WO2022225254A1 - L-아미노산을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-아미노산의 생산 방법 - Google Patents
L-아미노산을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-아미노산의 생산 방법 Download PDFInfo
- Publication number
- WO2022225254A1 WO2022225254A1 PCT/KR2022/005385 KR2022005385W WO2022225254A1 WO 2022225254 A1 WO2022225254 A1 WO 2022225254A1 KR 2022005385 W KR2022005385 W KR 2022005385W WO 2022225254 A1 WO2022225254 A1 WO 2022225254A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- microorganism
- protein
- amino acid
- corynebacterium
- present application
- Prior art date
Links
- 244000005700 microbiome Species 0.000 title claims abstract description 94
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 49
- 150000008575 L-amino acids Chemical class 0.000 title claims abstract description 48
- 241000186249 Corynebacterium sp. Species 0.000 title abstract description 3
- 108090000623 proteins and genes Proteins 0.000 claims description 130
- 102000004169 proteins and genes Human genes 0.000 claims description 90
- 150000001413 amino acids Chemical group 0.000 claims description 78
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 claims description 70
- 230000000694 effects Effects 0.000 claims description 51
- 239000004473 Threonine Substances 0.000 claims description 36
- 239000002609 medium Substances 0.000 claims description 36
- 229960002898 threonine Drugs 0.000 claims description 36
- 241000186216 Corynebacterium Species 0.000 claims description 35
- 229940024606 amino acid Drugs 0.000 claims description 26
- 241000186226 Corynebacterium glutamicum Species 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 23
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 claims description 15
- 229960000310 isoleucine Drugs 0.000 claims description 15
- 229930182844 L-isoleucine Natural products 0.000 claims description 14
- 238000012258 culturing Methods 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 10
- 239000001963 growth medium Substances 0.000 claims description 7
- 235000018102 proteins Nutrition 0.000 description 85
- 108091033319 polynucleotide Proteins 0.000 description 56
- 102000040430 polynucleotide Human genes 0.000 description 56
- 239000002157 polynucleotide Substances 0.000 description 56
- 239000002773 nucleotide Substances 0.000 description 29
- 125000003729 nucleotide group Chemical group 0.000 description 29
- 235000001014 amino acid Nutrition 0.000 description 26
- 239000013598 vector Substances 0.000 description 20
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 16
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 14
- 210000004027 cell Anatomy 0.000 description 14
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 13
- 230000004048 modification Effects 0.000 description 13
- 238000012986 modification Methods 0.000 description 13
- 230000035772 mutation Effects 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 10
- 239000008103 glucose Substances 0.000 description 10
- 210000000349 chromosome Anatomy 0.000 description 9
- 230000000295 complement effect Effects 0.000 description 9
- 239000013587 production medium Substances 0.000 description 9
- 238000006467 substitution reaction Methods 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 108020004414 DNA Proteins 0.000 description 8
- DFPAKSUCGFBDDF-UHFFFAOYSA-N Nicotinamide Chemical compound NC(=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-UHFFFAOYSA-N 0.000 description 8
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 8
- 239000012153 distilled water Substances 0.000 description 8
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 8
- 235000019341 magnesium sulphate Nutrition 0.000 description 8
- 239000007836 KH2PO4 Substances 0.000 description 7
- 238000007792 addition Methods 0.000 description 7
- 238000012217 deletion Methods 0.000 description 7
- 230000037430 deletion Effects 0.000 description 7
- 238000009396 hybridization Methods 0.000 description 7
- 238000003780 insertion Methods 0.000 description 7
- 230000037431 insertion Effects 0.000 description 7
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 7
- 235000019796 monopotassium phosphate Nutrition 0.000 description 7
- 229920001184 polypeptide Polymers 0.000 description 7
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 7
- 102000004196 processed proteins & peptides Human genes 0.000 description 7
- 108090000765 processed proteins & peptides Proteins 0.000 description 7
- 230000003313 weakening effect Effects 0.000 description 7
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 6
- 108020004705 Codon Proteins 0.000 description 6
- 229960002685 biotin Drugs 0.000 description 6
- 235000020958 biotin Nutrition 0.000 description 6
- 239000011616 biotin Substances 0.000 description 6
- ZIWNLPKLQFDFEU-FJXQXJEOSA-N calcium;3-[[(2r)-2,4-dihydroxy-3,3-dimethylbutanoyl]amino]propanoic acid Chemical compound [Ca].OCC(C)(C)[C@@H](O)C(=O)NCCC(O)=O ZIWNLPKLQFDFEU-FJXQXJEOSA-N 0.000 description 6
- 229940041514 candida albicans extract Drugs 0.000 description 6
- 229930027917 kanamycin Natural products 0.000 description 6
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 6
- 229960000318 kanamycin Drugs 0.000 description 6
- 229930182823 kanamycin A Natural products 0.000 description 6
- 239000003550 marker Substances 0.000 description 6
- 235000013379 molasses Nutrition 0.000 description 6
- 239000013612 plasmid Substances 0.000 description 6
- 230000004952 protein activity Effects 0.000 description 6
- DPJRMOMPQZCRJU-UHFFFAOYSA-M thiamine hydrochloride Chemical compound Cl.[Cl-].CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N DPJRMOMPQZCRJU-UHFFFAOYSA-M 0.000 description 6
- 239000012138 yeast extract Substances 0.000 description 6
- 239000001888 Peptone Substances 0.000 description 5
- 108010080698 Peptones Proteins 0.000 description 5
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 5
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 5
- 235000011130 ammonium sulphate Nutrition 0.000 description 5
- 230000002238 attenuated effect Effects 0.000 description 5
- 239000012634 fragment Substances 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 150000007523 nucleic acids Chemical class 0.000 description 5
- 235000019319 peptone Nutrition 0.000 description 5
- 238000013518 transcription Methods 0.000 description 5
- 230000035897 transcription Effects 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 108700026244 Open Reading Frames Proteins 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 108091081024 Start codon Proteins 0.000 description 4
- 239000004202 carbamide Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000004587 chromatography analysis Methods 0.000 description 4
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 4
- 229910000396 dipotassium phosphate Inorganic materials 0.000 description 4
- 235000019797 dipotassium phosphate Nutrition 0.000 description 4
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 4
- 229960003966 nicotinamide Drugs 0.000 description 4
- 235000005152 nicotinamide Nutrition 0.000 description 4
- 239000011570 nicotinamide Substances 0.000 description 4
- FEMOMIGRRWSMCU-UHFFFAOYSA-N ninhydrin Chemical compound C1=CC=C2C(=O)C(O)(O)C(=O)C2=C1 FEMOMIGRRWSMCU-UHFFFAOYSA-N 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 238000013519 translation Methods 0.000 description 4
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 4
- 108020005544 Antisense RNA Proteins 0.000 description 3
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 3
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 description 3
- 235000010216 calcium carbonate Nutrition 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000003184 complementary RNA Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 235000013922 glutamic acid Nutrition 0.000 description 3
- 239000004220 glutamic acid Substances 0.000 description 3
- 230000006801 homologous recombination Effects 0.000 description 3
- 238000002744 homologous recombination Methods 0.000 description 3
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 3
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 229930182817 methionine Natural products 0.000 description 3
- 235000006109 methionine Nutrition 0.000 description 3
- 238000010369 molecular cloning Methods 0.000 description 3
- 102000039446 nucleic acids Human genes 0.000 description 3
- 108020004707 nucleic acids Proteins 0.000 description 3
- 235000015097 nutrients Nutrition 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 108091008146 restriction endonucleases Proteins 0.000 description 3
- 238000011218 seed culture Methods 0.000 description 3
- 229960003495 thiamine Drugs 0.000 description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- 108020003589 5' Untranslated Regions Proteins 0.000 description 2
- 108010006533 ATP-Binding Cassette Transporters Proteins 0.000 description 2
- 102000005416 ATP-Binding Cassette Transporters Human genes 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 241000186145 Corynebacterium ammoniagenes Species 0.000 description 2
- 241000186248 Corynebacterium callunae Species 0.000 description 2
- 241000446654 Corynebacterium deserti Species 0.000 description 2
- 241001644925 Corynebacterium efficiens Species 0.000 description 2
- 241000291063 Corynebacterium halotolerans Species 0.000 description 2
- 241000128247 Corynebacterium pollutisoli Species 0.000 description 2
- 241000334675 Corynebacterium singulare Species 0.000 description 2
- 241000186308 Corynebacterium stationis Species 0.000 description 2
- 241000158523 Corynebacterium striatum Species 0.000 description 2
- 241000620209 Escherichia coli DH5[alpha] Species 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 2
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 2
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 2
- 108010073771 Soybean Proteins Proteins 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 239000000074 antisense oligonucleotide Substances 0.000 description 2
- 238000012230 antisense oligonucleotides Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 2
- 229910000366 copper(II) sulfate Inorganic materials 0.000 description 2
- 235000005822 corn Nutrition 0.000 description 2
- 238000012136 culture method Methods 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 239000007857 degradation product Substances 0.000 description 2
- 230000003828 downregulation Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 230000004151 fermentation Effects 0.000 description 2
- 238000012239 gene modification Methods 0.000 description 2
- 230000005017 genetic modification Effects 0.000 description 2
- 235000013617 genetically modified food Nutrition 0.000 description 2
- 238000010362 genome editing Methods 0.000 description 2
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 2
- 235000004554 glutamine Nutrition 0.000 description 2
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000002779 inactivation Effects 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 229910000357 manganese(II) sulfate Inorganic materials 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229910000160 potassium phosphate Inorganic materials 0.000 description 2
- 235000011009 potassium phosphates Nutrition 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000010839 reverse transcription Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229940001941 soy protein Drugs 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229960004793 sucrose Drugs 0.000 description 2
- 229960000344 thiamine hydrochloride Drugs 0.000 description 2
- 235000019190 thiamine hydrochloride Nutrition 0.000 description 2
- 239000011747 thiamine hydrochloride Substances 0.000 description 2
- 235000008521 threonine Nutrition 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 235000002374 tyrosine Nutrition 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 2
- 229910000368 zinc sulfate Inorganic materials 0.000 description 2
- 239000011686 zinc sulphate Substances 0.000 description 2
- 235000009529 zinc sulphate Nutrition 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- 239000005695 Ammonium acetate Substances 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 239000004254 Ammonium phosphate Substances 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 238000010356 CRISPR-Cas9 genome editing Methods 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 241000595586 Coryne Species 0.000 description 1
- 241001605246 Corynebacterium crudilactis Species 0.000 description 1
- 241001134763 Corynebacterium flavescens Species 0.000 description 1
- 241001485655 Corynebacterium glutamicum ATCC 13032 Species 0.000 description 1
- 241000024402 Corynebacterium imitans Species 0.000 description 1
- 241000960580 Corynebacterium testudinoris Species 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 238000012270 DNA recombination Methods 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 241000588722 Escherichia Species 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 240000003183 Manihot esculenta Species 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 229910017234 MnSO4 H2O Inorganic materials 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 240000000111 Saccharum officinarum Species 0.000 description 1
- 235000007201 Saccharum officinarum Nutrition 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 238000005377 adsorption chromatography Methods 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- 229940043376 ammonium acetate Drugs 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 1
- 235000019289 ammonium phosphates Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- -1 aromatic amino acids Chemical class 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 235000015278 beef Nutrition 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 239000013601 cosmid vector Substances 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 239000002254 cytotoxic agent Substances 0.000 description 1
- 231100000599 cytotoxic agent Toxicity 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 235000013681 dietary sucrose Nutrition 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 238000012226 gene silencing method Methods 0.000 description 1
- 238000012252 genetic analysis Methods 0.000 description 1
- 230000007614 genetic variation Effects 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 1
- 229910000358 iron sulfate Inorganic materials 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 229940099596 manganese sulfate Drugs 0.000 description 1
- 239000011702 manganese sulphate Substances 0.000 description 1
- 235000007079 manganese sulphate Nutrition 0.000 description 1
- ISPYRSDWRDQNSW-UHFFFAOYSA-L manganese(II) sulfate monohydrate Chemical compound O.[Mn+2].[O-]S([O-])(=O)=O ISPYRSDWRDQNSW-UHFFFAOYSA-L 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 108091005573 modified proteins Proteins 0.000 description 1
- 102000035118 modified proteins Human genes 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 125000001477 organic nitrogen group Chemical group 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 229920001522 polyglycol ester Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 229940107700 pyruvic acid Drugs 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 235000004400 serine Nutrition 0.000 description 1
- 230000037432 silent mutation Effects 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/74—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
- C12N15/77—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/34—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Corynebacterium (G)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P13/00—Preparation of nitrogen-containing organic compounds
- C12P13/04—Alpha- or beta- amino acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P13/00—Preparation of nitrogen-containing organic compounds
- C12P13/04—Alpha- or beta- amino acids
- C12P13/06—Alanine; Leucine; Isoleucine; Serine; Homoserine
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P13/00—Preparation of nitrogen-containing organic compounds
- C12P13/04—Alpha- or beta- amino acids
- C12P13/08—Lysine; Diaminopimelic acid; Threonine; Valine
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P13/00—Preparation of nitrogen-containing organic compounds
- C12P13/04—Alpha- or beta- amino acids
- C12P13/14—Glutamic acid; Glutamine
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
- C12R2001/15—Corynebacterium
Definitions
- the present application relates to a microorganism of the genus Corynebacterium that produces L-amino acids and a method for producing L-amino acids using the same.
- L-amino acids are used in animal feed, pharmaceuticals, and cosmetics industries, and are mainly produced by fermentation using strains of the spp. Corynebacterium or Escherichia. For the production of L-amino acids, various studies such as the development of high-efficiency production strains and fermentation process technology are being conducted.
- a target substance-specific approach such as increasing the expression of a gene encoding an enzyme involved in L-amino acid biosynthesis or removing a gene unnecessary for biosynthesis is mainly used (US 8048650 B2, etc.).
- the present applicants have completed the invention by confirming that the L- amino acid production capacity of the microorganism of the genus Corynebacterium with weakened activity of the protein comprising the amino acid sequence of SEQ ID NO: 1 is increased.
- One object of the present application is to provide a microorganism of the genus Corynebacterium in which the activity of a protein comprising the amino acid sequence of SEQ ID NO: 1 is weakened.
- Another object of the present application is to provide a method for preparing L-amino acids comprising the step of culturing the microorganism in a medium.
- Another object of the present application is the microorganism; the culture medium; Or to provide a composition for preparing L- amino acids comprising a combination thereof.
- Another object of the present application is to provide a method for producing a microorganism of the genus Corynebacterium for producing L-amino acids, comprising the step of weakening the activity of a protein comprising the amino acid sequence of SEQ ID NO: 1.
- Another object of the present application is to provide a use of L- amino acid production of a microorganism of the genus Corynebacterium, in which the activity of a protein comprising the amino acid sequence of SEQ ID NO: 1 is weakened.
- L-amino acids can be produced with high efficiency.
- One aspect of the present application provides a microorganism of the genus of Corynebacterium in which the activity of a protein comprising the amino acid sequence of SEQ ID NO: 1 is weakened.
- the protein of the present application may have, include, or essentially consist of the amino acid sequence set forth in SEQ ID NO: 1.
- protein comprising the amino acid sequence of SEQ ID NO: 1 refers to a protein having ABC-Transporter permease component activity, and the NCBI number may be named NCgl1917.
- the protein comprising the amino acid sequence of SEQ ID NO: 1 may be an endogenous protein of the strain, but is not limited thereto.
- the amino acid sequence of the NCgl1917 protein can be obtained from a known database, National Institutes of Health (NIH GenBank).
- NIH GenBank National Institutes of Health
- the amino acid sequence information of NCgl1917 can be confirmed in NCBI Reference Sequence WP_006284211, but is not limited thereto.
- the NCgl1917 protein may refer to a protein having an ABC transporter permease activity derived from the genus Corynebacterium, but is not limited thereto.
- the amino acid sequence of the NCgl1917 protein is at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99 %, 99.5%, 99.7%, or 99.9% or more homology or identity to an amino acid sequence.
- a protein having an amino acid sequence in which some sequence is deleted, modified, substituted, conservatively substituted or added is also included within the scope of the present application. is self-evident
- amino acid sequence N-terminus, C-terminus and/or sequence additions or deletions that do not alter the function of the protein of the present application, naturally occurring mutations, silent mutations or conservation It is a case of having an enemy substitution.
- conservative substitution means substituting one amino acid with another amino acid having similar structural and/or chemical properties.
- the protein may have, for example, one or more conservative substitutions while still retaining one or more biological activities.
- Such amino acid substitutions may generally occur based on similarity in the polarity, charge, solubility, hydrophobicity, hydrophilicity and/or amphipathic nature of the residues.
- positively charged (basic) amino acids are arginine, lysine, and histidine
- negatively charged (acidic) amino acids are glutamic acid and arpartate.
- nonpolar amino acids include glycine, alanine, valine, leucine, isoleucine, methionine, phenylalanine, tryptophan and proline
- polar or hydrophilic ( hydrophilic) amino acids include serine, threonine, cysteine, tyrosine, asparagine and glutamine
- aromatic amino acids among the amino acids include phenylalanine, tryptophan and tyrosine.
- the term 'homology' or 'identity' refers to the degree of similarity between two given amino acid sequences or nucleotide sequences and may be expressed as a percentage.
- the terms homology and identity can often be used interchangeably.
- Sequence homology or identity of a conserved polynucleotide or protein is determined by standard alignment algorithms, with default gap penalties established by the program used may be used. Substantially homologous or identical sequences are generally capable of hybridizing with all or part of a sequence under moderate or high stringent conditions. It is apparent that hybridization also includes hybridization with polynucleotides containing common codons or codons taking codon degeneracy into account in the polynucleotide.
- a GAP program can be defined as the total number of symbols in the shorter of the two sequences divided by the number of similarly aligned symbols (ie, nucleotides or amino acids).
- Default parameters for the GAP program are: (1) a binary comparison matrix (containing values of 1 for identity and 0 for non-identity) and Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation , pp. 353-358 (1979), Gribskov et al (1986) Nucl. Acids Res. 14: weighted comparison matrix of 6745 (or EDNAFULL (EMBOSS version of NCBI NUC4.4) substitution matrix); (2) a penalty of 3.0 for each gap and an additional 0.10 penalty for each symbol in each gap (or a gap open penalty of 10, a gap extension penalty of 0.5); and (3) no penalty for end gaps.
- polynucleotide encoding the protein comprising the amino acid sequence of SEQ ID NO: 1 may be named Ncgl1917 gene.
- polynucleotide refers to a DNA or RNA strand of a certain length or more as a polymer of nucleotides in which nucleotide monomers are connected in a long chain form by covalent bonds. Specifically, it may be a polynucleotide fragment encoding the protein.
- the polynucleotide encoding the protein of the present application may include a nucleotide sequence encoding the amino acid sequence set forth in SEQ ID NO: 1.
- the polynucleotide of the present application may have or include the sequence of SEQ ID NO: 2.
- the polynucleotide of the present application may consist of, or consist essentially of, the sequence of SEQ ID NO: 2.
- the polynucleotide of the present application is various in the coding region within the range that does not change the amino acid sequence of the protein of the present application. Deformation can be made.
- the polynucleotide of the present application has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% homology or identity to the sequence of SEQ ID NO: 2 Having or including a nucleotide sequence that is more than, 98% or more, and less than 100%, or homology or identity with the sequence of SEQ ID NO: 2 is 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, and less than 100% of the nucleotide sequence may consist of or consist essentially of, but is not limited thereto.
- the polynucleotide of the present application is a probe that can be prepared from a known gene sequence, for example, a sequence that can hybridize under stringent conditions with a sequence complementary to all or part of the polynucleotide sequence of the present application, without limitation. may be included.
- the "stringent condition” means a condition that enables specific hybridization between polynucleotides. These conditions are described in J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989; F.M. Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York, 9.50-9.51, 11.7-11.8).
- polynucleotides with high homology or identity 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, or a condition in which polynucleotides having 99% or more homology or identity hybridize with each other and polynucleotides with lower homology or identity do not hybridize, or a washing condition of conventional Southern hybridization at 60°C, 1 ⁇ SSC, 0.1% SDS, specifically 60° C., 0.1 ⁇ SSC, 0.1% SDS, more specifically 68° C., 0.1 ⁇ SSC, 0.1% SDS at a salt concentration and temperature equivalent to one wash, specifically two to three times conditions can be enumerated.
- Hybridization requires that two nucleic acids have complementary sequences, although mismatch between bases is possible depending on the stringency of hybridization.
- complementary is used to describe the relationship between nucleotide bases capable of hybridizing to each other.
- adenine is complementary to thymine
- cytosine is complementary to guanine.
- the polynucleotides of the present application may also include substantially similar nucleic acid sequences as well as isolated nucleic acid fragments complementary to the overall sequence.
- a polynucleotide having homology or identity to the polynucleotide of the present application can be detected using the hybridization conditions including a hybridization step at a Tm value of 55°C and using the above-described conditions.
- the Tm value may be 60 °C, 63 °C, or 65 °C, but is not limited thereto and may be appropriately adjusted by those skilled in the art according to the purpose.
- the appropriate stringency for hybridizing the polynucleotides depends on the length of the polynucleotides and the degree of complementarity, and the parameters are well known in the art (eg, J. Sambrook et al., supra).
- microorganism or strain
- microorganism includes both wild-type microorganisms and microorganisms in which genetic modification has occurred naturally or artificially, and causes such as insertion of an external gene or enhanced or inactivated activity of an intrinsic gene
- a specific mechanism is weakened or enhanced as a microorganism, and may be a microorganism including genetic modification for the production of a desired protein, protein or product.
- the microorganism of the present application the activity of the protein comprising the amino acid sequence of SEQ ID NO: 1 of the present application is weakened microorganism; Microorganisms with weakened expression of a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO: 1 of the present application; Or it may be a microorganism (eg, a recombinant microorganism) genetically modified through a vector to weaken the activity of the protein comprising the amino acid sequence of SEQ ID NO: 1 of the present application, but is not limited thereto.
- the attenuation of the activity of the protein comprising the amino acid sequence of SEQ ID NO: 1 may be attenuated expression of the polynucleotide encoding the amino acid sequence of SEQ ID NO: 1 or the polynucleotide of SEQ ID NO: 2.
- the attenuation of the activity of the protein comprising the amino acid sequence of SEQ ID NO: 1 may be due to modification of the polynucleotide sequence, for example, insertion, deletion or substitution of nucleotides. However, it is not limited thereto.
- the microorganism of the present application may be a microorganism having the ability to produce L-amino acids.
- the activity of the protein containing the amino acid sequence of SEQ ID NO: 1 of the present application is weakened in the microorganism or the parent strain without L-amino acid production ability naturally having L-amino acid production ability, so that the L-amino acid production ability is It may be a given microorganism, but is not limited thereto.
- the microorganism of the present application is transformed through a vector so that the activity of the protein comprising the amino acid sequence of SEQ ID NO: 1 of the present application is weakened, and the activity of the protein comprising the amino acid sequence of SEQ ID NO: 1 is weakened strain or a microorganism.
- the microorganism is a natural wild-type microorganism or a microorganism that produces L-amino acids, the protein activity comprising the amino acid sequence of SEQ ID NO: 1 of the present application is weakened, It may be a microorganism having an increased ability to produce L-amino acids compared to a microorganism, or a microorganism in which the activity of a protein comprising the amino acid sequence of SEQ ID NO: 1 is not altered), but is not limited thereto.
- the non-modified microorganism which is the target strain for comparing the increase in L-amino acid production ability, is Corynebacterium glutamicum KCCM12502P (KR 10-2126951 B1), KCCM11222P (US 10590446 B2) or KCCM11248P (KR 10- 1335789 B1), but is not limited thereto.
- the strain with increased production capacity is about 1% or more, specifically about 1% or more, about 2.5% or more, about 5% or more, about 6 compared to the L-amino acid production capacity of the parent strain or unmodified microorganism before mutation.
- the recombinant strain with increased production capacity has an L-amino acid production capacity of about 1.1 times or more, about 1.12 times or more, about 1.13 times or more, 1.15 times or more, 1.16 times or more, compared to the parent strain or unmodified microorganism before mutation. , 1.17 times or more, 1.18 times or more, 1.19 times or more, 1.2 times or more, 1.25 times or more, 1.3 times or more, or 1.35 times or more, but is not limited thereto.
- the term "about” is a range including all of ⁇ 0.5, ⁇ 0.4, ⁇ 0.3, ⁇ 0.2, ⁇ 0.1, etc., including all numerical values in a range equal to or similar to the numerical value following the term about, but not limited
- the microorganism with increased L-amino acid production capacity of the present application has less than 100% activity of the protein comprising the amino acid sequence of SEQ ID NO: 1, for example, about 99.9 compared to the parent strain or unmodified microorganism before mutation. % or less, about 99% or less, about 98% or less, about 97% or less, about 96% or less, about 95% or less, about 90% or less, about 80% or less, about 70% or less, about 60% or less, about 50 % or less, about 40% or less, about 30% or less, about 20% or less, about 10% or less, about 5% or less, or about 0% or less.
- the term "unmodified microorganism” does not exclude a strain containing a mutation that can occur naturally in a microorganism, it is a wild-type strain or a natural-type strain itself, or a genetic variation caused by natural or artificial factors. It may mean the strain before being changed.
- the unmodified microorganism may refer to a microorganism before the activity of the protein comprising the amino acid sequence of SEQ ID NO: 1 described herein is weakened.
- the "unmodified microorganism” may be used interchangeably with "strain before modification", “microbe before modification”, “unmodified strain”, “unmodified strain”, "unmodified microorganism” or "reference microorganism”.
- the microorganism of the genus Corynebacterium of the present application is Corynebacterium glutamicum ( Corynebacterium glutamicum ), Corynebacterium crudilactis ), Corynebacterium deserti ( Corynebacterium deserti ), Corynebacterium efficiens ( Corynebacterium efficiens ), Corynebacterium callunae ( Corynebacterium callunae ), Corynebacterium stationis ( Corynebacterium stationis ), Corynebacterium singulare ( Corynebacterium singulare ) Corynebacterium halotolerans ( Corynebacterium halotolerans ), Corynebacterium striatum ( Corynebacterium striatum ), Corynebacterium ammoniagenes ( Corynebacterium ammoniagenes ), Corynebacterium pollutisoli ( Coryne
- the term "weakening" of a protein is a concept that includes both reduced or no activity compared to intrinsic activity.
- the attenuation may be used interchangeably with terms such as inactivation, deficiency, down-regulation, decrease, reduce, attenuation, and the like.
- the attenuation is when the activity of the protein itself is reduced or eliminated compared to the activity of the protein possessed by the original microorganism due to mutation of the polynucleotide encoding the protein, etc. )
- the overall protein activity level and/or concentration (expression amount) in the cell is lower than that of the native strain due to inhibition, etc., when the polynucleotide is not expressed at all, and/or even if the polynucleotide is expressed, the protein It can also be included when there is no activity of.
- the "intrinsic activity” refers to the activity of a specific protein originally possessed by the parent strain, wild-type or unmodified microorganism before transformation when the trait is changed due to genetic mutation caused by natural or artificial factors.
- the attenuation of the protein activity may be performed by any method known in the art, but is not limited thereto, and may be achieved by application of various methods well known in the art (eg, Nakashima N et al., Bacterial cellular engineering by genome editing and gene silencing. Int J Mol Sci. 2014;15(2):2773-2793, Sambrook et al. Molecular Cloning 2012, etc.).
- the attenuation of the protein of the present application is
- modification of the gene sequence encoding the protein to remove or attenuate the activity of the protein eg, one or more nucleotides on the nucleotide sequence of the protein gene to encode the modified protein to remove or attenuate the activity of the protein) deletion/replacement/addition of);
- an antisense oligonucleotide eg, antisense RNA
- an antisense oligonucleotide that complementarily binds to the transcript of the gene encoding the protein
- deletion of a part or all of the gene encoding the protein may be the removal of the entire polynucleotide encoding the endogenous target protein in the chromosome, replacement with a polynucleotide in which some nucleotides are deleted, or replacement with a marker gene.
- the expression control region includes, but is not limited to, a promoter, an operator sequence, a sequence encoding a ribosome binding site, and a sequence regulating the termination of transcription and translation.
- the base sequence modification encoding the start codon or 5'-UTR region of the gene transcript encoding the protein for example, encodes another start codon having a lower protein expression rate than the intrinsic start codon. It may be substituted with a nucleotide sequence, but is not limited thereto.
- the modification of the amino acid sequence or polynucleotide sequence of 4) and 5) above deletes, inserts, non-conservative or conservative substitution of the amino acid sequence of the protein or the polynucleotide sequence encoding the protein to weaken the activity of the protein. Or a combination thereof may result in a mutation in sequence, or replacement with an amino acid sequence or polynucleotide sequence improved to have weaker activity or an amino acid sequence or polynucleotide sequence improved to have no activity, but is not limited thereto.
- the expression of a gene can be inhibited or attenuated.
- a transposon may be inserted into the polynucleotide sequence, thereby weakening the expression of the polynucleotide or weakening the activity of a protein encoded by the polynucleotide sequence.
- a transposon may be inserted into the polynucleotide sequence, thereby weakening the expression of the polynucleotide or weakening the activity of a protein encoded by the polynucleotide sequence.
- antisense oligonucleotide eg, antisense RNA
- antisense RNA an antisense oligonucleotide that complementarily binds to the transcript of the gene encoding the protein
- RTE reverse transcription engineering
- the term "vector” refers to a DNA comprising a nucleotide sequence of a polynucleotide encoding a target polypeptide operably linked to a suitable expression control region (or expression control sequence) so that the target polypeptide can be expressed in a suitable host. preparations may be included.
- the expression control region may include a promoter capable of initiating transcription, an optional operator sequence for regulating such transcription, a sequence encoding a suitable mRNA ribosome binding site, and a sequence regulating the termination of transcription and translation. After transformation into an appropriate host cell, the vector can replicate or function independently of the host genome, and can be integrated into the genome itself.
- the vector used in the present application is not particularly limited, and any vector known in the art may be used.
- Examples of commonly used vectors include plasmids, cosmids, viruses and bacteriophages in a natural or recombinant state.
- pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, and Charon21A may be used as phage vectors or cosmid vectors, and pDZ-based, pBR-based, and pUC-based plasmid vectors may be used.
- pBluescript II-based pGEM-based, pTZ-based, pCL-based, pET-based and the like
- pDZ pDC, pDCM2, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC vectors and the like
- pC1BAC vectors and the like can be used.
- a polynucleotide encoding a target polypeptide may be inserted into a chromosome through a vector for intracellular chromosome insertion.
- the insertion of the polynucleotide into the chromosome may be performed by any method known in the art, for example, homologous recombination, but is not limited thereto.
- It may further include a selection marker (selection marker) for confirming whether the chromosome is inserted.
- the selection marker is used to select cells transformed with the vector, that is, to determine whether a target nucleic acid molecule is inserted, and selectable phenotypes such as drug resistance, auxotrophy, resistance to cytotoxic agents, or surface polypeptide expression. Markers to be given can be used. In an environment treated with a selective agent, only the cells expressing the selectable marker survive or exhibit other expression traits, so that the transformed cells can be selected.
- the term "transformation” refers to introducing a vector including a polynucleotide encoding a target polypeptide into a host cell or microorganism so that the polypeptide encoded by the polynucleotide can be expressed in the host cell.
- the transformed polynucleotide may include all of them regardless of whether they are inserted into the chromosome of the host cell or located outside the chromosome, as long as they can be expressed in the host cell.
- the polynucleotide includes DNA and/or RNA encoding a target polypeptide.
- the polynucleotide may be introduced in any form as long as it can be introduced and expressed into a host cell.
- the polynucleotide may be introduced into a host cell in the form of an expression cassette, which is a gene construct including all elements necessary for self-expression.
- the expression cassette may include a promoter operably linked to the polynucleotide, a transcription termination signal, a ribosome binding site, and a translation termination signal.
- the expression cassette may be in the form of an expression vector capable of self-replication.
- the polynucleotide may be introduced into a host cell in its own form and operably linked to a sequence required for expression in the host cell, but is not limited thereto.
- operably linked means that a promoter sequence that initiates and mediates transcription of a polynucleotide encoding a target protein and the polynucleotide sequence are functionally linked.
- Part or all of the polynucleotide in the microorganism of the present application is modified by (a) homologous recombination using a vector for chromosome insertion in the microorganism or genome editing using engineered nuclease (e.g., CRISPR-Cas9) and/or (b) It may be induced by light and/or chemical treatments such as, but not limited to, ultraviolet and radiation.
- the method for modifying part or all of the gene may include a method by DNA recombination technology.
- a part or all of the gene may be deleted.
- the injected nucleotide sequence or vector may include a dominant selection marker, but is not limited thereto.
- Another aspect of the present application provides a method for producing L- amino acids, comprising culturing a recombinant microorganism of the genus Corynebacterium in which the activity of a protein comprising the amino acid sequence of SEQ ID NO: 1 is weakened in a medium.
- Proteins, attenuated microorganisms, and the like comprising the amino acid sequence of SEQ ID NO: 1 are the same as those described in the other embodiments.
- the microorganism of the genus Corynebacterium may be Corynebacterium glutamicum, but is not limited thereto, and this is the same as described in other embodiments.
- the L-amino acid may be one or more amino acids selected from L-threonine and L-isoleucine, but is not limited thereto.
- the term "cultivation” means growing the microorganisms of the genus Corynebacterium of the present application in appropriately controlled environmental conditions.
- the culture process of the present application may be performed according to a suitable medium and culture conditions known in the art. Such a culture process can be easily adjusted and used by those skilled in the art according to the selected strain.
- the culture may be a batch, continuous and/or fed-batch, but is not limited thereto.
- the term "medium” refers to a material in which nutrients required for culturing the microorganism of the genus Corynebacterium of the present application are mixed as a main component, and includes water essential for survival and development, as well as nutrients and development supplies, etc.
- any medium and other culture conditions used for culturing the microorganisms of the genus Corynebacterium of the present application may be used without particular limitation as long as they are media used for culturing conventional microorganisms, but the genus Corynebacterium of the present application
- the microorganisms can be cultured in a conventional medium containing an appropriate carbon source, nitrogen source, phosphorus, inorganic compound, amino acid and/or vitamin, etc. under aerobic conditions while controlling temperature, pH, and the like.
- the culture medium for microorganisms of the genus Corynebacterium can be found in the literature ["Manual of Methods for General Bacteriology” by the American Society for Bacteriology (Washington D.C., USA, 1981)].
- the carbon source includes carbohydrates such as glucose, saccharose, lactose, fructose, sucrose, maltose, and the like; sugar alcohols such as mannitol and sorbitol; organic acids such as pyruvic acid, lactic acid, citric acid and the like; amino acids such as glutamic acid, methionine, lysine, and the like may be included.
- natural organic nutrient sources such as starch hydrolyzate, molasses, blackstrap molasses, rice winter, cassava, sugar cane offal and corn steep liquor can be used, specifically glucose and sterilized pre-treated molasses (i.e., converted to reducing sugar). molasses) may be used, and other appropriate amounts of carbon sources may be variously used without limitation. These carbon sources may be used alone or in combination of two or more, but is not limited thereto.
- nitrogen source examples include inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, anmonium carbonate, and ammonium nitrate; Amino acids such as glutamic acid, methionine, glutamine, and organic nitrogen sources such as peptone, NZ-amine, meat extract, yeast extract, malt extract, corn steep liquor, casein hydrolyzate, fish or degradation products thereof, defatted soybean cake or degradation products thereof, etc. can be used These nitrogen sources may be used alone or in combination of two or more, but is not limited thereto.
- inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, anmonium carbonate, and ammonium nitrate
- Amino acids such as glutamic acid, methionine, glutamine
- organic nitrogen sources such as peptone, NZ-amine, meat extract, yeast extract
- the phosphorus may include potassium first potassium phosphate, second potassium phosphate, or a sodium-containing salt corresponding thereto.
- potassium first potassium phosphate potassium phosphate
- second potassium phosphate or a sodium-containing salt corresponding thereto.
- sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate, calcium carbonate, etc. may be used, and in addition, amino acids, vitamins and/or suitable precursors may be included. These components or precursors may be added to the medium either batchwise or continuously. However, the present invention is not limited thereto.
- compounds such as ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid, sulfuric acid, etc. may be added to the medium in an appropriate manner to adjust the pH of the medium.
- an antifoaming agent such as fatty acid polyglycol ester may be used to suppress bubble formation.
- oxygen or oxygen-containing gas may be injected into the medium, or nitrogen, hydrogen or carbon dioxide gas may be injected without or without gas to maintain anaerobic and microaerobic conditions, it is not
- the culture temperature may be maintained at 20 to 45° C., specifically, 25 to 40° C., and may be cultured for about 10 to 160 hours, but is not limited thereto.
- the L-amino acid prepared by the culture of the present application may be secreted into the medium or may remain in the cell.
- the L-amino acid production method of the present application includes the steps of preparing the microorganism of the genus Corynebacterium of the present application, preparing a medium for culturing the microorganism, or a combination thereof (regardless of the order, in any order) , for example, prior to the culturing step, may further include.
- the method for producing L-amino acids of the present application may further include recovering L-amino acids from the culture medium (the culture medium) or the microorganisms of the genus Corynebacterium.
- the recovering step may be further included after the culturing step.
- the recovery may be to collect the desired L-amino acid using a suitable method known in the art according to the culture method of the microorganism of the present application, for example, a batch, continuous or fed-batch culture method, etc. .
- a suitable method known in the art according to the culture method of the microorganism of the present application, for example, a batch, continuous or fed-batch culture method, etc. .
- chromatography such as island chromatography, HPLC, or a combination thereof may be used, and a desired L-amino acid may be recovered from a medium or a microorganism using a suitable method known in the art.
- the L-amino acid production method of the present application may include an additional purification step.
- the purification may be performed using a suitable method known in the art.
- the recovery step and the purification step are performed continuously or discontinuously, regardless of the order, or integrated into one step may be performed, but is not limited thereto.
- Another aspect of the present application is a microorganism of the genus Corynebacterium with weakened activity of a protein comprising the amino acid sequence of SEQ ID NO: 1 of the present application; the culture medium; Or to provide a composition for preparing L- amino acids comprising a combination thereof.
- the protein comprising the amino acid sequence of SEQ ID NO: 1, attenuated, microbial medium, and L-amino acid are the same as those described in the other embodiments.
- composition of the present application may further include any suitable excipients commonly used in compositions for the production of amino acids, and these excipients may be, for example, preservatives, wetting agents, dispersing agents, suspending agents, buffering agents, stabilizing agents or isotonic agents, etc.
- excipients commonly used in compositions for the production of amino acids
- these excipients may be, for example, preservatives, wetting agents, dispersing agents, suspending agents, buffering agents, stabilizing agents or isotonic agents, etc.
- the present invention is not limited thereto.
- the protein, attenuation, microorganism, medium and L-amino acid including the amino acid sequence of SEQ ID NO: 1 are the same as those described in the other aspects above.
- Another aspect of the present application provides a method for producing a microorganism of the genus Corynebacterium for producing L-amino acids, comprising the step of weakening the activity of a protein comprising the amino acid sequence of SEQ ID NO: 1.
- the preparation method may include modifying the microorganism to weaken the activity of the protein comprising the amino acid sequence of SEQ ID NO: 1.
- Another aspect of the present application provides a use of L- amino acid production of a microorganism of the genus Corynebacterium, wherein the activity of a protein comprising the amino acid sequence of SEQ ID NO: 1 is weakened.
- Proteins, attenuated microorganisms and L-amino acids including the amino acid sequence of SEQ ID NO: 1 are the same as those described in the other embodiments.
- a random mutant library was prepared by the following method.
- the plasmid obtained using the EZ-Tn5TM ⁇ R6K ⁇ ori/KAN-2> TnP TransposomeTM Kit (Epicentre) was electrophoresed using the Corynebacterium glutamicum KCCM12502P strain (Korea Patent No. 10-2126951) as the parent strain.
- About 20,000 colonies were obtained by transformation by the pulse method (Appl. Microbiol. Biotecenol. (1999) 52:541-545) and plated on a complex plate medium containing kanamycin (25 mg/l).
- Glucose 10 g Peptone 10 g, Beef extract 5 g, yeast extract 5 g, Brain Heart Infusion 18.5 g, NaCl 2.5 g, urea 2 g, Sorbitiol 91 g, agar 20 g (based on 1 liter of distilled water)
- Example 1 About 20,000 colonies obtained in Example 1 were inoculated into the following selection medium containing 300 uL of kanamycin (25 mg/l), respectively, and in a 96-deep well plate at 32 ° C. at 200 rpm. Incubated for 24 hours.
- Glucose 10 g (NH4)2SO4 5.5 g, MgSO4 7H2O 1.2 g, KH2PO4 0.8 g, K2HPO4 16.4 g, biotin 100 ug, thiamine HCL 1000 ug, calcium-pantothenic acid 2000 ug, nicotinamide 2000 ug (based on 1 liter of distilled water)
- the ninhydrin method was used (Moore, S., Stein, W. H., Photometric ninhydrin method for use in the chromatography of amino acids. J. Biol. Chem. 1948, 176, 367-388). After the culture was completed, 10 ul of the culture supernatant and 190 ul of the ninhydrin reaction solution were reacted for 30 minutes at 65° C. About 60 colonies were selected as mutant strains showing high absorbance compared to the Coomb KCCM12502P strain. Other colonies showed absorbance similar to or reduced with the Corynebacterium glutamicum KCCM12502P strain used as a control.
- the selected about 60 strains were cultured again in the same way as above, and then the ninhydrin reaction was repeated.
- L-threonine production ability was improved compared to the parent strain, Corynebacterium glutamicum KCCM12502P strain
- the top 10 mutants were selected and divided into 12502P-m1, 12502P-m2, 12502P-m3, 12502P-m4, 12502P-m5, 12502P-m6, 12502P-m7, 12502P-m8, 12502P-m9, 12502P-m10, respectively. named.
- flask culture was performed using the following medium.
- the production of L-threonine was measured by culturing in the following manner. First, each strain was inoculated into a 250 ml corner-baffle flask containing 25 ml of a species medium containing kanamycin (25 mg/l), and cultured with shaking at 30° C. for 20 hours at 200 rpm. Then, 1 ml of the seed culture was inoculated into a 250 ml corner-baffle flask containing 24 ml of a production medium containing kanamycin (25 mg/l) and cultured with shaking at 32° C. for 72 hours at 200 rpm.
- the composition of the species medium and the production medium is as follows, respectively, and the culture results are shown in Table 1.
- 12502P-m6 was finally selected as a strain with significantly improved L-threonine production capacity among the 10 selected mutants.
- Genomic DNA of 12502P-m6 was extracted, cut, ligated, transformed into E. coli DH5 ⁇ , and plated on LB solid medium containing kanamycin (25 mg/l). After selecting 20 transformed colonies, a plasmid containing a part of an unknown gene was obtained, and primer SEQ ID NO: 3 and primer SEQ ID NO: 4 of the EZ-Tn5TM ⁇ R6K ⁇ ori/KAN-2> TnP TransposomeTM Kit were used.
- the gene including the nucleotide sequence of SEQ ID NO: 2 was inactivated based on the nucleotide sequence reported to the National Institutes of Health (NIH Geneback), and the amino acid sequence of SEQ ID NO: 1 was inactivated. It was found that the activity of the containing protein was weakened.
- Example 5 Construction of a recombinant vector and strain for attenuating protein activity comprising the amino acid sequence of SEQ ID NO: 1
- a recombinant vector capable of deleting the gene including the nucleotide sequence of SEQ ID NO: 2 identified in Example 4 on the chromosome of the Corynebacterium sp. strain was prepared by the following method. First, using the genomic DNA extracted from the WT strain as a template, primers of SEQ ID NOs: 5 and 6 were synthesized in which a restriction enzyme SmaI recognition site was inserted into the 5' fragment at a position 249 bp away from the front of the Ncgl1917 gene.
- primers SEQ ID NOs: 7 and 8 in which a restriction enzyme SmaI recognition site was inserted into the 3' fragment at a position 410 bp away from the rear of the Ncgl1917 gene were synthesized (Table 3).
- primer sequence (5' -> 3') SEQ ID NO: 5 ACGGCCAGTGAATTCGAGCTCGGTACCCATGCCTAATAATGAATTCCA SEQ ID NO: 6 TGGTCCAGCCGAAAAGCCCAAGCACCACCGCAGAGACCCAGAACAGT SEQ ID NO: 7 GTGGTGCTTGGGCTTTTCGG SEQ ID NO: 8 TGCAGGTCGACTCTAGAGGATCCCCTCATCGCTTCCTCGACTTAG
- PCR (Sambrook et al, Molecular Cloning, a Laboratory Manual (1989), Cold Spring Harbor Laboratories] was performed using the chromosomal DNA of wild-type Corynebacterium glutamicum ATCC 13032 as a template. From this, a DNA fragment of 249 bp at the top and 410 bp at the bottom of the portion encoding the protein encoded by the nucleotide sequence of SEQ ID NO: 2 was obtained. At this time, PCR conditions were denatured at 94°C for 2 minutes, denatured at 94°C for 1 minute, annealed at 56°C for 1 minute, and polymerization was repeated 30 times at 72°C for 40 seconds, followed by polymerization at 72°C for 10 minutes.
- the pDCM2 vector (KR 10-2020-0136813 A), which was treated with restriction enzyme SmaI and heat-treated at 65° C. for 20 minutes, and the inserted DNA fragment amplified through the PCR were ligated using the Infusion Cloning Kit, and then transformed into E. coli DH5 ⁇ . switched.
- the strain was plated on LB solid medium containing kanamycin (25 mg/l). After selecting colonies transformed with the vector into which the desired gene was inserted through PCR using primers SEQ ID NOs: 5 and 8, plasmids were obtained using a commonly known plasmid extraction method. This plasmid was named pDCM2- ⁇ Ncgl1917.
- the constructed vector was transformed into a Corynebacterium glutamicum KCCM12502P strain producing threonine by an electric pulse method.
- the strain in which the Ncgl1917 gene was inactivated in the KCCM12502P strain was named KCCM12502P:: ⁇ 1917.
- Example 6 Corynebacterium glutamicum KCCM12502P-derived, L-threonine production capacity evaluation of a strain with weakened activity of a protein comprising the amino acid sequence of SEQ ID NO: 1
- the L-threonine-producing strain is effective in increasing the L-threonine-producing ability by inactivating the protein comprising the amino acid sequence of SEQ ID NO: 1 in the L-threonine-producing strain
- the strain KCCM12502P:: ⁇ 1917 was named CA09-0907 and made an international deposit to the Korea Center for Microorganisms Conservation (KCCM) on February 1, 2021, and was given an accession number as KCCM12946P.
- Example 7 Corynebacterium glutamicum KCCM11222P-derived, production of a strain with weakened activity of a protein comprising the amino acid sequence of SEQ ID NO: 1 and evaluation of L-threonine production ability
- Example 8 Corynebacterium glutamicum KCCM11248P-derived, production of a strain with weakened activity of a protein comprising the amino acid sequence of SEQ ID NO: 1 and evaluation of L-isoleucine production ability
- the L-isoleucine-producing strain Coryne in the same manner as in Example 5.
- Bacterium glutamicum KCCM11248P (Republic of Korea Patent No. 10-1335789) to prepare a strain in which the gene containing the nucleotide sequence of SEQ ID NO: 2 is deleted and named as KCCM11248P:: ⁇ 1917.
- flask culture was performed using the following medium.
- each strain was inoculated into a 250 ml corner-baffle flask containing 25 ml of a seed medium, and cultured with shaking at 30° C. for 20 hours at 200 rpm. Then, a 250 ml corner-baffle flask containing 24 ml of production medium was inoculated with 1 ml of the seed culture and cultured with shaking at 32° C. for 72 hours at 200 rpm.
- the composition of the species medium and the production medium is as follows, respectively, and the culture results are shown in Table 6.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
균주 | L-쓰레오닌(g/L) | ||||
배치 1 | 배치 2 | 배치 3 | 평균 | ||
대조군 | KCCM12502P | 3.42 | 3.48 | 3.32 | 3.40 |
1 | 12502P-m1 | 3.38 | 3.58 | 3.44 | 3.46 |
2 | 12502P-m2 | 3.76 | 3.86 | 3.82 | 3.82 |
3 | 12502P-m3 | 3.66 | 3.62 | 3.65 | 3.65 |
4 | 12502P-m4 | 3.18 | 3.31 | 3.2 | 3.23 |
5 | 12502P-m5 | 3.28 | 3.34 | 3.35 | 3.33 |
6 | 12502P-m6 | 4.42 | 4.28 | 4.33 | 4.34 |
7 | 12502P-m7 | 3.72 | 3.72 | 3.62 | 3.68 |
8 | 12502P-m8 | 3.91 | 4.01 | 3.84 | 3.92 |
9 | 12502P-m9 | 3.81 | 3.72 | 3.79 | 3.78 |
10 | 12502P-m10 | 4.08 | 3.99 | 3.98 | 4.01 |
프라이머 | 서열 (5' -> 3') |
서열번호 3 | ACCTACAACAAAGCTCTCATCAACC |
서열번호 4 | CTACCCTGTGGAACACCTACATCT |
프라이머 | 서열 (5' -> 3') |
서열번호 5 | ACGGCCAGTGAATTCGAGCTCGGTACCCATGCCTAATAATGAATTCCA |
서열번호 6 | TGGTCCAGCCGAAAAGCCCAAGCACCACCGCAGAGACCCAGAACAGT |
서열번호 7 | GTGGTGCTTGGGCTTTTCGG |
서열번호 8 | TGCAGGTCGACTCTAGAGGATCCCCTCATCGCTTCCTCGACTTAG |
균주 | L-쓰레오닌(g/L) | ||||
배치 1 | 배치 2 | 배치 3 | 평균 | ||
대조군 | KCCM12502P | 3.33 | 3.28 | 3.31 | 3.31 |
1 | KCCM12502P::Δ1917 | 4.46 | 4.38 | 4.41 | 4.42 |
균주 | L-쓰레오닌(g/L) | ||||
배치 1 | 배치 2 | 배치 3 | 평균 | ||
대조군 | KCCM11222P | 7.10 | 7.14 | 7.12 | 7.12 |
1 | KCCM11222P::Δ1917 | 8.08 | 8.01 | 8.03 | 8.04 |
균주 | L-이소류신(g/L) | ||||
배치 1 | 배치 2 | 배치 3 | 평균 | ||
대조군 | KCCM11248P | 3.26 | 3.18 | 3.21 | 3.21 |
1 | KCCM11248P::Δ1917 | 4.07 | 4.07 | 4.11 | 4.08 |
Claims (11)
- 서열번호 1의 아미노산 서열을 포함하는 단백질의 활성이 약화된, 코리네박테리움 속 미생물.
- 제 1항에 있어서, 상기 코리네박테리움 속 미생물은 L-아미노산을 생산하는 것인, 코리네박테리움 속 미생물.
- 제1항에 있어서, 상기 코리네박테리움 속 미생물은 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)인 것인, 코리네박테리움 속 미생물.
- 제2항에 있어서, 상기 L-아미노산은 L-쓰레오닌 및 L-이소류신 중에서 선택되는 1 이상인 것인, 코리네박테리움 속 미생물.
- 제1항에 있어서, 상기 미생물은 서열번호 1의 아미노산 서열을 포함하는 단백질의 활성이 약화되지 않은 미생물에 비해 L-아미노산 생산능이 증가된 것인, 코리네박테리움 속 미생물.
- 제1항 내지 제5항 중 어느 한 항의 코리네박테리움 속 미생물을 배지에서 배양하는 단계를 포함하는, L-아미노산 제조방법.
- 제6항에 있어서, 상기 코리네박테리움 속 미생물은 코리네박테리움 글루타미쿰인 것인, 제조방법.
- 제6항에 있어서, 상기 L-아미노산은 L-쓰레오닌 및 L-이소류신 중에서 선택되는 1 이상인 것인, 제조방법.
- 제6항에 있어서, 상기 제조방법은 상기 미생물 또는 배지로부터 L-아미노산을 회수하는 단계를 추가적으로 포함하는 것인, 제조방법.
- 제1항 내지 제5항 중 어느 한 항의 미생물; 이를 배양한 배지; 또는 이들의 조합을 포함하는, L-아미노산 생산용 조성물.
- 제10항에 있어서, 상기 L-아미노산은 L-쓰레오닌 및 L-이소류신 중에서 선택되는 1 이상인 것인, L-아미노산 생산용 조성물.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2022260752A AU2022260752A1 (en) | 2021-04-20 | 2022-04-14 | L-amino-acid-producing corynebacterium sp. microorganism, and method for producing l-amino acids by using same |
JP2023558681A JP2024510838A (ja) | 2021-04-20 | 2022-04-14 | L-アミノ酸を生産するコリネバクテリウム属微生物及びそれを用いたl-アミノ酸の生産方法 |
EP22791954.5A EP4306645A1 (en) | 2021-04-20 | 2022-04-14 | L-amino-acid-producing corynebacterium sp. microorganism, and method for producing l-amino acids by using same |
BR112023019851A BR112023019851A2 (pt) | 2021-04-20 | 2022-04-14 | Microrganismo de corynebacterium sp. produtor de l-aminoácido e método para produzir l-aminoácidos usando o mesmo |
MX2023012155A MX2023012155A (es) | 2021-04-20 | 2022-04-14 | Microorganismo de la especie corynebacterium que produce l-aminoacidos y procedimiento de produccion de l-aminoacidos mediante el uso del mismo. |
CN202280029877.6A CN117813386A (zh) | 2021-04-20 | 2022-04-14 | 产l-氨基酸棒状杆菌属微生物及使用其生产l-氨基酸的方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210051233A KR102635860B1 (ko) | 2021-04-20 | 2021-04-20 | L-아미노산을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-아미노산의 생산 방법 |
KR10-2021-0051233 | 2021-04-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022225254A1 true WO2022225254A1 (ko) | 2022-10-27 |
Family
ID=83722507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2022/005385 WO2022225254A1 (ko) | 2021-04-20 | 2022-04-14 | L-아미노산을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-아미노산의 생산 방법 |
Country Status (9)
Country | Link |
---|---|
EP (1) | EP4306645A1 (ko) |
JP (1) | JP2024510838A (ko) |
KR (1) | KR102635860B1 (ko) |
CN (1) | CN117813386A (ko) |
AR (1) | AR125387A1 (ko) |
AU (1) | AU2022260752A1 (ko) |
BR (1) | BR112023019851A2 (ko) |
MX (1) | MX2023012155A (ko) |
WO (1) | WO2022225254A1 (ko) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100816472B1 (ko) * | 2006-12-21 | 2008-03-26 | 씨제이제일제당 (주) | 글루타메이트 에이비씨-타입 트랜스포터 활성이 결실된코리네박테리아 및 이를 이용한 엘-라이신 생산방법 |
KR20090069572A (ko) * | 2007-12-26 | 2009-07-01 | 씨제이제일제당 (주) | Abc-트랜스포터를 코딩하는 유전자가 불활성화된코리네박테리움 속 미생물 및 이를 이용한 5'-이노신산의제조방법 |
US8048650B2 (en) | 2006-12-29 | 2011-11-01 | Cj Cheiljedang Corporation | Microorganism of Corynebacterium genus having enhanced L-lysine productivity and a method of producing L-lysine using the same |
KR101335789B1 (ko) | 2012-01-13 | 2013-12-02 | 씨제이제일제당 (주) | L-이소루신을 생산하는 미생물 및 이를 이용한 l-이소루신 제조방법 |
US20180100168A1 (en) * | 2015-04-21 | 2018-04-12 | Nutech Ventures | Mutant microorganisms and methods of making and using |
US10590446B2 (en) | 2011-12-01 | 2020-03-17 | Cj Cheiljedang Corporation | Microorganism for simultaneously producing L-amino acid and riboflavin, and method for producing L-amino acid and riboflavin using same |
KR102126951B1 (ko) | 2019-09-26 | 2020-06-26 | 씨제이제일제당 주식회사 | 디하이드로디피콜린산 리덕타제 변이형 폴리펩티드 및 이를 이용한 l-쓰레오닌 생산방법 |
KR20200136813A (ko) | 2020-03-17 | 2020-12-08 | 씨제이제일제당 (주) | 프리페네이트 디하이드라타아제 활성 강화를 통한 l-트립토판을 생산하는 방법 |
-
2021
- 2021-04-20 KR KR1020210051233A patent/KR102635860B1/ko active IP Right Grant
-
2022
- 2022-04-14 MX MX2023012155A patent/MX2023012155A/es unknown
- 2022-04-14 JP JP2023558681A patent/JP2024510838A/ja active Pending
- 2022-04-14 CN CN202280029877.6A patent/CN117813386A/zh active Pending
- 2022-04-14 BR BR112023019851A patent/BR112023019851A2/pt unknown
- 2022-04-14 EP EP22791954.5A patent/EP4306645A1/en active Pending
- 2022-04-14 WO PCT/KR2022/005385 patent/WO2022225254A1/ko active Application Filing
- 2022-04-14 AU AU2022260752A patent/AU2022260752A1/en active Pending
- 2022-04-20 AR ARP220101014A patent/AR125387A1/es unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100816472B1 (ko) * | 2006-12-21 | 2008-03-26 | 씨제이제일제당 (주) | 글루타메이트 에이비씨-타입 트랜스포터 활성이 결실된코리네박테리아 및 이를 이용한 엘-라이신 생산방법 |
US8048650B2 (en) | 2006-12-29 | 2011-11-01 | Cj Cheiljedang Corporation | Microorganism of Corynebacterium genus having enhanced L-lysine productivity and a method of producing L-lysine using the same |
KR20090069572A (ko) * | 2007-12-26 | 2009-07-01 | 씨제이제일제당 (주) | Abc-트랜스포터를 코딩하는 유전자가 불활성화된코리네박테리움 속 미생물 및 이를 이용한 5'-이노신산의제조방법 |
US10590446B2 (en) | 2011-12-01 | 2020-03-17 | Cj Cheiljedang Corporation | Microorganism for simultaneously producing L-amino acid and riboflavin, and method for producing L-amino acid and riboflavin using same |
KR101335789B1 (ko) | 2012-01-13 | 2013-12-02 | 씨제이제일제당 (주) | L-이소루신을 생산하는 미생물 및 이를 이용한 l-이소루신 제조방법 |
US20180100168A1 (en) * | 2015-04-21 | 2018-04-12 | Nutech Ventures | Mutant microorganisms and methods of making and using |
KR102126951B1 (ko) | 2019-09-26 | 2020-06-26 | 씨제이제일제당 주식회사 | 디하이드로디피콜린산 리덕타제 변이형 폴리펩티드 및 이를 이용한 l-쓰레오닌 생산방법 |
KR20200136813A (ko) | 2020-03-17 | 2020-12-08 | 씨제이제일제당 (주) | 프리페네이트 디하이드라타아제 활성 강화를 통한 l-트립토판을 생산하는 방법 |
Non-Patent Citations (21)
Title |
---|
"Atlas Of Protein Sequence and Structure", 1979, NATIONAL BIOMEDICAL RESEARCH FOUNDATION, pages: 353 - 358 |
"Guide to Huge Computers", 1994, ACADEMIC PRESS |
"Manual of Methods for General Bacteriology", 1981, AMERICAN SOCIETY FOR BACTERIOLOGY |
"NCBI", Database accession no. WP_00628421 1 |
APPL. MICROBIOL. BIOTECHNOL, vol. 52, 1999, pages 541 - 545 |
ATSCHUL, S. F ET AL., J MOLEC BIOL, vol. 215, 1990, pages 403 |
CARILLO ET AL., SIAM J APPLIED MATH, vol. 48, 1988, pages 1073 |
DATABASE PROTEIN 17 April 2020 (2020-04-17), ANONYMOUS : "MULTISPECIES: ABC transporter permease [Corynebacterium]", XP055978289, retrieved from NCBI Database accession no. WP_006284211.1 * |
DEVEREUX, J ET AL., NUCLEIC ACIDS RESEARCH, vol. 12, 1984, pages 387 |
GRIBSKOV ET AL., NUCL. ACIDS RES, vol. 14, 1986, pages 6745 |
J. BIOL. CHEM., vol. 176, 1948, pages 367 - 388 |
J. SAMBROOK ET AL.: "Molecular Cloning, A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS, article "Molecular Cloning" |
NAKASHIMA N ET AL.: "Bacterial cellular engineering by genome editing and gene silencing", INT J MOL SCI, vol. 15, no. 2, 2014, pages 2773 - 2793, XP055376889, DOI: 10.3390/ijms15022773 |
NEEDLEMAN ET AL., J MOL BIOL, vol. 48, 1970, pages 443 |
NEEDLEMANWUNSCH, J. MOL. BIOL., vol. 48, 1970, pages 443 - 453 |
PEARSON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 2444 |
RICE ET AL.: "EMBOSS: The European Molecular Biology Open Software Suite", TRENDS GENET, vol. 16, 2000, pages 276 - 277, XP004200114, DOI: 10.1016/S0168-9525(00)02024-2 |
SAMBROOK ET AL., MOLECULAR CLONING, 2012 |
WANG SHUAIWEN, FANG YU, WANG ZHEN, ZHANG SHUYAN, WANG LIANGJIA, GUO YONG, WANG XIAOYUAN: "Improving l-threonine production in Escherichia coli by elimination of transporters ProP and ProVWX", MICROBIAL CELL FACTORIES, vol. 20, no. 1, 1 December 2021 (2021-12-01), pages 58, XP055978286, DOI: 10.1186/s12934-021-01546-x * |
WATERMAN, ADV. APPL. MATH, vol. 2, 1981, pages 482 |
WEINTRAUB, H ET AL.: "Antisense-RNA as a molecular tool for genetic analysis", REVIEWS - TRENDS IN GENETICS, vol. 1, no. 1, 1986 |
Also Published As
Publication number | Publication date |
---|---|
KR20220144650A (ko) | 2022-10-27 |
MX2023012155A (es) | 2023-10-26 |
AR125387A1 (es) | 2023-07-12 |
CN117813386A (zh) | 2024-04-02 |
JP2024510838A (ja) | 2024-03-11 |
EP4306645A1 (en) | 2024-01-17 |
BR112023019851A2 (pt) | 2023-11-07 |
AU2022260752A1 (en) | 2023-10-05 |
KR102635860B1 (ko) | 2024-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022163934A1 (ko) | 신규한 d-알라닌-d-알라닌 리가아제 a 변이체 및 이를 이용한 l-글루탐산 생산 방법 | |
WO2022163933A1 (ko) | 신규한 abc 트랜스포터 atp-결합 단백질 변이체 및 이를 이용한 l-글루탐산 생산 방법 | |
WO2022163917A1 (ko) | 신규한 단백질 변이체 및 이를 이용한 l-발린 생산 방법 | |
WO2022216088A1 (ko) | L-아르기닌을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-아르기닌 생산방법 | |
WO2022163922A1 (ko) | 신규한 아스파라긴 신타제 변이체 및 이를 이용한 l-발린 생산 방법 | |
WO2022163923A1 (ko) | 신규한 atp 포스포리보실트랜스퍼라제 변이체 및 이를 이용한 l-발린 생산 방법 | |
WO2022163920A1 (ko) | 신규한 시스테인 설피네이트 디설피나제 변이체 및 이를 이용한 l-발린 생산 방법 | |
WO2022163935A1 (ko) | 신규한 글루코사민-6-포스페이트 디아미나제 변이체 및 이를 이용한 l-글루탐산 생산 방법 | |
WO2022154191A1 (ko) | 신규한 2,5-다이케토-d-글루콘산 리덕타제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법 | |
WO2022163939A1 (ko) | 신규한 mfs 트랜스포터 변이체 및 이를 이용한 l-글루탐산 생산 방법 | |
WO2022191630A1 (ko) | 신규한 시트레이트 신타아제 변이체 및 이를 이용한 l-발린 생산 방법 | |
WO2022215796A1 (ko) | 신규한 전사 조절자 변이체 및 이를 이용한 l-발린 생산 방법 | |
WO2022215800A1 (ko) | 신규한 분지쇄아미노산 투과효소 변이체 및 이를 이용한 l-발린 생산 방법 | |
WO2022163913A1 (ko) | 신규한 막단백질 TerC 변이체 및 이를 이용한 L-라이신 생산 방법 | |
WO2022225254A1 (ko) | L-아미노산을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-아미노산의 생산 방법 | |
WO2022163919A1 (ko) | 신규한 우레아제 부속 단백질 변이체 및 이를 이용한 l-발린 생산 방법 | |
WO2022163925A1 (ko) | 신규한 단백질 변이체 및 이를 이용한 l-발린 생산 방법 | |
WO2022163921A1 (ko) | 신규한 스퍼미딘 신타제 변이체 및 이를 이용한 l-발린 생산 방법 | |
WO2022163924A1 (ko) | 신규한 5,10-메틸렌테트라하이드로폴레이트 리덕타제 변이체 및 이를 이용한 l-발린 생산 방법 | |
WO2022163909A1 (ko) | 신규한 단백질 변이체 및 이를 이용한 l-라이신 생산 방법 | |
WO2022154173A1 (ko) | 신규한 abc 트랜스포터 atp-결합 단백질 변이체 및 이를 이용한 l-라이신 생산 방법 | |
WO2022163926A1 (ko) | 신규한 프롤린 탈수소효소 변이체 및 이를 이용한 l-발린 생산 방법 | |
WO2022163911A1 (ko) | 신규한 프리모솜 조립 단백질 변이체 및 이를 이용한 l-라이신 생산 방법 | |
WO2022163936A1 (ko) | 신규한 엑시뉴클레아제 abc 서브유닛 a 변이체 및 이를 이용한 l-글루탐산 생산 방법 | |
WO2022154188A1 (ko) | 신규한 폴리케타이드 신타제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22791954 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022260752 Country of ref document: AU Ref document number: AU2022260752 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12023552608 Country of ref document: PH |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023558681 Country of ref document: JP |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112023019851 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2022260752 Country of ref document: AU Date of ref document: 20220414 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022791954 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2023/012155 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 2022791954 Country of ref document: EP Effective date: 20231012 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202317070922 Country of ref document: IN Ref document number: 2301006820 Country of ref document: TH |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280029877.6 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 112023019851 Country of ref document: BR Kind code of ref document: A2 Effective date: 20230926 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023124686 Country of ref document: RU |
|
NENP | Non-entry into the national phase |
Ref country code: DE |