WO2022226848A1 - 摄像设备、数据采集系统及方法 - Google Patents

摄像设备、数据采集系统及方法 Download PDF

Info

Publication number
WO2022226848A1
WO2022226848A1 PCT/CN2021/090743 CN2021090743W WO2022226848A1 WO 2022226848 A1 WO2022226848 A1 WO 2022226848A1 CN 2021090743 W CN2021090743 W CN 2021090743W WO 2022226848 A1 WO2022226848 A1 WO 2022226848A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
ecu
interface
ecu device
radar
Prior art date
Application number
PCT/CN2021/090743
Other languages
English (en)
French (fr)
Inventor
唐治
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202180001569.8A priority Critical patent/CN113348421B/zh
Priority to PCT/CN2021/090743 priority patent/WO2022226848A1/zh
Publication of WO2022226848A1 publication Critical patent/WO2022226848A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0208Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the configuration of the monitoring system
    • G05B23/0213Modular or universal configuration of the monitoring system, e.g. monitoring system having modules that may be combined to build monitoring program; monitoring system that can be applied to legacy systems; adaptable monitoring system; using different communication protocols
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/24Pc safety
    • G05B2219/24065Real time diagnostics

Definitions

  • the present application relates to the field of automobile technology, and in particular, to a camera device, a data acquisition system and a method.
  • the ADAS system In order to meet the reliability of the system, the ADAS system will be tested and verified before the advanced driving assistance system (ADAS) is formed into a product.
  • ADAS advanced driving assistance system
  • the system testing and verification stage it generally goes through a drive test process and a data reinjection process.
  • the communication data, sensor data and measurement data during the drive test are collected and stored.
  • the communication data, sensor data and measurement data collected during the drive test are refilled into the ADAS system, and the ADAS system is stimulated with data to verify the data in the ADAS system.
  • ECUs electronice control units
  • the present application provides a camera device, a data acquisition system and a method, which are used to solve the problem that the data acquisition equipment currently used in the ADAS system drive test process requires special acquisition equipment, which leads to high test costs, and improves the ADAS system test. s efficiency.
  • the present application provides an imaging apparatus.
  • the camera device is applied to an ADAS system.
  • the camera device includes a camera assembly and an ECU device.
  • the ECU device includes a first interface and a second interface.
  • the first interface is connected with the camera assembly, and is used for acquiring original image data of the camera assembly.
  • the second interface is used to transmit internal analysis data of the ECU device.
  • the camera device can obtain the original image data of the camera assembly through the first interface of the ECU device, perform data analysis according to the original image data, and output internal analysis data.
  • the camera device can also transmit internal analysis data through the second interface of the ECU device, so that when the second interface of the ECU device is connected to the data acquisition device, the acquisition device can collect the internal analysis data of the ECU device, so that the data can be refilled used in testing.
  • the ECU device may further include a third interface.
  • the third interface is used to connect the radar ECU.
  • the third interface is a CAN-FD interface. In this way, the analysis data of the radar ECU and the collected data of the radar can be obtained.
  • the ECU device may further include a fourth interface.
  • the fourth interface is used to connect the vehicle-mounted gateway.
  • the fourth interface is a CAN interface.
  • the ECU device communicates with the in-vehicle gateway or T-BOX to obtain vehicle data, which may be the acceleration, accelerator and other data of the vehicle itself.
  • the first interface is a MIPI interface.
  • the second interface is an ETH interface.
  • the present application provides another imaging apparatus.
  • the camera device is applied to an ADAS system.
  • the camera device includes a camera assembly, a first ECU device, and a second ECU device.
  • the first ECU device and the second ECU device each include a first interface and a second interface.
  • the first interface of the first ECU device and the first interface of the second ECU device are both connected to the camera assembly.
  • the second interface of the second ECU device is connected to the second interface of the first ECU device.
  • the second ECU device can be used as a data acquisition device, and the first interface of the second ECU device is connected to the camera assembly for acquiring raw image data of the camera assembly.
  • the second interface of the second ECU device is connected to the first interface of the first ECU device, and is used for acquiring the first signal data output by the first ECU device.
  • the second ECU device can collect the original image data from the camera assembly, Internal analysis data from the first ECU device (ie the camera ECU) can also be collected.
  • first ECU device and the second ECU device may be existing ECU devices in the ADAS system, such as a camera ECU.
  • the first ECU device and the second ECU device may be the same ECU, for example, the first ECU device and the second ECU device are both camera ECUs and use the same hardware structure.
  • the first ECU device and the second ECU device may also be different ECU devices, for example, the first ECU device is a camera ECU, and the second ECU device is a radar ECU.
  • the data acquisition equipment can also directly use the software architecture of the camera ECU, thereby reducing software development costs.
  • the camera device may further include a first debugging interface board and a second debugging interface board.
  • the first debug interface board is provided with a first data transfer interface.
  • a second data transfer interface is provided on the second debugging interface board.
  • the camera assembly is connected to the first data transfer interface.
  • the first data transfer interface is connected with the second data transfer interface.
  • the second data transfer interface is connected to the first interface of the second ECU device.
  • the first debug interface board may also be provided with a first CPLD interface.
  • the second debug interface board is also provided with a second CPLD interface.
  • the first data transfer interface is connected with the camera assembly through the first CPLD interface.
  • the second data transfer interface is connected to the first interface of the second ECU device through the second CPLD interface.
  • the transmission direction of the first CPLD interface can be configured by software to transmit from the camera assembly to the first data transfer interface,
  • the transmission direction of the second CPLD interface is transmission from the second data transfer interface to the first interface of the second ECU device.
  • the camera assembly can be connected to the first interface of the second ECU device first, and then the first CPLD interface can be configured through software
  • the transmission direction of the CPLD interface is from the first data transfer interface to the first interface of the first ECU device, and the transmission direction of the second CPLD interface is from the camera assembly to the second data transfer interface.
  • the second ECU device can adopt the same hardware structure and software architecture as the first ECU device (ie the camera ECU), the first ECU device (ie the camera ECU) and the second ECU device can be redundant with each other. That is to say, in the process of data collection, the first ECU device and the second ECU device in the camera device can exchange roles.
  • the first ECU device ie the camera ECU
  • the second ECU device can be used as the camera ECU to construct the driving environment of the vehicle, and output first signal data.
  • the first ECU device may further include a third interface.
  • the third interface is used to connect the radar ECU to obtain analysis data of the radar ECU.
  • the second ECU device may further include a third interface.
  • the third interface is used to connect the radar ECU to obtain analysis data of the radar ECU.
  • a radar and a radar ECU may also be included, and the radar is connected with the radar ECU.
  • the first ECU device can be set in the first ECU device.
  • Three interfaces. The third interface may be a CAN-FD interface.
  • both the first ECU device and the second ECU device may include a fourth interface.
  • the fourth interface of the first ECU device and the fourth interface of the second ECU are both used to connect to the vehicle-mounted gateway. In this way, the vehicle data can be acquired by the first ECU device or the second ECU device.
  • the second ECU device may further include a fifth interface.
  • the fifth interface is used to connect the storage device.
  • the first ECU device may further include a fifth interface.
  • the fifth interface is used to connect the storage device.
  • the collected raw image data, the first signal data, the collected data of the radar, and the analysis data of the radar ECU can be collected.
  • the collected raw image data, the first signal data, the collected data of the radar, and the analysis data of the radar ECU can be collected.
  • the present application provides a data collection system.
  • the data acquisition system is applied to ADAS system.
  • the data acquisition system includes a camera assembly, a first ECU device, a second ECU device and a storage device; both the first ECU device and the second ECU device include a first interface and a second interface.
  • the first interface of the first ECU device is connected with the camera assembly, and is used to obtain the original image data of the camera assembly, and output the first signal data according to the original image data of the camera assembly; the first signal data includes the first vehicle perception signal and the first signal data.
  • a vehicle regulatory signal The first interface of the second ECU device is connected to the camera assembly for acquiring raw image data of the camera assembly.
  • the second interface of the second ECU device is connected to the second interface of the first ECU device, and is used for acquiring the first signal data output by the first ECU device.
  • the storage device is connected to the second ECU device, and is used for storing the collected data obtained by the second ECU device; the collected data includes the original image data of the camera assembly and the first signal data.
  • the first vehicle sensing signal data may be related data obtained by the camera ECU based on the sensing of the sensor components, such as information such as the real-time speed of the vehicle and whether there is an obstacle.
  • the first vehicle regulation signal data may be the first sensing signal data obtained by the camera ECU based on the sensing of the sensor component, and output data after analysis for controlling the driving state of the vehicle, such as controlling the speed of the vehicle, controlling the braking of the vehicle, and the like.
  • the first ECU device can construct the vehicle driving environment according to the original image data from the camera assembly, and output the first signal data.
  • the second ECU device may acquire the original image data from the camera assembly, and may also acquire the first signal data from the first ECU device, and store the acquired original image data and the first signal data in the storage device.
  • the data acquisition system can directly acquire data from each data source through the first ECU device, and the second ECU device acquires the internal analysis data of the first ECU device from the first ECU device, and the acquired data can be used for Build a real vehicle driving environment in the recharge test scenario, avoid adding additional data processing processes, thereby improving test efficiency and reducing test costs.
  • the data acquisition system may further include a first debugging interface board and a second debugging interface board.
  • the first debug interface board is provided with a first data transfer interface.
  • a second data transfer interface is provided on the second debugging interface board.
  • the camera assembly is connected to the first data transfer interface.
  • the first data transfer interface is connected with the second data transfer interface.
  • the second data transfer interface is connected to the first interface of the second ECU device.
  • first debug interface board may also be provided with a first CPLD interface; the second debug interface board may also be provided with a second CPLD interface.
  • the first data transfer interface is connected with the camera assembly through the first CPLD interface.
  • the second data transfer interface is connected to the first interface of the second ECU device through the second CPLD interface.
  • the data acquisition system may also include a radar and a radar ECU.
  • the radar ECU is connected with the radar, and is used for outputting the analysis data of the radar ECU according to the collected data of the radar.
  • the first ECU device further includes a third interface; the third interface of the first ECU device is connected to the radar ECU, and is used for acquiring the collected data of the radar and the analysis data of the radar ECU.
  • the first ECU device can construct a real vehicle driving environment according to various data such as analysis data and original image data of the radar ECU, and output vehicle perception signal data and vehicle regulation signal data.
  • the radar may include one or more of a laser radar (lidar), a millimeter-wave radar (millimeter-wave radar), and an ultrasonic radar (ultrasonic radar).
  • lidar is a radar that works in the infrared to ultraviolet spectrum, which can be used for obstacle detection, acquisition of three-dimensional information of the environment, vehicle distance maintenance, and vehicle obstacle avoidance.
  • Millimeter-wave radar is a radar that works in the millimeter-wave band and can be used for ranging, speed and azimuth measurement.
  • Ultrasonic radar is a radar that uses ultrasonic waves to detect objects, and can be used for close-range obstacle detection, etc.
  • the above radar detection data may be a collection of all data detected by lidar, millimeter-wave radar, and ultrasonic radar.
  • the data acquisition system may further include an in-vehicle gateway.
  • the first ECU device and the second ECU device each include a fourth interface.
  • the fourth interface of the first ECU device and the fourth interface of the second ECU device are both connected to the vehicle-mounted gateway.
  • the second ECU device can be made to collect interaction information between the first ECU device and the vehicle gateway, such as vehicle information, time, and vehicle data.
  • the vehicle data may be data such as acceleration, accelerator and the like of the vehicle itself.
  • the second ECU device may further include a fifth interface.
  • the storage device is connected to the fifth interface of the second ECU device.
  • the storage device also realizes the communication connection with the second ECU device through the fifth interface in the second ECU device, so that all kinds of data collected in the second ECU device can be stored in the storage device.
  • the data acquisition system may further include a control device, which is connected to the second interface of the second ECU device and used to control the second ECU device to acquire data or stop acquiring data.
  • the control device such as a host computer
  • the control device can send a data collection instruction to the second ECU device to start data collection.
  • the control device (such as the host computer) may send a stop collection instruction to the second ECU device to stop the data collection.
  • the present application provides a data collection method.
  • the data acquisition method is applied to the data acquisition system in any one possible implementation manner of the third aspect above.
  • the method includes the second ECU device receiving raw image data from the camera assembly.
  • the second ECU device receives first signal data from the first ECU device; the first signal data is vehicle sensing signal data and/or vehicle regulation signal data output by the first ECU device.
  • the second ECU device transmits the original image data and the first signal data to the storage device.
  • the method may further include: the second ECU device executes a time synchronization request from the first ECU device; the time synchronization request is used to instruct the first ECU device and the second ECU device to synchronize time.
  • both the raw image data and the first signal data may include acquisition time.
  • the present application provides another data collection system.
  • the data acquisition system is applied to ADAS system.
  • the data acquisition system includes a camera assembly, a first ECU device and a storage device; both the camera assembly and the storage device are connected in communication with the first ECU device.
  • the first ECU device is configured to acquire original image data of the camera assembly, and output first signal data according to the original image data of the camera assembly.
  • the first signal data includes first vehicle sensing signal data and/or first vehicle regulation signal data.
  • the first ECU device is further configured to send the original image data and the first signal data to the storage device.
  • the data acquisition system may further include a radar and a radar ECU; the radar ECU is connected to the radar for outputting analysis data of the radar ECU according to the data collected by the radar.
  • the first ECU device further includes a third interface; the third interface of the first ECU device is connected to the radar ECU, and is used for acquiring the collected data of the radar and the analysis data of the radar ECU.
  • the first ECU device can construct a real vehicle driving environment according to various data such as analysis data and original image data of the radar ECU, and output vehicle perception signal data and vehicle regulation signal data.
  • the data acquisition system may further include an in-vehicle gateway; the first ECU device may include a fourth interface.
  • the fourth interface is connected to the vehicle-mounted gateway.
  • the first ECU device can be made to obtain interaction information with the vehicle-mounted gateway, such as vehicle information, time, and vehicle data.
  • the vehicle data may be data such as acceleration, accelerator and the like of the vehicle itself.
  • the first ECU device may further include a fifth interface; the storage device is connected to the fifth interface.
  • the storage device also realizes the communication connection with the first ECU device through the fifth interface, so that all kinds of data collected in the first ECU device can be stored in the storage device.
  • the data acquisition system may further include a control device, the control device is connected to the second interface of the first ECU device, and is used for controlling the first ECU device to acquire data or stop acquiring data.
  • the control device (such as a host computer) can send a data collection instruction to the first ECU device to start data collection.
  • the control device (such as a host computer) may send a stop collection instruction to the first ECU device to stop the data collection.
  • the data acquisition system provided by the fifth aspect uses the first ECU device (ie the camera ECU) as both the ADAS system in the data acquisition system provided by the fifth aspect.
  • the electronic control unit in the device is used to receive the original image data of the camera assembly, construct the vehicle driving environment, and analyze the data, so as to output the vehicle perception signal and the vehicle regulation signal; it is also used as a data acquisition device in the data acquisition system to collect data.
  • the present application provides a data refilling system.
  • the data recharge system is applied to ADAS system.
  • the data refilling system includes a camera ECU and a storage device; the camera ECU is connected in communication with the storage device.
  • the camera ECU is used to obtain the collected data from the storage device, construct the vehicle driving environment according to the collected data, and output the second signal data.
  • the collected data is the original image data stored in the storage device, the collected data of the radar or the analysis data of the radar ECU; the second signal data includes the second vehicle perception signal data and/or the second vehicle regulation signal data.
  • the data refilling system may further include a control device, and the control device is connected to the camera ECU for sending a refilling instruction to the camera ECU.
  • the recharge command includes the start and end time of the recharge data.
  • the collected data is the collected data in the storage device, and the collection time is between the start and end times of the recharge data.
  • control device can also be used to obtain the expected data from the storage device and compare the second signal data with the expected data.
  • the expected data is the first signal data in the stored device whose collection time is between the start and end times of the recharge data; the first signal data includes first vehicle perception signal data and/or first vehicle regulation signal data.
  • the present application provides a data refilling method.
  • the data refilling method is applied to any possible data refilling system in the third aspect above.
  • the data refilling method includes: the camera ECU obtains the collected data from the storage device; the collected data is the original image data stored in the storage device, the collected data of the radar or the analysis data of the radar ECU.
  • the camera ECU constructs a vehicle driving environment according to the collected data, and outputs second signal data; the second signal data includes a vehicle perception signal and/or a vehicle regulation signal.
  • the above data refilling method may further include: the camera ECU receives a refilling instruction.
  • the recharge command includes the start and end time of the recharge data.
  • the collected data is the data in the storage device where the collection time of the original image data, the collected data of the radar or the analysis data of the radar ECU is located between the start and end times of the recharged data.
  • the present application provides a data collection device.
  • the data acquisition device includes: a processor, the processor is coupled to a memory, the memory is used for storing programs or instructions, and when the programs or instructions are executed by the processor, the device is made to execute any of the possible methods in the fourth aspect.
  • the present application provides a data refilling device.
  • the data refilling device includes: a processor, the processor is coupled with a memory, the memory is used for storing programs or instructions, and when the programs or instructions are executed by the processor, the device is made to execute any one of the possible methods in the seventh aspect.
  • the present application provides a computer-readable medium on which a computer program or instruction is stored, characterized in that, when the computer program or instruction is executed, the computer executes any of the possible methods in the fourth aspect above, or executes Any one of the possible methods of the seventh aspect above.
  • FIG. 1 is a schematic diagram of an ADAS system application scenario provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a drive test test scenario of an ADAS system provided by an embodiment of the present application
  • FIG. 3 is a schematic structural diagram 1 of a camera device provided by an embodiment of the present application.
  • FIG. 4 is a second schematic structural diagram of a camera device provided by an embodiment of the present application.
  • FIG. 5 is a third schematic structural diagram of a camera device provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram 1 of a data acquisition system provided by an embodiment of the present application.
  • FIG. 7 is a second schematic structural diagram of a data acquisition system provided by an embodiment of the present application.
  • FIG. 8 is a flowchart 1 of a data collection method provided by an embodiment of the present application.
  • FIG. 9 is a second flowchart of a data collection method provided by an embodiment of the present application.
  • FIG. 10 is a third schematic structural diagram of a data acquisition system provided by an embodiment of the present application.
  • FIG. 11 is a fourth schematic structural diagram of a data acquisition system provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a data refilling system provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another data refilling system provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a data acquisition apparatus provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a data refilling device according to an embodiment of the present application.
  • At least one means one or more
  • plural means two or more.
  • And/or which describes the association relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, which can indicate: the existence of A alone, the existence of A and B at the same time, and the existence of B alone, where A, B can be singular or plural.
  • At least one item(s) below or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one (a) of a, b or c may represent: a, b, c, a-b, a-c, b-c or a-b-c, where a, b and c may be single or multiple.
  • the character "/" generally indicates that the associated objects are an "or” relationship.
  • words such as "first” and “second” do not limit the quantity and execution order.
  • connection should be understood in a broad sense.
  • connection may be a fixed connection, a detachable connection, or an integrated body; it may be directly connected, or Can be indirectly connected through an intermediary.
  • electrical connection may be a direct electrical connection or an indirect electrical connection through an intermediate medium.
  • the advanced driving assistance system In order to meet the reliability of the system, the advanced driving assistance system (ADAS) will be systematically verified before it is formed into a product.
  • ADAS advanced driving assistance system
  • the system verification stage it generally goes through a drive test process (ie, a data acquisition process) and a data reinjection process.
  • the communication data, sensor data and measurement data of the ADAS system during the drive test are collected and stored.
  • the communication data, sensor data and measurement data collected during the drive test are fed back into the ADAS system to restore various electronic control units (ECUs) in the ADAS system.
  • ECUs electronice control units
  • FIG. 1 is a schematic diagram of an application scenario of an ADAS system provided by an embodiment of the present application.
  • an ADAS system includes sensors (such as camera components, radar) and an ECU.
  • sensors are used to collect external road environment data, such as raw image data, collected data of radar or analysis data of radar ECU.
  • the ECU is used to receive sensor data, construct a vehicle driving environment based on the sensor data, and analyze the data to output vehicle perception signals and vehicle regulation signals.
  • the ECUs can include camera ECUs and radar ECUs, etc.
  • the camera ECU and the radar ECU can communicate through a controller area network (CAN) or automotive Ethernet (ETH) to realize data transmission.
  • CAN controller area network
  • ETH automotive Ethernet
  • ADAS system is a multi-sensor system.
  • the information and original image data of each sensor need to be collected synchronously, and the data collection file should be used for recording.
  • a data acquisition file can record multiple engineering parameters (such as electrical parameters, images, time, attitude, etc.), and each engineering parameter can include parameter name, parameter value, and time stamp information.
  • FIG. 2 is a schematic diagram of a drive test scenario of an ADAS system provided by an embodiment of the present application.
  • the ADAS system in the ADAS system drive test test scenario, at least one vehicle with the ADAS system installed, a real road environment, and a collection device are required.
  • the ADAS system can be the ADAS system shown in Figure 1.
  • the sensors in the ADAS system such as cameras and radars, can collect the corresponding data, and communicate with the telematics box (telematics) through the CAN bus.
  • the acquisition device can access the ADAS system through the CAN bus or ETH bus, and obtain the internal analysis data of the ECU in the ADAS system and the original data of the sensor to store in the storage device (such as hard disk) .
  • the storage device such as hard disk
  • FIG. 3 is a schematic structural diagram 1 of a camera device provided by an embodiment of the present application.
  • the camera device can be applied to the above-mentioned ADAS system.
  • the camera device includes a camera assembly and an ECU device (ie, a camera ECU).
  • the ECU device includes a first interface 110 and a second interface 120 .
  • the first interface 110 of the ECU device may be a mobile industry processor interface (mobile industry processor interface, MIPI) interface
  • the second interface 120 may be an ETH interface.
  • the first interface 110 is connected to the camera assembly, and is used for acquiring original image data of the camera assembly.
  • the ECU device After the ECU device obtains the original image data of the camera assembly, the ECU device can analyze the original image data and output the internal analysis data of the ECU device. At this time, the second interface 120 of the ECU device can be used to connect with the data acquisition device and transmit the internal analysis data of the ECU device.
  • the radar and the radar ECU may also be included, and the radar is connected with the radar ECU.
  • the radar ECU obtains the collected data of the radar, it can analyze the collected data of the radar, thereby outputting the analysis data of the radar ECU.
  • the camera ECU can also communicate with the radar ECU to obtain the analysis data of the radar ECU and the collected data of the radar, and the camera ECU can also construct the vehicle driving environment based on the original image data and the analysis data of the radar ECU, thereby outputting the internal analysis data of the camera ECU. .
  • the ECU device in the above-mentioned camera device may further include a third interface 130, and the third interface 130 may be a controller area network (CAN with flexible data-rate, CAN-FD) interface with flexible data rate.
  • the third interface 130 is used to connect to the radar ECU, so as to obtain the analysis data of the radar ECU and the collected data of the radar.
  • the ECU apparatus may further include a fourth interface 140 .
  • the fourth interface 140 may be a CAN interface, and may be used to communicate with a vehicle network (vehicle network) or a T-BOX to obtain vehicle data, where the vehicle data may be data such as the acceleration and the accelerator of the vehicle itself.
  • the ECU device may further include a fifth interface 150 .
  • the fifth interface 150 may be a USB interface.
  • the fifth interface 150 is used to connect a storage device. In this way, when the ECU device is used as a data acquisition device, the acquired original image data, the first signal data, the acquisition data of the radar, and the analysis data of the radar ECU can be stored in the storage device.
  • the ECU device ie the camera ECU in the camera device shown in FIG. 3 may include a system on a chip (SoC) and a microcontroller unit (MCU) chip.
  • SoC system on a chip
  • MCU microcontroller unit
  • the SoC chip is mainly used to perform algorithm processing on the raw image data obtained from the camera module (ie the camera), so that the tester can understand the data.
  • the MCU chip is mainly used to fuse and analyze various data obtained from the sensor (such as raw image data, radar ECU analysis data) to output corresponding control data, etc.
  • the corresponding control data can be regarded as the camera equipment.
  • the internal analysis data of the ECU device can be transmitted to the corresponding acquisition device through the second interface 120 in the camera device, so as to be used in the data refill test.
  • FIG. 4 is a second schematic structural diagram of a camera device provided by an embodiment of the present application. As shown in FIG. 4 , the camera device can be applied to the above-mentioned ADAS system.
  • the camera device includes a camera assembly, a first ECU device, and a second ECU device. Wherein, both the first ECU device and the second ECU device include a first interface 110 and a second interface 120 .
  • Both the first interface 110 of the first ECU device and the first interface 110 of the second ECU device may be MIPI interfaces for transmitting image data.
  • the first interface 110 of the first ECU device and the first interface 110 of the second ECU device are both connected to the camera assembly, so that both the first ECU device and the second ECU device can obtain raw image data from the camera assembly.
  • Both the second interface 120 of the first ECU device and the second interface 120 of the second ECU device may be ETH interfaces.
  • the second interface 120 of the second ECU device is connected to the second interface 120 of the first ECU device, so that the internal analysis data of the first ECU device can be transmitted to the second ECU device through the second interface 120, or the internal analysis data of the second ECU device can be transmitted to the second ECU device.
  • the analysis data can be transmitted to the first ECU device via the second interface 120 .
  • the first ECU device can be used as the camera ECU in the ADAS system to obtain the original image data of the camera assembly, and output the first ECU according to the original image data of the camera assembly.
  • signal data includes a vehicle perception signal and a vehicle regulation signal
  • the first signal data is the internal analysis data of the first ECU device.
  • the vehicle perception signal data may be related data obtained by the camera ECU based on the sensing of the sensor components, such as information such as the real-time speed of the vehicle and whether there are obstacles.
  • the vehicle regulation signal data may be the first sensing signal data obtained by the camera ECU based on the sensing of the sensor components, and the data output after analysis to control the driving state of the vehicle, such as controlling the speed of the vehicle, controlling the braking of the vehicle, etc.
  • the second ECU device can be used as a data acquisition device, and the first interface 110 of the second ECU device is connected to the camera assembly for acquiring raw image data of the camera assembly.
  • the second interface 120 of the second ECU device is connected to the first interface 110 of the first ECU device, and is used for acquiring the first signal data output by the first ECU device.
  • the second ECU device can collect the original image data from the camera assembly, Internal analysis data from the first ECU device (ie the camera ECU) can also be collected.
  • first ECU device and the second ECU device may be existing ECU devices in the ADAS system, such as a camera ECU.
  • the first ECU device and the second ECU device may be the same ECU, for example, the first ECU device and the second ECU device are both camera ECUs and use the same hardware structure.
  • the first ECU device and the second ECU device may also be different ECU devices, for example, the first ECU device is a camera ECU, and the second ECU device is a radar ECU.
  • the data acquisition equipment can also directly use the software architecture of the camera ECU, thereby reducing software development costs.
  • a data acquisition device that is, the second ECU device shown in FIG. 4
  • the second ECU device is an additionally connected device for realizing data collection. Therefore, in order to ensure the safety of the ADAS system and facilitate the normal use of the ADAS system after passing the test, the first ECU device and the second ECU device may be connected through a data transfer interface.
  • both the first ECU device and the second ECU device can be embedded with a debugging interface board.
  • FIG. 5 is a third schematic structural diagram of a camera device provided by an embodiment of the present application. As shown in FIG. 5 , on the basis of the imaging device shown in FIG. 4 , the foregoing imaging device may further include a first debugging interface board and a second debugging interface board. Wherein, the first debug interface board is provided with a first data transfer interface. A second data transfer interface 170 is provided on the second debug interface board. Both the first data switching interface 160 and the second data switching interface 170 may be gigabit multimedia serial link (gigabit multimedia serial link, GMSL) interfaces.
  • GMSL gigabit multimedia serial link
  • the camera assembly is connected to the first data transfer interface 160 on the first debugging interface board.
  • the first data transfer interface 160 on the first debug interface board is connected to the second data transfer interface 170 on the second debug interface board.
  • the second data transfer interface 170 on the second debug interface board is connected to the first interface 110 of the second ECU device. In this way, in the case where the camera assembly is not directly connected to the first interface 110 of the second ECU device, the second ECU device can be enabled to obtain the original image data of the camera assembly.
  • a first CPLD interface 180 is further provided on the first debug interface board.
  • a second CPLD interface 190 is also provided on the second debug interface board.
  • the first CPLD interface 180 and the second CPLD interface 190 are complex programmable logic device (complex programming logic device, CPLD) interfaces, and the complex programmable logic device CPLD mainly includes three logic blocks, programmable interconnection channels and I/O channels. Partially constituted, the logic function in the operating circuit can be changed by software.
  • the first data transfer interface 160 is connected to the camera assembly through the first CPLD interface 180
  • the second data transfer interface 170 is connected to the first interface 110 of the second ECU device through the second CPLD interface 190 .
  • the transmission direction of the first CPLD interface 180 can be configured by software to be from the camera assembly to the first data transfer
  • the interface 160 transmits, and the transmission direction of the second CPLD interface 190 is from the second data transfer interface 170 to the first interface 110 of the second ECU device.
  • the camera assembly can be connected to the first interface 110 of the second ECU device first, and then the first CPLD can be configured through software
  • the transmission direction of the interface 180 is from the first data transfer interface 160 to the first interface 110 of the first ECU device, and the transmission direction of the second CPLD interface 190 is from the camera assembly to the second data transfer interface 170 .
  • the second ECU device may adopt the same hardware structure and software architecture as the first ECU device (ie the camera ECU), and the first ECU device (ie the camera ECU) and the second ECU device may be redundant with each other. That is to say, in the process of data collection, the roles of the first ECU device and the second ECU device in the imaging device shown in FIG. 5 can be interchanged.
  • the second ECU device can be used as the camera ECU to construct the driving environment of the vehicle, and output first signal data.
  • the first ECU device may further include a third interface 130 .
  • the third interface 130 is used to connect to the radar ECU to obtain analysis data of the radar ECU.
  • the radar and the radar ECU can also be included, and the radar is connected with the radar ECU.
  • the first ECU device can be set in the first ECU device.
  • the three interfaces 130 are used to obtain analysis data of the radar ECU through the third interface 130 .
  • the third interface 130 may be a CAN-FD interface.
  • the second ECU device may further include a third interface 130 .
  • the third interface 130 is used to connect to the radar ECU to obtain analysis data of the radar ECU.
  • the first ECU device and the second ECU device can be redundant with each other, so the second ECU device can have the same configuration as the first ECU device.
  • both the first ECU device and the second ECU device include the fourth interface 140 .
  • the fourth interface 140 of the first ECU device and the fourth interface 140 of the second ECU are both used to connect to the vehicle-mounted gateway. In this way, the vehicle data can be acquired by the first ECU device or the second ECU device.
  • the first ECU device and the second ECU device may further include a fifth interface 150 .
  • the fifth interface 150 is used to connect a storage device.
  • the first ECU device is used as the data acquisition device, or when the second ECU device is used as the data acquisition device, the collected raw image data, the first signal data, the collected data of the radar, and the analysis data of the radar ECU can be stored. to the storage device.
  • FIG. 6 is a schematic structural diagram 1 of a data acquisition system provided by an embodiment of the present application.
  • the data acquisition system includes a camera assembly, a first ECU device, a second ECU device and a storage device.
  • the connection relationship between the camera assembly, the first ECU device, and the second ECU device may refer to the connection relationship of the camera device shown in FIG. 4 and FIG. 5 , which will not be repeated here.
  • the first ECU device is used as the camera ECU in the ADAS system, and is used to obtain the original image data of the camera assembly, and output the first signal data according to the original image data of the camera assembly.
  • the first signal data includes first vehicle sensing signal data and/or first vehicle regulation signal data.
  • the first vehicle sensing signal data may be related data obtained by the camera ECU based on the sensing of the sensor components, such as information such as the real-time speed of the vehicle and whether there is an obstacle.
  • the first vehicle regulation signal data may be the first sensing signal data obtained by the camera ECU based on the sensing of the sensor component, and output data after analysis for controlling the driving state of the vehicle, such as controlling the speed of the vehicle, controlling the braking of the vehicle, and the like.
  • the second ECU device as a data acquisition device, is used to acquire the original image data of the camera assembly and to acquire the first signal data output by the first ECU device.
  • the storage device is connected to the second ECU device, and is used for storing the collected data obtained by the second ECU device.
  • the collected data includes raw image data from the camera assembly and first signal data from the first ECU device.
  • the data acquisition system shown in FIG. 6 may also include radar and radar ECU.
  • the radar ECU is connected with the radar, and is used to output the analysis data of the radar ECU according to the collected data of the radar.
  • the third interface 130 of the first ECU device is connected to the radar ECU, for acquiring the collected data of the radar and the analysis data of the radar ECU.
  • the radar may include one or more of a laser radar (lidar), a millimeter-wave radar (millimeter-wave radar), and an ultrasonic radar (ultrasonic radar).
  • lidar is a radar that works in the infrared to ultraviolet spectrum, which can be used for obstacle detection, acquisition of three-dimensional information of the environment, vehicle distance maintenance, and vehicle obstacle avoidance.
  • Millimeter-wave radar is a radar that works in the millimeter-wave band and can be used for ranging, speed and azimuth measurement.
  • Ultrasonic radar is a radar that uses ultrasonic waves to detect objects, and can be used for close-range obstacle detection, etc.
  • the above radar detection data may be a collection of all data detected by lidar, millimeter-wave radar, and ultrasonic radar.
  • first ECU device and the second ECU device may be the same ECU, for example, the first ECU device and the second ECU device are both camera ECUs.
  • the first ECU device and the second ECU device may also be different ECU devices, for example, the first ECU device is a camera ECU, and the second ECU device is a radar ECU.
  • the acquisition device can also directly use the software architecture of the camera ECU, thereby reducing software development costs.
  • Both the first ECU device and the second ECU device are connected to the vehicle gateway through the CAN interface, so that the second ECU device can collect interaction information between the first ECU device and the vehicle gateway, such as vehicle information, time, and the like.
  • the storage device also realizes the communication connection with the second ECU device through the USB interface (ie, the fifth interface 150 ) in the second ECU device, so that all kinds of data collected in the second ECU device can be stored in the storage device middle.
  • the first ECU device may also be used to synchronize the system time of the radar ECU, the first ECU device and the second ECU device.
  • the collected data of the radar, the analysis data of the radar ECU, the original image data and the first signal data can be stamped with a time stamp to record the time of collection.
  • data from different data sources collected by the second ECU device can be kept consistent in time.
  • the ECU module in the ADAS system is recharged for testing, all the data collected by the second ECU device can be directly used for data return.
  • the flood test builds the vehicle driving environment without additional time compensation, which simplifies operation and improves the efficiency of the refill test; and also reduces the possibility of inaccurate test results due to time errors in various data sources.
  • the data collection system shown in FIG. 6 may further include a control device, which is communicatively connected to the second interface 120 of the second ECU device, for controlling the second ECU device to start data collection and stop data collection.
  • the control device (such as the upper computer) can send a data collection instruction to the second ECU device to start data collection; when the data collection needs to be ended, the control device (such as the upper computer) can send the second ECU device Send a stop collection command to stop data collection.
  • a second ECU device is not required. That is to say, the second ECU device is an additional device connected to realize data collection in the process of testing the ADAS system. Therefore, in order to ensure the safety of the ADAS system and facilitate the normal use of the ADAS system after passing the test, the connection between the second ECU device and the camera ECU can be realized through a data transfer interface.
  • both the first ECU device ie the camera ECU
  • the second ECU device can be embedded with a debugging interface board, which are the first debugging interface board and the second debugging interface board respectively.
  • FIG. 7 is a second schematic structural diagram of a collection system provided by an embodiment of the present application. It should be understood that, for the connection relationship between the first ECU device, the second ECU device, the first debugging interface board, and the second debugging interface board, please refer to the above-mentioned camera device shown in FIG. 5 , which will not be repeated here.
  • a USB interface can also be set on the second debugging interface board connected to the second ECU device, and the USB interface can be connected to the reserved device in the second ECU device.
  • the USB interface ie, the fifth interface 150
  • a storage device eg, a hard disk
  • FIG. 8 is a flowchart 1 of a data collection method provided by an embodiment of the present application. Please refer to Figure 8, the data collection method includes:
  • the first ECU device acquires original image data from the camera assembly.
  • the first ECU device as a camera ECU, can be connected to the radar ECU, and the radar ECU can be connected to the radar, and the radar is used to detect data such as distance, speed, azimuth, and obstacles.
  • the radar ECU After the radar ECU obtains the collected data of the radar, it can analyze and process the radar detection data, thereby outputting the analysis data of the radar ECU.
  • the first ECU device can not only acquire the raw image data from the camera assembly, but also acquire the acquisition data of the radar and the analysis data of the radar ECU.
  • the second ECU device acquires original image data from the camera assembly.
  • the second ECU device can directly acquire raw image data from the camera assembly. That is to say, when the first ECU device receives the original image data output by the camera assembly, the second ECU device will also receive the original image data output by the camera assembly. Steps S801 and S802 may be performed simultaneously.
  • the first ECU device outputs first signal data according to the original image data.
  • the first ECU device may acquire the original image data, the collected data of the radar, and the analysis data of the radar ECU, as the collected data of the first ECU device.
  • the first ECU device can establish the driving environment of the vehicle according to the data collected by the first ECU device, analyze the driving environment of the vehicle, and output The perception signals of the vehicle, such as the real-time speed of the vehicle, whether there are obstacles, etc.
  • the vehicle can be controlled in real time, such as controlling the driving state of the vehicle through the vehicle regulation signal, such as controlling the vehicle's deceleration, controlling the vehicle's braking, etc.
  • the first signal data is output by the first ECU device according to the collected data of the first ECU device, constructing the vehicle driving environment and analyzing the data, which is the internal observation data of the first ECU device. Therefore, the first signal data may include the first vehicle sensing signal data, which is used to represent the sensing signal of the vehicle, such as the real-time speed of the vehicle, whether there is an obstacle, and other information.
  • the first signal data may also include first vehicle regulation signal data, which is used to indicate a control method that can be adopted for the vehicle based on the sensing signal of the vehicle, such as controlling the vehicle to decelerate, controlling the vehicle's braking, and the like.
  • the first ECU device sends the first signal data to the second ECU device, and the second ECU device receives the first signal data from the first ECU device.
  • the first ECU device may also send the collected data of the radar and the analysis data of the radar ECU to the second ECU device.
  • the second ECU device sends the original image data and the first signal data to the storage device.
  • the second ECU device since the second ECU device directly obtains the original image data from the camera assembly, in this method, the second ECU device also sends the original image data to the storage device.
  • the first ECU device may also send a time synchronization request to the second ECU device, for requesting to synchronize the system time of the first ECU device, the second ECU device, and the radar ECU.
  • the second ECU device receives the time synchronization request from the first ECU device
  • the second ECU device executes the time synchronization request from the first ECU device. After executing a time synchronization request.
  • time stamps may be added to the obtained data files to record the collection time of various types of data.
  • the collected data of the first ECU device (such as the collected data of the radar and the analysis data of the radar ECU), the first signal data output by the first ECU device, and the original image data collected by the second ECU device can be kept in time. consistency.
  • the ECU module in the ADAS system is recharged, all the data collected by the second ECU device can be directly used for the data recharge test to construct the vehicle driving environment without additional time compensation, thus simplifying the operation and improving the recharge rate. It also reduces the possibility of inaccurate test results due to timing errors in various data sources.
  • FIG. 8 The data collection method shown in FIG. 8 will be described in detail below with reference to the data collection system shown in FIG. 7 .
  • the second flowchart of the data collection method provided by the embodiment of the present application, the method may include:
  • control device sends a data collection instruction to the second ECU device.
  • the data acquisition system also needs to be powered on and initialized to start the drive test process of the ADAS system.
  • the data acquisition system shown in FIG. 7 uses two camera ECUs, one of which is used as the camera ECU running normal services, that is, as the first ECU device, and the other camera ECU is used as the second ECU running the collection service. equipment.
  • the camera ECU can recognize the signal of the camera module, the camera ECU can be used as the camera ECU running normal business, that is, the first ECU device, and the data transmission direction of the CPLD interface is configured as the output direction.
  • the camera ECU can be used as the second ECU device running the collection service, and the data transmission direction of the CPLD interface can be configured as the input direction.
  • control device (such as the host computer) can send a data acquisition instruction to the second ECU device through the ETH interface to start data acquisition.
  • the second ECU device mounts the storage device, and creates a collection file.
  • the second ECU device After the second ECU device receives the data collection instruction, it will mount the storage device and create a collection file. Subsequent acquisition data will be stored in the created acquisition file.
  • the second ECU device sends a data collection instruction to the first ECU device.
  • the second ECU device After the second ECU device receives the data collection command, the second ECU device will also send a data collection command to the first ECU device, so that the first ECU device starts normal data collection and analysis, so that the second ECU device can collect data Internal observation data to the output of the first ECU device, as well as radar detection data and analysis data of the radar ECU.
  • steps S902 and S903 may be executed in no particular order.
  • the first ECU device obtains the world time from the vehicle-mounted gateway.
  • the first ECU device After the first ECU device receives the data acquisition instruction, it can use the acquired world time as the global time of the data acquisition system, so that the time of the entire data acquisition system adopts the acquired world time uniformly, so that various types of data acquired by the data acquisition system can be used uniformly. Data can maintain time consistency.
  • the first ECU device synchronizes the time of the second ECU device, the first ECU device and the radar ECU.
  • the first ECU device Before collecting data, the first ECU device synchronizes the time of the second ECU device, the first ECU device and the radar ECU, so that various types of data collected subsequently can maintain time consistency, which is convenient for the subsequent data refill test of the ADAS system , and in the process of data recharge test, the data of the data acquisition system can be directly used to construct the vehicle driving environment and test the ADAS system to avoid the problem of inaccurate test results caused by excessive time errors of various data. , to improve the accuracy of the test. In addition, time compensation for various types of data can be avoided, thereby simplifying the process and improving test efficiency.
  • the radar ECU sends the radar detection data and the radar ECU analysis data to the first ECU device.
  • the radar detection data obtained by the radar detection will be transmitted to the radar ECU, and the radar ECU will perform data analysis according to the radar detection data to obtain the radar ECU analysis data.
  • the radar can detect the speed of the preceding vehicle and the distance to the preceding vehicle, and the radar ECU can analyze whether the distance between the current vehicle and the preceding vehicle is within a safe distance range, and if it is not within the safe distance range, it can prompt the vehicle to slow down, etc.
  • the radar detects an obstacle it will send the signal of the detected obstacle to the radar ECU.
  • the analysis data of the radar ECU can be obtained. For example, there is an obstacle 50 meters ahead.
  • the first ECU device outputs the ECU internal observation data, the radar detection data and the radar ECU analysis data to the second ECU device, and adds a time stamp when outputting.
  • the first ECU device can obtain raw image data from the camera assembly, and can also receive radar detection data and radar ECU analysis data from the radar ECU.
  • the first ECU device can construct the driving environment of the vehicle according to the original image data, radar detection data and radar ECU analysis data, and through software analysis in the first ECU device, it can output the ECU internal observation data, such as vehicle perception signal data and Vehicle regulatory signal data. For example, if the radar detection data and the radar ECU analysis data indicate that there are obstacles 50 meters ahead, and then analyze the original image data, it is true that there are obstacles 50 meters ahead.
  • the vehicle perception signal data output by the first ECU device can be used to indicate that there is an obstacle 50 meters ahead, and the current speed is 60 km/h; the first The vehicle regulation signal data output by the ECU device can be used to instruct the vehicle to decelerate and brake.
  • the first ECU device outputs the ECU internal observation data, radar detection data and radar ECU analysis data to the second ECU device, a timestamp can be added, so that when using these data to recharge the ADAS system, the corresponding corresponding data can be accurately found.
  • Data files (such as data files at the same point in time or time period) to ensure data consistency.
  • the second ECU device stamps the received raw image data of the camera with a time stamp, and stores it in a collection file designated by the hard disk.
  • the camera assembly when the camera assembly outputs the original image data to the first ECU device, it can also output the original image data to the second ECU device, so that the original image data can pass through the second ECU device.
  • the device is stored in the storage device, so that a complete vehicle driving environment can be constructed when the data recharge test is performed on the ADAS system.
  • the data can reproduce the road environment during the drive test to the greatest extent, so as to improve the accuracy of ADAS system test.
  • the second ECU device acquires vehicle data from the vehicle-mounted gateway.
  • Vehicle data refers to the acceleration, accelerator and other data of the vehicle itself.
  • the second ECU device stores the received ECU internal observation data, radar sensor data, and radar ECU analysis data in a collection file designated by the hard disk.
  • the second ECU device stamps the input vehicle data with a time stamp, and stores it in a collection file designated by the hard disk.
  • step S910 and step S911 in the process of data storage, if the second ECU device finds that the collected file exceeds a certain size, such as exceeding the preset size of each collected file, the second ECU devices can recreate acquisition files to store new acquisition data to prevent data loss.
  • control device sends a stop collection instruction to the second ECU device.
  • the control device (such as the host computer) can send a stop collection instruction to the second ECU device through the ETH interface to indicate the end of the entire data collection process.
  • the second ECU device stops storing data, and sends a stop collection instruction to the first ECU device.
  • the second ECU device When the second ECU device receives the stop collection command from the control device, the second ECU device can stop storing the collected data, and the first ECU device sends a stop collection command, so that the first ECU device stops data analysis and ends data input and output.
  • the second ECU device may also stop storing the collected data, and send a stop collection instruction to the first ECU device to end data collection.
  • the first ECU device can be directly used as an electronic control unit in the ADAS system, used to receive sensor data, construct a vehicle driving environment based on the sensor data, and analyze the data, thereby outputting vehicle perception signals and vehicle regulatory signals. It is also used as the second ECU device in the data acquisition system to collect the raw image data output by the camera assembly, the environmental data output by other sensors (such as radar), and the vehicle perception signal and vehicle regulation signal output by the first ECU device. In the data acquisition system, the business operation process of the first ECU device needs to be reasonably planned, and the software resources in the first ECU device need to be reasonably planned.
  • FIG. 10 is a third schematic structural diagram of a data acquisition system provided by an embodiment of the present application.
  • the data acquisition system includes a camera assembly, a first ECU device and a storage device. Wherein, both the camera assembly and the storage device are connected in communication with the first ECU device.
  • the first ECU device not only serves as the camera ECU in the ADAS system, but also serves as the second ECU device in the data acquisition system.
  • the camera device shown in FIG. 3 which will not be repeated here.
  • the first ECU device is configured to acquire the original image data of the camera assembly, and output the first signal data according to the original image data of the camera assembly.
  • the first signal data includes first vehicle sensing signal data and/or first vehicle regulation signal data.
  • the first ECU device is used to send the original image data and the first signal data to the storage device through the USB interface.
  • the first vehicle sensing signal data may be related data obtained by the camera ECU based on the sensing of the sensor components, such as information such as the real-time speed of the vehicle and whether there is an obstacle.
  • the first vehicle regulation signal data may be the first sensing signal data obtained by the camera ECU based on the sensing of the sensor component, and output data after analysis for controlling the driving state of the vehicle, such as controlling the speed of the vehicle, controlling the braking of the vehicle, and the like.
  • the first ECU device is also connected to the radar through the radar ECU.
  • the first ECU device may also be used to obtain the radar acquisition data and the radar ECU analysis data.
  • the analysis data of the radar ECU is analyzed and obtained by the radar ECU according to the radar detection data.
  • the first ECU device may also be used to synchronize the system time of the radar ECU and the first ECU device.
  • the collected data of the radar, the analysis data of the radar ECU, and the first signal data can be time stamped to record the time of collection.
  • the data from different data sources collected by the first ECU device can be kept consistent in time.
  • the ECU module in the ADAS system is recharged, all the data collected by the camera ECU can be directly used for the data recharge test. Constructing the vehicle driving environment without the need for additional time compensation simplifies operations, increases the efficiency of recharge testing, and also reduces the possibility of inaccurate test results due to time errors in various data sources.
  • the data collection system shown in FIG. 10 may further include a control device that is communicatively connected to the second interface 120 of the first ECU device and used to control the first ECU device to start data collection and stop data collection.
  • the control device such as the host computer
  • the control device can send a data collection command to the first ECU device to start data collection;
  • the control device (such as the host computer) can send a stop to the camera ECU Acquisition command to stop data acquisition.
  • the data acquisition system shown in Figure 10 uses the camera ECU as the electronic control unit in the ADAS system, and uses the camera ECU as the electronic control unit in the ADAS system. It is used to receive the original image data of the camera assembly, construct the vehicle driving environment, and analyze the data, so as to output the vehicle perception signal and the vehicle regulation signal; it is also used as the second ECU device in the data acquisition system to collect the original image output from the camera assembly. data, environmental data output by other sensors (such as radar), and vehicle perception signals and vehicle regulation signals output by the camera ECU. In this data acquisition system, it is necessary to reasonably plan the business operation process of the camera ECU, and reasonably plan the software resources in the camera ECU.
  • FIG. 11 is a fourth schematic structural diagram of a data acquisition system provided by an embodiment of the present application.
  • the camera ECU can also be connected to a debugging interface board, and the storage device is connected to the USB in the camera ECU through the USB on the debugging interface board, so as to store the collected data in the storage device.
  • FIG. 12 provides a schematic structural diagram of a data refilling system according to an embodiment of the present application.
  • the data refill system can be applied to the ADAS system shown in Figure 1.
  • the data refill system includes a camera ECU and a storage device.
  • the camera ECU communicates with the storage device.
  • the camera ECU is used to obtain the collected data from the storage device, construct the vehicle driving environment according to the collected data, and output the second signal data.
  • the collected data is the original image data stored in the storage device, the collected data of the radar or the analysis data of the radar ECU.
  • the second signal data includes second vehicle sensing signal data and/or second vehicle regulatory signal data.
  • the collected data in the storage device may be obtained by executing the data collection method shown in FIG. 8 or FIG. 9 by the data collection system shown in FIG. 6 or FIG. 7 , or obtained by the data collection system shown in FIGS. 10 and 11 . acquired.
  • the above data refilling system may further include a control device.
  • the control device is connected to the camera ECU, and is used to send a refill command to the camera ECU.
  • the refill instruction includes the start and end time of the refill data. Therefore, the collected data is all the original image data, the collected data of the radar, or the analysis data of the radar ECU in the storage device, and the collection time is between the start and end times of the recharged data indicated in the above-mentioned recharge instruction.
  • the data recharge system can accurately find the corresponding collected data according to the set start and end time of the recharge data when performing the data recharge, and construct a real vehicle driving environment without additional data processing, simplifying Data reinjection process to improve the efficiency of data reinjection test.
  • control device can also be used to obtain the expected data from the storage device and compare the difference between the second signal data and the expected data.
  • the expected data is located in the storage device, and the first signal data whose acquisition time is located between the start and end times of the refilling data.
  • the first signal data includes first vehicle sensing signal data and/or vehicle regulation signal data.
  • FIG. 13 is a schematic structural diagram of another data refilling system provided by an embodiment of the present application.
  • the camera ECU can also be connected to a debugging interface board, and the storage device is connected to the USB in the camera ECU through the USB on the debugging interface board, so as to obtain the collected data from the storage device.
  • an embodiment of the present application further provides a data refilling method.
  • the data refill method of the present application will be described below by taking the measured object as a camera ECU as an example.
  • FIG. 14 is a flowchart of a data refilling method provided by an embodiment of the present application. Please refer to Figure 14, the data refill method includes:
  • the camera ECU acquires the collected data from the storage device.
  • the collected data is the original image data stored in the storage device, the collected data of the radar or the analysis data of the radar ECU. It should be understood that the original image data, the collected data of the radar or the analysis data of the radar ECU stored in the storage device may be obtained by executing the data collection method shown in FIG. 8 or FIG. 9 through the data collection system shown in FIG. 6 or FIG. 7 . .
  • the camera ECU constructs a vehicle driving environment according to the collected data, and outputs second signal data.
  • the second signal data includes a second vehicle sensing signal and/or a second vehicle regulation signal.
  • a second vehicle sensing signal and/or a second vehicle regulation signal.
  • the second vehicle perception signal and the second vehicle regulation signal please refer to the relevant description in the data acquisition system shown in FIG. 4 , and details are not repeated here.
  • the data refill method shown in FIG. 14 may further include:
  • the camera ECU receives the data refilling instruction from the control device.
  • the camera ECU When the camera ECU receives the data refilling instruction sent by the control device, the camera ECU can obtain the collected data from the storage device according to the start and end time of the refilling data indicated in the data refilling instruction.
  • the acquired acquisition data is the data in the storage device where the acquisition time of the original image data, the acquisition data of the radar or the analysis data of the radar ECU is between the start and end times of the recharged data.
  • the second signal data output by the camera ECU in step S1402 is obtained based on the collection data whose collection time is between the start and end times of the refill data.
  • the second signal data output by the camera ECU can be transmitted to the control device, and the control device can also acquire from the storage device the first signal data whose collection time is between the start and end times of the refill data.
  • the control device can test whether the camera ECU is normal by comparing the second signal data with the first signal data.
  • FIG. 14 The data refilling method shown in FIG. 14 will be described in detail below with reference to the data refilling system shown in FIG. 12 and FIG. 13 .
  • another data refilling method provided in this embodiment of the present application may include:
  • control device sends a data refilling instruction to the camera ECU.
  • the data refilling instruction includes the start and end time of refilling data.
  • the object under test such as the camera ECU
  • the control device can send a data refill command to the camera ECU through the ETH interface, and determine the start and end time of the refill data in the data refill command, so as to restore the drive test data collection process during the data refill process. road environment scene.
  • the camera ECU is mounted to the storage device, and retrieves the corresponding collected data according to the start and end times of the recharged data.
  • the refilling data comes from the storage device, and the data in the storage device is obtained by executing the data collection method shown in FIG. 8 or FIG. 9 through the data collection system shown in FIG. 6 or FIG. 7 . Since each collected data in the above-mentioned data collection system and data collection method is marked with a time stamp, the time of data collection is recorded. Therefore, the data required for this data refilling process can be found according to the start and end time of the data refilling instruction in the data refilling instruction.
  • the camera ECU After retrieving the corresponding collected data, the camera ECU can enter the recharge mode, and adjust the system time of the entire data recharge system to the time corresponding to the current data frame.
  • the camera ECU acquires the corresponding collection data from the storage device.
  • Corresponding collection data is acquired in this step, that is, the collection data retrieved in step S1502 according to the start and end times of the recharge data.
  • the camera ECU acquires data, it will acquire data in sequence according to the data frames of the acquired data, and execute data scheduling and operation in a single frame cycle, and then perform data analysis and processing according to the acquired corresponding acquisition data.
  • the camera ECU constructs the vehicle driving environment according to the collected data, and outputs the second signal data to the control device.
  • step S1402 please refer to the relevant description of step S1402, which will not be repeated here.
  • control device acquires the first signal data from the storage device.
  • control device compares the second signal data with the first signal data.
  • step S1505 and step S1506 by comparing the first signal data and the second signal data, it can be determined whether the problem occurred in the camera ECU has been solved.
  • the camera ECU determines whether the recharging is completed.
  • the camera ECU can determine whether the time for refilling data has reached the end time of the refilling data specified in the data refilling instruction. If it is reached, it can be considered that the recharging is over, and step S1508 is directly executed; if it is not reached, the collection data of the next time stamp is continued to be searched, and step S1503 and subsequent steps are executed again.
  • the camera ECU will stop acquiring the acquisition data from the storage device.
  • the measured object is a radar ECU
  • the radar ECU when the radar ECU is recharged, it is only necessary to recharge the radar detection data into the radar ECU, and the radar ECU will output the analysis data of the radar ECU to the camera ECU according to the radar detection data. , and then the camera ECU obtains the collected data to construct the vehicle driving environment, and outputs the second signal data. Subsequent processes are the same as the related processes in FIG. 14 and FIG. 15 , and are not repeated here.
  • FIG. 16 is a schematic structural diagram of a data acquisition apparatus provided by an embodiment of the present application.
  • the data acquisition device may be the second ECU device in the data acquisition system shown in FIG. 6 or FIG. 7 , or may be the camera ECU in the data acquisition system shown in FIG. 10 and FIG. 11 .
  • the data acquisition apparatus 1600 may include a processor 1601 .
  • the data acquisition apparatus 1600 may further include a memory 1602 and/or a transceiver 1603 .
  • the processor 1601 is coupled with the memory 1602 and the transceiver 1603, such as can be connected through a communication bus.
  • each component of the data acquisition device 1600 will be introduced in detail:
  • the processor 1601 is the control center of the data acquisition device 1600, which may be a processor or a general term for multiple processing elements.
  • the processor 1601 is one or more central processing units (CPUs), may also be a specific integrated circuit (application specific integrated circuit, ASIC), or is configured to implement one or more of the embodiments of the present application
  • An integrated circuit such as: one or more microprocessors (digital signal processor, DSP), or, one or more field programmable gate array (field programmable gate array, FPGA).
  • the processor 1601 may execute various functions of the data acquisition apparatus 1600 by running or executing software programs stored in the memory 1602 and calling data stored in the memory 1602 .
  • the processor 1601 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG. 16 .
  • the data acquisition apparatus 1600 may also include multiple processors, such as the processor 1601 and the processor 1604 shown in FIG. 16 .
  • processors can be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the memory 1602 is used to store the software program for executing the solution of the present application, and is controlled and executed by the processor 1601.
  • the memory 1602 is used to store the software program for executing the solution of the present application, and is controlled and executed by the processor 1601.
  • memory 1602 may be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types of static storage devices that can store information and instructions.
  • ROM read-only memory
  • RAM random access memory
  • Other types of dynamic storage devices for instructions which may also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM), or other optical discs storage, optical disc storage (including compact disc, laser disc, optical disc, digital versatile disc, blu-ray disc, etc.), magnetic disk storage medium or other magnetic storage device, or capable of carrying or storing desired program code in the form of instructions or data structures and any other medium that can be accessed by a computer, but is not limited thereto.
  • the memory 1602 may be integrated with the processor 1601, or may exist independently, and be coupled to the processor 1601 through an interface circuit (not shown in FIG. 16) of the data acquisition device 1600, which is not specifically limited in this embodiment of the present application.
  • the transceiver 1603 may include a receiver and a transmitter (not shown separately in Figure 16). Among them, the receiver is used to realize the receiving function, and the transmitter is used to realize the sending function.
  • the transceiver 1603 may be integrated with the processor 1601, or may exist independently, and be coupled to the processor 1601 through an interface circuit (not shown in FIG. 16 ) of the data acquisition device 1600, to which this embodiment of the present application There is no specific limitation.
  • the structure of the data acquisition device 1600 shown in FIG. 16 does not constitute a limitation on the data acquisition device, and an actual data acquisition device may include more or less components than those shown in the figure, or a combination of some components, or a different arrangement of components.
  • FIG. 17 is a schematic structural diagram of a data refilling apparatus provided by an embodiment of the present application.
  • the data refilling device may be the camera ECU in the data refilling system shown in FIG. 12 and FIG. 13 .
  • the data refilling apparatus 1700 may include a processor 1701 .
  • the data refilling apparatus 1700 may further include a memory 1702 and/or a transceiver 1703 .
  • the processor 1701 is coupled with the memory 1702 and the transceiver 1703, such as can be connected through a communication bus.
  • the memory 1702 is used to store the software program for executing the solution of the present application, and is controlled and executed by the processor 1701.
  • the memory 1702 is used to store the software program for executing the solution of the present application, and is controlled and executed by the processor 1701.
  • the processor 1701. For the specific implementation, refer to the data refilling method in the above method embodiments, which will not be repeated here.
  • processors in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), dedicated integrated Circuit (application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory Fetch memory
  • direct memory bus random access memory direct rambus RAM, DR RAM
  • circuits and methods may be implemented in other manners.
  • the circuit embodiments described above are only illustrative.
  • the described division of modules or units is only a logical function division. In actual implementation, there may be other division methods, such as multiple units or components. It may be incorporated or integrated into another device, or some features may be omitted, or not implemented.
  • the units described as separate components may or may not be physically separated, and the components shown as units may be one physical unit or multiple physical units, that is, they may be located in one place, or may be distributed to multiple different places . Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Traffic Control Systems (AREA)

Abstract

本申请提供一种摄像设备、数据采集系统及方法,涉及汽车技术领域,用于解决目前应用于ADAS系统路测试验过程中的数据采集设备,需要专用的采集设备而导致测试成本高的问题,并提高ADAS系统测试的效率。该摄像设备包括摄像头组件、第一ECU设备和第二ECU设备。第二ECU设备可以作为数据采集设备,第二ECU设备的第一接口连接摄像头组件,用于获取摄像头组件的原始图像数据。第二ECU设备的第二接口连接第一ECU设备的第一接口,用于获取第一ECU设备输出的第一信号数据,从而使得第二ECU设备可以采集到来自摄像头组件的原始图像数据,还可以采集到来自第一ECU设备的内部分析数据。

Description

摄像设备、数据采集系统及方法 技术领域
本申请涉及汽车技术领域,尤其涉及一种摄像设备、数据采集系统及方法。
背景技术
为满足系统的可靠性,在汽车高级辅助驾驶系统(advanced driving assistance system,ADAS)形成产品之前,会对ADAS系统进行测试和验证。在系统测试和验证阶段,一般会经历路测试验过程和数据回灌过程。在路测试验过程中,会采集和存储路测试验过程中的通信数据、传感器数据和测量数据。在路测结束后的数据回灌过程中,再将路测试验过程中采集的通信数据、传感器数据和测量数据回灌至ADAS系统中,对该ADAS系统进行数据激励,以验证该ADAS系统中各类电子控制单元(electronic control unit,ECU)的可靠性。
目前,为了在路测试验过程采集各类数据(如传感器数据、通信数据和测量数据),并使采集的各类数据,能够直接用于数据回灌过程对ADAS系统进行数据激励测试,一般需要开发专用的采集设备,会导致测试成本高的问题。
发明内容
本申请提供一种摄像设备、数据采集系统及方法,用于解决目前应用于ADAS系统路测试验过程中的数据采集设备,需要专用的采集设备而导致测试成本高的问题,并提高ADAS系统测试的效率。
第一方面,本申请提供一种摄像设备。该摄像设备应用于ADAS系统。该摄像设备包括摄像头组件和ECU设备。ECU设备包括第一接口和第二接口。第一接口与摄像头组件连接,用于获取摄像头组件的原始图像数据。第二接口用于传输ECU设备的内部分析数据。
基于上述摄像设备,该摄像设备可以通过ECU设备的第一接口获取摄像头组件的原始图像数据,并根据原始图像数据进行数据分析,输出内部分析数据。该摄像设备还可以通过ECU设备的第二接口传输内部分析数据,以便该ECU设备的第二接口与数据采集设备相连时,可以使采集设备采集到ECU设备的内部分析数据,从而在数据回灌测试中使用。
可选地,该ECU设备还可以包括第三接口。第三接口用于连接雷达ECU。第三接口为CAN-FD接口。如此,可以获取雷达ECU的分析数据和雷达的采集数据。
可选地,该ECU设备还可以包括第四接口。第四接口用于连接车载网关。第四接口为CAN接口。该第四接口与车载网络连接时,使得ECU设备与车载网关或T-BOX通信,以获取车辆数据,该车辆数据可以是车辆本身的加速度、油门等数据。
可选地,第一接口为MIPI接口。第二接口为ETH接口。
第二方面,本申请提供另一种摄像设备。该摄像设备应用于ADAS系统。该摄像设备包括摄像头组件、第一ECU设备和第二ECU设备。第一ECU设备和第二ECU设备均包括第一接口和第二接口。第一ECU设备的第一接口和第二ECU设备的第一 接口,均与摄像头组件连接。第二ECU设备的第二接口,连接第一ECU设备的第二接口。
基于上述第二方面的摄像设备,该摄像设备中,第二ECU设备可以作为数据采集设备,第二ECU设备的第一接口连接摄像头组件,用于获取摄像头组件的原始图像数据。第二ECU设备的第二接口连接第一ECU设备的第一接口,用于获取第一ECU设备输出的第一信号数据。如此,当第二ECU设备作为数据采集设备时,通过第二ECU设备与第一ECU设备连接,且第二ECU设备与摄像头组件相连,第二ECU设备可以采集到来自摄像头组件的原始图像数据,还可以采集到来自第一ECU设备(即摄像头ECU)的内部分析数据。
应理解,第一ECU设备和第二ECU设备可以为ADAS系统中现有的ECU设备,如摄像头ECU。第一ECU设备和第二ECU设备可以为相同的ECU,如第一ECU设备和第二ECU设备均为摄像头ECU,采用相同的硬件结构。第一ECU设备和第二ECU设备也可以为不同的ECU设备,如第一ECU设备为摄像头ECU,第二ECU设备为雷达ECU。如此,可以不用设计专门的采集设备,从而降低硬件的开发成本,缩短开发周期。此外,基于相同的硬件结构,数据采集设备还可以直接沿用摄像头ECU的软件架构,从而降低软件开发成本。
结合第二方面,一种可能的实现方式是,该摄像设备还可以包括第一调试接口板和第二调试接口板。其中,第一调试接口板上设置有第一数据转接接口。第二调试接口板上设置有第二数据转接接口。摄像头组件连接第一数据转接接口。第一数据转接接口与第二数据转接接口连接。第二数据转接接口与第二ECU设备的第一接口连接。如此,可以在数据采集过程结束后,将第一调试接口板、第二调试接口板以及第二ECU设备拆卸,保证ADAS系统的正常运行和使用,提高ADAS系统的安全性。
可选地,第一调试接口板上还可以设置有第一CPLD接口。第二调试接口板上还设置有第二CPLD接口。第一数据转接接口通过第一CPLD接口与摄像头组件连接。第二数据转接接口通过第二CPLD接口与第二ECU设备的第一接口连接。
应理解,若第一ECU设备为ADAS系统中的摄像头ECU,第二ECU设备为数据采集设备,则可以通过软件配置第一CPLD接口的传输方向为从摄像头组件向第一数据转接接口传输,第二CPLD接口的传输方向为从第二数据转接接口向第二ECU设备的第一接口传输。相反地,若第二ECU设备为ADAS系统中的摄像头ECU,第一ECU设备为数据采集设备,则可以先将摄像头组件连接第二ECU设备的第一接口,然后可以通过软件配置第一CPLD接口的传输方向为,从第一数据转接接口向第一ECU设备的第一接口传输,第二CPLD接口的传输方向为从摄像头组件向第二数据转接接口传输。
如此,由于第二ECU设备可以采用与第一ECU设备(即摄像头ECU)相同的硬件结构和软件架构,第一ECU设备(即摄像头ECU)和第二ECU设备可以互为冗余。也就是说,在数据采集的过程中,该摄像设备中的第一ECU设备和第二ECU设备可以互换角色。例如,当第一ECU设备(即摄像头ECU)出现非通信故障,如第一ECU设备(即摄像头ECU)的内部功能故障时,可以将第二ECU设备作为摄像头ECU构建车辆的行驶环境,并输出第一信号数据。
可选地,第一ECU设备还可以包括第三接口。第三接口用于连接雷达ECU,以获取雷达ECU的分析数据。
可选地,第二ECU设备还可以包括第三接口。第三接口用于连接雷达ECU,以获取雷达ECU的分析数据。
应理解,在ADAS系统中,还可以包括雷达和雷达ECU,并且雷达与雷达ECU相连。为获取雷达的采集数据和雷达ECU的分析数据,并将雷达ECU的分析数据与原始图像数据共同作为数据源,用于第一ECU设备构建道路行驶环境,则可以在第一ECU设备中设置第三接口。该第三接口可以为CAN-FD接口。
可选地,第一ECU设备和第二ECU设备均可以包括第四接口。第一ECU设备的第四接口和第二ECU的第四接口,均用于连接车载网关。如此,可以使得第一ECU设备或第二ECU设备可以获取车辆数据。
可选地,第二ECU设备还可以包括第五接口。第五接口用于连接存储设备。
可选地,第一ECU设备还可以包括第五接口。第五接口用于连接存储设备。
如此,可以使得当第一ECU设备作为数据采集设备,或者当第二ECU设备作为数据采集设备时,能够将采集到的原始图像数据、第一信号数据以及雷达的采集数据、雷达ECU的分析数据存储至存储设备中。
第三方面,本申请提供一种数据采集系统。该数据采集系统应用于ADAS系统。该数据采集系统包括摄像头组件、第一ECU设备、第二ECU设备和存储设备;第一ECU设备和第二ECU设备均包括第一接口和第二接口。第一ECU设备的第一接口与摄像头组件连接,用于获取摄像头组件的原始图像数据,并根据摄像头组件的原始图像数据,输出第一信号数据;第一信号数据包括第一车辆感知信号和第一车辆规控信号。第二ECU设备的第一接口与摄像头组件连接,用于获取摄像头组件的原始图像数据。第二ECU设备的第二接口,连接第一ECU设备的第二接口,用于获取第一ECU设备输出的第一信号数据。存储设备连接第二ECU设备,用于存储第二ECU设备获取的采集数据;采集数据包括摄像头组件的原始图像数据,以及第一信号数据。
应理解,第一车辆感知信号数据可以是摄像头ECU基于传感器组件的感应而获取的相关数据,如车辆实时速度、是否存在障碍物等信息。第一车辆规控信号数据可以是摄像头ECU基于传感器组件的感应获得的第一感知信号数据,经过分析后输出的用于控制车辆行驶状态的数据,如控制车辆降速、控制车辆刹车等。
基于上述数据采集系统,第一ECU设备可以根据来自摄像头组件的原始图像数据构建车辆行驶环境,并输出第一信号数据。第二ECU设备可以从摄像头组件中获取原始图像数据,还可以从第一ECU设备中获取第一信号数据,并将获取到的原始图像数据和第一信号数据存储至存储设备。如此,该数据采集系统可以通过第一ECU设备直接获取各数据源中的数据,第二ECU设备再从第一ECU设备中获取第一ECU设备的内部分析数据,获取到的采集数据能够用于在回灌测试场景中构建真实的车辆行驶环境,避免增加额外的数据处理过程,从而提高测试效率,并降低测试成本。
结合第三方面,一种可能的实现方式是,该数据采集系统还可以包括第一调试接口板和第二调试接口板。第一调试接口板上设置有第一数据转接接口。第二调试接口板上设置有第二数据转接接口。摄像头组件连接第一数据转接接口。第一数据转接接 口与第二数据转接接口连接。第二数据转接接口与第二ECU设备的第一接口连接。
进一步地,第一调试接口板上还可以设置有第一CPLD接口;第二调试接口板上还可以设置有第二CPLD接口。第一数据转接接口通过第一CPLD接口与摄像头组件连接。第二数据转接接口通过第二CPLD接口与第二ECU设备的第一接口连接。
可选地,该数据采集系统还可以包括雷达和雷达ECU。雷达ECU与雷达连接,用于根据雷达的采集数据,输出雷达ECU的分析数据。第一ECU设备还包括第三接口;第一ECU设备的第三接口连接雷达ECU,用于获取雷达的采集数据和雷达ECU的分析数据。如此,可以使第一ECU设备可以根据雷达ECU的分析数据、原始图像数据等各类数据,构建真实的车辆行驶环境,输出车辆感知信号数据和车辆规控信号数据。
应理解,雷达可以包括激光雷达(lidar)、毫米波雷达(millimeter-wave radar)以及超声波雷达(ultrasonic radar)中的一种和多种。其中激光雷达是一种工作在红外到紫外光谱段的雷达,可以应用于障碍物检测、环境三维信息的获取、车距保持以及车辆避障等。毫米波雷达是一种工作在毫米波波段探测的雷达,可以应用于测距、测速以及测方位角等。超声波雷达是一种利用超声波探测物体的雷达,可以应用于近距离障碍物检测等。上述雷达探测数据可以是激光雷达、毫米波雷达以及超声波雷达探测得到的所有数据的集合。
可选地,数据采集系统还可以包括车载网关。第一ECU设备和第二ECU设备均包括第四接口。第一ECU设备的第四接口和第二ECU设备的第四接口均连接车载网关。如此,可以使第二ECU设备采集第一ECU设备与车辆网关之间的交互信息,如车辆信息、时间以及车辆数据等。该车辆数据可以是车辆本身的加速度、油门等数据。
可选地,第二ECU设备还可以包括第五接口。存储设备与第二ECU设备的第五接口连接。如此,存储设备还通过第二ECU设备中的第五接口实现与第二ECU设备之间的通信连接,使第二ECU设备中采集的各类数据均可以存储至存储设备中。
可选地,数据采集系统还可以包括控制设备,控制设备与第二ECU设备的第二接口连接,用于控制第二ECU设备获取数据或停止获取数据。当需要进行数据采集时,控制设备(如上位机)可以向第二ECU设备发送数据采集指令,以启动数据采集。当需要结束数据采集时,控制设备(如上位机)可以向第二ECU设备发送停止采集指令,以停止数据采集。
第四方面,本申请提供一种数据采集方法。该数据采集方法应用于如上第三方面任意一种可能的实现方式中的数据采集系统。该方法包括:第二ECU设备接收来自摄像头组件的原始图像数据。第二ECU设备接收来自第一ECU设备的第一信号数据;第一信号数据为第一ECU设备输出的车辆感知信号数据和/或车辆规控信号数据。第二ECU设备向存储设备发送原始图像数据和第一信号数据。
可选地,方法还可以包括:第二ECU设备执行来自第一ECU设备的时间同步请求;时间同步请求用于指示第一ECU设备和第二ECU设备时间同步。
可选地,原始图像数据和第一信号数据均可以包括采集时间。
应理解,第四方面提供的数据采集方法应用于第三方面所述的数据采集系统,其技术效果请参考第三方面所述的数据采集系统,此处不再赘述。
第五方面,本申请提供另一种数据采集系统。该数据采集系统应用于ADAS系统。该数据采集系统包括摄像头组件、第一ECU设备和存储设备;摄像头组件和存储设备 均与第一ECU设备通信连接。第一ECU设备,用于获取摄像头组件的原始图像数据,并根据摄像头组件的原始图像数据,输出第一信号数据。其中,第一信号数据包括第一车辆感知信号数据和/或第一车辆规控信号数据。第一ECU设备还用于向存储设备发送原始图像数据和第一信号数据。
可选地,该数据采集系统还可以包括雷达和雷达ECU;雷达ECU与雷达连接,用于根据雷达的采集数据,输出雷达ECU的分析数据。第一ECU设备还包括第三接口;第一ECU设备的第三接口连接雷达ECU,用于获取雷达的采集数据和雷达ECU的分析数据。如此,可以使第一ECU设备可以根据雷达ECU的分析数据、原始图像数据等各类数据,构建真实的车辆行驶环境,输出车辆感知信号数据和车辆规控信号数据。
可选地,数据采集系统还可以包括车载网关;第一ECU设备可以包括第四接口。该第四接口连接车载网关。如此,可以使得第一ECU设备获取与车载网关之间的交互信息,如车辆信息、时间以及车辆数据等。该车辆数据可以是车辆本身的加速度、油门等数据。
可选地,第一ECU设备还可以包括第五接口;存储设备与第五接口连接。如此,存储设备还通过第五接口实现与第一ECU设备之间的通信连接,使第一ECU设备中采集的各类数据均可以存储至存储设备中。
可选地,数据采集系统还可以包括控制设备,控制设备与第一ECU设备的第二接口连接,用于控制第一ECU设备获取数据或停止获取数据。当需要进行数据采集时,控制设备(如上位机)可以向第一ECU设备发送数据采集指令,以启动数据采集。当需要结束数据采集时,控制设备(如上位机)可以向第一ECU设备发送停止采集指令,以停止数据采集。
应理解,上述第五方面提供的另一种数据采集系统,与第三方面提供的数据采集系统相比,第五方面提供的数据采集系统将第一ECU设备(即摄像头ECU)既作为ADAS系统中的电子控制单元,用于接收摄像头组件的原始图像数据,构建车辆行驶环境,以及分析数据,从而输出车辆感知信号和车辆规控信号;还作为数据采集系统中的数据采集设备,用于采集摄像头组件输出的原始图像数据,其他传感器(如雷达)输出的环境数据以及摄像头ECU输出的车辆感知信号和车辆规控信号。在该数据采集系统中,需要合理规划摄像头ECU的业务运行流程,并合理规划摄像头ECU中的软件资源。
第六方面,本申请提供一种数据回灌系统。该数据回灌系统应用于ADAS系统。该数据回灌系统包括摄像头ECU和存储设备;摄像头ECU与存储设备通信连接。摄像头ECU,用于从存储设备中获取采集数据,根据采集数据构建车辆行驶环境,并输出第二信号数据。采集数据为存储设备中存储的原始图像数据、雷达的采集数据或雷达ECU的分析数据;第二信号数据包括第二车辆感知信号数据和/或第二车辆规控信号数据。
可选地,数据回灌系统还可以包括控制设备,控制设备连接摄像头ECU,用于向摄像头ECU发送回灌指令。回灌指令包括回灌数据的起止时间。采集数据为存储设备中,采集时间位于回灌数据的起止时间之间的采集数据。
进一步地,控制设备还可以用于从存储设备中获取预期数据,并比较第二信号数 据和预期数据。其中,预期数据为所存储设备中,采集时间位于回灌数据的起止时间之间的第一信号数据;第一信号数据包括第一车辆感知信号数据和/或第一车辆规控信号数据。
第七方面,本申请提供一种数据回灌方法。该数据回灌方法应用于如上第三方面任一种可能的数据回灌系统。该数据回灌方法包括:摄像头ECU从存储设备获取采集数据;采集数据为存储设备中存储的原始图像数据、雷达的采集数据或雷达ECU的分析数据。摄像头ECU根据采集数据构建车辆行驶环境,并输出第二信号数据;第二信号数据包括车辆感知信号和/或车辆规控信号。
可选地,上述数据回灌方法还可以包括:摄像头ECU接收回灌指令。回灌指令包括回灌数据的起止时间。采集数据为存储设备中,原始图像数据、雷达的采集数据或雷达ECU的分析数据的采集时间位于,回灌数据的起止时间之间的数据。
应理解,该第七方面提供的数据回灌方法的技术效果,可参考第三方面提供的数据回灌系统的技术效果,此处不再赘述。
第八方面,本申请提供一种数据采集装置。该数据采集装置包括:处理器,处理器与存储器耦合,存储器用于存储程序或指令,当程序或指令被处理器执行时,使得装置执行如上第四方面任一种可能的方法。
第九方面,本申请提供一种数据回灌装置。该数据回灌装置包括:处理器,处理器与存储器耦合,存储器用于存储程序或指令,当程序或指令被处理器执行时,使得装置执行如上第七方面任一种可能的方法。
第十方面,本申请提供一种计算机可读介质,其上存储有计算机程序或指令,其特征在于,计算机程序或指令被执行时使得计算机执行如上第四方面任一种可能的方法,或者执行如上第七方面任一种可能的方法。
附图说明
图1为本申请实施例提供的ADAS系统应用场景示意图;
图2为本申请实施例提供的ADAS系统的路测试验场景示意图;
图3为本申请实施例提供的摄像设备的结构示意图一;
图4为本申请实施例提供的摄像设备的结构示意图二;
图5为本申请实施例提供的摄像设备的结构示意图三;
图6为本申请实施例提供的数据采集系统的结构示意图一;
图7为本申请实施例提供的数据采集系统的结构示意图二;
图8为本申请实施例提供的数据采集方法的流程图一;
图9为本申请实施例提供的数据采集方法的流程图二;
图10为本申请实施例提供的数据采集系统的结构示意图三;
图11为本申请实施例提供的数据采集系统的结构示意图四;
图12为本申请实施例提供的一种数据回灌系统的结构示意图;
图13为本申请实施例提供的另一种数据回灌系统的结构示意图;
图14为本申请实施例提供的一种数据回灌方法的流程图;
图15为本申请实施例提供的另一种数据回灌方法的流程图;
图16为本申请实施例提供的一种数据采集装置的结构示意图;
图17为本申请实施例提供的一种数据回灌装置的结构示意图。
具体实施方式
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c或a-b-c,其中a、b和c可以是单个,也可以是多个。字符“/”一般表示前后关联对象是一种“或”的关系。另外,在本申请的实施例中,“第一”、“第二”等字样并不对数量和执行次序进行限定。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请中,除非另有明确的规定和限定,术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。此外,术语“电连接”可以是直接的电性连接,也可以是通过中间媒介间接的电性连接。
为满足系统的可靠性,在汽车高级辅助驾驶系统(advanced driving assistance system,ADAS)形成产品之前会经过系统的验证。在系统验证阶段,一般会经历路测试验过程(即数据采集过程)和数据回灌过程。在路测试验过程中,会采集和存储路测试验过程中ADAS系统的通信数据、传感器数据和测量数据。在路测试验过程结束后,将路测试验过程中采集的通信数据、传感器数据和测量数据回灌至ADAS系统中,以便还原该ADAS系统中各类电子控制单元(electronic control unit,ECU),在路测试验过程中出现的问题,使ADAS系统能够在实验室环境中有针对性的复现和定位问题,以提高ADAS系统的可靠性。
图1为本申请实施例提供的ADAS系统应用场景示意图。如图1所示,ADAS系统包括传感器(如摄像头组件、雷达)和ECU。其中传感器用于采集外界的道路环境数据,如原始图像数据、雷达的采集数据或雷达ECU的分析数据。ECU用于接收传感器数据并基于传感器数据构建车辆行驶环境,以及分析数据,从而输出车辆感知信号和车辆规控信号。其中ECU可以包括摄像头ECU和雷达ECU等,摄像头ECU和雷达ECU之间,可以通过控制器局域网络(controller area network,CAN)或车载以太网(automotive Ethernet,ETH)通信,实现数据的传输。
ADAS系统是一种多传感器系统。为了便于开发人员在系统开发和测试阶段对ADAS系统进行离线仿真和分析,需要同步采集各传感器的信息和原始图像数据,并采用数据采集文件进行记录。其中,一个数据采集文件可以记录多个工程参数(如电气参数、图像、时间、姿态等),每个工程参数均可以包括参数名、参数值以及时间 戳信息等。对ADAS系统中的数据进行分析时,一般需要通过多个数据源的数据构建车辆运行时的数据环境,以便准确分析。
图2为本申请实施例提供的ADAS系统的路测试验场景示意图。如图2所示,在ADAS系统路测试验场景中,需要安装有ADAS系统的至少一车辆、真实的道路环境以及采集设备。其中ADAS系统可以为图1所示的ADAS系统,车辆在真实的道路环境中运行时,ADAS系统中的传感器,如摄像头、雷达可以采集相应的数据,并通过CAN总线与远程信息处理箱(telematics BOX,T-BOX)或网关进行通信,采集设备可以通过CAN总线或ETH总线访问ADAS系统,并获取ADAS系统中ECU的内部分析数据以及传感器的原始数据,以存储至存储设备(如硬盘)中。
需要说明的是,传统数据采集设备一般只能够采集单一的数据源,因此无法构建车辆运行时的数据环境,并且使用传统的数据采集设备也无法获取ECU内部的数据,使得传统的数据采集设备采集的数据,不能够直接用于数据回灌过程中对ADAS系统进行数据激励。为了在路测试验过程采集各类数据(如传感器数据、通信数据和ECU内部数据),并使采集的各类数据,能够直接用于数据回灌过程对ADAS系统进行数据激励测试,一般需要开发专用的采集设备,会导致测试成本高的问题。
图3为本申请实施例提供的摄像设备的结构示意图一。如图3所示,该摄像设备可以应用于上述的ADAS系统中。该摄像设备包括摄像头组件和ECU设备(即摄像头ECU)。该ECU设备包括第一接口110和第二接口120。其中,ECU设备的第一接口110可以是移动产业处理器接口(mobile industry processor interface,MIPI)接口,第二接口120可以为ETH接口。该第一接口110与摄像头组件连接,用于获取摄像头组件的原始图像数据。当ECU设备获取到摄像头组件的原始图像数据后,ECU设备可以对原始图像数据进行分析,并输出ECU设备的内部分析数据。此时,ECU设备的第二接口120可以用于与数据采集设备相连,并传输ECU设备的内部分析数据。
在ADAS系统中,还可以包括雷达和雷达ECU,并且雷达与雷达ECU相连。当雷达ECU获取到雷达的采集数据时,可以对雷达的采集数据进行分析,从而输出雷达ECU的分析数据。摄像头ECU还可以与雷达ECU进行通信,获取雷达ECU的分析数据以及雷达的采集数据,并且摄像头ECU还可以根据原始图像数据、雷达ECU的分析数据构建车辆行驶环境,从而输出摄像头ECU的内部分析数据。
对于此,上述摄像设备中的ECU设备还可以包括第三接口130,该第三接口130可以为具有灵活数据速率的控制器局域网络(CAN with flexible data-rate,CAN-FD)接口。该第三接口130用于连接雷达ECU,从而获取雷达ECU的分析数据和雷达的采集数据。
此外,在图3所示的摄像设备中,ECU设备还可以包括第四接口140。该第四接口140可以为CAN接口,可以用于与车载网关(vehicle network)或T-BOX进行通信,以获取车辆数据,该车辆数据可以是车辆本身的加速度、油门等数据。
可选地,ECU设备还可以包括第五接口150。第五接口150可以为USB接口。第五接口150用于连接存储设备。如此可以使得当该ECU设备作为数据采集设备备时,能够将采集到的原始图像数据、第一信号数据以及雷达的采集数据、雷达ECU的分析数据存储至存储设备中。
值得说明的是,图3所示的摄像设备中的ECU设备(即摄像头ECU),可以包括系统级芯片(system on a chip,SoC)和微控制单元(microcontroller unit,MCU)芯片。其中,SoC芯片主要用于将从摄像头模组(即摄像头)获取到的原始图像数据进行算法处理,使测试人员能够理解的数据。MCU芯片主要用于将从传感器中获取的各类数据(如原始图像数据,雷达ECU的分析数据)进行融合并分析,以输出相应的控制数据等,相应的控制数据可以看作是该摄像设备中的ECU设备的内部分析数据。
基于图3所示的摄像设备,在该摄像设备中可以通过第二接口120将ECU设备的内部分析数据传输到相应的采集设备中,以便在数据回灌测试中使用。
图4为本申请实施例提供的摄像设备的结构示意图二。如图4所示,该摄像设备可以应用于上述的ADAS系统中。该摄像设备包括摄像头组件、第一ECU设备和第二ECU设备。其中,第一ECU设备和第二ECU设备均包括第一接口110和第二接口120。
第一ECU设备的第一接口110和第二ECU设备的第一接口110均可以为MIPI接口,用于传输图像数据。第一ECU设备的第一接口110和第二ECU设备的第一接口110,均与摄像头组件连接,使得第一ECU设备和第二ECU设备均可以获取到来自摄像头组件的原始图像数据。
第一ECU设备的第二接口120和第二ECU设备的第二接口120均可以为ETH接口。第二ECU设备的第二接口120连接第一ECU设备的第二接口120,使得第一ECU设备的内部分析数据可以通过第二接口120传输至第二ECU设备,或者使得第二ECU设备的内部分析数据可以通过第二接口120传输至第一ECU设备。
需要说明的是,在图4所示的摄像设备中,第一ECU设备可以作为ADAS系统中的摄像头ECU,用于获取摄像头组件的原始图像数据,并根据摄像头组件的原始图像数据,输出第一信号数据。第一信号数据包括车辆感知信号和车辆规控信号,并且该第一信号数据即为第一ECU设备的内部分析数据。其中,车辆感知信号数据可以是摄像头ECU基于传感器组件的感应而获取的相关数据,如车辆实时速度、是否存在障碍物等信息。车辆规控信号数据可以是摄像头ECU基于传感器组件的感应获得的第一感知信号数据,经过分析后输出的用于控制车辆行驶状态的数据,如控制车辆降速、控制车辆刹车等。
在图4所示的摄像设备中,第二ECU设备可以作为数据采集设备,第二ECU设备的第一接口110连接摄像头组件,用于获取摄像头组件的原始图像数据。第二ECU设备的第二接口120连接第一ECU设备的第一接口110,用于获取第一ECU设备输出的第一信号数据。如此,当第二ECU设备作为数据采集设备时,通过第二ECU设备与第一ECU设备连接,且第二ECU设备与摄像头组件相连,第二ECU设备可以采集到来自摄像头组件的原始图像数据,还可以采集到来自第一ECU设备(即摄像头ECU)的内部分析数据。
应理解,第一ECU设备和第二ECU设备可以为ADAS系统中现有的ECU设备,如摄像头ECU。第一ECU设备和第二ECU设备可以为相同的ECU,如第一ECU设备和第二ECU设备均为摄像头ECU,采用相同的硬件结构。第一ECU设备和第二ECU设备也可以为不同的ECU设备,如第一ECU设备为摄像头ECU,第二ECU设备为雷达ECU。 如此,可以不用设计专门的采集设备,从而降低硬件的开发成本,缩短开发周期。此外,基于相同的硬件结构,数据采集设备还可以直接沿用摄像头ECU的软件架构,从而降低软件开发成本。
值得说明的是,在正常使用的ADAS系统中,并不需要数据采集设备,即图4所示的第二ECU设备。也就是说,在图4所示的摄像设备中,第二ECU设备是为实现数据的采集而额外连接的设备。因此,为了保证ADAS系统的安全性,以及便于ADAS系统通过测试后的正常使用,第一ECU设备和第二ECU设备之间可以通过数据转接接口来实现连接。
一些实施例中,为便于数据转接接口的安装,第一ECU设备和第二ECU设备均可以嵌入一块调试接口板。图5为本申请实施例提供的摄像设备的结构示意图三。如图5所示,在图4所示的摄像设备的基础上,上述摄像设备还可以包括第一调试接口板和第二调试接口板。其中,第一调试接口板上设置有第一数据转接接口。第二调试接口板上设置有第二数据转接接口170。第一数据转接接口160和第二数据转接接口170均可以为千兆位多媒体串行链路(gigabit multimedia serial link,GMSL)接口。
为使第二ECU设备能够获取到摄像头组件的原始图像数据,摄像头组件连接第一调试接口板上的第一数据转接接口160。第一调试接口板上的第一数据转接接口160与第二调试接口板上的第二数据转接接口170连接。第二调试接口板上的第二数据转接接口170与第二ECU设备的第一接口110连接。如此,在摄像头组件不与第二ECU设备的第一接口110直接相连的情况下,可以使得第二ECU设备能够获取到摄像头组件的原始图像数据。
可选地,第一调试接口板上还设置有第一CPLD接口180。第二调试接口板上还设置有第二CPLD接口190。其中,第一CPLD接口180和第二CPLD接口190为复杂可编程逻辑器件(complex programming logic device,CPLD)接口,该复杂可编程器件CPLD主要包括逻辑块、可编程互联通道和I/O通道三部分构成,可以通过软件改变运行电路中的逻辑功能。第一数据转接接口160通过第一CPLD接口180与摄像头组件连接,第二数据转接接口170通过第二CPLD接口190与第二ECU设备的第一接口110连接。
在图5中,若第一ECU设备为ADAS系统中的摄像头ECU,第二ECU设备为数据采集设备,则可以通过软件配置第一CPLD接口180的传输方向为从摄像头组件向第一数据转接接口160传输,第二CPLD接口190的传输方向为从第二数据转接接口170向第二ECU设备的第一接口110传输。相反地,若第二ECU设备为ADAS系统中的摄像头ECU,第一ECU设备为数据采集设备,则可以先将摄像头组件连接第二ECU设备的第一接口110,然后可以通过软件配置第一CPLD接口180的传输方向为,从第一数据转接接口160向第一ECU设备的第一接口110传输,第二CPLD接口190的传输方向为从摄像头组件向第二数据转接接口170传输。
如前所述,第二ECU设备可以采用与第一ECU设备(即摄像头ECU)相同的硬件结构和软件架构,第一ECU设备(即摄像头ECU)和第二ECU设备可以互为冗余。也就是说,在数据采集的过程中,该图5所示的摄像设备中的第一ECU设备和第二ECU设备可以互换角色。例如,当第一ECU设备(即摄像头ECU)出现非通信故障,如第一ECU设备(即摄像头ECU)的内部功能故障时,可以将第二ECU设备作为摄像头ECU构建车辆 的行驶环境,并输出第一信号数据。
可选地,第一ECU设备还可以包括第三接口130。第三接口130用于连接雷达ECU,以获取所述雷达ECU的分析数据。如前所述,在ADAS系统中,还可以包括雷达和雷达ECU,并且雷达与雷达ECU相连。为获取雷达的采集数据和雷达ECU的分析数据,并将雷达ECU的分析数据与原始图像数据共同作为数据源,用于第一ECU设备构建道路行驶环境,则可以在第一ECU设备中设置第三接口130,通过第三接口130获取雷达ECU的分析数据。该第三接口130可以为CAN-FD接口。
可选地,第二ECU设备还可以包括第三接口130。第三接口130用于连接雷达ECU,以获取所述雷达ECU的分析数据。如前所述,第一ECU设备和第二ECU设备可以互为冗余,因此第二ECU设备可以与第一ECU设备的配置相同。
可选地,第一ECU设备和第二ECU设备均包括第四接口140。第一ECU设备的第四接口140和第二ECU的第四接口140,均用于连接车载网关。如此,可以使得第一ECU设备或第二ECU设备可以获取车辆数据。
可选地,第一ECU设备和第二ECU设备还可以包括第五接口150。第五接口150用于连接存储设备。如此可以使得当第一ECU设备作为数据采集设备,或者当第二ECU设备作为数据采集设备时,能够将采集到的原始图像数据、第一信号数据以及雷达的采集数据、雷达ECU的分析数据存储至存储设备中。
为同步采集各数据源的数据,本申请实施例提供一种数据采集系统,适用于图1所示的ADAS系统。图6为本申请实施例提供的数据采集系统的结构示意图一。如图6所示,该数据采集系统包括摄像头组件、第一ECU设备、第二ECU设备和存储设备。在该数据采集系统中,摄像头组件、第一ECU设备和第二ECU设备的连接关系可以参考图4和图5所示的摄像设备的连接关系,此处不再赘述。
在图6中,第一ECU设备作为ADAS系统中的摄像头ECU,用于获取摄像头组件的原始图像数据,并根据摄像头组件的原始图像数据,输出第一信号数据。其中,第一信号数据包括第一车辆感知信号数据和/或第一车辆规控信号数据。
应理解,第一车辆感知信号数据可以是摄像头ECU基于传感器组件的感应而获取的相关数据,如车辆实时速度、是否存在障碍物等信息。第一车辆规控信号数据可以是摄像头ECU基于传感器组件的感应获得的第一感知信号数据,经过分析后输出的用于控制车辆行驶状态的数据,如控制车辆降速、控制车辆刹车等。
第二ECU设备作为数据采集设备,用于获取所述摄像头组件的原始图像数据,并用于获取第一ECU设备输出的第一信号数据。
存储设备连接第二ECU设备,用于存储第二ECU设备获取的采集数据。该采集数据包括来自摄像头组件的原始图像数据,以及来自第一ECU设备的第一信号数据。
为构建真实的行驶环境,在路测试验阶段还需要采集雷达ECU的分析数据以及雷达的采集数据。因此图6所示的数据采集系统还可以包括雷达和雷达ECU。其中雷达ECU与雷达连接,用于根据雷达的采集数据,输出雷达ECU的分析数据。
参考图4或图5,对于第一ECU设备,第一ECU设备的第三接口130连接雷达ECU,用于获取雷达的采集数据和雷达ECU的分析数据。
应理解,雷达可以包括激光雷达(lidar)、毫米波雷达(millimeter-wave radar)以及超 声波雷达(ultrasonic radar)中的一种和多种。其中激光雷达是一种工作在红外到紫外光谱段的雷达,可以应用于障碍物检测、环境三维信息的获取、车距保持以及车辆避障等。毫米波雷达是一种工作在毫米波波段探测的雷达,可以应用于测距、测速以及测方位角等。超声波雷达是一种利用超声波探测物体的雷达,可以应用于近距离障碍物检测等。上述雷达探测数据可以是激光雷达、毫米波雷达以及超声波雷达探测得到的所有数据的集合。
应理解,第一ECU设备和第二ECU设备可以为相同的ECU,如第一ECU设备和第二ECU设备均为摄像头ECU。第一ECU设备和第二ECU设备也可以为不同的ECU设备,如第一ECU设备为摄像头ECU,第二ECU设备为雷达ECU。如此,可以不用设计专门的采集设备,从而降低硬件的开发成本,缩短开发周期。此外,基于相同的硬件结构,采集设备还可以直接沿用摄像头ECU的软件架构,从而降低软件开发成本。
第一ECU设备和第二ECU设备均通过CAN接口与车载网关通信连接,使第二ECU设备可以采集第一ECU设备与车辆网关之间的交互信息,如车辆信息、时间等。
此外,存储设备还通过第二ECU设备中的USB接口(即第五接口150)实现与第二ECU设备之间的通信连接,使第二ECU设备中采集的各类数据均可以存储至存储设备中。
可选地,第一ECU设备还可以用于同步雷达ECU、第一ECU设备与第二ECU设备的系统时间。在数据采集的过程中,采集得到的雷达的采集数据、雷达ECU的分析数据、原始图像数据以及第一信号数据均可以打上时间戳,以记录采集的时间。如此,可以使得第二ECU设备采集的不同数据源的数据能够保持时间的一致性,在对ADAS系统中的ECU模块进行回灌测试时,第二ECU设备采集的所有数据能够直接用于数据回灌测试构建车辆行驶环境,而不再需要额外进行时间补偿,从而简化操作,提高回灌测试的效率;并且还可以降低因各数据源中的时间误差而导致测试结果不准确的可能性。
可选地,图6所示的数据采集系统还可以包括控制设备,该控制设备与第二ECU设备的第二接口120通信连接,用于控制第二ECU设备启动数据采集以及停止数据采集。当需要进行数据采集时,控制设备(如上位机)可以向第二ECU设备发送数据采集指令,以启动数据采集;当需要结束数据采集时,控制设备(如上位机)可以向第二ECU设备发送停止采集指令,以停止数据采集。
值得说明的是,在正常使用的ADAS系统中,并不需要第二ECU设备。也就是说,第二ECU设备是在测试ADAS系统的过程中,为实现数据的采集而额外连接的设备。因此,为了保证ADAS系统的安全性,以及便于ADAS系统通过测试后的正常使用,可以通过数据转接接口来实现第二ECU设备与摄像头ECU的连接。
一些实施例中,为便于数据转接接口的安装,第一ECU设备(即摄像头ECU)和第二ECU设备均可以嵌入一块调试接口板,分别为第一调试接口板和第二调试接口板。图7为本申请实施例提供的采集系统的结构示意图二。应理解,上述第一ECU设备、第二ECU设备、第一调试接口板以及第二调试接口板的连接关系请参考上述图5所示的摄像设备,此处不再赘述。
此外,由于第二ECU设备采集的数据需要存储至存储设备中,因此第二ECU设备上连接的第二调试接口板上还可以设置USB接口,该USB接口可以连接第二ECU设备中预留的USB接口(即第五接口150),使得第二ECU设备通过USB接口连接存储设备(如硬盘),以便将第二ECU设备采集的各数据源的各类数据存储至存储设备中。
对应于图6或图7所示的数据采集系统,本申请实施例还提供一种数据采集方法。图8为本申请实施例提供的数据采集方法的流程图一。请参考图8,该数据采集方法包括:
S801,第一ECU设备从摄像头组件中获取原始图像数据。
在此过程中,第一ECU设备作为摄像头ECU,可以连接雷达ECU,并且雷达ECU可以连接雷达,雷达用于探测距离、速度、方位角以及障碍物等数据。当雷达ECU获取到雷达的采集数据后,可以对雷达探测数据进行分析处理,从而输出雷达ECU的分析数据。
因此,在此步骤中,第一ECU设备不仅可以获取来自摄像头组件的原始图像数据,还可以获取雷达的采集数据和雷达ECU的分析数据。
S802,第二ECU设备从摄像头组件中获取原始图像数据。
根据图6和图7所示的数据采集系统,第二ECU设备可以直接从摄像头组件中获取原始图像数据。也就是说,第一ECU设备接收到摄像头组件输出的原始图像数据时,第二ECU设备也会接收到摄像头组件输出的原始图像数据。步骤S801和S802可以同时执行。
S803,第一ECU设备根据原始图像数据,输出第一信号数据。
如步骤S801所述,第一ECU设备可以获取原始图像数据、雷达的采集数据和雷达ECU的分析数据,作为第一ECU设备的采集数据。当获取了原始图像数据、雷达的采集数据和雷达ECU的分析数据之后,第一ECU设备可以根据上述第一ECU设备的采集数据建立车辆的行驶环境,并且可以对车辆行驶环境进行分析,并输出车辆的感知信号,如车辆实时速度、是否存在障碍物等信息。基于车辆的感知信号,可以对车辆进行实时控制,如通过车辆规控信号控制车辆的行驶状态,例如控制车辆降速、控制车辆刹车等。
应理解,第一信号数据是第一ECU设备根据第一ECU设备的采集数据,构建车辆行驶环境并对数据进行分析而输出的,其为第一ECU设备的内部观测数据。因此,第一信号数据可以包括第一车辆感知信号数据,用于表示车辆的感知信号,如车辆实时速度、是否存在障碍物等信息。第一信号数据还可以包括第一车辆规控信号数据,用于表示基于上述车辆的感知信号,对车辆可采用的控制方式,如控制车辆降速、控制车辆刹车等。
S804,第一ECU设备向第二ECU设备发送第一信号数据,第二ECU设备接收来自第一ECU设备的第一信号数据。
应理解,在此过程中,第一ECU设备还可以向第二ECU设备发送雷达的采集数据和雷达ECU的分析数据。
S805,第二ECU设备向存储设备发送原始图像数据和第一信号数据。
由于第二ECU设备直接从摄像头组件中获取原始图像数据,因此在该方法中,第二ECU设备还会向存储设备发送原始图像数据。
可选地,在整个采集方法执行之前,第一ECU设备还可以向第二ECU设备发送时间同步请求,用于请求同步第一ECU设备、第二ECU设备以及雷达ECU的系统时间。在第二ECU设备接收到来自第一ECU设备的时间同步请求时,第二ECU设备执行来自第一ECU设备的时间同步请求。执行时间同步请求之后。当第一ECU设备向第二ECU设备第一信号数据,第二ECU设备获取原始图像数据时,均可以在获取的这些数据文件中均打上时间戳,以记录各类数据的采集时间。
如此,可以使得第一ECU设备的采集数据(如雷达的采集数据和雷达ECU的分 析数据),第一ECU设备输出的第一信号数据,以及第二ECU设备采集的原始图像数据能够保持时间的一致性。在对ADAS系统中的ECU模块进行回灌测试时,第二ECU设备采集的所有数据能够直接用于数据回灌测试构建车辆行驶环境,而不再需要额外进行时间补偿,从而简化操作,提高回灌测试的效率;并且还可以降低因各数据源中的时间误差而导致测试结果不准确的可能性。
下面结合图7所示的数据采集系统,对图8所示的数据采集方法进行详细描述。
如图9所示,为本申请实施例提供的数据采集方法的流程图二,该方法可以包括:
S901,控制设备向第二ECU设备发送数据采集指令。
应理解,在S901步骤开始之前,还需要将数据采集系统进行上电初始化,开始ADAS系统的路测过程。具体地,图7所述的数据采集系统中采用两片摄像头ECU,其中一片摄像头ECU作为运行正常业务的摄像头ECU,即作为第一ECU设备,另一片摄像头ECU则作为运行采集业务的第二ECU设备。
在初始化阶段,若摄像头ECU能够识别到摄像头模组的信号,则可以将该摄像头ECU作为运行正常业务的摄像头ECU,即第一ECU设备,并配置CPLD接口的数据传输方向为输出方向。相应地,若摄像头ECU未能够识别到摄像头模组的信号,则可以将该摄像头ECU作为运行采集业务的第二ECU设备,并配置CPLD接口的数据传输方向为输入方向。
当初始化阶段结束,整个数据采集系统正常运行时,控制设备(如上位机)可以通过ETH接口向第二ECU设备发送数据采集指令,以启动数据采集。
S902,第二ECU设备挂载存储设备,并创建采集文件。
在第二ECU设备接收到数据采集指令后,将挂载存储设备并创建采集文件。后续的采集的数据会存储在创建的采集文件中。
S903,第二ECU设备向第一ECU设备发送数据采集指令。
在第二ECU设备接收到数据采集指令后,第二ECU设备还会向第一ECU设备发送数据采集指令,以使第一ECU设备启动正常的数据采集与分析,从而使第二ECU设备能够采集到第一ECU设备输出的内部观测数据,以及雷达探测数据和雷达ECU的分析数据。
应理解,步骤S902和步骤S903执行时可以不分先后顺序。
S904,第一ECU设备从车载网关中获取世界时间。
当第一ECU设备接收到数据采集指令后,可以将获取的世界时间作为数据采集系统的全局时间,使得整个数据采集系统的时间统一采用获取的世界时间,以便使该数据采集系统采集的各类数据能够保持时间的一致性。
S905,第一ECU设备同步第二ECU设备、第一ECU设备以及雷达ECU的时间。
在采集数据之前,第一ECU设备同步第二ECU设备、第一ECU设备和雷达ECU的时间,可以使得后续采集的各类数据能够保持时间的一致性,便于后续对ADAS系统的数据回灌测试,并且在数据回灌测试的过程中,能够直接使用该数据采集系统的数据,构建车辆行驶环境,对ADAS系统进行测试,避免各类数据的时间误差过大而造成的测试结果不准确的问题,提高测试的准确性。此外,还可以避免对各类数据进行时间补偿,从而简化流程,提高测试效率。
S906,雷达ECU向第一ECU设备发送雷达探测数据和雷达ECU分析数据。
在数据采集过程中,如图6或图7所示的数据采集系统,雷达探测得到的雷达探测数据会传输到雷达ECU中,雷达ECU根据雷达探测数据会进行数据分析,得到雷达ECU分析数据。例如,雷达可以探测到前车的速度和与前车的距离,雷达ECU可以分析出当前车辆与前车的距离是否在安全距离范围内,若没有在安全距离范围内可提示车辆应该减速等。又例如,雷达进行障碍物检测时,会将检测到障碍物的信号发送至雷达ECU,雷达ECU经过分析后,可以得出雷达ECU的分析数据,如前方50米存在障碍物。
S907,第一ECU设备向第二ECU设备输出ECU内部观测数据、雷达探测数据和雷达ECU分析数据,并在输出时打上时间戳。
在此过程中,第一ECU设备可以从摄像头组件中获取原始图像数据,还可以接收来自雷达ECU的雷达探测数据和雷达ECU分析数据。第一ECU设备根据原始图像数据、雷达探测数据以及雷达ECU分析数据,可以构建出车辆的行驶环境,并经过第一ECU设备中的软件分析,可以输出ECU内部观测数据,如车辆感知信号数据和车辆规控信号数据。例如,若雷达探测数据和雷达ECU分析数据指示前方50米存在障碍物,再根据原始图像数据分析,前方50米确实存在障碍物。若此时雷达探测到的当前时速为60千米/小时,第一ECU设备输出的车辆感知信号数据,可以用于指示前方50米存在障碍物,且当前车速为60千米/小时;第一ECU设备输出的车辆规控信号数据,可以用于指示车辆降速以及刹车等。
此外,第一ECU设备向第二ECU设备输出ECU内部观测数据、雷达探测数据和雷达ECU分析数据时可以打上时间戳,以便在利用这些数据对ADAS系统回灌测试时,可以准确找到相对应的数据文件(如同一时间点或时间段的数据文件),以保证数据的一致性。
S908,第二ECU设备将接收到的摄像头原始图像数据打上时间戳,并存储至硬盘指定的采集文件中。
如图6或图7所示的数据采集系统中,摄像头组件将原始图像数据输出至第一ECU设备时,还可以将原始图像数据输出至第二ECU设备中,使原始图像数据通过第二ECU设备存储至存储设备中,以便在对ADAS系统进行数据回灌测试时,能够构建完整的车辆行驶环境,且在数据回灌测试时,通过该图6或图7所示的数据采集系统采集的数据,能够最大程度地复现路测过程中的道路环境,以提高ADAS系统测试的准确性。
S909,第二ECU设备从车载网关中获取车辆数据。
车辆数据指的是车辆本身的加速度、油门等数据。
S910,第二ECU设备将接收到的ECU内部观测数据、雷达传感器数据以及雷达ECU分析数据,存储至硬盘指定的采集文件中。
S911,第二ECU设备将输入的车辆数据打上时间戳,并存储至硬盘指定的采集文件中。
需要说明的是,在步骤S910和步骤S911中,在数据存储的过程中,若第二ECU设备发现采集的文件超过了一定的大小时,如超过预设的每个采集文件的大小,第二 ECU设备可以重新创建采集文件以存储新的采集数据,以防止数据丢失。
S912,控制设备向第二ECU设备发送停止采集指令。
当需要结束ADAS系统的路测过程时,控制设备(如上位机)可以通过ETH接口向第二ECU设备发送停止采集指令,以指示整个数据采集过程结束。
S913,第二ECU设备停止存储数据,并向第一ECU设备发送停止采集指令。
当第二ECU设备接收到控制设备的停止采集指令,第二ECU设备即可以停止存储采集的数据,并且第一ECU设备发送停止采集指令,使得第一ECU设备停止数据分析,并结束数据的输入和输出。
可以理解地,当第二ECU设备监控到存储设备的存储空间不足时,第二ECU设备也可以停止存储采集的数据,并且向第一ECU设备发送停止采集指令,以结束数据采集。
一些实施例中,可以直接将第一ECU设备既作为ADAS系统中的电子控制单元,用于接收传感器数据并基于传感器数据构建车辆行驶环境,以及分析数据,从而输出车辆感知信号和车辆规控信号;还作为数据采集系统中的第二ECU设备,用于采集摄像头组件输出的原始图像数据,其他传感器(如雷达)输出的环境数据以及第一ECU设备输出的车辆感知信号和车辆规控信号。在该数据采集系统中,需要合理规划第一ECU设备的业务运行流程,并合理规划第一ECU设备中的软件资源。
图10为本申请实施例提供的数据采集系统的结构示意图三。如图10所示,该数据采集系统包括摄像头组件、第一ECU设备和存储设备。其中,摄像头组件和存储设备均与第一ECU设备通信连接。此时,该第一ECU设备既作为ADAS系统中的摄像头ECU,也作为数据采集系统中的第二ECU设备。第一ECU设备与摄像头ECU的连接关系可以参考图3所示的摄像设备,此处不再赘述。
具体地,第一ECU设备,用于获取摄像头组件的原始图像数据,并根据摄像头组件的原始图像数据,输出第一信号数据。其中,第一信号数据包括第一车辆感知信号数据和/或第一车辆规控信号数据。第一ECU设备通过USB接口,用于向存储设备发送原始图像数据和第一信号数据。
应理解,第一车辆感知信号数据可以是摄像头ECU基于传感器组件的感应而获取的相关数据,如车辆实时速度、是否存在障碍物等信息。第一车辆规控信号数据可以是摄像头ECU基于传感器组件的感应获得的第一感知信号数据,经过分析后输出的用于控制车辆行驶状态的数据,如控制车辆降速、控制车辆刹车等。
可选地,如图10所示,第一ECU设备还通过雷达ECU连接雷达。第一ECU设备还可以用于获取雷达的采集数据和雷达ECU的分析数据。其中雷达ECU的分析数据由雷达ECU根据雷达探测数据分析得出。关于雷达的描述可以参考图4所示的数据采集系统中关于雷达的描述,此处不再赘述。
可选地,第一ECU设备还可以用于同步雷达ECU与第一ECU设备的系统时间。在数据采集的过程中,采集得到的雷达的采集数据和雷达ECU的分析数据,以及第一信号数据均可以打上时间戳,以记录采集的时间。如此,可以使得第一ECU设备采集的不同数据源的数据能够保持时间的一致性,在对ADAS系统中的ECU模块进行回灌测试时,摄像头ECU采集的所有数据能够直接用于数据回灌测试构建车辆行驶环境,而不再需要额外 进行时间补偿,从而简化操作,提高回灌测试的效率,并且还可以降低因各数据源中的时间误差而导致测试结果不准确的可能性。
可选地,图10所示的数据采集系统还可以包括控制设备,该控制设备与第一ECU设备的第二接口120通信连接,用于控制第一ECU设备启动数据采集以及停止数据采集。当需要进行数据采集时,控制设备(如上位机)可以向第一ECU设备发送数据采集指令,以启动数据采集;当需要结束数据采集时,控制设备(如上位机)可以向摄像头ECU发送停止采集指令,以停止数据采集。
需要说明的是,图10所示的数据采集系统与图6和图7所示的数据采集系统相比,图10所示的数据采集系统将摄像头ECU既作为ADAS系统中的电子控制单元,用于接收摄像头组件的原始图像数据,构建车辆行驶环境,以及分析数据,从而输出车辆感知信号和车辆规控信号;还作为数据采集系统中的第二ECU设备,用于采集摄像头组件输出的原始图像数据,其他传感器(如雷达)输出的环境数据以及摄像头ECU输出的车辆感知信号和车辆规控信号。在该数据采集系统中,需要合理规划摄像头ECU的业务运行流程,并合理规划摄像头ECU中的软件资源。
图11为本申请实施例提供的数据采集系统的结构示意图四。如图11所示,该数据采集系统中,摄像头ECU也可以连接一个调试接口板,存储设备通过调试接口板上的USB与摄像头ECU中的USB连接,从而实现向存储设备中存储采集数据。
另一方面,图12为本申请实施例提供一种数据回灌系统的结构示意图。该数据回灌系统可以应用于图1所示的ADAS系统。请参考图12,该数据回灌系统包括摄像头ECU和存储设备。摄像头ECU与存储设备通信连接。
其中,摄像头ECU用于从存储设备中获取采集数据,根据采集数据构建车辆行驶环境,并输出第二信号数据。采集数据为存储设备中存储的原始图像数据、雷达的采集数据或雷达ECU的分析数据。第二信号数据包括第二车辆感知信号数据和/或第二车辆规控信号数据。
需要说明的是,存储设备中的采集数据可以是由图6或图7的数据采集系统执行图8或图9的数据采集方法而获得的,也可以是由图10和图11的数据采集系统获得的。
可选地,上述数据回灌系统还可以包括控制设备。该控制设备连接摄像头ECU,用于向摄像头ECU发送回灌指令。其中,回灌指令包括回灌数据的起止时间。因此,采集数据为存储设备中,采集时间位于上述回灌指令中指示的回灌数据的起止时间之间的,所有的原始图像数据、雷达的采集数据或雷达ECU的分析数据。如此,可以使该数据回灌系统在执行数据回灌时,能够根据设定的回灌数据的起止时间,准确找到对应的采集数据,构建真实的车辆行驶环境,无需进行额外的数据处理,简化数据回灌流程,提高数据回灌测试的效率。
此外,控制设备还可以用于从存储设备中获取预期数据,并比较第二信号数据和预期数据之间的差异。其中,预期数据位于存储设备中,采集时间位于回灌数据的起止时间之间的第一信号数据。该第一信号数据包括第一车辆感知信号数据和/或车辆规控信号数据。通过比较第二信号数据与第一信号数据之间的差异,可以分析并确定被测对象(如摄像头ECU)出现的问题是否得以解决,达到回灌测试的目的。
图13为本申请实施例提供的另一种数据回灌系统的结构示意图。如图13所示,该数据回灌系统中,摄像头ECU也可以连接一个调试接口板,存储设备通过调试接口板上的USB与摄像头ECU中的USB连接,从而实现从存储设备中获取采集数据。
对应于图12所示的数据回灌系统,本申请实施例还提供一种数据回灌方法。下面以被测对象为摄像头ECU为例,对本申请的数据回灌方法进行说明。
图14为本申请实施例提供的一种数据回灌方法的流程图。请参考图14,该数据回灌方法包括:
S1401,摄像头ECU从存储设备获取采集数据。
其中采集数据为存储设备中存储的原始图像数据、雷达的采集数据或雷达ECU的分析数据。应理解,存储设备中存储的原始图像数据、雷达的采集数据或雷达ECU的分析数据,可以是通过图6或图7所示的数据采集系统,执行图8或图9的数据采集方法获取的。
S1402,摄像头ECU根据采集数据构建车辆行驶环境,并输出第二信号数据。
其中第二信号数据包括第二车辆感知信号和/或第二车辆规控信号。关于第二车辆感知信号和第二车辆规控信号的描述,请参考图4所示的数据采集系统中的相关描述,此处不再赘述。
可选地,图14所示的数据回灌方法还可以包括:
S1401-1,摄像头ECU接收来自于控制设备的数据回灌指令。
当摄像头ECU接收到控制设备发送的数据回灌指令,摄像头ECU可以根据数据回灌指令中指示的回灌数据的起止时间,从存储设备中获取采集数据。获取的采集数据为存储设备中,原始图像数据、雷达的采集数据或雷达ECU的分析数据的采集时间位于回灌数据的起止时间之间的数据。
在数据回灌的过程中,步骤S1402中的摄像头ECU输出的第二信号数据,是基于采集时间位于回灌数据的起止时间之间的采集数据而得出的。摄像头ECU输出的第二信号数据可以传输至控制设备中,并且控制设备还可以从存储设备中获取采集时间位于回灌数据的起止时间之间的第一信号数据。控制设备通过对第二信号数据与第一信号数据的比较,可测试摄像头ECU是否正常。
下面结合图12和图13所示的数据回灌系统,对图14所示的数据回灌方法进行详细描述。
如图15所示,为本申请实施例提供的另一种数据回灌方法,该方法可以包括:
S1501,控制设备向摄像头ECU发送数据回灌指令。
其中,该数据回灌指令中包括回灌数据的起止时间。在数据回灌过程开始前,可以先对被测对象(如摄像头ECU)进行上电初始化。上电初始化之后,控制设备可通过ETH接口向摄像头ECU发送数据回灌指令,并在数据回灌指令中确定回灌数据的起止时间,以便在数据回灌过程中,还原路测数据采集过程中的道路环境场景。
S1502,摄像头ECU挂载至存储设备,并根据回灌数据的起止时间检索到对应的采集数据。
在数据回灌过程中,回灌数据来源于存储设备,存储设备中的数据是通过上述图6或图7所示的数据采集系统,执行图8或图9的数据采集方法获取的。由于在上述 数据采集系统以及数据采集方法中的每种采集数据均打上了时间戳,记录了数据采集的时间。因此,可以根据数据回灌指令中,回灌数据的起止时间找到本次数据回灌过程所需要的数据。
检索到对应的采集数据后,摄像头ECU即可进入回灌模式,并调整整个数据回灌系统的系统时间为当前数据帧对应的时间。
S1503,摄像头ECU从存储设备中获取对应的采集数据。
该步骤中获取对应的采集数据,即步骤S1502中根据回灌数据的起止时间检索到的采集数据。摄像头ECU获取数据时会根据采集的数据的数据帧顺序获取,并以单帧为周期执行数据调度与运行,然后根据获取的对应的采集数据执行数据的分析与处理。
S1504,摄像头ECU根据采集数据构建车辆行驶环境,并向控制设备输出第二信号数据。
此步骤请参考步骤S1402的相关描述,此处不再赘述。
S1505,控制设备从存储设备获取第一信号数据。
S1506,控制设备将第二信号数据与第一信号数据进行比对。
在步骤S1505和步骤S1506中,通过对第一信号数据和第二信号数据的比较,可以确定摄像头ECU中出现的问题是否得以解决。
S1507,摄像头ECU判断是否回灌结束。
在该步骤中,摄像头ECU可以根据判断回灌数据的时间是否已经达到,在数据回灌指令中指定的回灌数据的结束时间。若达到,则可以认为回灌结束,直接执行S1508步骤;若未达到,则继续查找下一个时间戳的采集数据,并重新执行S1503步骤及之后的步骤。
S1508,摄像头ECU退出回灌模式。
此过程中,摄像头ECU会停止从存储设备中获取采集数据。
应理解,若被测对象为雷达ECU,在对雷达ECU进行回灌测试时,仅需要将雷达探测数据回灌到雷达ECU中,雷达ECU会根据雷达探测数据输出雷达ECU的分析数据到摄像头ECU中,然后摄像头ECU获取采集数据构建车辆行驶环境,并输出第二信号数据。后续流程与图14和图15的相关流程一致,此处不再赘述。
示例性地,图16为本申请实施例提供的数据采集装置的结构示意图。该数据采集装置可以是图6或图7所示的数据采集系统中的第二ECU设备,也可以是图10和图11所示的数据采集系统中的摄像头ECU。如图16所示,该数据采集装置1600可以包括处理器1601。可选地,数据采集装置1600还可以包括存储器1602和/或收发器1603。其中,处理器1601与存储器1602和收发器1603耦合,如可以通过通信总线连接。
下面结合图16对数据采集装置1600的各个构成部件进行具体的介绍:
其中,处理器1601是数据采集装置1600的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器1601是一个或多个中央处理器(central processing unit,CPU),也可以是特定集成电路(application specific integrated circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。
可选地,处理器1601可以通过运行或执行存储在存储器1602内的软件程序,以及调用存储在存储器1602内的数据,执行数据采集装置1600的各种功能。
在具体的实现中,作为一种实施例,处理器1601可以包括一个或多个CPU,例如图16中所示出的CPU0和CPU1。
在具体实现中,作为一种实施例,数据采集装置1600也可以包括多个处理器,例如图16中所示的处理器1601和处理器1604。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
其中,所述存储器1602用于存储执行本申请方案的软件程序,并由处理器1601来控制执行,具体实现方式可以参考上述方法实施例中的数据采集方法,此处不再赘述。
可选地,存储器1602可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器1602可以和处理器1601集成在一起,也可以独立存在,并通过数据采集装置1600的接口电路(图16中未示出)与处理器1601耦合,本申请实施例对此不作具体限定。
可选地,收发器1603可以包括接收器和发送器(图16中未单独示出)。其中,接收器用于实现接收功能,发送器用于实现发送功能。
可选地,收发器1603可以和处理器1601集成在一起,也可以独立存在,并通过数据采集装置1600的接口电路(图16中未示出)与处理器1601耦合,本申请实施例对此不作具体限定。
需要说明的是,图16中示出的数据采集装置1600的结构并不构成对该数据采集装置的限定,实际的数据采集装置可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
此外,数据采集装置1600的技术效果可以参考上述方法实施例所述的数据采集方法的技术效果,此处不再赘述。
示例性地,图17为本申请实施例提供的数据回灌装置的结构示意图。该数据回灌装置可以是图12和图13所示的数据回灌系统中的摄像头ECU。如图17所示,该数据回灌装置1700可以包括处理器1701。可选地,数据回灌装置1700还可以包括存储器1702和/或收发器1703。其中,处理器1701与存储器1702和收发器1703耦合,如可以通过通信总线连接。
其中,所述存储器1702用于存储执行本申请方案的软件程序,并由处理器1701来控制执行,具体实现方式可以参考上述方法实施例中的数据回灌方法,此处不再赘述。
此外,数据回灌装置1700中各构成部件可参考数据采集装置1600,数据回灌装置1700的技术效果可以参考上述方法实施例所述的数据回灌方法的技术效果,此处不再赘述。
应理解,在本申请实施例中的处理器可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
在本申请所提供的几个实施例中,应该理解到,所揭露的电路和方法,可以通过其它的方式实现。例如,以上所描述的电路实施例仅仅是示意性的,例如,所描述的模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种摄像设备,其特征在于,应用于ADAS系统,所述摄像设备包括摄像头组件和ECU设备;所述ECU设备包括第一接口和第二接口;
    所述第一接口与所述摄像头组件连接,用于获取所述摄像头组件的原始图像数据;
    所述第二接口用于传输所述ECU设备的内部分析数据。
  2. 根据权利要求1所述的摄像设备,其特征在于,所述ECU设备还包括第三接口;所述第三接口用于连接雷达ECU;所述第三接口为CAN-FD接口。
  3. 根据权利要求1或2所述的摄像设备,其特征在于,所述ECU设备还包括第四接口;所述第四接口用于连接车载网关;所述第四接口为CAN接口。
  4. 根据权利要求3所述的摄像设备,其特征在于,所述第一接口为MIPI接口;所述第二接口为ETH接口。
  5. 一种摄像设备,其特征在于,应用于ADAS系统,所述摄像设备包括摄像头组件、第一ECU设备和第二ECU设备;所述第一ECU设备和第二ECU设备均包括第一接口和第二接口;
    所述第一ECU设备的所述第一接口和所述第二ECU设备的所述第一接口,均与所述摄像头组件连接;
    所述第二ECU设备的所述第二接口,连接所述第一ECU设备的所述第二接口。
  6. 根据权利要求5所述的摄像设备,其特征在于,所述摄像设备还包括第一调试接口板和第二调试接口板;所述第一调试接口板上设置有第一数据转接接口;所述第二调试接口板上设置有第二数据转接接口;
    所述摄像头组件连接所述第一数据转接接口;
    所述第一数据转接接口与所述第二数据转接接口连接;
    所述第二数据转接接口与所述第二ECU设备的所述第一接口连接。
  7. 根据权利要求6所述的摄像设备,其特征在于,所述第一调试接口板上还设置有第一CPLD接口;所述第二调试接口板上还设置有第二CPLD接口;
    所述第一数据转接接口通过所述第一CPLD接口与所述摄像头组件连接;
    所述第二数据转接接口通过所述第二CPLD接口与所述第二ECU设备的所述第一接口连接。
  8. 根据权利要求5至7任一项所述的摄像设备,其特征在于,所述第一ECU设备还包括第三接口;所述第三接口用于连接雷达ECU,以获取所述雷达ECU的分析数据。
  9. 根据权利要求5至8任一项所述的摄像设备,其特征在于,所述第二ECU设备还包括第三接口;所述第三接口用于连接雷达ECU,以获取所述雷达ECU的分析数据。
  10. 根据权利要求5至9任一项所述的摄像设备,其特征在于,所述第一ECU设备和所述第二ECU设备均包括第四接口;所述第一ECU设备的第四接口和所述第二ECU的第四接口,均用于连接车载网关。
  11. 根据权利要求5至10任一项所述的摄像设备,其特征在于,所述第二ECU 设备还包括第五接口;所述第五接口用于连接存储设备。
  12. 根据权利要求5至11任一项所述的摄像设备,其特征在于,所述第一ECU设备还包括第五接口;所述第五接口用于连接存储设备。
  13. 一种数据采集系统,其特征在于,应用于ADAS系统,所述数据采集系统包括摄像头组件、第一ECU设备、第二ECU设备和存储设备;所述第一ECU设备和第二ECU设备均包括第一接口和第二接口;
    所述第一ECU设备的所述第一接口与所述摄像头组件连接,用于获取所述摄像头组件的原始图像数据,并根据所述摄像头组件的原始图像数据,输出第一信号数据;所述第一信号数据包括车辆感知信号和车辆规控信号;
    所述第二ECU设备的所述第一接口与所述摄像头组件连接,用于获取所述摄像头组件的原始图像数据;
    所述第二ECU设备的所述第二接口,连接所述第一ECU设备的所述第二接口,用于获取所述第一ECU设备输出的所述第一信号数据;
    所述存储设备连接所述第二ECU设备,用于存储所述第二ECU设备获取的采集数据;所述采集数据包括所述摄像头组件的原始图像数据,以及所述第一信号数据。
  14. 根据权利要求13所述的数据采集系统,其特征在于,所述数据采集系统还包括第一调试接口板和第二调试接口板;所述第一调试接口板上设置有第一数据转接接口;所述第二调试接口板上设置有第二数据转接接口;
    所述摄像头组件连接所述第一数据转接接口;
    所述第一数据转接接口与所述第二数据转接接口连接;
    所述第二数据转接接口与所述第二ECU设备的所述第一接口连接。
  15. 根据权利要求14所述的数据采集系统,其特征在于,所述第一调试接口板上还设置有第一CPLD接口;所述第二调试接口板上还设置有第二CPLD接口;
    所述第一数据转接接口通过所述第一CPLD接口与所述摄像头组件连接;
    所述第二数据转接接口通过所述第二CPLD接口与所述第二ECU设备的所述第一接口连接。
  16. 根据权利要求13至15任一项所述的数据采集系统,其特征在于,所述数据采集系统还包括雷达和雷达ECU;所述雷达ECU与所述雷达连接,用于根据所述雷达的采集数据,输出雷达ECU的分析数据;
    所述第一ECU设备还包括第三接口;所述第一ECU设备的所述第三接口连接所述雷达ECU,用于获取所述雷达的采集数据和所述雷达ECU的分析数据。
  17. 根据权利要求13至16任一项所述的数据采集系统,其特征在于,所述数据采集系统还包括车载网关;所述第一ECU设备和所述第二ECU设备均包括第四接口;所述第一ECU设备的所述第四接口和所述第二ECU设备的所述第四接口均连接所述车载网关。
  18. 根据权利要求13至17任一项所述的数据采集系统,其特征在于,所述第二ECU设备还包括第五接口;所述存储设备与所述第二ECU设备的所述第五接口连接。
  19. 根据权利要求13至18任一项所述的数据采集系统,其特征在于,所述数据采集系统还包括控制设备,所述控制设备与所述第二ECU设备的所述第二接口连接, 用于控制所述第二ECU设备获取数据或停止获取数据。
  20. 一种数据采集方法,其特征在于,应用于如权利要求13至19任一项所述的数据采集系统;
    所述方法包括:
    所述第二ECU设备接收来自所述摄像头组件的原始图像数据;
    所述第二ECU设备接收来自所述第一ECU设备的第一信号数据;所述第一信号数据为所述第一ECU设备输出的车辆感知信号数据和/或车辆规控信号数据;
    所述第二ECU设备向所述存储设备发送所述原始图像数据和所述第一信号数据。
  21. 根据权利要求20所述的数据采集方法,其特征在于,所述方法还包括:所述第二ECU设备执行来自所述第一ECU设备的时间同步请求;所述时间同步请求用于指示所述第一ECU设备和所述第二ECU设备时间同步。
  22. 根据权利要求21所述的数据采集方法,其特征在于,所述原始图像数据和所述第一信号数据均包括采集时间。
  23. 一种数据采集装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如权利要求20至22中任一项所述的方法。
  24. 一种计算机可读介质,其上存储有计算机程序或指令,其特征在于,所述计算机程序或指令被执行时使得计算机执行如权利要求20至22任一项所述的方法。
PCT/CN2021/090743 2021-04-28 2021-04-28 摄像设备、数据采集系统及方法 WO2022226848A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180001569.8A CN113348421B (zh) 2021-04-28 2021-04-28 摄像设备、数据采集系统及方法
PCT/CN2021/090743 WO2022226848A1 (zh) 2021-04-28 2021-04-28 摄像设备、数据采集系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/090743 WO2022226848A1 (zh) 2021-04-28 2021-04-28 摄像设备、数据采集系统及方法

Publications (1)

Publication Number Publication Date
WO2022226848A1 true WO2022226848A1 (zh) 2022-11-03

Family

ID=77481049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090743 WO2022226848A1 (zh) 2021-04-28 2021-04-28 摄像设备、数据采集系统及方法

Country Status (2)

Country Link
CN (1) CN113348421B (zh)
WO (1) WO2022226848A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117785541A (zh) * 2024-02-27 2024-03-29 荣耀终端有限公司 一种数据处理方法及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109995631A (zh) * 2019-03-21 2019-07-09 东风汽车集团有限公司 具有域控制功能的车载控制系统及方法
US20190291743A1 (en) * 2018-03-23 2019-09-26 Infineon Technologies Ag Advanced driver assistance systems test-interface for automated driving sensors
CN110412374A (zh) * 2019-07-24 2019-11-05 苏州凌创瑞地测控技术有限公司 一种基于多传感器的adas hil测试系统
CN110955976A (zh) * 2019-11-29 2020-04-03 安徽江淮汽车集团股份有限公司 Adas虚拟仿真验证方法及系统
CN111031225A (zh) * 2019-12-31 2020-04-17 北京茵沃汽车科技有限公司 基于PoDL技术的车载以太网高清摄像头装置及系统
CN210518315U (zh) * 2019-09-30 2020-05-12 恒大新能源汽车科技(广东)有限公司 信号收发系统和T-Box
CN112544073A (zh) * 2018-07-31 2021-03-23 索尼半导体解决方案公司 摄像装置以及车辆控制系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104005868B (zh) * 2014-05-07 2016-11-23 潍柴动力股份有限公司 一种喷油提前角补偿方法及系统
CN110296010B (zh) * 2019-06-29 2022-03-01 潍柴动力股份有限公司 一种主从ecu下电控制方法及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190291743A1 (en) * 2018-03-23 2019-09-26 Infineon Technologies Ag Advanced driver assistance systems test-interface for automated driving sensors
CN112544073A (zh) * 2018-07-31 2021-03-23 索尼半导体解决方案公司 摄像装置以及车辆控制系统
CN109995631A (zh) * 2019-03-21 2019-07-09 东风汽车集团有限公司 具有域控制功能的车载控制系统及方法
CN110412374A (zh) * 2019-07-24 2019-11-05 苏州凌创瑞地测控技术有限公司 一种基于多传感器的adas hil测试系统
CN210518315U (zh) * 2019-09-30 2020-05-12 恒大新能源汽车科技(广东)有限公司 信号收发系统和T-Box
CN110955976A (zh) * 2019-11-29 2020-04-03 安徽江淮汽车集团股份有限公司 Adas虚拟仿真验证方法及系统
CN111031225A (zh) * 2019-12-31 2020-04-17 北京茵沃汽车科技有限公司 基于PoDL技术的车载以太网高清摄像头装置及系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117785541A (zh) * 2024-02-27 2024-03-29 荣耀终端有限公司 一种数据处理方法及电子设备

Also Published As

Publication number Publication date
CN113348421A (zh) 2021-09-03
CN113348421B (zh) 2023-02-28

Similar Documents

Publication Publication Date Title
US11377115B2 (en) Method for testing at least one control device function of at least one control device
US11138348B2 (en) Heterogeneous compute architecture hardware/software co-design for autonomous driving
TWI827642B (zh) 在多片上系統環境中共用感測器的裝置、方法和電腦可讀取媒體
CN211956161U (zh) 一种域控制器系统及汽车
CN109327695A (zh) 用于高度现实的虚拟测试驾驶场景的测试驾驶场景数据库系统
EP3757587B1 (en) Flexible test board to improve sensor i/o coverage for autonomous driving platform
US20210356561A1 (en) Time synchronization and latency compensation for emulation test system
WO2020258901A1 (zh) 传感器数据处理方法、装置、电子设备及系统
US10196069B2 (en) Methods and systems of algorithmically controlling automotive functions
CN113484851B (zh) 车载激光雷达的仿真测试系统、方法和整车在环测试系统
KR101802858B1 (ko) 자동차용 통합데이터 처리 제어 시스템 및 방법
WO2022226848A1 (zh) 摄像设备、数据采集系统及方法
CN109506656A (zh) 一种高精度在轨姿态信息下传还原方法
Beglerovic et al. Challenges for the validation and testing of automated driving functions
CN213987262U (zh) 一种adas道路测试数据记录系统
US20210374438A1 (en) Validating object detection hardware and algorithms
Alcon et al. Enabling unit testing of already-integrated AI software systems: The case of apollo for autonomous driving
CN113341922B (zh) 基于lcm的域控制器故障诊断系统
Park et al. An OSGi based in-vehicle gateway platform architecture for improved sensor extensibility and interoperability
Nickel et al. Sensors replace senses-ADAS data acquisition for functional development
Gruyer et al. PerSEE: A central sensors fusion electronic control unit for the development of perception-based ADAS
CN220475795U (zh) 时钟自动同步装置、自动驾驶系统和车辆
CN117728913A (zh) 时间同步的方法、装置、存储介质和车辆
CN116594659B (zh) 一种车载域控制器程序优化系统、方法、装置及车辆
Steiner et al. Improving intelligent vehicle dependability by means of infrastructure-induced tests

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938333

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21938333

Country of ref document: EP

Kind code of ref document: A1