WO2022227183A1 - 一种铜渣热态涡流贫化方法 - Google Patents
一种铜渣热态涡流贫化方法 Download PDFInfo
- Publication number
- WO2022227183A1 WO2022227183A1 PCT/CN2021/096801 CN2021096801W WO2022227183A1 WO 2022227183 A1 WO2022227183 A1 WO 2022227183A1 CN 2021096801 W CN2021096801 W CN 2021096801W WO 2022227183 A1 WO2022227183 A1 WO 2022227183A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- depletion
- copper
- slag
- copper slag
- eddy current
- Prior art date
Links
- 239000010949 copper Substances 0.000 title claims abstract description 108
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 104
- 239000002893 slag Substances 0.000 title claims abstract description 102
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 97
- 238000003113 dilution method Methods 0.000 title abstract 2
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 31
- 238000000034 method Methods 0.000 claims abstract description 31
- 238000003756 stirring Methods 0.000 claims abstract description 29
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 15
- 238000006243 chemical reaction Methods 0.000 claims abstract description 15
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 15
- 239000001301 oxygen Substances 0.000 claims abstract description 15
- 239000000446 fuel Substances 0.000 claims abstract description 13
- 239000000463 material Substances 0.000 claims abstract description 4
- 230000000779 depleting effect Effects 0.000 claims description 26
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 14
- 238000011084 recovery Methods 0.000 claims description 8
- 239000000571 coke Substances 0.000 claims description 7
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 5
- NIFIFKQPDTWWGU-UHFFFAOYSA-N pyrite Chemical compound [Fe+2].[S-][S-] NIFIFKQPDTWWGU-UHFFFAOYSA-N 0.000 claims description 5
- 229910052683 pyrite Inorganic materials 0.000 claims description 5
- 239000011028 pyrite Substances 0.000 claims description 5
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 4
- 239000003245 coal Substances 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 3
- 229910052785 arsenic Inorganic materials 0.000 claims description 3
- 239000003345 natural gas Substances 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 238000005507 spraying Methods 0.000 claims description 2
- 229910052717 sulfur Inorganic materials 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 abstract description 8
- 238000007664 blowing Methods 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 3
- 230000035484 reaction time Effects 0.000 abstract description 2
- 238000010790 dilution Methods 0.000 abstract 8
- 239000012895 dilution Substances 0.000 abstract 8
- 238000007599 discharging Methods 0.000 abstract 2
- 238000003723 Smelting Methods 0.000 description 13
- 238000002347 injection Methods 0.000 description 9
- 239000007924 injection Substances 0.000 description 9
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 6
- 235000012255 calcium oxide Nutrition 0.000 description 3
- 239000000292 calcium oxide Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000000197 pyrolysis Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000003139 buffering effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/04—Working-up slag
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B15/00—Obtaining copper
- C22B15/0026—Pyrometallurgy
- C22B15/0028—Smelting or converting
- C22B15/003—Bath smelting or converting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B15/00—Obtaining copper
- C22B15/0026—Pyrometallurgy
- C22B15/0054—Slag, slime, speiss, or dross treating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- the invention relates to the technical field of metallurgy and comprehensive utilization of copper slag, in particular to a method for thermal eddy current depletion of copper slag.
- Copper slag depletion can be divided into two categories: slow-cooling beneficiation and pyrolysis smelting; pyrolysis can theoretically reduce the copper content of slag to the slag-matte balance level, and the hot slag is directly electrothermally diluted to reduce the content of copper slag.
- the copper slag is put into the depletion furnace for sedimentation and slag matte separation and reduction; however, in the process of pyrolysis, the addition of the depleting agent volatilizes seriously, which seriously pollutes the environment.
- the depleting agent floats on the surface of the slag and is difficult to fully contact the molten pool , thus restricting the efficient utilization of the depleting agent; in general, in the existing pyrolytic depletion process, the copper residual content in the depleted slag is mostly above 0.5%, and the copper recovery rate is low.
- the copper slag depletion method includes the following steps: The slag is passed into the copper slag depletion treatment furnace; the carbon powder wire is fed into the copper slag depletion treatment furnace through the wire feeding device through the wire feeding hole; Reduction and depletion treatment.
- a method for comprehensive utilization of copper slag, application number 201210068751.8 invented by Wang Xidong et al., includes the following steps: 1) using nitrogen to stir the copper slag to make the matte particles collide and grow, and make the matte particles settle and separate; 2) to the Coal powder, quicklime and oxygen-enriched air are sprayed into the copper slag after separation of matte particles to carry out reduction and iron extraction; 3) Add additives to the residual slag after iron extraction, and control the temperature of the molten mixture of residual slag and additives to be 800 ⁇ 1700°C; 4) The molten mixture is sprayed or centrifuged to prepare inorganic fibers.
- a device and method for continuous depletion of copper smelting slag includes two parts, the first part is the slag buffering process, and the second part is the slag flow depletion process;
- the outgoing high-temperature molten copper slag is directly introduced into the buffer device, and then heated and heated again to make it have good fluidity; then it is introduced into the trough-type depletion device; by adjusting the electric field strength, the feeding temperature and the slag residence time, the melting point is controlled.
- the content of copper and other useful metals in the slag is controlled.
- the copper slag can be depleted by the above method, there are still problems such as higher copper content in the depleted copper slag and longer depletion time.
- the present invention proposes a hot-state eddy current depletion method for copper slag.
- the method of the present invention is as follows:
- the hot copper slag is added to the depletion furnace to form a molten pool; the molten pool is heated and insulated by electrodes installed on the depletion furnace, or heated and insulated by spraying oxygen-rich fuel into the depletion furnace to control the melting process.
- the temperature of the pool is 1250 ⁇ 1350°C; the oxygen-enriched fuel is injected by mixing pulverized coal, coke or natural gas with oxygen;
- the iron grade TFe of the hot copper slag is 35 ⁇ 45%, contains Au 0.5 ⁇ 1.5g/t, contains FeO 30 ⁇ 43%, Cu 0.5 ⁇ 5%, Zn 5 ⁇ 6% by mass percentage , S 1 ⁇ 2%, Al 2 O 3 3 ⁇ 4%, CaO 0.5 ⁇ 1.2%, MgO 0.5 ⁇ 1.3%, SiO 2 14 ⁇ 22%, As 0.04 ⁇ 0.08%.
- the depleting agent is coke, FeS or pyrite, and the added amount of the depleting agent is 4-15% of the total mass of the copper slag.
- step 3 when the depleting agent is FeS or pyrite, the reaction formula of the depleting reaction is:
- the stirring speed is 5 ⁇ 100rpm.
- the depleted slag contains Cu ⁇ 0.25% by mass percentage.
- the recovery rate of copper in the matte is ⁇ 99.5%.
- Eddy current stirring strengthens the uniformity of the temperature field in the depletion furnace, avoiding the problem of large melt temperature gradient and incomplete copper slag depletion caused by simple heating;
- the direct eddy current stirring and diluting of the molten copper slag realizes the efficient use of the depleting agent and green depletion, and at the same time greatly improves the depletion effect, and the copper content in the depleted slag is reduced to less than 0.25%.
- Fig. 1 is the structural representation of the depletion furnace used in the copper slag hot state eddy current depletion method in Example 1 of the present invention
- Example 2 is a schematic structural diagram of a depletion furnace used in the copper slag thermal eddy current depletion method in Example 2 of the present invention
- the iron grade of the molten copper slag is TFe 42.47%, Au 1.2g/t, FeO 43.14%, Cu 4.51%, Zn 5.67%, S 1.55%, Al 2 O 3 3.02%, CaO by mass percentage 0.96%, MgO 1.09%, SiO 2 20.82%, As 0.075%.
- FIG. 1 or FIG. 2 The structure of the depletion furnace in the embodiment of the present invention is shown in FIG. 1 or FIG. 2 , the top of the furnace body 1 of the depletion furnace is provided with a thermal insulation cover 9, and the stirring shaft of the stirring device 5 is inserted into the furnace body 1 from the top; A depleting agent feeding port 4 and an exhaust port 6 are provided; the side wall of the furnace body 1 is provided with a copper slag inlet 3, a slag discharge port 7 and a matte outlet 8; the furnace body is provided with an auxiliary heating device, an auxiliary heating device It is a number of electrodes 2 inserted into the furnace body 1, or a fuel injection port 10 inserted into the furnace body 1 from the side wall; the bottom of the inner space of the furnace body 1 is a matte layer, and the upper part of the matte layer is a copper slag layer; copper The slag inlet 3 is located on the side wall of the copper slag layer, the slag discharge port 7 is located on the side wall of the copper s
- the stirring device 3 is located in the middle of the furnace body 1 , and the copper slag inlet 3 and the slag discharge port 7 are respectively located on both sides of the stirring device 3 .
- the auxiliary heating device when the auxiliary heating device is the electrode 2, the bottom end of the electrode 2 is located in the copper slag layer; when the auxiliary heating device is the fuel injection port 10, the fuel injection port 10 is located under the copper slag layer.
- the fixed carbon mass percentage of the coke in the embodiment of the present invention is greater than or equal to 80%.
- the mass percentage of FeS in the pyrite in the embodiment of the present invention is greater than or equal to 85%.
- the hot copper slag is added to the depletion furnace to form a molten pool; the molten pool is heated and insulated by electrodes installed on the depletion furnace, and the temperature of the molten pool is controlled at 1280 °C;
- the depleting agent is added to the depletion furnace, and the depleting agent is quickly dispersed into the molten pool under the action of the eddy current, and the eddy current depletion reaction is carried out, so that the molten pool forms the upper copper slag layer and the lower copper matte layer, and the stirring paddle It is located in the copper slag layer; the depleting agent is coke, and the addition amount of the depleting agent is 4% of the total mass of the copper slag;
- the depleted slag is based on mass percentage It contains 0.23% Cu, and the recovery rate of copper in matte is 99.9%.
- the depleting agent is FeS, and the added amount of the depleting agent is 8% of the total mass of the copper slag;
- the depleting agent is pyrite, and the added amount of the depleting agent is 15% of the total mass of the copper slag;
- the depleting agent is FeS, and the added amount of the depleting agent is 11% of the total mass of the copper slag;
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
一种铜渣热态涡流贫化方法,按以下步骤:(1)热态的铜渣加入到贫化炉中形成熔池;通过电极对熔池进行加热保温,或通过喷吹富氧燃料进行加热保温;(2)对熔池进行搅拌形成涡流;(3)加入贫化剂进行涡流贫化反应;(4)贫化反应后停止搅拌,将铜渣层的铜渣排出,将冰铜层的物料排出,分别获得贫化渣和冰铜。本发明的方法强化了贫化炉内温度场的均匀性,减少了贫化剂在高温状况的挥发损失,缩短了贫化反应时间,极大提升了贫化效果。
Description
本发明涉及冶金及铜渣综合利用技术领域,具体涉及一种铜渣热态涡流贫化方法。
现代铜冶炼技术向节约能耗、减少污染物生成、控制污染物排放、资源全流程循环利用等绿色化趋势发展。火法炼铜仍然是铜冶炼的主要工艺;火法熔炼过程依据氧枪位置的不同可分为顶吹熔炼、侧吹熔炼和底吹熔炼过程;其中,侧吹熔炼过程具有良好的节能、绿色环保、设备投资较小等优势被逐渐推广使用;但是,在铜精矿富氧吹炼强化冶炼强度的同时,不可避免地带来了冶炼渣中铜残留量的急剧增加,所以现代炼铜工艺都对铜渣进行了贫化回收铜的处理。铜渣贫化可分为两类:缓冷选矿和火法贫化熔炼;火法贫化在理论上能够将渣含铜降低到渣—锍平衡水平,热态炉渣直接进行电热贫化将含铜炉渣放入贫化炉进行沉降和渣锍分离还原;然而,火法贫化过程中贫化剂加入过程挥发严重,严重污染环境,贫化剂浮于熔渣表面,难以与熔池充分接触,从而制约了贫化剂的高效利用;综合来看,现有的火法贫化工艺,贫化渣中铜残留含量多在0.5%以上,铜回收率低。
对于铜渣的综合利用,国内相关科研人员进行了大量的研究工作,如郭亚光等发明的“铜渣贫化方法,申请号201810639270.5”,铜渣贫化方法包括以下步骤:通过铜渣进口将铜渣通入铜渣贫化处理炉中;利用喂线装置通过喂线孔向铜渣贫化处理炉中喂入碳粉线;在电热或等离子热的作用下,利用碳粉线对铜渣进行还原贫化处理。
王习东等发明的“一种综合利用铜渣的方法,申请号201210068751.8”,包括以下步骤:1)使用氮气搅拌铜渣使冰铜颗粒碰撞长大,并使冰铜颗粒沉降和分离;2)向分离冰铜颗粒后的铜渣中喷入煤粉,生石灰和富氧空气,进行还原提铁;3)向提铁后的余渣中加入添加剂,控制余渣和添加剂的熔融混合物温度为800~1700℃;4)将熔融混合物通过喷吹或者离心的方法,制得无机纤维。
张怀伟发明的“一种铜冶炼炉渣连续贫化的装置及方法,申请号201811300235.7”,包括两部分,第一部分为熔渣缓冲过程,第二部分为熔渣流动贫化过程;将从铜熔炼炉出来的高温熔融铜渣直接导入缓冲装置,经再次升温和加热,使其具有良好的流动性;再引入到槽式贫化装置中;通过调节电场强度,进料温度和熔渣停留时间控制熔渣中铜及其它有用金属的含量。
上述方法虽然可将铜渣进行贫化处理,但仍然存在贫化后铜渣中渣含铜较高,贫化时间较长等问题。
为降低贫化渣中铜含量,提高铜的回收率,本发明提出了一种铜渣热态涡流贫化方法。
本发明的方法按以下步骤:
1、热态的铜渣加入到贫化炉中形成熔池;通过贫化炉上安装的电极对熔池进行加热保温,或者通过向贫化炉内喷吹富氧燃料进行加热保温,控制熔池的温度在1250~1350℃;其中喷吹富氧燃料是采用煤粉、焦炭或天然气与氧气混合喷吹;
2、启动贫化炉上的搅拌装置,对熔池进行搅拌,使熔池形成涡流;
3、向贫化炉内加入贫化剂,贫化剂在涡流作用下被快速分散至熔池中,进行涡流贫化反应,使熔池形成上部的铜渣层和下部的冰铜层,并且搅拌桨位于铜渣层内;
4、贫化反应30~120min后,停止搅拌,从排渣口将铜渣层的铜渣排出,再从排铜口将冰铜层的物料排出,分别获得贫化渣和冰铜。
上述的步骤1中,热态的铜渣的铁品位TFe 35~45%,含Au 0.5~1.5g/t,按质量百分比含FeO 30~43%,Cu 0.5~5%,Zn 5~6%,S 1~2%,Al
2O
3
3~4%,CaO 0.5~1.2%,MgO 0.5~1.3%,SiO
2 14~22%,As 0.04~0.08%。
上述的步骤3中,贫化剂为焦炭、FeS或硫铁矿,贫化剂的加入量为铜渣总质量的4~15%。
上述的步骤3中,当贫化剂为FeS或硫铁矿时,贫化反应的反应式为:
Cu
2O+FeS=Cu
2S+FeO (1)、
3Fe
3O
4+FeS+5SiO
2=5(2FeO∙SiO
2)+SO
2 (2)和
3Fe
3O
4+FeS=10FeO+SO
2 (3);
当贫化剂为焦炭时,贫化反应的反应式为:
C+CO
2=2CO (4)、
C+H
2O=CO+H
2 (5)、
Fe
3O
4+C=3FeO+CO (6)、
Fe
3O
4+1/2C=3FeO+1/2CO
2 (7)、
Fe
3O
4+CO=3FeO+CO
2 (8)和
Fe
3O
4+H
2=3FeO+H
2O (9)。
上述的步骤3中,搅拌速度为5~100rpm。
上述的步骤4中,贫化渣按质量百分比含Cu≤0.25%。
上述的步骤4中,冰铜中铜的回收率≥99.5%。
与现有的铜渣贫化技术相比,本发明的特点和有益效果是:
1、涡流搅拌强化了贫化炉内温度场的均匀性,避免了单纯加热引起的熔体温度梯度大,铜渣贫化不彻底的问题;
2、采用机械搅拌或者气体喷吹方式,提升铜渣、贫化剂与高温熔体间的混合效果,同时利用形成的涡流快速卷吸贫化剂,减少了贫化剂在高温状况的挥发损失,缩短了贫化反应时间;
3、熔融铜渣直接涡流搅拌贫化实现了贫化剂高效利用和绿色贫化,同时极大提升了贫化效果,贫化渣中铜含量降至0.25%以下。
图1为本发明实施例1中的铜渣热态涡流贫化方法所用贫化炉的结构示意图;
图2为本发明实施例2中的铜渣热态涡流贫化方法所用贫化炉的结构示意图;
图中,1、炉体,2、电极,3、铜渣入口,4、贫化剂加料口,5、搅拌装置,6、排气口,7、排渣口,8、冰铜出口,9、保温罩,10、燃料喷吹口。
本发明实施例中熔融铜渣的铁品位TFe 42.47%,含Au 1.2g/t,按质量百分比含FeO 43.14%,Cu 4.51%,Zn 5.67%,S 1.55%,Al
2O
3
3.02%,CaO 0.96%,MgO 1.09%,SiO
2 20.82%,As 0.075%。
本发明实施例中的贫化炉结构如图1或图2所示,贫化炉的炉体1顶部设有保温罩9,搅拌装置5的搅拌轴从顶部插入炉体1;炉体1顶部设有贫化剂加料口4和排气口6;炉体1的侧壁上设有铜渣入口3、排渣口7和冰铜出口8;炉体上设置有辅助加热装置,辅助加热装置为插入炉体1内部的若干个电极2,或者为从侧壁插入炉体1的燃料喷吹口10;炉体1内部空间的底部设为冰铜层,冰铜层上部为铜渣层;铜渣入口3位于铜渣层的侧壁上,排渣口7位于铜渣层的侧壁上,冰铜出口8位于冰铜层的侧壁上,搅拌装置5的搅拌桨位于铜渣层所在区域。
上述的贫化炉中,搅拌装置3位于炉体1的中部,铜渣入口3和排渣口7分别位于搅拌装置3的两侧。
上述的贫化炉中,当辅助加热装置为电极2时,电极2的底端位于铜渣层内;当辅助加热装置为燃料喷吹口10时,燃料喷吹口10位于铜渣层内部下方。
本发明实施例中的焦炭的固定碳质量百分比≥80%。
本发明实施例中的硫铁矿中FeS 的质量百分比≥85%。
实施例
1
采用的贫化炉结构如图1所示;
热态的铜渣加入到贫化炉中形成熔池;通过贫化炉上安装的电极对熔池进行加热保温,控制熔池的温度在1280℃;
启动贫化炉上的搅拌装置,对熔池进行搅拌,使熔池形成涡流;搅拌速度为30rpm;
向贫化炉内加入贫化剂,贫化剂在涡流作用下被快速分散至熔池中,进行涡流贫化反应,使熔池形成上部的铜渣层和下部的冰铜层,并且搅拌桨位于铜渣层内;贫化剂为焦炭,贫化剂的加入量为铜渣总质量的4%;
贫化反应90min后,停止搅拌,从排渣口将铜渣层的铜渣排出,再从排铜口将冰铜层的物料排出,分别获得贫化渣和冰铜;贫化渣按质量百分比含Cu 0.23%,冰铜中铜的回收率 99.9%。
实施例
2
方法同实施例1,不同点在于:
(1)控制熔池的温度在1350℃;
(2)搅拌速度为20rpm;
(3)贫化剂为FeS,贫化剂的加入量为铜渣总质量的8%;
(4)贫化反应30min;贫化渣按质量百分比含Cu 0.22%,冰铜中铜的回收率99.6%。
实施例
3
方法同实施例1,不同点在于:
(1)采用的贫化炉结构如图2所示;从燃料喷出口向贫化炉内喷吹富氧燃料进行加热保温,控制熔池的温度在1250℃;喷吹富氧燃料是采用天然气与氧气混合进行喷吹;
(2)搅拌速度为70rpm;
(3)贫化剂为硫铁矿,贫化剂的加入量为铜渣总质量的15%;
(4)贫化反应120min;贫化渣按质量百分比含Cu 0.21%,冰铜中铜的回收率99.7%。
实施例
4
方法同实施例3,不同点在于:
(1)控制熔池的温度在1300℃;喷吹富氧燃料是采用煤粉与氧气混合进行喷吹;
(2)贫化剂为FeS,贫化剂的加入量为铜渣总质量的11%;
(3)贫化反应80min;贫化渣按质量百分比含Cu 0.22%,冰铜中铜的回收率99.5%。
Claims (6)
- 一种铜渣热态涡流贫化方法,其特征在于按以下步骤:(1)热态的铜渣加入到贫化炉中形成熔池;通过贫化炉上安装的电极对熔池进行加热保温,或者通过向贫化炉内喷吹富氧燃料进行加热保温,控制熔池的温度在1250~1350℃;其中喷吹富氧燃料是采用煤粉、焦炭或天然气与氧气混合喷吹;(2)启动贫化炉上的搅拌装置,对熔池进行搅拌,使熔池形成涡流;(3)向贫化炉内加入贫化剂,贫化剂在涡流作用下被快速分散至熔池中,进行涡流贫化反应,使熔池形成上部的铜渣层和下部的冰铜层,并且搅拌桨位于铜渣层内;(4)贫化反应30~120min后,停止搅拌,从排渣口将铜渣层的铜渣排出,再从排铜口将冰铜层的物料排出,分别获得贫化渣和冰铜。
- 根据权利要求1所述的铜渣热态涡流贫化方法,其特征在于步骤(1)中,热态的铜渣的铁品位TFe 35~45%,含Au 0.5~1.5g/t,按质量百分比含FeO 30~43%,Cu 0.5~5%,Zn 5~6%,S 1~2%,Al 2O 3 3~4%,CaO 0.5~1.2%,MgO 0.5~1.3%,SiO 2 14~22%,As 0.04~0.08%。
- 根据权利要求1所述的铜渣热态涡流贫化方法,其特征在于步骤(3)中,贫化剂为焦炭、FeS或硫铁矿,贫化剂的加入量为铜渣总质量的4~15%。
- 根据权利要求1所述的铜渣热态涡流贫化方法,其特征在于步骤(3)中,搅拌速度为5~100rpm。
- 根据权利要求1所述的铜渣热态涡流贫化方法,其特征在于所述的贫化渣按质量百分比含Cu≤0.25%。
- 根据权利要求1所述的铜渣热态涡流贫化方法,其特征在于所述的冰铜中铜的回收率≥99.5%。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110467926.1A CN113186404A (zh) | 2021-04-28 | 2021-04-28 | 一种铜渣热态涡流贫化方法 |
CN202110467926.1 | 2021-04-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022227183A1 true WO2022227183A1 (zh) | 2022-11-03 |
Family
ID=76979951
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/096801 WO2022227183A1 (zh) | 2021-04-28 | 2021-05-28 | 一种铜渣热态涡流贫化方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113186404A (zh) |
WO (1) | WO2022227183A1 (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102888483A (zh) * | 2012-09-19 | 2013-01-23 | 钢铁研究总院 | 一种铁水搅拌脱硅的方法 |
CN105671325A (zh) * | 2016-03-15 | 2016-06-15 | 东北大学 | 一种铜冶炼渣的贫化处理方法 |
CN105671326A (zh) * | 2016-03-15 | 2016-06-15 | 东北大学 | 一种搅拌协同喷吹气体携带硫化剂贫化铜渣的方法 |
CN105779778A (zh) * | 2016-03-15 | 2016-07-20 | 东北大学 | 一种铜冶炼渣的贫化方法 |
KR101821253B1 (ko) * | 2016-10-28 | 2018-01-23 | 주식회사 포스코 | 용융금속 처리장치 및 용융금속 처리방법 |
CN110004352A (zh) * | 2019-05-11 | 2019-07-12 | 东北大学 | 一种利用熔融贫化铜渣还原制备含铜铬耐磨铸铁的方法 |
CN110106433A (zh) * | 2019-05-11 | 2019-08-09 | 东北大学 | 一种熔融贫化铜渣和锌渣的综合利用方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101705360B (zh) * | 2009-11-26 | 2011-07-20 | 阳谷祥光铜业有限公司 | 铜冶炼热态炉渣提铁工艺与装置 |
-
2021
- 2021-04-28 CN CN202110467926.1A patent/CN113186404A/zh active Pending
- 2021-05-28 WO PCT/CN2021/096801 patent/WO2022227183A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102888483A (zh) * | 2012-09-19 | 2013-01-23 | 钢铁研究总院 | 一种铁水搅拌脱硅的方法 |
CN105671325A (zh) * | 2016-03-15 | 2016-06-15 | 东北大学 | 一种铜冶炼渣的贫化处理方法 |
CN105671326A (zh) * | 2016-03-15 | 2016-06-15 | 东北大学 | 一种搅拌协同喷吹气体携带硫化剂贫化铜渣的方法 |
CN105779778A (zh) * | 2016-03-15 | 2016-07-20 | 东北大学 | 一种铜冶炼渣的贫化方法 |
KR101821253B1 (ko) * | 2016-10-28 | 2018-01-23 | 주식회사 포스코 | 용융금속 처리장치 및 용융금속 처리방법 |
CN110004352A (zh) * | 2019-05-11 | 2019-07-12 | 东北大学 | 一种利用熔融贫化铜渣还原制备含铜铬耐磨铸铁的方法 |
CN110106433A (zh) * | 2019-05-11 | 2019-08-09 | 东北大学 | 一种熔融贫化铜渣和锌渣的综合利用方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113186404A (zh) | 2021-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019071792A1 (zh) | 含锌与铁的熔渣熔融还原生产的方法 | |
US8771396B2 (en) | Method for producing blister copper directly from copper concentrate | |
CN108486313B (zh) | 一种提升耐热钢晶间纯净度的熔炼工艺 | |
WO2019071794A1 (zh) | 一种由含铜与铁的混合熔渣回收有价组分的方法 | |
WO2019242607A1 (zh) | 铜渣贫化装置及方法 | |
CN105671325A (zh) | 一种铜冶炼渣的贫化处理方法 | |
JP2023514138A (ja) | 連続溶融還元製鉄法 | |
CN113174495A (zh) | 一种铜熔炼—热态涡流贫化一体化方法 | |
CN113201652A (zh) | 一种熔融铜渣贫化-还原一体化方法 | |
WO2022227179A1 (zh) | 一种熔融铜渣贫化 - 侧顶复合吹炼还原一体化方法 | |
WO2015010500A1 (zh) | 铜冶炼炉渣贫化方法及装置 | |
CN109468469A (zh) | 一种复合气体喷吹碳还原熔融铜渣的装置及方法 | |
CN114293025B (zh) | 一种控制铜火法冶炼系统砷走向的方法 | |
CN112981136B (zh) | 一种熔池喷射锌精矿的一步炼锌方法 | |
WO2022227183A1 (zh) | 一种铜渣热态涡流贫化方法 | |
CN103667738A (zh) | 富氧侧吹双区熔池熔炼炉及其含铜复杂物料炼冰铜方法 | |
CN102925709A (zh) | 一种使用熔炼炉熔化固态冻结渣层的方法 | |
CN113174491A (zh) | 一种铜渣贫化-侧顶复合吹炼还原一体炉 | |
CN109295314B (zh) | 一种铜冶炼炉渣连续贫化的装置及方法 | |
CN105087950B (zh) | 从高磁性铜氧化渣中一步造粗铜的方法及造粗铜的炉窑 | |
CN111041225B (zh) | 一种贫杂高硅铜精矿富氧侧吹熔炼方法 | |
CN113151692A (zh) | 一种铜熔炼渣热态涡流贫化炉 | |
CN107058758B (zh) | 高S高Fe含Pb金矿两步法熔炼回收金和铅的方法 | |
CN219793074U (zh) | 铜冶炼渣有价金属元素综合回收及无害化处理装置 | |
CN111020207B (zh) | 铜吹炼渣的处理装置及处理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21938653 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21938653 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21938653 Country of ref document: EP Kind code of ref document: A1 |