WO2022224476A1 - 架橋ゴムの製造方法 - Google Patents

架橋ゴムの製造方法 Download PDF

Info

Publication number
WO2022224476A1
WO2022224476A1 PCT/JP2021/042104 JP2021042104W WO2022224476A1 WO 2022224476 A1 WO2022224476 A1 WO 2022224476A1 JP 2021042104 W JP2021042104 W JP 2021042104W WO 2022224476 A1 WO2022224476 A1 WO 2022224476A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
cross
crosslinked
linking
temperature
Prior art date
Application number
PCT/JP2021/042104
Other languages
English (en)
French (fr)
Inventor
靖雄 大澤
紀彦 加賀
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to JP2023516030A priority Critical patent/JPWO2022224476A1/ja
Priority to EP21937966.6A priority patent/EP4328009A1/en
Priority to CN202180097347.0A priority patent/CN117255741A/zh
Publication of WO2022224476A1 publication Critical patent/WO2022224476A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/04Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam
    • B29C35/041Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam using liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/0009After-treatment of articles without altering their shape; Apparatus therefor using liquids, e.g. solvents, swelling agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/147Processes of additive manufacturing using only solid materials using sheet material, e.g. laminated object manufacturing [LOM] or laminating sheet material precut to local cross sections of the 3D object
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2307/00Characterised by the use of natural rubber

Definitions

  • the present invention relates to a method for producing crosslinked rubber.
  • the crosslinked rubber molded article is usually formed by inserting an uncrosslinked rubber molded article into a mold or sandwiching it with a hot press so that the vulcanization reaction occurs within the temperature range where the rubber composition blows and air bubbles are formed inside. It is manufactured under constant pressure so that it does not occur.
  • these methods are difficult to apply to molded bodies with complicated shapes, such as laminate-molded bodies, and tend to involve dimensional changes before and after vulcanization of the molded molded body.
  • Patent Document 1 a composition of an uncrosslinked rubber composition suitable as a modeling material for a three-dimensional modeling printer by the hot melt lamination method is disclosed, and this uncrosslinked rubber composition is heated under normal pressure. A method of vulcanizing by heating at 100° C.
  • Patent Document 2 a curved tube-shaped article made of an elastomer material or the like, having a predetermined three-dimensional meandering shape, and having a constant wall thickness over the entire length and a circular cross-sectional shape is heated at a predetermined temperature. and a method of vulcanizing with a heated fluid under pressure conditions.
  • JP 2019-19324 A Japanese Patent Publication No. 2003-531038
  • Patent Document 1 it is necessary to prepare an unvulcanized rubber composition having a component composition suitable for the technique of Patent Document 1. Further, Patent Document 2 does not disclose the details of the vulcanization method, and does not disclose a method for easily producing vulcanized rubber for a laminate-molded body with good dimensional accuracy.
  • An object of the present invention is to provide a method for producing a crosslinked rubber that can easily produce a crosslinked rubber for a laminate model with good dimensional accuracy even using a general-purpose uncrosslinked rubber composition.
  • the task is to solve the purpose.
  • the present inventors heated the uncrosslinked rubber laminate model while controlling the pressure and temperature so as not to exceed the saturated vapor pressure of the liquid, and determined the integrated degree of crosslinkage by the Arrhenius equation according to the time history of the heating temperature, The inventors have found that the above problems can be solved by stopping crosslinking when the required degree of crosslinking is reached.
  • the present invention is as follows.
  • a method for producing a crosslinked rubber laminate model by heating an uncrosslinked rubber laminate model in a liquid comprising: The temperature and pressure of the liquid are controlled, and the uncrosslinked rubber layered product is heated so as not to exceed the saturated vapor pressure. and calculating the cumulative degree of crosslinking, and stopping the crosslinking reaction when the degree of crosslinking of the laminated body of crosslinked rubber reaches the required degree.
  • U is the equivalent amount of cross-linking
  • E is the activation energy (kcal/mol)
  • R is the gas constant (1.987 ⁇ 10 -3 kcal/mod deg)
  • T is the cross-linking temperature (K)
  • T 0 is the reference temperature (K)
  • t 0 is the optimum cross-linking reaction point time (seconds) determined by measuring in advance at the reference temperature T 0
  • t i is the cumulative cross-linking time in the i-th interval (seconds) represents
  • ⁇ 2> The method for producing a crosslinked rubber according to ⁇ 1>, including a preheating step of heating the uncrosslinked rubber laminate-molded article in advance at a temperature not higher than the boiling point of the liquid under a pressure of 1.1 MPa or more.
  • ⁇ 3> The method for producing a crosslinked rubber according to ⁇ 1> or ⁇ 2>, wherein the liquid is water.
  • FIG. 4 is an equivalent amount of cross-linking curve in Examples 1 and 2.
  • FIG. 1 shows laser shape measurement results of an uncrosslinked rubber laminate model and a crosslinked rubber laminate model of Example 1.
  • FIG. 1 is a schematic diagram of one embodiment of a sheet laminate structure.
  • FIG. 1 is a photograph of an embodiment of a filamentous laminate.
  • the method for producing a crosslinked rubber of the present invention is a method for producing a crosslinked rubber laminate model by heating an uncrosslinked rubber laminate model in a liquid, The temperature and pressure of the liquid are controlled, and the uncrosslinked rubber layered product is heated so as not to exceed the saturated vapor pressure. Then, the cross-linking reaction is stopped when the cross-linking degree of the cross-linked rubber laminate model reaches the required cross-linking degree.
  • U is the equivalent amount of cross-linking
  • E is the activation energy (kcal/mol)
  • R is the gas constant (1.987 ⁇ 10 -3 kcal/mod deg)
  • T is the cross-linking temperature (K)
  • T 0 is the reference temperature (K)
  • t 0 is the optimum cross-linking reaction point time (seconds) determined by measuring in advance at the reference temperature T 0
  • t i is the cumulative cross-linking time in the i-th interval (seconds) represents
  • crosslinked rubber moldings are generally produced by placing uncrosslinked rubber in a mold having a shape that matches the shape of the molded article and applying temperature and pressure to crosslink the molded article. It is put into a mold having a shape larger than the shape, and after being crosslinked by applying temperature and pressure, it is made into a desired shape by machining such as cutting.
  • a molding method there is a method of laminating sheets, filaments, and particles to form a molded product. It was also difficult to shape the molded body.
  • an uncrosslinked rubber molded body is crosslinked, it is necessary to apply not only temperature but also pressure to the molded body in order to eliminate air bubbles contained inside the molded body and air bubbles generated by the crosslinking reaction.
  • Patent Document 1 calcium oxide is contained in the unvulcanized rubber composition to suppress air bubbles, but the inclusion of foreign matter such as calcium oxide generally impairs the strength properties of the vulcanized rubber.
  • the temperature and pressure of the liquid are controlled, the uncrosslinked rubber laminate is heated so as not to exceed the saturated vapor pressure, and the formula (1) is applied at regular intervals from the start of heating.
  • the equivalent cross-linking amount is determined and integrated to calculate the integrated cross-linking degree, and the cross-linking reaction is stopped when the cross-linking degree of the cross-linked rubber laminate model reaches the required cross-linking degree.
  • the determination of the termination of the cross-linking reaction can be made, for example, by stopping heating, cooling as necessary, and making the temperature in the rubber laminate model or the container in which the rubber laminate model is placed, for example, 80 ° C. or less. It is determined that the cross-linking reaction has stopped when the cross-linking temperature is below the cross-linking temperature.
  • Heating of the uncrosslinked rubber laminate-molded body is preferably performed using a sealed container capable of being pressurized and heated. Specifically, the liquid is placed in a sealed container, the crosslinked rubber laminate model is placed so that the uncrosslinked rubber laminate model is immersed in the liquid, and the liquid is heated and pressurized.
  • the liquid may be heated by heating the liquid inside the container with gas, liquid, etc. from the outside of the closed container, or by placing a heat source, heat exchanger, etc. inside the container to heat the liquid inside the container. . At this time, the liquid may be stirred inside the container. By checking the temperature inside the container, it is possible to confirm whether or not the liquid has reached a predetermined temperature.
  • the temperature range is not particularly limited, it may be appropriately set according to the type of rubber component that constitutes the object to be crosslinked. Specifically, the temperature may be appropriately set as long as it is equal to or higher than the cross-linking reaction starting temperature of the rubber component constituting the object to be cross-linked and is equal to or lower than the temperature at which the rubber surface is scorched or the rubber component is destroyed. For example, it may be appropriately set between 100.degree. C. and 200.degree.
  • the pressure range is not particularly limited, and may be appropriately set according to the type of rubber component that constitutes the object to be crosslinked.
  • the pressure may be at least the minimum pressure that suppresses the generation of air bubbles inside the rubber component that constitutes the object to be crosslinked.
  • it may be appropriately set to 0.3 MPa or more, preferably 1 MPa or more, and more preferably 1.5 MPa or more.
  • the upper limit of the pressure may be appropriately set as long as it is within a range in which the container is not damaged or exploded.
  • the pressure may be appropriately set to 5 MPa or less, preferably 3 MPa or less.
  • the airtight container is replaced with an inert gas such as nitrogen gas after the liquid and the crosslinked rubber laminate model are put therein. Further, it is preferable to keep the inside of the sealed container in an inert gas atmosphere even during the crosslinking of the crosslinked rubber laminate model. In other words, it is preferable that the inside of the container is not completely filled with liquid, but a certain amount of inert gas is enclosed at the same time.
  • the pressure of this inert gas can be preset or varied during heating to apply pressure to the liquid. At this time, the pressure inside the container can be checked by arranging a pressure gauge inside the container or in a pipe connected to the gas. Even if pressurized, only a hydrostatic pressure component is applied to the laminate model inside the container, so even complex shapes including fine parts such as edges and hollow parts that penetrate to the outside are equally subjected to pressure. can do.
  • the equivalent cross-linking amount is obtained by formula (1) and integrated to calculate the cumulative cross-linking degree. Stop the cross-linking reaction.
  • U is the equivalent amount of cross-linking
  • E is the activation energy (kcal/mol)
  • R is the gas constant (1.987 ⁇ 10 -3 kcal/mod deg)
  • T is the cross-linking temperature (K)
  • T 0 is the reference temperature (K)
  • t 0 is the optimum cross-linking reaction point time (seconds) determined by measuring in advance at the reference temperature T 0
  • t i is the cumulative cross-linking time in the i-th interval (seconds) represents
  • the integrated degree of cross-linking is calculated by accumulating U.
  • the time interval for calculating the equivalent amount of cross-linking U is not particularly limited, but is usually 10 to 120 seconds.
  • the degree of cross-linking of the cross-linked rubber laminate is described in, for example, JIS K 6300-2 (2001) (Unvulcanized rubber-Physical properties-Part 2: How to determine vulcanization properties with a vibrating vulcanization tester).
  • the amount of cross-linking reaction that is equal to the optimum vulcanization reaction point time t0 determined by measuring in advance at the temperature T0 . It can be said that it is the time when it became.
  • the optimum crosslinking point reaction time may be determined by any method, but can be measured, for example, by a torsional vibration vulcanization test described in JIS K 6300-2 (2001).
  • the method for producing a crosslinked rubber of the present invention includes a preheating step and a cooling step, which will be described later, it is possible to determine the optimum crosslinking point reaction time in consideration of the progress of the crosslinking reaction in the preheating step and the cooling step. preferable.
  • liquid The type of liquid is not particularly limited, and water, ethylene glycol, fluorocarbon, etc. are used, for example. Only one liquid may be used, or two or more liquids may be used. Among them, water is preferable from the viewpoints of the cleaning effect of the crosslinked rubber laminate model, the ease of replacement, the low cost, and the like.
  • An uncrosslinked rubber laminate-molded article is a laminate-molded article using an uncrosslinked rubber composition.
  • the component composition of the uncrosslinked rubber composition is not particularly limited, and general-purpose uncrosslinked rubber compositions may be used. You may use the uncrosslinked rubber composition match
  • An uncrosslinked rubber composition typically includes a rubber component, fillers, crosslinkers, and various additives.
  • the rubber component may be either a diene rubber or a non-diene rubber, but diene rubbers such as natural rubber (NR), styrene-butadiene copolymer rubber (SBR), and polybutadiene rubber (BR) are usually used. . Only one type of rubber component may be used, or two or more types may be used. Fillers generally include reinforcing fillers such as carbon black and silica in order to enhance various functions such as durability and wear resistance of the crosslinked rubber. Only one filler may be used, or two or more fillers may be used.
  • cross-linking agents examples include sulfur cross-linking agents, organic peroxide cross-linking agents, acid cross-linking agents, polyamine cross-linking agents, resin cross-linking agents, sulfur compound cross-linking agents, oxime-nitrosamine cross-linking agents and the like.
  • sulfur-based cross-linking agents vulcanizing agents
  • additives commonly used in the rubber industry are used, such as softeners, stearic acid, anti-aging agents, zinc oxide, vulcanizing agents, etc. Accelerators and the like.
  • An uncrosslinked rubber laminate model can be obtained as follows.
  • An uncrosslinked rubber composition containing the aforementioned rubber component, filler, cross-linking agent, etc. is kneaded using a Banbury mixer or the like, and processed into a sheet, thread, particle, slurry, or the like.
  • the resulting uncrosslinked rubber processed product may be subjected to additive manufacturing as indicated in the Additive Manufacturing category of ASTM (American Society for Testing and Materials). This ASTM classification includes Sheet Lamination, Material Extrusion, Directed Energy Deposition, Powder Bed Fusion, Binder Jetting, Material Jet jetting).
  • a sheet laminate model can be obtained by laminating plate-like uncrosslinked rubbers having different widths in a stepwise manner as shown in FIG. From the viewpoint of creating the shape of the modeled object with higher accuracy, it is better to laminate sheets having a maximum thickness of four or more.
  • the thickness of each layer of the sheet is preferably 0.2 mm or more from the viewpoint of uniform physical properties in the thickness direction and from the viewpoint of workability.
  • a kneaded uncrosslinked rubber composition may be subjected to heat to soften it and form a thread while lamination modeling is shown in the ASTM classification "Fused Lamination".
  • layered manufacturing can be performed as shown in FIG.
  • the cross-sectional area of the filamentous uncrosslinked rubber is preferably as small as possible, preferably 1 mm 2 or less.
  • the cross-sectional area of the thread-like uncrosslinked rubber is preferably 0.2 mm 2 or more from the viewpoint of uniformity of physical properties in the depth direction when viewed from the surface of the thread-like uncrosslinked rubber and from the viewpoint of workability.
  • the kneaded uncrosslinked rubber composition is processed into particulates.
  • the obtained particulate uncrosslinked rubber is layered and molded by lamination and uncrosslinked rubber lamination by "powder sintering" by laser, electron beam, etc.; “binder jet”;”energylamination", etc. get a sculpt.
  • the volume of the particulate uncrosslinked rubber is preferably as small as possible, preferably 0.523 mm 3 or less.
  • the volume of the particulate uncrosslinked rubber is preferably 4 ⁇ 10 ⁇ 3 mm 3 or more from the viewpoint of uniforming the physical properties in the depth direction when viewed from the surface of the particulate uncrosslinked rubber.
  • the method for producing a crosslinked rubber according to the present invention preferably includes a preheating step of heating the uncrosslinked rubber laminate-molded article in advance under a pressure of 1.1 MPa or more at a temperature not higher than the boiling point of the liquid.
  • the pressure condition of the preheating step is preferably 1.2 to 1.8 MPa, more preferably 1.3 to 1.7 MPa.
  • the temperature condition of the preheating step is lower than the boiling point of the liquid, preferably 65 to 90°C, more preferably 70 to 85°C.
  • the liquid is preferably cooled to 100° C. or less without generating vapor of the liquid to stop the crosslinking reaction. By cooling in this manner, the cross-linking reaction of the uncross-linked rubber laminate-molded body can proceed gently.
  • Crosslinked rubber layered product The crosslinked rubber laminate model produced by the method for producing vulcanized rubber of the present invention is excellent in dimensional accuracy. More specifically, for example, in the case of the sheet laminate model shown in FIG. can be suppressed within 10% (90 degrees is within ⁇ 9 degrees).
  • An uncrosslinked rubber composition was prepared by blending 50 parts by mass of carbon black with 100 parts by mass of natural rubber (NR) and kneading the mixture with a Banbury mixer. Using a roll, the uncrosslinked rubber composition was shaped into a plate having a width of 100 mm, a length of 90 mm and a thickness of 2 mm. The longitudinal direction is perpendicular to the roll. From this plate, five plate-shaped uncrosslinked rubbers having different widths were prepared and laminated in a stepped shape as shown in FIG. 3 to produce an uncrosslinked rubber laminate model. When the required degree of cross-linking of this uncross-linked rubber layered product was determined based on JIS K 6300-2 (2001), it was found that heating at 145° C. for 660 seconds is appropriate.
  • a three-neck pressure-resistant cylindrical container made of SUS316 and having an inner diameter of 30 mm and an internal length of 200 mm was prepared. Water was used as the liquid. Water was put into the container so that the water depth was 100 mm, and the remaining space was filled with nitrogen gas. A thermocouple was inserted from the top of the container, and the water temperature was recorded with a logger. Another hole in the top of the container was connected with a T-connector to a nitrogen gas tank and a release valve with a pressure gauge.
  • the uncrosslinked rubber layered product was fixed with a jig, immersed in water in a container, nitrogen gas was introduced into the container at 3 MPa, and airtightness was checked for gas leakage and the like.
  • the internal pressure was set to 1.5 MPa so that the internal pressure was 2 MPa at 145°C.
  • the container was placed in an oil bath set to 80°C, and the temperature was raised to 180°C. The internal temperature reached 80° C. in about 9 minutes after the start of heating.
  • the temperature of the thermometer and the pressure of the pressure gauge were recorded by a logger from the preheating step to cooling.
  • Example 1 In the preheating step, the value of the thermometer was measured every 30 seconds after the temperature in the container reached 80° C., the equivalent amount of cross-linking U was calculated by the formula (1), and each calculated value was integrated. Heating was stopped when the equivalent cross-linking amount reached 0.97, which is close to the target of 1.0.
  • FIG. 1 shows the equivalent amount of cross-linking with respect to the measurement time. In FIG. 1, the "first time” indicated by the solid line is the equivalent amount of cross-linking in Example 1.
  • the container was removed from the oil bath and cooled with two industrial fans. When the internal temperature of the container fell below 100°C, nitrogen gas was released and air cooling was continued. When the internal temperature reached about 60°C, the lid was opened and the sample was taken out.
  • the equivalent cross-linking amount up to 80°C was 1.35.
  • Example 2 The production of the uncrosslinked rubber laminate-molded body, the setting of the container, and the preheating steps were performed in the same manner as in Example 1.
  • the preheating step when the temperature inside the container reached 80° C., the value of the thermometer was measured every 30 seconds, and the calculation of the equivalent amount of cross-linking U was started.
  • cooling time heating was stopped immediately after the internal temperature reached 145°C.
  • FIG. 1 shows the equivalent amount of cross-linking with respect to the measurement time.
  • the "2nd time" indicated by the dashed line is the equivalent amount of cross-linking in Example 2. Cooling was performed in the same manner as in Example 1.
  • the equivalent cross-linking amount up to 80°C was 0.94.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

汎用の未架橋ゴム組成物を用いても、寸法精度よく簡便に、積層造形体の架橋ゴムを製造することができる架橋ゴムの製造方法を提供する。該の製造方法は、未架橋ゴム積層造形体を液体中で加熱して架橋ゴム積層造形体を製造する方法であって、液体の温度及び圧力をコントロールし、飽和蒸気圧を越えないように未架橋ゴム積層造形体を加熱し、加熱開始から一定時間ごとに式(1)で等価架橋量を求め、積算して、積算架橋度を算出し、架橋ゴム積層造形体の架橋度が必要な架橋度になった時点で架橋反応を停止する架橋ゴムの製造方法である。

Description

架橋ゴムの製造方法
 本発明は、架橋ゴムの製造方法に関する。
 架橋ゴム成形体は、通常、未架橋ゴム成形体を金型に嵌め込んだり、熱プレスで挟むこと等により、加硫反応が行われる温度範囲内、且つゴム組成物がブローし内部に気泡が発生しないよう一定の圧力をかけて製造される。しかしながら、これらの方法は積層造形体のような複雑な形状の成形体には適用が困難であり、また、成形された造形体の加硫前後の寸法変化を伴い易かった。
 これに対し、例えば、特許文献1では、熱溶解積層法による三次元造形プリンタ用の造形材料として好適な未架橋ゴム組成物の組成が開示されると共に、この未架橋ゴム組成物を常圧下で100℃以上150℃以下に加熱して加硫処理する方法が開示されている。
 また、例えば、特許文献2においては、エラストマー材等から成り、所定の三次元蛇行形態を有し、全長に亘って一定した肉厚と円形の断面形状を有する湾曲チューブ状物品を、所定の温度及び圧力条件で加熱流体を用いて加硫する方法が開示されている。
特開2019-19324号公報 特表2003-531038号公報
 しかし、特許文献1に示される加硫方法では、特許文献1の技術に適応する成分組成の未加硫ゴム組成物を用意する必要がある。また、特許文献2には加硫方法の詳細が示されておらず、寸法精度よく簡便に、積層造形体の加硫ゴムを製造する手法が開示されていない。
 本発明の課題は、汎用の未架橋ゴム組成物を用いても、寸法精度よく簡便に、積層造形体の架橋ゴムを製造することができる架橋ゴムの製造方法を提供することを目的とし、該目的を解決することを課題とする。
 本発明者らは、液体の飽和蒸気圧を越えないよう圧力及び温度をコントロールしながら前記未架橋ゴム積層造形体を加熱し、加熱温度の時刻歴に応じてアレニウス式で積算架橋度を求め、必要な架橋度になった時点で架橋を停止することで、上記課題を解決することができることを見出した。本発明は下記のとおりである。
<1> 未架橋ゴム積層造形体を液体中で加熱して架橋ゴム積層造形体を製造する方法であって、
 前記液体の温度及び圧力をコントロールし、飽和蒸気圧を越えないように前記未架橋ゴム積層造形体を加熱し、加熱開始から一定時間ごとに下記式(1)で等価架橋量を求め、積算して、積算架橋度を算出し、前記架橋ゴム積層造形体の架橋度が必要な架橋度になった時点で架橋反応を停止する架橋ゴムの製造方法。
Figure JPOXMLDOC01-appb-M000002
 式(1)中、
Uは、等価架橋量、
Eは、活性化エネルギー(kcal/mol)、
Rは、ガス定数(1.987×10-3kcal/mod・deg)、
Tは、架橋温度(K)、
は、基準温度(K)、
は、基準温度Tにおいて予め測定して決定した最適架橋反応点時間(秒)、
は、累積するi番目の区間での架橋時間(秒)
を表す。
<2> 前記未架橋ゴム積層造形体を、予め、1.1MPa以上の加圧下、前記液体の沸点以下で加熱する予備加熱工程を含む<1>に記載の架橋ゴムの製造方法。
<3> 前記液体が水である<1>又は<2>に記載の架橋ゴムの製造方法。
 本発明によれば、汎用の未架橋ゴム組成物を用いても、寸法精度よく簡便に、積層造形体の架橋ゴムを製造することができる架橋ゴムの製造方法を提供することができる。
実施例1及び2における等価架橋量曲線である。 実施例1の未架橋ゴム積層造形体と架橋ゴム積層造形体のレーザー形状計測結果である。 シート積層造形体の一実施形態の模式図である。 糸状積層造形体の一実施形態の写真である。
<架橋ゴムの製造方法>
 本発明の架橋ゴムの製造方法は、未架橋ゴム積層造形体を液体中で加熱して架橋ゴム積層造形体を製造する方法であって、
 前記液体の温度及び圧力をコントロールし、飽和蒸気圧を越えないように前記未架橋ゴム積層造形体を加熱し、加熱開始から一定時間ごとに下記式(1)で等価架橋量を求め、積算して、積算架橋度を算出し、前記架橋ゴム積層造形体の架橋度が必要な架橋度になった時点で架橋反応を停止する。
Figure JPOXMLDOC01-appb-M000003
式(1)中、
Uは、等価架橋量、
Eは、活性化エネルギー(kcal/mol)、
Rは、ガス定数(1.987×10-3kcal/mod・deg)、
Tは、架橋温度(K)、
は、基準温度(K)、
は、基準温度Tにおいて予め測定して決定した最適架橋反応点時間(秒)、
は、累積するi番目の区間での架橋時間(秒)
を表す。
 既述のように、架橋ゴム成形体は、一般的には、未架橋ゴムを成形体の形状に合わせた金型に入れて温度と圧力をかけて架橋したり、未架橋ゴムを成形体の形状よりも大きな形状の金型に入れて温度と圧力をかけて架橋した後に切削等の機械加工で所望の形状にする。
 成形体の造形方法として、シート、フィラメント、粒子を積層して造形する手法があるが、金型を用いた架橋では、造形された形状を維持することが困難であり、複雑な形状の架橋ゴム成形体を造形することも困難であった。
 未架橋ゴム成形体の架橋時には、成形体内部に含まれた気泡、架橋反応で発生する気泡等を排除するため、温度のみならず圧力を成形体に付与する必要がある。例えば、特許文献1では、気泡抑制のため未加硫ゴム組成物中に酸化カルシウムを含有しているが、一般に酸化カルシウムのような異物の含有は加硫ゴムの強度物性を損なう。
 未架橋ゴムを成形体の形状に合わせた金型に入れて温度と圧力をかけて架橋する方法では、成形体の形状に合わせた金型が必要であるため、小さな形状修正でも金型を新たに作り直したり修正する必要がある。
 未架橋ゴムを成形体の形状よりも大きな形状の金型に入れて温度と圧力をかけて架橋した後、切削等の機械加工で成形体の形状にする方法では、予め成形体より大きめの形状の金型で架橋ゴムを製造しておき、後で機械加工することで小さな形状修正には金型を修正することなく対応することができる。
 また、金型から抜けないような複雑な形状の場合は、成形体を作ることが困難であった。
 気泡抑制のため使われる酸化カルシウムは、水で発熱反応をするため、取り扱いが難しく、未架橋ゴムの配合に追加するため、架橋ゴムの物性が変化してしまうことがあり、加硫ゴムの強度物性を損なう恐れもある。
 これに対し、本発明の架橋ゴムの製造方法によれば、汎用の未架橋ゴム組成物を用いても、寸法精度よく簡便に、積層造形体の架橋ゴムを製造することができる。
 以下、本発明の架橋ゴムの製造方法の詳細について説明する。
 本発明の架橋ゴムの製造方法は、前記液体の温度及び圧力をコントロールし、飽和蒸気圧を越えないように未架橋ゴム積層造形体を加熱し、加熱開始から一定時間ごとに式(1)で等価架橋量を求め、積算して、積算架橋度を算出し、架橋ゴム積層造形体の架橋度が必要な架橋度になった時点で架橋反応を停止する。架橋反応の停止の判断は、例えば、加熱を停止し、必要に応じて冷却を行い、ゴム積層造形体又はゴム積層造形体を入れる容器内の温度が例えば80℃以下になる等、実質的に架橋温度を下回ったことをもって架橋反応停止と判断する。
 液体の飽和蒸気圧を越えない圧力及び温度と圧力の範囲は、液体の飽和蒸気圧曲線を参照すればよい。未架橋ゴム積層造形体の加熱は、加圧及び加熱が可能な密閉容器を用いて行うことが好ましい。具体的には、密閉容器内に液体を入れ、未架橋ゴム積層造形体が液体に浸るように架橋ゴム積層造形体を設置し、液体を加熱及び加圧すればよい。液体の加熱は、密閉容器外部から気体、液体等で容器内部の液体を加熱してもよいし、容器内部に発熱源、熱交換器等を置いて、容器内部の液体を加熱してもよい。このとき、容器内部で液体を撹拌できるようにしてもよい。容器内部の温度をチェックすることで、液体が所定の温度になっているか否かを確認することができる。
 温度範囲は特に制限ないが、架橋対象物を構成するゴム成分の種類によって適宜設定すればよい。具体的には、架橋対象物を構成するゴム成分の架橋反応開始温度以上、ゴム表面が焦げたり、ゴム成分が破壊される温度以下であれば、適宜設定すればよい。例えば、100℃~200℃の間に適宜設定すればよい。
 圧力範囲は特に制限されず、架橋対象物を構成するゴム成分の種類によって適宜設定すればよい。具体的には、架橋対象物を構成するゴム成分内部の気泡発生が抑制される最低限の圧力以上であればよい。例えば、0.3MPa以上に適宜設定すればよく、1MPa以上が好ましく、1.5MPa以上がより好ましい。また、圧力の上限としては、容器が破損、破裂しない範囲内であれば、適宜設定すればよい。例えば、5MPa以下に適宜設定すればよく、3MPa以下が好ましい。
 密閉容器は、液体と架橋ゴム積層造形体を入れた後に、窒素ガス等の不活性ガスで置換しておくことが好ましい。また、架橋ゴム積層造形体の架橋中も密閉容器内を不活性ガス雰囲気としておくことが好ましい。つまり、容器内部は、完全には液体で満たさず、不活性ガスを同時に一定量封入することが好ましい。この不活性ガスの圧力を予め設定するか、加熱中に変更することで、液体への圧力を与えることができる。この時、容器内部、または気体に接続された配管に圧力計を配置することで、容器内の圧力を確認することができる。
 加圧しても、容器内部の積層造形体には静水圧成分がかかるだけであるので、エッジ部分などの細かい部分を含めた複雑な形状、外部に貫通した中空部分等にも、等しく圧力を付与することができる。
 次いで、加熱開始から一定時間ごとに、式(1)で等価架橋量を求め、積算して、積算架橋度を算出し、架橋ゴム積層造形体の架橋度が必要な架橋度になった時点で架橋反応を停止する。
Figure JPOXMLDOC01-appb-M000004
 式(1)中、
Uは、等価架橋量、
Eは、活性化エネルギー(kcal/mol)、
Rは、ガス定数(1.987×10-3kcal/mod・deg)、
Tは、架橋温度(K)、
は、基準温度(K)、
は、基準温度Tにおいて予め測定して決定した最適架橋反応点時間(秒)、
は、累積するi番目の区間での架橋時間(秒)
を表す。
 具体的には、加熱開始から一定時間ごとに、式(1)を用いて、i=1、i=2、i=3、・・・の等価架橋量Uを求め、得られた等価架橋量Uを積算して積算架橋度を算出する。等価架橋量Uの算出時間間隔は特に制限されないが、通常、10~120秒である。
 架橋ゴム積層造形体の架橋度は、例えば、JIS K 6300-2(2001年)(未加硫ゴム-物理特性-第2部:振動式加硫試験機による加硫特性の求め方)に記載されている手法に準じて求めることができる。温度Tにおいて予め測定して決定した最適加硫反応点時間tと等しい架橋反応量となるのがU=1であり、このとき、架橋ゴム積層造形体の架橋度が必要な架橋度になった時点といえる。
 最適架橋点反応時間はどんな方法で決定してもよいが、例えば、JIS K 6300-2(2001年)に記載されているねじり振動式加硫試験で測定することができる。なお、本発明の架橋ゴムの製造方法が後述する予備加熱工程及び冷却工程を含む場合は、予備加熱工程及び冷却工程での架橋反応の進行も考慮して最適架橋点反応時間を決定することが好ましい。
(液体)
 液体の種類は特に制限されず、例えば、水、エチレングリコール、フルオロカーボン等が用いられる。液体は1種のみ用いてもよいし、2種以上を用いてもよい。中でも、架橋ゴム積層造形体の洗浄効果、交換の容易性、及び安価であること等の観点から、水が好ましい。
(未架橋ゴム積層造形体)
 未架橋ゴム積層造形体は、未架橋ゴム組成物を用いてなる積層造形体である。
 本発明において、未架橋ゴム組成物の成分組成は特に限定されず、汎用の未架橋ゴム組成物を用いてもよいし、タイヤ用、ホース用、免震ゴム用、防振ゴム用、クローラ用等の種々の用途に合わせた未架橋ゴム組成物を用いてもよい。
 未架橋ゴム組成物は、通常、ゴム成分、充填剤、架橋剤、及び各種添加剤を含む。
 ゴム成分は、ジエン系ゴム、非ジエン系ゴムのいずれでもよいが、通常、天然ゴム(NR)、スチレン-ブタジエン共重合体ゴム(SBR)、ポリブタジエンゴム(BR)等のジエン系ゴムが用いられる。ゴム成分は1種のみ用いてもよいし、2種以上を用いてもよい。
 充填剤は、一般に、架橋ゴムの耐久性、耐摩耗性等の諸機能を上げるために、カーボンブラック、シリカ等の補強性充填剤を含む。充填剤は1種のみ用いてもよいし、2種以上を用いてもよい。
 架橋剤は、例えば、硫黄系架橋剤、有機過酸化物系架橋剤、酸架橋剤、ポリアミン架橋剤、樹脂架橋剤、硫黄化合物系架橋剤、オキシム-ニトロソアミン系架橋剤等が挙げられる。通常、硫黄系架橋剤(加硫剤)が用いられる
 各種添加剤は、ゴム工業界で通常使用される添加剤が用いられ、例えば、軟化剤、ステアリン酸、老化防止剤、酸化亜鉛、加硫促進剤等が挙げられる。
 未架橋ゴム積層造形体は、次のようにして得ることができる。
 既述のゴム成分、充填剤、架橋剤等を含む未架橋ゴム組成物をバンバリーミキサー等により混練し、シート状、糸状、粒子状、スラリー状等に加工する。得られた未架橋ゴム加工物をASTM(American Society for Testing and Materials)のAdditive Manufacturing分類に示されているように、積層造形すればよい。ASTMのこの分類には、シート積層(Sheet Lamination)、熱溶解積層(Material Extrusion)、エネルギー積層(Directed Energy Deposition)、粉末焼結(Powder Bed Fusion)、バインダージェット(Binder Jetting)、マテリアルジェット(Material Jetting)等の分類がある。
[シート状加工]
 例えば、ASTMの分類の「シート積層」に示されているように、図3に示すような幅の異なる板状未架橋ゴムを階段状に積層することで、シート積層造形体が得られる。
 造形物の形状をより精度良く作成する観点から、最大厚さを4層以上のシートで積層した方がよい。厚さ方向の物性を均一にする観点及び作業性の観点から、各層のシートの厚さは0.2mm以上であることが好ましい。
[糸状加工]
 例えば、混練した未架橋ゴム組成物に温度を付与して軟化させて、糸状にしながらASTMの分類の「熱溶融積層」に示されているように積層造形してもよい。具体的には、例えば、図4に示すように積層造形することができる。未架橋ゴム組成物を糸状にしてから、再び熱を付与して積層してもよい。
 造形物の形状をより精度良く作成する観点から、糸状未架橋ゴムの断面積は小さい方がよく、1mm以下であることが好ましい。糸状未架橋ゴムの表面から見て深さ方向の物性を均一にする観点及び作業性の観点から、糸状未架橋ゴムの断面積は0.2mm以上であることがよい。
[粒子状加工]
 粒子状加工では、例えば、まず、混練した未架橋ゴム組成物を粒子状に加工する。得られた粒子状未架橋ゴムをASTMの分類に示されている、レーザー、電子線等による「粉末焼結」;「バインダージェット」;「エネルギー積層」等により、積層造形して未架橋ゴム積層造形体を得る。
 造形物の形状をより精度良く作成する観点から、粒子状未架橋ゴムの体積は小さい方がよく、0.523mm以下であることが好ましい。粒子状未架橋ゴムの表面から見て深さ方向の物性を均一にする観点から、粒子状未架橋ゴムの体積は4×10-3mm以上であることがよい。
[スラリー状加工]
 スラリー状加工では、例えば、まず、混練した未架橋ゴム組成物をスラリー状に加工する。得られたスラリー状未架橋ゴムをASTMの分類に示されている「マテリアルジェット」により、造形して未架橋ゴム積層造形体を得る。
〔予備加熱工程〕
 本発明の架橋ゴムの製造方法は、未架橋ゴム積層造形体を、予め、1.1MPa以上の加圧下、前記液体の沸点以下で加熱する予備加熱工程を含むことが好ましい。
 本発明の架橋ゴムの製造方法が予備加熱工程を含むことで、未架橋ゴム積層造形体の架橋反応を効率よく進めることができる。
 予備加熱工程の圧力条件は、1.2~1.8MPaであることが好ましく、1.3~1.7MPaであることがより好ましい。
 予備加熱工程の温度条件は、液体の沸点以下であり、65~90℃であることが好ましく、70~85℃であることがより好ましい。
 本発明の架橋ゴムの製造方法は、未架橋ゴム積層造形体の加熱後、液体の蒸気を発生させずに液体を100℃以下まで冷却して、架橋反応を停止することが好ましい。
 このように冷却することで、未架橋ゴム積層造形体の架橋反応を穏やかに進めることができる。
〔架橋ゴム積層造形体〕
 本発明の加硫ゴムの製造方法により製造される架橋ゴム積層造形体は、寸法精度に優れる。より具体的には、例えば、図3に示すシート積層造形体の場合、各層の幅、厚さ、及び長さの寸法変化を10%以内に抑えることができ、また、階段状の角度保持率を、10%以内(90度は±9度以内)に抑えることができる。
 以下、実施例を挙げて本発明をさらに詳しく説明するが、これらの実施例は、本発明の例示を目的とするものであり、本発明を何ら限定するものではない。
(未架橋ゴム積層造形体の作製)
 天然ゴム(NR)100質量部に対して50質量部のカーボンブラックを配合し、バンバリーミキサーで混練した未架橋ゴム組成物を用意した。
 ロールを用いて未架橋ゴム組成物を、幅100mm、長さ90mm、厚さ2mmの板状にした。長手方向は、ロールと垂直方向である。この板から幅の異なる板状未架橋ゴムを5つ用意し、図3に示す階段状となるよう積層し、未架橋ゴム積層造形体を作製した。
 この未架橋ゴム積層造形体について、JIS K 6300-2(2001年)に基づき、必要な架橋度を求めたところ、145℃で660秒加熱することが適当であることがわかった。
(容器設定)
 密閉容器は、内径30mm、内部長さ200mm、SUS316製の三つ口耐圧円筒容器を用意した。液体は水を用いた。水深100mmとなるよう水を容器に入れ、残りの空間は窒素ガスで満たした。
 容器上部から熱電対を差し込み、ロガーで水温を記録した。容器上部のもう一つの穴にTコネクタで、窒素ガスタンクと圧力計を有する放出バルブとを接続した。
(予備加熱工程)
 未架橋ゴム積層造形体を治具で固定し、容器内の水中に浸し、容器に窒素ガスを3MPa入れて、ガス漏れ等がないか密閉性を確認した。
 145℃で内圧が2MPaとなるように、内圧を1.5MPaに設定した。80℃に設定されたオイルバスに容器を入れて、180℃設定で昇温した。昇温開始後、約9分で内部温度が80℃に到達した。
 なお、温度計の温度と圧力計の圧力は、予備加熱工程から冷却に至るまでロガーで記録した。
〔実施例1〕
 予備加熱工程で、容器内の温度が80℃に到達した時点から、温度計の値を30秒ごとに測定し、式(1)で等価架橋量Uを計算し、各算出値を積算した。等価架橋量が目標の1.0に近い、0.97になった時点で加熱を停止した。測定時間に対する等価架橋量を図1に示す。図1中、実線で示される「第1回」が実施例1の等価架橋量である。
 オイルバスから容器を取り出し、工業用扇風機2台で容器を冷却した。容器の内部温度が100℃を切った時点で、窒素ガスを放出し、空冷を継続した。内部温度が60℃程度となったとき、蓋を開けて、サンプルを取り出した。80℃までの等価架橋量は1.35であった。
〔実施例2〕
 未架橋ゴム積層造形体の作製、容器設定、及び予備加熱工程は実施例1と同様に行った。
 予備加熱工程で、容器内の温度が80℃に到達した時点から、温度計の値を30秒ごとに測定し、等価架橋量Uの計算を開始した。冷却時を考慮し、内部温度が145℃に到達した直後に加熱を停止した。測定時間に対する等価架橋量を図1に示す。図1中、破線で示される「第2回」が実施例2の等価架橋量である。
 冷却は実施例1と同様に行った。80℃までの等価架橋量は0.94であった。
<評価>
 実施例1及び2の未架橋ゴム積層造形体と、架橋ゴム積層造形体とを並べて目視で観察したところ、元の形状をほぼ維持していることがわかった。より定量的に詳しく寸法精度を評価するため、レーザー形状計測(Quelltech社製、商品名「Q4-240」)にて実施例1の未架橋ゴム積層造形体と架橋ゴム積層造形体の端部の形状を確認した。積層造形体の長手方向端部を、長手方向にレーザーを照射して、積層造形体の階段形状の違いを確認した。結果を図2に示す。2つの線はほぼ重なっており、未架橋状態と架橋後とで寸法変化が少ないことがわかる。 

Claims (3)

  1.  未架橋ゴム積層造形体を液体中で加熱して架橋ゴム積層造形体を製造する方法であって、
     前記液体の温度及び圧力をコントロールし、飽和蒸気圧を越えないよう前記未架橋ゴム積層造形体を加熱し、加熱開始から一定時間ごとに下記式(1)で等価架橋量を求め、積算して、積算架橋度を算出し、前記架橋ゴム積層造形体の架橋度が必要な架橋度になった時点で架橋反応を停止する架橋ゴムの製造方法。
    Figure JPOXMLDOC01-appb-M000001

    式(1)中、
    Uは、等価架橋量、
    Eは、活性化エネルギー(kcal/mol)、
    Rは、ガス定数(1.987×10-3kcal/mod・deg)、
    Tは、架橋温度(K)、
    は、基準温度(K)、
    は、基準温度Tにおいて予め測定して決定した最適架橋反応点時間(秒)、
    は、累積するi番目の区間での架橋時間(秒)
    を表す。
  2.  前記未架橋ゴム積層造形体を、予め、1.1MPa以上の加圧下、前記液体の沸点以下で加熱する予備加熱工程を含む請求項1に記載の架橋ゴムの製造方法。
  3.  前記液体が水である請求項1又は2に記載の架橋ゴムの製造方法。
PCT/JP2021/042104 2021-04-23 2021-11-16 架橋ゴムの製造方法 WO2022224476A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023516030A JPWO2022224476A1 (ja) 2021-04-23 2021-11-16
EP21937966.6A EP4328009A1 (en) 2021-04-23 2021-11-16 Method for producing crosslinked rubber
CN202180097347.0A CN117255741A (zh) 2021-04-23 2021-11-16 交联橡胶的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021073376 2021-04-23
JP2021-073376 2021-04-23

Publications (1)

Publication Number Publication Date
WO2022224476A1 true WO2022224476A1 (ja) 2022-10-27

Family

ID=83722237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042104 WO2022224476A1 (ja) 2021-04-23 2021-11-16 架橋ゴムの製造方法

Country Status (4)

Country Link
EP (1) EP4328009A1 (ja)
JP (1) JPWO2022224476A1 (ja)
CN (1) CN117255741A (ja)
WO (1) WO2022224476A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005208280A (ja) * 2004-01-22 2005-08-04 Bridgestone Corp Oaローラの製造方法
JP2019019324A (ja) * 2017-07-14 2019-02-07 兵庫県 熱溶解積層法による三次元造形プリンタ用の未加硫ゴム組成物、未加硫ゴム組成物を造形原料とする三次元造形物の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005208280A (ja) * 2004-01-22 2005-08-04 Bridgestone Corp Oaローラの製造方法
JP2019019324A (ja) * 2017-07-14 2019-02-07 兵庫県 熱溶解積層法による三次元造形プリンタ用の未加硫ゴム組成物、未加硫ゴム組成物を造形原料とする三次元造形物の製造方法

Also Published As

Publication number Publication date
JPWO2022224476A1 (ja) 2022-10-27
CN117255741A (zh) 2023-12-19
EP4328009A1 (en) 2024-02-28

Similar Documents

Publication Publication Date Title
EP3481621B1 (en) Process for producing 3d structures from rubber material
EP2711156A2 (en) Foaming methods for making cellular thermoplastic materials
Sola et al. Open challenges in tensile testing of additively manufactured polymers: A literature survey and a case study in fused filament fabrication
León-Cabezas et al. Innovative advances in additive manufactured moulds for short plastic injection series
US11472101B2 (en) Process for producing 3D structures from powdered rubber material and its products
WO2022224476A1 (ja) 架橋ゴムの製造方法
JP7193795B2 (ja) 熱溶解積層法による三次元造形プリンタ用の未加硫ゴム組成物、未加硫ゴム組成物を造形原料とする三次元造形物の製造方法
Sommer Engineered rubber products
Khan et al. Fabrication of UHMW polyethylene/nano-hydroxyapatite biocomposite via heat-assisted friction stir processing
US20240209163A1 (en) A method for producing cross-linked rubber
RU2417894C2 (ru) Способ изготовления многослойных компонентов и вулканизатор для его осуществления
Lindsay Practical guide to rubber injection moulding
Günay Modeling of tensile and bending strength for Pla parts produced by Fdm
Jerrams et al. The significance of equi-biaxial bubble inflation in determining elastomeric fatigue properties
Ramkumar et al. Impact strength investigation of foamed linear low density polyethylene in rotational moulding process
Abraham The influence of minimum stress on the fatigue life of non strain crystallising elastomers
JP2017042978A (ja) ゴム材料評価方法
CN113045828A (zh) 选择性激光烧结组合物及利用其的三维打印方法
Vidakis et al. Experimental determination of fused deposition modelling parts compressive strength
Ratsimba Fatigue crack growth of filled elastomers
da Silva et al. Evaluation of the mechanical properties of polyamide 12 regarding different percentages of reused material in the selective laser sintering process
Martin et al. Faculty of Manufacturing Technologies With the Seat in Prešov, Prešov, Slovakia martin. korol@ tuke. sk
Hanna et al. The effect of printing parameters on crushing behavior of 3D printed Poly Lactic Acid/Carbon Fiber samples using Material Extrusion technique
WO2023191969A1 (en) Molding of bead foam polyesters
JP6063688B2 (ja) ゴム成形体及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937966

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023516030

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18555864

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180097347.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021937966

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021937966

Country of ref document: EP

Effective date: 20231123