the long shaft 332 and the first bearing 212 satisfies the above parameter range, the first oil outlet hole 3321 can be effectively prevented from communicating with the first pressure chamber 140 , to avoid pressure relief in the lubricating oil passage, thereby affecting the oil supply amount of the scroll compressor 1000 .
  • L is defined as the smallest distance between the first oil outlet hole 3321 and the end of the long shaft 332 and the mounting hole of the main frame 210 that is far away from the eccentric shaft 333. distance.
  • L ⁇ 2mm the first oil outlet hole 3321 can be effectively prevented from being communicated with the first pressure chamber 140 , so as to avoid pressure relief in the lubricating oil passage, thereby affecting the oil supply of the scroll compressor 1000 .
  • the cross-sectional area of the first oil groove 3322 is S1 and satisfies: S1 ⁇ 1mm 2 .
  • the cross-sectional area S1 of the first oil groove 3322 may be set to 1 mm 2 , 2 mm 2 , 3 mm 2 , etc., which are not specifically limited herein.
  • the cross-sectional area S1 of the first oil groove 3322 satisfies the above-mentioned parameter range, it can ensure that the first oil groove 3322 has a sufficiently large flow cross section, which improves the fluidity of the lubricating oil. It can be understood that when the flow cross section of the first oil groove 3322 is large enough, the resistance of the lubricating oil flowing through the first oil groove 3322 is smaller, and the lubricating oil can smoothly pass through the first oil groove under the force of the differential pressure oil supply. The 3322 is guided upward to the groove 213, so as to achieve the effect of sufficient lubrication of the first bearing part.
  • the first oil groove 3322 is linear; referring to FIG. 8 , the first oil groove 3322 is spiral. Of course, the first oil groove 3322 may also be in other shapes, which are not specifically limited herein.
  • the cross-sectional area of the second oil groove 3331 is S2, and satisfies: S2 ⁇ 1 mm 2 .
  • the cross-sectional area S2 of the second oil groove 3331 can be set to be 1 mm 2 , 2 mm 2 , 3 mm 2 , etc., which are not specifically limited herein.
  • the cross-sectional area S2 of the second oil groove 3331 satisfies the above-mentioned parameter range, it can ensure that the second oil groove 3331 has a sufficiently large flow cross section, which improves the fluidity of the lubricating oil. It can be understood that when the flow cross section of the second oil groove 3331 is large enough, the resistance of the lubricating oil flowing through the second oil groove 3331 is smaller, and the lubricating oil can smoothly pass through the second oil groove under the force of the differential pressure oil supply. 3331 is guided to the groove 213, so as to achieve the effect of sufficient lubrication of the second bearing portion.
  • the second oil groove 3331 is linear; as shown in FIG. 8 , the second oil groove 3331 is spiral.
  • the second oil groove 3331 may also be in other shapes, which are not specifically limited herein.
  • first oil groove 3322 and the second oil groove 3331 can adopt a linear structure at the same time, or adopt a spiral structure at the same time; the first oil groove 3322 and the second oil groove 3331 can also have a linear and a spiral configuration use, and the specific use method is not specifically limited here.
  • first oil groove 3322 is helical
  • second oil groove 3331 is helical.
  • the direction of rotation of the second oil groove 3331 is opposite to that of the first oil groove 3322 .
  • the oil in the first oil groove 3322 flows in the direction of the eccentric shaft 333, that is, after the lubricating oil flows to the first oil groove 3322 through the first oil outlet hole 3321, under the action of the centrifugal force of the rotation of the crankshaft 330, the lubricating oil is released.
  • the flow is guided upward along the spiral first oil groove 3322 to guide the lubricating oil to the second pressure chamber 250, which can increase the fluidity of the lubricating oil, so that the crankshaft 330 and the first bearing 212 can be lubricated more fully, improving the performance of the lubricating oil.
  • the operation stability between the long shaft 332 and the main frame 210 is improved, the oil supply to the compression chamber 240 is improved, and the performance of the scroll compressor 1000 is improved.
  • the supply power of the lubricating oil is insufficient, and the first helical oil groove 3322 guides the lubricating oil to improve the fluidity of the lubricating oil.
  • the oil in the second oil groove 3331 flows in the direction of the long axis 332, that is, after the lubricating oil flows to the second oil groove 3331 through the central oil hole 331, under the action of the centrifugal force of the crankshaft 330, the lubricating oil flows along the helical second oil groove 333.
  • the oil groove 3331 guides downwards, and guides the lubricating oil to the second pressure chamber 250, so that the crankshaft 330 and the second bearing 223 are more fully lubricated, the running stability of the eccentric shaft 333 and the moving plate 220 is improved, and the The oil supply to the compression chamber 240 is improved, and the performance of the scroll compressor 1000 is improved.
  • the supply power of the lubricating oil is insufficient, and the second helical oil groove 3331 guides the lubricating oil to improve the fluidity of the lubricating oil.
  • the rotation direction of the scroll compressor 1000 in the embodiment of the present invention is the clockwise direction, that is, the rotation direction of the crankshaft 330 is the clockwise direction (viewed from top to bottom)
  • the second oil groove 3331 is Left-handed
  • the first oil groove 3322 is right-handed. Therefore, using the above design can guide the lubricating oil to the load area of the crankshaft 330 , increase the thickness of the oil film in the heavy load area, improve the lubrication of the long shaft 332 and the first bearing 212 , and improve the eccentric shaft 333 and the second bearing 223 lubrication.
  • the first oil groove 3322 is helical, the diameter of the long axis 332 is d1, the pitch of the first oil groove 3322 is m1, and satisfies: 5 ⁇ m1/d1 ⁇ 10.
  • m1/d1 satisfies the above parameter range, the viscous dynamics of the helical first oil groove 3322 can be ensured, and the formation of the oil film in the load area of the long axis 332 is not affected.
  • the second oil groove 3331 is helical
  • the shaft diameter of the eccentric shaft 333 is d2
  • the pitch of the second oil groove 3331 is m2, and satisfies: 5 ⁇ m2/d2 ⁇ 10.
  • the long shaft 332 is provided with a plurality of first oil outlet holes 3321 , and the long shaft 332 is also provided with a plurality of first oil grooves 3322 , so as to ensure the safety of the first bearing seat 211
  • oil supply and lubrication between the long shaft 332 and the first bearing 212 improves the reliability of the connection between the long shaft 332 and the first bearing 212 .
  • the first oil groove 3322 may be linear as shown in FIG. 9 , and the first oil groove 3322 may be spiral as shown in FIG. 11 .
  • the first oil grooves 3322 communicate with the first oil outlet holes 3321 in a one-to-one correspondence, that is, each first oil groove 3322 corresponds to a first oil outlet hole 3321 respectively.
  • Each of the first oil outlet holes 3321 and the first oil grooves 3322 may be provided corresponding to one of the first bearings 212, respectively.
  • the lubrication of the first bearing 212 solves the problem of insufficient oil supply in the bearing lubrication system, improves the reliability of the long shaft 332 and the first bearing 212 , and improves the running stability of the scroll compressor 1000 .
  • the long shaft 332 is provided with a plurality of first oil outlet holes 3321, and the first oil groove 3322 communicates with the plurality of first oil outlet holes 3321, so as to ensure the first bearing seat 211
  • oil supply and lubrication between the long shaft 332 and the first bearing 212 improves the reliability of the connection between the long shaft 332 and the first bearing 212 .
  • the first oil groove 3322 may be linear as shown in FIG. 10 , or the first oil groove 3322 may be spiral as shown in FIG. 12 .
  • the first oil groove 3322 communicates with a plurality of first oil outlet holes 3321, that is, each first oil outlet hole 3321 communicates with the same first oil groove 3322.
  • Each first oil outlet 3321 communicates with the first oil groove 3322, so that each first oil outlet 3321 guides lubricating oil to the first oil groove 3322, ensuring that the first oil groove 3322 is filled with sufficient lubricating oil, and It can avoid the oil shortage of the first oil groove 3322 caused by the blockage of some of the first oil outlet holes 3321, better ensure the lubrication of the long shaft 332 and the first bearing 212, solve the problem of insufficient oil supply in the bearing lubrication system, and improve the The reliability of the long shaft 332 and the first bearing 212 improves the operation stability of the scroll compressor 1000 .
  • the outer peripheral wall of the long shaft 332 is provided with a first annular groove 3323 , and the first annular groove 3323 is also called the level difference of the crankshaft 330 .
  • the first annular groove 3323 is located in the mating area of the long shaft 332 and the first bearing 212 , so as to prevent the first annular groove 3323 from communicating with the environment in the housing 100 to release pressure.
  • the first ring groove 3323 is provided with a first oil outlet hole 3321, and the first oil groove 3322 is communicated with the first ring groove 3323, so that the lubricating oil flowing out of the first oil outlet hole 3321 is guided through the first ring groove 3323 to the first oil outlet hole 3323.
  • An oil groove 3322 can ensure oil supply and lubrication between the crankshaft 330 and the bearing when the size of the first bearing seat 211 is relatively long, thereby improving the reliability of the connection between the crankshaft 330 and the bearing.
  • the inner peripheral wall of the first bearing seat 211 is provided with a second ring groove (not shown in the figure), and the second ring groove is also called the first bearing seat 211 level difference.
  • the second ring groove is located in the mating area of the long shaft 332 and the first bearing 212 , so as to avoid the pressure release caused by the communication between the second ring groove and the environment in the housing 100 .
  • the first oil outlet 3321 is located at the notch of the second ring groove, that is, the first oil outlet 3321 communicates with the second ring groove, and the first oil groove 3322 communicates with the second ring groove, so that the first oil outlet 3321 flows out
  • the lubricating oil is diverted to the first oil groove 3322 through the second ring groove, so as to ensure the oil supply and lubrication between the crankshaft 330 and the bearing when the size of the first bearing seat 211 is long, and improve the reliability of the connection between the crankshaft 330 and the bearing sex.
  • the first oil groove 3322 extends along the axial direction of the long axis 332 , that is, the first oil groove 3322 is linear.
  • the second oil groove 3331 extends in the axial direction of the eccentric shaft 333, that is, the second oil groove 3331 is also linear.
  • a coordinate system is defined on the projection plane perpendicular to the axial direction of the long axis 332
  • the y axis is defined as the line connecting the center of the circle projected by the long axis 332 and the center of the circle projected by the eccentric axis 333
  • the x axis is defined as the projection through the long axis 332
  • the center of the circle is a straight line perpendicular to the y-axis
  • the zero-degree angle is defined as the direction of the center of the circle projected by the y-axis toward the eccentric axis 333
  • the clockwise direction is defined as the direction in which the angle increases.
  • the projection of the first oil groove 3322 is in the range of 0 ⁇ 15°, ie, -15° to 15°.
  • the first oil groove 3322 satisfies the above-mentioned parameter range, that is, it is located in the B area in FIG.
  • the first oil groove 3322 can be set to avoid the load area when the long axis 332 and the first bearing seat 211 rotate, thereby promoting the formation of the lubricating oil film , increase the thickness of the oil film in the heavy load area, improve the lubrication of the long shaft 332 and the first bearing 212, and further improve the lubrication of the crankshaft 330 and the first bearing seat 211, so that the operation of the crankshaft 330 is more stable and reliable.
  • the projection of the second oil groove 3331 is located in the range of 180 ⁇ 15°, that is, 165° to 195°.
  • the second oil groove 3331 can be set to avoid the load area when the eccentric shaft 333 and the second bearing seat 222 rotate, thereby promoting the formation of the lubricating oil film , to increase the thickness of the oil film in the heavy load area, improve the lubrication of the eccentric shaft 333 and the second bearing 223, and further improve the lubrication of the crankshaft 330 and the second bearing seat 222, so that the operation of the crankshaft 330 is more stable and reliable.
  • the second oil groove 3331 is helical, and the same coordinate system as in the previous embodiment is defined on the projection plane perpendicular to the axial direction of the long axis 332 .
  • the projection of the second oil groove 3331 is not within the range of 0° to 145°, that is, within the range of 145° to 360°.
  • the second oil groove 3331 can guide the lubricating oil to the opposite side of the area where the eccentric shaft 333 is most loaded, thereby improving the oil film in the heavy load area. Thickness improves the lubrication of the eccentric shaft 333 and the second bearing 223 and improves the reliability of the eccentric shaft 333 and the second bearing seat 222 .
  • the second oil groove 3331 is helical, and the same coordinate system as in the previous embodiment is defined on the projection plane perpendicular to the axial direction of the long axis 332 .
  • the projection of the second oil groove 3331 is not within the range of 180° to 325°, that is, within the range of 325° to 360° and 0° to 180°.
  • the second oil groove 3331 satisfies the above parameter range, that is, it is located in the E area in FIG.
  • the second oil groove 3331 can guide the lubricating oil to the opposite side of the area where the eccentric shaft 333 is most loaded, thereby improving the oil film in the heavy load area. Thickness improves the lubrication of the eccentric shaft 333 and the second bearing 223 and improves the reliability of the eccentric shaft 333 and the second bearing seat 222 .
  • the shaft diameter of the long axis 332 is d1 and satisfies: d1 ⁇ 18 mm.
  • the shaft diameter d1 of the long shaft 332 may be 18 mm, 17 mm, 13 mm, etc., which is not specifically limited herein.
  • the scroll compressor 1000 can supply oil to the compression assembly 200 by means of differential pressure oil supply, which has low cost and strong adaptability.
  • the crankshaft 330 with the central oil hole 331 is provided.
  • the crankshaft 330 includes a long shaft 332 rotatably matched with the main frame 210 and an eccentric shaft 333 rotatably matched with the moving plate 220.
  • the long shaft 332 The outer peripheral wall of the eccentric shaft 333 is provided with a first oil outlet 3321 and a first oil groove 3322 extending in the direction of the eccentric shaft 333.
  • the outer peripheral wall of the eccentric shaft 333 is provided with a second oil groove 3331 extending in the direction of the long axis 332.
  • the scroll compressor 1000 adopts In the method of differential pressure oil supply, the lubricating oil inside the casing 100 flows into the drainage groove 213 through the central oil hole 331, and when lubricating the compression assembly 200, the lubricating oil is guided to the main engine through the first oil outlet hole 3321 and the first oil groove 3322.
  • the first bearing 212 of the frame 210 is lubricated, and the lubricating oil is guided through the second oil groove 3331 to lubricate the second bearing 223 of the moving plate 220, so as to divert the lubricating oil to the load area of the crankshaft 330, so as to avoid insufficient oil supply of the bearing lubrication system.
  • the reliability of the crankshaft 330 and the bearing is improved, and the operation stability of the scroll compressor 1000 is improved.
  • the displacement of the scroll compressor 1000 is V, and satisfies: V ⁇ 18 cm 3 .
  • the displacement V of the scroll compressor 1000 may be 18 cm 3 , 15 cm 3 , 10 cm 3 , etc., which are not specifically limited herein.
  • the scroll compressor 1000 can supply oil to the compression assembly 200 by means of differential pressure oil supply, which has low cost and strong adaptability.
  • the scroll compressor 1000 of the embodiment of the present invention is provided with a crankshaft 330 having a central oil hole 331 .
  • the outer peripheral wall of the long shaft 332 is provided with a first oil outlet hole 3321 and a first oil groove 3322 extending along the direction of the eccentric shaft 333 .
  • the outer peripheral wall of the eccentric shaft 333 is provided with a second oil groove 3331 extending in the direction of the long axis 332 .
  • the scroll compressor 1000 uses the differential pressure oil supply method to supply the lubricating oil inside the casing 100 to the drainage groove 213 through the central oil hole 331, and when lubricating the compression assembly 200, the lubricating oil passes through the first oil outlet hole 3321 and the first oil groove.
  • an air conditioner includes the scroll compressor 1000 of the above embodiment.
  • the air conditioner of this embodiment adopts the scroll compressor 1000 of the first aspect
  • the scroll compressor 1000 adopts the scroll compressor 1000 of the first aspect.
  • the scroll compressor 1000 is provided with a crankshaft having a central oil hole 331 .
  • the crankshaft 330 includes a long shaft 332 rotatably matched with the main frame 210 and an eccentric shaft 333 rotatably matched with the moving plate 220 .
  • the outer peripheral wall of the long shaft 332 is provided with a first oil outlet hole 3321 and a first oil groove 3322 extending along the direction of the eccentric shaft 333 .
  • the outer peripheral wall of the eccentric shaft 333 is provided with a second oil groove 3331 extending in the direction of the long axis 332 .
  • the scroll compressor 1000 drains the lubricating oil inside the casing 100 to the groove 213 through the central oil hole 331, and when lubricating the compression assembly 200, the first oil outlet hole 3321 and the first oil groove 3322 guide the lubricating oil to the main engine.
  • the first bearing 212 of the frame 210 is lubricated, and the lubricating oil is guided through the second oil groove 3331 to lubricate the second bearing 223 of the moving plate 220, so as to divert the lubricating oil to the load area of the crankshaft 330, so as to avoid insufficient oil supply of the bearing lubrication system.
  • the reliability of the crankshaft 330 and the bearing is improved, the operation stability of the scroll compressor 1000 is improved, and the operation stability of the air conditioner is further improved.

Abstract

一种涡旋压缩机及空调器,其中涡旋压缩机(1000)包括壳体(100)、压缩组件(200)和电机(300),压缩组件(200)包括主机架(210)、动盘(220)和静盘(230),主机架(210)设有第一支承部和凹槽(213);动盘(220)设于主机架(210),动盘(220)的一端设有第二支承部;电机(300)具有曲轴(330),曲轴(330)内设有中心油孔(331),曲轴(330)包括长轴(332)和偏心轴(333),长轴(332)穿设于第一支承部,长轴(332)的外周壁设有出油孔(3321)和连通出油孔(3321)和凹槽(213)的第一油槽(3322),出油孔(3321)和第一油槽(3322)设于长轴(332)与第一支承部的配合区域;偏心轴(333)穿设于第二支承部,偏心轴(333)的外周壁设有与第一油槽(3322)连通的第二油槽(3331)。这种涡旋压缩机将润滑油引流至曲轴的负载区域,解决支承部件润滑系统供油不足的问题,提高了曲轴和支承部件的可靠性、以及压缩机的运行稳定性。

Description

涡旋压缩机及空调器
相关申请的交叉引用
本申请要求于2021年04月28日提交的申请号为202110466464.1、名称为“涡旋压缩机及空调器”,以及于2021年04月28日提交的申请号为202120907175.6、名称为“涡旋压缩机及空调器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及压缩机技术领域,特别涉及一种涡旋压缩机及空调器。
背景技术
相关技术中,对于高背压的涡旋压缩机,由于压缩腔置于壳体上方,距离油池比较远,压缩腔供油及轴承润滑供油一直是行业内难题,常见的供油方式有齿轮泵供油、偏心供油和压差供油等。对于压差供油的方式,其适用性广,成本低,但是压差供油的关键是形成压力差,存在当压力差小时供油量不足的问题,导致轴承润滑系统供油不足,影响曲轴及轴承的可靠性。
发明内容
本发明旨在至少部分解决现有技术中存在的技术问题之一。为此,本发明提出一种涡旋压缩机,能够解决涡旋压缩机压差供油方式存在的轴承润滑系统供油不足的问题。
本发明还提出一种具有上述涡旋压缩机的空调器。
根据本发明第一方面实施例的压缩组件,包括:壳体,内部具有润滑油;压缩组件,设于所述壳体内,所述压缩组件包括主机架、动盘和静盘;所述主机架设有第一支承部和凹槽;所述动盘设于所述主机架,所述动盘的一端设有第二支承部,所述第二支承部位于所述凹槽内,所述静盘与所述动盘的另一端啮合形成压缩腔;电机,设于所述壳体内且具有曲轴;所述曲轴内设有中心油孔,所述中心油孔用于供所述润滑油从所述壳体内部流入所述压缩组件,所述曲轴包括长轴和偏心轴,所述长轴穿设于所述第一支承部,所述长轴的外周壁设有出油孔和第一油槽,所述出油孔与所述中心油孔连通,所述第一油槽与所述出油孔连通且朝向所述偏心轴的方向延伸,所述第一油槽与所述凹槽连通,所述出油孔和所述第一油槽设于所述长轴与所述第一支承部的配合区域;所述偏心轴穿设于所述第二支承部,所述偏心轴的外周 壁设有第二油槽,所述第二油槽形成于所述偏心轴远离所述长轴的一端端面并朝向所述长轴的方向延伸,所述第二油槽与所述凹槽连通。
根据本发明实施例的压缩组件,至少具有如下有益效果:
通过设置具有中心油孔的曲轴,曲轴包括与主机架转动配合的长轴和与动盘转动配合的偏心轴,长轴的外周壁设有出油孔和沿偏心轴方向延伸的第一油槽,第一油槽与凹槽连通,偏心轴的外周壁设有沿长轴方向延伸的第二油槽,第二油槽与凹槽连通,涡旋压缩机将壳体内部的润滑油通过中心油孔引流至凹槽,并对压缩组件进行润滑时,通过出油孔和第一油槽引导润滑油对主机架的第一支承部和曲轴的长轴之间的配合区域进行润滑,通过第二油槽引导润滑油对动盘的第二支承部和曲轴的偏心轴之间的配合区域进行润滑,从而将润滑油引流至曲轴的负载区域,解决支承部件润滑系统供油不足的问题,提高了曲轴和支承部件的可靠性,提升了涡旋压缩机的运行稳定性。
根据本发明的一些实施例,所述壳体内部形成第一压力腔,所述主机架的内周壁与所述动盘的外周壁之间形成第二压力腔,所述第一压力腔的压力大于所述第二压力腔的压力,所述涡旋压缩机通过所述第一压力腔与所述第二压力腔的压差实现供油。
根据本发明的一些实施例,在所述长轴的轴向上,所述出油孔与所述配合区域远离所述偏心轴的一端的最小距离为L,且满足:L≥2mm。
根据本发明的一些实施例,所述第一油槽的横截面面积为S1,且满足:S1≥1mm 2;所述第二油槽的横截面面积为S2,且满足:S2≥1mm 2
根据本发明的一些实施例,所述第一油槽沿所述长轴的轴向延伸,所述第二油槽沿所述偏心轴的轴向延伸;在垂直于所述长轴的轴向的投影面上,定义坐标系的所述长轴投影的圆心与所述偏心轴投影的圆心的连线所在的直线为y轴,经过所述长轴投影的圆心且垂直于y轴的直线为x轴,零度角为y轴朝向所述偏心轴投影的圆心的方向,顺时针为角度增加的方向,所述第一油槽的投影位于0±15°的范围内,所述第二油槽的投影位于180±15°的范围内。
根据本发明的一些实施例,所述第一油槽为螺旋状,所述第二油槽为螺旋状且旋向与所述第一油槽相反;其中,所述曲轴转动时,所述第一油槽的油朝向所述偏心轴的方向流动,所述第二油槽的油朝向所述长轴的方向流动。
根据本发明的一些实施例,所述长轴的轴径为d1,所述第一油槽的螺距为m1,且满足:5≤m1/d1≤10;所述偏心轴的轴径为d2,所述第二油槽的螺距为m2,且满足:5≤m2/d2≤10。
根据本发明的一些实施例,所述第二油槽为螺旋状,在垂直于所述长轴的轴向的投影面上,定义坐标系的所述长轴投影的圆心与所述偏心轴投影的圆心的连线所在的直线为y轴, 经过所述长轴投影的圆心且垂直于y轴的直线为x轴,零度角为y轴朝向所述偏心轴投影的圆心的方向,顺时针为角度增加的方向;其中,所述曲轴的转动方向为顺时针时,所述第二油槽的投影不位于0°至145°的范围内;所述曲轴的转动方向为逆时针时,所述第二油槽的投影不位于180°至325°的范围内。
根据本发明的一些实施例,所述长轴设有多个所述出油孔,所述第一油槽连通多个所述出油孔。
根据本发明的一些实施例,所述长轴设有多个所述出油孔和多个所述第一油槽,所述第一油槽与所述出油孔一一对应连通。
根据本发明的一些实施例,所述长轴的外周壁设有第一环槽,所述出油孔设于所述第一环槽内,所述第一油槽与所述第一环槽连通。
根据本发明的一些实施例,所述第一支承部的内周壁设有第二环槽,所述出油孔位于所述第二环槽的槽口处,所述第一油槽与所述第二环槽连通。
根据本发明的一些实施例,所述长轴的轴径为d1,且满足:d1≤18mm。
根据本发明的一些实施例,所述涡旋压缩机的排量为V,且满足:V≤18cm 3
根据本发明第二方面实施例的空调器,包括以上实施例所述的涡旋压缩机。
根据本发明实施例的空调器,至少具有如下有益效果:
采用第一方面实施例的涡旋压缩机,涡旋压缩机通过设置具有中心油孔的曲轴,曲轴包括与主机架转动配合的长轴和与动盘转动配合的偏心轴,长轴的外周壁设有出油孔和沿偏心轴方向延伸的第一油槽,第一油槽与凹槽连通,偏心轴的外周壁设有沿长轴方向延伸的第二油槽,第二油槽与凹槽连通,涡旋压缩机将壳体内部的润滑油通过中心油孔引流至凹槽,并对压缩组件进行润滑时,通过出油孔和第一油槽引导润滑油对主机架的第一支承部和曲轴的长轴之间的配合区域进行润滑,通过第二油槽引导润滑油对动盘的第二支承部和曲轴的偏心轴之间的配合区域进行润滑,从而将润滑油引流至曲轴的负载区域,解决支承部件润滑系统供油不足的问题,提高了曲轴和支承部件的可靠性,提升了涡旋压缩机的运行稳定性,进而提升了空调器的运行稳定性。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明一种实施例的涡旋压缩机的结构示意图;
图2为图1中A处的放大图;
图3为本发明一种实施例的涡旋压缩机的主机架和曲轴的放大示意图;
图4为本发明一种实施例的涡旋压缩机的动盘的结构示意图;
图5为本发明一种实施例的涡旋压缩机的静盘的结构示意图;
图6为本发明一种实施例的涡旋压缩机的曲轴的剖视示意图;
图7为图6的正视图;
图8为本发明另一种实施例的涡旋压缩机的曲轴的结构示意图;
图9为本发明另一种实施例的涡旋压缩机的曲轴的剖视示意图;
图10为图9的正视图;
图11为本发明另一种实施例的涡旋压缩机的曲轴的剖视示意图;
图12为本发明另一种实施例的涡旋压缩机的曲轴的剖视示意图;
图13为本发明另一种实施例的涡旋压缩机的曲轴的结构示意图;
图14为本发明另一种实施例的涡旋压缩机的曲轴的俯视示意图;
图15为本发明另一种实施例的涡旋压缩机的曲轴的俯视示意图;以及
图16为本发明另一种实施例的涡旋压缩机的曲轴的俯视示意图。
附图标号:
涡旋压缩机1000;
壳体100;吸气管110;排气管120;底座130;第一压力腔140;
压缩组件200;主机架210;第一轴承座211;第一轴承212;凹槽213;动盘220;第一涡旋部221;第二轴承座222;第二轴承223;静盘230;第二涡旋部231;压缩腔240;第二压力腔250;第三压力腔260;
电机300;定子310;转子320;曲轴330;中心油孔331;进口3311;出口3312;长轴332;第一出油孔3321;第一油槽3322;第一环槽3323;偏心轴333;第二油槽3331。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,涉及到方位描述,例如上、下等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为 对本发明的限制。
在本发明的描述中,多个指的是两个以上。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本发明的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本发明中的具体含义。
参照图1所示,本发明一种实施例的涡旋压缩机1000,应用于挂机、柜机,以及风管机等空调器。其中本实施例的涡旋压缩机1000包括壳体100、压缩组件200和电机300。壳体100为设有吸气管110和排气管120的密闭容器。壳体100的底部设有底座130,底座130能够将涡旋压缩机1000进行固定,提高涡旋压缩机1000运行的稳定性。壳体100内部具有润滑油,润滑油用于对压缩组件200进行润滑,润滑油可以收纳于油池内,也只可以收纳于壳体100的底部,即润滑油通过重力回流至壳体100底部。
参照图1和图2所示,本实施例的压缩组件200包括主机架210、动盘220和静盘230,主机架210和静盘230固定连接于壳体100内。参照图4和图5所示,动盘220包括朝向静盘230的第一涡旋部221,静盘230包括朝向动盘220的第二涡旋部231,第一涡旋部221和第二涡旋部231啮合形成压缩腔240。压缩腔240随着动盘220的转动而在体积、形状等方面发生变化,从而实现气体进入、流动以及受压排出的过程。压缩组件200与吸气管110和排气管120配合实现涡旋压缩机1000的进气和排气。
参照图2和图3所示,本实施例的主机架210设有第一轴承座211,第一轴承座211安装有第一轴承212,第一轴承212可以为滑动轴承或轴套。第一轴承座211可以安装有一个或多个第一轴承212,当第一轴承212设有多个时,多个第一轴承212沿第一轴承座211的轴向并排或间隔设置。主机架210具有凹槽213,凹槽213形成于第一轴承座211的上方,第一轴承座211与凹槽213连通。
参照图2和图4所示,本实施例的动盘220设于主机架210且位于第一轴承座211的上方。动盘220远离第一涡旋部221的一端设有第二轴承座222,第二轴承座222安装有第二轴承223,第二轴承223可以为滑动轴承或轴套。第二轴承座222位于凹槽213内,第二轴承座222在凹槽213内实现转动,第二轴承座222和凹槽213之间围合形成第三压力腔260。
参照图3所示,本实施例的电机300包括定子310、转子320和曲轴330,定子310固定连接于壳体100内,转子320与曲轴330固定连接。转子320和定子310配合从而驱动曲轴330转动。曲轴330内设有中心油孔331,中心油孔331沿上下方向贯穿曲轴330的内部。中心油孔331的下端设有进口3311,进口3311直接插入至润滑油中,或通过导管插入至润滑 油中。中心油孔331的上端设有出口3312,出口3312连通压缩组件200,润滑油通过进口3311向出口3312供油,从而使润滑油从壳体100底部的油池进入至压缩组件200,为压缩组件200供油。可以理解的是,当涡旋压缩机1000采用压差供油方式时,主机架210与动盘220之间形成的压力腔在其中的节流装置的作用下,以及在压缩腔240的压力影响下,壳体100内部的高压作用使油池的润滑油压入中心油孔331,并通过中心油孔331向压缩组件200实现供油。当然,涡旋压缩机1000还可以采用其他供油方式,在此不再具体限定。
参照图2和图3所示,本实施例的曲轴330包括长轴332和偏心轴333,偏心轴333相对于长轴332偏心设置,长轴332位于下端,偏心轴333位于上端。长轴332穿设于第一轴承座211,长轴332与第一轴承212转动连接,从而保证了长轴332与主机架210之间转动的稳定性。可以理解的是,长轴332也可以转动连接于主机架210中心形成的安装孔等结构的第一支承部。偏心轴333穿设于第二轴承座222,偏心轴333与第二轴承223转动连接,从而保证了偏心轴333与动盘220之间转动的稳定性。可以理解的是,偏心轴333也可以转动连接于动盘220远离第一涡旋部221的一端的安装孔等结构的第二支承部。
可以理解的是,当涡旋压缩机1000采用压差供油方式时,如果形成的压力差较小,会存在供油量不足的问题,即中心油孔331的供油量不足,因此导致第一轴承212和第二轴承223润滑不足,导致曲轴330和主机架210和动盘220的磨损较大。
参照图2和图5所示,本实施例的长轴332的外周壁设有第一出油孔3321和第一油槽3322。第一出油孔3321与中心油孔331连通,第一油槽3322与第一出油孔3321连通且朝向偏心轴333的方向延伸。
中心油孔331的润滑油通过第一出油孔3321流出,并通过第一油槽3322向上导流,从而对第一轴承座211和第一轴承212进行润滑,提升了曲轴330和第一轴承212的润滑效果。第一油槽3322与凹槽213连通,润滑油可以通过第一油槽3322导流至凹槽213,从而保证第二支承部与主机架210之间的润滑。
第一出油孔3321和第一油槽3322均设于长轴332与第一轴承212的配合区域,或设于长轴332与第一支承部的配合区域,避免第一出油孔3321或第一油槽3322与壳体100内部连通,使得泄压而导致压力差减小,影响涡旋压缩机1000实现供油。
参照图2和图5所示,本实施例的偏心轴333的外周壁设有第二油槽3331,第二油槽3331形成于偏心轴333远离长轴332的一端端面,第二油槽3331朝向长轴332的方向延伸。偏心轴333的上端面与第二轴承座222之间具有间隙,中心油孔331的润滑油从出口3312流出后,通过间隙导流至偏心轴333的外周壁,并通过第二油槽3331向下导流,从而对第二轴承座222的第二轴承223进行润滑,提升了曲轴330和第二轴承223的润滑效果。第二油槽3331 与凹槽213连通,润滑油可以通过第二油槽3331导流至凹槽213,从而保证第二支承部与主机架210之间的润滑。
可以理解的是,当偏心轴333的轴长尺寸较大时,偏心轴333的外周壁也可以设置第二出油孔(图中未示出),第二出油孔与中心油孔331连通,第二出油孔与第二油槽3331连通,从而实现将中心油孔331的润滑油通过第二出油孔流出,并通过第二油槽3331向下导流,从而实现对第二轴承座222和第二轴承223进行润滑,进一步提升了曲轴330和第二轴承223的润滑效果。
本发明实施例的涡旋压缩机1000,通过设置具有中心油孔331的曲轴330,曲轴330包括与主机架210转动配合的长轴332和与动盘220转动配合的偏心轴333,长轴332的外周壁设有第一出油孔3321和沿偏心轴333方向延伸的第一油槽3322。偏心轴333的外周壁设有沿长轴332方向延伸的第二油槽3331。涡旋压缩机1000将壳体100内部的润滑油通过中心油孔331引流至凹槽213,并对压缩组件200进行润滑时,通过第一出油孔3321和第一油槽3322引导润滑油对主机架210的第一轴承212进行润滑,通过第二油槽3331引导润滑油对动盘220的第二轴承223进行润滑,从而将润滑油引流至曲轴330的负载区域,解决了采用压差供油方式的涡旋压缩机1000因为压力差小导致轴承润滑系统供油不足的问题,提高了润滑油的流动性和润滑效果,提高了曲轴330和轴承润滑系统的可靠性,提升了涡旋压缩机1000的运行稳定性。
另外,需要说明的是,曲轴330的表面硬度设计为大于等于50HRC,从而能够使曲轴330的耐磨性更好、可靠性更高。
参照图2所示,本实施例的涡旋压缩机1000采用压差供油的方式。需要说明的是,壳体100内部形成第一压力腔140,主机架210的内周壁与动盘220的外周壁之间形成第二压力腔250。第三压力腔260与第二压力腔250连通,而且第三压力腔260与第二压力腔250之前具有节流装置会影响第二压力腔250的压力,而且压缩腔240的进气压力也会影响第二压力腔250的压力,所以第二压力腔250的压力小于第三压力腔260的压力,而第三压力腔260的压力与第一压力腔140的压力相同。因此涡旋压缩机1000通过第一压力腔140与第二压力腔250的压差实现供油。
可以理解的是,第一压力腔140和第三压力腔260为高压空间,第二压力腔250为中压空间,压缩腔240为低压空间,而且除了长轴332的第一油槽3322和偏心轴333的第二油槽3331外,没有其他通路使第一压力腔140、第三压力腔260和第二压力腔250连通。油池的润滑油在高压空间的作用下,通过高压空间与中压空间的压力差从中心油孔331向上供油至第三压力腔260,再导流至第二压力腔250,又通过中压空间和低压空间的压力差从第二压力 腔250又继续往压缩腔240供给润滑油,压缩腔240在动盘220和静盘230的作用下将气体和部分润滑油压缩成高压气体排出,从而实现压差供油的循环过程。本实施例能够保证第一压力腔140、第三压力腔260、第二压力腔250和压缩腔240之间的压力差,防止发生泄压,使得润滑油的流动性更强,有效避免了压缩腔240和轴承供油不足的情况。
参照图3所示,可以理解的是,长轴332与第一轴承212的配合区域远离偏心轴333的一端为第一端,第一出油孔3321与第一端之间沿长轴332的轴向的最小距离为L,且满足:L≥2mm。举例来说,第一出油孔3321与第一端之间沿长轴332的轴向的最小距离L可以设置为2mm,3mm,4mm等等,在此不再具体限定。本发明实施例的涡旋压缩机1000,第一油槽3322和第一出油孔3321均需要位于长轴332与第一轴承212配合区域,而且为了避免第一油槽3322和第一出油孔3321与壳体100内部环境相通,即避免第一油槽3322和第一出油孔3321与第一压力腔140相通,涡旋压缩机1000需要设置一定距离的密封空间。
可以理解的是,因为第一油槽3322与第一出油孔3321连通并通过第一出油孔3321供给润滑油,所以第一出油孔3321比第一油槽3322的端部更接近长轴332与第一轴承212的配合区域的下端。因此当第一出油孔3321与长轴332与第一轴承212的配合区域的下端之间的最小距离L满足上述参数范围时,能够有效防止第一出油孔3321与第一压力腔140连通,避免了润滑油通路发生泄压,从而影响涡旋压缩机1000的供油量。
可以理解的是,当长轴332转动连接于主机架210的安装孔时,L定义为第一出油孔3321与长轴332和主机架210的安装孔配合区域远离偏心轴333的一端的最小距离。当满足L≥2mm时,能够有效防止第一出油孔3321与第一压力腔140连通,避免了润滑油通路发生泄压,从而影响涡旋压缩机1000的供油量。
参照图6所示,可以理解的是,第一油槽3322的横截面面积为S1,且满足:S1≥1mm 2
举例来说,第一油槽3322的横截面面积S1可以设置为1mm 2,2mm 2,3mm 2等等,在此不再具体限定。
当第一油槽3322的横截面面积S1满足上述参数范围时,能够保证第一油槽3322有足够大的通流截面,提高了润滑油的流动性。可以理解的是,当第一油槽3322的通流截面足够大时,润滑油流经第一油槽3322的阻力更小,润滑油能够在压差供油的作用力下,顺畅地通过第一油槽3322向上导流至凹槽213,从而实现对第一支承部的充分润滑的效果。
需要说明的是,参照图7所示,第一油槽3322为直线状;参照图8所示,第一油槽3322为螺旋状。当然,第一油槽3322还可以为其他形状,在此不再具体限定。
第二油槽3331的横截面面积为S2,且满足:S2≥1mm 2
举例来说,第二油槽3331的横截面面积S2可以设置为1mm 2,2mm 2,3mm 2等等,在此不再 具体限定。
当第二油槽3331的横截面面积S2满足上述参数范围时,能够保证第二油槽3331有足够大的通流截面,提高了润滑油的流动性。可以理解的是,当第二油槽3331的通流截面足够大时,润滑油流经第二油槽3331的阻力更小,润滑油能够在压差供油的作用力下,顺畅地通过第二油槽3331导流至凹槽213,从而实现对第二支承部的充分润滑的效果。
需要说明的是,参照图7所示,第二油槽3331为直线状;参照图8所示,第二油槽3331为螺旋状。当然,第二油槽3331还可以为其他形状,在此不再具体限定。
因此,可以理解的是,第一油槽3322和第二油槽3331可以同时采用直线状的结构,或者同时采用螺旋状的结构;第一油槽3322和第二油槽3331还可以有直线状和螺旋状搭配使用,具体使用方式在此不再具体限定。
参照图8所示,可以理解的是,第一油槽3322为螺旋状,第二油槽3331为螺旋状。第二油槽3331的旋向与第一油槽3322的旋向相反。
其中,曲轴330转动时,第一油槽3322的油朝向偏心轴333的方向流动,即润滑油通过第一出油孔3321流至第一油槽3322后,在曲轴330转动离心力的作用下,润滑油沿着螺旋状的第一油槽3322向上导流,将润滑油导流至第二压力腔250,能够增大润滑油的流动性,从而使曲轴330和第一轴承212得到更加充分的润滑,提高了长轴332和主机架210之间运行的稳定性,而且改善了压缩腔240的供油,提高了涡旋压缩机1000的性能。特别在低压差工况下,润滑油的供给动力不足,通过螺旋状的第一油槽3322导向,能够提高润滑油的流动性。
同时,第二油槽3331的油朝向长轴332的方向流动,即润滑油通过中心油孔331流至第二油槽3331后,在曲轴330转动离心力的作用下,润滑油沿着螺旋状的第二油槽3331向下导流,将润滑油导流至第二压力腔250,从而使曲轴330和第二轴承223得到更加充分的润滑,提高了偏心轴333和动盘220运行的稳定性,而且改善了压缩腔240的供油,提高了涡旋压缩机1000的性能。特别在低压差工况下,润滑油的供给动力不足,通过螺旋状的第二油槽3331导向,能够提高润滑油的流动性。
可以理解的是,当本发明实施例的涡旋压缩机1000的旋转方向为顺时针方向时,即曲轴330的转动方向为顺时针方向(从上往下俯视角度看),第二油槽3331为左旋,第一油槽3322为右旋。因此,采用上述设计能够使润滑油导向至曲轴330的负载区域,提高了重负荷区域的油膜厚度,改善了长轴332与第一轴承212的润滑,以及改善了偏心轴333与第二轴承223的润滑。
可以理解的是,当本发明实施例的涡旋压缩机1000的旋转方向为逆时针方向时,即曲轴 330的转动方向为逆时针方向,第二油槽3331为右旋,第一油槽3322为左旋。因此,采用上述设计能够使润滑油导向至曲轴330的负载区域,提高了重负荷区域的油膜厚度,改善了长轴332与第一轴承212的润滑,以及改善了偏心轴333与第二轴承223的润滑。
参照图8所示,可以理解的是,第一油槽3322为螺旋状,长轴332的轴径为d1,第一油槽3322的螺距为m1,且满足:5≤m1/d1≤10。当m1/d1满足上述参数范围时,能够保证螺旋状的第一油槽3322的粘性动力,而且又不影响长轴332的负载区油膜的形成。需要说明的是,理论上第一油槽3322的粘性动力越大,润滑油流动性越好,但粘性动力越大,螺旋状的第一油槽3322的螺距越小,第一油槽3322会延伸至长轴332的负载区,从而影响长轴332负载区油膜的形成。因此,合理设计长轴332的轴径d1和第一油槽3322的螺距m1是提高涡旋压缩机1000性能的关键。
参照图8所示,可以理解的是,第二油槽3331为螺旋状,偏心轴333的轴径为d2,第二油槽3331的螺距为m2,且满足:5≤m2/d2≤10。当m2/d2满足上述参数范围时,能够保证螺旋状的第二油槽3331的粘性动力,而且又不影响偏心轴333的负载区油膜的形成。需要说明的是,理论上第二油槽3331的粘性动力越大,润滑油流动性越好,但粘性动力越大,螺旋状的第二油槽3331的螺距越小,第二油槽3331会延伸至偏心轴333的负载区,从而影响偏心轴333负载区油膜的形成。因此,合理设计偏心轴333的轴径d2和第二油槽3331的螺距m2是提高涡旋压缩机1000性能的关键。
参照图9和图11所示,可以理解的是,长轴332设有多个第一出油孔3321,长轴332还设有多个第一油槽3322,从而能够确保第一轴承座211的尺寸较长时长轴332和第一轴承212之间的供油润滑,改善长轴332和第一轴承212之间连接的可靠性。
第一油槽3322可以是如图9所示的直线状,第一油槽3322也可以是如图11所示的螺旋状。本发明实施例的曲轴330,第一油槽3322与第一出油孔3321一一对应连通,即每个第一油槽3322分别对应一个第一出油孔3321。每个第一出油孔3321和第一油槽3322可以分别对应于一个第一轴承212设置,每个第一出油孔3321将润滑油导流至对应的第一油槽3322,确保长轴332和第一轴承212的润滑,解决轴承润滑系统供油不足的问题,提高了长轴332和第一轴承212的可靠性,提升了涡旋压缩机1000的运行稳定性。
参照图10和图12所示,可以理解的是,长轴332设有多个第一出油孔3321,第一油槽3322连通多个第一出油孔3321,从而能够确保第一轴承座211尺寸较长时长轴332和第一轴承212之间的供油润滑,改善长轴332和第一轴承212之间连接的可靠性。第一油槽3322可以是如图10所示的直线状,第一油槽3322也可以是如图12所示的螺旋状。本发明实施例的曲轴330,第一油槽3322与多个第一出油孔3321,即每个第一出油孔3321均连通同一个第 一油槽3322。每个第一出油孔3321均与第一油槽3322连通,使得每个第一出油孔3321均将润滑油导流至第一油槽3322,保证了第一油槽3322充满足够的润滑油,而且能够避免其中部分第一出油孔3321堵塞导致的第一油槽3322缺油的情况,更好地确保了长轴332和第一轴承212的润滑,解决轴承润滑系统供油不足的问题,提高了长轴332和第一轴承212的可靠性,提升了涡旋压缩机1000的运行稳定性。
参照图13所示,可以理解的是,长轴332的外周壁设有第一环槽3323,第一环槽3323又称为曲轴330的段差。第一环槽3323位于长轴332和第一轴承212的配合区域内,避免第一环槽3323与壳体100内的环境连通发生泄压。第一环槽3323内设有第一出油孔3321,第一油槽3322与第一环槽3323连通,从而使第一出油孔3321流出的润滑油通过第一环槽3323再导流至第一油槽3322,从而能够确保第一轴承座211的尺寸较长时曲轴330与轴承之间的供油润滑,改善曲轴330和轴承之间连接的可靠性。
可以理解的是,作为本发明实施例的涡旋压缩机1000,第一轴承座211的内周壁设有第二环槽(图中未示出),第二环槽又称为第一轴承座211的段差。
第二环槽位于长轴332和第一轴承212的配合区域内,避免第二环槽与壳体100内的环境连通发生泄压。第一出油孔3321位于第二环槽的槽口处,即第一出油孔3321与第二环槽连通,第一油槽3322与第二环槽连通,从而使第一出油孔3321流出的润滑油通过第二环槽再导流至第一油槽3322,从而能够确保第一轴承座211尺寸较长时曲轴330与轴承之间的供油润滑,改善曲轴330和轴承之间连接的可靠性。
参照图14所示,可以理解的是,第一油槽3322沿长轴332的轴向延伸,即第一油槽3322为直线状。第二油槽3331沿偏心轴333的轴向延伸,即第二油槽3331也为直线状。在垂直于长轴332的轴向的投影面上定义坐标系,定义y轴为长轴332投影的圆心与偏心轴333投影的圆心的连线所在的直线,定义x轴为经过长轴332投影的圆心且垂直于y轴的直线,定义零度角为y轴朝向偏心轴333投影的圆心的方向,定义顺时针为角度增加的方向。
可以理解的是,第一油槽3322的投影位于0±15°的范围内,即-15°至15°。第一油槽3322满足上述参数范围时,即位于图14中的B区域中,能够使第一油槽3322避开长轴332与第一轴承座211转动时的负载区设置,从而促进润滑油膜的形成,提高重负荷区域的油膜厚度,改善长轴332和第一轴承212的润滑,进而提高曲轴330与第一轴承座211的润滑,使曲轴330的运行更加稳定可靠。
第二油槽3331的投影位于180±15°的范围内,即165°至195°。第二油槽3331满足上述参数范围时,即位于图14中的C区域中,能够使第二油槽3331避开偏心轴333与第二轴承座222转动时的负载区设置,从而促进润滑油膜的形成,提高重负荷区域的油膜厚度, 改善偏心轴333和第二轴承223的润滑,进而提高曲轴330与第二轴承座222的润滑,使曲轴330的运行更加稳定可靠。
参照图15所示,可以理解的是,第二油槽3331为螺旋状,在垂直于长轴332的轴向的投影面上定义如上一个实施例相同的坐标系。其中,曲轴330的转动方向为顺时针时,第二油槽3331的投影不位于0°至145°的范围内,即位于145°至360°的范围内。当第二油槽3331满足上述参数范围使,即位于图15中的D区域中,使得第二油槽3331能够将润滑油导向至偏心轴333负荷最大的区域的对侧,从而提高重负荷区域的油膜厚度,改善偏心轴333和第二轴承223的润滑,提高偏心轴333和第二轴承座222的可靠性。
参照图16所示,可以理解的是,第二油槽3331为螺旋状,在垂直于长轴332的轴向的投影面上定义如上一个实施例相同的坐标系。其中,曲轴330的转动方向为逆时针时,第二油槽3331的投影不位于180°至325°的范围内,即位于325°至360°,以及0°至180°的范围内。当第二油槽3331满足上述参数范围使,即位于图16中的E区域中,使得第二油槽3331能够将润滑油导向至偏心轴333负荷最大的区域的对侧,从而提高重负荷区域的油膜厚度,改善偏心轴333和第二轴承223的润滑,提高偏心轴333和第二轴承座222的可靠性。
参照图3所示,可以理解的是,长轴332的轴径为d1,且满足:d1≤18mm。举例来说,长轴332的轴径d1可以为18mm,17mm,13mm等等,在此不再具体限定。当曲轴330的轴径较小且满足上述参数范围时,涡旋压缩机1000可以采用压差供油的方式为压缩组件200供油,其成本低,适应性强。本发明实施例的涡旋压缩机1000,通过设置具有中心油孔331的曲轴330,曲轴330包括与主机架210转动配合的长轴332和与动盘220转动配合的偏心轴333,长轴332的外周壁设有第一出油孔3321和沿偏心轴333方向延伸的第一油槽3322,偏心轴333的外周壁设有沿长轴332方向延伸的第二油槽3331,涡旋压缩机1000采用压差供油的方式将壳体100内部的润滑油通过中心油孔331引流凹槽213,并对压缩组件200进行润滑时,通过第一出油孔3321和第一油槽3322引导润滑油对主机架210的第一轴承212进行润滑,通过第二油槽3331引导润滑油对动盘220的第二轴承223进行润滑,从而将润滑油引流至曲轴330的负载区域,避免轴承润滑系统供油不足的问题,提高了曲轴330和轴承的可靠性,提升了涡旋压缩机1000的运行稳定性。
参照图1所示,可以理解的是,涡旋压缩机1000的排量为V,且满足:V≤18cm 3。举例来说,涡旋压缩机1000的排量V可以为18cm 3,15cm 3,10cm 3等等,在此不再具体限定。当涡旋压缩机1000的排量较小且满足上述参数范围时,涡旋压缩机1000可以采用压差供油的方式为压缩组件200供油,其成本低,适应性强。本发明实施例的涡旋压缩机1000,通过设置具有中心油孔331的曲轴330,曲轴330包括与主机架210转动配合的长轴332和与动盘220 转动配合的偏心轴333。
长轴332的外周壁设有第一出油孔3321和沿偏心轴333方向延伸的第一油槽3322。偏心轴333的外周壁设有沿长轴332方向延伸的第二油槽3331。涡旋压缩机1000采用压差供油的方式将壳体100内部的润滑油通过中心油孔331引流凹槽213,并对压缩组件200进行润滑时,通过第一出油孔3321和第一油槽3322引导润滑油对主机架210的第一轴承212进行润滑,通过第二油槽3331引导润滑油对动盘220的第二轴承223进行润滑,从而将润滑油引流至曲轴330的负载区域,避免轴承润滑系统供油不足的问题,提高了曲轴330和轴承的可靠性,提升了涡旋压缩机1000的运行稳定性。
参照图1所示,本发明一种实施例的空调器,包括以上实施例的涡旋压缩机1000。本实施例的空调采用第一方面实施例的涡旋压缩机1000,涡旋压缩机1000采用第一方面实施例的涡旋压缩机1000,涡旋压缩机1000通过设置具有中心油孔331的曲轴330,曲轴330包括与主机架210转动配合的长轴332和与动盘220转动配合的偏心轴333。
长轴332的外周壁设有第一出油孔3321和沿偏心轴333方向延伸的第一油槽3322。偏心轴333的外周壁设有沿长轴332方向延伸的第二油槽3331。涡旋压缩机1000将壳体100内部的润滑油通过中心油孔331引流至凹槽213,并对压缩组件200进行润滑时,通过第一出油孔3321和第一油槽3322引导润滑油对主机架210的第一轴承212进行润滑,通过第二油槽3331引导润滑油对动盘220的第二轴承223进行润滑,从而将润滑油引流至曲轴330的负载区域,避免轴承润滑系统供油不足的问题,提高了曲轴330和轴承的可靠性,提升了涡旋压缩机1000的运行稳定性,进而提升了空调器的运行稳定性。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (14)

  1. 涡旋压缩机,包括:
    壳体,内部具有润滑油;
    压缩组件,设于所述壳体内,所述压缩组件包括主机架、动盘和静盘;所述主机架设有第一支承部和凹槽;所述动盘设于所述主机架,所述动盘的一端设有第二支承部,所述第二支承部位于所述凹槽内,所述静盘与所述动盘的另一端啮合形成压缩腔;以及
    电机,设于所述壳体内且具有曲轴;所述曲轴内设有中心油孔,所述中心油孔用于供所述润滑油从所述壳体内部流入所述压缩组件,所述曲轴包括长轴和偏心轴,所述长轴穿设于所述第一支承部,所述长轴的外周壁设有出油孔和第一油槽,所述出油孔与所述中心油孔连通,所述第一油槽与所述出油孔连通且朝向所述偏心轴的方向延伸,所述第一油槽与所述凹槽连通,所述出油孔和所述第一油槽设于所述长轴与所述第一支承部的配合区域;所述偏心轴穿设于所述第二支承部,所述偏心轴的外周壁设有第二油槽,所述第二油槽形成于所述偏心轴远离所述长轴的一端端面并朝向所述长轴的方向延伸,所述第二油槽与所述凹槽连通。
  2. 根据权利要求1所述的涡旋压缩机,其中,所述壳体内部形成第一压力腔,所述主机架的内周壁与所述动盘的外周壁之间形成第二压力腔,所述第一压力腔的压力大于所述第二压力腔的压力,所述涡旋压缩机通过所述第一压力腔与所述第二压力腔的压差实现供油。
  3. 根据权利要求1所述的涡旋压缩机,其中,在所述长轴的轴向上,所述出油孔与所述配合区域远离所述偏心轴的一端的最小距离为L,且满足:L≥2mm。
  4. 根据权利要求1所述的涡旋压缩机,其中,所述第一油槽的横截面面积为S1,且满足:S1≥1mm 2;所述第二油槽的横截面面积为S2,且满足:S2≥1mm 2
  5. 根据权利要求1所述的涡旋压缩机,其中,所述第一油槽沿所述长轴的轴向延伸,所述第二油槽沿所述偏心轴的轴向延伸;在垂直于所述长轴的轴向的投影面上,定义坐标系的所述长轴投影的圆心与所述偏心轴投影的圆心的连线所在的直线为y轴,经过所述长轴投影的圆心且垂直于y轴的直线为x轴,零度角为y轴朝向所述偏心轴投影的圆心的方向,顺时针为角度增加的方向,所述第一油槽的投影位于0±15°的范围内,所述第二油槽的投影位于180±15°的范围内。
  6. 根据权利要求1所述的涡旋压缩机,其中,所述第一油槽为螺旋状,所述第二油槽为螺旋状且旋向与所述第一油槽相反;
    其中,所述曲轴转动时,所述第一油槽的油朝向所述偏心轴的方向流动,所述第二油槽的油朝向所述长轴的方向流动。
  7. 根据权利要求6所述的涡旋压缩机,其中,所述长轴的轴径为d1,所述第一油槽的螺 距为m1,且满足:5≤m1/d1≤10;所述偏心轴的轴径为d2,所述第二油槽的螺距为m2,且满足:5≤m2/d2≤10。
  8. 根据权利要求1所述的涡旋压缩机,其中,所述第二油槽为螺旋状,在垂直于所述长轴的轴向的投影面上,定义坐标系的所述长轴投影的圆心与所述偏心轴投影的圆心的连线所在的直线为y轴,经过所述长轴投影的圆心且垂直于y轴的直线为x轴,零度角为y轴朝向所述偏心轴投影的圆心的方向,顺时针为角度增加的方向;
    其中,所述曲轴的转动方向为顺时针时,所述第二油槽的投影不位于0°至145°的范围内;所述曲轴的转动方向为逆时针时,所述第二油槽的投影不位于180°至325°的范围内。
  9. 根据权利要求1所述的涡旋压缩机,其中,所述长轴设有多个所述出油孔,所述第一油槽连通多个所述出油孔。
  10. 根据权利要求1所述的涡旋压缩机,其中,所述长轴设有多个所述出油孔和多个所述第一油槽,所述第一油槽与所述出油孔一一对应连通。
  11. 根据权利要求1所述的涡旋压缩机,其中,所述长轴的外周壁设有第一环槽,所述出油孔设于所述第一环槽内,所述第一油槽与所述第一环槽连通。
  12. 根据权利要求1所述的涡旋压缩机,其中,所述第一支承部的内周壁设有第二环槽,所述出油孔位于所述第二环槽的槽口处,所述第一油槽与所述第二环槽连通。
  13. 根据权利要求1所述的涡旋压缩机,其中,所述长轴的轴径为d1,且满足:d1≤18mm;所述涡旋压缩机的排量为V,且满足:V≤18cm 3
  14. 空调器,包括权利要求1至13任一项所述的涡旋压缩机。
PCT/CN2021/120332 2021-04-28 2021-09-24 涡旋压缩机及空调器 WO2022227386A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110466464.1 2021-04-28
CN202120907175.6U CN214698344U (zh) 2021-04-28 2021-04-28 涡旋压缩机及空调器
CN202120907175.6 2021-04-28
CN202110466464.1A CN113187728A (zh) 2021-04-28 2021-04-28 涡旋压缩机及空调器

Publications (1)

Publication Number Publication Date
WO2022227386A1 true WO2022227386A1 (zh) 2022-11-03

Family

ID=83847747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120332 WO2022227386A1 (zh) 2021-04-28 2021-09-24 涡旋压缩机及空调器

Country Status (1)

Country Link
WO (1) WO2022227386A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224988A (ja) * 1984-04-20 1985-11-09 Daikin Ind Ltd スクロ−ル形流体機械
CN1132826A (zh) * 1994-10-24 1996-10-09 株式会社日立制作所 涡旋式压缩机
CN106949049A (zh) * 2017-04-28 2017-07-14 上海海立新能源技术有限公司 一种立式压缩机
CN207111436U (zh) * 2017-04-28 2018-03-16 上海海立新能源技术有限公司 一种压缩机
CN207420872U (zh) * 2017-04-28 2018-05-29 上海海立新能源技术有限公司 一种压缩机
CN108612655A (zh) * 2018-03-20 2018-10-02 广州万宝集团压缩机有限公司 一种具有冷却安装区的涡旋压缩机
CN113187728A (zh) * 2021-04-28 2021-07-30 广东美的环境科技有限公司 涡旋压缩机及空调器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224988A (ja) * 1984-04-20 1985-11-09 Daikin Ind Ltd スクロ−ル形流体機械
CN1132826A (zh) * 1994-10-24 1996-10-09 株式会社日立制作所 涡旋式压缩机
CN106949049A (zh) * 2017-04-28 2017-07-14 上海海立新能源技术有限公司 一种立式压缩机
CN207111436U (zh) * 2017-04-28 2018-03-16 上海海立新能源技术有限公司 一种压缩机
CN207420872U (zh) * 2017-04-28 2018-05-29 上海海立新能源技术有限公司 一种压缩机
CN108612655A (zh) * 2018-03-20 2018-10-02 广州万宝集团压缩机有限公司 一种具有冷却安装区的涡旋压缩机
CN113187728A (zh) * 2021-04-28 2021-07-30 广东美的环境科技有限公司 涡旋压缩机及空调器

Similar Documents

Publication Publication Date Title
US7717688B2 (en) Oil pump for a compressor
US11971032B2 (en) Vane rotary compressor with pressure reducing member inserted into the oil supply passage
US20110150690A1 (en) Oil supply structure for refrigerant compressor
CN113187728A (zh) 涡旋压缩机及空调器
CN105370569A (zh) 涡旋压缩机及具有其的空调器
JP2009127614A (ja) スクロール流体機械及びその製造方法
US9322403B2 (en) Compressor
US9115715B2 (en) Compressor with pressure reduction groove formed in eccentric part
KR960015824B1 (ko) 횡형 로타리 압축기의 급유장치
WO2022227386A1 (zh) 涡旋压缩机及空调器
US11680568B2 (en) Compressor oil management system
CN113482932B (zh) 旋转式压缩机及制冷设备
CN110925211A (zh) 一种低背压滚动转子式压缩机及空调
JP2014152747A (ja) 容積型圧縮機
CN214698344U (zh) 涡旋压缩机及空调器
WO2022218207A1 (zh) 曲轴、变频压缩机及制冷设备
CN214036105U (zh) 涡旋压缩机、空调设备及车辆
JP2603028Y2 (ja) 密閉形圧縮機及びその潤滑油供給装置
WO2021258585A1 (zh) 涡旋压缩机构和涡旋压缩机
KR20210010808A (ko) 스크롤 압축기
CN215058136U (zh) 卧式压缩机
CN109915377A (zh) 一种新型双级旋片式真空泵
WO2023125950A1 (zh) 涡旋压缩机
CN220101537U (zh) 压缩机和制冷设备
US20210381511A1 (en) Rotary compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21938850

Country of ref document: EP

Kind code of ref document: A1