WO2022227313A1 - 质谱仪 - Google Patents

质谱仪 Download PDF

Info

Publication number
WO2022227313A1
WO2022227313A1 PCT/CN2021/109143 CN2021109143W WO2022227313A1 WO 2022227313 A1 WO2022227313 A1 WO 2022227313A1 CN 2021109143 W CN2021109143 W CN 2021109143W WO 2022227313 A1 WO2022227313 A1 WO 2022227313A1
Authority
WO
WIPO (PCT)
Prior art keywords
ionization source
optical fiber
mass spectrometer
measurement module
ionization
Prior art date
Application number
PCT/CN2021/109143
Other languages
English (en)
French (fr)
Inventor
高新强
沈俊
张麟德
李振兴
莫兆军
李珂
陈琪
Original Assignee
中国科学院江西稀土研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院江西稀土研究院 filed Critical 中国科学院江西稀土研究院
Publication of WO2022227313A1 publication Critical patent/WO2022227313A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • H01J49/161Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission using photoionisation, e.g. by laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0459Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for solid samples
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • H01J49/161Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission using photoionisation, e.g. by laser
    • H01J49/164Laser desorption/ionisation, e.g. matrix-assisted laser desorption/ionisation [MALDI]

Definitions

  • the present application relates to the field of mass spectrometers, for example, to a mass spectrometer.
  • Mass spectrometry is an analytical technique that separates the analyte and detects the structure and type of the analyte by the difference in the mass-to-charge ratio of the ions.
  • the more common mass spectrometers include electron bombardment sources, electrospray ionization sources, atmospheric pressure chemical ionization sources, matrix-assisted laser desorption ionization sources, and inductively coupled plasma sources. Since the ionization mechanisms of these various ionization sources are different, these various ionization sources have their own suitable samples.
  • the electron bombardment source is an ionization source often used in conjunction with gas chromatography.
  • the electron bombardment source consists of an ionization chamber with a pair of magnetic poles, a direct thermal electron emitter (filament) and a set of magnetic focusing lenses.
  • Electrospray ionization sources are often used in combination with liquid chromatography and high performance liquid chromatography. Electrospray ionization sources are composed of capillaries, high-voltage electrostatic spray heads, heating gas nozzles, and auxiliary gas nozzles.
  • the atmospheric pressure chemical ionization source is often used in combination with liquid chromatography and high performance liquid chromatography.
  • the atmospheric pressure chemical ionization source is composed of a capillary, a heating pipe section and a nozzle, and a corona discharge electrode.
  • the matrix-assisted laser desorption ionization source is usually used in conjunction with other instruments.
  • the mass analyzer matched with the matrix-assisted laser desorption ionization source is mainly composed of a 337 nanometer (nm) nitrogen molecular pulse laser and a matching target.
  • the inductively coupled plasma source is used in combination with ion chromatography.
  • the inductively coupled plasma source is set to distinguish different valence states, and is mainly composed of an atomization chamber, a radio frequency (RF) coil, an ignition head and an ionization nozzle.
  • RF radio frequency
  • the above-mentioned various ionization sources have the problems of insufficient high-energy layer ions, low ion temperature of the plasma, and inability to inject solid samples into the detection sample.
  • the present application provides a mass spectrometer, which has an atmospheric-pressure high-temperature plasma torch, can realize atmospheric-pressure solid sample injection, provides an accurate detection method, replaces the tedious sample digestion process of the mass spectrometer, and realizes solid substances such as rare earth elements. High-precision detection of the elemental composition of
  • a mass spectrometer the mass spectrometer ionization source of the mass spectrometer is surface coupled induced plasma
  • the mass spectrometer includes an ionization source device, a mass analysis device and an ion detection device, wherein the ionization source The source device, the mass analysis device and the ion detection device are connected in sequence
  • the ionization source device includes a gas distribution system, an optical fiber line, a fiber laser, an optical fiber end, a working medium gas, a primary pump source, a solid feeding device and an ionization source generation chamber
  • the top of the ionization source generation chamber is connected to the gas distribution system through the first pipeline channel
  • the bottom end of the ionization source generation chamber is connected to the mass analysis device through the second pipeline channel
  • the fiber laser is connected to the optical fiber
  • the first end of the line is connected, and the second end of the fiber line is connected with the fiber end; the fiber end is arranged inside the hollow cavity of the ionization source
  • the gas distribution system is configured to store the working medium gas and control the working medium gas to enter the ionization source generating chamber;
  • the fiber laser is configured to emit electromagnetic waves, and the fiber line is configured to The electromagnetic wave is transmitted to the optical fiber tip, and the optical fiber tip is configured to receive the electromagnetic wave and form a surface plasmon wave on the surface of the optical fiber tip, and the surface plasmon wave is configured to interact with the working medium gas.
  • the pump light is set to excite the surface coupling induced plasma
  • the solid feeding device is set to send the solid detection sample to aerosol
  • the state of the ionization source is sent to the ionization source generation chamber, so that the excited surface coupling-induced plasma ionizes the solid detection sample
  • the mass analysis device is set to ionize the ionized solid detection sample. The abundance is detected; the ion detection device is configured to analyze the composition, structure and type of the solid detection sample according to the detection result of the mass analysis device.
  • the above-mentioned optical fiber end includes an optical fiber end core and an optical fiber end shell;
  • the optical fiber end core is the fiber core left by removing the protective sheath from the optical fiber wire, and the optical fiber end core extends into the optical fiber end shell;
  • the optical fiber The end housing is located outside the fiber end core, and wraps the fiber end core.
  • the above-mentioned optical fiber end housing is made of metal or alloy material.
  • the above-mentioned ionization source device further includes a secondary pump source; the secondary pump source is arranged below the solid feeding device.
  • the above-mentioned solid feeding device comprises a solid detection sample, a screw feeder and a venturi; the first end of the venturi is connected to the ionization source generation chamber, and the second end of the venturi is connected to the screw feeder ; The solid detection sample is located inside the screw feeder.
  • the inner cavity of the ionization source generation chamber includes a primary coupling cavity and a secondary coupling cavity; the influence range of the pump light emitted by the primary pump source in the inner cavity of the ionization source generation chamber is the primary coupling cavity; The influence range of the pump light emitted by the secondary pump source in the inner cavity of the ionization source generating chamber is the secondary coupling cavity.
  • the above-mentioned mass spectrometer further includes a measurement module, and the measurement module includes a general control module, a pressure measurement module, an optical measurement module, an electrical measurement module, and a temperature measurement module; the switchboard module is respectively connected with the optical measurement module and the electrical measurement module.
  • the temperature measurement module and the pressure measurement module are connected by data lines;
  • the optical measurement module includes an optical measurement interface;
  • the electrical measurement module includes an electrical measurement interface;
  • the temperature measurement module includes a temperature measurement interface;
  • the pressure measurement module includes Pressure measurement interface;
  • the optical measurement interface, electrical measurement interface, temperature measurement interface and pressure measurement interface are respectively arranged inside the ionization source generating chamber.
  • the mass spectrometer is capable of resolving the molecular weight range of the solid detection sample from 1 kilodalton (kDa) to 100 kDa.
  • the mass spectrometer ionization source device can ionize elements with ionization energy greater than 10 electron volts (eV), and the ionization degree can reach 50%-99.99%.
  • the environmental concentration range of the pretreatment salt solution to which the mass spectrometer is adapted to be detected is 1.0 *100 mol/liter (mol/L) to 1.0*10 ⁇ 6 mol/L.
  • FIG. 1 is a schematic structural diagram of a mass spectrometer provided in an embodiment of the present application.
  • 1-Ionization source device 2-Mass analysis device; 3-Ion detection device; 4-Gas distribution system; 5-Fiber cable; 6-Fiber laser; 7-Fiber end; 8-Fiber end core ; 9-Fiber end housing; 10- Working medium gas; 11- Primary pump source; 12- Solid feeding device; 13- Solid detection sample; 14- Screw feeder; 15- Venturi tube; 16- Ionization source generation chamber; 17-first-stage coupling cavity; 18-second-stage coupling cavity; 19-second-stage pump source; 20-high temperature baffle; 21-pressure measurement interface; 22-optical measurement interface; 23-electrical measurement Interface; 24- temperature measurement interface; 25- total control module.
  • the terms “upper”, “lower”, “left”, “right”, “front”, “rear”, “inside”, “outside”, “top” and “bottom” indicate the orientation or positional relationship based on the drawings.
  • the orientation or positional relationship shown is only for the convenience of describing the present application and simplifying the description, rather than indicating or implying that the indicated device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore should not be construed as a reference to the present application. limit.
  • the terms “first,” “second,” and “third” are used for descriptive purposes only and should not be construed to indicate or imply relative importance.
  • the surface coupling induced plasma ionization source can solve the above problems.
  • the formation principle of the surface coupling-induced plasmon ionization source is as follows: the surface plasmons of some nanomaterials with sufficiently narrow band gaps are confined to the nanoscale particle boundaries, and the excitation of surface plasmons has great wave vector uncertainty, and also Therefore, the requirement of the surface plasmon excitation on the resonance angle of the surface plasmon coupling is greatly reduced, and it is easy to achieve wave vector matching through the far field.
  • the wavelength is suitable, the surface plasmons of nanomaterials have the possibility of far-field excitation.
  • the surface of these nanomaterials excites surface plasmons, and the surface plasmons diffuse to the entire interface of the nanomaterials through the surface plasmon waves.
  • the molecules with the same electric multipole moment will be adsorbed on the surface of nanomaterials through multipole-multipole interaction.
  • the energy of the plasmon will be transferred to the adsorbed molecule through the multi-level-multilevel interaction, and the electrons on the adsorbed molecule will also participate in the nanomaterial's ionization.
  • the surface plasmon wave on the surface In the surface plasmon wave on the surface, it diffuses to the boundary of the material. At this time, the molecule is converted into the corresponding ion, loses or weakens the interaction with the nanomaterial, and dissociates and adsorbs from the nanomaterial, and is released in the form of ions.
  • the electromagnetic wave In the process of dissociation, when the wavelength of the electromagnetic wave fed by the far field is suitable, the electromagnetic wave will also be absorbed and the degree of ionization will be improved, thereby forming a high-energy plasma torch.
  • a mass spectrometer includes an ionization source device 1, a mass analysis device 2, an ion detection device 3 and a measurement module.
  • the ionization source device 1 can use the surface coupling generated by the ionization source device 1 to induce plasma to ionize the solid detection sample 13 to convert the solid detection sample 13 into ions.
  • the mass analyzer 2 can detect the mass-to-charge ratio and abundance of ions.
  • the ion detection device 3 can detect the composition, structure and type of the solid detection sample 13 .
  • the measurement module can detect the internal state of the ionization source generating chamber 16 , and then adjust and control the ionization source device 1 .
  • the ionization source device 1 includes a gas distribution system 4, an optical fiber line 5, a fiber laser 6, an optical fiber end 7, a working medium gas 10, a primary pump source 11, a solid feeding device 12, an ionization source generation chamber 16, and a secondary pump.
  • Puyuan 19 and high temperature resistant baffle 20 The gas distribution system 4 is configured to store the working gas 10 and has a regulating effect on the working gas 10 entering the ionization source generating chamber 16 .
  • the ionization source generation chamber 16 is a hollow chamber, which can prevent the generated surface coupling-induced plasma from diffusing to the outside world, constrain the surface coupling-induced plasma to fully mix with the solid detection sample 13, and realize ionization of the solid detection sample 13, so as to prevent the generated surface coupling-induced plasma from diffusing to the outside world.
  • the solid detection sample 13 is converted to ions.
  • the fiber laser 6 is capable of emitting electromagnetic waves.
  • the optical fiber line 5 can transmit the electromagnetic wave emitted by the fiber laser 6 to the optical fiber end 7 .
  • the optical fiber end 7 receives electromagnetic waves, forms surface plasmon waves on the surface of the optical fiber end 7 and couples the working medium gas 10 to induce ionization of the working medium gas 10 .
  • the working gas 10 is ionized inside the ionization source generation chamber 16 to form plasma.
  • the first-stage pump source 11 emits pump light to excite the formed plasma, enhance the ionization degree of the working gas 10, increase the number of high-energy level ions, and increase the temperature of the plasma.
  • the solid feeding device 12 can transport the solid detection sample 13 to the ionization source generation chamber 16 in an aerosol state, and has a regulating effect on the solid detection sample 13 entering the ionization source generation chamber 16 .
  • the secondary pump source 19 emits pump light, which excites the plasma excited by the primary pump source 11 again, enhances the ionization degree of the working gas 10 again, increases the number of high-level ions again, and further improves the plasma
  • the solid detection sample 13 is converted into charged ions more comprehensively, so that after the detection sample enters the mass analysis device 2, the mass analysis device 2 can accurately measure the detection sample.
  • the high temperature resistant baffle 20 can guide the solid detection sample 13 into the secondary coupling cavity 18 inside the ionization source generating chamber 16 .
  • the optical fiber end 7 includes an optical fiber end core 8 and an optical fiber end housing 9 .
  • the fiber end core 8 can provide electromagnetic waves emitted by the fiber laser 6 to the inside of the fiber end 7 , so that the fiber end 7 gathers the electromagnetic waves.
  • the optical fiber end housing 9 can absorb the electromagnetic waves released by the fiber end core 8, form evanescent waves on the surface of the optical fiber end housing 9, match the surface plasmon waves with short wave vectors, and then couple with the working medium gas 10. , to induce ionization of the working gas 10 .
  • the solid feeding device 12 includes a solid detection sample 13 , a screw feeder 14 , and a venturi 15 .
  • the screw feeder 14 can store the solid detection sample 13 and control the solid detection sample 13 to enter the venturi tube 15 .
  • the venturi 15 is capable of converting the solid detection sample 13 from a solid state to an aerosol state.
  • the internal cavity of the ionization source generating chamber 16 includes a primary coupling cavity 17 and a secondary coupling cavity 18 .
  • the influence range of the pump light emitted by the primary pump source 11 in the inner cavity of the ionization source generating chamber 16 is the primary coupling cavity 17 .
  • the influence range of the pump light emitted by the secondary pump source 19 in the inner cavity of the ionization source generating chamber 16 is the secondary coupling cavity 18 .
  • the measurement module includes a master control module, a pressure measurement module, an optical measurement module, an electrical measurement module and a temperature measurement module.
  • the general control module is the central processing unit of the ionization source device 1, and the general control module can issue instructions to the pressure measurement module, optical measurement module, electrical measurement module and temperature measurement module, and receive pressure measurement modules, optical measurement modules, and electrical measurement modules. and the feedback information from the temperature measurement module.
  • the pressure measurement module can measure the pressure of the working gas 10 inside the ionization source device 1 , and then measure the density of the working gas 10 .
  • the optical measurement module can measure the temperature of ions inside the ionization source device 1 .
  • the electrical measurement module can measure the temperature of electrons inside the ionization source device 1 .
  • the temperature measurement module can measure the temperature of the plasma inside the ionization source device 1 .
  • the pressure measurement module, the optical measurement module, the electrical measurement module, and the temperature measurement module can comprehensively and accurately measure the state of the plasma inside the ionization source device 1 .
  • a mass spectrometer includes an ionization source device 1 , a mass analysis device 2 and an ion detection device 3 , and the ionization source device 1 , the mass analysis device 2 and the ion detection device 3 are connected in sequence.
  • the ionization source device 1 includes a gas distribution system 4, an optical fiber line 5, a fiber laser 6, an optical fiber end 7, a working medium gas 10, a primary pump source 11, a solid feeding device 12, an ionization source generation chamber 16, two Stage pump source 19 and high temperature resistant baffle 20.
  • the top end of the ionization source generation chamber 16 is connected to the gas distribution system 4 through a first pipeline channel, and the bottom end of the ionization source generation chamber 16 is connected to the mass analyzer 2 through a second pipeline channel.
  • the fiber laser 6 is connected to a first end of an optical fiber cable 5
  • the second end of the optical fiber cable 5 is connected to an optical fiber end 7 .
  • the optical fiber end 7 is arranged inside the hollow cavity of the ionization source generation chamber 16, optionally, the fiber end 7 is fixedly arranged in the middle of the upper part of the hollow cavity of the ionization source generation chamber 16, and the fiber end 7 is close to
  • the ionization source generation chamber 16 is connected to the first pipeline channel of the gas distribution system 4 .
  • the working gas 10 can be filled inside the ionization source generation chamber 16 .
  • the primary pump source 11 is arranged at the upper end of the ionization source generation chamber 16 , and the primary pump source 11 provides pump light to the interior of the ionization source generation chamber 16 through the first through hole of the ionization source generation chamber 16 .
  • the secondary pump source 19 is disposed at the lower end of the ionization source generation chamber 16 , and the secondary pump source 19 provides pump light to the inside of the ionization source generation chamber 16 through the second through hole of the ionization source generation chamber 16 .
  • the solid feeding device 12 is arranged at the middle end of the ionization source generation chamber 16, that is, the solid feeding device 12 is arranged below the primary pump source 11, and the secondary pump source 19 is arranged at the solid feed. below the device 12 .
  • the high temperature resistant baffle 20 is arranged inside the ionization source generation chamber 16 , and the high temperature resistant baffle 20 is close to or connected to the third through hole connecting the solid feeding device 12 and the ionization source generation chamber 16 .
  • the optical fiber end 7 includes an optical fiber end core 8 and an optical fiber end housing 9 .
  • the optical fiber end core 8 is the remaining fiber core after removing the protective sheath from the optical fiber cable, and extends into the fiber end housing 9 .
  • the optical fiber end housing 9 is located outside the optical fiber end core 8 to realize the wrapping of the optical fiber end core 8 .
  • the solid feeding device 12 includes a solid testing sample 13 , a screw feeder 14 and a venturi 15 .
  • the first end of the venturi tube 15 is connected to the ionization source generating chamber 16 , and the second end of the venturi tube 15 is connected to the screw feeder 14 .
  • the solid detection sample 13 is located inside the screw feeder 14 .
  • the internal cavity of the ionization source generating chamber 16 includes a primary coupling cavity 17 and a secondary coupling cavity 18 .
  • the optical fiber end 7 is arranged inside the primary coupling cavity 17 .
  • the switchboard module is connected with the optical measurement module, the electrical measurement module, the temperature measurement module and the pressure measurement module through data lines.
  • the optical measurement module includes an optical measurement interface 22 .
  • the electrical measurement module includes an electrical measurement interface 23 .
  • the temperature measurement module includes a temperature measurement interface 24 .
  • the pressure measurement module includes a pressure measurement interface 21 .
  • the optical measurement interface 22 , the electrical measurement interface 23 , the temperature measurement interface 24 and the pressure measurement interface 21 are all arranged inside the ionization source generation chamber 16 .
  • the optical fiber end housing 9 is made of metal or alloy material. Optionally, the fiber end housing 9 is sprayed on the fiber end core 8 .
  • the working gas 10 includes one or more of inert gas, hydrogen, nitrogen, and ammonia.
  • the temperature range of the ions of the surface coupling induced plasma is 1.0 ⁇ 10 4 Kelvin (K)-1.0 ⁇ 10 5 K; the temperature of the surface coupling induced plasma can reach 2.98 ⁇ 10 2 K-1.0 ⁇ 10 3 K.
  • the solid detection sample 13 is in an aerosol state when it enters the interior of the ionization source generating chamber 16 .
  • the range of molecular weights of the solid detection sample 13 that the mass spectrometer can resolve is 1 kDa to 100 kDa.
  • the ionization source device 1 of the mass spectrometer can ionize elements with ionization energy greater than 10 eV, and the ionization degree can reach 50%-99.99%.
  • the concentration range of the pretreatment salt solution environment suitable for the detection of the mass spectrometer is 1.0*10 0 mol/L-1.0*10 -6 mol/L.
  • the highest value of the degree of ionization can reach 50%-99.99%.
  • the fiber laser emits electromagnetic waves to the fiber end shell through the fiber end core; the electromagnetic wave gathering effect is formed inside the fiber end; the evanescent wave is formed on the outer surface of the fiber end shell; by adjusting the electromagnetic wave, the evanescent wave and the fiber end
  • the plasma wave on the outer surface of the shell is matched to form a stable plasma wave on the outer surface of the fiber end; the gas distribution system provides sufficient working gas to the ionization source generation chamber; the working gas and the outer surface of the fiber end shell
  • the plasma wave coupling induces the ionization of the working medium gas to form a surface coupling-induced plasma;
  • the first-stage pump source excites the surface-coupling-induced plasma, enhances the degree of ionization, and stimulates the conversion of ions into high-energy ions; solid detection samples are aerosols It enters the ionization source generation chamber and mixes with the surface coupling-induced plasma formed inside the primary coupling cavity; the surface coupling-induced plasma enters the secondary coupling cavity together with the solid
  • the sample is ionized; the secondary pump source further stimulates the surface coupling induced plasma, further enhances the degree of ionization, and further stimulates the conversion of ions into high-level ions, so that the solid detection sample can achieve more sufficient ionization; the solid detection sample enters the mass after sufficient ionization
  • the analysis device and the mass analysis device detect and analyze the mass-to-charge ratio and abundance of the charged ions formed by the solid detection sample; the ion detection device analyzes the composition, structure and type of the solid detection sample according to the detection result of the mass analysis device.
  • the mass spectrometer of this application can:
  • the solid sample injection method is used to replace the cumbersome sample digestion and pretreatment method to eliminate the interference of the matrix effect, simplify the mass spectrometry detection procedure, and realize the high precision mass spectrometry detection.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本申请提供了一种质谱仪,包括电离源装置、质量分析装置和离子检测装置,所述电离源装置、质量分析装置和离子检测装置顺序连接。所述电离源装置包括配气系统、光纤线、光纤激光器、光纤端头、工质气体、一级泵浦源、固体进料装置和电离源生成室。

Description

质谱仪
本申请要求在2021年04月28日提交中国专利局、申请号为202110467638.6的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及质谱仪领域,例如涉及一种质谱仪。
背景技术
质谱技术是一种通过离子的质荷比的差异分离待测物并检测待测物的结构与类型的分析技术。比较常见的质谱仪包括电子轰击源,电喷雾电离源,大气压化学电离源,基质辅助激光解析电离源、电感耦合等离子体源这多种电离源。由于这多种电离源的电离机理不同,因此,这多种电离源具有各自适合的样品。
电子轰击源是常与气相色谱联用的电离源,电子轰击源由带有一对磁极的电离室、直热式电子发射极(灯丝)与一组磁聚焦透镜组成。电喷雾电离源常常与液相色谱和高效液相色谱联用,电喷雾电离源由毛细管、高压静电喷雾头与加热气喷头、以及辅助气喷头组成。大气压化学电离源常常与液相色谱和高效液相色谱联用,大气压化学电离源由毛细管、加热管段与喷头、以及电晕放电电极组成。基质辅助激光解析电离源通常与其他仪器联用,与基质辅助激光解析电离源配套的质量分析器主要由337纳米(nm)的氮分子脉冲激光器与配套靶组成。电感耦合等离子体源与离子色谱联用,电感耦合等离子体源设置为分辨不同的价态,主要是由雾化室、射频(Radio Frequency,RF)线圈、点火头和离子化喷头等部分组成。
上述多种电离源存在高能量层离子不足、等离子体的离子温度低,以及检测样品无法固体进样的问题。
发明内容
本申请提供一种质谱仪,该质谱仪拥有常压高温等离子体炬,可以实现常压固体进样,提供精确的检测手段,取代质谱仪繁琐的样品消解处理的过程,实现稀土元素等固体物质的元素成分的高精度检测。
本申请采取的技术方案是:一种质谱仪,所述质谱仪的质谱电离源为表面耦合诱导等离子体,所述质谱仪包括电离源装置、质量分析装置和离子检测装置,其中,所述电离源装置、质量分析装置和离子检测装置顺序连接;所述电 离源装置包括配气系统、光纤线、光纤激光器、光纤端头、工质气体、一级泵浦源、固体进料装置和电离源生成室;所述电离源生成室的顶端通过第一管路通道与配气系统连接,所述电离源生成室的底端通过第二管路通道与质量分析装置连接;所述光纤激光器与光纤线的第一端连接,所述光纤线的第二一端与光纤端头连接;所述光纤端头设置在电离源生成室的中空腔体的内部;所述工质气体能够充满在电离源生成室的内部;所述一级泵浦源通过电离源生成室的第一通孔,向电离源生成室内部提供泵浦光;所述固体进料装置设置在一级泵浦源的下方。
可选地,所述配气系统设置为存放所述工质气体,并控制所述工质气体进入所述电离源生成室;所述光纤激光器设置为发射电磁波,所述光纤线设置为将所述电磁波传递至所述光纤端头,所述光纤端头设置为接收所述电磁波并在所述光纤端头的表面形成表面等离子体波,所述表面等离子体波设置为与所述工质气体耦合,诱导所述工质气体电离,以形成表面耦合诱导等离子体;所述泵浦光设置为对所述表面耦合诱导等离子进行激励;所述固体进料装置设置为将固体检测样品以气溶胶的状态输送至所述电离源生成室以使得激励后的表面耦合诱导等离子体对所述固体检测样品进行电离;所述质量分析装置设置为对电离后的固体检测样品的离子的质荷比与丰度进行检测;所述离子检测装置设置为根据所述质量分析装置的检测结果,分析出所述固体检测样品的成分、结构和类型。
上述光纤端头包括光纤端头纤芯和光纤端头外壳;所述光纤端头纤芯是光纤线去掉保护外皮剩下的纤芯,光纤端头纤芯延伸进入光纤端头外壳;所述光纤端头外壳位于光纤端头纤芯的外部,实现对光纤端头纤芯的包裹。
上述光纤端头外壳为金属或合金材料。
上述电离源装置还包括二级泵浦源;所述二级泵浦源设置在固体进料装置的下方。
上述固体进料装置包括固体检测样品、螺杆下料器和文丘里管;所述文丘里管的第一端与电离源生成室连接,所述文丘里管的第二端与螺杆下料器连接;所述固体检测样品位于螺杆下料器的内部。
上述电离源生成室的内部腔体包括一级耦合腔和二级耦合腔;所述一级泵浦源发射的泵浦光在电离源生成室的内部腔体的影响范围为一级耦合腔;所述二级泵浦源发射的泵浦光在电离源生成室的内部腔体的影响范围为二级耦合腔。
可选地,上述质谱仪还包括测量模块,所述测量模块包括总控模块、压力 测量模块、光学测量模块、电学测量模块、温度测量模块;所述总机模块分别与光学测量模块、电学测量模块、温度测量模块、压力测量模块均通过数据线连接;所述光学测量模块包括光学测量接口;所述电学测量模块包括电学测量接口;所述温度测量模块包括温度测量接口;所述压力测量模块包括压力测量接口;所述光学测量接口、电学测量接口、温度测量接口和压力测量接口分别设置在电离源生成室的内部。
可选地,质谱仪能够分辨固体检测样品的分子量范围是1千道尔顿(kDa)-100kDa。
可选地,质谱仪电离源装置能够将电离能大于10电子伏特(eV)的元素电离,电离度能够达到50%-99.99%。
可选地,质谱仪适应检测的前处理盐溶液环境浓度范围为1.0*10 0摩尔/升(mol/L)到1.0*10 -6mol/L。
附图说明
下面结合附图和实施例对本申请说明。
图1是本申请实施例提供的一种质谱仪的结构示意图。
图中:1-电离源装置;2-质量分析装置;3-离子检测装置;4-配气系统;5-光纤线;6-光纤激光器;7-光纤端头;8-光纤端头纤芯;9-光纤端头外壳;10-工质气体;11-一级泵浦源;12-固体进料装置;13-固体检测样品;14-螺杆下料器;15-文丘里管;16-电离源生成室;17-一级耦合腔;18-二级耦合腔;19-二级泵浦源;20-耐高温挡板;21-压力测量接口;22-光学测量接口;23-电学测量接口;24-温度测量接口;25-总控模块。
具体实施方式
下面结合附图和具体实施例对本申请作描述,本申请的实施方式并不限于以下实施例。
在本申请的描述中,术语“上”“下”“左”“右”“前”“后”“内”“外”“顶”“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。术语“第一”“第二”“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
表面耦合诱导等离子体电离源能够解决上述问题。表面耦合诱导等离子体 电离源的形成原理如下:一些带隙足够窄的纳米材料的表面等离子体被约束在纳米尺度的颗粒边界上,表面等离子体的激发具有极大的波矢不确定性,也因此表面等离子体的激发对表面等离子体耦合的共振角的要求大大下降,易于通过远场实现波矢匹配。当波长合适时,纳米材料的表面等离子体即具备远场激发的可能。一旦受到特定波长的电磁波远场激发时,这些纳米材料的表面即励激起表面等离子体,表面等离子体通过表面等离子体波扩散至整个纳米材料的界面。当这类纳米材料的表面同时又具有特定的电多极矩时,同样具有电多极矩的分子会通过多极-多极相互作用吸附在纳米材料的表面上。此时,一旦纳米材料的表面被励激起表面等离子体,等离子体的能量就会通过多级-多级相互作用传递至吸附的分子上,同时吸附的分子上的电子也参与到纳米材料的表面的表面等离子体波中,从而扩散至材料的边界,此时分子即转化为对应的离子,失去或减弱与纳米材料的相互作用,并从纳米材料上解离吸附,以离子的形式释放。在解离的过程中,当远场馈入的电磁波波长适宜时,还将吸收电磁波并提高电离程度,进而形成高能的等离子体炬。
一种质谱仪包括电离源装置1、质量分析装置2、离子检测装置3和测量模块。
所述电离源装置1能够用电离源装置1产生的表面耦合诱导等离子体,对固体检测样品13进行电离,以将固体检测样品13转化为离子。所述质量分析装置2能够对离子的质荷比与丰度进行检测。所述离子检测装置3能够检测出固体检测样品13的成分、结构和类型。所述测量模块能够对电离源生成室16的内部状态进行检测,进而对电离源装置1进行调节和控制。
电离源装置1包括配气系统4、光纤线5、光纤激光器6、光纤端头7、工质气体10、一级泵浦源11、固体进料装置12、电离源生成室16、二级泵浦源19和耐高温挡板20。所述配气系统4设置为存放工质气体10,并对工质气体10进入电离源生成室16具有调节作用。所述电离源生成室16是一个中空腔室,能够防止生成的表面耦合诱导等离子体向外界扩散,约束表面耦合诱导等离子体和固体检测样品13充分混合,实现对固体检测样品13的电离,以将固体检测样品13转化为离子。所述光纤激光器6能够发射电磁波。所述光纤线5能够将光纤激光器6发射的电磁波传递至光纤端头7。所述光纤端头7通过接收电磁波,在光纤端头7的表面形成表面等离子体波以及耦合工质气体10,诱导工质气体10电离。所述工质气体10在电离源生成室16的内部被电离,形成等离子体。所述一级泵浦源11发射泵浦光,对形成的等离子体进行激励,增强工质气体10的电离程度,增加高能级离子的数量,提高等离子体的温度。所述固体进料装置12能够将固体检测样品13以气溶胶的状态输送至电离源生成室16,并对进入电离源生成室16的固体检测样品13具有调节作用。所述二级泵浦源19 发射泵浦光,对一级泵浦源11激励后的等离子体再次进行激励,再次增强工质气体10的电离程度,再次增加高能级离子的数量,进一步提高等离子体的温度,将固体检测样品13更全面地转化成为带电离子,使得检测样品进入质量分析装置2后,质量分析装置2能够对检测样品进行准确测定。所述耐高温挡板20能够引导固体检测样品13进入电离源生成室16的内部的二级耦合腔18。
所述光纤端头7包括光纤端头纤芯8和光纤端头外壳9。所述光纤端头纤芯8能够向光纤端头7的内部提供光纤激光器6发射的电磁波,使得光纤端头7集聚电磁波。所述光纤端头外壳9能够吸收光纤端头纤芯8释放的电磁波,在光纤端头外壳9的表面形成骤逝波,匹配波矢较短的表面等离子体波,进而与工质气体10耦合,诱导工质气体10电离。
所述固体进料装置12包括固体检测样品13、螺杆下料器14、文丘里管15。所述螺杆下料器14能够存放固体检测样品13,并控制固体检测样品13进入文丘里管15。所述文丘里管15能够将固体检测样品13从固体状态转化成气溶胶状态。
电离源生成室16的内部腔体包括一级耦合腔17和二级耦合腔18。所述一级泵浦源11发射的泵浦光在电离源生成室16的内部腔体的影响范围为一级耦合腔17。所述二级泵浦源19发射的泵浦光在电离源生成室16的内部腔体的影响范围为二级耦合腔18。
测量模块包括总控模块、压力测量模块、光学测量模块、电学测量模块和温度测量模块。
所述总控模块是电离源装置1的中央处理单元,总控模块能够对压力测量模块、光学测量模块、电学测量模块和温度测量模块发布指令和接收压力测量模块、光学测量模块、电学测量模块和温度测量模块反馈的信息。所述压力测量模块能够测量电离源装置1的内部的工质气体10的压力,进而测定工质气体10的密度。所述光学测量模块能够测量电离源装置1的内部的离子的温度。所述电学测量模块能够测量电离源装置1的内部的电子的温度。所述温度测量模块能够测量电离源装置1的内部的等离子体的温度。所述压力测量模块、光学测量模块、电学测量模块、温度测量模块能够全面准确地测定电离源装置1的内部的等离子的状态。
一种质谱仪包括电离源装置1、质量分析装置2和离子检测装置3,所述电离源装置1、质量分析装置2和离子检测装置3顺序连接。
所述电离源装置1包括配气系统4、光纤线5、光纤激光器6、光纤端头7、工质气体10、一级泵浦源11、固体进料装置12、电离源生成室16、二级泵浦 源19和耐高温挡板20。所述电离源生成室16的顶端通过第一管路通道与配气系统4连接,所述电离源生成室16的底端通过第二管路通道与质量分析装置2连接。所述光纤激光器6与光纤线5的第一端连接,所述光纤线5的第二端与光纤端头7连接。所述光纤端头7设置在电离源生成室16的中空腔体的内部,可选地,光纤端头7固定设置在电离源生成室16的中空腔体的上部的中间,光纤端头7靠近电离源生成室16与配气系统4连接的第一管路通道。所述工质气体10能够充满在电离源生成室16的内部。
所述一级泵浦源11设置在电离源生成室16的上端,所述一级泵浦源11通过电离源生成室16的第一通孔,向电离源生成室16的内部提供泵浦光。所述二级泵浦源19设置在电离源生成室16的下端,所述二级泵浦源19通过电离源生成室16的第二通孔,向电离源生成室16内部提供泵浦光。所述固体进料装置12设置在电离源生成室16的中端,即所述固体进料装置12设置在一级泵浦源11的下方,所述二级泵浦源19设置在固体进料装置12的下方。所述耐高温挡板20设置在电离源生成室16的内部,耐高温挡板20靠近或连接在固体进料装置12与电离源生成室16连接的第三通孔处。
所述光纤端头7包括光纤端头纤芯8和光纤端头外壳9。所述光纤端头纤芯8是光纤线去掉保护外皮剩下的纤芯,延伸进入光纤端头外壳9。所述光纤端头外壳9位于光纤端头纤芯8的外部,实现对光纤端头纤芯8的包裹。
所述固体进料装置12包括固体检测样品13、螺杆下料器14和文丘里管15。所述文丘里管15的第一端与电离源生成室16连接,所述文丘里管15的第二端与螺杆下料器14连接。所述固体检测样品13位于螺杆下料器14的内部。
所述电离源生成室16的内部腔体包括一级耦合腔17和二级耦合腔18。所述光纤端头7设置在一级耦合腔17的内部。所述固体检测样品13与一级泵浦源11激励后的表面耦合诱导等离子体混合后,在二级耦合腔18的内部,检测样品通过二级泵浦源19对表面耦合诱导等离子体的激励进一步电离,使得检测样品进入质量分析装置2后,质量分析装置2能够对检测样品进行准确测定。
所述总机模块与光学测量模块、电学测量模块、温度测量模块和压力测量模块均通过数据线连接。所述光学测量模块包括光学测量接口22。所述电学测量模块包括电学测量接口23。所述温度测量模块包括温度测量接口24。所述压力测量模块包括压力测量接口21。所述光学测量接口22、电学测量接口23、温度测量接口24和压力测量接口21均设置在电离源生成室16的内部。
所述光纤端头外壳9为金属或合金材料。可选地,光纤端头外壳9喷涂在光纤端头纤芯8上。所述工质气体10包括惰性气体、氢气、氮气、氨气的一种或多种。所述表面耦合诱导等离子体的离子的温度的范围为1.0×10 4开尔文(K) -1.0×10 5K;所述表面耦合诱导等离子体的温度可达到2.98×10 2K-1.0×10 3K。所述固体检测样品13进入电离源生成室16的内部时为气溶胶状态。质谱仪能够分辨的固体检测样品13的分子量的范围是1kDa-100kDa。质谱仪的电离源装置1能够将电离能大于10eV的元素电离,电离度可达到50%-99.99%。质谱仪适应检测的前处理盐溶液环境的浓度的范围为1.0*10 0mol/L-1.0*10 -6mol/L。可选地,电离度的最高值能够达到50%-99.99%。
光纤激光器通过光纤端头纤芯向光纤端头外壳发射电磁波;光纤端头的内部形成电磁波集聚效应;在光纤端头外壳的外表面形成骤逝波;通过调整电磁波使得骤逝波与光纤端头外壳的外表面的等离子体波匹配,使得光纤端头的外表面形成稳定的等离子体波;配气系统向电离源生成室提供充足的工质气体;工质气体与光纤端头外壳的外表面的等离子体波耦合,诱导工质气体电离,形成表面耦合诱导等离子体;一级泵浦源激励表面耦合诱导等离子体,增强电离程度,并激励离子转化成为高能级离子;固体检测样品以气溶胶的状态进入电离源生成室,并与一级耦合腔内部形成的表面耦合诱导等离子体混合;表面耦合诱导等离子体与固体检测样品一同进入二级耦合腔的内部,表面耦合诱导等离子体对固体检测样品电离;二级泵浦源进一步激励表面耦合诱导等离子体,进一步增强电离程度,并进一步激励离子转化成为高能级离子,使得固体检测样品实现更充分的电离;固体检测样品经过充分电离后进入质量分析装置,质量分析装置对固体检测样品形成的带电离子的质荷比和丰度进行检测分析;离子检测装置根据质量分析装置的检测结果,分析出固体检测样品的成分、结构和类型。
本申请的质谱仪可以:
一、基于表面耦合诱导等离子体,具有高能级离子的数量多、等离子体的温度高、检测样品的电离程度高的特性,实现等离子体的高能量密度、高馈能效率,实现高精度质谱检测。
二、基于表面耦合诱导等离子体,具有更高的检测样品的电离程度,更精确地测定检测样品的离子质量,消除质量效应干扰,避免质量相近的离子间的干扰,提高质谱信噪比,实现高精度质谱检测。
三、基于表面耦合诱导等离子体,采用固体进样方式取代繁琐的样品消解前处理的方式进样,消除基质效应干扰,简化质谱检测程序,实现高精度质谱检测。

Claims (11)

  1. 一种质谱仪,所述质谱仪的质谱电离源为表面耦合诱导等离子体,所述质谱仪包括:电离源装置、质量分析装置和离子检测装置,其中,所述电离源装置、所述质量分析装置和所述离子检测装置顺序连接;所述电离源装置包括配气系统、光纤线、光纤激光器、光纤端头、工质气体、一级泵浦源、固体进料装置和电离源生成室;所述电离源生成室的顶端通过第一管路通道与所述配气系统连接,所述电离源生成室的底端通过第二管路通道与所述质量分析装置连接;所述光纤激光器与所述光纤线的第一端连接,所述光纤线的第二端与所述光纤端头连接;所述光纤端头设置在所述电离源生成室的中空腔体的内部;所述工质气体能够充满在所述电离源生成室的内部;所述一级泵浦源通过所述电离源生成室的第一通孔,向所述电离源生成室的内部提供泵浦光;所述固体进料装置设置在所述一级泵浦源的下方。
  2. 根据权利要求1所述的质谱仪,其中,
    所述配气系统设置为存放所述工质气体,并控制所述工质气体进入所述电离源生成室;
    所述光纤激光器设置为发射电磁波,所述光纤线设置为将所述电磁波传递至所述光纤端头,所述光纤端头设置为接收所述电磁波并在所述光纤端头的表面形成表面等离子体波,所述表面等离子体波设置为与所述工质气体耦合,诱导所述工质气体电离,以形成所述表面耦合诱导等离子体;
    所述泵浦光设置为对所述表面耦合诱导等离子进行激励;
    所述固体进料装置设置为将固体检测样品以气溶胶的状态输送至所述电离源生成室以使得激励后的表面耦合诱导等离子体对所述固体检测样品进行电离;
    所述质量分析装置设置为对电离后的固体检测样品的离子的质荷比与丰度进行检测;
    所述离子检测装置设置为根据所述质量分析装置的检测结果,分析出所述固体检测样品的成分、结构和类型。
  3. 根据权利要求1或2所述的质谱仪,其中,所述光纤端头包括光纤端头纤芯和光纤端头外壳;所述光纤端头纤芯是所述光纤线去掉保护外皮剩下的纤芯,所述光纤端头纤芯延伸进入所述光纤端头外壳;所述光纤端头外壳位于所述光纤端头纤芯的外部,实现对所述光纤端头纤芯的包裹。
  4. 根据权利要求3所述的质谱仪,其中,所述光纤端头外壳为金属或合金材料。
  5. 根据权利要求1或2所述的质谱仪,其中,所述电离源装置还包括二级泵浦源;所述二级泵浦源设置在所述固体进料装置的下方。
  6. 根据权利要求1或2所述的质谱仪,其中,所述固体进料装置包括固体检测样品、螺杆下料器和文丘里管;所述文丘里管的第一端与所述电离源生成室连接,所述文丘里管的第二端与所述螺杆下料器连接;所述固体检测样品位于所述螺杆下料器的内部。
  7. 根据权利要求1或2所述的质谱仪,其中,所述电离源生成室的内部腔体包括一级耦合腔和二级耦合腔;所述一级泵浦源发射的泵浦光在所述电离源生成室的内部腔体的影响范围为所述一级耦合腔;所述二级泵浦源发射的泵浦光在所述电离源生成室的内部腔体的影响范围为所述二级耦合腔。
  8. 根据权利要求1或2所述的质谱仪,还包括:测量模块,所述测量模块包括总控模块、压力测量模块、光学测量模块、电学测量模块和温度测量模块;所述总控模块与所述光学测量模块、所述电学测量模块、所述温度测量模块和所述压力测量模块均通过数据线连接;所述光学测量模块包括光学测量接口;所述电学测量模块包括电学测量接口;所述温度测量模块包括温度测量接口;所述压力测量模块包括压力测量接口;所述光学测量接口、所述电学测量接口、所述温度测量接口和所述压力测量接口设置在所述电离源生成室的内部。
  9. 根据权利要求6所述的质谱仪,其中,:所述质谱仪能够分辨的固体检测样品的分子量的范围是1kDa-100kDa。
  10. 根据权利要求1或2所述的质谱仪,其中,所述质谱仪的电离源装置能够将电离能大于10eV的元素电离。
  11. 根据权利要求1或2所述的质谱仪,其中,质谱仪适应检测的前处理盐溶液环境浓度的范围为1.0*10 0mol/L到1.0*10 -6mol/L。
PCT/CN2021/109143 2021-04-28 2021-07-29 质谱仪 WO2022227313A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110467638.6A CN114899079B (zh) 2021-04-28 2021-04-28 一种表面耦合诱导等离子体源的质谱电离源及相应质谱仪
CN202110467638.6 2021-04-28

Publications (1)

Publication Number Publication Date
WO2022227313A1 true WO2022227313A1 (zh) 2022-11-03

Family

ID=82714198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109143 WO2022227313A1 (zh) 2021-04-28 2021-07-29 质谱仪

Country Status (2)

Country Link
CN (1) CN114899079B (zh)
WO (1) WO2022227313A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121664A (ja) * 1983-12-02 1985-06-29 Murata Mfg Co Ltd 質量分析装置
CN101216459A (zh) * 2007-12-28 2008-07-09 中国科学技术大学 新型红外激光解吸/真空紫外单光子电离质谱分析装置
US20110049352A1 (en) * 2009-09-02 2011-03-03 Li Ding Ion source
CN109374596A (zh) * 2018-11-08 2019-02-22 天津大学 基于激光诱导击穿光谱的便携式烟气重金属元素检测系统
CN111479375A (zh) * 2020-05-08 2020-07-31 高维等离子体源科技(孝感)有限公司 一种表面耦合诱导电离技术及其对应的等离子体与等离子体器件

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050053974A1 (en) * 2003-05-20 2005-03-10 University Of Maryland Apparatus and methods for surface plasmon-coupled directional emission
CN203300593U (zh) * 2013-04-25 2013-11-20 马庆伟 一种用于maldi源的激光引入和样品成像的装置
US9875884B2 (en) * 2015-02-28 2018-01-23 Agilent Technologies, Inc. Ambient desorption, ionization, and excitation for spectrometry
CN107907530B (zh) * 2017-12-15 2023-11-14 华中科技大学 一种激光烧蚀辅助共振激光诱导击穿光谱检测方法及装置
CN111948193A (zh) * 2020-08-06 2020-11-17 成都西奇仪器有限公司 一种等离子体固样分析发射光谱仪

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121664A (ja) * 1983-12-02 1985-06-29 Murata Mfg Co Ltd 質量分析装置
CN101216459A (zh) * 2007-12-28 2008-07-09 中国科学技术大学 新型红外激光解吸/真空紫外单光子电离质谱分析装置
US20110049352A1 (en) * 2009-09-02 2011-03-03 Li Ding Ion source
CN109374596A (zh) * 2018-11-08 2019-02-22 天津大学 基于激光诱导击穿光谱的便携式烟气重金属元素检测系统
CN111479375A (zh) * 2020-05-08 2020-07-31 高维等离子体源科技(孝感)有限公司 一种表面耦合诱导电离技术及其对应的等离子体与等离子体器件

Also Published As

Publication number Publication date
CN114899079A (zh) 2022-08-12
CN114899079B (zh) 2023-04-14

Similar Documents

Publication Publication Date Title
US6797947B2 (en) Internal introduction of lock masses in mass spectrometer systems
US6617577B2 (en) Method and system for mass spectroscopy
US8598514B2 (en) AP-ECD methods and apparatus for mass spectrometric analysis of peptides and proteins
CN203386713U (zh) 离子源和质谱仪
CN105845540A (zh) 一种通过加热去溶剂化和离子化的方法与装置
US9433072B2 (en) Oxidation resistant induction devices
CN108538700A (zh) 一种质子转移反应离子源、质谱仪及其检测方法
CN104380089A (zh) 一种用于质谱仪器的改进接口
WO2022227313A1 (zh) 质谱仪
CN111653471A (zh) 一种电喷雾萃取真空紫外光复合电离源
CN206100590U (zh) 装置、非感应式耦合等离子体装置、等离子体、套件、仪器、反应器、振荡器、系统和火炬电极组合件
JP2021524664A (ja) 放電チャンバ、ならびにそれを用いたイオン化デバイス、イオン化方法及びイオン化システム
Peng et al. Development of a new atmospheric pressure plasmaspray ionization for ambient mass spectrometry
Yin et al. Exploration and performance evaluation of microwave‐induced plasma with different discharge gases for ambient desorption/ionization mass spectrometry
CN211654768U (zh) 一种基于等离子体原理的质谱源内解离装置
JP4164027B2 (ja) 元素の質量分析のための装置および方法
CN216648221U (zh) 一种基于特斯拉线圈原理的质谱离子化装置
JPWO2020049693A1 (ja) 四重極質量分析装置
WO2022201705A1 (ja) 質量分析装置及び質量分析方法
WO2024004335A1 (ja) 質量分析方法及び質量分析装置
Wait Introduction to mass spectrometry
Mathur et al. Probing interatomic potentials by ion translational energy spectrometry: A new crossed molecular beams apparatus
CN116403883A (zh) 一种单个细胞的质谱检测装置和方法
JPH10269985A (ja) 質量分析装置及び質量分析方法
CN113675070A (zh) 一种基于等离子体原理的质谱源内解离方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938779

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21938779

Country of ref document: EP

Kind code of ref document: A1