WO2019242607A1 - 铜渣贫化装置及方法 - Google Patents

铜渣贫化装置及方法 Download PDF

Info

Publication number
WO2019242607A1
WO2019242607A1 PCT/CN2019/091716 CN2019091716W WO2019242607A1 WO 2019242607 A1 WO2019242607 A1 WO 2019242607A1 CN 2019091716 W CN2019091716 W CN 2019091716W WO 2019242607 A1 WO2019242607 A1 WO 2019242607A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper slag
copper
slag
depletion
depleting
Prior art date
Application number
PCT/CN2019/091716
Other languages
English (en)
French (fr)
Inventor
郭亚光
吴金财
梁帅表
裴忠冶
陈学刚
Original Assignee
中国恩菲工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国恩菲工程技术有限公司 filed Critical 中国恩菲工程技术有限公司
Priority to EA202092301A priority Critical patent/EA202092301A1/ru
Publication of WO2019242607A1 publication Critical patent/WO2019242607A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/04Working-up slag
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B13/00Obtaining lead
    • C22B13/02Obtaining lead by dry processes
    • C22B13/025Recovery from waste materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/0054Slag, slime, speiss, or dross treating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/30Obtaining zinc or zinc oxide from metallic residues or scraps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to the technical field of metal smelting, in particular to a copper slag depletion device and method.
  • the copper content in the slag produced by different smelting processes is different.
  • the copper content in the copper slag is 0.8-12%, and it also contains metals such as lead and zinc.
  • the lead content is about 0.5-10%, and the zinc content is about 1.0-8%.
  • Lump coal or pulverized coal is added for reduction and depletion. Lump coal and pulverized coal will The surface of the slag floats, and a large amount of reducing agent is burned in the flue gas, which fails to perform a good reduction effect; and the molten pool is still, which is not conducive to the growth of copper rhenium (metal) in the slag, and the kinetic conditions are poor; ( 2) The investment of reducing agent injection process is large and the production cost is high.
  • the main purpose of the present invention is to provide a copper slag depletion device and method, which can solve the problems of low cost, short process, high efficiency, and inability to recover heavy metals such as lead and zinc when recycling and processing copper slag in the prior art.
  • a copper slag depletion device which includes: a copper slag depletion treatment furnace, which uses electric heat or plasma heat as a heat source, and the copper slag depletion treatment furnace is provided with copper slag Inlet, wire feeding hole and drain port, copper slag inlet is used to pass copper slag, drain port is used to discharge copper slag obtained by reduction and depletion treatment; and wire feeding device is used to deplete copper slag through the wire feeding hole.
  • a carbon powder line is fed into the chemical treatment furnace to reduce and deplete the copper slag.
  • the copper slag depletion treatment furnace is a mineral heat electric furnace or a plasma furnace.
  • the copper slag depleting treatment furnace includes: a furnace body, a copper slag inlet and a wire feeding hole are provided on the top of the furnace body, a discharge opening is provided below the side of the furnace body, and an electrode hole is also provided on the furnace body; and The heating electrode extends through the electrode hole to the content of the furnace body to supply heat to the furnace body.
  • the hole diameter of the wire feeding holes is 30 to 100 mm.
  • a slag discharge port is further provided at a lower part of the side of the furnace body opposite to the discharge port, and the slag discharge port is used to discharge the slag produced during the reduction and lean process.
  • the copper slag depletion device further includes a slag cooling device, which is used for cooling the slag discharged from the slag discharge port.
  • top of the furnace body is further provided with an additive inlet, and the additive inlet is used to pass in the additive.
  • additive inlet and the copper slag inlet are located at the same position.
  • the copper slag depletion device further includes an additive silo, and the additive silo is connected to the additive inlet.
  • the copper slag depletion treatment furnace is further provided with an exhaust gas outlet.
  • the copper slag depletion device further includes a waste heat recovery device provided with a hot flue gas inlet and a cold flue gas outlet, and the hot flue gas inlet is connected to the exhaust gas outlet;
  • the dust device and the dust collection device are connected to the cold flue gas outlet.
  • a copper slag depletion method is also provided.
  • the device used includes a copper slag depletion treatment furnace and a wire feeding device.
  • the copper slag depletion treatment furnace uses electric heat or plasma heat as a heat source.
  • the slag depletion treatment furnace is provided with a copper slag inlet, a wire feeding hole, and a vent;
  • the copper slag depletion method includes the following steps: passing the copper slag into the copper slag depletion treatment furnace through the copper slag inlet; using a wire feeding device to pass The wire feeding hole feeds the carbon powder line into the copper slag depletion treatment furnace; under the action of electric heat or plasma heat, the copper slag is reduced and depleted by the carbon powder line.
  • the copper slag depletion treatment furnace is a mineral heat electric furnace or a plasma furnace.
  • an additive is simultaneously introduced into the copper slag depletion treatment furnace to participate in the reduction and depletion treatment; preferably, the additive is one or more of pyrite, sulfur, and low matte .
  • the copper slag is a liquid copper slag generated during copper smelting.
  • the diameter of the toner line is 10 to 30 mm, and the carbon content of the toner in the toner line is 50 to 98%.
  • the toner line includes a toner core layer and a metal sheath covering the surface of the toner core layer.
  • the metal sheath is an iron sheath or an aluminum sheath, and the thickness of the metal sheath is preferably 0.1 to 0.5 mm.
  • the wire end of the toner line is placed in the melt layer in the copper slag depleting treatment furnace, and the inner bottom wall of the copper slag depleting processing furnace is melted away from the melting point.
  • the height of the slag layer is denoted as H
  • the temperature of the reduction-lean treatment is 1200 to 1400 ° C, and the time is 1 to 3 hours.
  • copper radon, slag and tail gas are obtained in the step of reducing and depleting, and the method of depleting copper slag further includes a step of water quenching the slag.
  • the copper slag depletion method further includes a step of post-processing the tail gas, and the post-processing step includes: performing waste heat recovery treatment on the tail gas to obtain cold flue gas; and performing dust collection treatment on the cold flue gas.
  • the invention provides a copper slag depletion device, which includes a copper slag depletion treatment furnace and a wire feeding device.
  • the copper slag depletion treatment furnace uses electric heat or plasma heat as a heat source.
  • the copper slag depletion treatment furnace is provided with a copper slag inlet. Wire feeding hole and discharge port, copper slag inlet is used to pass in copper slag, and discharge port is used to discharge copper slag obtained by reduction and depletion treatment; the wire feeding device is used to feed copper slag depletion treatment furnace through the wire feeding hole.
  • the toner line is fed to reduce and deplete the copper slag.
  • the carbon powder line is fed into the copper slag depletion treatment furnace by a wire feeding process, and then the copper slag is reduced and depleted by using electric heat or plasma heat as a heat source.
  • using the above device to process copper slag has a simple process, can effectively use the heat carried by the copper slag itself from the previous process, and the device has a small footprint and low equipment cost.
  • the device can reduce the lead oxide and zinc oxide in the copper slag together to recover the copper and a small amount of lead and zinc, and avoid chemical agents added in the beneficiation process. This brings greater economic benefits and greatly reduces potential safety hazards.
  • the present invention can directly feed the carbon powder line into the melt layer in the middle and lower part of the slag in the furnace through the wire feeding device.
  • the carbon powder in the toner line can be more fully contacted with the melt in the middle and lower parts of the slag, and can function as a reducing agent, thereby reducing the copper oxide in the copper slag to a high degree of depletion kinetics.
  • the copper slag depletion device provided by the present invention can effectively improve the reduction and depletion efficiency of the copper slag, and at the same time has the beneficial effects of short process, low cost, and the simultaneous recovery of heavy metals such as lead and zinc in the slag.
  • FIG. 1 shows a schematic diagram of a copper slag depletion device according to an embodiment of the present invention.
  • the present invention provides a copper slag depletion device, as shown in FIG. 1, which includes a copper slag depletion treatment furnace 10 and a wire feeding device 20, and the copper slag depletion treatment furnace 10 uses electric heating or plasma. Heat is the heat source.
  • the copper slag depletion treatment furnace 10 is provided with a copper slag inlet, a wire feeding hole, and a dump port. The copper slag inlet is used to pass through the copper slag a, and the dump port is used to discharge the copper slag obtained by the reduction and depletion process.
  • a wire feeding device 20 for feeding a carbon powder line b into the copper slag depleting treatment furnace 10 through a wire feeding hole to perform reduction and depletion treatment on the copper slag.
  • the carbon powder line is fed into the copper slag depleting treatment furnace 10 by a wire feeding device 20, and then the copper slag is reduced and depleted by using electric heat or plasma heat as a heat source.
  • the above device to process copper slag has a simple process, can effectively use the heat carried by the copper slag itself from the previous process, and the device has a small footprint and low equipment cost.
  • the device can reduce the lead oxide and zinc oxide in the copper slag together to recover the copper and a small amount of lead and zinc, and avoid chemical agents added in the beneficiation process. This brings greater economic benefits and greatly reduces potential safety hazards.
  • the present invention can directly feed the carbon powder line into the melt layer in the middle and lower part of the slag in the furnace through the wire feeding device 20.
  • the carbon powder in the toner line can be more fully contacted with the melt in the middle and lower parts of the slag, and can function as a reducing agent, thereby reducing the copper oxide in the copper slag to a high degree of depletion kinetics.
  • the copper slag depletion device provided by the present invention can effectively improve the reduction and depletion efficiency of the copper slag, and at the same time has the beneficial effects of short process, low cost, and the simultaneous recovery of heavy metals such as lead and zinc in the slag.
  • the feeding speed of the carbon powder line is controlled by the wire feeding device 20.
  • the carbon powder After the carbon powder enters the melt, it reacts with copper (a small amount of lead and zinc) oxides to generate CO and CO 2 gas, which will exist as oxides.
  • the metal is reduced to a simple metal state, and other metals such as copper settle and are discharged through the vent.
  • gas escaping from the melt it can also play a role of stirring the melt, which can also promote the growth and settling of metal particles, thereby promoting the reduction reaction.
  • the copper slag depleting treatment furnace 10 is a mine thermal electric furnace or a plasma furnace.
  • the use of a mineral heat electric furnace or a plasma furnace can provide stable heat for the depletion process of copper slag, and the added carbon powder line can basically serve as a reducing agent, which can further improve the kinetic conditions of depletion and increase production efficiency.
  • the copper slag depleting treatment furnace 10 includes a furnace body 11 and a heating electrode 12.
  • a copper slag inlet and a wire feeding hole are provided on the top of the furnace body 11 and a vent opening is provided.
  • An electrode hole is provided on the side of the furnace body 11, and the furnace body 11 is provided with an electrode hole; the heating electrode 12 extends through the electrode hole to the content of the furnace body 11 to supply heat to the furnace body 11.
  • the heating electrode 12 is powered by a power source, and the heating electrode 12 is used to provide heat to the copper slag system inside the furnace body 11.
  • the number of the heating electrodes 12 can be adjusted according to the capacity of the furnace body 11 and the copper slag treatment amount, which should be understood by those skilled in the art.
  • the feeding holes are distributed on the top of the furnace body 11.
  • the wire feeding holes are distributed on the top of the furnace body 11, and after the toner line is fed into the wire feeding holes through the wire feeding device 20, the toner lines can enter the melt and come into contact with the melt under its own gravity, and this process It is convenient to control the height of the wire end.
  • multiple feeding holes can be set to feed the toner line at different positions, which is beneficial to further improve the efficiency of the lean reduction.
  • a slag discharge port is further provided at a lower portion of the furnace body 11 opposite to the discharge port, and the slag discharge port is used to discharge slag d produced in the process of reduction and depletion.
  • the copper slag depletion device further includes a slag cooling device, which is used to cool the slag d discharged from the slag discharge port.
  • the specific cooling method may adopt a cooling form commonly used in the art, such as water quenching.
  • an additive inlet is further provided on the top of the furnace body 11, and the additive inlet is used to pass in the additive.
  • the additive can be a vulcanizing agent, a trapping agent, and the like, which is beneficial to reduce the copper slag grade in the slag and further improve the copper recovery rate.
  • the additive inlet and the copper slag inlet are located at the same position. In this way, additives and copper slag can be added at the same position, which improves the convenience of operation.
  • the copper slag depletion device further includes an additive silo 50, which is connected to the additive inlet to provide additives.
  • the copper slag depletion treatment furnace 10 is further provided with an exhaust gas outlet.
  • the copper slag depletion device further includes a waste heat recovery device 30 and a dust collection device 40.
  • the waste heat recovery device 30 is provided with a hot flue gas inlet and The cold flue gas outlet and the hot flue gas inlet are connected to the tail gas outlet; the dust collecting device 40 is connected to the cold flue gas outlet.
  • a copper slag depletion method is also provided.
  • the device used includes a copper slag depletion treatment furnace 10 and a wire feeding device 20, and the copper slag depletion treatment furnace 10 Taking electric heat or plasma heat as a heat source, the copper slag depleting treatment furnace 10 is provided with a copper slag inlet, a feeding hole and a vent; the copper slag depletion method includes the following steps: the copper slag a is passed through the copper slag inlet to the copper slag In the depletion treatment furnace 10, the carbon powder line b is fed into the copper slag depletion treatment furnace 10 through the wire feeding hole by the wire feeding device 20; under the action of electric heat or plasma heat, the carbon powder line b is used for copper slag a. Perform reduction depletion.
  • the carbon powder line is fed into the copper slag depletion treatment furnace 10 by using a wire feeding device 20, and then the copper slag is reduced and depleted by using electric heat or plasma heat as a heat source.
  • the above device to process copper slag has a simple process, can effectively use the heat carried by the copper slag itself from the previous process, and the device has a small footprint and low equipment cost.
  • the device can reduce the lead oxide and zinc oxide in the copper slag together to recover the copper and a small amount of lead and zinc, and avoid chemical agents added in the beneficiation process. This brings greater economic benefits and greatly reduces potential safety hazards.
  • the present invention can directly feed the carbon powder line into the melt layer in the middle and lower part of the slag in the furnace through the wire feeding device 20.
  • the carbon powder in the toner line can be more fully contacted with the melt in the middle and lower parts of the slag, and can function as a reducing agent, thereby reducing the copper oxide in the copper slag to a high degree of depletion kinetics. Copper samarium, a small amount of lead oxide and zinc oxide can also be reduced to the corresponding metal element into the tail gas for easy recovery.
  • the copper slag depletion device provided by the present invention can effectively improve the reduction and depletion efficiency of the copper slag, and at the same time has the beneficial effects of short process, low cost, and the simultaneous recovery of heavy metals such as lead and zinc in the slag.
  • the copper slag depleting treatment furnace 10 is a mine thermal electric furnace or a plasma furnace.
  • the use of a mineral heat electric furnace or a plasma furnace can provide stable heat for the depletion process of copper slag, and the added carbon powder line can basically serve as a reducing agent, which can further improve the kinetic conditions of depletion and increase production efficiency.
  • additives are simultaneously introduced into the copper slag depletion treatment furnace 10 to participate in the reduction and depletion treatment; preferably, the additives are pyrite, sulfur and low-ice One or more of copper. Adding these additives is beneficial to reduce the copper slag grade in the slag and further improve the recovery rate of copper.
  • the copper slag depletion treatment is performed based on a special wire-feeding process, so that the process provided by the present invention has a wider range of copper slag.
  • the copper content in the copper slag is 0.8-12% by weight, and the lead content is 0.5 to 10%, zinc content is 1.0 to 8%.
  • the theoretical carbon weight required for the reduction of copper oxide, lead oxide, and zinc oxide in copper slag refers to the theoretical amount of carbon required to reduce these oxides to a simple substance of metal.
  • the copper slag is a liquid copper slag generated during the copper smelting process.
  • the temperature of the liquid copper matte produced during the copper smelting process is usually 1180-1250 ° C.
  • the liquid copper slag is directly transferred from the chute or the slag package to the copper slag depleting treatment furnace 10 to fully utilize the waste heat of the liquid copper slag.
  • the toner line used in the above-mentioned depletion method of the present invention may be a currently available toner line.
  • the diameter of the toner line is 10 to 30 mm, and the carbon content of the toner in the toner line. It is 50 to 98%.
  • the toner line includes a toner core layer and a metal sheath covering the surface of the toner core layer.
  • the metal sheath is an iron sheath or an aluminum sheath.
  • the thickness of the metal sheath is preferably 0.1 to 0.5 mm. After entering into the melt of the furnace body 11, the metal sheath will melt at high temperature, or dissolve in the slag after being oxidized with other metal oxides.
  • the wire end of the toner line is placed in the melt layer in the copper slag depleting treatment furnace 10, and the copper slag is depleted.
  • the height of the inner bottom wall of the furnace 10 from the slag layer is denoted by H
  • the copper slag depletion process based on the present invention has better kinetic conditions and can effectively shorten the depletion period.
  • the temperature of the reduction-leaning process is 1200 to 1400 ° C, and the time is 1 to 3 hours.
  • copper rhenium c, slag d, and tail gas c are obtained in the step of reducing and depleting, and the method for depleting copper slag further includes the step of subjecting the slag d to water quenching.
  • the slag d is discharged from the slag discharge port and water quenched. Since the slag d has not been finely ground, beneficiated, and no chemicals have been added, the heavy metals such as lead and zinc in the slag have been recycled. Therefore, the slag d is not a hazardous waste and affects the surrounding environment Lower.
  • the copper slag depletion method further includes a step of post-treating the tail gas e.
  • the post-processing step includes: performing a waste heat recovery treatment on the tail gas e to obtain cold flue gas; and recovering the cold flue gas. Dust treatment.
  • the waste heat in the exhaust gas can be recovered for utilization, on the other hand, the particulate matter emissions can be reduced, the environmental protection of the device can be improved, and the lead element and zinc elementary substances generated by the reduction that are carried in the exhaust gas can be recovered.
  • the Cu content in the slag can be ⁇ 0.5%
  • the Pb content can be ⁇ 0.2%
  • the Zn content can be ⁇ 0.2%.
  • the copper content in copper matte can reach 40 to 80%. After being discharged, it can be used in subsequent processes (such as the blowing process) to produce anode plates.
  • the reducing agent will form CO or CO 2 after participating in the depletion, and a part of the combustibles will be entrained in the tail gas. This part of the combustibles can also be partially burned above the slag.
  • the furnace body 11 provides heat.
  • the copper slag depletion is performed by using the copper slag depletion device shown in FIG. 1.
  • the depletion furnace is shown in FIG. 1, and three heating electrodes are arranged inside the furnace body.
  • the volume of the electrode extending into the cavity occupies the total cavity volume. 4% of the volume, the power density of the electrode is 200kW / m 2 , and the process conditions are as follows:
  • the toner line includes a toner core layer and a coating
  • the iron sheet on the surface of the toner core layer, the thickness of the iron sheet is 0.1mm, the diameter of the toner line is 10mm, the carbon content in the toner is 98%; the weight of the toner in the added toner line is denoted as A, and the copper slag
  • the wire end of the carbon powder line is placed in the melt layer in the copper slag depletion treatment furnace, and the height of the inner bottom wall of the copper slag depletion treatment furnace from the slag layer is denoted by H.
  • Treatment result 200,000 tons of copper smelting slag processed annually, copper slag containing 3.5% copper, 0.95% lead, 2.76% zinc; tailing slag after copper slag processing contains 0.32% copper, 0.06% lead, 0.12% zinc; The copper grade of copper tin is 35.12%.
  • the copper recovery rate of the whole system is about 90.54%, the lead recovery rate is about 98.5%, and the zinc recovery rate is 96%.
  • Treatment results 200,000 tons of copper slag processed annually, copper slag contains 3.5% copper, 0.95% lead, 2.76% zinc; slag after copper slag treatment contains 0.33% copper, 0.08% lead, 0.14% zinc; copper Rhenium's copper grade is 34.25%.
  • the copper recovery rate of the whole system is about 89.6%, the lead recovery rate is about 97.0%, and the zinc recovery rate is 94.5%.
  • Treatment result 200,000 tons of copper smelting slag processed annually, copper slag contains 3.5% copper, 0.95% lead, 2.76% zinc; tailing slag after copper slag treatment contains 0.30% copper, 0.04% lead, and 0.10% zinc; The copper grade of copper matte was 36.5%.
  • the copper recovery rate of the whole system is about 91.3%, the lead recovery rate is about 98.9%, and the zinc recovery rate is 98.2%.
  • Copper slag processed annually copper slag contains 3.5% copper, lead contains 0.95%, zinc contains 2.76%; copper slag treated slag contains copper 0.40%, lead 0.12%, zinc 0.21%; copper Rhenium's copper grade is 30.54%.
  • the copper recovery rate of the whole system is about 85.2%, the lead recovery rate is about 87.0%, and the zinc recovery rate is 91.3%.
  • the adopted device and process are the same as those in Embodiment 1, except that the feeding process is not adopted, but the same amount of carbon powder is directly added to the furnace body through the feeding hole.
  • Copper slag contains 3.5% copper, 0.95% lead, 2.76% zinc
  • slag after copper slag treatment contains 1.05% copper, 0.56% lead, 0.98% zinc
  • copper Rhenium's copper grade is 23.38%.
  • the copper recovery rate of the whole system is about 73.1%
  • the lead recovery rate is about 63.8%
  • the zinc recovery rate is 74.7%.
  • the carbon powder line is fed into the copper slag depletion treatment furnace by a wire feeding process, and then the copper slag is reduced and depleted by using electric heat or plasma heat as a heat source.
  • using the above device to process copper slag has a simple process, can effectively use the heat carried by the copper slag itself from the previous process, and the device has a small footprint and low equipment cost.
  • the device can reduce the lead oxide and zinc oxide in the copper slag together to recover the copper and a small amount of lead and zinc, and avoid chemical agents added in the beneficiation process. This brings greater economic benefits and greatly reduces potential safety hazards.
  • the present invention can directly feed the carbon powder line into the melt layer in the middle and lower part of the slag in the furnace through the wire feeding device.
  • the carbon powder in the toner line can be more fully contacted with the melt in the middle and lower parts of the slag, and can function as a reducing agent, thereby reducing the copper oxide in the copper slag to a high degree of depletion kinetics. Copper samarium, a small amount of lead oxide and zinc oxide can also be reduced to the corresponding metal element into the tail gas for easy recovery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

一种铜渣贫化装置及方法。该装置包括铜渣贫化处理炉(10)和喂线装置(20),铜渣贫化处理炉(10)以电热或等离子热为热源,铜渣贫化处理炉(10)设置有铜渣进口、喂线孔及放锍口,铜渣进口用以通入铜渣(a),放锍口用以排出还原贫化处理得到的铜锍(c);喂线装置(20)用于通过喂线孔向铜渣贫化处理炉(10)中喂入碳粉线(b)以对铜渣(a)进行还原贫化处理。该铜渣贫化装置能够提高铜渣的还原贫化效率,具有流程短、成本低、可同时回收渣中的铅锌等重金属等效果。

Description

铜渣贫化装置及方法 技术领域
本发明涉及金属冶炼技术领域,具体而言,涉及一种铜渣贫化装置及方法。
背景技术
现有的铜冶炼过程中,每冶炼1t铜,会产生2~7t的铜渣,渣中铜及其它金属含量较高。不同冶炼工艺产出渣中的铜含量不同,铜渣中铜含量为0.8~12%,且还含有铅、锌等金属,铅含量约0.5~10%,锌含量约1.0~8%。
目前,国内铜渣主要采用选矿技术进行贫化,主要是将铜渣进行渣缓冷、破碎、细磨等步骤。比如:申请号2014106829920.6的中国专利提出了一种直接回收渣中铁资源的方法,铜渣冷却后造球—烘干—还原—选矿。但该法存在占地面积大、投资成本高、热浪费严重等问题。近年世界铜渣年排放量达到6000万吨以上,我国铜渣年排放量达1500万吨,若全部采用选矿方法对渣进行贫化利用,选矿炉渣的堆存对周边环境造成较大危害,且渣中铅、锌不能得到回收利用,造成较大的资源浪费。
近年来国内外研究人员对火法处理铜渣进行了诸多研究,但尚未有成熟的工艺,主要存在以下缺陷:(1)加入块煤或粉煤进行还原贫化,块煤和粉煤会在熔渣表面漂浮,大量还原剂在烟气中燃烧,未能起到较好的还原作用;且熔池静止,不利于渣中铜锍(金属)的聚集长大,动力学条件较差;(2)还原剂喷吹工艺投资较大、生产成本较高。
发明内容
本发明的主要目的在于提供一种铜渣贫化装置及方法,以解决现有技术中回收处理铜渣时无法兼顾成本低、流程短、效率高、铅锌等重金属无法回收的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种铜渣贫化装置,其包括:铜渣贫化处理炉,以电热或等离子热为热源,铜渣贫化处理炉设置有铜渣进口、喂线孔及放锍口,铜渣进口用以通入铜渣,放锍口用以排出还原贫化处理得到的铜锍;以及喂线装置,用于通过喂线孔向铜渣贫化处理炉中喂入碳粉线以对铜渣进行还原贫化处理。
进一步地,铜渣贫化处理炉为矿热电炉或等离子炉。
进一步地,铜渣贫化处理炉包括:炉体,铜渣进口和喂线孔设置在炉体的顶部,放锍口设置在炉体的侧下方,且炉体上还设置有电极孔;以及加热电极,加热电极穿过电极孔延伸至炉体的内容,用以向炉体供热。
进一步地,喂线孔为多个,多个喂线孔分布在炉体的顶部。
进一步地,喂线孔为3~8个,喂线孔的孔径为30~100mm。
进一步地,炉体的相对于放锍口的一侧下部还设置有放渣口,放渣口用以排出还原贫化处理过程中产出的炉渣。
进一步地,铜渣贫化装置还包括渣冷却装置,渣冷却装置用以对放渣口排出的炉渣进行冷却。
进一步地,炉体的顶部还设置有添加剂入口,添加剂入口用以通入添加剂。
进一步地,添加剂入口与铜渣进口位于同一位置。
进一步地,铜渣贫化装置还包括添加剂料仓,添加剂料仓与添加剂入口相连。
进一步地,铜渣贫化处理炉还设置有尾气出口,铜渣贫化装置还包括:余热回收装置,设置有热烟气进口和冷烟气出口,热烟气进口与尾气出口相连;以及收尘装置,收尘装置与冷烟气出口相连。
根据本发明的另一方面,还提供了一种铜渣贫化方法,其采用的装置包括铜渣贫化处理炉和喂线装置,铜渣贫化处理炉以电热或等离子热为热源,铜渣贫化处理炉设置有铜渣进口、喂线孔及放锍口;铜渣贫化方法包括以下步骤:通过铜渣进口将铜渣通入铜渣贫化处理炉中;利用喂线装置通过喂线孔向铜渣贫化处理炉中喂入碳粉线;在电热或等离子热的作用下,利用碳粉线对铜渣进行还原贫化处理。
进一步地,铜渣贫化处理炉为矿热电炉或等离子炉。
进一步地,还原贫化处理的步骤中,同时向铜渣贫化处理炉中通入添加剂参与还原贫化处理;优选地,添加剂为黄铁矿、硫磺及低冰铜中的一种或多种。
进一步地,铜渣中铜含量为0.8~12wt%,铅含量为0.5~10%,锌含量为1.0~8%;优选地,添加剂的加入量为铜渣重量的1~20%;优选地,将加入的碳粉线中的碳粉重量记为A,将铜渣中铜氧化物、铅氧化物及锌氧化物被还原所需的理论配碳重量记为B,其中A/B=0.8~2.0;优选地,铜渣为铜熔炼过程中产生的液态铜渣。
进一步地,碳粉线的直径为10~30mm,碳粉线中碳粉的碳含量为50~98%。
进一步地,碳粉线包括碳粉芯层和包覆在碳粉芯层表面的金属外皮,金属外皮为铁皮或铝皮,优选金属外皮的厚度为0.1~0.5mm。
进一步地,在喂入碳粉线的步骤中,将碳粉线的线端置于在铜渣贫化处理炉内的熔体层中,且将铜渣贫化处理炉的内部底壁距熔渣层高度记为H,将铜渣贫化处理炉的内部底壁距碳粉线的线端高度记为h,其中h/H=1/3~1/2。
进一步地,还原贫化处理的温度为1200~1400℃,时间为1~3h。
进一步地,还原贫化处理的步骤中得到了铜锍、炉渣及尾气,铜渣贫化方法还包括对炉渣进行水淬处理的步骤。
进一步地,铜渣贫化方法还包括对尾气进行后处理的步骤,后处理步骤包括:对尾气进行余热回收处理,得到冷烟气;以及对冷烟气进行收尘处理。
本发明提供了一种铜渣贫化装置,其包括铜渣贫化处理炉和喂线装置,铜渣贫化处理炉以电热或等离子热为热源,铜渣贫化处理炉设置有铜渣进口、喂线孔及放锍口,铜渣进口用以通入铜渣,放锍口用以排出还原贫化处理得到的铜锍;喂线装置用于通过喂线孔向铜渣贫化处理炉中喂入碳粉线以对铜渣进行还原贫化处理。
利用本发明提供的铜渣贫化装置,采用喂线工艺将碳粉线喂入铜渣贫化处理炉中,然后以电热或等离子热为热源对铜渣进行还原贫化处理。相比于传统的选矿工艺,利用上述装置处理铜渣,流程简单,能够有效利用铜渣本身从前段工序出来是携带的热量,且该装置占地面积小、设备成本低。同时,该装置能够将铜渣中的铅氧化物和锌氧化物一并进行还原处理,回收其中的铜和少量铅、锌,且避免了如选矿工艺中添加的化学药剂等,不仅为企业带来较大的经济效益,而且大大降低了安全隐患。相比于火法贫化工艺,本发明通过喂线装置可以直接将碳粉线喂入炉体内的熔渣中下部的熔体层中。这样能够使碳粉线中的碳粉更充分地与熔渣中下部的熔体接触,发挥还原剂的功能,从而在较高的贫化动力学条件下将铜渣中的铜氧化物还原为铜锍,其中少量的铅氧化物、锌氧化物也可被还原为相应的金属单质进入尾气中(铅、锌可气化进入尾气),以方便回收。
基于以上原因,利用本发明提供的铜渣贫化装置能够有效提高铜渣的还原贫化效率,且同时具有流程短、成本低、能够同时回收渣中的铅锌等重金属等有益效果。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了根据本发明一种实施例的铜渣贫化装置示意图。
其中,上述附图包括以下附图标记:
10、铜渣贫化处理炉;11、炉体;12、加热电极;20、喂线装置;30、余热回收装置;40、收尘装置;50、添加剂料仓;
a、铜渣;b、碳粉线;c、铜锍;d、炉渣;e、尾气。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
以下结合具体实施例对本申请作进一步详细描述,这些实施例不能理解为限制本申请所要求保护的范围。
正如背景技术部分所描述的,现有技术中回收处理铜渣时无法兼顾成本低、流程短、效率高、铅锌等重金属无法回收。
为了解决上述问题,本发明提供了一种铜渣贫化装置,如图1所示,其包括铜渣贫化处理炉10和喂线装置20,铜渣贫化处理炉10,以电热或等离子热为热源,铜渣贫化处理炉10设置有铜渣进口、喂线孔及放锍口,铜渣进口用以通入铜渣a,放锍口用以排出还原贫化处理得到的铜锍c;喂线装置20,用于通过喂线孔向铜渣贫化处理炉10中喂入碳粉线b以对铜渣进行还原贫化处理。
利用本发明提供的铜渣贫化装置,采用喂线装置20将碳粉线喂入铜渣贫化处理炉10中,然后以电热或等离子热为热源对铜渣进行还原贫化处理。相比于传统的选矿工艺,利用上述装置处理铜渣,流程简单,能够有效利用铜渣本身从前段工序出来是携带的热量,且该装置占地面积小、设备成本低。同时,该装置能够将铜渣中的铅氧化物和锌氧化物一并进行还原处理,回收其中的铜和少量铅、锌,且避免了如选矿工艺中添加的化学药剂等,不仅为企业带来较大的经济效益,而且大大降低了安全隐患。相比于火法贫化工艺,本发明通过喂线装置20可以直接将碳粉线喂入炉体内的熔渣中下部的熔体层中。这样能够使碳粉线中的碳粉更充分地与熔渣中下部的熔体接触,发挥还原剂的功能,从而在较高的贫化动力学条件下将铜渣中的铜氧化物还原为铜锍,其中少量的铅氧化物、锌氧化物也可被还原为相应的金属单质进入尾气中(铅、锌可气化进入尾气),以方便回收。
基于以上原因,利用本发明提供的铜渣贫化装置能够有效提高铜渣的还原贫化效率,且同时具有流程短、成本低、能够同时回收渣中的铅锌等重金属等有益效果。
实际贫化过程中,由喂线装置20控制碳粉线的进入速度,碳粉进入熔体后与铜(少量铅、锌)氧化物反应,生成CO、CO 2气体,将以氧化物状态存在的金属还原成金属单质状态,铜等其他金属沉降并由放锍口排出。气体由熔体逸出过程中,还能够起到对熔体的搅拌作用,这样也能够促进金属颗粒聚集长大并沉降,从而促进还原反应的进行。
在一种优选的实施方式中,铜渣贫化处理炉10为矿热电炉或等离子炉。利用矿热电炉或等离子炉,能够为铜渣的贫化过程提供稳定的热量,且加入的碳粉线基本可以完全充当还原剂,能够进一步改善贫化动力学条件,提高生产效率。
在一种优选的实施方式中,如图1所示,铜渣贫化处理炉10包括炉体11和加热电极12,铜渣进口和喂线孔设置在炉体11的顶部,放锍口设置在炉体11的侧下方,且炉体11上还设置有电极孔;加热电极12穿过电极孔延伸至炉体11的内容,用以向炉体11供热。在实际操作过程中,通过电源向加热电极12供电,进而利用加热电极12为炉体11内部的铜渣体系进行供热。上述加热电极12的数目可以根据炉体11容量、铜渣处理量进行调整,这是本领域技术人员都应理解的。
为了更方便地进行喂线操作,并更方便地控制喂线的高度,在一种优选的实施方式中,喂线孔为多个,多个喂线孔分布在炉体11的顶部。将喂线孔分布在炉体11的顶部,通过喂线装置20将碳粉线喂入喂线孔后,碳粉线即可在自身的重力下进入熔体内部与熔体接触,且该过程中方便控制线端高度。另外,设置多个喂线孔,可以在不同的位置喂入碳粉线,有利于进一步提高贫化还原的效率。优选地,喂线孔为3~8个,喂线孔的孔径为30~100mm。
在一种优选的实施方式中,炉体11的相对于放锍口的一侧下部还设置有放渣口,放渣口用以排出还原贫化处理过程中产出的炉渣d。如图1所示,在实际的生产过程中,炉体11内的贫化体系中,位于下方的是铜锍,位于上部的是浮在熔体表面的一些熔渣。因此,利用放渣口可以将这些熔渣排出。优选地,铜渣贫化装置还包括渣冷却装置,渣冷却装置用以对放渣口排出的炉渣d进行冷却。具体的冷却方式可以采用本领域常用的冷却形式,比如水淬等。
为了进一步提高铜渣的贫化效果,在一种优选的实施方式中,炉体11的顶部还设置有添加剂入口,添加剂入口用以通入添加剂。该添加剂可以是硫化剂、捕集剂等,有利于降低炉渣中的铜锍品位,进一步提高铜的回收率。
在一种优选的实施方式中,添加剂入口与铜渣进口位于同一位置。这样可以在同一位置加入添加剂和铜渣,提高操作便利性。优选地,铜渣贫化装置还包括添加剂料仓50,添加剂料仓50与添加剂入口相连,用以提供添加剂。
在一种优选的实施方式中,铜渣贫化处理炉10还设置有尾气出口,铜渣贫化装置还包括余热回收装置30和收尘装置40,余热回收装置30设置有热烟气进口和冷烟气出口,热烟气进口与尾气出口相连;收尘装置40与冷烟气出口相连。这样一方面可以回收尾气e中的余热加以利用,一方面还能够减少颗粒物排放,提高装置的环保性,且能够回收尾气中携带的被还原出来的铅单质和锌单质。
根据本发明的另一方面,还提供了一种铜渣贫化方法,如图1所示,其采用的装置包括铜渣贫化处理炉10和喂线装置20,铜渣贫化处理炉10以电热或等离子热为热源,铜渣贫化处理炉10设置有铜渣进口、喂线孔及放锍口;铜渣贫化方法包括以下步骤:通过铜渣进口将铜渣a通入铜渣贫化处理炉10中;利用喂线装置20通过喂线孔向铜渣贫化处理炉10中喂入碳粉线b;在电热或等离子热的作用下,利用碳粉线b对铜渣a进行还原贫化处理。
利用本发明提供的铜渣贫化方法,采用喂线装置20将碳粉线喂入铜渣贫化处理炉10中,然后以电热或等离子热为热源对铜渣进行还原贫化处理。相比于传统的选矿工艺,利用上述装置处理铜渣,流程简单,能够有效利用铜渣本身从前段工序出来是携带的热量,且该装置占地面积小、设备成本低。同时,该装置能够将铜渣中的铅氧化物和锌氧化物一并进行还原处理,回收其中的铜和少量铅、锌,且避免了如选矿工艺中添加的化学药剂等,不仅为企业带来较大的经济效益,而且大大降低了安全隐患。相比于火法贫化工艺,本发明通过喂线装置20可以直接将碳粉线喂入炉体内的熔渣中下部的熔体层中。这样能够使碳粉线中的碳粉更充分地与熔渣中下部的熔体接触,发挥还原剂的功能,从而在较高的贫化动力学条件下将铜 渣中的铜氧化物还原为铜锍,其中少量的铅氧化物、锌氧化物也可被还原为相应的金属单质进入尾气中,以方便回收。
基于以上原因,利用本发明提供的铜渣贫化装置能够有效提高铜渣的还原贫化效率,且同时具有流程短、成本低、能够同时回收渣中的铅锌等重金属等有益效果。
在一种优选的实施方式中,铜渣贫化处理炉10为矿热电炉或等离子炉。利用矿热电炉或等离子炉,能够为铜渣的贫化过程提供稳定的热量,且加入的碳粉线基本可以完全充当还原剂,能够进一步改善贫化动力学条件,提高生产效率。
在一种优选的实施方式中,在还原贫化处理的步骤中,同时向铜渣贫化处理炉10中通入添加剂参与还原贫化处理;优选地,添加剂为黄铁矿、硫磺及低冰铜中的一种或多种。加入这些添加剂有利于降低炉渣中的铜锍品位,进一步提高铜的回收率。
基于特殊的喂线工艺进行铜渣贫化处理,使得本发明提供的工艺使用的铜渣范围更广,在一种优选的实施方式中,铜渣中铜含量为0.8~12wt%,铅含量为0.5~10%,锌含量为1.0~8%。
为了进一步提高铜渣的贫化效率和铜(少量铅、锌等其他金属)的回收率,添加剂的加入量为铜渣重量的1~20%。更优选地,将加入的碳粉线中的碳粉重量记为A,将铜渣中铜氧化物、铅氧化物及锌氧化物被还原所需的理论配碳重量记为B,其中A/B=0.8~2.0。此处“铜渣中铜氧化物、铅氧化物及锌氧化物被还原所需的理论配碳重量”是指将这些氧化物还原为金属单质所需的理论碳量。
为了更充分地利用铜渣本身携带的热量,节约能耗,优选地,铜渣为铜熔炼过程中产生的液态铜渣。铜熔炼过程中产出的液态铜锍的温度通常为1180~1250℃。液态铜渣由溜槽或渣包直接转运至铜渣贫化处理炉10中,充分利用液态铜渣余热。
本发明上述贫化方法中采用的碳粉线可以是目前市售的碳粉线,在一种优选的实施方式中,碳粉线的直径为10~30mm,碳粉线中碳粉的碳含量为50~98%。更优选地,碳粉线包括碳粉芯层和包覆在碳粉芯层表面的金属外皮,金属外皮为铁皮或铝皮,优选金属外皮的厚度为0.1~0.5mm。金属外皮在进入炉体11的熔体中后会发生高温熔化,或与其他金属氧化物反应氧化后溶于渣中。
在一种优选的实施方式中,在喂入碳粉线的步骤中,将碳粉线的线端置于在铜渣贫化处理炉10内的熔体层中,且将铜渣贫化处理炉10的内部底壁距熔渣层高度记为H,将铜渣贫化处理炉10的内部底壁距碳粉线的线端高度记为h,其中h/H=1/3~1/2。这样,一方面碳粉线与熔体的接触更为充分,贫化条件更佳,另一方面熔池中部的金属氧化物完成还原反应之后,可以通过沉降作用进入熔池底部,形成较为稳定的铜锍层,方便排出铜锍。
如前文所述,基于本发明的铜渣贫化工艺具有较好的动力学条件,能够有效缩短贫化周期。在一种优选的实施方式中,还原贫化处理的温度为1200~1400℃,时间为1~3h。
在一种优选的实施方式中,还原贫化处理的步骤中得到了铜锍c、炉渣d及尾气c,铜渣贫化方法还包括对炉渣d进行水淬处理的步骤。炉渣d由放渣口排出,水淬处理,由于炉渣d未经细磨、选矿,未添加任何药剂,渣中铅、锌等重金属已回收利用,因此炉渣d不属于危废,对周边环境影响较低。
在一种优选的实施方式中,铜渣贫化方法还包括对尾气e进行后处理的步骤,后处理步骤包括:对尾气e进行余热回收处理,得到冷烟气;以及对冷烟气进行收尘处理。这样一方面可以回收尾气中的余热加以利用,一方面还能够减少颗粒物排放,提高装置的环保性,并可以回收尾气中携带的因还原生成的铅单质和锌单质。
利用本发明的方法处理铜渣,炉渣中的Cu含量可以≤0.5%、Pb含量可以≤0.2%、Zn含量可以≤0.2%。铜锍中铜含量能够达到40~80%,排出后可以进入后续流程(比如吹炼过程)生产阳极板。
需要说明的是,在实际的贫化处理过程中,还原剂参与贫化后会形成CO或CO 2,尾气中会夹带一部分可燃物,这部分可燃物位于熔渣上方也能够发生部分燃烧,为炉体11提供热量。
以下通过实施例进一步说明本发明的有益效果:
实施例1
利用图1所示铜渣贫化装置进行铜渣的贫化,其中贫化炉如图1所示,炉体内部设置有三个加热电极,电极延伸至腔体中的部分的体积占腔体总容积的4%,电极的功率密度为200kW/m 2,工艺条件如下:
将铜渣加入炉内,提升炉内渣的温度至1400℃;开始将碳粉线进行喂线(炉体上方设置有5个喂线孔),碳粉线包括碳粉芯层和包覆在碳粉芯层表面的铁皮,铁皮厚度为0.1mm,碳粉线的直径为10mm,碳粉中的碳含量为98%;将加入的碳粉线中的碳粉重量记为A,将铜渣中铜氧化物、铅氧化物及锌氧化物被还原所需的理论配碳重量记为B,其中A/B=0.8。喂线过程中,将碳粉线的线端置于在铜渣贫化处理炉内的熔体层中,且将铜渣贫化处理炉的内部底壁距熔渣层高度记为H,将铜渣贫化处理炉的内部底壁距碳粉线的线端高度记为h,其中h/H=1/3;在炉体中加入黄铁矿进一步捕集渣中的铜金属,加入量为熔炼渣总重量的3%;所得铜锍返回熔炼炉。
处理结果:年处理铜熔炼渣20万吨,铜渣含铜3.5%,含铅0.95%,含锌2.76%;铜渣处理后尾渣含铜0.32%,含铅0.06%,含锌0.12%;铜锍的铜品位在35.12%。整个系统铜回收率约90.54%,铅回收率约为98.5%,锌回收率96%。
实施例2
采用的装置及工艺同实施例1,不同之处在于:h/H=1/2。
处理结果:年处理铜熔炼渣20万吨,铜渣含铜3.5%,含铅0.95%,含锌2.76%;铜渣处理后炉渣含铜0.35%,含铅0.09%,含锌0.17%;铜锍的铜品位在33.81%。整个系统铜回收率约88.8%,铅回收率约为95.6%,锌回收率93%。
实施例3
采用的装置及工艺同实施例1,不同之处在于:h/H=2/3。
处理结果:年处理铜熔炼渣20万吨,铜渣含铜3.5%,含铅0.95%,含锌2.76%;铜渣处理后炉渣含铜0.33%,含铅0.08%,含锌0.14%;铜锍的铜品位在34.25%。整个系统铜回收率约89.6%,铅回收率约为97.0%,锌回收率94.5%。
实施例4
采用的装置及工艺同实施例1,不同之处在于:黄铁矿的加入量为铜渣总重量的20%,A/B=2.0。
处理结果:年处理铜熔炼渣20万吨,铜渣含铜3.5%,含铅0.95%,含锌2.76%;铜渣处理后尾渣含铜0.30%,含铅0.04%,含锌0.10%;铜锍的铜品位在36.5%。整个系统铜回收率约91.3%,铅回收率约为98.9%,锌回收率98.2%。
实施例5
采用的装置及工艺同实施例1,不同之处在于:黄铁矿的加入量为铜渣总重量的1%,A/B=0.7。
处理结果:年处理铜熔炼渣20万吨,铜渣含铜3.5%,含铅0.95%,含锌2.76%;铜渣处理后炉渣含铜0.40%,含铅0.12%,含锌0.21%;铜锍的铜品位在30.54%。整个系统铜回收率约85.2%,铅回收率约为87.0%,锌回收率91.3%。
对比例1
采用的装置及工艺同实施例1,不同之处在于:未采用喂线工艺,而是将等量的碳粉直接通过加料孔加在炉体中。
处理结果:年处理铜熔炼渣20万吨,铜渣含铜3.5%,含铅0.95%,含锌2.76%;铜渣处理后炉渣含铜1.05%,含铅0.56%,含锌0.98%;铜锍的铜品位在23.38%。整个系统铜回收率约73.1%,铅回收率约为63.8%,锌回收率74.7%。
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:
利用本发明提供的铜渣贫化装置,采用喂线工艺将碳粉线喂入铜渣贫化处理炉中,然后以电热或等离子热为热源对铜渣进行还原贫化处理。相比于传统的选矿工艺,利用上述装置处理铜渣,流程简单,能够有效利用铜渣本身从前段工序出来是携带的热量,且该装置占地面积小、设备成本低。同时,该装置能够将铜渣中的铅氧化物和锌氧化物一并进行还原处理,回收其中的铜和少量铅、锌,且避免了如选矿工艺中添加的化学药剂等,不仅为企业带来较 大的经济效益,而且大大降低了安全隐患。相比于火法贫化工艺,本发明通过喂线装置可以直接将碳粉线喂入炉体内的熔渣中下部的熔体层中。这样能够使碳粉线中的碳粉更充分地与熔渣中下部的熔体接触,发挥还原剂的功能,从而在较高的贫化动力学条件下将铜渣中的铜氧化物还原为铜锍,其中少量的铅氧化物、锌氧化物也可被还原为相应的金属单质进入尾气中,以方便回收。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (21)

  1. 一种铜渣贫化装置,其特征在于,包括:
    铜渣贫化处理炉(10),以电热或等离子热为热源,所述铜渣贫化处理炉(10)设置有铜渣进口、喂线孔及放锍口,所述铜渣进口用以通入所述铜渣,所述放锍口用以排出还原贫化处理得到的铜锍;以及
    喂线装置(20),用于通过所述喂线孔向所述铜渣贫化处理炉(10)中喂入碳粉线以对所述铜渣进行所述还原贫化处理。
  2. 根据权利要求1所述的铜渣贫化装置,其特征在于,所述铜渣贫化处理炉(10)为矿热电炉或等离子炉。
  3. 根据权利要求1所述的铜渣贫化装置,其特征在于,所述铜渣贫化处理炉(10)包括:
    炉体(11),所述铜渣进口和所述喂线孔设置在所述炉体(11)的顶部,所述放锍口设置在所述炉体(11)的侧下方,且所述炉体(11)上还设置有电极孔;以及
    加热电极(12),所述加热电极(12)穿过所述电极孔延伸至所述炉体(11)的内容,用以向所述炉体(11)供热。
  4. 根据权利要求3所述的铜渣贫化装置,其特征在于,所述喂线孔为多个,多个所述喂线孔分布在所述炉体(11)的顶部。
  5. 根据权利要求4所述的铜渣贫化装置,其特征在于,所述喂线孔为3~8个,所述喂线孔的孔径为30~100mm。
  6. 根据权利要求3所述的铜渣贫化装置,其特征在于,所述炉体(11)的相对于所述放锍口的一侧下部还设置有放渣口,所述放渣口用以排出所述还原贫化处理过程中产出的炉渣。
  7. 根据权利要求6所述的铜渣贫化装置,其特征在于,所述铜渣贫化装置还包括渣冷却装置,所述渣冷却装置用以对所述放渣口排出的炉渣进行冷却。
  8. 根据权利要求3至7中任一项所述的铜渣贫化装置,其特征在于,所述炉体(11)的顶部还设置有添加剂入口,所述添加剂入口用以通入添加剂。
  9. 根据权利要求8所述的铜渣贫化装置,其特征在于,所述添加剂入口与所述铜渣进口位于同一位置。
  10. 根据权利要求8所述的铜渣贫化装置,其特征在于,所述铜渣贫化装置还包括添加剂料仓(50),所述添加剂料仓(50)与所述添加剂入口相连。
  11. 根据权利要求1至7中任一项所述的铜渣贫化装置,其特征在于,所述铜渣贫化处理炉(10)还设置有尾气出口,所述铜渣贫化装置还包括:
    余热回收装置(30),设置有热烟气进口和冷烟气出口,所述热烟气进口与所述尾气出口相连;以及
    收尘装置(40),所述收尘装置(40)与所述冷烟气出口相连。
  12. 一种铜渣贫化方法,其特征在于,所述铜渣贫化方法采用的装置包括铜渣贫化处理炉(10)和喂线装置(20),所述铜渣贫化处理炉(10)以电热或等离子热为热源,所述铜渣贫化处理炉(10)设置有铜渣进口、喂线孔及放锍口;所述铜渣贫化方法包括以下步骤:
    通过所述铜渣进口将所述铜渣通入所述铜渣贫化处理炉(10)中;
    利用所述喂线装置(20)通过所述喂线孔向所述铜渣贫化处理炉(10)中喂入碳粉线;
    在所述电热或所述等离子热的作用下,利用所述碳粉线对所述铜渣进行还原贫化处理。
  13. 根据权利要求12所述的铜渣贫化方法,其特征在于,所述铜渣贫化处理炉(10)为矿热电炉或等离子炉。
  14. 根据权利要求12所述的铜渣贫化方法,其特征在于,在所述还原贫化处理的步骤中,同时向所述铜渣贫化处理炉(10)中通入添加剂参与所述还原贫化处理;优选地,所述添加剂为黄铁矿、硫磺及低冰铜中的一种或多种。
  15. 根据权利要求14所述的铜渣贫化方法,其特征在于,所述铜渣中铜含量为0.8~12wt%,铅含量为0.5~10%,锌含量为1.0~8%;
    优选地,所述添加剂的加入量为所述铜渣重量的1~20%;
    优选地,将加入的所述碳粉线中的碳粉重量记为A,将所述铜渣中铜氧化物、铅氧化物及锌氧化物被还原所需的理论配碳重量记为B,其中A/B=0.8~2.0;
    优选地,所述铜渣为铜熔炼过程中产生的液态铜渣。
  16. 根据权利要求12至15中任一项所述的铜渣贫化方法,其特征在于,所述碳粉线的直径为10~30mm,所述碳粉线中碳粉的碳含量为50~98%。
  17. 根据权利要求16所述的铜渣贫化方法,其特征在于,所述碳粉线包括碳粉芯层和包覆在所述碳粉芯层表面的金属外皮,所述金属外皮为铁皮或铝皮,优选所述金属外皮的厚度为0.1~0.5mm。
  18. 根据权利要求12至15中任一项所述的铜渣贫化方法,其特征在于,在喂入所述碳粉线的步骤中,将所述碳粉线的线端置于在所述铜渣贫化处理炉(10)内的熔体层中,且将所述铜渣贫化处理炉(10)的内部底壁距所述熔渣层高度记为H,将所述铜渣贫化处理炉(10)的内部底壁距所述碳粉线的线端高度记为h,其中h/H=1/3~1/2。
  19. 根据权利要求18所述的铜渣贫化方法,其特征在于,所述还原贫化处理的温度为1200~1400℃,时间为1~3h。
  20. 根据权利要求12至15中任一项所述的铜渣贫化方法,其特征在于,所述还原贫化处理的步骤中得到了铜锍、炉渣及尾气,所述铜渣贫化方法还包括对所述炉渣进行水淬处理的步骤。
  21. 根据权利要求20所述的铜渣贫化方法,其特征在于,所述铜渣贫化方法还包括对所述尾气进行后处理的步骤,所述后处理步骤包括:
    对所述尾气进行余热回收处理,得到冷烟气;以及
    对所述冷烟气进行收尘处理。
PCT/CN2019/091716 2018-06-20 2019-06-18 铜渣贫化装置及方法 WO2019242607A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EA202092301A EA202092301A1 (ru) 2018-06-20 2019-06-18 Устройство и способ обеднения медного шлака

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810639270.5 2018-06-20
CN201810639270.5A CN108728660B (zh) 2018-06-20 2018-06-20 铜渣贫化方法

Publications (1)

Publication Number Publication Date
WO2019242607A1 true WO2019242607A1 (zh) 2019-12-26

Family

ID=63930080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091716 WO2019242607A1 (zh) 2018-06-20 2019-06-18 铜渣贫化装置及方法

Country Status (4)

Country Link
CN (1) CN108728660B (zh)
CL (1) CL2020002999A1 (zh)
EA (1) EA202092301A1 (zh)
WO (1) WO2019242607A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114686632A (zh) * 2022-04-08 2022-07-01 瀜矿环保科技(上海)有限公司 铜渣回收利用及基于工业固废的co2矿化耦合方法及系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108728660B (zh) * 2018-06-20 2020-07-17 中国恩菲工程技术有限公司 铜渣贫化方法
CN109652660A (zh) * 2019-01-21 2019-04-19 中国恩菲工程技术有限公司 铜渣处理系统及方法
CN111020207B (zh) * 2020-01-06 2024-09-20 中国恩菲工程技术有限公司 铜吹炼渣的处理装置及处理方法
CN111139357A (zh) * 2020-01-07 2020-05-12 中国恩菲工程技术有限公司 含铜污泥的贫化方法
CN112458299A (zh) * 2020-11-25 2021-03-09 中国恩菲工程技术有限公司 铅还原渣的处理方法及装置
CN114164345B (zh) * 2021-11-01 2023-07-21 昆明理工大学 一种铅锌冶炼渣与含铜物料协同处理的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4168156A (en) * 1976-06-17 1979-09-18 Shabalina Roza I Method of and electric furnace for processing nonferrous molten slags
CN101914655A (zh) * 2010-08-03 2010-12-15 沈阳午飞炉料有限公司 高纯金属钙实心包芯线的制造方法
CN105063371A (zh) * 2015-09-02 2015-11-18 云南锡业股份有限公司铜业分公司 一种顶吹吹炼炉内铜渣还原的方法
CN107036443A (zh) * 2017-05-19 2017-08-11 中国恩菲工程技术有限公司 电热贫化炉
CN108728660A (zh) * 2018-06-20 2018-11-02 中国恩菲工程技术有限公司 铜渣贫化方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2632530A1 (en) * 2005-12-09 2007-06-14 Council Of Scientific And Industrial Research A process for recovery of iron from copper slag
CN101838739B (zh) * 2009-07-21 2012-03-14 中国恩菲工程技术有限公司 铜熔炼渣电热贫化工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4168156A (en) * 1976-06-17 1979-09-18 Shabalina Roza I Method of and electric furnace for processing nonferrous molten slags
CN101914655A (zh) * 2010-08-03 2010-12-15 沈阳午飞炉料有限公司 高纯金属钙实心包芯线的制造方法
CN105063371A (zh) * 2015-09-02 2015-11-18 云南锡业股份有限公司铜业分公司 一种顶吹吹炼炉内铜渣还原的方法
CN107036443A (zh) * 2017-05-19 2017-08-11 中国恩菲工程技术有限公司 电热贫化炉
CN108728660A (zh) * 2018-06-20 2018-11-02 中国恩菲工程技术有限公司 铜渣贫化方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114686632A (zh) * 2022-04-08 2022-07-01 瀜矿环保科技(上海)有限公司 铜渣回收利用及基于工业固废的co2矿化耦合方法及系统
CN114686632B (zh) * 2022-04-08 2024-03-22 瀜矿环保科技(上海)有限公司 铜渣回收利用及基于工业固废的co2矿化耦合方法及系统

Also Published As

Publication number Publication date
CL2020002999A1 (es) 2021-03-26
CN108728660A (zh) 2018-11-02
CN108728660B (zh) 2020-07-17
EA202092301A1 (ru) 2021-04-06

Similar Documents

Publication Publication Date Title
WO2019242607A1 (zh) 铜渣贫化装置及方法
CN109880955B (zh) 短流程处理铁基多金属矿料的熔炼方法及熔炼装置
CN104911356B (zh) 一种固废瓦斯灰、含锌铁钒渣综合回收工艺
CN102154555B (zh) 一种清洁处置铅废料的鼓风炉还原造锍熔炼方法和设备
CN109097588B (zh) 一种含铁含锌固废资源化利用的装置及方法
CN1861818A (zh) 侧吹沉没熔池熔炼法
CN103131869A (zh) 高铅高银含砷复杂金精矿的提取方法
CN104073649A (zh) 含铁锌粉尘回收利用工艺
CN110669942A (zh) 一种处理钢铁厂含锌粉尘的方法
CN113789421A (zh) 一种连续喷吹电炉除尘灰入炉综合回收系统及其回收方法
WO2018228074A1 (zh) 铜熔炼渣综合回收方法及装置
JPH06279878A (ja) 特に使用済み蓄電池の活物質からの鉛の回収方法とこの方法に用いる電気炉
CN110106363B (zh) 一种模块化连续烟化生产工艺
CN210596211U (zh) 镍渣或铜渣贫化装置
CN108531744A (zh) 铜渣贫化装置
CN111394588A (zh) 处理提钒尾渣直接产出铁钒铬合金的方法及装置
CN110343878A (zh) 一种节能环保的镍铁合金生产方法
CN215887084U (zh) 喷煤法生产富锰渣用生产系统
CN209989443U (zh) 处理含钴铜熔炼渣的还原炉
CN206256139U (zh) 处理锌浸出渣的系统
CN205907324U (zh) 处理锌浸出渣的系统
CN210122577U (zh) 铁基多金属矿料的熔炼系统
CN106244823A (zh) 一种利用回收废旧物料炼铅的工艺过程
EA040787B1 (ru) Устройство и способ обеднения медного шлака
CN106435204A (zh) 一种燃气熔分处理铜渣的系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19822992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19822992

Country of ref document: EP

Kind code of ref document: A1