WO2022227175A1 - 显示面板及显示装置 - Google Patents

显示面板及显示装置 Download PDF

Info

Publication number
WO2022227175A1
WO2022227175A1 PCT/CN2021/096685 CN2021096685W WO2022227175A1 WO 2022227175 A1 WO2022227175 A1 WO 2022227175A1 CN 2021096685 W CN2021096685 W CN 2021096685W WO 2022227175 A1 WO2022227175 A1 WO 2022227175A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
support column
shielding support
layer
substrate
Prior art date
Application number
PCT/CN2021/096685
Other languages
English (en)
French (fr)
Inventor
王海军
姚江波
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US17/419,866 priority Critical patent/US20240012278A1/en
Publication of WO2022227175A1 publication Critical patent/WO2022227175A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13312Circuits comprising photodetectors for purposes other than feedback
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13318Circuits comprising a photodetector
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13396Spacers having different sizes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136222Colour filters incorporated in the active matrix substrate

Definitions

  • the present application relates to the field of display technology, and in particular, to a display panel and a display device.
  • Thin film transistor liquid crystal displays are widely used in the flat panel display industry due to their lightness, thinness, and small size, as well as low power consumption, no radiation, and relatively low manufacturing costs.
  • TFT-LCDs Thin film transistor liquid crystal displays
  • many functions are now integrated into the display, such as color temperature sensing, laser sensing, gas sensing, etc., which improves the application scenarios of liquid crystal displays.
  • many integrated functions are in the new development stage, and there are still many technological processes and related designs that need to be improved in order to improve the performance of a variety of integrated function liquid crystal displays.
  • FIG. 1 is a schematic structural diagram of a conventional plug-in liquid crystal display panel.
  • the sensor on glass display includes a first polarizer 11 , a first substrate 12 , a first protective layer 13 , a driving transistor 14 , a second protective layer 15 , and a color resist layer 16 , black matrix 17, third protective layer 18, first electrode 19, support column 20, liquid crystal layer 21, second electrode 22, second substrate 23, second polarizer 24, adhesive layer 25, third substrate 26, Photosensitive transistor 27 and PFA protective layer 28 .
  • the first substrate 12 is disposed on the first polarizer 11 ; the first protective layer 13 is disposed on the first substrate 12 ; the driving transistors 14 are disposed on the first protective layer at intervals layer 13 ; the second protective layer 15 covers the driving transistor 14 and the first protective layer 13 ; the color resist layer 16 and the black matrix 17 are arranged on the second protective layer 15 at intervals the third protective layer 18 is disposed on the color resist layer 16 and the black matrix 17; the first electrode 19 is disposed on the third protective layer 18; the support columns 20 are disposed on the On the third protective layer 18; the second electrode 22 is disposed opposite to the first electrode 19, the support column 20 is disposed between the second electrode 22 and the first electrode 19, and is connected to the sealant A closed cavity is formed, and liquid crystal is filled in the cavity to form the liquid crystal layer 21; the second substrate 23 is arranged on the second electrode 22; the second polarizer 24 is arranged on the first the second substrate 23; the adhesive layer 25 is arranged on the second polarizer 24; the third substrate 26 is arranged
  • the external mode liquid crystal display has an induction laser effect.
  • the main principle is that the laser is irradiated on the photosensitive transistor (Sensor TFT), and the photosensitive transistor generates a current, which is transmitted and converted by external signals, and finally transmitted to the driving transistor (Display TFT) of the liquid crystal display.
  • the driving transistor After receiving the signal, the driving transistor generates a voltage and applies it to the first electrode 19, so that the liquid crystal sandwiched between the first electrode 19 and the second electrode 22 is deflected due to the voltage, and the position realizes a light and dark change, and the whole process is about to External laser induction translates into a change in display color.
  • FIG. 2 is a schematic structural diagram of a conventional in-cell liquid crystal display panel.
  • an in-cell liquid crystal display panel (Sensor in cell) includes a first polarizer 11 , a first substrate 12 , a first protective layer 13 , a driving transistor 14 , a photosensitive transistor 27 , and a second protective layer 15 , a color resist layer 16 , a black matrix 17 , a third protective layer 18 , a first electrode 19 , a support column 20 , a liquid crystal layer 21 , a second electrode 22 , a second substrate 23 and a second polarizer 24 .
  • the first substrate 12 is disposed on the first polarizer 11 ; the first protective layer 13 is disposed on the first substrate 12 ; the driving transistor 14 and the photosensitive transistor 27 are disposed at intervals on the first protective layer 13; the second protective layer 15 covers the driving transistor 14 and the first protective layer 13; the color resist layer 16 and the black matrix 17 are disposed on the the second protective layer 15; the third protective layer 18 is disposed on the color resist layer 16 and the black matrix 17; the first electrode 19 is disposed on the third protective layer 18; 20 are arranged on the third protective layer 18 at intervals; the second electrode 22 is arranged opposite to the first electrode 19 , and the support column 20 is arranged between the second electrode 22 and the first electrode 19
  • the liquid crystal layer 21 is formed by filling the liquid crystal in the cavity; the second substrate 23 is arranged on the second electrode 22; the second polarizer 24 is disposed on the second substrate 23 .
  • the driving transistor 14 and the photosensitive transistor 27 are arranged in the same layer on the first protective layer 13, that is, the driving transistor 14 and the photosensitive transistor 27 are fabricated synchronously, and there is no need to repeat the process.
  • the thin film transistor preparation process and the lamination process save the process cost and greatly improve the transmittance of the liquid crystal display panel.
  • the in-cell liquid crystal display panel can greatly reduce the cost and improve the transmittance, because the sensor TFT is far away from the light-emitting position, that is, the light (such as laser) needs to penetrate the polarizer on the side of the color filter substrate ( CF POL), color filter substrate (CF glass), liquid crystal layer and more film layers of the color resist layer can reach the photosensitive transistor, so that the photosensitive transistor can generate current. It can be seen that the light penetrates many parts, resulting in a long photosensitive path between the light (laser) and the photosensitive transistor, which will definitely weaken the photosensitive intensity reaching the photosensitive transistor, which may seriously cause the photosensitive transistor to fail to produce under weak laser conditions. Signal.
  • the purpose of the present invention is to provide a display panel and a display device to solve the technical problem that light needs to penetrate more components, resulting in a longer photosensitive path and weakened photosensitive intensity of the photosensitive transistor.
  • the present invention provides a display panel, comprising: a first substrate and a second substrate disposed opposite to the first substrate, wherein the first substrate includes: a first substrate; a thin film transistor layer, The thin film transistor layer is formed on the first substrate, and the thin film transistor layer includes a photosensitive transistor; and a color resist layer, the color resist layer is disposed on the first substrate, and the color resist layer includes A plurality of color resist blocks arranged in an array, wherein the photosensitive transistors are correspondingly arranged in the gap between at least two adjacent color resist blocks; and the photosensitive transistors are arranged between the first substrate and the second substrate a first light-shielding support column pair, the first end of the first light-shielding support column pair is connected to the first substrate, and the second end of the first light-shielding support column pair is connected to the second substrate, wherein , the first light-shielding support column pair is arranged in a one-to-one correspondence with the photosensitive transistor.
  • first end portion of the first light-shielding support column pair is connected to the color resist layer, and the second end portion is connected to the second substrate.
  • a laser penetrating layer is disposed on the second substrate corresponding to the pair of the first light-shielding support columns, and a photoluminescent layer is disposed on the laser penetrating layer away from the second substrate.
  • the first pair of light-shielding support columns includes a channel extending from the first end to the second end, and an opening at one end of the channel is opposite to the photosensitive transistor.
  • the laser penetrating layer and the photoluminescent layer are disposed in the channel formed by the first light-shielding support column pair.
  • a color blocking block is disposed on the photosensitive transistor, and is disposed in the channel formed by the first light-shielding support column pair.
  • the laser penetrating layer includes at least one of photoresist, inorganic material, and organic material;
  • the photoluminescent layer includes organic quantum dots, inorganic quantum dots, inorganic quantum mixtures, phosphors, and phosphor mixtures , one of the luminous inks.
  • the display panel further includes: a second light-shielding support column, the second light-shielding support column is spaced apart from the first light-shielding support column, wherein the second light-shielding support column protrudes from the color On the surface of the resistance layer, the height of the second light-shielding support column is smaller than that of the first pair of light-shielding support columns.
  • the display panel further includes: a third light-shielding support column, the third light-shielding support column is spaced apart from the first light-shielding support column, wherein the third light-shielding support column fills at least two In the gap between adjacent color-resist blocks, the top surface of the third light-shielding support column is flush with the surface of the color-resist layer.
  • the present invention also provides a display device including the aforementioned display panel.
  • the present application provides a display panel and a display device.
  • the driving transistor and the photosensitive transistor arranged in the same layer are arranged in the first substrate, that is, the photosensitive transistor is embedded,
  • the film layer structure of the display panel is reduced, and an ultra-thin display panel is realized.
  • the laminated laser penetrating layer and the photoluminescent layer that can emit a specific wavelength after laser irradiation are introduced on the side of the second substrate, and the laser penetrating layer and the photoluminescent layer are positive
  • the photosensitive transistor when the photosensitive transistor receives the light generated signal from the photoluminescent layer, the embedded structure of the original photosensitive transistor can be greatly reduced, and the photosensitive path of the photosensitive transistor can be shortened, thereby solving the problem of the laser being damaged by the laser.
  • the absorption of the multi-film layers causes the problem that the signal of the photosensitive transistor is weak, and the photosensitive signal strength of the photosensitive transistor is improved.
  • the first pair of light-shielding support columns is disposed in the display panel, and the first light-shielding support column includes a channel extending from a first end portion of the first light-shielding support column to a second end portion thereof,
  • the laser penetrating layer and the photoluminescent layer are arranged in the channel.
  • the laser light penetrating layer allows the laser light to pass through, but absorbs the light emitted by the photoluminescent layer, preventing the light emitted by the photoluminescent layer from entering the RGB color region and causing color mixing problems.
  • FIG. 1 is a schematic structural diagram of an existing plug-in liquid crystal display panel
  • FIG. 2 is a schematic structural diagram of a conventional in-cell liquid crystal display panel
  • FIG. 3 is a schematic structural diagram of the display panel provided in Embodiment 1 of the present application.
  • FIG. 4 is a plan view of a pair of first light-shielding support columns provided in a gap between two adjacent color resist blocks according to Embodiment 1 of the present application;
  • FIG. 5 is a plan view of the first light-shielding support column pair provided in the gap between a plurality of adjacent color resist blocks according to Embodiment 2 of the present application;
  • FIG. 6 is a schematic structural diagram of a display panel provided in Embodiment 3 of the present application.
  • FIG. 7 is a plan view of a pair of first light-shielding support columns provided in Embodiment 3 of the present application disposed in adjacent color resist blocks and gaps;
  • FIG. 8 is a perspective view of a first light-shielding support column pair provided in a gap between a plurality of adjacent color resist blocks according to Embodiment 3 of the present application;
  • FIG. 9 is a schematic structural diagram of a display panel provided in Embodiment 4 of the present application.
  • the first polarizer 101.
  • the first polarizer 102.
  • a first substrate 102.
  • the second polarizer 202.
  • a second substrate layer 203.
  • Embodiments of the present application provide a display panel and a display device.
  • the display panel includes a first substrate, a second substrate disposed opposite to the first substrate, and a first pair of light-shielding support columns disposed between the first substrate and the second substrate.
  • the first substrate includes a first substrate, a thin film transistor layer and a color resist layer.
  • the thin film transistor layer is formed on the first substrate, and the thin film transistor layer includes a photosensitive transistor.
  • the color resist layer is disposed on the first substrate, and the color resist layer includes a plurality of color resist blocks arranged in an array.
  • the photosensitive transistors are correspondingly arranged in the gap between at least two adjacent color resist blocks, that is, the photosensitive transistors are embedded in the display panel (Sensor TFT in cell).
  • the first ends of the first pair of light-shielding support columns are connected to the first substrate, and the second ends of the first pair of light-shielding support columns are connected to the second substrate.
  • the first light-shielding support column pairs are arranged in one-to-one correspondence with the photosensitive transistors, so as to solve the problem that the photosensitive ability of the embedded photosensitive transistors is weak and the signal is weak. .
  • FIG. 3 is a schematic structural diagram of a display panel according to an embodiment of the present application.
  • This embodiment provides a display panel 1000, which is a liquid crystal display panel.
  • the display panel 1000 includes a first substrate 100 and a second substrate 200 .
  • the first substrate 100 and the second substrate 200 are disposed opposite to each other.
  • the first substrate 100 includes a first polarizer 101 , a first substrate 102 , a thin film transistor layer 103 , a first protective layer 104 , a color resist layer 105 , a second protective layer 106 and a first electrode 107 .
  • the first polarizer 101 includes a polarizing film, a protective film provided on one side of the polarizing film, and a release film provided on the other side of the polarizing film.
  • the first substrate 102 is disposed on the first polarizer 101 .
  • the first substrate 102 is a flexible substrate or a rigid substrate, which is not particularly limited herein.
  • the thin film transistor layer 103 is disposed on the first substrate 102, and includes the driving transistor 1001 and the photosensitive transistor 1002 disposed in the same layer.
  • the driving transistor 1001 is used for inputting a driving current to the light-emitting unit according to the driving voltage, so that the light-emitting unit emits light under the action of the driving current.
  • the photosensitive transistor 1002 can be used to absorb wavelengths of light and generate a signal for laser sensing.
  • the first protective layer 104 is further disposed on the upper surface of the thin film transistor layer 103, and the first protective layer 104 covers the driving transistor 1001 and the surface of the photosensitive transistor 1002, and fill the gap between the driving transistor 1001 and the photosensitive transistor 1002.
  • the material of the first protective layer 104 may be silicon oxide, silicon nitride, or the like.
  • the color resist layer 105 is disposed on the thin film transistor layer 103 .
  • the color resist layer 105 is disposed on the first protective layer 104, and has a plurality of color resist blocks 105a arranged in an array, wherein the photosensitive transistors 1002 are correspondingly disposed on at least two adjacent color resists within the gaps between the blocks 105a.
  • the color resist blocks 105a include red color resist blocks, green color resist blocks, and blue color resist blocks, so that the display panel 1000 has a plurality of RGB color regions.
  • the second protective layer 106 is also provided on the upper surface of the color resist layer 105 in this embodiment, and the second protective layer 106 covers the color resist
  • the block 105a extends from the upper surface of a color resist block 105a to the clearance surface between adjacent color resist blocks 105a.
  • the material of the second protective layer 106 may be silicon oxide, silicon nitride, or the like.
  • the first electrode 107 is disposed on the upper surface of the second protective layer 106 , and its projection on the first substrate 102 falls within the projection of the color resist block 105 a on the first substrate 102 .
  • Materials used for the first electrode 107 include, but are not limited to, ITO.
  • the second substrate 200 includes a second polarizer 201 , a second substrate 202 and a second electrode 203 .
  • the second polarizer 201 includes a polarizing film, a protective film provided on one side of the polarizing film, and a release film provided on the other side of the polarizing film.
  • the second substrate 202 is disposed on a side surface of the second polarizer 201 close to the first substrate 100 .
  • the second substrate 202 may be a flexible substrate or a rigid substrate, which is not particularly limited herein.
  • the second electrode 203 is disposed on the second substrate 202 and is close to a side surface of the first substrate 100 .
  • Materials used for the second electrode 203 include, but are not limited to, ITO.
  • the display panel 1000 further includes a light shielding layer 300 , a laser penetrating layer 400 and a laser penetrating layer 400 .
  • the light-shielding layer 300 includes a first light-shielding support column pair 301, a second light-shielding support column 302 and a third light-shielding support column 303.
  • the material of the light-shielding layer 300 includes but is not limited to a black matrix, As long as it can play the role of black blocking.
  • the second substrate 200 is provided with the laser penetrating layer 400 corresponding to the first light-shielding support column pair 301 , and the photoluminescent layer 500 is provided on the laser penetrating layer 400 away from the second substrate 200 side surfaces.
  • the first end of the first light-shielding support column pair 301 is connected to the first substrate 100
  • the second end of the first light-shielding support column pair 301 is connected to the second substrate 200
  • the The first light-shielding support column pair 301 is arranged in a one-to-one correspondence with the photosensitive transistors.
  • the first end of the first light-shielding support column pair is connected to the color resist layer 105 or the second protective layer 106
  • the second end is connected to the second electrode of the second substrate 203.
  • the first light-shielding support column pair 301 includes a pair of column bodies 301a, and a channel 301b is formed extending from a first end of the column body 301a to a second end of the column body 301a, and one end of the channel 301b
  • the opening of the photosensitive transistor 1002 is opposite to the photosensitive transistor 1002 .
  • the laser penetrating layer 400 and the photoluminescent layer 500 are disposed in the channel 301b formed by the first light-shielding support column pair 301, and are located at the top of the channel 301b. Specifically, the laser penetrating layer 400 is disposed on the lower surface of the second electrode 203 , and the photoluminescent layer 500 is disposed on the lower surface of the laser penetrating layer 400 .
  • the laser penetrating layer 400 is a single-layer film or a multi-layer film, wherein the thickness of the single-layer film is 2nm-20um; the materials used for the laser penetrating layer 400 include photoresist, inorganic At least one of materials and organic materials, but not limited to these materials, as long as the wavelength of the laser can be matched, the absorption of the laser is low, which is conducive to the penetration of the laser.
  • the thickness of the photoluminescence layer 500 is 2nm-20um; the materials used for the photoluminescence layer 500 include organic quantum dots, inorganic quantum dots, inorganic quantum mixtures, phosphors, phosphor mixtures, One of the luminous inks.
  • the photoluminescent layer 500 is mainly based on the conditions when the photosensitive transistor 1002 (Sensor TFT) generates the highest photocurrent efficiency. For the highest efficiency, the photoluminescent layer 500 is required to generate light with a wavelength of 500-550 nm when the laser is irradiated.
  • the second light-shielding support column 302 and the first light-shielding support column pair 301 are spaced apart and disposed in the gap between at least two adjacent color resist blocks 105a.
  • the second light-shielding support column 302 protrudes from the upper surface of the color resist layer 105 , and the height of the second light-shielding support column 302 is smaller than the height of the first light-shielding support column pair 301 .
  • the third light-shielding support column 303 and the first light-shielding support column pair 301 are spaced apart, wherein the third light-shielding support column 303 fills the gap between at least two adjacent color resist blocks 105a, and the third light-shielding support column 303
  • the top surface of the light-shielding support column 303 is flush with the surface of the color resist layer 105 .
  • the light-shielding layer 300 can be prepared by using masks with different transmittances, so that the height of the third light-shielding support column 303 is smaller than the height of the second light-shielding support column 302 , and the second light-shielding support column 302 is The height of the light-shielding support column 302 is smaller than the height of the first pair of light-shielding support columns 301 .
  • the height of the first pair of light-shielding support columns 301 is 0-10um
  • the height of the second light-shielding support column 302 is 0-5um
  • the height of the third light-shielding support column 303 is 0.1-5um.
  • FIG. 4 is a plan view of a first light-shielding support column pair disposed in a gap between two adjacent color resist blocks according to an embodiment of the present application.
  • the first light-shielding support column pair 301 when the first light-shielding support column pair 301 is disposed in the gap between at least two adjacent color resist blocks 105 a , the first light-shielding support column pair 301 is only disposed in two adjacent color resist blocks 105 a In the gaps between the color resist blocks 105a, the second light-shielding support columns 302 are arranged in the gaps between at least two adjacent color resist blocks 105a.
  • the laser penetration layer 400 when the laser light enters the laser penetration layer 400 from the upper surface of the display panel 1000 , the laser penetration layer 400 has laser penetration capability and light absorption capability, which allows the laser light to pass through but absorbs light.
  • the light emitted by the photoluminescent layer 500 prevents the light emitted by the photoluminescent layer 500 from causing the color mixing problem to the color resist layer 105 .
  • the photoluminescent layer 500 When the photoluminescent layer 500 is irradiated with laser light, light of a corresponding wavelength can be absorbed by the photosensitive transistor 1002 (Sensor TFT) and generate a signal, so that the laser light does not need to irradiate the multilayer film layer of the display panel 1000 , so that the The photosensitive transistor 1002 can be made to generate a signal, which greatly improves the laser sensitivity of the photosensitive transistor 1002 .
  • the laser light penetration layer 400 absorbs the light emitted by the photoluminescence layer 500 .
  • the display panel 1000 further includes a liquid crystal layer 600 disposed between the first substrate 100 and the second substrate 200, and the liquid crystal layer is filled with liquid crystal except the channel 301b Area.
  • the first pair of light-shielding support columns 301 and the second pair of light-shielding support columns 302 are used to support the first substrate 100 and the second substrate 200 to support the cell thickness of the liquid crystal display.
  • a light-shielding support column pair 301 also acts to prevent the light emitted by the photoluminescent layer 500 from entering the RGB color region to cause color mixing.
  • This embodiment provides a display panel 1000.
  • the driving transistor 1001 and the photosensitive transistor 1002 are arranged in the same layer in the first substrate 100, that is, the photosensitive transistor 1002 is embedded (Sensor TFT in cell). ), the film layer structure of the display panel 1000 is reduced, and an ultra-thin display panel is realized.
  • the laser penetrating layer 400 and the photoluminescent layer 500 that can emit a specific wavelength after laser irradiation are introduced into the second substrate 200 side, the laser penetrating layer 400 and the light
  • the photoluminescent layer 500 is facing the photosensitive transistor 1002, so that when the photosensitive transistor 1002 receives the light generated signal from the photoluminescent layer 500, the original photosensitive transistor embedded structure (Sensor) can be greatly reduced. TFT in cell), shorten the photosensitive path of the photosensitive transistor 1002, and then solve the problem that the laser is absorbed by the multi-film layers and causes the Sensor For the problem of weak TFT signal, the intensity of the photosensitive signal of the photosensitive transistor 1002 is improved.
  • the first light-shielding support column pair 301 is disposed in the display panel 1000 , and the first light-shielding support column pair 301 includes extending from the first end of the first light-shielding support column pair 301 to the The channel 301b at the second end of the first light-shielding support column pair 301, the laser penetrating layer 400 and the photoluminescent layer 500 are disposed in the channel 301b.
  • light eg, laser
  • the light irradiates the display panel 1000
  • the light first passes through the laser penetrating layer 400 and the photoluminescent layer 500 and then acts on the photosensitive transistor 1002 .
  • the laser light penetrating layer 400 allows the laser light to pass through, but absorbs the light emitted by the photoluminescent layer 500, preventing the light emitted by the photoluminescent layer 500 from entering the RGB color area and causing color mixing. question.
  • This embodiment also provides a display device including the aforementioned display panel.
  • the display device can be any product or component with display function, such as electronic paper, mobile phone, tablet computer, TV, monitor, notebook computer, digital photo frame, and navigator.
  • This embodiment provides a display panel and a display device, which include most of the technical solutions of Embodiment 1, and the difference is that the pair of first light-shielding support columns are disposed in the gaps between a plurality of adjacent color resist blocks.
  • FIG. 5 is a plan view of a first light-shielding support column pair disposed in a gap between a plurality of adjacent color resist blocks according to an embodiment of the present application.
  • the first light-shielding support column pair 301 when the first light-shielding support column pair 301 is disposed in the gap between at least two adjacent color resist blocks 105 a, the first light-shielding support column pair 301 is disposed in a plurality of in the gaps between adjacent color resist blocks 105a.
  • This embodiment provides a display panel and a display device, which include most of the technical solutions of Embodiment 1, with the difference that the first pair of light-shielding support columns is disposed on the color resist block adjacent to the first pair of light-shielding support columns and in the gap.
  • FIG. 6 is a schematic structural diagram of a display panel provided by an embodiment of the present application
  • FIG. 7 is a plan view of a first light-shielding support column provided in an embodiment of the present application disposed in the adjacent color resist blocks and gaps
  • FIG. 8 is the present application A three-dimensional view of the first light-shielding support column pair provided in the embodiment provided in the gap between a plurality of adjacent color resist blocks.
  • the first light-shielding support column pair 301 when the first light-shielding support column pair 301 is disposed in the gap between at least two adjacent color resist blocks 105 a , the first light-shielding support column pair 301 will The gaps between adjacent color blocking blocks 105 a extend to the edges of the plurality of color blocking blocks 105 a adjacent to the first light-shielding support column pair 301 .
  • This embodiment provides a display panel and a display device, which include all of the technical solutions of Embodiment 1, 2 or 3, and the difference is that a color blocking block is provided on the photosensitive transistor and is provided on the first light shielding block. in the channel formed by the support column pair.
  • FIG. 9 is a schematic structural diagram of a display panel provided by an embodiment of the present application.
  • this embodiment differs from the technical solution of Embodiment 3 in that a color blocking block is provided on the photosensitive transistor 1002 and is provided on the channel 301 b formed by the first light-shielding support column pair 301 Inside.
  • the photosensitive transistor 1002 is obviously sensitive to red light with a wavelength of 720-750nm, and the external laser is irradiated at about 200nm and can emit 500-770nm (green light) -the wavelength of red light on the photoluminescent layer 500, the photoluminescent layer 500 irradiates light with a wavelength of 500-770 nm on the red color blocking block, and green light is blocked by the red color blocking block
  • the red light is not absorbed by the red color blocking block, and the red light is irradiated on the photosensitive transistor 1002 , which can further improve the sensing accuracy of the photosensitive transistor 1002 .
  • the color blocking block 105a in the channel 301b is a green color blocking block or a blue color blocking block
  • the light passing through the channel 301b can also be filtered by referring to the above method.
  • a liquid crystal display panel and a display device provided by the embodiments of the present application have been introduced in detail above, and the principles and implementations of the present application are described with specific examples.
  • the content of this description should not be construed as LIMITATIONS ON THIS APPLICATION.

Abstract

公开一种显示面板及显示装置,所述显示面板包括同层设置在第一基板的驱动晶体管和感光晶体管,其中感光晶体管对应设置于至少两个相邻色阻块之间的间隙内。第一遮光支撑柱对设于第一基板与第二基板之间,其第一端部连接至所述第一基板,其第二端部连接至所述第二基板,其中,第一遮光支撑柱对与感光晶体管一一对应设置。

Description

显示面板及显示装置 技术领域
本申请涉显示技术领域,具体涉及一种显示面板及显示装置。
背景技术
薄膜晶体管液晶显示器(TFT-LCD)因具有轻、薄、小等特点,同时功耗低、无辐射、制造成本相对较低,薄膜晶体管液晶显示器在平板显示行业应用较为广泛。为拓宽液晶显示器商用及家用功能,现将诸多功能集成在显示器中,如色温感测,激光感测,气体感测等,提高了液晶显示器可应用场景。但诸多集成功能均处在新开发阶段,尚有较多工艺制程及相关设计需要完善,以便提高多种集成功能液晶显示器性能。
图1为现有外挂式液晶显示面板的结构示意图。
如图1所示,外挂式模式液晶显示器(Sensor on glass),其包括第一偏光片11、第一基板12、第一保护层13、驱动晶体管14、第二保护层15、色阻层16、黑矩阵17、第三保护层18、第一电极19、支撑柱20、液晶层21、第二电极22、第二基板23、第二偏光片24、粘合层25、第三基板26、感光晶体管27以及PFA保护层28。
具体的,所述第一基板12设于所述第一偏光片11上;所述第一保护层13设于所述第一基板12上;所述驱动晶体管14间隔设置于所述第一保护层13上;所述第二保护层15覆于所述驱动晶体管14和所述第一保护层13上;所述色阻层16与所述黑矩阵17间隔设置于所述第二保护层15上;所述第三保护层18设于所述色阻层16与所述黑矩阵17上;所述第一电极19设于所述第三保护层18上;支撑柱20间隔设置于所述第三保护层18上;所述第二电极22与所述第一电极19相对设置,所述支撑柱20设于所述第二电极22与所述第一电极19之间,且与框胶形成一个密闭的空腔,在所述空腔内填充液晶形成所述液晶层21;所述第二基板23设于所述第二电极22上;所述第二偏光片24设于所述第二基板23上;所述粘合层25设于所述第二偏光片24上;所述第三基板26设于所述粘合层25上;所述感光晶体管27间隔地设置于所述第三基板26上;所述PFA保护层28设于所述感光晶体管27和所述第三基板26上。其中,所述第一电极19和所述第二电极22为透明的ITO电极。
外挂式模式液晶显示器具有感应激光效果,主要原理为激光照射在感光晶体管(Sensor TFT)上,感光晶体管产生电流,经过外部信号传输及转换,最终传至液晶显示器的驱动晶体管(Display TFT)上,驱动晶体管收到信号后产生电压并施加在第一电极19上,使得夹在第一电极19与第二电极22之间的液晶因受到电压作用而偏转,该位置实现亮暗变化,整个过程即将外部激光感应转变为显示器颜色的变化。
对于外挂式模式液晶显示器,虽然其技术较为成熟,工艺简单,但由于外挂式模式液晶显示器的结构复杂,工艺制程较多,膜层结构较多,最终导致显示器整体穿透率较低,并且成本居高不下,限制其广泛应用。因此,市场上出现的内嵌式液晶显示面板。
图2为现有内嵌式液晶显示面板的结构示意图。
如图2所示,内嵌式液晶显示面板(Sensor in cell),其包括第一偏光片11、第一基板12、第一保护层13、驱动晶体管14、感光晶体管27、第二保护层15、色阻层16、黑矩阵17、第三保护层18、第一电极19、支撑柱20、液晶层21、第二电极22、第二基板23以及第二偏光片24。
具体的,所述第一基板12设于所述第一偏光片11上;所述第一保护层13设于所述第一基板12上;所述驱动晶体管14与所述感光晶体管27间隔设置于所述第一保护层13上;所述第二保护层15覆于所述驱动晶体管14和所述第一保护层13上;所述色阻层16与所述黑矩阵17间隔设置于所述第二保护层15上;所述第三保护层18设于所述色阻层16与所述黑矩阵17上;所述第一电极19设于所述第三保护层18上;支撑柱20间隔设置于所述第三保护层18上;所述第二电极22与所述第一电极19相对设置,所述支撑柱20设于所述第二电极22与所述第一电极19之间,且与框胶形成一个密闭的空腔,在所述空腔内填充液晶形成所述液晶层21;所述第二基板23设于所述第二电极22上;所述第二偏光片24设于所述第二基板23上。
内嵌式液晶显示面板将所述驱动晶体管14和所述感光晶体管27在所述第一保护层13上同层设置,即所述驱动晶体管14和所述感光晶体管27同步完成制作,无需重复的薄膜晶体管制备流程及贴合工艺,节省了工艺成本,并且大大提高了液晶显示面板的穿透率。
虽然内嵌式液晶显示面板可以大幅度降低成本及提高穿透率,但由于感光晶体管(Sensor TFT)距离发光的位置较远,即光线(如激光)需要穿透彩膜基板侧的偏光片(CF POL)、彩膜基板(CF glass)、液晶层以及色阻层的较多膜层,才能到达感光晶体管,使得感光晶体管产生电流。可见,该光线穿透的部件较多,导致光线(激光)与感光晶体管之间的感光路径较长,必定会减弱到达感光晶体管的感光强度,严重可能造成感光晶体管在较弱激光条件下无法产生信号。
技术问题
本发明的目的在于,提供一种显示面板及显示装置,以解决光线需要穿透较多的部件,导致感光路径较长,达感光晶体管的感光强度被削弱的技术问题。
技术解决方案
为实现上述目的,本发明提供一种显示面板,包括:第一基板以及与所述第一基板相对设置的第二基板,其中,所述第一基板包括:第一衬底;薄膜晶体管层,所述薄膜晶体管层形成于所述第一衬底上,所述薄膜晶体管层包括感光晶体管;以及色阻层,所述色阻层设于所述第一衬底上,所述色阻层包括多个阵列排布的色阻块,其中,所述感光晶体管对应设置于至少两个相邻色阻块之间的间隙内;以及设于所述第一基板与所述第二基板之间的第一遮光支撑柱对,所述第一遮光支撑柱对的第一端部连接至所述第一基板,所述第一遮光支撑柱对的第二端部连接至所述第二基板,其中,所述第一遮光支撑柱对与所述感光晶体管一一对应设置。
进一步地,所述第一遮光支撑柱对的第一端部连接至所述色阻层,所述第二端部连接至第二基板。
进一步地,所述第二基板对应所述第一遮光支撑柱对处设有激光穿透层,以及设于所述激光穿透层背离所述第二基板的光致发光层。
进一步地,所述第一遮光支撑柱对包括从所述第一端部延伸至所述第二端部的通道,所述通道一端的开口于所述感光晶体管相对设置。
进一步地,所述激光穿透层以及所述光致发光层设于所述第一遮光支撑柱对形成的通道内。
进一步地,所述感光晶体管上设有一色阻块,并设于所述第一遮光支撑柱对形成的通道内。
进一步地,所述激光穿透层包括光刻胶、无机材料、有机材料中的至少一种;所述光致发光层包括有机量子点、无机量子点、无机量子混合物、荧光粉、荧光粉混合物、发光油墨中的其中一种。
进一步地,所述的显示面板还包括:第二遮光支撑柱,所述第二遮光支撑柱与所述第一遮光支撑柱对间隔设置,其中,所述第二遮光支撑柱突出于所述色阻层表面,所述第二遮光支撑柱的高度小于所述第一遮光支撑柱对。
进一步地,所述的显示面板还包括:第三遮光支撑柱,所述第三遮光支撑柱与所述第一遮光支撑柱对间隔设置,其中,所述第三遮光支撑柱填满至少两个相邻色阻块之间的间隙,所述第三遮光支撑柱的顶面与所述色阻层表面平齐。
为实现上述目的,本发明还提供一种显示装置,包括前文所述的显示面板。
有益效果
相较于现有技术,本申请提供一种显示面板及显示装置,首先,在所述第一基板中设置同层设置的所述驱动晶体管和所述感光晶体管,即所述感光晶体管内嵌,减少了所述显示面板的膜层结构,实现超薄的显示面板。
其次,在所述第二基板侧引入叠层设置的所述激光穿透层及激光照射后可发出特定波长的所述光致发光层,所述激光穿透层和所述光致发光层正对于所述感光晶体管,使得所述感光晶体管在接收所述光致发光层的光产生信号时,可大幅度降低原有感光晶体管内嵌结构,缩短所述感光晶体管的感光路径,进而解决激光被多膜层吸收导致所述感光晶体管信号较弱的问题,提高所述感光晶体管的感光信号强度。
最后,在所述显示面板中设置所述第一遮光支撑柱对,且所述第一遮光支撑柱包括从所述第一遮光支撑柱的第一端部延伸至其第二端部的通道,所述激光穿透层和所述光致发光层设于所述通道内。当光线(如激光)照射所述显示面板时,该光线先经过所述激光穿透层和所述光致发光层后作用于所述感光晶体管。在此光照过程中,所述激光穿透层允许激光穿过,但会吸收所述光致发光层发出的光,防止所述光致发光层发出的光进入RGB颜色区造成混色的问题。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有外挂式液晶显示面板的结构示意图;
图2为现有内嵌式液晶显示面板的结构示意图;
图3为本申请实施例1提供的显示面板的结构示意图;
图4为本申请实施例1提供的第一遮光支撑柱对设于两个相邻色阻块之间的间隙内的平面图;
图5为本申请实施例2提供的第一遮光支撑柱对设于多个相邻色阻块之间的间隙内的平面图;
图6为本申请实施例3提供的显示面板的结构示意图;
图7为本申请实施例3提供的第一遮光支撑柱对设于与其相邻的色阻块及间隙内的平面图;
图8为本申请实施例3提供的第一遮光支撑柱对设于多个相邻色阻块之间的间隙内的立体图;
图9为本申请实施例4提供的显示面板的结构示意图。
附图标记说明:
1000、显示面板;1001、驱动晶体管;
1002、感光晶体管;             600、液晶层;
100、第一基板;                200、第二基板;
101、第一偏光片;              102、第一衬底;
103、薄膜晶体管层;            104、第一保护层;
105、色阻层;                  106、第二保护层;
107、第一电极;                105a、色阻块;
201、第二偏光片;              202、第二衬底层;
203、第二电极;300、遮光层;
301、第一遮光支撑柱对;        302、第二遮光支撑柱;
303、第三遮光支撑柱;          301a、柱体;
301b、通道;                   400、激光穿透层;
500光致发光层。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。此外,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。在本申请中,在未作相反说明的情况下,使用的方位词如“上”和“下”通常是指装置实际使用或工作状态下的上和下,具体为附图中的图面方向;而“内”和“外”则是针对装置的轮廓而言的。
本申请实施例提供一种显示面板及显示装置。所述显示面板包括第一基板以及与所述第一基板相对设置的第二基板,以及设于所述第一基板与所述第二基板之间的第一遮光支撑柱对。所述第一基板包括第一衬底、薄膜晶体管层以及色阻层。其中,所述薄膜晶体管层形成于所述第一衬底上,所述薄膜晶体管层包括感光晶体管。所述色阻层设于所述第一衬底上,所述色阻层包括多个阵列排布的色阻块。所述感光晶体管对应设置于至少两个相邻色阻块之间的间隙内,即所述感光晶体管内嵌在所述显示面板内(Sensor TFT in cell)。所述第一遮光支撑柱对的第一端部连接至所述第一基板,所述第一遮光支撑柱对的第二端部连接至所述第二基板。其中,所述第一遮光支撑柱对与所述感光晶体管一一对应设置,以解决内嵌的感光晶体管的感光能力较弱,产生信号较弱的问题,以下以实施例的方式分别进行详细说明。
实施例1
图3为本申请实施例提供的显示面板的结构示意图。
本实施例提供一种显示面板1000,为液晶显示面板。所述显示面板1000包括第一基板100和第二基板200。其中,所述第一基板100和所述第二基板200相对设置。
具体的,所述第一基板100包括第一偏光片101、第一衬底102、薄膜晶体管层103、第一保护层104、色阻层105、第二保护层106以及第一电极107。
所述第一偏光片101包括偏光膜、设于所述偏光膜一侧的保护膜以及设于所述偏光膜另一侧的离型膜。
所述第一衬底102设于所述第一偏光片101上。所述第一衬底102柔性基板或者为刚性基板,在此不做特别的限定。
所述薄膜晶体管层103设于所述第一衬底102上,其包括同层设置的所述驱动晶体管1001和所述感光晶体管1002。其中,所述驱动晶体管1001用以根据驱动电压向发光单元输入驱动电流,使得发光单元在驱动电流的作用下发光。所述感光晶体管1002可用于吸收光的波长并产生信号以实现激光感测。
为了提高所述薄膜晶体管层103的阻隔水氧的性能,本实施例还在所述薄膜晶体管层103的上表面设置所述第一保护层104,所述第一保护层104覆盖所述驱动晶体管1001和所述感光晶体管1002的表面,且填充所述驱动晶体管1001和所述感光晶体管1002之间的间隙。其中,所述第一保护层104的材料可以为硅氧化物、氮化硅等。
所述色阻层105设于所述薄膜晶体管层103上。具体的,所述色阻层105设于所述第一保护层104上,其具有多个阵列排布的色阻块105a,其中,所述感光晶体管1002对应设置于至少两个相邻色阻块105a之间的间隙内。该色阻块105a包括红色色阻块、绿色色阻块、蓝色色阻块,使得所述显示面板1000具有多个RGB颜色区。
为了提高所述色阻层105的阻隔水氧的性能,本实施例还在所述色阻层105的上表面设置所述第二保护层106,所述第二保护层106覆盖所述色阻块105a,从一色阻块105a的上表面延伸至相邻色阻块105a之间的间隙表面。其中,所述第二保护层106的材料可以为硅氧化物、氮化硅等。
所述第一电极107设于所述第二保护层106的上表面,且其在所述第一衬底102的投影落入所述色阻块105a在所述第一衬底102的投影内。所述第一电极107所采用的材料包括但不限于ITO。
请继续参照图3,所述第二基板200包括第二偏光片201、第二衬底202以及第二电极203。
所述第二偏光片201包括偏光膜、设于所述偏光膜一侧的保护膜以及设于所述偏光膜另一侧的离型膜。
所述第二衬底202设于所述第二偏光片201且靠近所述第一基板100的一侧表面。所述第二衬底202可以为柔性基板或者为刚性基板,在此不做特别的限定。
所述第二电极203设于所述第二衬底202且靠近所述第一基板100的一侧表面。所述第二电极203所采用的材料包括但不限于ITO。
请继续参照图3,所述显示面板1000还包括遮光层300、激光穿透层400以及激光穿透层400。其中,所述遮光层300包括第一遮光支撑柱对301、第二遮光支撑柱302以及第三遮光支撑柱303,在本实施例中,所述遮光层300的材质包括但不限于黑矩阵,只要能起到黑色阻挡作用即可。所述第二基板200对应所述第一遮光支撑柱对301处设有所述激光穿透层400,以及所述光致发光层500设于所述激光穿透层400背离所述第二基板200一侧表面。
具体的,所述第一遮光支撑柱对301的第一端连接至所述第一基板100,所述第一遮光支撑柱对301的第二端连接至所述第二基板200,其中,所述第一遮光支撑柱对301与所述感光晶体管一一对应设置。具体的,所述第一遮光支撑柱对的第一端部连接至所述色阻层105或者所述第二保护层106,所述第二端部连接至所述第二基板的第二电极203。所述第一遮光支撑柱对301包括一对柱体301a,以及从所述柱体301a的第一端部延伸至所述柱体301a的第二端部形成一通道301b,所述通道301b一端的开口与所述感光晶体管1002相对设置。
所述激光穿透层400和所述光致发光层500设于所述第一遮光支撑柱对301形成的通道301b内,且位于所述通道301b顶部。具体的,所述激光穿透层400设于所述第二电极203的下表面,所述光致发光层500设于所述激光穿透层400的下表面。
本实施例中,所述激光穿透层400为单层膜或多层膜,其中所述单层膜的厚度为2nm-20um;所述激光穿透层400所用的材料包括光刻胶、无机材料、有机材料中的至少一种,但不限于这些材料,只要可以搭配激光波长,对激光吸收度较低,从而有利于激光的穿透即可。
本实施例中,所述光致发光层500的厚度为2nm-20um;所述光致发光层500的所用的材料包括有机量子点、无机量子点、无机量子混合物、荧光粉、荧光粉混合物、发光油墨中的其中一种。所述光致发光层500主要是依据所述感光晶体管1002(Sensor TFT)产生最高的光生电流效率时的条件,例如,当所述感光晶体管1002在接收500-550波长的光照射时,光生电流效率最高,则要求所述光致发光层500在激光照射时,产生500-550nm波长的光。
所述第二遮光支撑柱302与所述第一遮光支撑柱对301间隔设置,且设于至少两个相邻色阻块105a之间的间隙内。其中,所述第二遮光支撑柱302突出于所述色阻层105上表面,所述第二遮光支撑柱302的高度小于所述第一遮光支撑柱对301的高度。
所述第三遮光支撑柱303与所述第一遮光支撑柱对301间隔设置,其中所述第三遮光支撑柱303填满至少两个相邻色阻块105a之间的间隙,所述第三遮光支撑柱303的顶面与所述色阻层105表面平齐。
本实施例中,所述遮光层300可利用具有不同穿透率的光罩制备,以使得所述第三遮光支撑柱303的高度小于所述第二遮光支撑柱302的高度,所述第二遮光支撑柱302的高度小于所述第一遮光支撑柱对301的高度。其中,所述第一遮光支撑柱对301的高度为0-10um,所述第二遮光支撑柱302的高度为0-5um,所述第三遮光支撑柱303的高度为0.1-5um。
图4为本申请实施例提供的第一遮光支撑柱对设于两个相邻色阻块之间的间隙内的平面图。
如图4所示,当所述第一遮光支撑柱对301设于至少两个相邻色阻块105a之间的间隙内时,所述第一遮光支撑柱对301仅设于两个相邻色阻块105a之间的间隙内,第二遮光支撑柱302设于至少两个相邻色阻块105a之间的间隙内。
本实施例中,当激光从所述显示面板1000的上表面进入至所述激光穿透层400,该激光穿透层400具有激光穿透能力和光吸收能力,其允许激光穿过,但会吸收所述光致发光层500发出的光,防止所述光致发光层500发出的光对所述色阻层105造成混色的问题。所述光致发光层500在激光照射时,产生相应波长的光,该波长可被感光晶体管1002(Sensor TFT)吸收并产生信号,使得激光无需照射所述显示面板1000的多层膜层,便可以使得感光晶体管1002产生信号,大大提高了感光晶体管1002激光感应强度。需要说明的是,当箭头从所述激光穿透层400指向所述光致发光层500时,所述激光穿透层400允许激光穿透的方向;当箭头从所述光致发光层500指向所述激光穿透层400时,所述激光穿透层400对所述光致发光层500发出的光进行吸收。
在本实施例中,所述显示面板1000还包括液晶层600,设于所述第一基板100和所述第二基板200之间,且所述液晶层的液晶填充除了所述通道301b之外的区域。其中,所述第一遮光支撑柱对301和第二遮光支撑柱302用来支撑所述第一基板100和所述第二基板200,起到支撑液晶显示器盒厚的作用,同时,所述第一遮光支撑柱对301同样起到了阻止光致发光层500发出的光进入RGB颜色区造成混色。
本实施例提供一种显示面板1000,首先,在所述第一基板100中设置同层设置的所述驱动晶体管1001和所述感光晶体管1002,即所述感光晶体管1002内嵌(Sensor TFT in cell),减少了所述显示面板1000的膜层结构,实现超薄的显示面板。
其次,在所述第二基板200侧引入叠层设置的所述激光穿透层400及激光照射后可发出特定波长的所述光致发光层500,所述激光穿透层400和所述光致发光层500正对于所述感光晶体管1002,使得所述感光晶体管1002在接收所述光致发光层500的光产生信号时,可大幅度降低原有感光晶体管内嵌结构(Sensor TFT in cell),缩短所述感光晶体管1002的感光路径,进而解决激光被多膜层吸收导致Sensor TFT信号较弱的问题,提高所述感光晶体管1002的感光信号强度。
最后,在所述显示面板1000中设置所述第一遮光支撑柱对301,且所述第一遮光支撑柱对301包括从所述第一遮光支撑柱对301的第一端部延伸至所述第一遮光支撑柱对301的第二端部的通道301b,所述激光穿透层400和所述光致发光层500设于所述通道301b内。当光线(如激光)照射所述显示面板1000时,该光线先经过所述激光穿透层400和所述光致发光层500后作用于所述感光晶体管1002。在此光照过程中,所述激光穿透层400允许激光穿过,但会吸收所述光致发光层500发出的光,防止所述光致发光层500发出的光进入RGB颜色区造成混色的问题。
本实施例还提供一种显示装置,包括前文所述的显示面板。该显示装置可以为:电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
实施例2
本实施例提供一种显示面板及显示装置,其包括实施例1的大部分技术方案,其区别在于,所述第一遮光支撑柱对设于多个相邻色阻块之间的间隙内。
图5为本申请实施例提供的第一遮光支撑柱对设于多个相邻色阻块之间的间隙内的平面图。
具体的,如图5所示,当所述第一遮光支撑柱对301设于至少两个相邻色阻块105a之间的间隙内时,所述第一遮光支撑柱对301设于多个相邻色阻块105a之间的间隙内。
实施例3
本实施例提供一种显示面板及显示装置,其包括实施例1的大部分技术方案,其区别在于,第一遮光支撑柱对设于与所述第一遮光支撑柱对相邻的色阻块及间隙内。
图6为本申请实施例提供的显示面板的结构示意图;图7为本申请实施例提供的第一遮光支撑柱对设于与其相邻的色阻块及间隙内的平面图;图8为本申请实施例提供的第一遮光支撑柱对设于多个相邻色阻块之间的间隙内的立体图。
具体的,如图6-8所示,当所述第一遮光支撑柱对301设于至少两个相邻色阻块105a之间的间隙内时,所述第一遮光支撑柱对301从相邻色阻块105a之间的间隙延伸至与所述第一遮光支撑柱对301相邻的多个色阻块105a的边缘上。
实施例4
本实施例提供一种显示面板及显示装置,其包括实施例1或2或3的全部分技术方案,其区别在于,所述感光晶体管上设有一色阻块,并设于所述第一遮光支撑柱对形成的通道内。
图9为本申请实施例提供的显示面板的结构示意图。
如图9所示,本实施例在实施例3的技术方案上,其区别在于,所述感光晶体管1002上设有一色阻块,并设于所述第一遮光支撑柱对301形成的通道301b内。
当所述通道301b内的色阻块105a为红色色阻块时,所述感光晶体管1002对波长720-750nm的红色光感应明显,外部的激光为200nm左右照射在可发出500-770nm(绿光-红光的波段)波长的所述光致发光层500上,所述光致发光层500将500-770nm波长的光照射在所述红色色阻块上,绿光被所述红色色阻块吸收,红光未被所述红色色阻块吸收,且该红光照射在所述感光晶体管1002上,可以进一步地提高所述感光晶体管1002的感应精度。同理,当所述通道301b内的色阻块105a为绿色色阻块、蓝色色阻块时,也可以参照上述方法对穿过所述通道301b的光进行滤光处理。
以上对本申请实施例所提供的一种液晶显示面板及显示装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种显示面板,其中,包括:第一基板以及与所述第一基板相对设置的第二基板,
    其中,所述第一基板包括:第一衬底;薄膜晶体管层,所述薄膜晶体管层形成于所述第一衬底上,所述薄膜晶体管层包括感光晶体管;以及色阻层,所述色阻层设于所述第一衬底上,所述色阻层包括多个阵列排布的色阻块,其中,所述感光晶体管对应设置于至少两个相邻色阻块之间的间隙内;以及
    设于所述第一基板与所述第二基板之间的第一遮光支撑柱对,所述第一遮光支撑柱对的第一端部连接至所述第一基板,所述第一遮光支撑柱对的第二端部连接至所述第二基板,其中,所述第一遮光支撑柱对与所述感光晶体管一一对应设置。
  2. 根据权利要求1所述的显示面板,其中,
    所述第一遮光支撑柱对的第一端部连接至所述色阻层,所述第二端部连接至第二基板。
  3. 根据权利要求1所述的显示面板,其中,所述第二基板对应所述第一遮光支撑柱对处设有激光穿透层,以及设于所述激光穿透层背离所述第二基板的光致发光层。
  4. 根据权利要求3所述的显示面板,其中,所述第一遮光支撑柱对包括从所述第一端部延伸至所述第二端部的通道,所述通道一端的开口于所述感光晶体管相对设置。
  5. 根据权利要求4所述的显示面板,其中,所述激光穿透层以及所述光致发光层设于所述第一遮光支撑柱对形成的通道内。
  6. 根据权利要求4所述的显示面板,其中,所述感光晶体管上设有一色阻块,并设于所述第一遮光支撑柱对形成的通道内。
  7. 根据权利要求2所述的显示面板,其中,所述激光穿透层包括光刻胶、无机材料、有机材料中的至少一种;所述光致发光层包括有机量子点、无机量子点、无机量子混合物、荧光粉、荧光粉混合物、发光油墨中的其中一种。
  8. 根据权利要求3所述的显示面板,其中,
    所述第一遮光支撑柱对的高度为0-10um;
    所述光致发光层500的厚度为2nm-20um。
  9. 根据权利要求1所述的显示面板,其中,还包括:
    第二遮光支撑柱,所述第二遮光支撑柱与所述第一遮光支撑柱对间隔设置,其中,所述第二遮光支撑柱突出于所述色阻层表面,所述第二遮光支撑柱的高度小于所述第一遮光支撑柱对。
  10. 根据权利要求9所述的显示面板,其中,
    所述第二遮光支撑柱的高度为0-5um。
  11. 根据权利要求1所述的显示面板,其中,还包括:
    第三遮光支撑柱,所述第三遮光支撑柱与所述第一遮光支撑柱对间隔设置,其中,所述第三遮光支撑柱填满至少两个相邻色阻块之间的间隙,所述第三遮光支撑柱的顶面与所述色阻层表面平齐。
  12. 根据权利要求11所述的显示面板,其中,
    所述第一遮光支撑柱对的高度为0-10um;
    所述第三遮光支撑柱的高度为0.1-5um。
  13. 一种显示装置,其中,包括如权利要求1所述的显示面板。
  14. 根据权利要求13所述的显示装置,其中,
    所述第一遮光支撑柱对的第一端部连接至所述色阻层,所述第二端部连接至第二基板。
  15. 根据权利要求13所述的显示装置,其中,所述第二基板对应所述第一遮光支撑柱对处设有激光穿透层,以及设于所述激光穿透层背离所述第二基板的光致发光层。
  16. 根据权利要求13所述的显示装置,其中,所述第一遮光支撑柱对包括从所述第一端部延伸至所述第二端部的通道,所述通道一端的开口于所述感光晶体管相对设置。
  17. 根据权利要求14所述的显示装置,其中,所述激光穿透层以及所述光致发光层设于所述第一遮光支撑柱对形成的通道内。
  18. 根据权利要求14所述的显示装置,其中,所述激光穿透层包括光刻胶、无机材料、有机材料中的至少一种;所述光致发光层包括有机量子点、无机量子点、无机量子混合物、荧光粉、荧光粉混合物、发光油墨中的其中一种。
  19. 根据权利要求13所述的显示装置,其中,还包括:
    第二遮光支撑柱,所述第二遮光支撑柱与所述第一遮光支撑柱对间隔设置,其中,所述第二遮光支撑柱突出于所述色阻层表面,所述第二遮光支撑柱的高度小于所述第一遮光支撑柱对。
  20. 根据权利要求13所述的显示装置,其中,还包括:
    第三遮光支撑柱,所述第三遮光支撑柱与所述第一遮光支撑柱对间隔设置,其中,所述第三遮光支撑柱填满至少两个相邻色阻块之间的间隙,所述第三遮光支撑柱的顶面与所述色阻层表面平齐。
PCT/CN2021/096685 2021-04-27 2021-05-28 显示面板及显示装置 WO2022227175A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/419,866 US20240012278A1 (en) 2021-04-27 2021-05-28 Display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110457569.0 2021-04-27
CN202110457569.0A CN113156697A (zh) 2021-04-27 2021-04-27 一种显示面板及显示装置

Publications (1)

Publication Number Publication Date
WO2022227175A1 true WO2022227175A1 (zh) 2022-11-03

Family

ID=76871159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096685 WO2022227175A1 (zh) 2021-04-27 2021-05-28 显示面板及显示装置

Country Status (3)

Country Link
US (1) US20240012278A1 (zh)
CN (1) CN113156697A (zh)
WO (1) WO2022227175A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114203789A (zh) * 2021-12-10 2022-03-18 深圳市华星光电半导体显示技术有限公司 面板阳极修复方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149431A (ja) * 2001-11-12 2003-05-21 Fuji Photo Film Co Ltd カラーフィルター
CN1963606A (zh) * 2006-11-29 2007-05-16 京东方科技集团股份有限公司 一种液晶显示器装置
CN104730779A (zh) * 2015-04-17 2015-06-24 京东方科技集团股份有限公司 阵列基板、显示面板及显示装置
CN208432835U (zh) * 2018-07-23 2019-01-25 咸阳彩虹光电科技有限公司 一种液晶显示面板及液晶显示装置
CN111752339A (zh) * 2019-03-28 2020-10-09 北京小米移动软件有限公司 一种终端

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110156184A1 (en) * 2009-12-29 2011-06-30 Rochester Institute Of Technology Methods for improving detector response and system thereof
KR20180046951A (ko) * 2016-10-28 2018-05-10 엘지디스플레이 주식회사 표시패널 및 표시장치
CN107272232B (zh) * 2017-07-20 2020-12-25 深圳市华星光电半导体显示技术有限公司 一种液晶显示面板的制造方法
CN110187546A (zh) * 2019-05-28 2019-08-30 厦门天马微电子有限公司 显示面板及指纹识别显示装置
CN110286717B (zh) * 2019-06-24 2021-07-02 Oppo广东移动通信有限公司 显示装置、电子设备及图像获取方法
CN110275341B (zh) * 2019-06-28 2022-04-12 厦门天马微电子有限公司 显示面板和显示装置
CN111539340B (zh) * 2020-04-26 2022-08-05 厦门天马微电子有限公司 一种显示面板、显示装置及驱动方法
CN112071861A (zh) * 2020-09-03 2020-12-11 Tcl华星光电技术有限公司 一种阵列基板及其制备方法、液晶显示面板
CN112083593B (zh) * 2020-09-29 2021-12-03 Tcl华星光电技术有限公司 显示面板及显示装置
CN112420760B (zh) * 2020-11-11 2023-04-07 深圳市华星光电半导体显示技术有限公司 光感应阵列基板及其制备方法、显示器
CN112510110A (zh) * 2020-11-27 2021-03-16 深圳市华星光电半导体显示技术有限公司 感光器件及显示面板
CN112394553A (zh) * 2020-12-09 2021-02-23 深圳市华星光电半导体显示技术有限公司 一种显示面板及显示装置
CN112612165A (zh) * 2021-01-06 2021-04-06 深圳市华星光电半导体显示技术有限公司 一种阵列基板及显示面板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149431A (ja) * 2001-11-12 2003-05-21 Fuji Photo Film Co Ltd カラーフィルター
CN1963606A (zh) * 2006-11-29 2007-05-16 京东方科技集团股份有限公司 一种液晶显示器装置
CN104730779A (zh) * 2015-04-17 2015-06-24 京东方科技集团股份有限公司 阵列基板、显示面板及显示装置
CN208432835U (zh) * 2018-07-23 2019-01-25 咸阳彩虹光电科技有限公司 一种液晶显示面板及液晶显示装置
CN111752339A (zh) * 2019-03-28 2020-10-09 北京小米移动软件有限公司 一种终端

Also Published As

Publication number Publication date
CN113156697A (zh) 2021-07-23
US20240012278A1 (en) 2024-01-11

Similar Documents

Publication Publication Date Title
WO2018196233A1 (zh) 液晶显示面板及其液晶显示装置
WO2017140027A1 (zh) 显示基板、显示面板和显示装置
KR20140030551A (ko) 유기 발광 표시 장치 및 이의 제조 방법
US20190219865A1 (en) Bps array substrate and manufacturing method thereof
JP2004062138A (ja) 液晶表示装置
TWI520398B (zh) 有機發光裝置及包含其之影像顯示系統
WO2017128576A1 (zh) Ltps显示面板及其制作方法
TW201324001A (zh) 濾光層基板及顯示裝置
TW201616191A (zh) 顯示裝置
WO2018176519A1 (zh) 液晶显示装置
CN106990594B (zh) 液晶显示面板及其制造方法与应用的显示装置
WO2018171079A1 (zh) 主动开关阵列基板及其制造方法与显示面板
WO2020232949A1 (zh) 显示面板和电子设备
WO2021017254A1 (zh) 盖板、显示装置及其制备方法
CN103728759A (zh) 彩色液晶显示面板
KR20180107385A (ko) 광루미네선스 장치, 이의 제조 방법 및 이를 포함하는 표시 장치
CN107219669B (zh) 一种显示装置
WO2022227175A1 (zh) 显示面板及显示装置
WO2023173527A1 (zh) 混接显示装置以及拼接显示装置
KR101067052B1 (ko) 액정표시장치
WO2018171078A1 (zh) 主动开关阵列基板及其制造方法与其应用的显示设备
CN112612165A (zh) 一种阵列基板及显示面板
WO2020107537A1 (zh) 显示面板及其制造方法和显示装置
JP2014089281A (ja) 表示装置およびその製造方法、電子機器
KR20070065065A (ko) 반투과형 액정 표시 장치의 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17419866

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938645

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE