WO2022224699A1 - Resin composition, cured product, electronic part, two-component kit and method for producing cured product - Google Patents

Resin composition, cured product, electronic part, two-component kit and method for producing cured product Download PDF

Info

Publication number
WO2022224699A1
WO2022224699A1 PCT/JP2022/014216 JP2022014216W WO2022224699A1 WO 2022224699 A1 WO2022224699 A1 WO 2022224699A1 JP 2022014216 W JP2022014216 W JP 2022014216W WO 2022224699 A1 WO2022224699 A1 WO 2022224699A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
repeating unit
cured product
salt
diazabicyclo
Prior art date
Application number
PCT/JP2022/014216
Other languages
French (fr)
Japanese (ja)
Inventor
徹 八嶋
Original Assignee
小西化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 小西化学工業株式会社 filed Critical 小西化学工業株式会社
Publication of WO2022224699A1 publication Critical patent/WO2022224699A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/24Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen halogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3462Six-membered rings
    • C08K5/3465Six-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating

Definitions

  • the present invention relates to a resin composition, a cured product, an electronic component, a two-component kit, and a method for producing a cured product.
  • Cured products of silicone resins are used in various optical components because of their easy-to-control refractive index and excellent light transmittance.
  • optical members include cover glasses used for electronic displays such as liquid crystal display elements and organic EL display elements, image sensors, and the like.
  • Patent Document 1 discloses a silicone resin composition for forming a low refractive index film.
  • Cured materials used as optical members are required to have hardness comparable to that of glass and excellent optical properties.
  • the silicone resin composition described in Patent Document 1 has room for improvement in terms of hardness and light transmittance.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a resin composition from which a cured product having high hardness and light transmittance, low refractive index and low light dispersion can be produced. Furthermore, it aims at providing the hardened
  • the present invention includes the following [1] to [10].
  • a resin composition containing a copolymer and a curing agent wherein the copolymer comprises a repeating unit (A) represented by the following formula (A) and a repeating unit represented by the following formula (B): A unit (B), a repeating unit (C) represented by the following formula (C), and a repeating unit (D) represented by the following formula (D), wherein the curing agent comprises a compound having a cyclic amidine and an organic acid
  • the ratio of the repeating unit (A) to the total of all repeating units constituting the copolymer is 10 mol% or more and 20 mol% or less, and the total of all repeating units constituting the copolymer of the repeating unit (B) is 20 mol% or more and 50 mol% or less, and the ratio of the repeating unit (C) to the total of all repeating units constituting the copolymer is 10 mol% or more and 20 mol% or less.
  • the ratio of the repeating unit (D) to the total of all repeating units constituting the copolymer is 20 mol% or more and 50 mol% or less, and the curing agent is 50 ppm or more and 10000 ppm or less, the resin composition.
  • R is an alkyl group having 1 to 3 carbon atoms and having a fluorine atom.
  • R is an alkyl group having 1 to 3 carbon atoms and having a fluorine atom.
  • the compound having a cyclic amidine is 1,8-diazabicyclo[5.4.0]-7-undecene, 1,5-diazabicyclo[4.3.0]-5-nonene, and 1,4-diazabicyclo [2.2.2]
  • the resin composition according to [1] which is at least one selected from the group consisting of octane.
  • the salt of the compound having a cyclic amidine and an organic acid includes a salt of 1,8-diazabicyclo[5.4.0]-7-undecene and phthalic acid, 1,8-diazabicyclo[5.4.
  • the salt of the compound having a cyclic amidine and an organic acid includes a salt of 1,8-diazabicyclo[5.4.0]-7-undecene and phthalic acid, 1,8-diazabicyclo[5.4. 0]-7-undecene and p-toluenesulfonic acid, 1,5-diazabicyclo[4.3.0]-5-nonene and phthalic acid, or 1,8-diazabicyclo[5.4.
  • the resin composition according to [1] which is a salt of 0]-7-undecene and formic acid.
  • the present invention it is possible to provide a resin composition from which a cured product with high hardness and light transmittance, low refractive index and low light dispersion can be produced. Furthermore, it is possible to provide a cured product, an electronic component, a two-component kit, and a method for producing a cured product using this resin composition.
  • This embodiment is a resin composition containing a copolymer and a curing agent. According to the study of the present inventor, the cured product of the resin composition containing the repeating unit ratio of the copolymer within a specific range and containing a specific curing agent has high hardness and light transmittance, and has a refractive index and light dispersion. found to be low.
  • the copolymer comprises a repeating unit (A) represented by the following formula (A), a repeating unit (B) represented by the following formula (B), a repeating unit (C) represented by the following formula (C), and It contains a repeating unit (D) represented by the following formula (D).
  • Me means a methyl group.
  • Formula (D) (In formula (D), R is an alkyl group having 1 to 3 carbon atoms and having a fluorine atom.)
  • the copolymer preferably consists essentially of repeating units (A), repeating units (B), repeating units (C) and repeating units (D).
  • Consisting substantially of the repeating unit (A), the repeating unit (B), the repeating unit (C) and the repeating unit (D) means that the repeating unit (A ), the sum of the repeating unit (B), the repeating unit (C) and the repeating unit (D) is 90% by mass or more and 100% by mass or less, more preferably 95% by mass or more and 100% by mass or less. do.
  • Repeating unit (A) is a repeating unit derived from dialkoxydimethylsilane.
  • Dialkoxydimethylsilanes include, for example, diethoxydimethylsilane, dimethoxydimethylsilane, or dipropoxydimethylsilane.
  • Repeating unit derived means a repeating unit formed by hydrolysis and dehydration condensation of an alkoxy group.
  • the ratio of the repeating unit (A) to the total of all repeating units constituting the copolymer is 10 mol% or more and 20 mol% or less.
  • the proportion of the repeating unit (A) is equal to or higher than the above lower limit, poor curing is less likely to occur in the step of curing the resin composition.
  • Insufficient curing refers to, for example, a defect in which a portion of the surface is cured and a film is formed due to heating during curing of the resin composition.
  • the solvent contained in the resin composition becomes difficult to volatilize, and it becomes difficult to dry.
  • the proportion of the repeating unit (A) is equal to or less than the above upper limit, the hardness of the resulting cured product is less likely to decrease.
  • Repeating unit (B) is a repeating unit derived from trialkoxymethylsilane.
  • Trialkoxymethylsilanes include triethoxymethylsilane, trimethoxymethylsilane, or tripropoxymethylsilane.
  • the ratio of the repeating unit (B) to the total of all repeating units constituting the copolymer is 20 mol % or more and 50 mol % or less.
  • the proportion of the repeating unit (B) is at least the above lower limit, the hardness of the resulting cured product is less likely to decrease.
  • the haze value is low and the transparency tends to be high.
  • Repeating unit (C) is a repeating unit derived from tetraethoxysilane.
  • the ratio of the repeating unit (C) to the total of all repeating units constituting the copolymer is 10 mol % or more and 20 mol % or less.
  • the proportion of the repeating unit (C) is at least the above lower limit, the hardness of the resulting cured product is less likely to decrease.
  • the proportion of the repeating unit (C) is equal to or less than the above upper limit, the above-described poor curing is less likely to occur. Moreover, the refractive index of the cured product obtained tends to be low.
  • Repeating unit (D) is a repeating unit derived from a fluorinated alkyltrialkoxysilane.
  • R is an alkyl group having 1 to 3 carbon atoms and having a fluorine atom.
  • R includes -CF 3 , -CH 2 CF 3 , -CF 2 CF 3 , -CH 2 CH 2 CF 3 , -CH 2 CF 2 CF 3 or -CF 2 CF 2 CF 3 .
  • the repeating unit (D) is, for example, a repeating unit derived from trimethoxy(3,3,3-trifluoropropyl)silane.
  • R is preferably an alkyl group having 2 or 3 carbon atoms and having a fluorine atom, and more preferably -CH 2 CF 3 , -CH 2 CH 2 CF 3 , -CH 2 CF 2 CF 3 or -CF 2 CF 2 CF 3 , -CH 2 CF 3 or -CH 2 CH 2 CF 3 are more preferred.
  • the ratio of the repeating unit (D) to the total of all repeating units constituting the copolymer is 20 mol % or more and 50 mol % or less. If the proportion of the repeating unit (D) is at least the above lower limit, the resulting cured product tends to have a low refractive index.
  • the proportion of the repeating unit (D) is equal to or less than the above upper limit, the hardness of the resulting cured product is less likely to decrease.
  • the fluorine atom has an atomic size close to that of a hydrogen atom, the trifluoromethyl group is sterically bulkier than the methyl group. Therefore, if the ratio of the repeating unit (D) exceeds the above upper limit, the steric hindrance of the trifluoromethyl group makes it difficult for cross-linking to proceed, and the hardness of the resulting cured product tends to decrease.
  • the number of carbon atoms in the side chain R is 2 or 3, cross-linking is facilitated, and the hardness of the resulting cured product is less likely to decrease.
  • the weight average molecular weight (Mw) of the copolymer is, for example, 500 or more and 20000 or less, preferably 1000 or more and 10000 or less, and 1500 or more and 6000 or less. is more preferred.
  • a curing agent is a salt of a compound having a cyclic amidine and an organic acid.
  • Compounds having a cyclic amidine include 1,8-diazabicyclo[5.4.0]-7-undecene, 1,5-diazabicyclo[4.3.0]-5-nonene and 1,4-diazabicyclo[2. 2.2] At least one selected from the group consisting of octane is preferred.
  • 1,8-diazabicyclo[5.4.0]-7-undecene may be referred to as "DBU”
  • 1,5-diazabicyclo[4.3.0]-5-nonene may be referred to as "DBN”. .
  • examples of compounds having cyclic amidines include imidazole derivatives, imidazoline derivatives, and tetrahydropyrimidine derivatives.
  • the imidazole derivative is, for example, imidazole, benzimidazole, methylimidazole, 2-phenylimidazole, or the like.
  • Methylimidazole includes, for example, 2-methylimidazole or 4-methylimidazole.
  • the imidazoline derivative is, for example, methylimidazoline or dimethylimidazoline.
  • Methylimidazoline includes, for example, 2-methylimidazoline.
  • Dimethylimidazoline includes, for example, 4,4-dimethylimidazoline, 4,5-dimethylimidazoline, or 5,5-dimethylimidazoline.
  • the tetrahydropyrimidine derivative is, for example, 1-methyl-1,4,5,6-tetrahydropyrimidine or 1,2-dimethyl-1,4,5,6-tetrahydropyrimidine.
  • the compound having a cyclic amidine may be used singly or in combination of two or more.
  • organic acid examples of the organic acid in the salt of the compound having a cyclic amidine and the organic acid include aromatic polycarboxylic acid, aromatic sulfonic acid and formic acid.
  • aromatic polycarboxylic acids examples include phthalic acid, isophthalic acid, and terephthalic acid.
  • Aromatic sulfonic acids include benzenesulfonic acid and p-toluenesulfonic acid.
  • the organic acid is preferably phthalic acid, p-toluenesulfonic acid or formic acid.
  • the organic acid may be used singly or in combination of two or more.
  • the acid dissociation constant (pKa) of phthalic acid is 2.8, the acid dissociation constant (pKa) of p-toluenesulfonic acid is -2.8, and the acid dissociation constant (pKa) of formic acid is 3.8.
  • the activation temperature of the salt of the compound having a cyclic amidine and the organic acid is in the range of 135° C. or higher and 160° C. or lower, and from the viewpoint of obtaining a sufficient gel time for work, an organic acid having a pKa of ⁇ 2.8 to 3.8 is used. It is preferred to use
  • Examples of the salt of a compound having a cyclic amidine and an organic acid include a salt of 1,8-diazabicyclo[5.4.0]-7-undecene and phthalic acid, 1,8-diazabicyclo[5.4.0]- a salt of 7-undecene and p-toluenesulfonic acid, a salt of 1,5-diazabicyclo[4.3.0]-5-nonene and phthalic acid, or 1,8-diazabicyclo[5.4.0]- Salts of 7-undecene and formic acid are preferred.
  • the activity temperature of the salt of 1,8-diazabicyclo[5.4.0]-7-undecene and phthalic acid is 140°C.
  • the activity temperature of the salt with toluenesulfonic acid is 160°C
  • the activity temperature of the salt with 1,8-diazabicyclo[5.4.0]-7-undecene and formic acid is 135°C.
  • the ratio of the curing agent to the total amount of the total resin solid content of the resin composition is 50 ppm or more and 10000 ppm or less, preferably 50 ppm or more and 5000 ppm or less.
  • the proportion of the curing agent is at least the above lower limit, the hardness of the resulting cured product is less likely to decrease. If the proportion of the curing agent is equal to or less than the above upper limit, the pot life of the resin composition tends to be long.
  • the pot life is the time until it becomes unusable after mixing the copolymer and the curing agent. Unusable means the time until the curing reaction of the resin composition progresses and the viscosity and state become unusable. For example, if the proportion of the curing agent is high, the curing reaction will proceed easily, shortening the pot life. Pot life is also called pot life.
  • the resin composition of this embodiment contains a specific type of curing agent in a specific mixing ratio. Thereby, the gel time after mixing the copolymer and the curing agent can be lengthened. Gel time is measured by the following gel time test.
  • This embodiment is a cured product obtained by curing the resin composition.
  • the thickness of the cured product of the present embodiment preferably satisfies 0.1 mm or more and 3.0 mm or less, more preferably 0.5 mm or more and 2.5 mm or less, and satisfies 0.8 mm or more and 2.0 mm or less. is more preferred.
  • the "thickness of the cured product” is the average thickness of the cured product, for example, the average value of the measured values of the thickness at five points measured at intervals.
  • the cured product of the present embodiment has high hardness and light transmittance, and low refractive index and light dispersion.
  • the hardness of the cured product is the pencil hardness of the cured product.
  • the pencil hardness of the cured product is measured by the following method. First, the resin composition is cured to obtain a cured product having a thickness of 1.0 mm. Next, according to JIS K 5600-5-4 (1999) "scratch hardness (pencil method)", each 1.0 mm thick cured product obtained is measured for pencil hardness under a load of 750 g.
  • the hardness is evaluated as high.
  • the light transmittance of the cured product is measured by the following method. First, the resin composition is cured to obtain a cured product having a thickness of 1.0 mm.
  • the light transmittance of the cured product in the thickness direction is measured.
  • the wavelength is assumed to be 400 nm.
  • a spectrophotometer for example, UV-2600 manufactured by Shimadzu Corporation can be used. Specific measurement conditions are as follows. (Conditions) Background measurement: atmosphere Measurement speed: medium speed Integrating sphere: ISR-2600PLUS Slit width: 5.0mm
  • the light transmittance when the light transmittance satisfies 92% or more, the light transmittance is evaluated as high.
  • the refractive index of the cured product is measured by the following method. First, a spin coater is used to apply a resin composition onto a slide glass under conditions of 1000 rpm and 20 seconds. The coated slide glass is placed in a hot air drying oven and heated at 50° C. for 1 hour and further at 100° C. for 1 hour to prepare a glass coating film.
  • the reflection spectrum of the glass coating film is measured using a reflection spectroscopic film thickness meter.
  • a reflection spectroscopic film thickness meter for example, FE-3000 manufactured by Otsuka Electronics Co., Ltd. can be used.
  • the wavelength is, for example, 450 nm or more and 800 nm or less.
  • Measurement with a reflection spectroscopic film thickness meter gives the refractive index nD of the glass coating film and the Abbe number, which is an index of the degree of light dispersion.
  • the refractive index nD of the glass coating film is 1.42 or less, the refractive index is evaluated as low.
  • the degree of light dispersion is evaluated as low.
  • the Abbe number is a measure of the degree of light dispersion, and the larger the Abbe number, the smaller the degree of light dispersion.
  • standard optical glass has an Abbe number of 60 or more.
  • a cured product obtained by curing the resin composition of the present embodiment has an Abbe number close to that of optical glass, has improved light transmittance in a wide wavelength range, and has high transparency.
  • This embodiment is an electronic component containing the cured product as an optical member.
  • optical members include cover glasses used for electronic displays such as liquid crystal display elements and organic EL display elements, image sensors, and the like.
  • This embodiment is a two-component kit for obtaining the resin composition.
  • a two-component kit has the copolymer as the first component and the curing agent as the second component. By independently distributing or storing the copolymer as the first component and the curing agent as the second component, they can be mixed and used immediately before use.
  • the first component or the second component may each contain a diluent.
  • Diluents include methanol and 2-propanol.
  • This embodiment may be a potting agent containing the resin composition.
  • a "potting agent” is an agent used for the purpose of electrical insulation, protection, and moisture-proofing for electronic circuit boards and semiconductor elements.
  • Method for producing cured product First, the copolymer and the curing agent are mixed to obtain the resin composition of the present embodiment. The resin composition is then heated to cure. Heating for curing is performed at a temperature at which the curing reaction of the resin composition proceeds.
  • the heating temperature for curing is, for example, 20°C or higher and 180°C or lower.
  • the heating time for curing is, for example, 30 minutes or more and 10 hours or less.
  • Heating for curing may include a plurality of heating steps of holding at a constant temperature.
  • the heating conditions for curing are the first heat treatment in which the temperature is 40° C. or higher and 60° C. or lower for 30 minutes to 90 minutes, and the temperature of 90° C. or higher and 110° C. or lower for 0.5 hours or more and 4 hours.
  • a second heat treatment of heating below and a third heat treatment of heating at 140° C. or higher and 160° C. or lower for 0.5 hours or more and 4 hours or less may be performed.
  • a cured product having a thickness exceeding 1.0 mm can be produced, for example, by stepwise laminating layers of the cured product having a thickness of 1.0 mm or less. Specifically, a cured product layer having a thickness of 1.0 mm or less is produced in the first step, and a cured product layer having a thickness of 1.0 mm or less is formed in the second step on the resulting cured product layer. Manufactured by layering.
  • the thickness of the cured product layer at each stage may be appropriately adjusted according to the thickness of the cured product to be produced. For example, a cured product with a thickness of 2.0 mm can be produced by laminating in two stages, and a cured product with a thickness of 3.0 mm can be produced by laminating in three stages.
  • the resin composition of the present embodiment is less prone to so-called skinning during curing.
  • Skinning is a phenomenon in which only the surface dries and forms a film during curing. Skinning tends to occur when the volatilization speed is slow in the step of curing the resin composition. Skinning is likely to occur when producing a cured product having a thickness of 1.0 mm or more, but since the resin composition of the present embodiment has a low viscosity during heat curing, the volatilization speed is not slow, and skinning is unlikely to occur. .
  • an interface occurs between the cured layers.
  • a resin composition intended to produce a thin film with a thickness of 1 ⁇ m or less it is necessary to increase the number of layers in order to obtain a cured product with a thickness of about 1.0 mm.
  • a film with a thickness of 1.0 mm from a thin film with a thickness of 1 ⁇ m or less it is necessary to stack 1000 times, but such a number of layers is realistic from the viewpoint of improving production efficiency. not targeted.
  • the interfaces that increase due to the increase in the number of layers have a lower light transmittance and are more likely to increase light dispersion.
  • a cured product having a thickness of about 1.0 mm can be produced in one step. Therefore, even when the cured product layers are laminated in a plurality of stages, the number of laminated layers can be reduced, so that the obtained cured product is less likely to decrease in light transmittance and less likely to increase in light dispersion.
  • the heating conditions for the cured product layer produced in the first stage are preferably performed up to the second heat treatment, and the heating conditions for the cured product layer produced in the second stage. is preferably performed up to the second heat treatment, and finally the whole is preferably heated under the conditions for the third heat treatment.
  • Example 1 100.00 g (0.561 mol) of methyltriethoxysilane, 77.90 g (0.374 mol) of tetraethoxysilane, 55.44 g (0.374 mol) of dimethyldiethoxysilane, trimethoxy (3,3,3 122.48 g (0.561 mol) of 3-trifluoropropyl)silane and 35.95 g of 2-propanol were charged, and a solution obtained by diluting 0.98 g of 35% hydrochloric acid with 100.94 g of deionized water was added dropwise. Stirred for 3 hours.
  • the resulting varnish 1 has repeating units derived from diethoxydimethylsilane as repeating units (A), repeating units derived from triethoxymethylsilane as repeating units (B), and repeating units derived from triethoxymethylsilane as repeating units (C).
  • a copolymer comprising a repeating unit derived from ethoxysilane and a repeating unit derived from trimethoxy(3,3,3-trifluoropropyl)silane as the repeating unit (D) at a solid content concentration of 70% by mass. board.
  • San-Apro U-CAT SA810 (0.10 g) was diluted with 2-propanol (99.90 g) to obtain a curing agent solution. A hardener solution was added to Varnish 1 obtained above. At this time, the amount of U-CAT SA810 manufactured by San-Apro was added at a rate of 100 ppm with respect to the total amount of resin solid content of the varnish.
  • a resin composition 1 was obtained through the above steps.
  • Resin composition 1 was added to an aluminum cup so that the solid content was 2.0 g. At this time, an aluminum cup with a bottom area of 4 cm 2 was used.
  • the aluminum cup containing the resin composition 1 was placed in a hot air drying oven and heated at 50°C for 1 hour, 100°C for 1 hour, and 150°C for 3 hours. As a result, a colorless and transparent cured product 1 having a thickness of 1.0 mm was obtained.
  • Example 2 The resin composition was prepared in the same manner as in Example 1, except that the curing agent solution was changed to a mixed solution of 2-propanol (229.77 g), DBN (0.10 g), and o-phthalic acid (0.13 g). Product 2 and Cured Product 2 were produced.
  • Comparative Examples 1 to 17 A resin composition and a cured product were produced in the same manner as in Example 1, except that the ratio of repeating units (A) to (D) and the curing agent solution were changed as shown in Tables 1 and 2.
  • Tables 1 and 2 show the pencil hardness, light transmittance, refractive index and light dispersion of the cured products or glass coating films prepared using the resin compositions produced in Examples 1 to 10 and Comparative Examples 1 to 17. Describe each.
  • Tables 3 and 4 list the weight average molecular weights of the copolymers.
  • Mw means weight average molecular weight.
  • each symbol means the following.
  • A) A repeating unit derived from diethoxydimethylsilane.
  • B) A repeating unit derived from triethoxymethylsilane.
  • C A repeating unit derived from tetraethoxysilane.
  • D A repeating unit derived from trimethoxy(3,3,3-trifluoropropyl)silane.
  • T1 "U-CAT SA810” manufactured by San-Apro, o-phthalate of DBU.
  • T2 "U-CAT SA506” manufactured by San-Apro, p-toluenesulfonate of DBU.
  • T3 a salt of DBN and o-phthalic acid (molar ratio 1:1).
  • T4 triethylamine.
  • T5 salt of triethylamine and o-phthalic acid (molar ratio 1:1).
  • Comparative Examples 1 to 3 the proportion of the repeating unit (D) exceeded the upper limit of the range defined in the present invention, so the hardness of the cured product was lowered. Comparative Example 4 does not contain the repeating unit (D), so the refractive index exceeds 1.42.
  • Comparative Example 5 the proportion of the repeating unit (A) exceeded the upper limit of the range defined in the present invention, so the hardness of the cured product was lowered.
  • Comparative Example 6 the ratio of the repeating unit (C) exceeded the upper limit of the range defined in the present invention, so the transmittance of the cured product was lowered.
  • Comparative Example 7 did not contain the repeating unit (A), the sample shattered during curing, and each physical property could not be measured.
  • Comparative Example 8 the ratio of repeating units (A) and (C) exceeds the upper limit of the range defined in the present invention, and the repeating unit (B) falls below the lower limit of the range defined in the present invention. As a result, the cured product has low transmittance and high light dispersion.
  • Comparative Examples 9 to 14 did not use a curing agent, so the hardness of the cured product was low.
  • Comparative Examples 15 and 16 did not use a salt of a compound having a cyclic amidine and an organic acid as a curing agent, so that the hardness of the cured product was lowered.
  • Comparative Example 17 does not use a salt of a compound having a cyclic amidine and an organic acid as a curing agent, and furthermore, the ratio of the repeating unit (B) exceeds the upper limit of the range defined in the present invention, and the repeating unit (D) is Not included. In this case, the hardness of the cured product was low, and the refractive index and light dispersion were high.
  • Example 1 and Comparative Example 14 Example 5 and Comparative Example 9, Example 6 and Comparative Example 10, Example 7 and Comparative Example 11, Example 8 and Comparative Example 13, and Comparing Example 9 and Comparative Example 12, both examples showed higher pencil hardness and higher Abbe number than Comparative Example. It was confirmed that even when the same copolymer was used, the use of a specific curing agent resulted in a high pencil hardness and a high Abbe number.
  • the gel time was 3 hours or more at a rate of 10000 ppm or less. It was confirmed that when a salt of a compound having a cyclic amidine and an organic acid was used as a curing agent, a sufficient gel time could be secured for work.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)

Abstract

A resin composition comprising a copolymer and a curing agent, wherein: the copolymer contains repeating unit (A), repeating unit (B), repeating unit (C) and repeating unit (D); the curing agent is a salt of a compound having a cyclic amidine with an organic acid; the content of repeating unit (A) is 10-20 mol% inclusive; the content of repeating unit (B) is 20-50 mol% inclusive; the content of repeating unit (C) is 10-20 mol% inclusive; the content of repeating unit (D) is 20-50 mol% inclusive; and the content of the curing agent is 50-10000 ppm inclusive.

Description

樹脂組成物、硬化物、電子部品、2成分キット及び硬化物の製造方法Resin composition, cured product, electronic component, two-component kit, and method for producing cured product
 本発明は、樹脂組成物、硬化物、電子部品、2成分キット及び硬化物の製造方法に関する。
 本願は、2021年4月20日に、日本に出願された特願2021-070944号に基づき優先権を主張し、その内容をここに援用する。
TECHNICAL FIELD The present invention relates to a resin composition, a cured product, an electronic component, a two-component kit, and a method for producing a cured product.
This application claims priority based on Japanese Patent Application No. 2021-070944 filed in Japan on April 20, 2021, the content of which is incorporated herein.
 シリコーン樹脂の硬化物は、屈折率が制御しやすく光透過性に優れるため、各種光学部材に使用されている。光学部材としては、例えば、液晶表示素子や有機EL表示素子等の電子ディスプレイやイメージセンサー等に使用されるカバーガラスが挙げられる。 Cured products of silicone resins are used in various optical components because of their easy-to-control refractive index and excellent light transmittance. Examples of optical members include cover glasses used for electronic displays such as liquid crystal display elements and organic EL display elements, image sensors, and the like.
 例えば特許文献1は、低屈折率の膜を形成するためのシリコーン樹脂組成物を開示している。 For example, Patent Document 1 discloses a silicone resin composition for forming a low refractive index film.
特開2012-203059号公報JP 2012-203059 A
 光学部材として使用する硬化物の中には、ガラスと同程度の硬度と優れた光学特性が求められる。
 例えば特許文献1に記載のシリコーン樹脂組成物には、硬度や光透過性の観点から改良の余地があった。
Cured materials used as optical members are required to have hardness comparable to that of glass and excellent optical properties.
For example, the silicone resin composition described in Patent Document 1 has room for improvement in terms of hardness and light transmittance.
 本発明は上記事情に鑑みてなされたものであって、硬度及び光透過率が高く、屈折率及び光分散が低い硬化物を製造できる樹脂組成物を提供することを目的とする。さらにこの樹脂組成物を用いた硬化物、電子部品、2成分キット及び硬化物の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a resin composition from which a cured product having high hardness and light transmittance, low refractive index and low light dispersion can be produced. Furthermore, it aims at providing the hardened|cured material using this resin composition, an electronic component, a 2-component kit, and the manufacturing method of hardened|cured material.
 本発明は以下の[1]~[10]を包含する。
[1]共重合体と硬化剤とを含む樹脂組成物であって、前記共重合体は、下記式(A)で表される繰返し単位(A)、下記式(B)で表される繰返し単位(B)、下記式(C)で表される繰返し単位(C)及び下記式(D)で表される繰返し単位(D)を含み、前記硬化剤は、環状アミジンを有する化合物と有機酸との塩であり、前記共重合体を構成する全繰返し単位の合計に対する前記繰返し単位(A)の割合は、10mol%以上20mol%以下であり、前記共重合体を構成する全繰返し単位の合計に対する前記繰返し単位(B)の割合は、20mol%以上50mol%以下であり、前記共重合体を構成する全繰返し単位の合計に対する前記繰返し単位(C)の割合は、10mol%以上20mol%以下であり、前記共重合体を構成する全繰返し単位の合計に対する前記繰返し単位(D)の割合は、20mol%以上50mol%以下であり、前記樹脂組成物の樹脂全固形分の全量に対する、前記硬化剤の割合は50ppm以上10000ppm以下である、樹脂組成物。
 [MeSiO2/2]  ・・・式(A)
 [MeSiO3/2]  ・・・式(B)
 [SiO4/2]    ・・・式(C)
 [RSiO3/2]  ・・・式(D)
 (式(D)中、Rはフッ素原子を有する炭素数1~3のアルキル基である。)
[2]前記環状アミジンを有する化合物は1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ[4.3.0]-5-ノネン、及び1,4-ジアザビシクロ[2.2.2]オクタンからなる群より選択される1種以上である、[1]に記載の樹脂組成物。
[3]前記有機酸は、芳香族ポリカルボン酸、芳香族スルホン酸又はギ酸である、[1]又は[2]に記載の樹脂組成物。
[4]前記環状アミジンを有する化合物と有機酸との塩は、1,8-ジアザビシクロ[5.4.0]-7-ウンデセンとフタル酸との塩、1,8-ジアザビシクロ[5.4.0]-7-ウンデセンとp-トルエンスルホン酸との塩又は1,5-ジアザビシクロ[4.3.0]-5-ノネンとフタル酸との塩である、[1]に記載の樹脂組成物。
[5]前記環状アミジンを有する化合物と有機酸との塩は、1,8-ジアザビシクロ[5.4.0]-7-ウンデセンとフタル酸との塩、1,8-ジアザビシクロ[5.4.0]-7-ウンデセンとp-トルエンスルホン酸との塩、1,5-ジアザビシクロ[4.3.0]-5-ノネンとフタル酸との塩、又は1,8-ジアザビシクロ[5.4.0]-7-ウンデセンとギ酸との塩である、[1]に記載の樹脂組成物。
[6][1]~[5]のいずれか1つに記載の樹脂組成物の硬化物。
[7]厚さが0.1mm以上3.0mm以下である、[6]に記載の硬化物。
[8][6]又は[7]に記載の硬化物を光学部材として含む電子部品。
[9][1]~[5]のいずれか1つに記載の樹脂組成物を得るための2成分キットであって、第1成分が前記共重合体であり、第2成分が前記硬化剤である、2成分キット。
[10]前記共重合体と前記硬化剤とを混合し、[1]~[5]のいずれか1つに記載の樹脂組成物を得る工程と、前記樹脂組成物を加熱して硬化させる硬化工程と、を備える、硬化物の製造方法。
The present invention includes the following [1] to [10].
[1] A resin composition containing a copolymer and a curing agent, wherein the copolymer comprises a repeating unit (A) represented by the following formula (A) and a repeating unit represented by the following formula (B): A unit (B), a repeating unit (C) represented by the following formula (C), and a repeating unit (D) represented by the following formula (D), wherein the curing agent comprises a compound having a cyclic amidine and an organic acid The ratio of the repeating unit (A) to the total of all repeating units constituting the copolymer is 10 mol% or more and 20 mol% or less, and the total of all repeating units constituting the copolymer of the repeating unit (B) is 20 mol% or more and 50 mol% or less, and the ratio of the repeating unit (C) to the total of all repeating units constituting the copolymer is 10 mol% or more and 20 mol% or less. The ratio of the repeating unit (D) to the total of all repeating units constituting the copolymer is 20 mol% or more and 50 mol% or less, and the curing agent is 50 ppm or more and 10000 ppm or less, the resin composition.
[Me 2 SiO 2/2 ] Formula (A)
[MeSiO 3/2 ] Formula (B)
[SiO 4/2 ] Formula (C)
[RSiO 3/2 ] Formula (D)
(In formula (D), R is an alkyl group having 1 to 3 carbon atoms and having a fluorine atom.)
[2] The compound having a cyclic amidine is 1,8-diazabicyclo[5.4.0]-7-undecene, 1,5-diazabicyclo[4.3.0]-5-nonene, and 1,4-diazabicyclo [2.2.2] The resin composition according to [1], which is at least one selected from the group consisting of octane.
[3] The resin composition according to [1] or [2], wherein the organic acid is aromatic polycarboxylic acid, aromatic sulfonic acid or formic acid.
[4] The salt of the compound having a cyclic amidine and an organic acid includes a salt of 1,8-diazabicyclo[5.4.0]-7-undecene and phthalic acid, 1,8-diazabicyclo[5.4. The resin composition according to [1], which is a salt of 0]-7-undecene and p-toluenesulfonic acid or a salt of 1,5-diazabicyclo[4.3.0]-5-nonene and phthalic acid. .
[5] The salt of the compound having a cyclic amidine and an organic acid includes a salt of 1,8-diazabicyclo[5.4.0]-7-undecene and phthalic acid, 1,8-diazabicyclo[5.4. 0]-7-undecene and p-toluenesulfonic acid, 1,5-diazabicyclo[4.3.0]-5-nonene and phthalic acid, or 1,8-diazabicyclo[5.4. The resin composition according to [1], which is a salt of 0]-7-undecene and formic acid.
[6] A cured product of the resin composition according to any one of [1] to [5].
[7] The cured product according to [6], which has a thickness of 0.1 mm or more and 3.0 mm or less.
[8] An electronic component comprising the cured product of [6] or [7] as an optical member.
[9] A two-component kit for obtaining the resin composition according to any one of [1] to [5], wherein the first component is the copolymer and the second component is the curing agent , a two-component kit.
[10] A step of mixing the copolymer and the curing agent to obtain the resin composition according to any one of [1] to [5], and curing by heating the resin composition. A method for producing a cured product, comprising:
 本発明によれば、硬度及び光透過率が高く、屈折率及び光分散が低い硬化物を製造できる樹脂組成物を提供することができる。さらにこの樹脂組成物を用いた硬化物、電子部品、2成分キット及び硬化物の製造方法を提供することができる。 According to the present invention, it is possible to provide a resin composition from which a cured product with high hardness and light transmittance, low refractive index and low light dispersion can be produced. Furthermore, it is possible to provide a cured product, an electronic component, a two-component kit, and a method for producing a cured product using this resin composition.
<樹脂組成物>
 本実施形態は、共重合体と硬化剤とを含む樹脂組成物である。本発明者の検討により、共重合体の繰り返し単位の比率を特定の範囲とし、かつ特定の硬化剤を含む樹脂組成物の硬化物は、硬度及び光透過率が高く、屈折率及び光分散が低いことが見いだされた。
<Resin composition>
This embodiment is a resin composition containing a copolymer and a curing agent. According to the study of the present inventor, the cured product of the resin composition containing the repeating unit ratio of the copolymer within a specific range and containing a specific curing agent has high hardness and light transmittance, and has a refractive index and light dispersion. found to be low.
≪共重合体≫
 共重合体は、下記式(A)で表される繰返し単位(A)、下記式(B)で表される繰返し単位(B)、下記式(C)で表される繰返し単位(C)及び下記式(D)で表される繰返し単位(D)を含む。式中、Meはメチル基を意味する。
 [MeSiO2/2]  ・・・式(A)
 [MeSiO3/2]  ・・・式(B)
 [SiO4/2]     ・・・式(C)
 [RSiO3/2]  ・・・式(D)
 (式(D)中、Rはフッ素原子を有する炭素数1~3のアルキル基である。)
≪Copolymer≫
The copolymer comprises a repeating unit (A) represented by the following formula (A), a repeating unit (B) represented by the following formula (B), a repeating unit (C) represented by the following formula (C), and It contains a repeating unit (D) represented by the following formula (D). In the formula, Me means a methyl group.
[Me 2 SiO 2/2 ] Formula (A)
[MeSiO 3/2 ] Formula (B)
[SiO 4/2 ] Formula (C)
[RSiO 3/2 ] Formula (D)
(In formula (D), R is an alkyl group having 1 to 3 carbon atoms and having a fluorine atom.)
 共重合体は、実質的に繰返し単位(A)、繰返し単位(B)、繰返し単位(C)及び繰り返し単位(D)からなることが好ましい。「実質的に繰返し単位(A)、繰返し単位(B)、繰返し単位(C)及び繰り返し単位(D)からなる」とは、共重合体を構成する全繰返し単位の合計に対する、繰返し単位(A)、繰返し単位(B)、繰返し単位(C)及び繰り返し単位(D)の和が、90質量%以上100質量%以下であり、より好ましくは95質量%以上100質量%以下であることを意味する。 The copolymer preferably consists essentially of repeating units (A), repeating units (B), repeating units (C) and repeating units (D). "Consisting substantially of the repeating unit (A), the repeating unit (B), the repeating unit (C) and the repeating unit (D)" means that the repeating unit (A ), the sum of the repeating unit (B), the repeating unit (C) and the repeating unit (D) is 90% by mass or more and 100% by mass or less, more preferably 95% by mass or more and 100% by mass or less. do.
(繰り返し単位(A))
 繰返し単位(A)は、ジアルコキシジメチルシランから誘導される繰り返し単位である。
 ジアルコキシジメチルシランは、例えば、ジエトキシジメチルシラン、ジメトキシジメチルシラン、又はジプロポキシジメチルシランが挙げられる。
(Repeating unit (A))
Repeating unit (A) is a repeating unit derived from dialkoxydimethylsilane.
Dialkoxydimethylsilanes include, for example, diethoxydimethylsilane, dimethoxydimethylsilane, or dipropoxydimethylsilane.
 「誘導される繰り返し単位」とは、アルコキシ基が加水分解、脱水縮合して構成される繰り返し単位を意味する。 "Repeating unit derived" means a repeating unit formed by hydrolysis and dehydration condensation of an alkoxy group.
 共重合体を構成する全繰返し単位の合計に対する繰返し単位(A)の割合は、10mol%以上20mol%以下である。 The ratio of the repeating unit (A) to the total of all repeating units constituting the copolymer is 10 mol% or more and 20 mol% or less.
 繰返し単位(A)の割合が上記下限値以上であると、樹脂組成物を硬化する工程において硬化不良が生じにくい。硬化不良とは、例えば樹脂組成物を硬化する際の加熱により、表面の一部が硬化し、膜が形成される不具合をいう。膜が形成されると、樹脂組成物に含まれる溶剤が揮発しにくくなり、乾燥しにくくなる。 When the proportion of the repeating unit (A) is equal to or higher than the above lower limit, poor curing is less likely to occur in the step of curing the resin composition. Insufficient curing refers to, for example, a defect in which a portion of the surface is cured and a film is formed due to heating during curing of the resin composition. When the film is formed, the solvent contained in the resin composition becomes difficult to volatilize, and it becomes difficult to dry.
 繰返し単位(A)の割合が上記上限値以下であると、得られる硬化物の硬度が低下しにくくなる。 When the proportion of the repeating unit (A) is equal to or less than the above upper limit, the hardness of the resulting cured product is less likely to decrease.
(繰り返し単位(B))
 繰返し単位(B)は、トリアルコキシメチルシランから誘導される繰り返し単位である。
 トリアルコキシメチルシランとしては、トリエトキシメチルシラン、トリメトキシメチルシラン、又はトリプロポキシキシメチルシランが挙げられる。
(Repeating unit (B))
Repeating unit (B) is a repeating unit derived from trialkoxymethylsilane.
Trialkoxymethylsilanes include triethoxymethylsilane, trimethoxymethylsilane, or tripropoxymethylsilane.
 共重合体を構成する全繰返し単位の合計に対する繰返し単位(B)の割合は、20mol%以上50mol%以下である。
 繰返し単位(B)の割合が上記下限値以上であると、得られる硬化物の硬度が低下しにくくなる。またヘイズ値が低く、透明性が高くなりやすい。
The ratio of the repeating unit (B) to the total of all repeating units constituting the copolymer is 20 mol % or more and 50 mol % or less.
When the proportion of the repeating unit (B) is at least the above lower limit, the hardness of the resulting cured product is less likely to decrease. In addition, the haze value is low and the transparency tends to be high.
 繰返し単位(B)の割合が上記上限値以下であると、上述した硬化不良が生じにくい。 When the proportion of the repeating unit (B) is equal to or less than the above upper limit, the above-described poor curing is less likely to occur.
(繰り返し単位(C))
 繰り返し単位(C)は、テトラエトキシシランから誘導される繰り返し単位である。
 共重合体を構成する全繰返し単位の合計に対する繰返し単位(C)の割合は、10mol%以上20mol%以下である。
 繰返し単位(C)の割合が上記下限値以上であると、得られる硬化物の硬度が低下しにくくなる。
(Repeating unit (C))
Repeating unit (C) is a repeating unit derived from tetraethoxysilane.
The ratio of the repeating unit (C) to the total of all repeating units constituting the copolymer is 10 mol % or more and 20 mol % or less.
When the proportion of the repeating unit (C) is at least the above lower limit, the hardness of the resulting cured product is less likely to decrease.
 繰返し単位(C)の割合が上記上限値以下であると、上述した硬化不良が生じにくい。また、得られる硬化物の屈折率が低くなりやすい。 When the proportion of the repeating unit (C) is equal to or less than the above upper limit, the above-described poor curing is less likely to occur. Moreover, the refractive index of the cured product obtained tends to be low.
(繰り返し単位(D))
 繰り返し単位(D)は、フッ化アルキルトリアルコキシシランから誘導される繰り返し単位である。
 式(D)で表される繰り返し単位において、Rはフッ素原子を有する炭素数1~3のアルキル基である。Rとしては、-CF、-CHCF、-CFCF、-CHCHCF、-CHCFCF、又は-CFCFCFが挙げられる。
(Repeating unit (D))
Repeating unit (D) is a repeating unit derived from a fluorinated alkyltrialkoxysilane.
In the repeating unit represented by formula (D), R is an alkyl group having 1 to 3 carbon atoms and having a fluorine atom. R includes -CF 3 , -CH 2 CF 3 , -CF 2 CF 3 , -CH 2 CH 2 CF 3 , -CH 2 CF 2 CF 3 or -CF 2 CF 2 CF 3 .
 繰り返し単位(D)は、例えばトリメトキシ(3,3,3-トリフルオロプロピル)シランから誘導される繰り返し単位である。 The repeating unit (D) is, for example, a repeating unit derived from trimethoxy(3,3,3-trifluoropropyl)silane.
 Rはフッ素原子を有する炭素数2又は3のアルキル基が好ましく、-CHCF、-CHCHCF、-CHCFCF、又は-CFCFCFがより好ましく、-CHCF又は-CHCHCFがさらに好ましい。 R is preferably an alkyl group having 2 or 3 carbon atoms and having a fluorine atom, and more preferably -CH 2 CF 3 , -CH 2 CH 2 CF 3 , -CH 2 CF 2 CF 3 or -CF 2 CF 2 CF 3 , -CH 2 CF 3 or -CH 2 CH 2 CF 3 are more preferred.
 共重合体を構成する全繰返し単位の合計に対する繰返し単位(D)の割合は、20mol%以上50mol%以下である。
 繰返し単位(D)の割合が上記下限値以上であると、得られる硬化物の屈折率が低くなりやすい。
The ratio of the repeating unit (D) to the total of all repeating units constituting the copolymer is 20 mol % or more and 50 mol % or less.
If the proportion of the repeating unit (D) is at least the above lower limit, the resulting cured product tends to have a low refractive index.
 繰返し単位(D)の割合が上記上限値以下であると、得られる硬化物の硬度が低下しにくくなる。フッ素原子は水素原子に近い原子サイズであるものの、トリフルオロメチル基はメチル基よりも立体的にかさ高くなる。このため、繰返し単位(D)の割合が上記上限値を超えると、トリフルオロメチル基の立体障害により架橋が進みにくくなり、得られる硬化物の硬度が低下しやすい。一方、側鎖であるRの炭素数が2又は3である場合には、架橋が進みやすくなり、得られる硬化物の硬度は低下しにくい。 When the proportion of the repeating unit (D) is equal to or less than the above upper limit, the hardness of the resulting cured product is less likely to decrease. Although the fluorine atom has an atomic size close to that of a hydrogen atom, the trifluoromethyl group is sterically bulkier than the methyl group. Therefore, if the ratio of the repeating unit (D) exceeds the above upper limit, the steric hindrance of the trifluoromethyl group makes it difficult for cross-linking to proceed, and the hardness of the resulting cured product tends to decrease. On the other hand, when the number of carbon atoms in the side chain R is 2 or 3, cross-linking is facilitated, and the hardness of the resulting cured product is less likely to decrease.
 共重合体の重量平均分子量(Mw)(ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算基準)は、例えば500以上20000以下を満たし、1000以上10000以下を満たすことが好ましく、1500以上6000以下を満たすことがさらに好ましい。 The weight average molecular weight (Mw) of the copolymer (polystyrene conversion standard by gel permeation chromatography (GPC)) is, for example, 500 or more and 20000 or less, preferably 1000 or more and 10000 or less, and 1500 or more and 6000 or less. is more preferred.
[重量平均分子量の測定方法]
 重量平均分子量(Mw)は、GPC測定により得られる標準ポリスチレン(PS)の検量線から求めた、ポリスチレン換算値を用いる。GPC測定の測定条件は、例えば、以下の通りである。
 本体:HLC-8320GPC(東ソー株式会社製)
 カラム:TSKgel G2000HXL&TSKgel G4000HXL(東ソー株式会社製)
 カラム温度:40℃
 移動層:テトラヒドロフラン(THF)
 流量:0.65mL/min
 検出装置:RI
 標準物質:ポリスチレン
[Method for measuring weight average molecular weight]
For the weight average molecular weight (Mw), a polystyrene conversion value obtained from a standard polystyrene (PS) calibration curve obtained by GPC measurement is used. Measurement conditions for GPC measurement are, for example, as follows.
Body: HLC-8320GPC (manufactured by Tosoh Corporation)
Column: TSKgel G2000HXL & TSKgel G4000HXL (manufactured by Tosoh Corporation)
Column temperature: 40°C
Mobile bed: Tetrahydrofuran (THF)
Flow rate: 0.65mL/min
Detector: RI
Reference material: polystyrene
≪硬化剤≫
 硬化剤は、環状アミジンを有する化合物と有機酸との塩である。
≪Curing agent≫
A curing agent is a salt of a compound having a cyclic amidine and an organic acid.
(環状アミジンを有する化合物)
 環状アミジンを有する化合物としては、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ[4.3.0]-5-ノネン及び1,4-ジアザビシクロ[2.2.2]オクタンからなる群より選択される1種以上が好ましい。以降において、1,8-ジアザビシクロ[5.4.0]-7-ウンデセンを「DBU」、1,5-ジアザビシクロ[4.3.0]-5-ノネンを「DBN」と記載する場合がある。
(Compound with Cyclic Amidine)
Compounds having a cyclic amidine include 1,8-diazabicyclo[5.4.0]-7-undecene, 1,5-diazabicyclo[4.3.0]-5-nonene and 1,4-diazabicyclo[2. 2.2] At least one selected from the group consisting of octane is preferred. Hereinafter, 1,8-diazabicyclo[5.4.0]-7-undecene may be referred to as "DBU" and 1,5-diazabicyclo[4.3.0]-5-nonene may be referred to as "DBN". .
 さらに、環状アミジンを有する化合物としては、例えば、イミダゾール誘導体、イミダゾリン誘導体、又はテトラヒドロピリミジン誘導体が挙げられる。 Furthermore, examples of compounds having cyclic amidines include imidazole derivatives, imidazoline derivatives, and tetrahydropyrimidine derivatives.
 イミダゾール誘導体は、例えばイミダゾール、ベンズイミダゾール、メチルイミダゾール又は2-フェニルイミダゾール等である。メチルイミダゾールとしては、例えば2-メチルイミダゾール又は4-メチルイミダゾールが挙げられる。 The imidazole derivative is, for example, imidazole, benzimidazole, methylimidazole, 2-phenylimidazole, or the like. Methylimidazole includes, for example, 2-methylimidazole or 4-methylimidazole.
 イミダゾリン誘導体は、例えばメチルイミダゾリン又はジメチルイミダゾリン等である。
 メチルイミダゾリンとしては、例えば、2-メチルイミダゾリンが挙げられる。
 ジメチルイミダゾリンとしては、例えば4,4-ジメチルイミダゾリン、4,5-ジメチルイミダゾリン、又は5,5-ジメチルイミダゾリンが挙げられる。
The imidazoline derivative is, for example, methylimidazoline or dimethylimidazoline.
Methylimidazoline includes, for example, 2-methylimidazoline.
Dimethylimidazoline includes, for example, 4,4-dimethylimidazoline, 4,5-dimethylimidazoline, or 5,5-dimethylimidazoline.
 テトラヒドロピリミジン誘導体は、例えば1-メチル-1,4,5,6-テトラヒドロピリミジン又は1,2-ジメチル-1,4,5,6-テトラヒドロピリミジン等である。 The tetrahydropyrimidine derivative is, for example, 1-methyl-1,4,5,6-tetrahydropyrimidine or 1,2-dimethyl-1,4,5,6-tetrahydropyrimidine.
 環状アミジンを有する化合物は、1種単独でも2種以上の組み合わせであってもよい。 The compound having a cyclic amidine may be used singly or in combination of two or more.
(有機酸)
 環状アミジンを有する化合物と有機酸との塩における有機酸としては、例えば、芳香族ポリカルボン酸、芳香族スルホン酸又はギ酸が挙げられる。
(organic acid)
Examples of the organic acid in the salt of the compound having a cyclic amidine and the organic acid include aromatic polycarboxylic acid, aromatic sulfonic acid and formic acid.
 芳香族ポリカルボン酸(o-、m-、p-)としては、例えばフタル酸、イソフタル酸、又はテレフタル酸等が挙げられる。 Examples of aromatic polycarboxylic acids (o-, m-, p-) include phthalic acid, isophthalic acid, and terephthalic acid.
 芳香族スルホン酸としては、ベンゼンスルホン酸又はp-トルエンスルホン酸が挙げられる。  Aromatic sulfonic acids include benzenesulfonic acid and p-toluenesulfonic acid.
 これらの中でも、有機酸はフタル酸、p-トルエンスルホン酸又はギ酸が好ましい。有機酸は、1種単独でも2種以上の組み合わせであってもよい。 Among these, the organic acid is preferably phthalic acid, p-toluenesulfonic acid or formic acid. The organic acid may be used singly or in combination of two or more.
 なお、フタル酸の酸解離定数(pKa)は2.8であり、p-トルエンスルホン酸の酸解離定数(pKa)は-2.8であり、ギ酸の酸解離定数(pKa)は3.8である。環状アミジンを有する化合物と有機酸との塩の活性化温度が135℃以上160℃以下の範囲とし、作業上十分なゲルタイムを得る観点から、pKaが-2.8~3.8の有機酸を使用することが好ましい。 The acid dissociation constant (pKa) of phthalic acid is 2.8, the acid dissociation constant (pKa) of p-toluenesulfonic acid is -2.8, and the acid dissociation constant (pKa) of formic acid is 3.8. is. The activation temperature of the salt of the compound having a cyclic amidine and the organic acid is in the range of 135° C. or higher and 160° C. or lower, and from the viewpoint of obtaining a sufficient gel time for work, an organic acid having a pKa of −2.8 to 3.8 is used. It is preferred to use
 環状アミジンを有する化合物と有機酸との塩としては、1,8-ジアザビシクロ[5.4.0]-7-ウンデセンとフタル酸との塩、1,8-ジアザビシクロ[5.4.0]-7-ウンデセンとp-トルエンスルホン酸との塩、1,5-ジアザビシクロ[4.3.0]-5-ノネンとフタル酸との塩、又は1,8-ジアザビシクロ[5.4.0]-7-ウンデセンとギ酸との塩が好ましい。 Examples of the salt of a compound having a cyclic amidine and an organic acid include a salt of 1,8-diazabicyclo[5.4.0]-7-undecene and phthalic acid, 1,8-diazabicyclo[5.4.0]- a salt of 7-undecene and p-toluenesulfonic acid, a salt of 1,5-diazabicyclo[4.3.0]-5-nonene and phthalic acid, or 1,8-diazabicyclo[5.4.0]- Salts of 7-undecene and formic acid are preferred.
 1,8-ジアザビシクロ[5.4.0]-7-ウンデセンとフタル酸との塩の活性温度は140℃であり、1,8-ジアザビシクロ[5.4.0]-7-ウンデセンとp-トルエンスルホン酸との塩の活性温度は160℃であり、1,8-ジアザビシクロ[5.4.0]-7-ウンデセンとギ酸との塩の活性温度は135℃である。作業上十分なゲルタイムを得る観点から、活性温度が135℃以上160℃以下の、環状アミジンを有する化合物と有機酸との塩を使用することが好ましい。 The activity temperature of the salt of 1,8-diazabicyclo[5.4.0]-7-undecene and phthalic acid is 140°C. The activity temperature of the salt with toluenesulfonic acid is 160°C, and the activity temperature of the salt with 1,8-diazabicyclo[5.4.0]-7-undecene and formic acid is 135°C. From the viewpoint of obtaining a sufficient gel time for work, it is preferable to use a salt of a compound having a cyclic amidine and an organic acid with an activation temperature of 135° C. or higher and 160° C. or lower.
 樹脂組成物の樹脂全固形分の全量に対する、硬化剤の割合は50ppm以上10000ppm以下を満たし、50ppm以上5000ppm以下を満たすことが好ましい。
 硬化剤の割合が上記下限値以上であると、得られる硬化物の硬度が低下しにくい。
 硬化剤の割合が上記上限値以下であると、樹脂組成物の可使時間が長くなりやすい。
The ratio of the curing agent to the total amount of the total resin solid content of the resin composition is 50 ppm or more and 10000 ppm or less, preferably 50 ppm or more and 5000 ppm or less.
When the proportion of the curing agent is at least the above lower limit, the hardness of the resulting cured product is less likely to decrease.
If the proportion of the curing agent is equal to or less than the above upper limit, the pot life of the resin composition tends to be long.
 可使時間とは、共重合体と硬化剤とを混合した後、使用不可能となるまでの時間である。使用不可能とは、樹脂組成物の硬化反応が進み、粘度や状態が使用に耐えられなくなるまでの時間をいう。例えば硬化剤の割合が多いと、硬化反応が進行しやすく、可使時間は短くなる。可使時間はポットライフともいう。 The pot life is the time until it becomes unusable after mixing the copolymer and the curing agent. Unusable means the time until the curing reaction of the resin composition progresses and the viscosity and state become unusable. For example, if the proportion of the curing agent is high, the curing reaction will proceed easily, shortening the pot life. Pot life is also called pot life.
 本実施形態の樹脂組成物は、特定の種類の硬化剤を特定の配合割合で含む。これにより、共重合体と硬化剤とを混合した後のゲルタイムを長くすることができる。ゲルタイムは下記のゲルタイム試験により測定する。 The resin composition of this embodiment contains a specific type of curing agent in a specific mixing ratio. Thereby, the gel time after mixing the copolymer and the curing agent can be lengthened. Gel time is measured by the following gel time test.
[ゲルタイム試験]
 共重合体と硬化剤とを混合し、30℃に設定した恒温器内に静置する。その後、ゲル化するまでの時間を測定する。「ゲル化」とは、樹脂組成物が硬化して流動性が認められない状態になることを意味する。「ゲルタイム」とは、ゲル化するまでの時間を意味する。本実施形態において、ゲルタイムが3時間以上であると、「ゲルタイムが長い」と評価する。
[Gel time test]
A copolymer and a curing agent are mixed and allowed to stand in a thermostat set at 30°C. After that, the time until gelation is measured. "Gelling" means that the resin composition hardens and becomes in a state where fluidity is not recognized. "Gel time" means time until gelation. In this embodiment, when the gel time is 3 hours or more, it is evaluated as "long gel time".
<硬化物>
 本実施形態は、前記樹脂組成物を硬化させた硬化物である。
<Cured product>
This embodiment is a cured product obtained by curing the resin composition.
 本実施形態の硬化物の厚さは、0.1mm以上3.0mm以下を満たすことが好ましく、0.5mm以上2.5mm以下を満たすことがより好ましく、0.8mm以上2.0mm以下を満たすことがさらに好ましい。 The thickness of the cured product of the present embodiment preferably satisfies 0.1 mm or more and 3.0 mm or less, more preferably 0.5 mm or more and 2.5 mm or less, and satisfies 0.8 mm or more and 2.0 mm or less. is more preferred.
 本実施形態において「硬化物の厚さ」とは硬化物の平均厚さであり、例えば間隔をあけて測定した5点の厚さの測定値の平均値である。
 本実施形態の硬化物は、硬度及び光透過率が高く、屈折率及び光分散が低い。
In the present embodiment, the "thickness of the cured product" is the average thickness of the cured product, for example, the average value of the measured values of the thickness at five points measured at intervals.
The cured product of the present embodiment has high hardness and light transmittance, and low refractive index and light dispersion.
[硬度の測定]
 本実施形態において、硬化物の硬度とは、硬化物の鉛筆硬度である。
 硬化物の鉛筆硬度は以下の方法により測定する。
 まず、樹脂組成物を硬化し、厚さが1.0mmの硬化物を得る。
 次に、JIS K 5600-5-4(1999)「引っかき硬度(鉛筆法)」に準拠して、得られた各1.0mm厚の硬化物を、750g荷重下において鉛筆硬度を測定する。
[Measurement of hardness]
In the present embodiment, the hardness of the cured product is the pencil hardness of the cured product.
The pencil hardness of the cured product is measured by the following method.
First, the resin composition is cured to obtain a cured product having a thickness of 1.0 mm.
Next, according to JIS K 5600-5-4 (1999) "scratch hardness (pencil method)", each 1.0 mm thick cured product obtained is measured for pencil hardness under a load of 750 g.
 本実施形態においては、鉛筆硬度が8H以上を満たすと硬度が高いと評価する。 In this embodiment, when the pencil hardness is 8H or higher, the hardness is evaluated as high.
[光透過率の測定]
 本実施形態において、硬化物の光透過率は下記の方法により測定する。
 まず、樹脂組成物を硬化し、厚さが1.0mmの硬化物を得る。
[Measurement of light transmittance]
In this embodiment, the light transmittance of the cured product is measured by the following method.
First, the resin composition is cured to obtain a cured product having a thickness of 1.0 mm.
 次に、分光光度計を用い、硬化物の厚さ方向の光透過率を測定する。波長は400nmとする。
 分光光度計としては、例えば株式会社島津製作所製のUV-2600が使用できる。
 具体的な測定条件は以下の通りである。
 (条件)バックグラウンド測定:大気
           測定速度:中速
            積分球:ISR-2600PLUS
          スリット幅:5.0mm
Next, using a spectrophotometer, the light transmittance of the cured product in the thickness direction is measured. The wavelength is assumed to be 400 nm.
As a spectrophotometer, for example, UV-2600 manufactured by Shimadzu Corporation can be used.
Specific measurement conditions are as follows.
(Conditions) Background measurement: atmosphere Measurement speed: medium speed Integrating sphere: ISR-2600PLUS
Slit width: 5.0mm
 本実施形態において、光透過率が92%以上を満たすと光透過率が高いと評価する。 In this embodiment, when the light transmittance satisfies 92% or more, the light transmittance is evaluated as high.
[屈折率及び光分散度の測定]
 本実施形態において、硬化物の屈折率は下記の方法により測定する。
 まず、スピンコート装置を用い、1000rpm、20秒間の条件で樹脂組成物をスライドガラス上に塗布する。塗布したスライドガラスを熱風乾燥オーブンに入れ、50℃で1時間、さらに100℃で1時間加熱し、ガラスコーティング膜を作製する。
[Measurement of refractive index and light dispersion]
In this embodiment, the refractive index of the cured product is measured by the following method.
First, a spin coater is used to apply a resin composition onto a slide glass under conditions of 1000 rpm and 20 seconds. The coated slide glass is placed in a hot air drying oven and heated at 50° C. for 1 hour and further at 100° C. for 1 hour to prepare a glass coating film.
 次に、反射分光膜厚計を用いて、ガラスコーティング膜の反射スペクトルを測定する。反射分光膜厚計は、例えば大塚電子株式会社製のFE-3000が使用できる。波長は例えば450nm以上800nm以下である。 Next, the reflection spectrum of the glass coating film is measured using a reflection spectroscopic film thickness meter. As a reflection spectroscopic film thickness meter, for example, FE-3000 manufactured by Otsuka Electronics Co., Ltd. can be used. The wavelength is, for example, 450 nm or more and 800 nm or less.
 反射分光膜厚計による測定で、ガラスコーティング膜の屈折率n及び光分散度の指標であるアッベ数が求まる。 Measurement with a reflection spectroscopic film thickness meter gives the refractive index nD of the glass coating film and the Abbe number, which is an index of the degree of light dispersion.
 本実施形態において、ガラスコーティング膜の屈折率nが1.42以下であると、屈折率が低いと評価する。 In this embodiment, when the refractive index nD of the glass coating film is 1.42 or less, the refractive index is evaluated as low.
 アッベ数は下記計算式によって求める。
 ν=(n-1)/(n-n
   ν:アッベ数
   n:波長589nmの光に対する屈折率
   n:波長486nmの光に対する屈折率
   n:波長656nmの光に対する屈折率
The Abbe number is obtained by the following formula.
v D =(n D −1)/(n F −n C )
ν D : Abbe number n D : Refractive index for light with a wavelength of 589 nm n F : Refractive index for light with a wavelength of 486 nm n C : Refractive index for light with a wavelength of 656 nm
 本実施形態において、ガラスコーティング膜のアッベ数が58以上であると、光分散度が低いと評価する。 In the present embodiment, when the Abbe number of the glass coating film is 58 or more, the degree of light dispersion is evaluated as low.
 アッベ数は、光分散度を示す尺度であり、アッベ数が大きければ大きいほど光分散度が小さくなる。例えば標準的な光学ガラスのアッベ数は60以上である。本実施形態の樹脂組成物を硬化した硬化物は、アッベ数が光学ガラスに近づき、広い波長領域の光線透過率が向上して、高い透明性を有する。 The Abbe number is a measure of the degree of light dispersion, and the larger the Abbe number, the smaller the degree of light dispersion. For example, standard optical glass has an Abbe number of 60 or more. A cured product obtained by curing the resin composition of the present embodiment has an Abbe number close to that of optical glass, has improved light transmittance in a wide wavelength range, and has high transparency.
<電子部品>
 本実施形態は、前記硬化物を光学部材として含む電子部品である。光学部材としては、液晶表示素子や有機EL表示素子等の電子ディスプレイやイメージセンサー等に使用されるカバーガラスが挙げられる。
<Electronic parts>
This embodiment is an electronic component containing the cured product as an optical member. Examples of optical members include cover glasses used for electronic displays such as liquid crystal display elements and organic EL display elements, image sensors, and the like.
<2成分キット>
 本実施形態は、前記樹脂組成物を得るための2成分キットである。2成分キットは、第1成分が前記共重合体であり、第2成分が前記硬化剤である。第1成分として前記共重合体を、第2成分として前記硬化剤をそれぞれ独立して流通又は保存することで、使用する直前に混合して使用することができる。
<Two-component kit>
This embodiment is a two-component kit for obtaining the resin composition. A two-component kit has the copolymer as the first component and the curing agent as the second component. By independently distributing or storing the copolymer as the first component and the curing agent as the second component, they can be mixed and used immediately before use.
 第1成分又は第2成分は、それぞれ希釈剤を含んでいてもよい。希釈剤としては、メタノールや2-プロパノールが挙げられる。 The first component or the second component may each contain a diluent. Diluents include methanol and 2-propanol.
<その他>
 本実施形態は、前記樹脂組成物を含むポッティング剤であってもよい。「ポッティング剤」とは、電子回路基板や半導体素子に対し、電気的絶縁、保護、防湿の目的で使用される剤である。
<Others>
This embodiment may be a potting agent containing the resin composition. A "potting agent" is an agent used for the purpose of electrical insulation, protection, and moisture-proofing for electronic circuit boards and semiconductor elements.
<硬化物の製造方法>
 まず、前記共重合体と前記硬化剤とを混合し、本実施形態の樹脂組成物を得る。次に樹脂組成物を加熱して硬化させる。硬化のための加熱は、樹脂組成物の硬化反応が進行する温度で加熱する。
<Method for producing cured product>
First, the copolymer and the curing agent are mixed to obtain the resin composition of the present embodiment. The resin composition is then heated to cure. Heating for curing is performed at a temperature at which the curing reaction of the resin composition proceeds.
 硬化のための加熱温度は、例えば20℃以上180℃以下である。 The heating temperature for curing is, for example, 20°C or higher and 180°C or lower.
 硬化のための加熱時間は、例えば30分間以上10時間以下である。 The heating time for curing is, for example, 30 minutes or more and 10 hours or less.
 硬化のための加熱は、一定温度で保持する加熱工程を複数備えていてもよい。
 一例を挙げると、硬化のための加熱条件は、40℃以上60℃以下の温度で30分間から90分間加熱する第1加熱処理、90℃以上110℃以下の温度で0.5時間以上4時間以下加熱する第2加熱処理、140℃以上160℃以下で0.5時間以上4時間以下加熱する第3加熱処理を有していてもよい。
Heating for curing may include a plurality of heating steps of holding at a constant temperature.
For example, the heating conditions for curing are the first heat treatment in which the temperature is 40° C. or higher and 60° C. or lower for 30 minutes to 90 minutes, and the temperature of 90° C. or higher and 110° C. or lower for 0.5 hours or more and 4 hours. A second heat treatment of heating below and a third heat treatment of heating at 140° C. or higher and 160° C. or lower for 0.5 hours or more and 4 hours or less may be performed.
≪硬化物の層を段階的に積層する実施形態≫
 厚さが1.0mmを超える硬化物は、例えば1.0mm以下の厚さの硬化物の層を段階的に積層することにより製造できる。具体的には、1段階目で1.0mm以下の厚さの硬化物層を製造し、得られた硬化物層の上に、2段階目で1.0mm以下の厚さの硬化物層を重ね塗りして製造する。
<<Embodiment in which the layers of the cured product are laminated step by step>>
A cured product having a thickness exceeding 1.0 mm can be produced, for example, by stepwise laminating layers of the cured product having a thickness of 1.0 mm or less. Specifically, a cured product layer having a thickness of 1.0 mm or less is produced in the first step, and a cured product layer having a thickness of 1.0 mm or less is formed in the second step on the resulting cured product layer. Manufactured by layering.
 各段階の硬化物層の厚さは、製造する硬化物の厚さに合わせて適宜調整ですればよい。例えば厚さが2.0mmの硬化物は2段階の積層で製造でき、厚さが3.0mmの硬化物は3段階の積層で製造できる。 The thickness of the cured product layer at each stage may be appropriately adjusted according to the thickness of the cured product to be produced. For example, a cured product with a thickness of 2.0 mm can be produced by laminating in two stages, and a cured product with a thickness of 3.0 mm can be produced by laminating in three stages.
 本実施形態の樹脂組成物は、硬化時にいわゆるスキニングが生じにくい。スキニングとは、硬化時に表面のみが乾燥して膜が張る現象である。スキニングは樹脂組成物が硬化する工程において、揮発速度に遅速がある場合に生じやすい。厚さが1.0mm以上の硬化物を製造する際にスキニングは発生しやすいが、本実施形態の樹脂組成物は加熱硬化時の粘性が低いため、揮発速度に遅速がなく、スキニングが生じにくい。 The resin composition of the present embodiment is less prone to so-called skinning during curing. Skinning is a phenomenon in which only the surface dries and forms a film during curing. Skinning tends to occur when the volatilization speed is slow in the step of curing the resin composition. Skinning is likely to occur when producing a cured product having a thickness of 1.0 mm or more, but since the resin composition of the present embodiment has a low viscosity during heat curing, the volatilization speed is not slow, and skinning is unlikely to occur. .
 硬化物層を複数段階で積層する場合、硬化物層同士の間に界面が生じる。例えば厚さが1μm以下の薄膜の製造を目的とした樹脂組成物の場合、厚さが1.0mm程度の硬化物を得るためには積層数を増加する必要がある。例えば厚さが1μm以下の薄膜から厚さが1.0mmの膜を製造するためには、積層数を1000回にする必要があるが、このような積層回数は生産効率を向上させる観点から現実的ではない。 When the cured layers are laminated in multiple stages, an interface occurs between the cured layers. For example, in the case of a resin composition intended to produce a thin film with a thickness of 1 μm or less, it is necessary to increase the number of layers in order to obtain a cured product with a thickness of about 1.0 mm. For example, in order to manufacture a film with a thickness of 1.0 mm from a thin film with a thickness of 1 μm or less, it is necessary to stack 1000 times, but such a number of layers is realistic from the viewpoint of improving production efficiency. not targeted.
 さらに、積層数の増加により増加した界面は、光透過率が低下し、光分散が増加しやすくなる。本実施形態の樹脂組成物を用いると、厚さが1.0mm程度の硬化物を一段階で製造できる。このため、硬化物層を複数段階で積層する場合にも積層数を減らすことができるため、得られる硬化物は光透過率が低下しにくく、光分散が増加しにくい。 Furthermore, the interfaces that increase due to the increase in the number of layers have a lower light transmittance and are more likely to increase light dispersion. By using the resin composition of the present embodiment, a cured product having a thickness of about 1.0 mm can be produced in one step. Therefore, even when the cured product layers are laminated in a plurality of stages, the number of laminated layers can be reduced, so that the obtained cured product is less likely to decrease in light transmittance and less likely to increase in light dispersion.
 硬化物層間の界面をよりなじませるため、例えば1段階目で製造する硬化物層の加熱条件は、前記第2加熱処理まで実施することが好ましく、2段階目で製造する硬化物層の加熱条件は、前記第2加熱処理まで実施することが好ましく、最後に全体を前記第3加熱処理の実施条件で加熱することが好ましい。 In order to make the interface between the cured product layers more compatible, for example, the heating conditions for the cured product layer produced in the first stage are preferably performed up to the second heat treatment, and the heating conditions for the cured product layer produced in the second stage. is preferably performed up to the second heat treatment, and finally the whole is preferably heated under the conditions for the third heat treatment.
 次に、本発明を実施例によりさらに詳細に説明する。 Next, the present invention will be described in more detail by way of examples.
<ゲルタイム試験>
 樹脂組成物のゲルタイムは、上記[ゲルタイム試験]に記載の方法により評価した。ゲルタイムが3時間以上であると、「ゲルタイムが長い」と評価した。
<Gel time test>
The gel time of the resin composition was evaluated by the method described in [Gel Time Test] above. When the gel time was 3 hours or more, it was evaluated as "long gel time".
<硬度の測定>
 硬化物の硬度は、上記[硬度の測定]に記載の方法により評価した。鉛筆硬度が8H以上を満たすと硬度が高いと評価した。
<Measurement of hardness>
The hardness of the cured product was evaluated by the method described in [Measurement of hardness] above. A pencil hardness of 8H or higher was evaluated as high hardness.
<光透過率の測定>
 硬化物の光透過率は、上記[光透過率の測定]に記載の方法により評価した。光透過率が92%以上を満たすと光透過率が高いと評価した。
<Measurement of light transmittance>
The light transmittance of the cured product was evaluated by the method described in [Measurement of light transmittance] above. When the light transmittance satisfied 92% or more, it was evaluated that the light transmittance was high.
<屈折率及び光分散度の測定>
 硬化物の屈折率及び光分散度は、上記[屈折率及び光分散度の測定]に記載の方法により評価した。ガラスコーティング膜の屈折率nが1.42以下であると、屈折率が低いと評価した。ガラスコーティング膜のアッベ数が58以上であると、光分散度が低いと評価した。
<Measurement of refractive index and light dispersion>
The refractive index and light dispersion of the cured product were evaluated by the method described in [Measurement of refractive index and light dispersion] above. When the refractive index nD of the glass coating film was 1.42 or less, the refractive index was evaluated as low. When the Abbe number of the glass coating film was 58 or more, it was evaluated that the degree of light dispersion was low.
<重量平均分子量の測定方法>
 共重合体の重量平均分子量は、上記[重量平均分子量の測定方法]に記載の方法により測定した。
<Method for measuring weight average molecular weight>
The weight average molecular weight of the copolymer was measured by the method described in [Method for measuring weight average molecular weight] above.
<実施例1>
 2L四つ口フラスコにメチルトリエトキシシラン100.00g(0.561mol)、テトラエトキシシラン77.90g(0.374mol)、ジメチルジエトキシシラン55.44g(0.374mol)、トリメトキシ(3,3,3-トリフルオロプロピル)シラン122.48g(0.561mol)、2-プロパノール35.95gを仕込み、0.98gの35%塩酸をイオン交換水100.94gで希釈した溶液を滴下し、60℃で3時間撹拌した。室温まで冷却し、イオン交換水300g、メチルイソブチルケトン300gを加えて分液洗浄した。有機層を濃縮し、無色透明のワニス1を得た(収率97%)。
<Example 1>
100.00 g (0.561 mol) of methyltriethoxysilane, 77.90 g (0.374 mol) of tetraethoxysilane, 55.44 g (0.374 mol) of dimethyldiethoxysilane, trimethoxy (3,3,3 122.48 g (0.561 mol) of 3-trifluoropropyl)silane and 35.95 g of 2-propanol were charged, and a solution obtained by diluting 0.98 g of 35% hydrochloric acid with 100.94 g of deionized water was added dropwise. Stirred for 3 hours. After cooling to room temperature, 300 g of ion-exchanged water and 300 g of methyl isobutyl ketone were added for liquid separation and washing. The organic layer was concentrated to obtain a colorless and transparent varnish 1 (yield 97%).
 得られたワニス1は、繰返し単位(A)としてジエトキシジメチルシランから誘導される繰り返し単位を、繰返し単位(B)としてトリエトキシメチルシランから誘導される繰り返し単位を、繰返し単位(C)としてテトラエトキシシランから誘導される繰り返し単位を、繰返し単位(D)としてトリメトキシ(3,3,3-トリフルオロプロピル)シランから誘導される繰り返し単位からなる共重合体を固形分濃度70質量%で含んでいた。 The resulting varnish 1 has repeating units derived from diethoxydimethylsilane as repeating units (A), repeating units derived from triethoxymethylsilane as repeating units (B), and repeating units derived from triethoxymethylsilane as repeating units (C). A copolymer comprising a repeating unit derived from ethoxysilane and a repeating unit derived from trimethoxy(3,3,3-trifluoropropyl)silane as the repeating unit (D) at a solid content concentration of 70% by mass. board.
 それぞれの繰り返し単位の割合は、繰返し単位(A):繰返し単位(B):繰返し単位(C):繰返し単位(D)=20mol%:30mol%:20mol%:30mol%であった。 The ratio of each repeating unit was repeating unit (A): repeating unit (B): repeating unit (C): repeating unit (D) = 20 mol%: 30 mol%: 20 mol%: 30 mol%.
 サンアプロ製U-CAT SA810(0.10g)を2-プロパノール(99.90g)で希釈し、硬化剤溶液を得た。硬化剤溶液を上記で得たワニス1に添加した。このとき、ワニスの樹脂全固形分の全量に対するサンアプロ製U-CAT SA810の添加量が100ppmとなる割合で添加した。 San-Apro U-CAT SA810 (0.10 g) was diluted with 2-propanol (99.90 g) to obtain a curing agent solution. A hardener solution was added to Varnish 1 obtained above. At this time, the amount of U-CAT SA810 manufactured by San-Apro was added at a rate of 100 ppm with respect to the total amount of resin solid content of the varnish.
 上記の工程により、樹脂組成物1を得た。 A resin composition 1 was obtained through the above steps.
 樹脂組成物1を、固形分が2.0gとなるようアルミカップに添加した。このとき底面積が4cmであるアルミカップを用いた。 Resin composition 1 was added to an aluminum cup so that the solid content was 2.0 g. At this time, an aluminum cup with a bottom area of 4 cm 2 was used.
 その後、熱風乾燥オーブンに樹脂組成物1を添加したアルミカップを入れ50℃で1時間、100℃で1時間、150℃で3時間加熱した。これにより、厚さ1.0mmの無色透明な硬化物1を得た。 After that, the aluminum cup containing the resin composition 1 was placed in a hot air drying oven and heated at 50°C for 1 hour, 100°C for 1 hour, and 150°C for 3 hours. As a result, a colorless and transparent cured product 1 having a thickness of 1.0 mm was obtained.
<実施例2>
 硬化剤溶液を、2-プロパノール(229.77g)、DBN(0.10g)、o-フタル酸(0.13g)を混合した溶液に変更した以外は実施例1と同様の方法により、樹脂組成物2及び硬化物2を製造した。
<Example 2>
The resin composition was prepared in the same manner as in Example 1, except that the curing agent solution was changed to a mixed solution of 2-propanol (229.77 g), DBN (0.10 g), and o-phthalic acid (0.13 g). Product 2 and Cured Product 2 were produced.
<実施例3~10、比較例1~17>
 繰返し単位(A)~(D)の比率と、硬化剤溶液を表1及び表2に記載の通り変更した以外は実施例1と同様の方法により、樹脂組成物及び硬化物をそれぞれ製造した。
<Examples 3 to 10, Comparative Examples 1 to 17>
A resin composition and a cured product were produced in the same manner as in Example 1, except that the ratio of repeating units (A) to (D) and the curing agent solution were changed as shown in Tables 1 and 2.
 実施例1~10、比較例1~17により製造した樹脂組成物を用いて作成した硬化物又はガラスコーティング膜の、鉛筆硬度、光透過率、屈折率及び光分散度を表1及び表2にそれぞれ記載する。 Tables 1 and 2 show the pencil hardness, light transmittance, refractive index and light dispersion of the cured products or glass coating films prepared using the resin compositions produced in Examples 1 to 10 and Comparative Examples 1 to 17. Describe each.
 さらに、表3~表4に共重合体の重量平均分子量を記載する。表3~表4中、「Mw」は重量平均分子量を意味する。 Furthermore, Tables 3 and 4 list the weight average molecular weights of the copolymers. In Tables 3 and 4, "Mw" means weight average molecular weight.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1及び表2中、各記号は以下を意味する。
 (A):ジエトキシジメチルシランから誘導される繰り返し単位。
 (B):トリエトキシメチルシランから誘導される繰り返し単位。
 (C):テトラエトキシシランから誘導される繰り返し単位。
 (D):トリメトキシ(3,3,3-トリフルオロプロピル)シランから誘導される繰り返し単位。
 T1:サンアプロ製「U-CAT SA810」、DBUのo-フタル酸塩。
 T2:サンアプロ製「U-CAT SA506」、DBUのp-トルエンスルホン酸塩。
 T3:DBNとo-フタル酸の塩(モル比1:1)。
 T4:トリエチルアミン。
 T5:トリエチルアミンとo-フタル酸の塩(モル比1:1)。
In Tables 1 and 2, each symbol means the following.
(A): A repeating unit derived from diethoxydimethylsilane.
(B): A repeating unit derived from triethoxymethylsilane.
(C): A repeating unit derived from tetraethoxysilane.
(D): A repeating unit derived from trimethoxy(3,3,3-trifluoropropyl)silane.
T1: "U-CAT SA810" manufactured by San-Apro, o-phthalate of DBU.
T2: "U-CAT SA506" manufactured by San-Apro, p-toluenesulfonate of DBU.
T3: a salt of DBN and o-phthalic acid (molar ratio 1:1).
T4: triethylamine.
T5: salt of triethylamine and o-phthalic acid (molar ratio 1:1).
 表1及び表2に示した通り、実施例1~10によれば硬度及び光透過率が高く、屈折率及び光分散が低い硬化物を製造できる樹脂組成物が得られた。 As shown in Tables 1 and 2, according to Examples 1 to 10, resin compositions with high hardness and high light transmittance, low refractive index and low light dispersion can be produced.
 比較例1~3は、繰返し単位(D)の割合が本発明に規定する範囲の上限を超過しているため、硬化物の硬度が低下している。
 比較例4は、繰返し単位(D)を含まないため、屈折率が1.42を超えている。
In Comparative Examples 1 to 3, the proportion of the repeating unit (D) exceeded the upper limit of the range defined in the present invention, so the hardness of the cured product was lowered.
Comparative Example 4 does not contain the repeating unit (D), so the refractive index exceeds 1.42.
 比較例5は、繰返し単位(A)の割合が本発明に規定する範囲の上限を超過しているため、硬化物の硬度が低下している。
 比較例6は、繰返し単位(C)の割合が本発明に規定する範囲の上限を超過しているため、硬化物の透過率が低下している。
In Comparative Example 5, the proportion of the repeating unit (A) exceeded the upper limit of the range defined in the present invention, so the hardness of the cured product was lowered.
In Comparative Example 6, the ratio of the repeating unit (C) exceeded the upper limit of the range defined in the present invention, so the transmittance of the cured product was lowered.
 比較例7は繰返し単位(A)を含まないため、硬化時にサンプルが粉々になり、各物性を測定することができなかった。
 比較例8は、繰返し単位(A)及び(C)の割合が本発明に規定する範囲の上限を超過し、繰返し単位(B)が本発明に規定する範囲の下限を下回っている。このため、硬化物の透過性が低く及び光分散性が上がっている。
Since Comparative Example 7 did not contain the repeating unit (A), the sample shattered during curing, and each physical property could not be measured.
In Comparative Example 8, the ratio of repeating units (A) and (C) exceeds the upper limit of the range defined in the present invention, and the repeating unit (B) falls below the lower limit of the range defined in the present invention. As a result, the cured product has low transmittance and high light dispersion.
 比較例9~14は、硬化剤を用いていないため、硬化物の硬度が低い結果となっている。 Comparative Examples 9 to 14 did not use a curing agent, so the hardness of the cured product was low.
 比較例15及び16は、硬化剤として環状アミジンを有する化合物と有機酸との塩を用いていないため、硬化物の硬度が低下している。
 比較例17は、硬化剤として環状アミジンを有する化合物と有機酸との塩を用いず、さらに繰返し単位(B)の割合が本発明に規定する範囲の上限を超過し、繰返し単位(D)を含まない。この場合には、硬化物の硬度が低く、屈折率及び光分散は高い結果であった。
Comparative Examples 15 and 16 did not use a salt of a compound having a cyclic amidine and an organic acid as a curing agent, so that the hardness of the cured product was lowered.
Comparative Example 17 does not use a salt of a compound having a cyclic amidine and an organic acid as a curing agent, and furthermore, the ratio of the repeating unit (B) exceeds the upper limit of the range defined in the present invention, and the repeating unit (D) is Not included. In this case, the hardness of the cured product was low, and the refractive index and light dispersion were high.
 共重合体の組成比が同じである実施例1と比較例14、実施例5と比較例9、実施例6と比較例10、実施例7と比較例11、実施例8と比較例13、実施例9と比較例12とをそれぞれ比べると、いずれにおいても比較例よりも実施例の方が、鉛筆硬度の高さに加え、アッベ数が高い結果となった。同じ共重合体を用いた場合でも、特定の硬化剤を用いると、鉛筆硬度の高さに加え、アッベ数が高くなることが確認できた。 Example 1 and Comparative Example 14, Example 5 and Comparative Example 9, Example 6 and Comparative Example 10, Example 7 and Comparative Example 11, Example 8 and Comparative Example 13, and Comparing Example 9 and Comparative Example 12, both examples showed higher pencil hardness and higher Abbe number than Comparative Example. It was confirmed that even when the same copolymer was used, the use of a specific curing agent resulted in a high pencil hardness and a high Abbe number.
<ゲルタイム試験結果>
 実施例1で製造したワニス1に、U-CAT SA810、又はDBUをそれぞれ各量添加し、ゲルタイムを測定した。その結果を表5に記載する。
<Results of gel time test>
Each amount of U-CAT SA810 or DBU was added to the varnish 1 produced in Example 1, and the gel time was measured. The results are listed in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 硬化剤として、DBUのo-フタル酸塩(U-CAT SA810)を用いた場合には、10000ppm以下の割合においてゲルタイムが3時間以上であった。硬化剤として、環状アミジンを有する化合物と有機酸との塩を用いると、作業上十分なゲルタイムが確保できることが確認できた。 When the o-phthalate of DBU (U-CAT SA810) was used as the curing agent, the gel time was 3 hours or more at a rate of 10000 ppm or less. It was confirmed that when a salt of a compound having a cyclic amidine and an organic acid was used as a curing agent, a sufficient gel time could be secured for work.
 硬化剤としてDBU単体を用いた場合には、いずれの添加量においても作業上十分なゲルタイムが確保できないことがわかった。 It was found that when DBU alone was used as a curing agent, it was not possible to secure a sufficient gel time for work regardless of the amount added.

Claims (10)

  1.  共重合体と硬化剤とを含む樹脂組成物であって、
     前記共重合体は、下記式(A)で表される繰返し単位(A)、下記式(B)で表される繰返し単位(B)、下記式(C)で表される繰返し単位(C)及び下記式(D)で表される繰返し単位(D)を含み、
     前記硬化剤は、環状アミジンを有する化合物と有機酸との塩であり、
     前記共重合体を構成する全繰返し単位の合計に対する前記繰返し単位(A)の割合は、10mol%以上20mol%以下であり、
     前記共重合体を構成する全繰返し単位の合計に対する前記繰返し単位(B)の割合は、20mol%以上50mol%以下であり、
     前記共重合体を構成する全繰返し単位の合計に対する前記繰返し単位(C)の割合は、10mol%以上20mol%以下であり、
     前記共重合体を構成する全繰返し単位の合計に対する前記繰返し単位(D)の割合は、20mol%以上50mol%以下であり、
     前記樹脂組成物の樹脂全固形分の全量に対する、前記硬化剤の割合は50ppm以上10000ppm以下である、樹脂組成物。
     [MeSiO2/2]  ・・・式(A)
     [MeSiO3/2]  ・・・式(B)
     [SiO4/2]    ・・・式(C)
     [RSiO3/2]  ・・・式(D)
     (式(D)中、Rはフッ素原子を有する炭素数1~3のアルキル基である。)
    A resin composition containing a copolymer and a curing agent,
    The copolymer includes a repeating unit (A) represented by the following formula (A), a repeating unit (B) represented by the following formula (B), and a repeating unit (C) represented by the following formula (C) and a repeating unit (D) represented by the following formula (D),
    The curing agent is a salt of a compound having a cyclic amidine and an organic acid,
    The ratio of the repeating unit (A) to the total of all repeating units constituting the copolymer is 10 mol% or more and 20 mol% or less,
    The ratio of the repeating unit (B) to the total of all repeating units constituting the copolymer is 20 mol% or more and 50 mol% or less,
    The ratio of the repeating unit (C) to the total of all repeating units constituting the copolymer is 10 mol% or more and 20 mol% or less,
    The ratio of the repeating unit (D) to the total of all repeating units constituting the copolymer is 20 mol% or more and 50 mol% or less,
    The resin composition, wherein the ratio of the curing agent to the total amount of the resin total solid content of the resin composition is 50 ppm or more and 10000 ppm or less.
    [Me 2 SiO 2/2 ] Formula (A)
    [MeSiO 3/2 ] Formula (B)
    [SiO 4/2 ] Formula (C)
    [RSiO 3/2 ] Formula (D)
    (In formula (D), R is an alkyl group having 1 to 3 carbon atoms and having a fluorine atom.)
  2.  前記環状アミジンを有する化合物は1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ[4.3.0]-5-ノネン、及び1,4-ジアザビシクロ[2.2.2]オクタンからなる群より選択される1種以上である、請求項1に記載の樹脂組成物。 The compounds having a cyclic amidine include 1,8-diazabicyclo[5.4.0]-7-undecene, 1,5-diazabicyclo[4.3.0]-5-nonene, and 1,4-diazabicyclo[2. 2.2] The resin composition according to claim 1, which is at least one selected from the group consisting of octane.
  3.  前記有機酸は、芳香族ポリカルボン酸、芳香族スルホン酸又はギ酸である、請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the organic acid is aromatic polycarboxylic acid, aromatic sulfonic acid or formic acid.
  4.  前記環状アミジンを有する化合物と有機酸との塩は、1,8-ジアザビシクロ[5.4.0]-7-ウンデセンとフタル酸との塩、1,8-ジアザビシクロ[5.4.0]-7-ウンデセンとp-トルエンスルホン酸との塩又は1,5-ジアザビシクロ[4.3.0]-5-ノネンとフタル酸との塩である、請求項1に記載の樹脂組成物。 The salt of the compound having a cyclic amidine and an organic acid includes a salt of 1,8-diazabicyclo[5.4.0]-7-undecene and phthalic acid, 1,8-diazabicyclo[5.4.0]- 2. The resin composition according to claim 1, which is a salt of 7-undecene and p-toluenesulfonic acid or a salt of 1,5-diazabicyclo[4.3.0]-5-nonene and phthalic acid.
  5.  前記環状アミジンを有する化合物と有機酸との塩は、1,8-ジアザビシクロ[5.4.0]-7-ウンデセンとフタル酸との塩、1,8-ジアザビシクロ[5.4.0]-7-ウンデセンとp-トルエンスルホン酸との塩、1,5-ジアザビシクロ[4.3.0]-5-ノネンとフタル酸との塩、又は1,8-ジアザビシクロ[5.4.0]-7-ウンデセンとギ酸との塩である、請求項1に記載の樹脂組成物。 The salt of the compound having a cyclic amidine and an organic acid includes a salt of 1,8-diazabicyclo[5.4.0]-7-undecene and phthalic acid, 1,8-diazabicyclo[5.4.0]- a salt of 7-undecene and p-toluenesulfonic acid, a salt of 1,5-diazabicyclo[4.3.0]-5-nonene and phthalic acid, or 1,8-diazabicyclo[5.4.0]- The resin composition according to claim 1, which is a salt of 7-undecene and formic acid.
  6.  請求項1~5のいずれか1項に記載の樹脂組成物の硬化物。 A cured product of the resin composition according to any one of claims 1 to 5.
  7.  厚さが0.1mm以上3.0mm以下である、請求項6に記載の硬化物。 The cured product according to claim 6, which has a thickness of 0.1 mm or more and 3.0 mm or less.
  8.  請求項6又は7に記載の硬化物を光学部材として含む電子部品。 An electronic component comprising the cured product according to claim 6 or 7 as an optical member.
  9.  請求項1~5のいずれか1項に記載の樹脂組成物を得るための2成分キットであって、
     第1成分が前記共重合体であり、第2成分が前記硬化剤である、2成分キット。
    A two-component kit for obtaining the resin composition according to any one of claims 1 to 5,
    A two-component kit, wherein the first component is the copolymer and the second component is the curing agent.
  10.  前記共重合体と前記硬化剤とを混合し、請求項1~5のいずれか1項に記載の樹脂組成物を得る工程と、
     前記樹脂組成物を加熱して硬化させる硬化工程と、を備える、硬化物の製造方法。
    A step of mixing the copolymer and the curing agent to obtain the resin composition according to any one of claims 1 to 5;
    A method for producing a cured product, comprising a curing step of heating and curing the resin composition.
PCT/JP2022/014216 2021-04-20 2022-03-25 Resin composition, cured product, electronic part, two-component kit and method for producing cured product WO2022224699A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021070944A JP6989188B1 (en) 2021-04-20 2021-04-20 Method for manufacturing resin composition, cured product, electronic component, two-component kit and cured product
JP2021-070944 2021-04-20

Publications (1)

Publication Number Publication Date
WO2022224699A1 true WO2022224699A1 (en) 2022-10-27

Family

ID=79239845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014216 WO2022224699A1 (en) 2021-04-20 2022-03-25 Resin composition, cured product, electronic part, two-component kit and method for producing cured product

Country Status (2)

Country Link
JP (1) JP6989188B1 (en)
WO (1) WO2022224699A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05105760A (en) * 1991-10-17 1993-04-27 Kanegafuchi Chem Ind Co Ltd Silicon-based hybrid material
JP2004210975A (en) * 2003-01-06 2004-07-29 Daikin Ind Ltd Coating composition
JP2006152084A (en) * 2004-11-26 2006-06-15 Toagosei Co Ltd Curable composition
JP2009541531A (en) * 2006-06-20 2009-11-26 ダウ・コーニング・コーポレーシヨン Curable organosilicon composition
JP2017222796A (en) * 2016-06-16 2017-12-21 信越化学工業株式会社 Fluorosilicone rubber composition and rubber component used around engine of transport
JP2018016796A (en) * 2016-07-19 2018-02-01 セントラル硝子株式会社 Curable resin composition and cured product of the same, and semiconductor device using them

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05105760A (en) * 1991-10-17 1993-04-27 Kanegafuchi Chem Ind Co Ltd Silicon-based hybrid material
JP2004210975A (en) * 2003-01-06 2004-07-29 Daikin Ind Ltd Coating composition
JP2006152084A (en) * 2004-11-26 2006-06-15 Toagosei Co Ltd Curable composition
JP2009541531A (en) * 2006-06-20 2009-11-26 ダウ・コーニング・コーポレーシヨン Curable organosilicon composition
JP2017222796A (en) * 2016-06-16 2017-12-21 信越化学工業株式会社 Fluorosilicone rubber composition and rubber component used around engine of transport
JP2018016796A (en) * 2016-07-19 2018-02-01 セントラル硝子株式会社 Curable resin composition and cured product of the same, and semiconductor device using them

Also Published As

Publication number Publication date
JP2022165558A (en) 2022-11-01
JP6989188B1 (en) 2022-01-05

Similar Documents

Publication Publication Date Title
TW468053B (en) Antireflection film, process for forming the antireflection film, and antireflection glass
JP6869671B2 (en) Anti-fog coating composition and coating film containing it
KR101840219B1 (en) Low Temperature Curable Composition, Cured Film Prepared therefrom, and Electronic Device Incorporating the Cured Film
CN108473682B (en) Polysilsesquioxane resin composition for flexible substrate
KR20140121794A (en) Thermosetting compositions
JP2011173738A (en) Transparent fired body
KR20140014210A (en) Polysilanesiloxane resins for use in an antireflective coating
JP2007009079A (en) Coating composition for optical use
US20210301136A1 (en) Novel polysiloxane compositions and uses thereof
KR20140128638A (en) Modified polysilazane-based polymer, coating composition comprising the same, coated plastic substrate obtainable using the same and its preparing method, and method of preparing the modified polysilazane-based polymer
KR20140141878A (en) Modified polysiloxane-based copolymer, coating composition comprising the same, coated plastic substrate obtainable using the same and its preparing method, and method of preparing the modified polysiloxane-based copolymer
EP2722365A2 (en) Composition having high refraction
WO2022224699A1 (en) Resin composition, cured product, electronic part, two-component kit and method for producing cured product
KR102483657B1 (en) Film-forming composition and method of producing cured coating using the same
KR102392261B1 (en) Composition For Coating and Coating Film Including cured Product Of The Same As The Coating Layer
KR102281050B1 (en) Resin composition for flattened film or microlens
US8969459B2 (en) White coating composition, and device employing coating made therefrom
KR102547175B1 (en) Aqueous anti-static high rigidity composition and its preparing method
WO2017110623A1 (en) Silicone resin composition and sealing material for semiconductor light emitting element
FI123666B (en) Process for the preparation of highly conformal coatings
KR101848346B1 (en) Low Temperature Curable Composition, Cured Film Prepared therefrom, and Electronic Device Incorporating Cured Film
KR20160079417A (en) Silicone Resin Hybrid Composition and Method of Preparing the Same
KR102167370B1 (en) Silicone Resin and Method of Preparing the Same
KR102171280B1 (en) Manufacturing method of optical member comprising multi layered low-reflection coating layer and optical member menufactured by the same
KR20160091600A (en) Silicone Resin Composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791475

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22791475

Country of ref document: EP

Kind code of ref document: A1