WO2022225324A1 - 로터, 이를 이용한 프로펠러 구동장치 및 항공기 - Google Patents

로터, 이를 이용한 프로펠러 구동장치 및 항공기 Download PDF

Info

Publication number
WO2022225324A1
WO2022225324A1 PCT/KR2022/005647 KR2022005647W WO2022225324A1 WO 2022225324 A1 WO2022225324 A1 WO 2022225324A1 KR 2022005647 W KR2022005647 W KR 2022005647W WO 2022225324 A1 WO2022225324 A1 WO 2022225324A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
stator
propeller
driving device
motor
Prior art date
Application number
PCT/KR2022/005647
Other languages
English (en)
French (fr)
Inventor
이정훈
최승진
Original Assignee
주식회사 아모텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210052897A external-priority patent/KR20220146066A/ko
Priority claimed from KR1020210052898A external-priority patent/KR102681689B1/ko
Application filed by 주식회사 아모텍 filed Critical 주식회사 아모텍
Priority to CN202280029121.1A priority Critical patent/CN117223198A/zh
Priority to EP22792024.6A priority patent/EP4329154A1/en
Priority to US18/286,662 priority patent/US20240204617A1/en
Publication of WO2022225324A1 publication Critical patent/WO2022225324A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/30Aircraft characterised by electric power plants
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • B64D33/08Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of power plant cooling systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/207Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium with openings in the casing specially adapted for ambient air
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/083Structural association with bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/223Heat bridges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a propeller driving device and an aircraft using the same, and more specifically, to realize internal air cooling using an air flow passage formed inside a motor, and to effectively dissipate heat by a water cooling method using a water jacket having a refrigerant circulation circuit. It relates to a rotor, a propeller driving device using the same, and an aircraft.
  • a brushless electric motor typically used in an aircraft includes a stator to which a battery is connected, a rotor, and a case in which a propeller is mounted.
  • an electric motor for aircraft it is characterized by having a high torque because the case itself rotates. Also, a large propeller can be turned directly without a reducer, and the electric motor can be lightened because it does not require accessories such as a reducer.
  • the upper plate of the case is usually provided with a plurality of cooling holes formed by being perforated or cut in a predetermined area. Therefore, when the electric motor is driven, air is introduced into the cooling hole of the case through the air flow due to the rotation of the propeller, thereby cooling the electric motor.
  • Foreign substances such as rainwater, moisture, or dust introduced in this way may act as a cause of an electrical short or fire due to a short circuit.
  • Patent Document 1 Korean Patent Application Laid-Open No. 10-2017-0090037 (Patent Document 1) introduces an opening/closing control means that can open and close the cooling hole of the case formed to cool the electric motor.
  • the opening/closing control means adjusts the opening degree of the cooling hole of the case according to the rotational force of the case during aircraft operation, thereby improving the cooling function of the electric motor.
  • a power transmission device for an aircraft having functions of preventing moisture penetration and preventing overheating that can be effectively implemented.
  • the electric motor of Patent Document 1 has a structure in which a stator (stator) is located in the center of the outer rotor method.
  • a stator stator
  • the front and rear surfaces of the cylindrical case serving as a rotor are provided with cooling holes through which air for air cooling is introduced and discharged.
  • Patent Document 1 introduces an opening/closing control means that can open and close the cooling hole of the case formed to cool the electric motor. Discloses a technology to block the inflow into
  • unmanned aerial vehicles i.e. drones
  • UAVs unmanned aerial vehicles
  • i.e. drones are used in logistics for delivering parcels, as well as monitoring/reconnaissance/search, quarantine/control/spreading, broadcasting/performance, environmental surveying, lifesaving, etc. is being applied in various ways.
  • Patent Document 1 Motors for propeller driving devices, especially BLDC motors, which are used in two-person light airplanes or large drones carrying heavy loads, require a driving motor of several tens of kilowatts.
  • the outer rotor type motor (Patent Document 1) has a limit in effectively cooling a lot of heat generated from the stator.
  • Heat generated from the stator and not radiated to the outside and accumulated therein may shorten the operating life and reduce operating efficiency.
  • a heat dissipating member or a heat dissipating device such as a heat sink or a heat exchanger is used together with a device that generates heat.
  • a heat dissipation member manufactured using a polymer resin exhibits heat dissipation through a heat conductive filler, but a heat conductive filler with excellent heat dissipation performance has electrical conductivity as well. There is a problem that it is very inappropriate to use in an electronic device requiring insulation.
  • the present inventor provides a plurality of through holes between the plurality of bridges connecting the stator, which generates more heat than the rotor, on the outside, and external air cooling through the natural side casing during flight, the upper and lower covers, and the rotor body and the rotating shaft. Formed to realize inner air cooling at the same time, and the problem of electric short due to moisture or foreign substances flowing into the motor due to inner air cooling was found to be able to prevent the occurrence of
  • the present invention has been proposed to solve the problems of the prior art, and its purpose is to effectively cool the rotor and stator by external air cooling and internal air cooling using an inner rotor-outer stator type BLDC motor.
  • An object of the present invention is to provide a propeller driving device and an aircraft using the same.
  • Another object of the present invention is to form a plurality of through-holes in the upper and lower covers and at the same time connect them through a plurality of bridges between the rotor body and the rotating shaft to form a plurality of through-holes so that effective cooling can be achieved by inner air cooling. It is to provide a rotor, a propeller driving device using the same, and an aircraft.
  • Another object of the present invention is to form a plurality of through-holes by connecting through a plurality of bridges between the rotor body and the rotating shaft, so that the rotor and the propeller using the same can be internally air-cooled together with the plurality of through-holes formed in the upper and lower covers. to provide a driving device.
  • Another object of the present invention is to provide a propeller driving device capable of effectively dissipating heat in a water cooling manner by providing a water jacket having a refrigerant circulation circuit through which refrigerant circulation can be made between the outer periphery of the stator core and the casing.
  • Another object of the present invention is to provide a propeller driving device using a stator excellent in heat dissipation effect by forming an insulator (or bobbin) that insulates between a stator core and a coil with an insulating heat dissipation composite material having both heat dissipation performance and insulation performance. .
  • Another object of the present invention is to surround the coil wound on the insulator (or bobbin) of the stator and to insulate between the coil and the coil by insert molding with an insulating heat dissipation composite material having heat dissipation performance and insulation performance at the same time. Accordingly, an object of the present invention is to provide a propeller driving device using a stator that can solve the problem that moisture or foreign substances are introduced into the motor to cause an electric short.
  • Another object of the present invention is to surround the coil wound on the first insulating heat dissipation composite material and the insulator (or bobbin) used to form an insulator (or bobbin) that insulates between the stator core and the coil, and insert an insert to insulate between the coil and the coil.
  • An object of the present invention is to provide a propeller driving device using a stator that maximizes heat dissipation performance by varying the composition of the second insulating heat dissipation composite material covered by the molding method.
  • a rotor for a propeller driving device includes a hollow rotating shaft; a plurality of bridges extending in a radial direction from the rotation axis; an annular rim connected to the distal end of the bridge; an annular back yoke installed on the outside of the rim to form a path of a magnetic circuit; and a plurality of magnets installed on the outside of the back yoke and configured to rotate according to the rotating magnetic field of the stator, wherein the plurality of spaces formed between the plurality of bridges form an air flow passage passing through the motor. do.
  • the rotor for a propeller driving device further includes a rotor support that covers the outer surface except for the outer surface of each magnet facing the shoe portion of the stator core, wherein the rotor support covers the upper and lower portions of the magnet.
  • a rotor support that covers the outer surface except for the outer surface of each magnet facing the shoe portion of the stator core, wherein the rotor support covers the upper and lower portions of the magnet.
  • the rotor further includes a plurality of blades installed on the upper plate and the lower plate of the rotor support to generate a circumferential wind when the rotor rotates, and the circumferential wind collides with an air-cooling air flow passing through the motor. This can create a vortex.
  • a propeller driving device includes: a housing in which an upper cover and a lower cover each having a plurality of through holes in the upper and lower portions of a cylindrical case are coupled to each other; a stator disposed inside the case; a rotor disposed to be spaced apart from the stator; and a rotation shaft connected to the rotor through a plurality of bridges, and both ends of which are rotatably supported by an upper bearing and a lower bearing positioned at the central portions of the upper cover and the lower cover. It is characterized in that the inner air cooling of the motor is made by an air flow passage passing through a plurality of spaces formed between the hole and the plurality of bridges.
  • the rotor may include: a hollow rotating shaft having both ends rotatably supported by an upper bearing and a lower bearing located in the center of the upper cover and the lower cover; a plurality of bridges extending in a radial direction from the rotation axis; an annular rim connected to the distal ends of the plurality of bridges; an annular back yoke installed on the outside of the rim to form a path of a magnetic circuit; and a plurality of magnets installed outside the back yoke to rotate according to the rotating magnetic field of the stator.
  • the propeller driving device further includes a plurality of blades installed on the upper and lower portions of the rotor to generate circumferential wind when the rotor is rotated, wherein the circumferential wind is air in the air flow path passing through the motor. It can collide with the flow and create a vortex.
  • the propeller driving device is disposed between the cylindrical case and the stator, the water jacket having a spiral refrigerant circulation circuit in which refrigerant circulation can be made between the case; may further include.
  • the propeller driving device may further include a propeller installation bracket for mounting the propeller to the rotation shaft.
  • the propeller installation bracket is made in a ring shape with a central through-hole formed in the central portion, and an annular protrusion is disposed on the lower side for coupling with the rotating shaft of the motor in the central through-hole, and the upper end and the upper end of the rotating shaft are accommodated.
  • the bottom surface of the protrusion to be surface-matched may be coupled in a stepped structure so as to hold the torsion during the rotation of the propeller.
  • the stator includes an annular back yoke having a predetermined width to form a magnetic circuit, and a stator core having a plurality of teeth extending from the back yoke in a central direction; an insulator formed to surround an outer circumferential surface on which a coil is to be wound in each of the plurality of teeth; and a stator coil wound around the outer circumferential surface of the insulator at each of the plurality of teeth, wherein the insulator may be formed of an insulating heat dissipation composite material having both heat dissipation performance and insulating performance.
  • the stator further includes a stator support having heat dissipation characteristics while enclosing the stator coil wound on the insulator and insulating between adjacent coils and coils, wherein the stator support is insert-molded with an insulating heat dissipation composite having heat dissipation performance and insulating performance. may be integrally formed.
  • the insulator includes upper and lower insulators enclosing an outer circumferential surface on which a coil is to be wound by 1/2 at each of the teeth, wherein the upper and lower insulators include an annular base frame each having a predetermined width; and a plurality of tooth accommodating parts protruding from the base frame and accommodating 1/2 of the winding area of the teeth from the upper part and the lower part.
  • a propeller driving device includes: a radial gap type BLDC motor of an inner rotor-outer stator structure in which a rotor is circumferentially disposed with an air gap inside a stator; and a propeller installation bracket for mounting the propeller to the rotation shaft of the motor, wherein the motor includes a stator, a rotor and a rotation shaft sequentially inside a housing in which an upper cover and a lower cover are respectively coupled to the upper and lower portions of a cylindrical case is disposed, and penetrates in the axial direction of the motor through a plurality of through holes provided in the upper cover, a plurality of spaces formed between a plurality of bridges connecting the rotary shaft and the rotor, and a plurality of through holes provided in the lower cover It is characterized in that it has an air flow passage.
  • the propeller driving device may further include a water jacket disposed between the cylindrical case and the stator and having a spiral refrigerant circulation circuit in which refrigerant circulation can be made between the case and the water jacket.
  • An aircraft includes a fuselage; a control box disposed at the front end of the fuselage; and a propeller driving device installed at intervals on the front surface of the control box and driving a propeller, wherein the propeller driving device includes an upper cover and a lower cover each having a plurality of through holes in the upper and lower portions of the cylindrical case, respectively.
  • the propeller driving device includes an upper cover and a lower cover each having a plurality of through holes in the upper and lower portions of the cylindrical case, respectively.
  • combined housing ; a stator disposed inside the case; a rotor disposed to be spaced apart from the stator; and a rotation shaft connected to the rotor through a plurality of bridges, and both ends of which are rotatably supported by an upper bearing and a lower bearing positioned at the central portions of the upper cover and the lower cover.
  • the inner air cooling of the motor is made by an air flow passage passing through a plurality of spaces formed between the hole and the plurality of bridges.
  • an inner rotor-outer stator type BLDC motor is used, and effective cooling can be achieved by external air cooling and internal air cooling of the rotor and stator.
  • a plurality of through holes are formed in the upper and lower covers, and at the same time, a plurality of through holes are formed by connecting through a plurality of bridges between the rotor body and the rotating shaft, so that effective cooling can be achieved by inner air cooling.
  • effective heat dissipation can be achieved in a water cooling manner by providing a water jacket having a refrigerant circulation circuit capable of circulating refrigerant between the outer periphery of the stator core and the casing.
  • the insulator (or bobbin) that insulates between the stator core and the coil is formed of an insulating heat dissipation composite material having both heat dissipation performance and insulation performance, so that it has an excellent heat dissipation effect, thereby improving motor efficiency. Furthermore, by forming an insulator (or bobbin) with an insulating heat dissipation composite material, it is possible to provide an aviation motor with guaranteed mechanical strength such as tensile strength and flexural modulus capable of supporting external forces as well as heat dissipation performance and insulating performance.
  • the stator is formed to cover all parts exposed to the outside except for the shoe part of the stator core facing the magnet of the rotor.
  • a plurality of through-holes are formed by connecting through a plurality of bridges between the rotor body and the rotating shaft to provide a rotor capable of inner air cooling together with a plurality of through-holes formed in the upper and lower covers.
  • the first insulating heat dissipation composite material used to form an insulator (or bobbin) that insulates between the stator core and the coil and the coil wound on the insulator (or bobbin) is surrounded by an insert molding method to insulate between the coil and the coil.
  • the heat dissipation performance can be maximized by varying the composition of the second insulating heat dissipation composite to be coated.
  • FIG. 1 is a perspective view showing a propeller light aircraft to which a propeller driving device according to the present invention is applied.
  • FIG. 2A and 2B are a plan view showing a propeller driving device according to the present invention, respectively, and a cross-sectional view taken along line A-A of FIG. 2A.
  • FIG. 3 is a partially cut-away perspective view of a propeller driving device according to the present invention.
  • FIG. 4 is an exploded perspective view of a propeller driving device according to the present invention.
  • FIG. 5 is an exploded perspective view of the rotor of the propeller driving device according to the present invention.
  • FIG. 6 is an exploded perspective view of the stator of the propeller driving device according to the present invention.
  • FIG. 7 is a graph showing the temperature for each phase U, V, and W of an embodiment in which an insulator (or bobbin) is formed of an insulating heat dissipation composite according to the present invention and a comparative example in which a heat dissipation plastic is not applied.
  • the propeller driving device according to the present invention can be applied to, for example, a two-person light aircraft or a large drone carrying a heavy load.
  • an inner rotor-outer stator type BLDC motor in which a stator generating a lot of heat is disposed on the outside of the rotor is employed, and it will be described as an example applied to the propeller driving of a light aircraft.
  • the rotation shaft of the propeller driving device may be applied to a case in which it is disposed in a horizontal direction or a case where it is disposed in a vertical direction.
  • a reducer may be coupled to the output of the motor to increase the torque.
  • FIGS. 2A and 2B are a plan view showing a propeller driving device according to the present invention, respectively, and a cross-sectional view taken along line A-A of FIG. 2A.
  • the propeller driving device 10 is installed at intervals in front of the control box 220 disposed at the front end of the fuselage 210 of the light aircraft 200, and the propeller at the front end of the rotating shaft. 70 is coupled to rotationally drive the propeller 70 , and the rotation shaft of the propeller driving device 10 is disposed in the horizontal direction.
  • the control box 220 may include a controller for controlling various electronic devices for controlling the operation of the light aircraft 200 and a motor driving device for driving the BLDC motor 100 provided in the propeller driving device 10 . .
  • FIG. 1 shows a state in which the body cover in which the air intake hole is formed on the lower side of the front end while covering the outside of the propeller driving device 10 and the control box 220 between the propeller 70 and the body 210 is omitted.
  • the propeller driving device 10 is not limited to the light aircraft 200 and may be applied to a drone driving a single propeller as well as a multicopter-type drone driving a plurality of propellers, respectively.
  • the propeller driving device 10 is a single rotor-single stator type motor 100 and a propeller 70 on the rotation shaft 50 of the motor 100. It may include a propeller installation bracket 20 for.
  • the propeller mounting bracket 20 is largely ring-shaped, and a central through hole 21 having a large diameter is formed in the central portion. Further, a plurality of large-diameter peripheral through-holes 23 and a plurality of small-diameter peripheral through-holes 24 are arranged on the same circumference around the central through-hole 21 . The plurality of large-diameter peripheral through-holes 23 and a plurality of small-diameter peripheral through-holes 24 are arranged for weight loss to reduce weight.
  • the rotating shaft 50 of the motor is sufficient to transmit the powerful rotating force of the rotor to the propeller 70 . It has a large diameter to have durability and is made in the form of a hollow part 50a in the center for weight reduction, and the outer diameter of the hollow part 50a is set to a size corresponding to the central through hole 21 of the propeller installation bracket 20 do.
  • annular protrusion 25 is disposed on the lower side for coupling with the rotation shaft 50 of the motor 100 .
  • a plurality of screw-fastening through-holes for fastening and fixing a plurality of fixing screws 22 to the rotating shaft 50 of the motor 100 are formed in the annular protrusion 25 .
  • the upper end 50b of the rotation shaft 50 and the bottom surface of the annular protrusion 25 that receive and are surface-coupled thereto are coupled in a stepped structure.
  • the step structure coupling between the upper end 50b of the rotating shaft 50 and the bottom surface of the protrusion 25 is to catch the torsion generated when the propeller 70 rotates.
  • the single rotor-single stator type motor 100 includes a cylindrical case 12 , and an upper cover 16 and a lower cover 18 coupled to upper and lower portions of the cylindrical case 12 , respectively.
  • the cylindrical case 12 , the upper cover 16 , and the lower cover 18 serve as a housing of the motor 100 .
  • a water jacket 46 , a stator 40 , a rotor 30 , and a rotating shaft 50 are sequentially disposed inside the cylindrical case 12 to cool the motor 100 in a water-cooling manner.
  • the rotating shaft 50 is rotatably supported by an upper bearing 51 and a lower bearing 52 installed in upper and lower bearing housings 16c and 18c located in the center of the upper cover 16 and the lower cover 18, respectively.
  • the upper bearing 51 is used, for example, a double-row angular ball bearing capable of supporting a radial load and one large axial load at the same time
  • the lower bearing 52 is a single row angular ball bearing.
  • the water jacket 46 has a helical protrusion 46a formed on the outer periphery of the cylindrical body to form a helical passage, and the helical protrusion 46a is in contact with the inner surface of the cylindrical case 12 .
  • a spiral passage 46b through which a refrigerant for cooling the motor 100 in a water cooling manner is circulated may be formed between the spiral protrusions 46a.
  • the refrigerant may be water or aircraft cooling oil.
  • O-rings 48a and 48b for sealing are respectively inserted between the upper and lower portions of the water jacket 46 with the cylindrical case 12, thereby preventing leakage of the spiral passage 46b.
  • a plurality of through-holes 16e and 18e serving as air-cooling air flow passages are formed in the upper cover 16 and the lower cover 18 .
  • the upper cover 16 and the lower cover 18 have a space between the upper and lower bearing housings 16c and 18c, which are located inside and serve as a hub, and the outer rings 16a and 18a disposed on the outside.
  • a plurality of bridges (16d, 16d; 18d) extends radially. Accordingly, a plurality of through holes 16e and 18e are formed between the upper and lower bearing housings 16c and 18c, the intermediate rings 16b and 18b, the outer rings 16a and 18a and the plurality of bridges 16d and 18d. has been
  • the intermediate rings 16b and 18b may be omitted or added as necessary for strength reinforcement, and a network for forming a plurality of through holes 16e and 18e formed in the upper cover 16 and the lower cover 18 .
  • the structure may be changed differently.
  • the plurality of through-holes 16e and 18e introduces relatively low-temperature external air into the motor 100 from the outside, and then heat-exchanges with the heat generated from the stator 40, followed by air-cooling air discharged to the outside of the motor. form a flow path.
  • the motor 100 has an inner rotor structure in which the rotor 30 is disposed inside the stator 40 .
  • the motor 100 constitutes a radial gap type electric motor in which the rotor 30 is concentrically disposed inside the stator 40 .
  • a plurality of bridges 34 extend radially from a hollow rotation shaft 50 disposed in the central portion, and distal ends of the plurality of bridges 34 . is connected to the annular rim (rim) (33).
  • annular hub 35 is reinforced for strength reinforcement in the connection portion between the plurality of bridges 34 and the rotation shaft 50 .
  • the rotating shaft 50 and the annular rim 33 connected through the plurality of bridges 34 are integrally formed, and a metal material capable of providing strength while being lightweight, for example, an aluminum alloy or duralumin, etc. can be made with
  • a back yoke 31 serving as a magnetic circuit is coupled to the outer periphery of the annular rim 33 in a sliding manner.
  • a plurality of engaging grooves 33a are formed on the outer periphery of the rim 33
  • a plurality of engaging projections 31b coupled to the plurality of engaging grooves 33a protrude on the inner periphery of the back yoke 31 .
  • the back yoke 31 may be made of an electrical steel sheet (silicon steel sheet) to form a magnetic circuit together with a plurality of magnets 32 attached to the outer surface, and a plurality of magnets 32 attached to the outer surface. of the coupling protrusion 31a protrudes.
  • the plurality of coupling protrusions 31a of the back yoke 31 support while receiving the magnet 32 between two adjacent coupling protrusions 31a in a sliding coupling manner.
  • the shape of the magnet 32 is formed in a trapezoidal shape, and the space formed between the two coupling protrusions 31a has a longer inner width so that the trapezoidal magnet 32 is coupled.
  • the plurality of magnets 32 are made of permanent magnets, and a plurality of N-pole and S-pole magnets are alternately arranged.
  • the rotor support 36 is coupled thereto.
  • the rotor support 36 is disposed between the annular upper plate 36a and the lower plate 36b covering the upper and lower portions of the magnet 32, and the magnet 32 and the magnet 32, while both ends of the upper plate 36a ) and a plurality of connecting portions 36c connected to the lower plate 36b. Accordingly, the rotor support 36 covers the outer surface except for the outer surface of each magnet 32 facing the shoe portion of the stator core.
  • a plurality of blades 37a and 37b protrude from the upper plate 36a and the lower plate 36b to cool the stator 40 by generating wind when the rotor 30 rotates, respectively.
  • the shape of the plurality of blades 37a and 37b may be a linear shape, a round shape, or the like.
  • the wind generated by the plurality of blades 37a and 37b according to the rotation of the rotor 30 follows the circumferential direction, and the circumferential wind blows through the plurality of through holes 16e of the upper cover 16, the plurality of A vortex is generated by colliding with an air-cooling air stream passing through a plurality of spaces 33c formed between the bridges 34 and a plurality of through-holes 18e formed in the lower cover 18 .
  • the vortex generated in this way reaches the inner corners of the motor 100 so that heat exchange with the stator 40 that generates the greatest heat can be effectively performed.
  • the upper plate 36a and the lower plate 36b are provided with protrusions having a plurality of through holes 36d formed therein for coupling with the back yoke 31, and a plurality of coupling holes ( 33b) is formed so that it can be fastened with a set screw or the like.
  • the rotor 30 is connected between the rotation shaft 50 and an annular rim 33 through a plurality of bridges 34 .
  • the plurality of spaces 33c formed between the plurality of bridges 34 move from the outside of the motor to the inside through the plurality of through holes 16e and 18e provided in the upper cover 16 and the lower cover 18 .
  • the introduced relatively low temperature outside air forms a flow path for the air discharged to the outside of the motor.
  • the stator 40 has an annular back yoke 41a having a predetermined width to form a magnetic circuit and a plurality of teeth 41b from the back yoke 41a, as shown in FIGS. 2A to 4 and 6 . ) of the stator core 41 extending radially inward, and the insulator (or bobbin) 42a and 42b of an insulating material integrally formed to surround the outer circumferential surface around which each coil of the teeth 41b is to be wound, and the A stator coil 43 wound around the outer peripheral surface of the insulators 42a and 42b of each of the plurality of teeth 41b is included.
  • Each of the plurality of teeth 41b is formed in a "T" shape, and a coil 43 is wound between a shoe portion opposite to the magnet 32 of the rotor 30 and an annular back yoke 41a. It has a winding area.
  • the insulators (or bobbins) 42a and 42b are pre-fabricated as upper and lower insulators 42a and 42b, and then assembled to the stator core 41 or integrally formed by insert molding with insulating plastic (resin). can
  • the upper and lower insulators 42a and 42b are provided on an annular base frame 420 each having a predetermined width, with the exception of a shoe portion facing the magnet 32 of the rotor 30 and teeth 41b. ), a plurality of tooth accommodating portions 422 accommodating the winding region by 1/2 at the upper and lower portions protrude at intervals.
  • the upper and lower insulators 42a and 42b may be preferably formed of an insulating heat dissipation composite material having both heat dissipation performance and insulation performance.
  • insulation performance of at least 10Kv or more so as to be safe from lightning strikes, and thermal conductivity is preferably 3W/mK or more in consideration of heat dissipation characteristics.
  • the insulating heat dissipation composite material used in the present invention has a continuous use temperature of 150 ° C. or higher, and an insulating heat dissipation filler composed of a polymer matrix acting as a binder, a ceramic added and dispersed to improve thermal conductivity, and strength reinforcement. It contains added reinforcing fibers.
  • the polymer matrix is polyamide, polyester, polyketone, liquid crystal polymer, polyolefin, polyphenylene sulfide (PPS), polyether ether ketone (PEEK), polyphenylene oxide (PPO), polyether sulfone (PES), poly It may include one kind of compound selected from the group consisting of etherimide (PEI) and polyimide, or a mixture or copolymer of two or more kinds.
  • PPS polyphenylene sulfide
  • PEEK polyether ether ketone
  • PPO polyphenylene oxide
  • PES polyether sulfone
  • poly It may include one kind of compound selected from the group consisting of etherimide (PEI) and polyimide, or a mixture or copolymer of two or more kinds.
  • the polymer matrix preferably has a continuous use temperature of 150° C. or higher, and for example, polyphenylene sulfide (PPS) may be used.
  • PPS polyphenylene sulfide
  • the insulating heat dissipation filler may be provided in an amount of 75 to 100 parts by weight based on 100 parts by weight of the polymer matrix.
  • the insulating heat dissipation filler is selected from the group consisting of magnesium oxide, talc, titanium dioxide, aluminum nitride, silicon nitride, boron nitride, aluminum oxide, silica, zinc oxide, barium titanate, strontium titanate, beryllium oxide, silicon carbide and manganese oxide. It may include one or more species.
  • the insulating heat dissipation filler may have an average particle diameter of 10 nm to 600 ⁇ m.
  • the reinforcing fiber may be provided in an amount of about 30 parts by weight based on 100 parts by weight of the polymer matrix, for example, glass fiber or the like may be used.
  • the insulating composite may further include at least one additive selected from the group consisting of a dispersant, an antioxidant, a work improving agent, a coupling agent, a stabilizer, a flame retardant, a pigment, and an impact modifier.
  • the inner rotor-outer stator type BLDC motor 100 applied to the propeller driving device 10 of the present invention includes a single rotor 30 and a single stator 40 .
  • a three-phase (U, V, W) coil 43 is wound on the teeth 41b of the stator core 41, and the three-phase (U, V, W) It is connected through a cable 45 to apply a driving signal to the coil 43 .
  • FIG. 7 is a graph showing the temperature for each phase U, V, and W of an embodiment in which an insulator (or bobbin) is formed of an insulating heat dissipation composite according to the present invention and a comparative example in which a heat dissipation plastic is not applied.
  • an insulator or bobbin
  • an insulating heat dissipation composite material By forming an insulator (or bobbin) with an insulating heat dissipation composite material, it is possible to provide an aviation motor in which mechanical strength such as tensile strength and flexural modulus capable of supporting external forces as well as heat dissipation performance and insulating performance is guaranteed.
  • an insulating heat dissipation composite material having both heat dissipation performance and insulation performance to insulate the adjacent coil and coil while surrounding the coil 43 wound on the insulator (or bobbin) 42a, 42b of the stator 40. It includes an insert-molded stator support 44 for heat dissipation.
  • stator support 44 which is insert-molded with the insulating heat dissipation composite, includes all parts exposed to the outside except for the shoe part of the stator core 41 facing the magnet 32 of the rotor 30. formed to cover.
  • the radially outer surface of the heat dissipation stator support 44 is in contact with the water jacket 46 . Therefore, when heat is generated from the coil 43 of the stator 40, the heat is conducted to the stator support 44 for heat dissipation, and then heat exchange is made with the water jacket 46 which is cooled by a water cooling method. Heat dissipation can be achieved.
  • the inner rotor-outer stator type BLDC motor 100 is used to effectively cool the rotor 30 and the stator 40 by external air cooling and internal air cooling. can be done
  • a plurality of cooling through-holes 16e and 18e are formed in the upper and lower covers 16 and 18, and an annular rim 33 and a rotating shaft supporting the body of the rotor at the same time
  • an air flow passage passing through the inside of the motor is formed by forming a plurality of spaces 33c between the plurality of bridges 34 .
  • the internal air cooling of the motor may be performed by the flow of air discharged to the outside of the motor.
  • effective heat dissipation can be achieved in a water cooling manner by providing a water jacket 46 having a refrigerant circulation circuit through which refrigerant circulation can be made between the outer periphery of the stator core 41 and the casing 12 .
  • the insulator (or bobbin) 42a, 42b that insulates between the stator core 41 and the coil 43 is formed of an insulating heat dissipation composite material having both heat dissipation performance and insulation performance, so that there is an excellent heat dissipation effect. Motor efficiency can be improved.
  • the insulator (or bobbin) 42a, 42b with an insulating heat dissipation composite material it is possible to provide an aviation motor with guaranteed mechanical strength such as tensile strength and flexural modulus that can support external forces as well as heat dissipation and insulation performance. can
  • an insulating heat dissipation composite material having both heat dissipation performance and insulation performance to insulate the adjacent coils and coils while surrounding the coil 43 wound on the insulator (or bobbin) 42a, 42b of the stator for insert molding and heat dissipation
  • a stator support body 44 is provided.
  • the heat dissipation stator support 44 covers all parts exposed to the outside except for the shoe part of the stator core 41 facing the magnet 32 of the rotor 30 . That is, waterproof molding is performed except for the magnet 32 of the rotor and the shoe portion of the stator core 41 that forms the magnetic circuit path.
  • the present invention exemplifies that the propeller driving device rotates and drives the propeller of the light aircraft, but a single propeller driving device is installed in the drone body or a plurality of propeller driving devices are installed on a plurality of arms extending from the drone body It can be applied to installed multicopter type drones.
  • the rotational shaft of the motor exemplifies rotation of the propeller of the light aircraft exposed to the outside, but it can be changed to a drone having a fan structure in which a propeller or a blade is built in a cylindrical casing.
  • the present invention provides a variety of logistics fields, monitoring/reconnaissance/search, quarantine/control/spreading, broadcasting/performance, environmental surveying, structure, etc., in which a distribution box for delivering parcels is detachably provided on the lower part of the drone body. It can be changed in various ways for the purpose.
  • the present invention uses a single rotor-single stator type large BLDC motor of several tens of kilowatts to realize inner air cooling using an air flow passage formed inside the motor, and effectively dissipate heat in a water cooling method using a water jacket having a refrigerant circulation circuit.
  • This relates to a propeller driving device that can be made, and can be applied to a light aircraft or a drone.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

본 발명은 모터 내부에 형성된 공기흐름통로를 이용하여 내측 공냉을 실현하면서 냉매순환회로를 갖는 워터 자켓을 이용하여 수냉방식으로 효과적인 방열이 이루어질 수 있는 로터, 이를 이용한 프로펠러 구동장치 및 항공기에 관한 것이다. 상기 프로펠러 구동장치는 원통형 케이스의 상부와 하부에 각각 복수의 관통구멍을 갖는 상부 커버와 하부 커버가 각각 결합된 하우징; 상기 케이스의 내측에 배치된 스테이터; 상기 스테이터와 간격을 두고 배치된 로터; 및 상기 로터와 복수의 브릿지를 통하여 연결되고, 양단부가 상부 커버와 하부 커버의 중앙부에 위치한 상부 베어링과 하부 베어링에 회전 가능하게 지지되는 회전축;을 포함하며, 상기 상부 커버와 하부 커버의 복수의 관통구멍과 상기 복수의 브릿지 사이에 형성된 복수의 공간을 통과하는 공기흐름통로에 의해 모터의 내측 공냉이 이루어지는 것을 특징으로 한다.

Description

로터, 이를 이용한 프로펠러 구동장치 및 항공기
본 발명은 프로펠러 구동장치 및 이를 이용한 항공기에 관한 것이며, 보다 구체적으로는 모터 내부에 형성된 공기흐름통로를 이용하여 내측 공냉을 실현하면서 냉매순환회로를 갖는 워터 자켓을 이용하여 수냉방식으로 효과적인 방열이 이루어질 수 있는 로터, 이를 이용한 프로펠러 구동장치 및 항공기에 관한 것이다.
통상적으로 항공기에 사용되는 브러시리스 전동모터는 배터리가 연결되는 고정자와, 회전자를 포함하고, 프로펠러가 장착되는 케이스로 구성된다.
이 경우 항공기용 전동모터의 경우에는 케이스가 회전자 역할을 하기 때문에 케이스 자체가 회전하여 프로펠러를 회전시킴으로써 항공기의 추진력을 생성하게 된다.
또한 항공기용 전동모터의 경우 케이스 자체가 회전을 하기 때문에 높은 토크를 가지는 것이 특징이고, 또한 감속기 없이도 대형 프로펠러를 직접 돌릴 수 있으며, 감속기와 같은 부속품이 필요 없기 때문에 전동모터를 경량화할 수 있게 된다.
다만 전동모터의 경우에는 케이스 자체가 회전자로서 회전하기 때문에 케이스 내부에 배치된 고정자로부터 많은 열이 발생하게 되는데, 이 경우 항공기의 속도가 빠르면 공기의 흐름에 의하여 전동모터가 냉각되지만, 정지비행을 주로 하는 헬기의 경우에는 공기흐름이 거의 없어 전동모터가 과열되기 때문에 전동모터를 냉각시킬 필요가 있다.
이를 위해 항공기에 사용되는 전동모터의 경우 통상적으로 케이스의 상판은 뚫려 있거나, 또는 일정한 면적으로 절개되어 형성된 다수의 냉각홀이 구비된다. 따라서 전동모터가 구동되는 경우 프로펠러의 회전에 의한 공기 유동을 통하여 케이스의 냉각홀로 공기가 유입됨으로써 전동모터의 냉각이 이루어진다.
그러나 전동모터가 구동되어 케이스가 일정한 속도로 회전하는 경우에는 비나 습기, 기타 이물질 등은 케이스의 회전력에 의하여 유입될 염려가 없으나, 항공기가 정지하여 외부에 위치하는 경우 케이스의 냉각홀로 빗물이나 습기, 또는 먼지 등과 같은 이물질이 유입될 수 있다.
이렇게 유입된 빗물이나, 습기 또는 먼지 등과 같은 이물질은 합선으로 인한 전기적인 쇼트나 화재의 발생 원인으로 작용할 수 있다.
따라서 이러한 문제를 해결하기 위해 종래에는 비닐 등과 같은 방수포로 전동모터를 덮는 등의 조치를 취하였지만, 이러한 조치는 임시방편적이고, 번거롭기 때문에 근본적인 문제의 해결 방안이 되지 못한다.
한국공개특허공보 제10-2017-0090037호(특허문헌 1)에는 전동모터를 냉각시키기 위해 형성된 케이스의 냉각홀을 열고 닫을 수 있는 개폐조절수단을 도입하여 항공기의 정지 시에는 개폐조절수단이 케이스의 냉각홀을 자동으로 닫아 습기나 이물질이 전동모터 내부로 유입되는 것을 차단할 뿐만 아니라, 항공기의 운항 시에는 케이스의 회전력에 따라 개폐조절수단이 케이스의 냉각홀의 개도량을 조절함으로써 전동모터의 냉각기능을 효과적으로 구현할 수 있는 습기침투방지 및 과열방지 기능이 구비된 항공기용 동력전달장치가 개시되어 있다.
일반적으로 전동모터는 로터보다 모터구동전류가 코일로 인가되는 스테이터에서 더 많은 열이 발생되고, 이렇게 발생된 열은 전동모터의 외부로 배출되지 못하는 경우 모터의 효율과 수명을 떨어트리는 요인으로 작용할 수 있다.
상기 특허문헌 1의 전동모터는 아우터 로터 방식으로 중앙부에 스테이터(고정자)가 위치한 구조를 가지고 있다. 특허문헌 1에서는 로터 역할을 하는 원통형 케이스의 전면과 후면에 공냉용 바람이 유입되어 배출되는 냉각홀을 구비하고 있다.
특허문헌 1은 전동모터를 냉각시키기 위해 형성된 케이스의 냉각홀을 열고 닫을 수 있는 개폐조절수단을 도입하여 항공기의 정지 시에는 개폐조절수단이 케이스의 냉각홀을 자동으로 닫아 습기나 이물질이 전동모터 내부로 유입되는 것을 차단하는 기술을 개시하고 있다.
한편, 무인항공기(UAV; Unmanned Aerial Vehicle), 즉 드론은 택배 물품을 배송하는 물류 분야를 비롯하여, 감시/정찰/수색, 방역/방제/살포, 방송/공연, 환경 측량, 인명 구조 등의 다양한 용도로 다양하게 적용되고 있다.
2인용 경비행기나 고중량 부하를 운반하는 대형 드론 등에 채용되고 있는 프로펠러 구동장치용 모터, 특히 BLDC 모터는 수십 Kw급의 구동모터가 요구되고 있으며, 이 경우 코일이 코어에 권선된 스테이터가 내측에 배치된 아우터 로터 방식의 모터(특허문헌 1)는 스테이터로부터 발생되는 많은 열을 효과적으로 냉각시키는 데 한계가 있다.
상기 스테이터로부터 발생되어 외부로 방열되지 못하고 내부에 축적된 열은 작동 수명을 단축하고, 작동 효율을 감소시킬 수 있다. 이를 방지하기 위하여 히트싱크(heat sink), 열 교환기와 같은 방열부재나 방열장치가 발열이 있는 장치에 함께 사용이 되고 있다.
이에 최근에는 사출 성형이나 압출 가능한 고분자 수지를 이용하여 제조되는 방열부재가 제안되고 있으며, 고분자 수지 자체의 재질적 특성으로 인한 경량성, 저렴한 단가 등의 이점으로 인하여 많은 연구가 계속되고 있다.
그러나, 고분자수지를 이용하여 제조된 방열부재는 열전도성 필러를 통해 방열성은 발현하는데, 통상적으로 방열성능이 우수한 열전도성 필러는 전기전도성도 함께 갖기에 이로 구현된 방열부재가 전기전도성을 발현함에 따라서 절연성이 요구되는 전자장치에 사용이 매우 부적절한 문제가 있다.
특히, 항공용 모터인 경우 낙뢰를 피할 수 있는 절연성능을 갖는 것이 요구된다.
또한, AC 모터인 경우 BLDC 모터보다 더 큰 부피와 중량이 나가므로 항공용 모터로는 적합하지 못하다.
본 발명자는 로터보다 열발생이 많은 스테이터를 외측에 배치하면서 비행 중에는 자연스로운 측면 케이싱을 통하여 외측 공냉과, 상부와 하부 커버 및 로터 본체와 회전축 사이를 연결하는 복수의 브릿지 사이에 복수의 관통구멍을 형성하여 내측 공냉을 동시에 실현하고, 내측 공냉에 따라 습기나 이물질이 모터 내부로 유입되어 전기적인 쇼트가 발생하는 문제는 절연성 방열복합재를 사용한 인서트 몰딩에 의해 스테이터를 분리 차단함에 의해 전기적인 쇼트나 화재의 발생을 막을 수 있다는 점을 발견하였다.
따라서, 본 발명은 상기한 종래기술의 문제점을 해결하고자 제안된 것으로, 그 목적은 인너 로터-아우터 스테이터 방식의 BLDC 모터를 이용하여 로터와 스테이터에 외측 공냉과 내측 공냉에 의해 효과적인 냉각이 이루어질 수 있는 프로펠러 구동장치 및 이를 이용한 항공기를 제공하는 데 있다.
본 발명의 다른 목적은 상부와 하부 커버에 복수의 관통구멍을 형성하고 이와 동시에 로터 본체와 회전축 사이에 복수의 브릿지를 통하여 연결함에 의해 복수의 관통구멍을 형성하여 내측 공냉에 의해 효과적인 냉각이 이루어질 수 있는 로터, 이를 이용한 프로펠러 구동장치 및 항공기를 제공하는 데 있다.
본 발명의 다른 목적은 로터 본체와 회전축 사이에 복수의 브릿지를 통하여 연결함에 의해 복수의 관통구멍을 형성하여 상부와 하부 커버에 형성된 복수의 관통구멍과 함께 내측 공냉이 이루어질 수 있는 로터 및 이를 이용한 프로펠러 구동장치를 제공하는 데 있다.
본 발명의 또 다른 목적은 스테이터 코어의 외주부와 케이싱 사이에 냉매 순환이 이루어질 수 있는 냉매순환회로를 갖는 워터 자켓을 구비함에 의해 수냉방식으로 효과적인 방열이 이루어질 수 있는 프로펠러 구동장치를 제공하는 데 있다.
본 발명의 다른 목적은 스테이터 코어와 코일 사이를 절연하는 인슐레이터(또는 보빈)를 방열성능 및 절연성능을 동시에 갖는 절연성 방열복합재로 형성함에 따라 방열 효과가 우수한 스테이터를 이용한 프로펠러 구동장치를 제공하는 데 있다.
본 발명의 또 다른 목적은 스테이터의 인슐레이터(또는 보빈)에 권선된 코일을 둘러싸면서 코일과 코일 사이를 절연하도록 방열성능 및 절연성능을 동시에 갖는 절연성 방열복합재로 인서트 몰딩함에 따라 방열 효과와 함께 내측 공냉에 따라 습기나 이물질이 모터 내부로 유입되어 전기적인 쇼트가 발생하는 문제를 해결할 수 있는 스테이터를 이용한 프로펠러 구동장치를 제공하는 데 있다.
본 발명의 다른 목적은 스테이터 코어와 코일 사이를 절연하는 인슐레이터(또는 보빈)의 형성에 사용되는 제1절연성 방열복합재와 인슐레이터(또는 보빈)에 권선된 코일을 둘러싸면서 코일과 코일 사이를 절연하도록 인서트 몰딩방식으로 피복되는 제2절연성 방열복합재의 조성을 달리하여 방열성능을 극대화시킨 스테이터를 이용한 프로펠러 구동장치를 제공하는 데 있다.
상기한 목적을 달성하기 위하여, 본 발명의 일 실시예에 따른 프로펠러 구동장치용 로터는 중공형 회전축; 상기 회전축으로부터 방사방향으로 연장된 복수의 브릿지; 상기 브릿지의 선단부에 연결된 환형 림; 상기 림의 외측에 설치되어 자기회로의 경로를 형성하는 환형 백요크; 및 상기 백요크의 외측에 설치되어 스테이터의 회전자기장에 따라 회전이 이루어지는 복수의 마그넷;을 포함하며, 상기 복수의 브릿지 사이에 형성된 복수의 공간은 모터를 관통하는 공기흐름통로를 형성하는 것을 특징으로 한다.
본 발명에 따른 프로펠러 구동장치용 로터는 스테이터 코어의 슈 부분과 대향하는 각 마그넷의 외표면을 제외하고 외측면을 커버는 로터지지체를 더 포함하며, 상기 로터지지체는 상기 마그넷의 상부와 하부를 커버하는 환형의 상부판과 하부판; 및 상기 마그넷과 마그넷 사이에 배치되면서 양단부가 상부판과 하부판에 연결되는 복수의 연결부;를 포함할 수 있다.
또한, 상기 로터는 상기 로터지지체의 상부판과 하부판에 설치되어 로터의 회전시에 원주 방향 바람을 발생시키는 복수의 블레이드를 더 포함하며, 상기 원주 방향 바람은 모터를 관통하는 공냉용 공기흐름과 충돌하여 와류를 발생시킬 수 있다.
본 발명의 일 실시예에 따른 프로펠러 구동장치는 원통형 케이스의 상부와 하부에 각각 복수의 관통구멍을 갖는 상부 커버와 하부 커버가 각각 결합된 하우징; 상기 케이스의 내측에 배치된 스테이터; 상기 스테이터와 간격을 두고 배치된 로터; 및 상기 로터와 복수의 브릿지를 통하여 연결되고, 양단부가 상부 커버와 하부 커버의 중앙부에 위치한 상부 베어링과 하부 베어링에 회전 가능하게 지지되는 회전축;을 포함하며, 상기 상부 커버와 하부 커버의 복수의 관통구멍과 상기 복수의 브릿지 사이에 형성된 복수의 공간을 통과하는 공기흐름통로에 의해 모터의 내측 공냉이 이루어지는 것을 특징으로 한다.
이 경우, 상기 로터는 양단부가 상부 커버와 하부 커버의 중앙부에 위치한 상부 베어링과 하부 베어링에 회전 가능하게 지지되는 중공형 회전축; 상기 회전축으로부터 방사방향으로 연장된 복수의 브릿지; 상기 복수의 브릿지의 선단부에 연결된 환형 림; 상기 림의 외측에 설치되어 자기회로의 경로를 형성하는 환형 백요크; 및 상기 백요크의 외측에 설치되어 스테이터의 회전자기장에 따라 회전이 이루어지는 복수의 마그넷;을 포함할 수 있다.
본 발명에 따른 프로펠러 구동장치는 상기 로터의 상부와 하부에 설치되어 로터의 회전시에 원주 방향 바람을 발생시키는 복수의 블레이드를 더 포함하며, 상기 원주 방향 바람은 모터를 관통하는 공기흐름통로의 공기흐름과 충돌하여 와류를 발생시킬 수 있다.
또한, 본 발명에 따른 프로펠러 구동장치는 상기 원통형 케이스와 스테이터 사이에 배치되며 케이스와의 사이에 냉매 순환이 이루어질 수 있는 나선형의 냉매순환회로를 갖는 워터 자켓;을 더 포함할 수 있다.
더욱이, 본 발명에 따른 프로펠러 구동장치는 상기 회전축에 프로펠러를 장착하기 위한 프로펠러 설치 브라켓;을 더 포함할 수 있다.
상기 프로펠러 설치 브라켓은 중앙부에 중앙관통구멍이 형성된 링 형상으로 이루어지고, 상기 중앙관통구멍에는 모터의 회전축과 결합을 위해 환형의 돌기부가 하측에 배치되어 있으며, 상기 회전축의 상단부와 상기 상단부를 수용하여 면접합되는 상기 돌기부의 저면은 상기 프로렐러의 회전시에 비틀림을 잡아주도록 단차 구조로 결합이 이루어질 수 있다..
상기 스테이터는 자기회로를 형성하도록 소정의 폭을 갖는 환형의 백요크와 상기 백요크로부터 복수의 티스가 중심방향으로 뻗어 있는 스테이터 코어; 상기 복수의 티스 각각에서 코일이 권선될 외주면을 감싸도록 형성되는 인슐레이터; 및 상기 복수의 티스 각각에서 인슐레이터의 외주면에 권선되는 스테이터 코일;을 포함하며, 상기 인슐레이터는 방열성능 및 절연성능을 동시에 갖는 절연성 방열복합재로 형성될 수 있다.
상기 스테이터는 상기 인슐레이터에 권선된 스테이터 코일을 둘러싸면서 인접한 코일과 코일 사이를 절연하면서 방열 특성을 갖는 스테이터 지지체를 더 포함하며, 상기 스테이터 지지체는 방열성능 및 절연성능을 갖는 절연성 방열복합재로 인서트 몰딩하여 일체로 형성될 수 있다.
상기 인슐레이터는 티스 각각에서 코일이 권선될 외주면을 1/2씩 감싸는 상부 및 하부 인슐레이터를 포함하며, 상기 상부 및 하부 인슐레이터는 각각 소정 폭으로 이루어진 환형의 베이스 프레임; 및 상기 베이스 프레임으로부터 돌출되어 티스의 권선영역을 상부와 하부에서 1/2씩 수용하는 복수의 티스수용부;를 포함할 수 있다.
본 발명의 다른 실시예에 따른 프로펠러 구동장치는 스테이터의 내측에 로터가 에어갭을 두고 원주상으로 배치된 인너 로터-아우터 스테이터 구조의 레이디얼 갭 타입(Radial gap type)의 BLDC 모터; 및 상기 모터의 회전축에 프로펠러를 장착하기 위한 프로펠러 설치 브라켓;을 포함하며, 상기 모터는 원통형 케이스의 상부와 하부에 상부 커버와 하부 커버가 각각 결합된 하우징의 내측에 스테이터, 로터 및 회전축이 순차적으로 배치되어 있으며, 상기 상부 커버에 구비된 복수의 관통구멍, 회전축과 로터 사이를 연결하는 복수의 브릿지 사이에 형성된 복수의 공간 및 하부 커버에 구비된 복수의 관통구멍을 경유하여 모터의 축방향으로 관통하는 공기흐름통로를 갖는 것을 특징으로 한다.
본 발명에 따른 프로펠러 구동장치는 상기 원통형 케이스와 스테이터 사이에 배치되며 케이스와의 사이에 냉매 순환이 이루어질 수 있는 나선형의 냉매순환회로를 갖는 워터 자켓;을 더 포함할 수 있다.
본 발명의 또 다른 실시예에 따른 항공기는 동체; 상기 동체의 선단부에 배치된 콘트롤 박스; 및 상기 콘트롤 박스의 전면에 간격을 두고 설치되며 프로펠러를 구동하는 프로펠러 구동장치;를 포함하며, 상기 프로펠러 구동장치는 원통형 케이스의 상부와 하부에 각각 복수의 관통구멍을 갖는 상부 커버와 하부 커버가 각각 결합된 하우징; 상기 케이스의 내측에 배치된 스테이터; 상기 스테이터와 간격을 두고 배치된 로터; 및 상기 로터와 복수의 브릿지를 통하여 연결되고, 양단부가 상부 커버와 하부 커버의 중앙부에 위치한 상부 베어링과 하부 베어링에 회전 가능하게 지지되는 회전축;을 포함하며, 상기 상부 커버와 하부 커버의 복수의 관통구멍과 상기 복수의 브릿지 사이에 형성된 복수의 공간을 통과하는 공기흐름통로에 의해 모터의 내측 공냉이 이루어지는 것을 특징으로 한다.
상기한 바와 같이, 본 발명의 프로펠러 구동장치에서는 인너 로터-아우터 스테이터 방식의 BLDC 모터를 이용하며 로터와 스테이터에 외측 공냉과 내측 공냉에 의해 효과적인 냉각이 이루어질 수 있다.
또한, 본 발명에서는 상부와 하부 커버에 복수의 관통구멍을 형성하고 이와 동시에 로터 본체와 회전축 사이에 복수의 브릿지를 통하여 연결함에 의해 복수의 관통구멍을 형성하여 내측 공냉에 의해 효과적인 냉각이 이루어질 수 있다.
더욱이, 본 발명에서는 스테이터 코어의 외주부와 케이싱 사이에 냉매 순환이 이루어질 수 있는 냉매순환회로를 갖는 워터 자켓을 구비함에 의해 수냉방식으로 효과적인 방열이 이루어질 수 있다.
본 발명에서는 스테이터 코어와 코일 사이를 절연하는 인슐레이터(또는 보빈)를 방열성능 및 절연성능을 동시에 갖는 절연성 방열복합재로 형성함에 따라 우수한 방열 효과가 있어 모터 효율 향상을 도모할 수 있다. 더욱이, 절연성 방열복합재로 인슐레이터(또는 보빈)를 형성함에 따라 방열성능 및 절연성능은 물론 외력을 지탱할 수 있는 인장강도, 굴곡탄성률 등 기계적 강도가 담보된 항공용 모터를 제공할 수 있다.
또한, 본 발명에서는 스테이터의 인슐레이터(또는 보빈)에 권선된 코일을 둘러싸면서 코일과 코일 사이를 절연하도록 방열성능 및 절연성능을 동시에 갖는 절연성 방열복합재로 인서트 몰딩함에 따라 방열 효과와 함께 내측 공냉시에 습기나 이물질이 모터 내부로 유입되어 전기적인 쇼트가 발생하는 문제를 동시에 해결할 수 있다. 상기 절연성 방열복합재로 인서트 몰딩될 때, 스테이터는 로터의 마그넷과 대향한 스테이터 코어의 슈 부분을 제외한 외부로 노출되는 모든 부분을 커버하도록 형성된다.
더욱이, 본 발명에서는 로터 본체와 회전축 사이에 복수의 브릿지를 통하여 연결함에 의해 복수의 관통구멍을 형성하여 상부와 하부 커버에 형성된 복수의 관통구멍과 함께 내측 공냉이 이루어질 수 있는 로터를 제공할 수 있다.
본 발명에서는 스테이터 코어와 코일 사이를 절연하는 인슐레이터(또는 보빈)의 형성에 사용되는 제1절연성 방열복합재와 인슐레이터(또는 보빈)에 권선된 코일을 둘러싸면서 코일과 코일 사이를 절연하도록 인서트 몰딩방식으로 피복되는 제2절연성 방열복합재의 조성을 달리하여 방열성능을 극대화시킬 수 있다.
도 1은 본 발명에 따른 프로펠러 구동장치가 적용된 프로펠러 경비행기를 나타내는 사시도이다.
도 2a 및 도 2b는 각각 본 발명에 따른 프로펠러 구동장치를 나타내는 평면 및 도 2a의 A-A선 단면도이다.
도 3은 본 발명에 따른 프로펠러 구동장치의 일부 절개 사시도이다.
도 4는 본 발명에 따른 프로펠러 구동장치의 분해 사시도이다.
도 5는 본 발명에 따른 프로펠러 구동장치의 로터 분해 사시도이다.
도 6은 본 발명에 따른 프로펠러 구동장치의 스테이터 분해 사시도이다.
도 7은 본 발명에 따라 절연성 방열복합재로 인슐레이터(또는 보빈)를 형성한 실시예와 방열 플라스틱을 적용하지 않은 비교예의 U,V,W 각 상별 온도를 나타내는 그래프이다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 설명한다.
이 과정에서 도면에 도시된 구성요소의 크기나 형상 등은 설명의 명료성과 편의상 과장되게 도시될 수 있다. 또한, 본 발명의 구성 및 작용을 고려하여 특별히 정의된 용어들은 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 한다.
본 발명에 따른 프로펠러 구동장치는 예를 들어, 2인용 경비행기나 고중량 부하를 운반하는 대형 드론 등에 적용될 수 있으며, 프로펠러 구동장치에 구비된 모터는 수십 Kw급의 대형 BLDC 구동모터가 요구되고 있다.
상기 프로펠러 구동장치에 채용되는 수십 Kw급의 대형 BLDC 구동모터는 스테이터로부터 많은 열이 발생될 때, 적절한 냉각과 방열이 이루어지지 못하는 경우 모터의 효율 저하와 고장이 발생할 수 있다.
본 발명에서는 많은 열이 발생되는 스테이터가 로터의 외측에 배치된 인너 로터-아우터 스테이터 방식의 BLDC 모터를 채용하며, 경비행기의 프로펠러 구동에 적용된 것을 예를 들어 설명한다.
상기 실시예 설명에서는 프로펠러 구동장치의 회전축이 수평방향으로 배치된 것이나, 수직방향으로 배치된 경우에도 적용될 수 있다. 이 경우, 토크를 증대시키도록 모터의 출력에 감속기가 결합될 수도 있다.
첨부한 도 1은 본 발명에 따른 프로펠러 구동장치가 적용된 프로펠러 경비행기를 나타내는 사시도이고, 도 2a 및 도 2b는 각각 본 발명에 따른 프로펠러 구동장치를 나타내는 평면 및 도 2a의 A-A선 단면도이다.
도 1을 참고하면, 본 발명에 따른 프로펠러 구동장치(10)는 경비행기(200)의 동체(210) 중 선단부에 배치된 콘트롤 박스(220)의 전면에 간격을 두고 설치되며, 회전축의 선단부에 프로펠러(70)가 결합되어 프로펠러(70)를 회전 구동하며, 프로펠러 구동장치(10)의 회전축은 수평방향으로 배치되어 있다.
상기 콘트롤 박스(220)에는 경비행기(200)의 운항을 제어하는 각종 전자장치들을 제어하는 제어부와 프로펠러 구동장치(10)에 구비된 BLDC 모터(100)를 구동하기 위한 모터구동장치를 포함할 수 있다.
이 경우, 도 1은 프로펠러(70)와 동체(210) 사이에 프로펠러 구동장치(10)와 콘트롤 박스(220)의 외부를 커버하면서 선단부 하측에 공기흡입구멍이 형성된 동체 커버가 생략된 상태를 나타낸다.
이 경우, 본 발명에 따른 프로펠러 구동장치(10)는 경비행기(200)에 한정되지 않고 복수의 프로펠러를 각각 구동하는 멀티콥터형 드론 뿐 아니라 단일의 프로펠러를 구동하는 드론에도 적용될 수 있다.
도 2a 내지 도 3을 참고하면, 본 발명에 따른 프로펠러 구동장치(10)는 싱글 로터-싱글 스테이터 방식의 모터(100) 및 상기 모터(100)의 회전축(50)에 프로펠러(70)를 장착하기 위한 프로펠러 설치 브라켓(20)을 포함할 수 있다.
이 경우, 상기 프로펠러 설치 브라켓(20)은 크게 링 형상으로 이루어져서 중앙부에 대직경의 중앙관통구멍(21)이 형성되어 있다. 또한, 중앙관통구멍(21)의 주변에 동일 원주상에 복수개의 대직경의 주변관통구멍(23)과 복수개의 소직경의 주변관통구멍(24)이 배치되어 있다. 상기 복수개의 대직경의 주변관통구멍(23)과 복수개의 소직경의 주변관통구멍(24)은 살빼기용으로 배치된 것으로 무게를 감소시키기 위한 것이다.
본 발명의 프로펠러 구동장치(10), 즉 모터(100)는 수십 Kw급의 대형 BLDC 구동모터를 적용하는 것이므로, 모터의 회전축(50)은 로터의 강력한 회전력을 프로펠러(70)에 전달하는 데 충분한 내구성을 갖도록 큰 직경을 가지며 중앙에는 경량화를 위해 중공부(50a) 형태로 이루어져 있고, 중공부(50a)의 외경은 상기 프로펠러 설치 브라켓(20)의 중앙관통구멍(21)에 대응하는 크기로 설정된다.
상기 프로펠러 설치 브라켓(20)의 중앙관통구멍(21)에는 모터(100)의 회전축(50)과 결합을 위해 환형의 돌기부(25)가 하측에 배치되어 있다. 또한, 상기 환형의 돌기부(25)에는 모터(100)의 회전축(50)에 복수개의 고정나사(22)를 체결하여 고정시키기 위한 복수개의 나사체결용 관통구멍이 형성되어 있다.
상기 회전축(50)의 상단부(50b)와 이를 수용하여 면접합되는 환형의 돌기부(25)의 저면은 단차 구조로 결합이 이루어진다. 이러한 상기 회전축(50)의 상단부(50b)와 돌기부(25) 저면의 단차 구조 결합은 프로펠러(70)의 회전시에 발생되는 비틀림을 잡기 위한 것이다.
상기 싱글 로터-싱글 스테이터 방식의 모터(100)는 원통형 케이스(12)와, 원통형 케이스(12)의 상부와 하부에 각각 결합되는 상부 커버(16)와 하부 커버(18)를 포함한다. 그 결과 원통형 케이스(12)와, 상부 커버(16)와 하부 커버(18)는 모터(100)의 하우징 역할을 한다.
상기 원통형 케이스(12)의 내측에는 모터(100)를 수냉방식으로 냉각시키기 위한 워터 자켓(46), 스테이터(40), 로터(30) 및 회전축(50)이 순차적으로 배치되어 있다. 상기 회전축(50)은 각각 상부 커버(16)와 하부 커버(18)의 중앙에 위치한 상부 및 하부 베어링 하우징(16c,18c)에 설치된 상부 베어링(51)과 하부 베어링(52)에 회전 가능하게 지지되어 있다.
이 경우, 상부 베어링(51)은 예를 들어, 레이디얼 하중과 1개의 큰 축 방향 하중을 동시에 지지할 수 있는 복열 앵귤러(angular) 볼 베어링이 사용되고, 하부 베어링(52)은 단열 앵귤러 볼 베어링이 사용될 수 있다.
상기 워터 자켓(46)은 도 6에 도시된 바와 같이 원통부의 몸체 외주부에 나선형 통로를 형성하도록 나선형 돌기부(46a)가 형성되어 있으며, 나선형 돌기부(46a)는 원통형 케이스(12)의 내측면과 접촉이 이루어진다. 그 결과 나선형 돌기부(46a) 사이에는 모터(100)를 수냉방식으로 냉각시키기 위한 냉매가 순환되는 나선형 통로(46b)가 형성될 수 있다. 이 경우, 상기 냉매는 물이나 항공기의 냉각유가 사용될 수 있다.
또한, 도 2b에 도시된 바와 같이, 원통형 케이스(12)의 상부와 하부에는 각각 나선형 통로(46b)와 연결되는 입구 또는 출구(47a,47b)가 형성되어 있으며, 입구 또는 출구(47a,47b)는 냉매를 순환시키기 위한 펌프와 연결되어 있다.
상기 워터 자켓(46)의 상부와 하부에는 원통형 케이스(12)와의 사이에 실링을 위한 O-링(48a,48b)이 각각 삽입되어 있어, 나선형 통로(46b)의 누수를 방지하고 있다.
상기 원통형 케이스(12)와 상부 커버(16)와 하부 커버(18) 사이에는 상호 결합을 위해 상부 커버(16)와 하부 커버(18)에 복수의 관통구멍(19)이 형성된 돌기부가 구비되어 있으며, 복수의 관통구멍(19)에 고정나사(19a)를 체결하여 고정시킨다.
상기 상부 커버(16)와 하부 커버(18)에는 공냉용 공기 흐름 통로의 역할을 하는 복수의 관통구멍(16e,18e)이 형성되어 있다. 이를 위해 상기 상부 커버(16)와 하부 커버(18)에는 내측에 위치하면서 허브(hub) 역할을 하는 상부 및 하부 베어링 하우징(16c,18c)과 외부에 배치된 외곽링(16a,18a) 사이에 동심원 형상으로 이루어진 중간링(16b,18b)이 배치되고, 상부 및 하부 베어링 하우징(16c,18c)과 중간링(16b,18b) 및 외곽링(16a,18a)을 연결하도록 복수의 브릿지(16d,18d)가 방사상으로 뻗어 있다. 따라서, 상부 및 하부 베어링 하우징(16c,18c), 중간링(16b,18b), 외곽링(16a,18a) 및 복수의 브릿지(16d,18d) 사이에는 복수의 관통구멍(16e,18e)이 형성되어 있다.
상기 중간링(16b,18b)은 강도 보강용으로서 필요에 따라 생략 또는 추가가 가능하며, 상부 커버(16)와 하부 커버(18)에 형성된 복수의 관통구멍(16e,18e)을 형성하기 위한 네트워크 구조는 다르게 변경될 수 있다.
상기 복수의 관통구멍(16e,18e)은 외부로부터 모터(100)의 내부로 상대적으로 낮은 온도의 외부 공기를 유입한 후, 스테이터(40)로부터 발생된 열과 열교환 후 모터 외부로 배출되는 공냉용 공기흐름통로를 형성한다.
본 발명에 따른 모터(100)는 스테이터(40)의 내측에 로터(30)가 배치된 인너 로터 구조를 가지고 있다. 또한, 상기 모터(100)는 스테이터(40)의 내측에 로터(30)가 동심원상으로 배치된 레이디얼 갭 타입(Radial gap type)의 전동기를 구성한다.
상기 로터(30)는 도 2a 내지 도 5에 도시된 바와 같이, 중앙부에 배치된 중공 형태의 회전축(50)으로부터 방사상으로 복수의 브릿지(34)가 연장되어 있고, 복수의 브릿지(34)의 선단부는 환형의 림(rim)(33)과 연결되어 있다. 또한, 복수의 브릿지(34)와 회전축(50)의 연결부에도 강도 보강을 위해 환형의 허브(35)가 보강되어 있다.
상기 회전축(50)과 복수의 브릿지(34)를 통하여 연결되는 환형의 림(rim)(33)은 일체로 형성되며, 경량이면서 강도를 제공할 수 있는 금속재, 예를 들어, 알루미늄 합금 또는 듀랄루민 등으로 이루어질 수 있다.
상기 환형 림(rim)(33)의 외주에는 자기회로역할을 하는 백요크(31)가 슬라이딩 방식으로 결합되어 있다. 이를 위해 림(rim)(33)의 외주에는 복수의 결합요홈(33a)이 형성되고 백요크(31)의 내주부에는 복수의 결합요홈(33a)에 결합되는 복수의 결합돌기(31b)가 돌출되어 있다.
상기 백요크(31)는 외표면에 부착되는 복수의 마그넷(32)와 함께 자기회로를 형성하도록 전기강판(실리콘 강판)으로 이루어질 수 있으며, 외표면에는 복수의 마그넷(32)을 부착하기 위한 복수의 결합돌기(31a)가 돌출되어 있다.
상기 백요크(31)의 복수의 결합돌기(31a)는 인접한 2개의 결합돌기(31a) 사이에 마그넷(32)을 슬라이딩 결합방식으로 수용하면서 지지한다. 이 경우, 마그넷(32)의 형상은 사다리꼴 형상으로 이루어지고, 2개의 결합돌기(31a) 사이에 형성되는 공간은 사다리꼴 형상의 마그넷(32)이 결합되도록 내측의 폭이 더 길게 형성된다.
상기 복수의 마그넷(32)은 영구자석으로 이루어지며 복수의 N극 및 S극 마그넷이 교대로 배치된다.
상기 로터(30)는 백요크(31)의 외표면에 복수의 마그넷(32)이 부착된 후, 로터지지체(36)가 결합된다.
로터지지체(36)는 마그넷(32)의 상부와 하부를 커버하는 환형의 상부판(36a)과 하부판(36b), 및 마그넷(32)과 마그넷(32) 사이에 배치되면서 양단부가 상부판(36a)과 하부판(36b)에 연결되는 복수의 연결부(36c)를 포함하고 있다. 이에 따라 로터지지체(36)는 스테이터 코어의 슈 부분과 대향하는 각 마그넷(32)의 외표면을 제외하고 외측면을 커버한다.
상기 상부판(36a)과 하부판(36b)에는 각각 로터(30)의 회전시에 바람을 발생시켜서 스테이터(40)를 냉각시키도록 복수의 블레이드(37a,37b)가 돌출되어 있다. 이 경우, 상기 복수의 블레이드(37a,37b)의 형상은 직선 형상, 라운드 형상 등으로 이루어질 수 있다.
상기와 같이 로터(30)의 회전에 따라 복수의 블레이드(37a,37b)에 의해 발생되는 바람은 원주 방향을 따르며, 이 원주 방향 바람은 상부 커버(16)의 복수의 관통구멍(16e), 복수의 브릿지(34) 사이에 형성된 복수의 공간(33c) 및 하부 커버(18)에 형성된 복수의 관통구멍(18e)을 통과하는 공냉용 공기 흐름과 충돌하여 와류를 발생시킨다. 이렇게 발생된 와류는 모터(100) 내부의 구석진 곳까지 도달하게 되어 가장 큰 발열이 이루어지는 스테이터(40)와 열교환이 효과적으로 이루어질 수 있다.
또한, 상기 상부판(36a)과 하부판(36b)에는 상기 백요크(31)와의 결합을 위해 복수의 관통구멍(36d)이 형성된 돌출부가 구비되어 있고, 백요크(31)에도 복수의 결합구멍(33b)이 형성되어 있어 고정나사 등으로 체결될 수 있다.
상기 로터(30)는 회전축(50)과 환형의 림(rim)(33) 사이를 복수의 브릿지(34)를 통하여 연결되어 있다. 그 결과, 복수의 브릿지(34) 사이에 형성된 복수의 공간(33c)은 상부 커버(16)와 하부 커버(18)에 구비된 복수의 관통구멍(16e,18e)을 통하여 모터의 외부로부터 내부로 유입된 상대적으로 낮은 온도의 외부 공기가 모터 외부로 배출되는 공기의 흐름 통로를 형성한다.
상기 스테이터(40)는 도 2a 내지 도 4 및 도 6에 도시된 바와 같이, 자기회로를 형성하도록 소정의 폭을 갖는 환형의 백요크(41a)와 상기 백요크(41a)로부터 복수의 티스(41b)가 내측으로 방사상으로 뻗어 있는 스테이터 코어(41)와, 상기 티스(41b) 각각의 코일이 권선될 외주면을 감싸도록 일체로 형성되는 절연성 재질의 인슐레이터(또는 보빈)(42a,42b)과, 상기 복수의 티스(41b) 각각의 인슐레이터(42a,42b)의 외주면에 권선되는 스테이터 코일(43)을 포함한다.
상기 복수의 티스(41b)는 각각 "T" 형상으로 이루어지며 로터(30)의 마그넷(32)과 대향하는 슈(shoe) 부분과 환형의 백요크(41a) 사이에 코일(43)이 권선되는 권선영역을 갖는다.
인슐레이터(또는 보빈)(42a,42b)는 사전에 미리 상부 및 하부 인슐레이터(42a,42b)로 제작된 후, 스테이터 코어(41)에 조립되거나 절연성 플라스틱(수지)로 인서트 몰딩방식으로 일체로 형성될 수 있다.
이 경우, 상부 및 하부 인슐레이터(42a,42b)는 각각 소정 폭으로 이루어진 환형의 베이스 프레임(420)에, 로터(30)의 마그넷(32)과 대향하는 슈(shoe) 부분을 제외하고 티스(41b)의 권선영역을 상부와 하부에서 1/2씩 수용하는 복수의 티스수용부(422)가 간격을 두고 돌출되어 있다.
상부 및 하부 인슐레이터(42a,42b)는 바람직하게는 방열성능 및 절연성능을 동시에 갖는 절연성 방열복합재로 형성할 수 있다. 상기 모터(100)는 항공기에 채용되는 경우 낙뢰로부터 안전하도록 적어도 10Kv 이상의 절연성능을 갖는 것이 요구되며, 방열 특성을 고려하여 열전도도가 3W/mK 이상인 것이 바람직하다.
상기한 점을 고려하여 본 발명에 사용되는 절연성 방열복합재는 연속 사용온도가 150℃ 이상이며 바인더 역할을 하는 고분자 매트릭스, 열전도성 향상을 위해 첨가되어 분산되는 세라믹으로 이루어진 절연성 방열필러 및 강도 보강을 위해 첨가되는 보강 섬유를 포함하고 있다.
상기 고분자매트릭스는 폴리아미드, 폴리에스테르, 폴리케톤, 액정고분자, 폴리올레핀, 폴리페닐렌설파이드(PPS), 폴리에테르에테르케톤(PEEK), 폴리페닐렌옥사이드(PPO), 폴리에테르술폰(PES), 폴리에테르이미드(PEI) 및 폴리이미드로 이루어진 군에서 선택된 1종의 화합물, 또는 2종 이상의 혼합물 또는 코폴리머를 포함할 수 있다.
이 경우, 상기 고분자매트릭스는 연속 사용온도가 150℃ 이상인 것이 바람직하며, 예를 들어, 폴리페닐렌설파이드(PPS)를 사용할 수 있다.
또한, 상기 절연성 방열필러는 상기 고분자매트릭스 100 중량부에 대하여 75 ~ 100 중량부로 구비될 수 있다.
또한, 상기 절연성 방열필러는 산화마그네슘, 탈크, 이산화티타늄, 질화알루미늄, 질화규소, 질화붕소, 산화알루미늄, 실리카, 산화아연, 티탄산바륨, 티탄산스트론튬, 산화베릴륨, 실리콘카바이드 및 산화망간으로 이루어진 군에서 선택된 1 종 이상을 포함할 수 있다.
상기 절연성 방열필러의 평균입경은 10㎚ ~ 600㎛일 수 있다.
더욱이, 상기 보강 섬유는 고분자매트릭스 100 중량부에 대하여 약 30 중량부로 구비될 수 있으며, 예를 들어, 유리섬유 등이 사용될 수 있다.
또한, 절연성 복합재는 분산제, 산화방지제, 작업개선제, 커플링제, 안정제, 난연제, 안료 및 충격개선제로 이루어진 군에서 선택된 1종 이상의 첨가제를 더 포함할 수 있다.
본 발명의 프로펠러 구동장치(10)에 적용된 인너 로터-아우터 스테이터 방식의 BLDC 모터(100)는 싱글 로터(30)와 싱글 스테이터(40)로 구성되어 있다. 스테이터(40)는 3상(U,V,W) 코일(43)이 스테이터 코어(41)의 티스(41b)에 권선되어 있으며, 모터의 외부에 설치된 모터구동장치로부터 3상(U,V,W) 코일(43)에 구동신호를 인가하도록 케이블(45)을 통하여 연결되어 있다.
도 7은 본 발명에 따라 절연성 방열복합재로 인슐레이터(또는 보빈)를 형성한 실시예와 방열 플라스틱을 적용하지 않은 비교예의 U,V,W 각 상별 온도를 나타내는 그래프이다.
본 발명에서는 절연성 방열복합재로 인슐레이터(또는 보빈)를 형성함에 따라 방열성능 및 절연성능은 물론 외력을 지탱할 수 있는 인장강도, 굴곡탄성률 등 기계적 강도가 담보된 항공용 모터를 제공할 수 있다.
또한, 본 발명에서는 스테이터(40)의 인슐레이터(또는 보빈)(42a,42b)에 권선된 코일(43)을 둘러싸면서 인접한 코일과 코일 사이를 절연하도록 방열성능 및 절연성능을 동시에 갖는 절연성 방열복합재로 인서트 몰딩된 방열용 스테이터 지지체(44)를 포함하고 있다.
이 경우, 상기 절연성 방열복합재로 인서트 몰딩되는 스테이터 지지체(44)는, 로터(30)의 마그넷(32)과 대향한 스테이터 코어(41)의 슈(shoe) 부분을 제외한 외부로 노출되는 모든 부분을 커버하도록 형성된다.
상기 방열용 스테이터 지지체(44)의 직경방향 외측면은 워터 자켓(46)과 접촉하고 있다. 따라서, 스테이터(40)의 코일(43)로부터 열이 발생하는 경우, 열이 방열용 스테이터 지지체(44)로 전도된 후, 수냉방식으로 냉각이 이루어지고 있는 워터 자켓(46)과 열교환이 이루어지면서 방열이 이루어질 수 있다.
상기한 바와 같이, 본 발명의 프로펠러 구동장치(10)에서는 인너 로터-아우터 스테이터 방식의 BLDC 모터(100)를 이용하여 로터(30)와 스테이터(40)에 외측 공냉과 내측 공냉에 의해 효과적인 냉각이 이루어질 수 있다.
상기 내측 공냉을 위해 본 발명에서는 상부와 하부 커버(16,18)에 복수의 냉각용 관통구멍(16e,18e)을 형성하고 이와 동시에 로터의 본체를 지지하는 환형 림(rim)(33)과 회전축(50) 사이에 복수의 브릿지(34)를 통하여 연결함에 의해 복수의 브릿지(34) 사이에 복수의 공간(33c)을 형성함에 따라 모터 내부를 통과하는 공기 흐름 통로가 형성된다.
즉, 본 발명의 프로펠러 구동장치(10)가 적용된 항공기가 비행할 때, 모터(100)의 상부 커버(16))에 구비된 복수의 관통구멍(16e)을 통하여 외부로부터 내부로 유입된 외부 공기는 복수의 브릿지(34) 사이에 형성되는 복수의 공간(33c)을 통과한 후, 하부 커버(18)에 구비된 복수의 관통구멍(18e)을 통하여 모터 외부로 배출된다.
그 결과, 상대적으로 낮은 온도의 외부 공기가 모터 내부로 유입되어 스테이터(40)에서 발생된 열과 열교환이 이루어진 후 모터 외부로 배출되는 공기의 흐름에 의해 모터의 내측 공냉이 이루어질 수 있다.
더욱이, 본 발명에서는 스테이터 코어(41)의 외주부와 케이싱(12) 사이에 냉매 순환이 이루어질 수 있는 냉매순환회로를 갖는 워터 자켓(46)을 구비함에 의해 수냉방식으로 효과적인 방열이 이루어질 수 있다.
또한, 본 발명에서는 스테이터 코어(41)와 코일(43) 사이를 절연하는 인슐레이터(또는 보빈)(42a,42b)를 방열성능 및 절연성능을 동시에 갖는 절연성 방열복합재로 형성함에 따라 우수한 방열 효과가 있어 모터 효율 향상을 도모할 수 있다. 이 경우, 절연성 방열복합재로 인슐레이터(또는 보빈)(42a,42b)를 형성함에 따라 방열성능 및 절연성능은 물론 외력을 지탱할 수 있는 인장강도, 굴곡탄성률 등 기계적 강도가 담보된 항공용 모터를 제공할 수 있다.
본 발명에서는 스테이터의 인슐레이터(또는 보빈)(42a,42b)에 권선된 코일(43)을 둘러싸면서 인접한 코일과 코일 사이를 절연하도록 방열성능 및 절연성능을 동시에 갖는 절연성 방열복합재로 인서트 몰딩함에 방열용 스테이터 지지체(44)를 구비하고 있다.
상기 방열용 스테이터 지지체(44)는 로터(30)의 마그넷(32)과 대향한 스테이터 코어(41)의 슈 부분을 제외한 외부로 노출되는 모든 부분을 커버한다. 즉, 로터의 마그넷(32)과 자기회로 경로를 형성하는 스테이터 코어(41)의 슈 부분을 제외하고 방수 몰딩이 이루어지게 된다.
그 결과, 상기한 모터 내부를 통과하는 공기 흐름 통로를 따라 습기나 이물질이 모터 내부로 유입될지라도 전기적인 쇼트가 발생하지 않는다.
또한, 방열용 스테이터 지지체(44)의 직경방향 외측면은 수냉방식으로 냉각이 이루어지고 있는 워터 자켓(46)과 접촉함에 따라 워터 자켓(46)과 열교환이 이루어지면서 방열이 이루어질 수 있다.
상기 실시예 설명에서는 본 발명은 프로펠러 구동장치가 경비행기의 프로펠러를 회전 구동하는 것을 예시하였으나, 단일의 프로펠러 구동장치가 드론본체에 설치된 드론 또는 복수개의 프로펠러 구동장치가 드론본체로부터 뻗어 있는 복수개의 아암에 설치된 멀티콥터형 드론에 적용될 수 있다.
더욱이, 상기 실시예 설명에서는 모터의 회전축이 외부에 노출된 경비행기의 프로펠러를 회전 구동하는 것을 예시하였으나, 원통 케이싱 내부에 프로펠러 또는 블레이드가 내장된 팬 구조를 가지는 드론으로 변경될 수 있다.
또한, 본 발명은 택배 물품을 배송하기 위한 물류박스를 드론본체의 하부에 착탈 가능하게 구비한 물류 분야, 감시/정찰/수색, 방역/방제/살포, 방송/공연, 환경 측량, 구조 등의 다양한 용도로 다양하게 변경될 수 있다.
이상에서는 본 발명을 특정의 바람직한 실시예를 예를 들어 도시하고 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.
본 발명은 싱글 로터-싱글 스테이터 방식의 수십 Kw급의 대형 BLDC 모터를 이용하여 모터 내부에 형성된 공기흐름통로를 이용하여 내측 공냉을 실현하면서 냉매순환회로를 갖는 워터 자켓을 이용하여 수냉방식으로 효과적인 방열이 이루어질 수 있는 프로펠러 구동장치에 관한 것으로, 경비행기 또는 드론에 적용될 수 있다.

Claims (15)

  1. 중공형 회전축;
    상기 회전축으로부터 방사방향으로 연장된 복수의 브릿지;
    상기 브릿지의 선단부에 연결된 환형 림;
    상기 림의 외측에 설치되어 자기회로의 경로를 형성하는 환형 백요크; 및
    상기 백요크의 외측에 설치되어 스테이터의 회전자기장에 따라 회전이 이루어지는 복수의 마그넷;을 포함하며,
    상기 복수의 브릿지 사이에 형성된 복수의 공간은 모터를 관통하는 공기흐름통로를 형성하는 프로펠러 구동장치용 로터.
  2. 제1항에 있어서,
    스테이터 코어의 슈 부분과 대향하는 각 마그넷의 외표면을 제외하고 외측면을 커버는 로터지지체를 더 포함하며,
    상기 로터지지체는
    상기 마그넷의 상부와 하부를 커버하는 환형의 상부판과 하부판; 및
    상기 마그넷과 마그넷 사이에 배치되면서 양단부가 상부판과 하부판에 연결되는 복수의 연결부;를 포함하는 프로펠러 구동장치용 로터.
  3. 제2항에 있어서,
    상기 로터지지체의 상부판과 하부판에 설치되어 로터의 회전시에 원주 방향 바람을 발생시키는 복수의 블레이드를 더 포함하며,
    상기 원주 방향 바람은 모터를 관통하는 공냉용 공기흐름과 충돌하여 와류를 발생시키는 프로펠러 구동장치용 로터.
  4. 원통형 케이스의 상부와 하부에 각각 복수의 관통구멍을 갖는 상부 커버와 하부 커버가 각각 결합된 하우징;
    상기 케이스의 내측에 배치된 스테이터;
    상기 스테이터와 간격을 두고 배치된 로터; 및
    상기 로터와 복수의 브릿지를 통하여 연결되고, 양단부가 상부 커버와 하부 커버의 중앙부에 위치한 상부 베어링과 하부 베어링에 회전 가능하게 지지되는 회전축;을 포함하며,
    상기 상부 커버와 하부 커버의 복수의 관통구멍과 상기 복수의 브릿지 사이에 형성된 복수의 공간을 통과하는 공기흐름통로에 의해 모터의 내측 공냉이 이루어지는 프로펠러 구동장치.
  5. 제4항에 있어서,
    상기 로터는
    양단부가 상부 커버와 하부 커버의 중앙부에 위치한 상부 베어링과 하부 베어링에 회전 가능하게 지지되는 중공형 회전축;
    상기 회전축으로부터 방사방향으로 연장된 복수의 브릿지;
    상기 복수의 브릿지의 선단부에 연결된 환형 림;
    상기 림의 외측에 설치되어 자기회로의 경로를 형성하는 환형 백요크; 및
    상기 백요크의 외측에 설치되어 스테이터의 회전자기장에 따라 회전이 이루어지는 복수의 마그넷;을 포함하는 프로펠러 구동장치.
  6. 제4항에 있어서,
    상기 로터의 상부와 하부에 설치되어 로터의 회전시에 원주 방향 바람을 발생시키는 복수의 블레이드를 더 포함하며,
    상기 원주 방향 바람은 모터를 관통하는 공기흐름통로의 공기흐름과 충돌하여 와류를 발생시키는 프로펠러 구동장치.
  7. 제4항에 있어서,
    상기 원통형 케이스와 스테이터 사이에 배치되며 케이스와의 사이에 냉매 순환이 이루어질 수 있는 나선형의 냉매순환회로를 갖는 워터 자켓;을 더 포함하는 프로펠러 구동장치.
  8. 제4항에 있어서,
    상기 회전축에 프로펠러를 장착하기 위한 프로펠러 설치 브라켓;을 더 포함하는 프로펠러 구동장치.
  9. 제8항에 있어서,
    상기 프로펠러 설치 브라켓은 중앙부에 중앙관통구멍이 형성된 링 형상으로 이루어지고, 상기 중앙관통구멍에는 모터의 회전축과 결합을 위해 환형의 돌기부가 하측에 배치되어 있으며,
    상기 회전축의 상단부와 상기 상단부를 수용하여 면접합되는 상기 돌기부의 저면은 상기 프로렐러의 회전시에 비틀림을 잡아주도록 단차 구조로 결합이 이루어지는 프로펠러 구동장치.
  10. 제4항에 있어서,
    상기 스테이터는
    자기회로를 형성하도록 소정의 폭을 갖는 환형의 백요크와 상기 백요크로부터 복수의 티스가 중심방향으로 뻗어 있는 스테이터 코어;
    상기 복수의 티스 각각에서 코일이 권선될 외주면을 감싸도록 형성되는 인슐레이터; 및
    상기 복수의 티스 각각에서 인슐레이터의 외주면에 권선되는 스테이터 코일;을 포함하며,
    상기 인슐레이터는 방열성능 및 절연성능을 동시에 갖는 절연성 방열복합재로 형성되는 프로펠러 구동장치.
  11. 제10항에 있어서,
    상기 인슐레이터에 권선된 스테이터 코일을 둘러싸면서 인접한 코일과 코일 사이를 절연하면서 방열 특성을 갖는 스테이터 지지체를 더 포함하며,
    상기 스테이터 지지체는 방열성능 및 절연성능을 갖는 절연성 방열복합재로 인서트 몰딩하여 일체로 형성되는 프로펠러 구동장치.
  12. 제10항에 있어서,
    상기 인슐레이터는 티스 각각에서 코일이 권선될 외주면을 1/2씩 감싸는 상부 및 하부 인슐레이터를 포함하며,
    상기 상부 및 하부 인슐레이터는 각각
    소정 폭으로 이루어진 환형의 베이스 프레임; 및
    상기 베이스 프레임으로부터 돌출되어 티스의 권선영역을 상부와 하부에서 1/2씩 수용하는 복수의 티스수용부;를 포함하는 프로펠러 구동장치.
  13. 스테이터의 내측에 로터가 에어갭을 두고 원주상으로 배치된 인너 로터-아우터 스테이터 구조의 레이디얼 갭 타입(Radial gap type)의 BLDC 모터; 및
    상기 모터의 회전축에 프로펠러를 장착하기 위한 프로펠러 설치 브라켓;을 포함하며,
    상기 모터는 원통형 케이스의 상부와 하부에 상부 커버와 하부 커버가 각각 결합된 하우징의 내측에 스테이터, 로터 및 회전축이 순차적으로 배치되어 있으며,
    상기 상부 커버에 구비된 복수의 관통구멍, 회전축과 로터 사이를 연결하는 복수의 브릿지 사이에 형성된 복수의 공간 및 하부 커버에 구비된 복수의 관통구멍을 경유하여 모터의 축방향으로 관통하는 공기흐름통로를 갖는 프로펠러 구동장치.
  14. 제13항에 있어서,
    상기 원통형 케이스와 스테이터 사이에 배치되며 케이스와의 사이에 냉매 순환이 이루어질 수 있는 나선형의 냉매순환회로를 갖는 워터 자켓;을 더 포함하는 프로펠러 구동장치.
  15. 동체;
    상기 동체의 선단부에 배치된 콘트롤 박스; 및
    상기 콘트롤 박스의 전면에 간격을 두고 설치되며 프로펠러를 구동하는 프로펠러 구동장치;를 포함하며,
    상기 프로펠러 구동장치는
    원통형 케이스의 상부와 하부에 각각 복수의 관통구멍을 갖는 상부 커버와 하부 커버가 각각 결합된 하우징;
    상기 케이스의 내측에 배치된 스테이터;
    상기 스테이터와 간격을 두고 배치된 로터; 및
    상기 로터와 복수의 브릿지를 통하여 연결되고, 양단부가 상부 커버와 하부 커버의 중앙부에 위치한 상부 베어링과 하부 베어링에 회전 가능하게 지지되는 회전축;을 포함하며,
    상기 상부 커버와 하부 커버의 복수의 관통구멍과 상기 복수의 브릿지 사이에 형성된 복수의 공간을 통과하는 공기흐름통로에 의해 모터의 내측 공냉이 이루어지는 항공기.
PCT/KR2022/005647 2021-04-23 2022-04-20 로터, 이를 이용한 프로펠러 구동장치 및 항공기 WO2022225324A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280029121.1A CN117223198A (zh) 2021-04-23 2022-04-20 转子、利用其的螺旋桨驱动装置及航空器
EP22792024.6A EP4329154A1 (en) 2021-04-23 2022-04-20 Rotor, and propeller driving device and aircraft using same
US18/286,662 US20240204617A1 (en) 2021-04-23 2022-04-20 Rotor, and propeller driving device and aircraft using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020210052897A KR20220146066A (ko) 2021-04-23 2021-04-23 프로펠러 구동장치 및 이를 이용한 항공기
KR1020210052898A KR102681689B1 (ko) 2021-04-23 2021-04-23 로터 및 이를 이용한 프로펠러 구동장치
KR10-2021-0052897 2021-04-23
KR10-2021-0052898 2021-04-23

Publications (1)

Publication Number Publication Date
WO2022225324A1 true WO2022225324A1 (ko) 2022-10-27

Family

ID=83722522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/005647 WO2022225324A1 (ko) 2021-04-23 2022-04-20 로터, 이를 이용한 프로펠러 구동장치 및 항공기

Country Status (3)

Country Link
US (1) US20240204617A1 (ko)
EP (1) EP4329154A1 (ko)
WO (1) WO2022225324A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116760235A (zh) * 2023-06-28 2023-09-15 京马电机有限公司 一种台式烟机用温控防护外转子电机及防护方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023249652A1 (en) * 2022-06-23 2023-12-28 Morteza Vadipour Propulsion systems and vehicles using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11113202A (ja) * 1997-10-01 1999-04-23 Denyo Co Ltd 永久磁石付回転子の冷却構造
JP2002191149A (ja) * 2000-12-20 2002-07-05 Isuzu Ceramics Res Inst Co Ltd 回転電機
KR20170090037A (ko) 2016-01-28 2017-08-07 한국항공우주연구원 습기침투방지 및 과열방지 기능이 구비된 항공기용 동력전달장치
KR20190014743A (ko) * 2017-08-03 2019-02-13 엘지이노텍 주식회사 드론용 모터
JP2019147498A (ja) * 2018-02-28 2019-09-05 パナソニックIpマネジメント株式会社 飛行装置
KR20200120258A (ko) * 2019-04-12 2020-10-21 엘지전자 주식회사 모터

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11113202A (ja) * 1997-10-01 1999-04-23 Denyo Co Ltd 永久磁石付回転子の冷却構造
JP2002191149A (ja) * 2000-12-20 2002-07-05 Isuzu Ceramics Res Inst Co Ltd 回転電機
KR20170090037A (ko) 2016-01-28 2017-08-07 한국항공우주연구원 습기침투방지 및 과열방지 기능이 구비된 항공기용 동력전달장치
KR20190014743A (ko) * 2017-08-03 2019-02-13 엘지이노텍 주식회사 드론용 모터
JP2019147498A (ja) * 2018-02-28 2019-09-05 パナソニックIpマネジメント株式会社 飛行装置
KR20200120258A (ko) * 2019-04-12 2020-10-21 엘지전자 주식회사 모터

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116760235A (zh) * 2023-06-28 2023-09-15 京马电机有限公司 一种台式烟机用温控防护外转子电机及防护方法
CN116760235B (zh) * 2023-06-28 2024-05-03 京马电机有限公司 一种台式烟机用温控防护外转子电机及防护方法

Also Published As

Publication number Publication date
US20240204617A1 (en) 2024-06-20
EP4329154A1 (en) 2024-02-28

Similar Documents

Publication Publication Date Title
WO2022225324A1 (ko) 로터, 이를 이용한 프로펠러 구동장치 및 항공기
WO2014181917A1 (ko) 냉각부재를 내장한 자동차용 전동식 워터펌프
WO2018038493A1 (ko) 드론용 모터 및 이를 포함하는 드론
JP3122463B2 (ja) 電気機械に通気する方法及び装置
WO2012148131A2 (en) Electric motor and electric vehicle having the same
US5081384A (en) Cooled electric motor protecting components from coolant
KR20060009858A (ko) 차량용 회전 전기기계 장치
WO2020027436A1 (ko) 전동기
WO2016093559A1 (ko) 로터 조립체 및 이를 포함하는 모터
JP6796474B2 (ja) ブラシレスモータ
WO2017213451A1 (ko) 드론용 모터 및 이를 포함하는 드론
US4807354A (en) Method of rearranging components of a dynamoelectric machine
SE515843C2 (sv) Axiell kylning av rotor
KR102681690B1 (ko) 스테이터 및 이를 이용한 프로펠러 구동장치용 bldc 모터
WO2022231211A1 (ko) 스테이터, 이를 이용한 프로펠러 구동장치 및 항공기
KR102681689B1 (ko) 로터 및 이를 이용한 프로펠러 구동장치
KR102694353B1 (ko) 프로펠러 구동장치 및 이를 이용한 항공기
KR20220146066A (ko) 프로펠러 구동장치 및 이를 이용한 항공기
WO2022220579A1 (ko) 프로펠러 구동장치 및 이를 이용한 드론
EP4387059A1 (en) Stator having bus bar structure, propeller driving motor using same, and method for manufacturing stator
WO2017123070A1 (ko) 팬 모터
US20220393557A1 (en) Drive with segmented inverter housing
WO2018034513A1 (ko) 자계 방전 저항유닛 및 이를 포함하는 동기전동기
WO2016208937A2 (ko) 배터리 팩용 다중 냉각팬 제어 시스템
WO2017196156A1 (ko) 로터 및 이를 포함하는 모터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22792024

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18286662

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280029121.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 202317072097

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2022792024

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022792024

Country of ref document: EP

Effective date: 20231123