WO2022224420A1 - Compressor and refrigeration cycle device - Google Patents

Compressor and refrigeration cycle device Download PDF

Info

Publication number
WO2022224420A1
WO2022224420A1 PCT/JP2021/016384 JP2021016384W WO2022224420A1 WO 2022224420 A1 WO2022224420 A1 WO 2022224420A1 JP 2021016384 W JP2021016384 W JP 2021016384W WO 2022224420 A1 WO2022224420 A1 WO 2022224420A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation member
oil separation
compressor
rotor
drive shaft
Prior art date
Application number
PCT/JP2021/016384
Other languages
French (fr)
Japanese (ja)
Inventor
貴彦 村上
貴也 木本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022510785A priority Critical patent/JP7080423B1/en
Priority to PCT/JP2021/016384 priority patent/WO2022224420A1/en
Publication of WO2022224420A1 publication Critical patent/WO2022224420A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/04Measures to avoid lubricant contaminating the pumped fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • This technology relates to compressors and refrigeration cycle equipment.
  • the present invention relates to a hermetic compressor having an oil separation member inside.
  • hermetic compressors often have a structure in which refrigerating machine oil is stored at the bottom of a hermetic container.
  • Refrigerating machine oil lubricates the drive of the equipment and serves as a lubricating oil that prevents wear.
  • Refrigerant oil is supplied to the bearings and the compression mechanism.
  • the refrigerating machine oil supplied to the bearings lubricates the bearings, and then is discharged out of the compressor together with the fluid from the bearing sliding portions.
  • the refrigerating machine oil supplied to the compression mechanism functions as a seal between gaps to suppress the frictional force of the piston and prevent fluid from leaking, and is discharged out of the compressor together with the fluid. Therefore, the discharged fluid contains the refrigerating machine oil supplied to the bearings and the compression mechanism.
  • an oil separating member is installed on the drive shaft that connects the compression mechanism and the electric motor to prevent the refrigerating machine oil from flowing out of the compressor.
  • a donut-shaped (hollow disk-shaped) plate member is bent at a plurality of locations on the outer peripheral portion to form wing portions, and an oil separating member that has a polygonal shape in plan view is provided on the drive shaft.
  • Patent Document 1 A machine has been proposed (see, for example, Patent Document 1).
  • the oil separation member in the compressor of Patent Document 1 separates the refrigerant and the refrigerating machine oil by the centrifugal separation effect and the effect of the flow velocity gradient in the vicinity of the blades of the oil separation member. Therefore, when the capacity and flow rate of the compressor are increased, the blades are positioned on the outer periphery, and the oil separation effect at the blades is reduced.
  • the object is to obtain a compressor and a refrigeration cycle device having a structure with a higher oil separation effect regardless of the capacity of the compressor.
  • a compressor includes a closed container, a compression mechanism provided in the closed container for compressing a fluid, a stator and a rotor, and disposed above the compression mechanism in the closed container.
  • a drive shaft connected to an electric motor section, a rotor and a compression mechanism and having a projection projecting from the top of the rotor, and a first oil disposed on the upper end portion of the projection of the drive shaft and rotating together with the drive shaft.
  • the first oil separation member protrudes in the radial direction of the drive shaft and has a flange on which a plurality of blades are installed in the vertical direction.
  • the outer peripheral side end point is located on the outer periphery of the flange portion, the inner peripheral side end point is inside the outer periphery and concentric with the outer periphery, and is on the outer peripheral side of the blade. It is positioned at a right angle to the straight line connecting the end point and the center of the concentric circle, and at a position where the shadow of the blade projected in the horizontal direction does not overlap the adjacent blade.
  • a refrigeration cycle apparatus has a refrigerant circuit in which the compressor, condenser, decompression device, and evaporator described above are connected by piping, and refrigerant is circulated.
  • the compressor has a first oil separation member arranged at the upper end portion of the protrusion of the drive shaft and rotating together with the drive shaft.
  • the first oil separating member has a plurality of blades in the vertical direction on the flange.
  • the blade has an outer peripheral side end point and an inner peripheral side end point located from the outer peripheral side to the inner peripheral side of the flange portion. Therefore, even if the capacity and flow rate of the compressor are increased, the refrigerating machine oil can be efficiently separated from the refrigerant by generating a swirling flow with the blades extending from the outer peripheral side to the inner peripheral side of the flange.
  • FIG. 1 is a diagram illustrating a configuration of a compressor 100 according to Embodiment 1;
  • FIG. Fig. 2 is an enlarged view of a main portion near the upper portion of compressor 100 according to Embodiment 1;
  • FIG. 3 is a side view of the first oil separating member 5 according to Embodiment 1 when viewed from the side of the compressor 100;
  • 2 is a plan view of the first oil separating member 5 according to Embodiment 1 when viewed from the direction of the upper surface of the compressor 100.
  • FIG. FIG. 4 is a diagram for explaining the flow of refrigerant inside the compressor 100 according to Embodiment 1;
  • FIG. 3 is a diagram for explaining the flow of refrigerant inside a conventional compressor 101;
  • FIG. 11 is a plan view of the first oil separating member 5 according to Embodiment 2 when viewed from the direction of the upper surface of the compressor 100;
  • FIG. 11 is an enlarged view of a main portion near the upper portion of compressor 100 according to Embodiment 3;
  • FIG. 11 is a diagram showing a configuration example of a refrigeration cycle apparatus according to Embodiment 4;
  • FIG. 1 is a diagram illustrating the configuration of a compressor 100 according to Embodiment 1.
  • FIG. 1 shows a schematic longitudinal section to show the internal configuration of the compressor 100 .
  • FIG. 2 is an enlarged view of a main portion near the upper portion of the compressor 100 according to Embodiment 1.
  • FIG. 1 in each drawing described below, such as the compressor 100 shown in FIG. 1, there are portions where hatching is omitted to make the portions to be described easier to see.
  • the compressor 100 sucks fluid, compresses it, and discharges it.
  • the fluid compressed by the compressor 100 is the refrigerant circulating in the refrigerant circuit in the refrigeration cycle device.
  • Compressor 100 of Embodiment 1 is a hermetic compressor.
  • the compressor 100 has a compression mechanism section 1 and an electric motor section 10 inside a substantially cylindrical sealed container 11 .
  • the sealed container 11 of the compressor 100 has a discharge pipe 7 for discharging the refrigerant on its upper surface.
  • the electric motor section 10 has a motor that receives power supply from an external power source (not shown), drives it to rotate, and rotates the compression mechanism section 1 .
  • the electric motor section 10 has a stator 2 and a rotor 3 .
  • the stator 2 has a hollow cylindrical shape. The outer peripheral portion of the electric motor portion 10 is press-fitted into the inner wall of the closed container 11 .
  • the stator 2 is configured, for example, by laminating a plurality of steel plates such as electromagnetic steel plates.
  • the stator 2 has, for example, distributed winding coils 2a in the grooves of the inner circumference.
  • the coil 2a is connected to a terminal 12 and receives power through the terminal 12. As shown in FIG.
  • the rotor 3 has a hollow cylindrical shape.
  • the rotor 3 is arranged inside the stator 2 .
  • the rotor 3 is configured by laminating a plurality of steel plates such as electromagnetic steel plates.
  • the rotor 3 has vertical through-holes 3a through which a coolant flows.
  • a drive shaft 4 is inserted in the center of the rotor 3 .
  • the drive shaft 4 is connected at its lower end to the compression mechanism 1, which will be described later. Further, the drive shaft 4 has an upper end projecting from the upper portion of the rotor 3 .
  • the protruding portion at the upper end of the drive shaft 4 will be referred to as a protruding portion 4a.
  • Compression mechanism section 1 of Embodiment 1 compresses the fluid sucked into the sealed container 11 .
  • Compression mechanism section 1 of Embodiment 1 is, for example, a rotary compression mechanism. In Embodiment 1, a two-cylinder rotary compression mechanism is used. However, the compression mechanism section 1 is not limited to the configuration described above. For example, a single-cylinder rotary compression mechanism, a scroll compression mechanism, or the like may be used.
  • the compression mechanism 1 of Embodiment 1 is composed of devices such as a cylinder 13a, a rotary piston (rolling piston) 13b provided in the cylinder 13a, a cylinder 14a, and a rotary piston 14b provided in the cylinder 14a.
  • the rotary piston 13b and the rotary piston 14b are connected to eccentric shaft portions of the drive shaft 4, respectively.
  • a suction pipe 15 is connected to a compression chamber formed between the cylinder 13a and the rotary piston 13b.
  • a suction pipe 16 is connected to a compression chamber formed between the cylinder 14a and the rotary piston 14b.
  • the intake pipe 15 and the intake pipe 16 are connected to the muffler 17 .
  • the suction pipe 15 and the suction pipe 16 are pipes that allow the low-pressure gas refrigerant to flow into the sealed container 11 .
  • the muffler 17 is a muffler that reduces or eliminates noise generated by refrigerant flowing from the suction pipes 15 and 16 .
  • the compression mechanism 1 is supplied with the refrigerating machine oil stored in the lower portion of the sealed container 11 through an oil supply path (not shown) formed in the drive shaft 4.
  • a first oil separating member 5 and a second oil separating member 6 are provided on the projecting portion 4 a of the drive shaft 4 .
  • FIG. 3 is a side view of the first oil separating member 5 according to Embodiment 1 when viewed from the side of the compressor 100.
  • FIG. 4 is a plan view of the first oil separation member 5 according to Embodiment 1 when viewed from the direction of the upper surface of the compressor 100 .
  • the first oil separation member 5 has a cup portion 5a, a brim portion 5b, blade portions 5c and a flange 5d.
  • the cup portion 5a has a substantially cup shape whose diameter increases from the lower portion, which is the connection portion with the drive shaft 4, toward the upper portion.
  • the flange portion 5b is a substantially donut-shaped (hollow disk-shaped) plate member.
  • the brim portion 5b is provided at the upper end portion of the cup portion 5a. Therefore, the flange portion 5b projects in the radial direction of the drive shaft 4.
  • the flange 5d is a member having a substantially hollow cylindrical shape and is provided at the lower end of the cup portion 5a.
  • the first oil separation member 5 is connected to the protrusion 4a by inserting the flange 5d into the protrusion 4a of the drive shaft 4 by press fitting or the like.
  • the first oil separation member 5 in Embodiment 1 is described as having the cup portion 5a, the cup portion 5a is not essential.
  • the first oil separating member 5 without the cup portion 5a has a configuration in which the flange portion 5b and the flange 5d are directly connected.
  • the blade portion 5c has a plurality of blades. As shown in FIG. 4, when the first oil separation member 5 is viewed from the top of the compressor 100 in a plan view, each blade of the blade portion 5c has a flange portion 5b. are located on the outer periphery of the flange portion 5b and on concentric circles inside the outer periphery of the flange portion 5b.
  • the endpoint on the outer circumference side of the blade is defined as the endpoint on the outer circumference side
  • the endpoint located on the inner concentric circle is defined as the endpoint on the inner circumference side.
  • the inner peripheral side endpoint is located at a right angle to the straight line connecting the outer peripheral circle side endpoint of the blade portion 5c and the center of the concentric circle (on the straight line ), and when the blade is horizontally projected from the side surface, the shadow projected by the adjacent blade portion 5c does not overlap.
  • the outer diameter R of the flange portion 5b of the first oil separation member 5 in the state where the blade portion 5c is not provided is substantially the same as the outer diameter of the rotor 3. Therefore, the outer diameter R of the flange portion 5b is large enough to cover the through hole 3a of the rotor 3 in plan view. Therefore, even if the compressor 100 is not provided with the second oil separation member 6, the refrigerant flowing out from the through hole 3a of the rotor 3 can more reliably contact the cup portion 5a and the flange portion 5b. can be done. Therefore, the first oil separating member 5 can more reliably separate the refrigerating machine oil from the refrigerant flowing out from the through holes 3 a of the rotor 3 .
  • the second oil separation member 6 shown in FIGS. 1 and 2 is a substantially doughnut-shaped plate member installed between the first oil separation member 5 and the rotor 3 .
  • the second oil separating member 6 also separates the refrigerating machine oil from the refrigerant.
  • the second oil separation member 6 has a disk portion 6a and a flange 6b.
  • the disc portion 6a is a substantially doughnut-shaped plate member.
  • the outer diameter of the disk portion 6a is substantially the same as the outer diameter of the rotor 3. As shown in FIG. Therefore, the outer diameter of the disk portion 6a is large enough to cover the through hole 3a of the rotor 3 in plan view.
  • the flange 6b has a substantially hollow cylindrical shape and is provided below the disk portion 6a.
  • the second oil separating member 6 is connected to the projecting portion 4a by inserting (for example, press-fitting) the flange 6b into the projecting portion 4a.
  • the second oil separating member 6 in Embodiment 1 is a substantially doughnut-shaped plate member, but the shape is not limited to this.
  • the second oil separating member 6 may be substantially cup-shaped.
  • the compressor 100 is described as having the second oil separation member 6, but the second oil separation member 6 is not essential.
  • the compressor 100 may have only the first oil separating member 5 .
  • Compressor 100 in Embodiment 1 sets the lengths of flanges 5d and 6b of first oil separation member 5 and second oil separation member 6, for example.
  • the lower end portion of the flange 6b of the second oil separation member 6 and the upper portion of the rotor 3 are in contact with each other.
  • the lower end portion of the flange 5d of the first oil separation member 5 and the upper portion of the disk portion 6a of the second oil separation member 6 are brought into contact with each other.
  • the lengths of the flanges 5d and 6b are set, and the first oil separation member 5 and the second oil separation member 6 are attached to the drive shaft 4 corresponding to the flanges 5d and 6b. Therefore, it becomes easy to dispose the first oil separation member 5 and the second oil separation member 6 at desired positions.
  • the height of the upper end portion of the blade portion 5c which is the upper end portion of the first oil separation member 5, is approximately the same as the height of the upper end portion of the coil 2a wound around the stator 2.
  • the height difference between the two is ⁇ 5 mm.
  • the first oil separation member 5 and the discharge pipe 7 are such that the distance between the upper end of the vane portion 5c of the first oil separation member 5 and the inlet port 7a of the discharge pipe 7 is equal to or less than the radius of the flange portion 5b.
  • the discharge pipe 7 and the first oil separating member 5 are arranged in a positional relationship such that they do not come into contact with each other.
  • FIG. 5 is a diagram explaining the flow of refrigerant inside the compressor 100 according to the first embodiment.
  • FIG. 6 is a diagram for explaining the flow of refrigerant inside the conventional compressor 101.
  • a conventional compressor 101 shown in FIG. 6 does not include the first oil separation member 5, and has a hollow disc-shaped plate member having the same shape as the second oil separation member 6 in the compressor 101.
  • the oil separating member 106 is provided on the projecting portion 4a of the drive shaft 4. As shown in FIG.
  • a magnetic field is generated by a current flowing through the coil 2a.
  • the generated magnetic field causes the rotor 3 and the drive shaft 4 to rotate.
  • the rotary piston 13b and the rotary piston 14b also rotate.
  • the compressed refrigerant is discharged into the space between the compression mechanism portion 1 and the electric motor portion 10 .
  • the refrigerant discharged into the space between the compression mechanism portion 1 and the electric motor portion 10 mainly passes through the through holes 3 a of the rotor 3 and flows out to the upper portion of the electric motor portion 10 .
  • the refrigerating machine oil mixed in the refrigerant is separated by the centrifugal separation effect of the oil separation member 106 .
  • the separated refrigerator oil adheres to or collides with the coil ends of the stator 2, the inner wall of the closed container 11, and the like.
  • the refrigerating machine oil that has collided with the equipment flows to the bottom of the sealed container 11 through gaps in the equipment and is returned.
  • the refrigerant existing near the inlet 7a of the discharge pipe 7 has a high concentration of refrigerating machine oil.
  • the oil separation member 106 cannot sufficiently centrifuge the refrigerant present near the inlet 7a of the discharge pipe 7 . Therefore, the refrigerant present near the inlet 7a of the discharge pipe 7 has a high concentration of refrigerating machine oil.
  • the refrigerant flows into the first oil separation member 5 provided near the inlet 7a of the discharge pipe 7.
  • the first oil separation member 5 rotates together with the drive shaft 4, and a swirling flow is generated in the vicinity of the blade portion 5c.
  • the blades of the blade portion 5c have a larger area for pushing away the refrigerant, thereby increasing the swirl flow velocity. and the refrigerating machine oil mixed in the refrigerant can be separated.
  • the first oil separation member 5 exerts a centrifugal separation effect due to a greater centrifugal force due to the swirling flow, and separates the refrigerating machine oil that has not been separated from the refrigerant in the second oil separation member 6 . Therefore, the compressor 100 according to Embodiment 1 further improves the oil separation effect as compared with the conventional compressor 101 .
  • the compressor 100 has the hollow disk-shaped collar portion 5b extending in the radial direction of the drive shaft 4 and the blade portions 5c standing upright from the collar portion 5b. It comprises a rotating first oil separation member 5 .
  • the refrigerating machine oil can be separated from the refrigerant that has flowed into the first oil separation member 5 by a swirling flow generated in the vicinity of the vanes 5 c. Then, the separated refrigerating machine oil receives a swirling flow, is sprayed against the inner wall of the sealed container 11 by centrifugal force, stops there, drips from there, and is efficiently recovered and collected in the lower part of the sealed container 11. - ⁇
  • first oil separation member 5 can be simplified in configuration by integrally forming the flange portion 5b and the blades of the blade portion 5c.
  • the outer diameter of the hollow disc-shaped flange portion 5b (more specifically, the outer diameter of the portion of the blade portion 5c that is connected to the blades in the blade portion 5b) is ⁇ It has a diameter within 5% and is approximately the same diameter. Therefore, the outer diameter of the flange portion 5b is large enough to cover the through hole 3a of the rotor 3 in a plan view of the compressor 100 viewed from above. As a result, the refrigerating machine oil can be more reliably separated from the refrigerant flowing out from the through holes 3 a of the rotor 3 .
  • the difference in the vertical direction between the upper end of the blade of the blade 5c of the first oil separating member 5 and the upper end of the coil 2a of the stator 2 is within ⁇ 5 mm. Therefore, the refrigerating machine oil can be separated more reliably.
  • the first oil separation member 5 is such that the vertical distance between the blades of the blade portion 5c and the inlet port 7a of the discharge pipe 7 of the closed container 11 is equal to the flange portion 5b. , and positioned within a range that does not come into contact with the discharge pipe 7. Therefore, a larger amount of refrigerant from which the first oil separating member 5 has separated the refrigerating machine oil can be discharged from the discharge pipe 7 .
  • Compressor 100 in Embodiment 1 can exert a centrifugal separation effect with only first oil separation member 5 , but between first oil separation member 5 and rotor 3 together with drive shaft 4 It has a rotating hollow disc-shaped second oil separation member 6 .
  • the first oil separating member 5 swirls the refrigerant from which the second oil separating member 6 has separated the refrigerating machine oil, and further separates the refrigerating machine oil.
  • the compressor 100 since the compressor 100 has the second oil separation member 6, the first oil separation member 5 can be installed near the inflow port 7a of the discharge pipe 7. Therefore, the effect of separating the refrigerating machine oil can be further enhanced.
  • the outer diameter of the disk portion 6a of the hollow disk-shaped second oil separating member 6 is within ⁇ 5% of the outer diameter of the rotor 3 in a plan view of the compressor 100 viewed from above. diameter. Therefore, the outer diameter of the disc portion 6a is large enough to cover the through hole 3a of the rotor 3 in a plan view of the compressor 100 viewed from above. As a result, the refrigerating machine oil can be separated from the refrigerant flowing out from the through holes 3 a of the rotor 3 .
  • the first oil separation member 5 and the second oil separation member 6 have flanges 5d and 6b, respectively. Then, the lower end of the flange 6b and the upper portion of the rotor 3 are brought into contact with each other, and the lower end of the flange 5d and the upper surface of the second oil separation member 6 are brought into contact with each other. Set to specified length. Therefore, it becomes easy to dispose the first oil separation member 5 and the second oil separation member 6 at desired positions.
  • FIG. 7 is a plan view of the first oil separation member 5 according to Embodiment 2 when viewed from the direction of the upper surface of the compressor 100.
  • the first oil separating member 5 in Embodiment 2 has one or more bending points 5e in the blade portion 5c, and has blades bent at the bending points 5e.
  • the surface area is increased by bending the blades at one or more bending points 5e. Further, the blades having a concave shape in the direction of rotation can receive the refrigerant discharged by the rotation. Therefore, the first oil separation member 5 can increase the swirling flow velocity due to rotation. Therefore, the centrifugal separation effect of the refrigerating machine oil can be further enhanced.
  • FIG. 8 is an enlarged view of a main portion near the upper portion of compressor 100 according to Embodiment 3.
  • the inlet port 7a of the discharge pipe 7 installed on the upper surface of the closed container 11 is positioned between the upper end portion and the lower end portion of the blades of the blade portion 5c in the vertical direction.
  • the first oil separating member 5 and the discharge pipe 7 are arranged as shown. As a result, a greater amount of the refrigerant from which the first oil separating member 5 has separated the refrigerating machine oil can be discharged from the discharge pipe 7 .
  • FIG. 9 is a diagram illustrating a configuration example of a refrigeration cycle apparatus according to Embodiment 4.
  • FIG. 9 shows an air conditioner as the refrigeration cycle device.
  • an outdoor unit 300 and an indoor unit 200 are connected by a refrigerant pipe 400 to form a refrigerant circuit for circulating the refrigerant.
  • Outdoor unit 300 has compressor 100 described in the first embodiment.
  • the outdoor unit 300 also has a four-way valve 302 , an outdoor heat exchanger 303 , an expansion valve 304 and an outdoor fan 305 .
  • the indoor unit 200 has an indoor heat exchanger 201 .
  • the compressor 100 compresses and discharges the sucked refrigerant, as described above.
  • the compressor 100 may arbitrarily change the operating frequency by, for example, control by an inverter circuit.
  • the four-way valve 302 is a valve that switches the flow of refrigerant between cooling operation and heating operation.
  • the outdoor heat exchanger 303 exchanges heat between refrigerant and air (outdoor air). Outdoor heat exchanger 303 functions, for example, as an evaporator during heating operation to evaporate and vaporize the refrigerant. Also, the outdoor heat exchanger 303 functions as a condenser during cooling operation, and condenses and liquefies the refrigerant. In addition, the outdoor fan 305 sends outdoor air to the outdoor heat exchanger 303 to promote heat exchange between the outdoor air and the refrigerant.
  • An expansion valve 304 such as a throttle device, which serves as a decompression device, decompresses and expands the refrigerant.
  • the opening is adjusted based on an instruction from a control device (not shown) or the like.
  • Indoor heat exchanger 201 performs heat exchange between, for example, air to be air-conditioned and refrigerant.
  • Indoor heat exchanger 201 functions as a condenser during heating operation, and condenses and liquefies the refrigerant.
  • the indoor heat exchanger 201 functions as an evaporator during cooling operation to evaporate and vaporize the refrigerant.
  • the indoor blower 202 sends air to be air-conditioned to the indoor heat exchanger 201 to promote heat exchange between the air and the refrigerant.
  • Embodiment 4 by having the compressor 100 described in Embodiment 1 as a device, it is possible to improve the oil separation effect of separating the refrigerating machine oil from the refrigerant. . Therefore, the amount of refrigerating machine oil discharged from the compressor 100 is reduced, and it is possible to prevent the refrigerating machine from interfering with the heat transfer of the refrigerant in the heat exchanger. Therefore, the heat exchange efficiency can be increased, and the efficiency in the refrigerant circuit can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

A compressor according to the present disclose comprises: a sealed container; a compression mechanism unit that is provided in the sealed container and that compresses a fluid; an electric motor unit that has a stator and a rotor and that is disposed above the compression mechanism unit in the sealed container; a drive shaft that is connected to the rotor and to a compression mechanism and that has a protrusion which protrudes from the upper part of the rotor; and a first oil separation member that is disposed at the upper end part of the protrusion of the drive shaft and that rotates together with the drive shaft. The first oil separation member has a collar part which protrudes in the radial directions of the drive shaft and at which a plurality of blades are provided in the vertical direction. In a plan view in which the first oil separation member is viewed from above, each of the blades is positioned such that: an outer circumference-side edge point is positioned on the outer circumference of the collar part; an inner circumference-side edge point is on a circle that is concentric with and inward of the outer circumference and is positioned at a right angle to a straight line which connects the outer circumference-side edge point of the blade and the center of the concentric circle; and a shadow made by projecting the blade in the horizontal direction does not overlap with an adjacent blade.

Description

圧縮機および冷凍サイクル装置Compressor and refrigeration cycle equipment
 この技術は、圧縮機および冷凍サイクル装置に関するものである。特に、油分離部材を内部に備える密閉型の圧縮機などに係るものである。 This technology relates to compressors and refrigeration cycle equipment. In particular, the present invention relates to a hermetic compressor having an oil separation member inside.
 流体を圧縮する圧縮機において、密閉型の圧縮機は、冷凍機油を密閉容器の底部に貯留する構造であることが多い。冷凍機油は、機器の駆動を潤滑にし、摩耗を防ぐ潤滑油となる。冷凍機油は、軸受と圧縮機構部とに供給される。軸受に供給された冷凍機油は、軸受を潤滑した後、軸受摺動部から流体と共に圧縮機外に放出される。また、圧縮機構部に給油された冷凍機油は、ピストンの摩擦力抑制、流体が漏れないように隙間のシールなどとして機能し、流体と共に圧縮機外に吐出される。このため、吐出された流体には、軸受および圧縮機構に供給された冷凍機油が含まれることになる。 Among compressors that compress fluid, hermetic compressors often have a structure in which refrigerating machine oil is stored at the bottom of a hermetic container. Refrigerating machine oil lubricates the drive of the equipment and serves as a lubricating oil that prevents wear. Refrigerant oil is supplied to the bearings and the compression mechanism. The refrigerating machine oil supplied to the bearings lubricates the bearings, and then is discharged out of the compressor together with the fluid from the bearing sliding portions. In addition, the refrigerating machine oil supplied to the compression mechanism functions as a seal between gaps to suppress the frictional force of the piston and prevent fluid from leaking, and is discharged out of the compressor together with the fluid. Therefore, the discharged fluid contains the refrigerating machine oil supplied to the bearings and the compression mechanism.
 ここで、冷媒回路を有する冷凍サイクル装置の機器に圧縮機を利用する場合について説明する。流体である冷媒を循環させる冷媒回路において、圧縮機外に流出する冷凍機油が増加すると、熱交換器内に付着する冷凍機油の量が多くなるなどして、冷媒回路における熱交換器の伝熱性能低下、圧力損失増加による冷凍サイクル効率の低下などが生じる。また、圧縮機外に流出する冷凍機油が増加すると、圧縮機内の冷凍機油の貯留量が低下することにより、摺動部の潤滑不良が発生する要因となる。したがって、圧縮機外に流出する冷凍機油の増加を抑制するために、圧縮機内で冷媒と冷凍機油とを効率的に分離する必要がある。 Here, a case where a compressor is used in a refrigeration cycle device having a refrigerant circuit will be described. In a refrigerant circuit that circulates a fluid refrigerant, if the amount of refrigerating machine oil that flows out of the compressor increases, the amount of refrigerating machine oil that adheres to the inside of the heat exchanger increases. A decrease in efficiency of the refrigeration cycle due to a decrease in performance and an increase in pressure loss occurs. Further, when the amount of refrigerating machine oil flowing out of the compressor increases, the amount of refrigerating machine oil stored in the compressor decreases, which causes poor lubrication of sliding parts. Therefore, it is necessary to efficiently separate the refrigerant and the refrigerating machine oil within the compressor in order to suppress an increase in the refrigerating machine oil flowing out of the compressor.
 このため、従来の圧縮機において、圧縮機構部と電動機部とを接続する駆動軸に油分離部材を設置し、圧縮機外に冷凍機油が流出することを抑制したものがある。たとえば、ドーナツ状(中空円板形状)の板部材に対して、外周部の複数個所が折り曲げられて、羽根部が形成され、平面視において多角形状となる油分離部材を駆動軸に設けた圧縮機が提案されている(たとえば、特許文献1参照)。 Therefore, in some conventional compressors, an oil separating member is installed on the drive shaft that connects the compression mechanism and the electric motor to prevent the refrigerating machine oil from flowing out of the compressor. For example, a donut-shaped (hollow disk-shaped) plate member is bent at a plurality of locations on the outer peripheral portion to form wing portions, and an oil separating member that has a polygonal shape in plan view is provided on the drive shaft. A machine has been proposed (see, for example, Patent Document 1).
特許第4964288号公報Japanese Patent No. 4964288
 特許文献1の圧縮機における油分離部材は、遠心分離効果および油分離部材の羽根部近傍における流速勾配の効果などによって、冷媒と冷凍機油とを分離するものであった。このため、圧縮機の容量および流量を拡大すると、羽根部が外周部に位置することで、羽根部における油分離効果が低減する。 The oil separation member in the compressor of Patent Document 1 separates the refrigerant and the refrigerating machine oil by the centrifugal separation effect and the effect of the flow velocity gradient in the vicinity of the blades of the oil separation member. Therefore, when the capacity and flow rate of the compressor are increased, the blades are positioned on the outer periphery, and the oil separation effect at the blades is reduced.
 そこで、圧縮機の容量などに関わらず、より油分離効果が高い構造を有する圧縮機および冷凍サイクル装置を得ることを目的とする。 Therefore, the object is to obtain a compressor and a refrigeration cycle device having a structure with a higher oil separation effect regardless of the capacity of the compressor.
 この開示に係る圧縮機は、密閉容器と、密閉容器内に設けられ、流体を圧縮する圧縮機構部と、固定子および回転子を有し、密閉容器内において圧縮機構部より上方に配置された電動機部と、回転子と圧縮機構とに接続し、回転子の上部から突出する突出部を有する駆動軸と、駆動軸の突出部の上端部分に配置され、駆動軸とともに回転する第1の油分離部材とを備える圧縮機であって、第1の油分離部材は、駆動軸の半径方向に突出し、上下方向に複数枚の羽根が設置されたつば部を有し、それぞれの羽根は、第1の油分離部材を上側から見たときの平面視において、外周側端点がつば部の外周上に位置し、内周側端点が外周より内側で外周と同心円上であって、羽根の外周側端点と同心円の中心を結ぶ直線に対して直角をなす位置にあり、かつ、羽根を水平方向に投影した影が隣接する羽根に重ならない位置とするものである。 A compressor according to this disclosure includes a closed container, a compression mechanism provided in the closed container for compressing a fluid, a stator and a rotor, and disposed above the compression mechanism in the closed container. A drive shaft connected to an electric motor section, a rotor and a compression mechanism and having a projection projecting from the top of the rotor, and a first oil disposed on the upper end portion of the projection of the drive shaft and rotating together with the drive shaft. The first oil separation member protrudes in the radial direction of the drive shaft and has a flange on which a plurality of blades are installed in the vertical direction. In a plan view when the oil separation member 1 is viewed from above, the outer peripheral side end point is located on the outer periphery of the flange portion, the inner peripheral side end point is inside the outer periphery and concentric with the outer periphery, and is on the outer peripheral side of the blade. It is positioned at a right angle to the straight line connecting the end point and the center of the concentric circle, and at a position where the shadow of the blade projected in the horizontal direction does not overlap the adjacent blade.
 この開示に係る冷凍サイクル装置は、上記の圧縮機、凝縮器、減圧装置および蒸発器が配管接続され、冷媒の循環が行われる冷媒回路を有するものである。 A refrigeration cycle apparatus according to this disclosure has a refrigerant circuit in which the compressor, condenser, decompression device, and evaporator described above are connected by piping, and refrigerant is circulated.
 本開示において、圧縮機は、駆動軸の突出部の上端部分に配置され、駆動軸とともに回転する第1の油分離部材を有する。第1の油分離部材は、つば部に上下方向に複数枚の羽根を有する。羽根は、つば部の外周側から内周側にわたって、外周側端点と内周側端点とが位置する。このため、圧縮機の容量および流量が拡大しても、つば部の外周側から内周側にわたる羽根で、旋回流を発生させることにより、冷媒から冷凍機油を効率よく分離することができる。 In the present disclosure, the compressor has a first oil separation member arranged at the upper end portion of the protrusion of the drive shaft and rotating together with the drive shaft. The first oil separating member has a plurality of blades in the vertical direction on the flange. The blade has an outer peripheral side end point and an inner peripheral side end point located from the outer peripheral side to the inner peripheral side of the flange portion. Therefore, even if the capacity and flow rate of the compressor are increased, the refrigerating machine oil can be efficiently separated from the refrigerant by generating a swirling flow with the blades extending from the outer peripheral side to the inner peripheral side of the flange.
実施の形態1に係る圧縮機100の構成を説明する図である。1 is a diagram illustrating a configuration of a compressor 100 according to Embodiment 1; FIG. 実施の形態1に係る圧縮機100の上部近傍部分の要部拡大図である。Fig. 2 is an enlarged view of a main portion near the upper portion of compressor 100 according to Embodiment 1; 実施の形態1に係る第1の油分離部材5を、圧縮機100において側面となる方向から見たときの側面図である。FIG. 3 is a side view of the first oil separating member 5 according to Embodiment 1 when viewed from the side of the compressor 100; 実施の形態1に係る第1の油分離部材5を、圧縮機100の上面となる方向から見たときの平面図である。2 is a plan view of the first oil separating member 5 according to Embodiment 1 when viewed from the direction of the upper surface of the compressor 100. FIG. 実施の形態1に係る圧縮機100内部における冷媒の流れを説明する図である。FIG. 4 is a diagram for explaining the flow of refrigerant inside the compressor 100 according to Embodiment 1; 従来の圧縮機101内部における冷媒の流れを説明する図である。FIG. 3 is a diagram for explaining the flow of refrigerant inside a conventional compressor 101; 実施の形態2に係る第1の油分離部材5を、圧縮機100の上面となる方向から見たときの平面図である。FIG. 11 is a plan view of the first oil separating member 5 according to Embodiment 2 when viewed from the direction of the upper surface of the compressor 100; 実施の形態3に係る圧縮機100の上部近傍部分の要部拡大図である。FIG. 11 is an enlarged view of a main portion near the upper portion of compressor 100 according to Embodiment 3; 実施の形態4に係る冷凍サイクル装置の構成例を表す図である。FIG. 11 is a diagram showing a configuration example of a refrigeration cycle apparatus according to Embodiment 4;
 以下、実施の形態に係る圧縮機および冷凍サイクル装置について図面などを参照しながら説明する。以下の図面において、同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。特に構成要素の組み合わせは、各実施の形態における組み合わせのみに限定するものではなく、他の実施の形態に記載した構成要素を別の実施の形態に適用することができる。また、以下の説明において、図における上方を「上側」とし、下方を「下側」として説明する。さらに、理解を容易にするために、方向を表す用語(たとえば「右」、「左」、「前」、「後」など)などを適宜用いるが、説明のためのものであって、これらの用語は本願に係る発明を限定するものではない。そして、図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 A compressor and a refrigeration cycle device according to an embodiment will be described below with reference to the drawings. In the following drawings, the same reference numerals denote the same or corresponding parts, and are common throughout the embodiments described below. The forms of the constituent elements shown in the entire specification are merely examples, and are not limited to the forms described in the specification. In particular, the combination of components is not limited only to the combinations in each embodiment, and the components described in other embodiments can be applied to other embodiments. Also, in the following description, the upper side of the drawing is referred to as the "upper side" and the lower side is referred to as the "lower side". Furthermore, for ease of understanding, directional terms (e.g., "right", "left", "front", "back", etc.) are used as appropriate; The terminology is not intended to limit the claimed invention. In addition, in the drawings, the size relationship of each component may differ from the actual size.
実施の形態1.
 図1は、実施の形態1に係る圧縮機100の構成を説明する図である。図1は、圧縮機100の内部構成を示すため、縦断面の概略を示している。また、図2は、実施の形態1に係る圧縮機100の上部近傍部分の要部拡大図である。ここで、図1に示す圧縮機100など、以下説明する各図において、説明する部分を見やすくするためにハッチングを省略している部分がある。
Embodiment 1.
FIG. 1 is a diagram illustrating the configuration of a compressor 100 according to Embodiment 1. FIG. FIG. 1 shows a schematic longitudinal section to show the internal configuration of the compressor 100 . Moreover, FIG. 2 is an enlarged view of a main portion near the upper portion of the compressor 100 according to Embodiment 1. As shown in FIG. Here, in each drawing described below, such as the compressor 100 shown in FIG. 1, there are portions where hatching is omitted to make the portions to be described easier to see.
 圧縮機100は、流体を吸入し、圧縮して吐出する。特に限定するものではないが、ここでは、圧縮機100が圧縮する流体は、冷凍サイクル装置において、冷媒回路を循環する冷媒とする。実施の形態1の圧縮機100は、密閉型の圧縮機である。圧縮機100は、略円筒状の密閉容器11の内部に、圧縮機構部1および電動機部10などを有する。また、圧縮機100の密閉容器11は、冷媒を吐出する吐出管7を上面部分に有する。 The compressor 100 sucks fluid, compresses it, and discharges it. Although not particularly limited, the fluid compressed by the compressor 100 is the refrigerant circulating in the refrigerant circuit in the refrigeration cycle device. Compressor 100 of Embodiment 1 is a hermetic compressor. The compressor 100 has a compression mechanism section 1 and an electric motor section 10 inside a substantially cylindrical sealed container 11 . Also, the sealed container 11 of the compressor 100 has a discharge pipe 7 for discharging the refrigerant on its upper surface.
 電動機部10は、外部電源(図示せず)からの電力供給を受けて回転駆動して、圧縮機構部1を回転させるモータを有する。電動機部10は、固定子2および回転子3を備える。固定子2は、中空円筒形状をしている。電動機部10は、外周部が密閉容器11の内壁に、圧入されている。固定子2は、たとえば、電磁鋼板などの鋼板を複数枚積層させることにより構成される。また、固定子2は、内周部の溝に、たとえば、分布巻きされたコイル2aを有する。コイル2aは、端子12に接続され、端子12を介して、電力供給を受ける。 The electric motor section 10 has a motor that receives power supply from an external power source (not shown), drives it to rotate, and rotates the compression mechanism section 1 . The electric motor section 10 has a stator 2 and a rotor 3 . The stator 2 has a hollow cylindrical shape. The outer peripheral portion of the electric motor portion 10 is press-fitted into the inner wall of the closed container 11 . The stator 2 is configured, for example, by laminating a plurality of steel plates such as electromagnetic steel plates. In addition, the stator 2 has, for example, distributed winding coils 2a in the grooves of the inner circumference. The coil 2a is connected to a terminal 12 and receives power through the terminal 12. As shown in FIG.
 回転子3は、中空円筒形状をしている。回転子3は、固定子2の内側に配置される。回転子3が固定子2の内側に配置された状態においては、回転子3の外周面と固定子2の内周面との間にわずかな空隙が形成さる。回転子3は、たとえば電磁鋼板などの鋼板を複数枚積層させることにより構成される。回転子3は、上下方向に、冷媒が流通する貫通孔3aを有する。回転子3の中心部には、駆動軸4が挿入される。駆動軸4は、下端部が後述する圧縮機構部1と接続されている。また、駆動軸4は、上端部が回転子3の上部から突出している。以下、駆動軸4の上端部における突出部分を突出部4aとする。 The rotor 3 has a hollow cylindrical shape. The rotor 3 is arranged inside the stator 2 . When the rotor 3 is arranged inside the stator 2 , a slight gap is formed between the outer peripheral surface of the rotor 3 and the inner peripheral surface of the stator 2 . The rotor 3 is configured by laminating a plurality of steel plates such as electromagnetic steel plates. The rotor 3 has vertical through-holes 3a through which a coolant flows. A drive shaft 4 is inserted in the center of the rotor 3 . The drive shaft 4 is connected at its lower end to the compression mechanism 1, which will be described later. Further, the drive shaft 4 has an upper end projecting from the upper portion of the rotor 3 . Hereinafter, the protruding portion at the upper end of the drive shaft 4 will be referred to as a protruding portion 4a.
 圧縮機構部1は、密閉容器11内に吸入した流体を圧縮する。実施の形態1の圧縮機構部1は、たとえば、ロータリ式圧縮機構である。実施の形態1では、2気筒のロータリ式圧縮機構を用いている。ただし、圧縮機構部1は、上述の構成に限定されるものではない。たとえば、単気筒のロータリ式圧縮機構、スクロール式の圧縮機構などでもよい。 The compression mechanism section 1 compresses the fluid sucked into the sealed container 11 . Compression mechanism section 1 of Embodiment 1 is, for example, a rotary compression mechanism. In Embodiment 1, a two-cylinder rotary compression mechanism is used. However, the compression mechanism section 1 is not limited to the configuration described above. For example, a single-cylinder rotary compression mechanism, a scroll compression mechanism, or the like may be used.
 実施の形態1の圧縮機構部1は、シリンダー13a、シリンダー13a内に設けられたロータリーピストン(ローリングピストン)13b、シリンダー14a、シリンダー14a内に設けられたロータリーピストン14bなどの機器から構成される。ロータリーピストン13bおよびロータリーピストン14bは、それぞれ、駆動軸4の偏心軸部と接続されている。また、シリンダー13aとロータリーピストン13bとの間に形成される圧縮室には、吸入管15が接続されている。シリンダー14aとロータリーピストン14bとの間に形成される圧縮室には、吸入管16が接続されている。吸入管15および吸入管16は、マフラー17に接続されている。吸入管15および吸入管16は、低圧のガス冷媒を密閉容器11の内部に流入させる配管である。マフラー17は、吸入管15および吸入管16から流入する冷媒により発生する騒音を低減または除去する消音器である。 The compression mechanism 1 of Embodiment 1 is composed of devices such as a cylinder 13a, a rotary piston (rolling piston) 13b provided in the cylinder 13a, a cylinder 14a, and a rotary piston 14b provided in the cylinder 14a. The rotary piston 13b and the rotary piston 14b are connected to eccentric shaft portions of the drive shaft 4, respectively. A suction pipe 15 is connected to a compression chamber formed between the cylinder 13a and the rotary piston 13b. A suction pipe 16 is connected to a compression chamber formed between the cylinder 14a and the rotary piston 14b. The intake pipe 15 and the intake pipe 16 are connected to the muffler 17 . The suction pipe 15 and the suction pipe 16 are pipes that allow the low-pressure gas refrigerant to flow into the sealed container 11 . The muffler 17 is a muffler that reduces or eliminates noise generated by refrigerant flowing from the suction pipes 15 and 16 .
 また、圧縮機構部1は、駆動軸4が回転した際、密閉容器11の下部に貯留された冷凍機油が、駆動軸4に形成された給油経路(図示せず)を介して供給される。駆動軸4の突出部4aには、第1の油分離部材5および第2の油分離部材6が設けられている。 In addition, when the drive shaft 4 rotates, the compression mechanism 1 is supplied with the refrigerating machine oil stored in the lower portion of the sealed container 11 through an oil supply path (not shown) formed in the drive shaft 4. A first oil separating member 5 and a second oil separating member 6 are provided on the projecting portion 4 a of the drive shaft 4 .
 図3は、実施の形態1に係る第1の油分離部材5を、圧縮機100において側面となる方向から見たときの側面図である。また、図4は、実施の形態1に係る第1の油分離部材5を、圧縮機100の上面となる方向から見たときの平面図である。図3および図4に示すように、第1の油分離部材5は、カップ部5a、つば部5b、羽根部5cおよびフランジ5dを有する。カップ部5aは、駆動軸4との接続部分である下部から上方にかけて径が拡大する略カップ形状をしている。また、つば部5bは、略ドーナツ状(中空円板形状)の板部材である。つば部5bは、カップ部5aの上側端部に設けられている。したがって、つば部5bは駆動軸4の半径方向に突設されている。フランジ5dは、略中空円筒形状をした部材であり、カップ部5aの下側端部に設けられる。フランジ5dは、圧入などにより駆動軸4の突出部4aに挿入されることで、第1の油分離部材5は突出部4aに接続される。ここで、実施の形態1における第1の油分離部材5はカップ部5aを有するものとして説明するが、カップ部5aは必須のものではない。たとえば、カップ部5aを有しない第1の油分離部材5は、つば部5bとフランジ5dとが直接接続される構成となる。 FIG. 3 is a side view of the first oil separating member 5 according to Embodiment 1 when viewed from the side of the compressor 100. FIG. Moreover, FIG. 4 is a plan view of the first oil separation member 5 according to Embodiment 1 when viewed from the direction of the upper surface of the compressor 100 . As shown in FIGS. 3 and 4, the first oil separation member 5 has a cup portion 5a, a brim portion 5b, blade portions 5c and a flange 5d. The cup portion 5a has a substantially cup shape whose diameter increases from the lower portion, which is the connection portion with the drive shaft 4, toward the upper portion. The flange portion 5b is a substantially donut-shaped (hollow disk-shaped) plate member. The brim portion 5b is provided at the upper end portion of the cup portion 5a. Therefore, the flange portion 5b projects in the radial direction of the drive shaft 4. As shown in FIG. The flange 5d is a member having a substantially hollow cylindrical shape and is provided at the lower end of the cup portion 5a. The first oil separation member 5 is connected to the protrusion 4a by inserting the flange 5d into the protrusion 4a of the drive shaft 4 by press fitting or the like. Here, although the first oil separation member 5 in Embodiment 1 is described as having the cup portion 5a, the cup portion 5a is not essential. For example, the first oil separating member 5 without the cup portion 5a has a configuration in which the flange portion 5b and the flange 5d are directly connected.
 また、羽根部5cは、複数の羽根を有する。図4に示すように、第1の油分離部材5は、圧縮機100の上面となる方向から第1の油分離部材5を見た平面視において、羽根部5cの各羽根は、つば部5bとの接続部分における端点が、つば部5bの外周上とつば部5bの外周より内側の同心円上に位置する。ここで、羽根における外周側の端点を外周側端点とし、内側の同心円上に位置する端点を内周側端点とする。また、実施の形態1における第1の油分離部材5の羽根において、内周側端点は、羽根部5cの外周円側端点と同心円の中心とを結ぶ直線に対して直角をなす位置(直線上にない位置)にあり、かつ、側面から羽根を水平方向に投影したとき、隣接する羽根部5cが投影した影に重ならない位置になっている。 Further, the blade portion 5c has a plurality of blades. As shown in FIG. 4, when the first oil separation member 5 is viewed from the top of the compressor 100 in a plan view, each blade of the blade portion 5c has a flange portion 5b. are located on the outer periphery of the flange portion 5b and on concentric circles inside the outer periphery of the flange portion 5b. Here, the endpoint on the outer circumference side of the blade is defined as the endpoint on the outer circumference side, and the endpoint located on the inner concentric circle is defined as the endpoint on the inner circumference side. Further, in the blades of the first oil separating member 5 in Embodiment 1, the inner peripheral side endpoint is located at a right angle to the straight line connecting the outer peripheral circle side endpoint of the blade portion 5c and the center of the concentric circle (on the straight line ), and when the blade is horizontally projected from the side surface, the shadow projected by the adjacent blade portion 5c does not overlap.
 第1の油分離部材5におけるつば部5bにおいて、羽根部5cが設けられていない状態の外径Rは、回転子3の外径と略同じである。したがって、つば部5bの外径Rは、平面視において、回転子3の貫通孔3aを覆う大きさである。このため、圧縮機100に第2の油分離部材6が設けられていなくても、回転子3の貫通孔3aから流出した冷媒を、より確実に、カップ部5aおよびつば部5bに接触させることができる。したがって、第1の油分離部材5は、回転子3の貫通孔3aより流出した冷媒から、より確実に冷凍機油を分離することができる。 The outer diameter R of the flange portion 5b of the first oil separation member 5 in the state where the blade portion 5c is not provided is substantially the same as the outer diameter of the rotor 3. Therefore, the outer diameter R of the flange portion 5b is large enough to cover the through hole 3a of the rotor 3 in plan view. Therefore, even if the compressor 100 is not provided with the second oil separation member 6, the refrigerant flowing out from the through hole 3a of the rotor 3 can more reliably contact the cup portion 5a and the flange portion 5b. can be done. Therefore, the first oil separating member 5 can more reliably separate the refrigerating machine oil from the refrigerant flowing out from the through holes 3 a of the rotor 3 .
 また、図1および図2に示す第2の油分離部材6は、第1の油分離部材5と回転子3との間に設置される、略ドーナツ状の板部材である。第2の油分離部材6も冷媒から冷凍機油を分離する。第2の油分離部材6は、円板部6aおよびフランジ6bを有する。円板部6aは、略ドーナツ状の板部材である。円板部6aの外径は、回転子3の外径と略同じである。したがって、円板部6aの外径は、平面視において、回転子3の貫通孔3aを覆う大きさとなっている。これは、回転子3の貫通孔3aから流出した冷媒を、より確実に円板部6aに接触させるためである。第2の油分離部材6の円板部6aが回転子3の貫通孔3aを覆うことで、回転子3の貫通孔3aより流出した冷媒から、より確実に冷凍機油を分離することができる。また、フランジ6bは、略中空円筒形状であり、円板部6aの下部に設けられている。フランジ6bを突出部4aに挿入(たとえば圧入)することにより、第2の油分離部材6が突出部4aに接続される。ここで、実施の形態1における第2の油分離部材6は、略ドーナツ状の板部材とするが、形状はこれに限定しない。たとえば、第2の油分離部材6が略カップ形状などであってもよい。また、ここでは、圧縮機100が第2の油分離部材6を有するものとして説明するが、第2の油分離部材6は必須のものではない。圧縮機100は、第1の油分離部材5だけを有するものでもよい。 Also, the second oil separation member 6 shown in FIGS. 1 and 2 is a substantially doughnut-shaped plate member installed between the first oil separation member 5 and the rotor 3 . The second oil separating member 6 also separates the refrigerating machine oil from the refrigerant. The second oil separation member 6 has a disk portion 6a and a flange 6b. The disc portion 6a is a substantially doughnut-shaped plate member. The outer diameter of the disk portion 6a is substantially the same as the outer diameter of the rotor 3. As shown in FIG. Therefore, the outer diameter of the disk portion 6a is large enough to cover the through hole 3a of the rotor 3 in plan view. This is to ensure that the coolant flowing out of the through-holes 3a of the rotor 3 comes into contact with the disk portion 6a. By covering the through hole 3 a of the rotor 3 with the disk portion 6 a of the second oil separation member 6 , the refrigerating machine oil can be separated more reliably from the refrigerant flowing out from the through hole 3 a of the rotor 3 . The flange 6b has a substantially hollow cylindrical shape and is provided below the disk portion 6a. The second oil separating member 6 is connected to the projecting portion 4a by inserting (for example, press-fitting) the flange 6b into the projecting portion 4a. Here, the second oil separating member 6 in Embodiment 1 is a substantially doughnut-shaped plate member, but the shape is not limited to this. For example, the second oil separating member 6 may be substantially cup-shaped. Also, here, the compressor 100 is described as having the second oil separation member 6, but the second oil separation member 6 is not essential. The compressor 100 may have only the first oil separating member 5 .
 ここで、第1の油分離部材5および第2の油分離部材6の位置関係について説明する。実施の形態1における圧縮機100は、たとえば、第1の油分離部材5および第2の油分離部材6におけるフランジ5dおよびフランジ6bの長さを設定する。第1の油分離部材5および第2の油分離部材6を突出部4aに設けた状態において、第2の油分離部材6が有するフランジ6bの下端部と回転子3の上部とが接触するようにする。また、第1の油分離部材5が有するフランジ5dの下端部と第2の油分離部材6が有する円板部6aの上部とが接触するようにする。フランジ5dおよびフランジ6bの長さを設定し、フランジ5dおよびフランジ6bに対応して、第1の油分離部材5および第2の油分離部材6を駆動軸4に取り付ける。このため、第1の油分離部材5および第2の油分離部材6を所望の位置に配置することが容易となる。 Here, the positional relationship between the first oil separation member 5 and the second oil separation member 6 will be explained. Compressor 100 in Embodiment 1 sets the lengths of flanges 5d and 6b of first oil separation member 5 and second oil separation member 6, for example. In a state where the first oil separation member 5 and the second oil separation member 6 are provided on the projecting portion 4a, the lower end portion of the flange 6b of the second oil separation member 6 and the upper portion of the rotor 3 are in contact with each other. to Also, the lower end portion of the flange 5d of the first oil separation member 5 and the upper portion of the disk portion 6a of the second oil separation member 6 are brought into contact with each other. The lengths of the flanges 5d and 6b are set, and the first oil separation member 5 and the second oil separation member 6 are attached to the drive shaft 4 corresponding to the flanges 5d and 6b. Therefore, it becomes easy to dispose the first oil separation member 5 and the second oil separation member 6 at desired positions.
 まず、第1の油分離部材5の上端部分となる羽根部5cにおける羽根の上端部の高さは、固定子2に巻かれたコイル2aの上端部の高さと略同じとする。たとえば、両者の高さの差が±5mmとなるようにする。また、第1の油分離部材5と吐出管7とは、第1の油分離部材5における羽根部5cの上端部と吐出管7の流入口7aとの距離がつば部5bの半径以下であり、吐出管7と第1の油分離部材5とが接触しない範囲となる位置関係にそれぞれ配置される。 First, the height of the upper end portion of the blade portion 5c, which is the upper end portion of the first oil separation member 5, is approximately the same as the height of the upper end portion of the coil 2a wound around the stator 2. For example, the height difference between the two is ±5 mm. Further, the first oil separation member 5 and the discharge pipe 7 are such that the distance between the upper end of the vane portion 5c of the first oil separation member 5 and the inlet port 7a of the discharge pipe 7 is equal to or less than the radius of the flange portion 5b. , the discharge pipe 7 and the first oil separating member 5 are arranged in a positional relationship such that they do not come into contact with each other.
 図5は、実施の形態1に係る圧縮機100内部における冷媒の流れを説明する図である。また、図6は、従来の圧縮機101内部における冷媒の流れを説明する図である。図6に示す従来の圧縮機101は、第1の油分離部材5を備えておらず、圧縮機101における第2の油分離部材6と同様の形状である中空円板形状の板部材を有する油分離部材106を駆動軸4の突出部4aに備えるものである。 FIG. 5 is a diagram explaining the flow of refrigerant inside the compressor 100 according to the first embodiment. FIG. 6 is a diagram for explaining the flow of refrigerant inside the conventional compressor 101. As shown in FIG. A conventional compressor 101 shown in FIG. 6 does not include the first oil separation member 5, and has a hollow disc-shaped plate member having the same shape as the second oil separation member 6 in the compressor 101. The oil separating member 106 is provided on the projecting portion 4a of the drive shaft 4. As shown in FIG.
 外部電源(図示せず)から端子12を介して固定子2のコイル2aに電流が流れる。コイル2aに電流が流れることで磁界が発生する。発生した磁界によって、回転子3および駆動軸4が回転する。駆動軸4が回転することにより、ロータリーピストン13bおよびロータリーピストン14bも回転する。これにより、圧縮機構部1内における圧縮室の体積が減少し、吸入管15および吸入管16から吸入された冷媒が圧縮される。圧縮された冷媒は、圧縮機構部1と電動機部10との間の空間に吐出される。そして、圧縮機構部1と電動機部10との間の空間に吐出された冷媒は、主に回転子3の貫通孔3aを通って、電動機部10の上部に流出する。 A current flows from an external power supply (not shown) to the coil 2a of the stator 2 via the terminal 12. A magnetic field is generated by a current flowing through the coil 2a. The generated magnetic field causes the rotor 3 and the drive shaft 4 to rotate. As the drive shaft 4 rotates, the rotary piston 13b and the rotary piston 14b also rotate. As a result, the volume of the compression chamber in the compression mechanism portion 1 is reduced, and the refrigerant sucked from the suction pipes 15 and 16 is compressed. The compressed refrigerant is discharged into the space between the compression mechanism portion 1 and the electric motor portion 10 . The refrigerant discharged into the space between the compression mechanism portion 1 and the electric motor portion 10 mainly passes through the through holes 3 a of the rotor 3 and flows out to the upper portion of the electric motor portion 10 .
 たとえば、従来の圧縮機101の場合、図6に示すように、貫通孔3aから流出した冷媒は、油分離部材106によって、冷媒の流れ方向が、駆動軸4から密閉容器11の内壁へ向かう外周方向へ変更される。このとき、油分離部材106の遠心分離効果によって、冷媒内に混入した冷凍機油が分離される。分離された冷凍機油は、固定子2のコイルエンド、密閉容器11の内壁などに付着または衝突する。衝突などした冷凍機油は、機器の隙間などから密閉容器11の底部に流れ、返油される。
 ここで、油分離部材106と回転子3との距離が長すぎて、冷媒の流れ方向が変更される位置が高すぎると、貫通孔3aから流出した冷媒は、油分離部材106へ到達する前に拡散してしまう。このため、吐出管7の流入口7a付近に存在する冷媒は、冷凍機油濃度が高くなってしまう。また、油分離部材106と回転子3との距離が短すぎると、油分離部材106は、吐出管7の流入口7a付近に存在する冷媒を十分に遠心分離することができない。このため、吐出管7の流入口7a付近に存在する冷媒は、冷凍機油濃度の高いものとなってしまう。
For example, in the case of conventional compressor 101, as shown in FIG. direction is changed. At this time, the refrigerating machine oil mixed in the refrigerant is separated by the centrifugal separation effect of the oil separation member 106 . The separated refrigerator oil adheres to or collides with the coil ends of the stator 2, the inner wall of the closed container 11, and the like. The refrigerating machine oil that has collided with the equipment flows to the bottom of the sealed container 11 through gaps in the equipment and is returned.
Here, if the distance between the oil separation member 106 and the rotor 3 is too long and the position where the flow direction of the refrigerant is changed is too high, the refrigerant that has flowed out of the through holes 3a spread to Therefore, the refrigerant existing near the inlet 7a of the discharge pipe 7 has a high concentration of refrigerating machine oil. Further, if the distance between the oil separation member 106 and the rotor 3 is too short, the oil separation member 106 cannot sufficiently centrifuge the refrigerant present near the inlet 7a of the discharge pipe 7 . Therefore, the refrigerant present near the inlet 7a of the discharge pipe 7 has a high concentration of refrigerating machine oil.
 実施の形態1に係る圧縮機100の場合、図5に示すように、貫通孔3aから流出した冷媒は、第2の油分離部材6によって、冷媒の流れ方向が、駆動軸4側から密閉容器11の内壁へ向かう外周方向に変更される。このとき、第2の油分離部材6の遠心分離効果によって、冷媒内に混入した冷凍機油が分離される。 In the case of the compressor 100 according to Embodiment 1, as shown in FIG. 11 in the outer peripheral direction toward the inner wall. At this time, the refrigerating machine oil mixed in the refrigerant is separated by the centrifugal separation effect of the second oil separation member 6 .
 冷媒は、吐出管7の流入口7a付近に設けられた第1の油分離部材5へ流れ込む。第1の油分離部材5は、駆動軸4と共に回転しており、羽根部5c近傍において、旋回流が発生している。第1の油分離部材5は、羽根部5cの羽根によって冷媒を押しのける面積が大きくなり、旋回流速が増大する。し、冷媒に混入した冷凍機油を分離することができる。第1の油分離部材5は、旋回流によってより大きな遠心力による遠心分離効果を発揮し、第2の油分離部材6において冷媒から分離されなかった冷凍機油を分離する。したがって、実施の形態1に係る圧縮機100は、従来の圧縮機101よりもさらに油分離効果が向上する。 The refrigerant flows into the first oil separation member 5 provided near the inlet 7a of the discharge pipe 7. The first oil separation member 5 rotates together with the drive shaft 4, and a swirling flow is generated in the vicinity of the blade portion 5c. In the first oil separating member 5, the blades of the blade portion 5c have a larger area for pushing away the refrigerant, thereby increasing the swirl flow velocity. and the refrigerating machine oil mixed in the refrigerant can be separated. The first oil separation member 5 exerts a centrifugal separation effect due to a greater centrifugal force due to the swirling flow, and separates the refrigerating machine oil that has not been separated from the refrigerant in the second oil separation member 6 . Therefore, the compressor 100 according to Embodiment 1 further improves the oil separation effect as compared with the conventional compressor 101 .
 以上のように、実施の形態1における圧縮機100は、駆動軸4の半径方向に広がる中空円板形状のつば部5bおよびつば部5bに立設する羽根部5cを有し、駆動軸4と共に回転する第1の油分離部材5を備える。第1の油分離部材5が駆動軸4と共に回転することで、羽根部5cの近傍に発生する旋回流により、第1の油分離部材5に流入した冷媒から冷凍機油を分離することができる。そして、分離された冷凍機油が、旋回流を受け、遠心力によって、密閉容器11の内壁に吹き付けられて止まり、そこから滴下して、密閉容器11下部へ効率よく回収および捕集される。 As described above, the compressor 100 according to the first embodiment has the hollow disk-shaped collar portion 5b extending in the radial direction of the drive shaft 4 and the blade portions 5c standing upright from the collar portion 5b. It comprises a rotating first oil separation member 5 . As the first oil separation member 5 rotates together with the drive shaft 4 , the refrigerating machine oil can be separated from the refrigerant that has flowed into the first oil separation member 5 by a swirling flow generated in the vicinity of the vanes 5 c. Then, the separated refrigerating machine oil receives a swirling flow, is sprayed against the inner wall of the sealed container 11 by centrifugal force, stops there, drips from there, and is efficiently recovered and collected in the lower part of the sealed container 11. - 特許庁
 また、第1の油分離部材5は、つば部5bと羽根部5cの羽根とを一体形成することで、構成を簡単にすることができる。 In addition, the first oil separation member 5 can be simplified in configuration by integrally forming the flange portion 5b and the blades of the blade portion 5c.
 さらに、中空円板形状のつば部5bの外径(より詳しくは、つば部5bにおいて、羽根部5cにおける羽根と接続している部分の外径)は、回転子3の外径に対し、±5%以内の径を有し、略同じ径である。したがって、つば部5bの外径は、圧縮機100を上側から見た平面視において、回転子3の貫通孔3aを覆う大きさである。これにより、回転子3の貫通孔3aより流出した冷媒から、より確実に冷凍機油を分離することができる。また、第1の油分離部材5の羽根部5cにおける羽根の上端部が、固定子2が有するコイル2aの上端部との上下方向における差が±5mm以内に位置するようにした。したがって、より確実に冷凍機油を分離することができる。 Furthermore, the outer diameter of the hollow disc-shaped flange portion 5b (more specifically, the outer diameter of the portion of the blade portion 5c that is connected to the blades in the blade portion 5b) is ± It has a diameter within 5% and is approximately the same diameter. Therefore, the outer diameter of the flange portion 5b is large enough to cover the through hole 3a of the rotor 3 in a plan view of the compressor 100 viewed from above. As a result, the refrigerating machine oil can be more reliably separated from the refrigerant flowing out from the through holes 3 a of the rotor 3 . Moreover, the difference in the vertical direction between the upper end of the blade of the blade 5c of the first oil separating member 5 and the upper end of the coil 2a of the stator 2 is within ±5 mm. Therefore, the refrigerating machine oil can be separated more reliably.
 また、実施の形態1における圧縮機100において、第1の油分離部材5は、羽根部5cの羽根と密閉容器11が有する吐出管7における流入口7aとの上下方向の距離が、つば部5bの半径以下で、吐出管7と接触しない範囲に位置するようにした。このため、第1の油分離部材5が冷凍機油を分離させた冷媒を、吐出管7からより多く吐出させることができる。 In the compressor 100 according to Embodiment 1, the first oil separation member 5 is such that the vertical distance between the blades of the blade portion 5c and the inlet port 7a of the discharge pipe 7 of the closed container 11 is equal to the flange portion 5b. , and positioned within a range that does not come into contact with the discharge pipe 7. Therefore, a larger amount of refrigerant from which the first oil separating member 5 has separated the refrigerating machine oil can be discharged from the discharge pipe 7 .
 実施の形態1における圧縮機100は、第1の油分離部材5だけでも遠心分離効果を発揮することができるが、第1の油分離部材5と回転子3との間に、駆動軸4と共に回転する中空円板形状の第2の油分離部材6を有する。第1の油分離部材5は、第2の油分離部材6が冷凍機油を分離させた冷媒を旋回させ、さらに冷凍機油を分離することができる。 Compressor 100 in Embodiment 1 can exert a centrifugal separation effect with only first oil separation member 5 , but between first oil separation member 5 and rotor 3 together with drive shaft 4 It has a rotating hollow disc-shaped second oil separation member 6 . The first oil separating member 5 swirls the refrigerant from which the second oil separating member 6 has separated the refrigerating machine oil, and further separates the refrigerating machine oil.
 また、圧縮機100が第2の油分離部材6を有することで、吐出管7の流入口7aの近傍に第1の油分離部材5を設置することができる。このため、さらに冷凍機油の分離効果を高めることができる。 In addition, since the compressor 100 has the second oil separation member 6, the first oil separation member 5 can be installed near the inflow port 7a of the discharge pipe 7. Therefore, the effect of separating the refrigerating machine oil can be further enhanced.
 また、中空円板形状の第2の油分離部材6における円板部6aの外径は、圧縮機100を上側から見た平面視において、回転子3の外径に対し、±5%以内の径を有する。したがって、円板部6aの外径は、圧縮機100を上側から見た平面視において、回転子3の貫通孔3aを覆う大きさである。これにより、回転子3の貫通孔3aより流出した冷媒から冷凍機油を分離することができる。 Further, the outer diameter of the disk portion 6a of the hollow disk-shaped second oil separating member 6 is within ±5% of the outer diameter of the rotor 3 in a plan view of the compressor 100 viewed from above. diameter. Therefore, the outer diameter of the disc portion 6a is large enough to cover the through hole 3a of the rotor 3 in a plan view of the compressor 100 viewed from above. As a result, the refrigerating machine oil can be separated from the refrigerant flowing out from the through holes 3 a of the rotor 3 .
 そして、第1の油分離部材5および第2の油分離部材6は、それぞれフランジ5dおよびフランジ6bを有する。そして、フランジ6bの下端部と回転子3の上部とが接触し、フランジ5dの下端部と第2の油分離部材6の上面とが接触するなどして、フランジ5dおよびフランジ6bの長さを規定した長さに設定する。このため、第1の油分離部材5および第2の油分離部材6を所望の位置に配置することが容易となる。 The first oil separation member 5 and the second oil separation member 6 have flanges 5d and 6b, respectively. Then, the lower end of the flange 6b and the upper portion of the rotor 3 are brought into contact with each other, and the lower end of the flange 5d and the upper surface of the second oil separation member 6 are brought into contact with each other. Set to specified length. Therefore, it becomes easy to dispose the first oil separation member 5 and the second oil separation member 6 at desired positions.
実施の形態2.
 図7は、実施の形態2に係る第1の油分離部材5を、圧縮機100の上面となる方向から見たときの平面図である。図7に示すように、実施の形態2における第1の油分離部材5は、羽根部5cにおいて、1つ以上の屈折点5eを有し、屈折点5eにおいて折れ曲がった羽根を有する。
Embodiment 2.
FIG. 7 is a plan view of the first oil separation member 5 according to Embodiment 2 when viewed from the direction of the upper surface of the compressor 100. FIG. As shown in FIG. 7, the first oil separating member 5 in Embodiment 2 has one or more bending points 5e in the blade portion 5c, and has blades bent at the bending points 5e.
 羽根が、1つ以上の屈折点5eにおいて折れ曲がっていることで、表面積が増える。また、回転方向において凹形状となった羽根が、回転によって吐出された冷媒を受けることができる。このため、第1の油分離部材5は、回転による旋回流速を上げることができる。したがって、冷凍機油の遠心分離効果をさらに高めることができる。 The surface area is increased by bending the blades at one or more bending points 5e. Further, the blades having a concave shape in the direction of rotation can receive the refrigerant discharged by the rotation. Therefore, the first oil separation member 5 can increase the swirling flow velocity due to rotation. Therefore, the centrifugal separation effect of the refrigerating machine oil can be further enhanced.
実施の形態3.
 図8は、実施の形態3に係る圧縮機100の上部近傍部分の要部拡大図である。実施の形態3の圧縮機100においては、密閉容器11の上面に設置された吐出管7の流入口7aが、上下方向において、羽根部5cにおける羽根の上端部と下端部との間に位置するように、第1の油分離部材5と吐出管7とを配置する。このため、第1の油分離部材5が冷凍機油を分離させた冷媒を、吐出管7からさらに多く吐出させることができる。
Embodiment 3.
FIG. 8 is an enlarged view of a main portion near the upper portion of compressor 100 according to Embodiment 3. As shown in FIG. In the compressor 100 of Embodiment 3, the inlet port 7a of the discharge pipe 7 installed on the upper surface of the closed container 11 is positioned between the upper end portion and the lower end portion of the blades of the blade portion 5c in the vertical direction. The first oil separating member 5 and the discharge pipe 7 are arranged as shown. As a result, a greater amount of the refrigerant from which the first oil separating member 5 has separated the refrigerating machine oil can be discharged from the discharge pipe 7 .
実施の形態4.
 図9は、実施の形態4に係る冷凍サイクル装置の構成例を表す図である。ここで、図9では、冷凍サイクル装置として空気調和装置を示している。図9の空気調和装置は、室外機300と室内機200とを冷媒配管400により配管接続し、冷媒を循環させる冷媒回路を構成する。室外機300は、実施の形態1において説明した圧縮機100を有する。また、室外機300は、四方弁302、室外熱交換器303、膨張弁304および室外送風機305を有する。また、室内機200は、室内熱交換器201を有する。
Embodiment 4.
FIG. 9 is a diagram illustrating a configuration example of a refrigeration cycle apparatus according to Embodiment 4. FIG. Here, FIG. 9 shows an air conditioner as the refrigeration cycle device. In the air conditioner of FIG. 9, an outdoor unit 300 and an indoor unit 200 are connected by a refrigerant pipe 400 to form a refrigerant circuit for circulating the refrigerant. Outdoor unit 300 has compressor 100 described in the first embodiment. The outdoor unit 300 also has a four-way valve 302 , an outdoor heat exchanger 303 , an expansion valve 304 and an outdoor fan 305 . Also, the indoor unit 200 has an indoor heat exchanger 201 .
 圧縮機100は、前述したように、吸入した冷媒を圧縮して吐出する。ここで、特に限定するものではないが、圧縮機100は、たとえば、インバータ回路による制御などにより、運転周波数を任意に変化できるようにしてもよい。四方弁302は、冷房運転時と暖房運転時とによって冷媒の流れを切り換える弁である。 The compressor 100 compresses and discharges the sucked refrigerant, as described above. Here, although not particularly limited, the compressor 100 may arbitrarily change the operating frequency by, for example, control by an inverter circuit. The four-way valve 302 is a valve that switches the flow of refrigerant between cooling operation and heating operation.
 室外熱交換器303は、冷媒と空気(室外の空気)との熱交換を行う。室外熱交換器303は、たとえば、暖房運転時においては蒸発器として機能し、冷媒を蒸発させ、気化させる。また、室外熱交換器303は、冷房運転時においては凝縮器として機能し、冷媒を凝縮して液化させる。また、室外送風機305は、室外熱交換器303に室外の空気を送り込み、室外の空気と冷媒との熱交換を促す。 The outdoor heat exchanger 303 exchanges heat between refrigerant and air (outdoor air). Outdoor heat exchanger 303 functions, for example, as an evaporator during heating operation to evaporate and vaporize the refrigerant. Also, the outdoor heat exchanger 303 functions as a condenser during cooling operation, and condenses and liquefies the refrigerant. In addition, the outdoor fan 305 sends outdoor air to the outdoor heat exchanger 303 to promote heat exchange between the outdoor air and the refrigerant.
 減圧装置となる絞り装置などの膨張弁304は、冷媒を減圧して膨張させる。たとえば、膨張弁304を電子式膨張弁などで構成した場合には、制御装置(図示せず)などの指示に基づいて開度調整を行う。室内熱交換器201は、たとえば空調対象となる空気と冷媒との熱交換を行う。室内熱交換器201は、暖房運転時においては凝縮器として機能し、冷媒を凝縮して液化させる。また、室内熱交換器201は、冷房運転時においては蒸発器として機能し、冷媒を蒸発させ、気化させる。室内送風機202は、空調対象となる空気を室内熱交換器201に送り込み、その空気と冷媒との熱交換を促す。 An expansion valve 304 such as a throttle device, which serves as a decompression device, decompresses and expands the refrigerant. For example, if the expansion valve 304 is composed of an electronic expansion valve or the like, the opening is adjusted based on an instruction from a control device (not shown) or the like. Indoor heat exchanger 201 performs heat exchange between, for example, air to be air-conditioned and refrigerant. Indoor heat exchanger 201 functions as a condenser during heating operation, and condenses and liquefies the refrigerant. In addition, the indoor heat exchanger 201 functions as an evaporator during cooling operation to evaporate and vaporize the refrigerant. The indoor blower 202 sends air to be air-conditioned to the indoor heat exchanger 201 to promote heat exchange between the air and the refrigerant.
 以上のように、実施の形態4の冷凍サイクル装置によれば、実施の形態1で説明した圧縮機100を機器として有することで、冷媒から冷凍機油を分離する油分離効果を向上させることができる。このため、圧縮機100からの吐出される冷凍機油の量が減り、熱交換器において、冷凍機が冷媒の伝熱を阻害することを抑えることができる。このため、熱交換効率を高め、冷媒回路における効率をよくすることができる。 As described above, according to the refrigeration cycle apparatus of Embodiment 4, by having the compressor 100 described in Embodiment 1 as a device, it is possible to improve the oil separation effect of separating the refrigerating machine oil from the refrigerant. . Therefore, the amount of refrigerating machine oil discharged from the compressor 100 is reduced, and it is possible to prevent the refrigerating machine from interfering with the heat transfer of the refrigerant in the heat exchanger. Therefore, the heat exchange efficiency can be increased, and the efficiency in the refrigerant circuit can be improved.
 1 圧縮機構部、2 固定子、2a コイル、3 回転子、3a 貫通孔、4 駆動軸、4a 突出部、5 第1の油分離部材、5a カップ部、5b つば部、5c 羽根部、5d フランジ、5e 屈折点、6 第2の油分離部材、6a 円板部、6b フランジ、7 吐出管、7a 流入口、10 電動機部、11 密閉容器、12 端子、13a シリンダー、13b ロータリーピストン、14a シリンダー、14b ロータリーピストン、15 吸入管、16 吸入管、17 マフラー、100 圧縮機、101 圧縮機、200 室内機、201 室内熱交換器、202 室内送風機、300 室外機、302 四方弁、303 室外熱交換器、304 膨張弁、305 室外送風機、400 冷媒配管。 1 compression mechanism, 2 stator, 2a coil, 3 rotor, 3a through hole, 4 drive shaft, 4a protrusion, 5 first oil separation member, 5a cup, 5b flange, 5c blade, 5d flange , 5e bending point, 6 second oil separation member, 6a disk portion, 6b flange, 7 discharge pipe, 7a inlet, 10 electric motor portion, 11 sealed container, 12 terminal, 13a cylinder, 13b rotary piston, 14a cylinder, 14b rotary piston, 15 suction pipe, 16 suction pipe, 17 muffler, 100 compressor, 101 compressor, 200 indoor unit, 201 indoor heat exchanger, 202 indoor blower, 300 outdoor unit, 302 four-way valve, 303 outdoor heat exchanger , 304 Expansion valve, 305 Outdoor fan, 400 Refrigerant piping.

Claims (11)

  1.  密閉容器と、
     前記密閉容器内に設けられ、流体を圧縮する圧縮機構部と、
     固定子および回転子を有し、前記密閉容器内において前記圧縮機構部より上方に配置された電動機部と、
     前記回転子と前記圧縮機構部とに接続し、前記回転子の上部から突出する突出部を有する駆動軸と、
     前記駆動軸の前記突出部の上端部分に配置され、前記駆動軸とともに回転する第1の油分離部材と
     を備える圧縮機であって、
     前記第1の油分離部材は、
     前記駆動軸の半径方向に突出し、上下方向に複数枚の羽根が設置されたつば部を有し、
     それぞれの前記羽根は、前記第1の油分離部材を上側から見たときの平面視において、外周側端点が前記つば部の外周上に位置し、内周側端点が前記外周より内側で前記外周と同心円上であって、前記羽根の前記外周側端点と前記同心円の中心を結ぶ直線に対して直角をなす位置にあり、かつ、前記羽根を水平方向に投影した影が隣接する前記羽根に重ならない位置とする圧縮機。
    a closed container;
    a compression mechanism provided in the sealed container for compressing the fluid;
    an electric motor section having a stator and a rotor and arranged above the compression mechanism section in the closed container;
    a drive shaft connected to the rotor and the compression mechanism and having a protrusion projecting from an upper portion of the rotor;
    a first oil separation member arranged at the upper end portion of the protrusion of the drive shaft and rotating together with the drive shaft,
    The first oil separation member is
    Having a flange projecting in the radial direction of the drive shaft and having a plurality of blades installed in the vertical direction,
    In a plan view of the first oil separation member viewed from above, each blade has an outer peripheral end point located on the outer periphery of the flange portion, and an inner peripheral end point located inside the outer periphery. is on a concentric circle and is at a position perpendicular to a straight line connecting the outer peripheral side end point of the blade and the center of the concentric circle, and the shadow of the blade projected in the horizontal direction overlaps the adjacent blade Compressor to the position where it should not be.
  2.  前記つば部と複数の前記羽根とが1枚の板で構成される請求項1に記載の圧縮機。 The compressor according to claim 1, wherein the flange portion and the plurality of blades are composed of a single plate.
  3.  前記密閉容器の上面部分に設置され、前記圧縮機構部が圧縮した前記流体を外部に吐出する吐出管を備え、
     前記第1の油分離部材は、
     前記羽根の上端部と前記吐出管における流入口との上下方向における距離が、前記つば部の半径以下で、前記吐出管と接触しない範囲に位置する請求項1または請求項2に記載の圧縮機。
    A discharge pipe is provided on the upper surface of the closed container and discharges the fluid compressed by the compression mechanism to the outside,
    The first oil separation member is
    3. The compressor according to claim 1, wherein the vertical distance between the upper ends of the blades and the inlet of the discharge pipe is equal to or less than the radius of the flange portion and is positioned within a range that does not come into contact with the discharge pipe. .
  4.  前記密閉容器の上面部分に設置され、前記圧縮機構部が圧縮した前記流体を外部に吐出する吐出管を備え、
     前記吐出管の流入口は、上下方向において、前記第1の油分離部材における前記羽根の上端部と下端部との間に位置する請求項1または請求項2に記載の圧縮機。
    A discharge pipe is provided on the upper surface of the closed container and discharges the fluid compressed by the compression mechanism to the outside,
    3. The compressor according to claim 1, wherein the inlet of the discharge pipe is positioned between the upper end and the lower end of the blade of the first oil separation member in the vertical direction.
  5.  複数の前記羽根は、
     前記第1の油分離部材を上側から見たときの平面視において、前記外周側端点と前記内周側端点とを結ぶ線上に位置しない1つ以上の屈折点を前記外周側端点と前記内周側端点との間に有する請求項1~請求項4のいずれか一項に記載の圧縮機。
    the plurality of vanes,
    In a plan view when the first oil separation member is viewed from above, one or more inflection points that are not located on a line connecting the outer peripheral side end point and the inner peripheral side end point are separated from the outer peripheral side end point and the inner peripheral side end point. 5. The compressor according to any one of claims 1 to 4, having between the side end points.
  6.  複数の前記羽根における上端部は、前記固定子に巻かれたコイルの上端部との上下方向における差が±5mm以内に位置する請求項1~請求項5のいずれか一項に記載の圧縮機。 6. The compressor according to any one of claims 1 to 5, wherein the upper ends of the plurality of blades are located within ±5 mm of difference in the vertical direction from the upper ends of the coils wound around the stator. .
  7.  前記つば部における外側の径は、前記第1の油分離部材を上側から見たときの平面視において、前記回転子の外径に対し、±5%以内の径を有する請求項1~請求項6のいずれか一項に記載の圧縮機。 The outer diameter of the flange portion is within ±5% of the outer diameter of the rotor in plan view when the first oil separation member is viewed from above. 7. The compressor according to any one of 6.
  8.  前記駆動軸の前記突出部における、前記回転子と前記第1の油分離部材との間に位置する部分に、第2の油分離部材を備える請求項1~請求項7のいずれか一項に記載の圧縮機。 8. The method according to any one of claims 1 to 7, wherein a second oil separation member is provided in a portion of the protruding portion of the drive shaft located between the rotor and the first oil separation member. Compressor as described.
  9.  前記第2の油分離部材における外側の径は、上側から見たときの平面視において、前記回転子の外径に対し、±5%以内の径を有する中空円板形状の部材を有する請求項8に記載の圧縮機。 The outer diameter of the second oil separation member is a hollow disk-shaped member having a diameter within ±5% of the outer diameter of the rotor in plan view when viewed from above. 9. Compressor according to 8.
  10.  前記第1の油分離部材および前記第2の油分離部材は、それぞれ下部にフランジを有し、
     前記第2の油分離部材が有する前記フランジの下端部と前記回転子の上部とが接触し、前記第1の油分離部材が有する前記フランジの下端部と前記第2の油分離部材の上面とが接触する請求項8または請求項9に記載の圧縮機。
    The first oil separation member and the second oil separation member each have a flange at the bottom,
    The lower end portion of the flange of the second oil separation member and the upper portion of the rotor are in contact with each other, and the lower end portion of the flange of the first oil separation member and the upper surface of the second oil separation member contact each other. 10. A compressor according to claim 8 or 9, wherein the contacts are in contact with each other.
  11.  請求項1~請求項10のいずれか一項に記載の圧縮機、凝縮器、減圧装置および蒸発器が配管接続され、冷媒の循環が行われる冷媒回路を有する冷凍サイクル装置。 A refrigeration cycle apparatus having a refrigerant circuit in which the compressor, condenser, decompression device, and evaporator according to any one of claims 1 to 10 are pipe-connected and the refrigerant is circulated.
PCT/JP2021/016384 2021-04-23 2021-04-23 Compressor and refrigeration cycle device WO2022224420A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022510785A JP7080423B1 (en) 2021-04-23 2021-04-23 Compressor and refrigeration cycle equipment
PCT/JP2021/016384 WO2022224420A1 (en) 2021-04-23 2021-04-23 Compressor and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/016384 WO2022224420A1 (en) 2021-04-23 2021-04-23 Compressor and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2022224420A1 true WO2022224420A1 (en) 2022-10-27

Family

ID=81852655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016384 WO2022224420A1 (en) 2021-04-23 2021-04-23 Compressor and refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP7080423B1 (en)
WO (1) WO2022224420A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61178090U (en) * 1985-04-25 1986-11-06
JPH051683A (en) * 1991-06-27 1993-01-08 Daikin Ind Ltd High pressure dome type compressor
JP4964288B2 (en) * 2009-11-18 2012-06-27 三菱電機株式会社 Compressor
CN103306983A (en) * 2013-05-16 2013-09-18 珠海格力电器股份有限公司 compressor drainage plate and rotary compressor
WO2013157281A1 (en) * 2012-04-19 2013-10-24 三菱電機株式会社 Hermetically sealed compressor and vapor compression refrigeration cycle device with hermetically sealed compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61178090U (en) * 1985-04-25 1986-11-06
JPH051683A (en) * 1991-06-27 1993-01-08 Daikin Ind Ltd High pressure dome type compressor
JP4964288B2 (en) * 2009-11-18 2012-06-27 三菱電機株式会社 Compressor
WO2013157281A1 (en) * 2012-04-19 2013-10-24 三菱電機株式会社 Hermetically sealed compressor and vapor compression refrigeration cycle device with hermetically sealed compressor
CN103306983A (en) * 2013-05-16 2013-09-18 珠海格力电器股份有限公司 compressor drainage plate and rotary compressor

Also Published As

Publication number Publication date
JPWO2022224420A1 (en) 2022-10-27
JP7080423B1 (en) 2022-06-03

Similar Documents

Publication Publication Date Title
JP4964288B2 (en) Compressor
CN103250335B (en) Induction motor, compressor, forced draft fan and air-conditioning
JP2002539377A (en) Two-stage centrifugal compressor
JP3936105B2 (en) Compressor
CN103181066A (en) Rotor of induction motor, induction motor, compressor, air blower, and air conditioner
JP6345099B2 (en) Sealed electric compressor and air conditioner
JP7510890B2 (en) Compressors and air conditioners
JP2002317775A (en) Scroll compressor
WO2022224420A1 (en) Compressor and refrigeration cycle device
JP5135779B2 (en) Compressor
KR102320908B1 (en) Compressors and refrigeration cycle units
US10634142B2 (en) Compressor oil separation and assembly method
JP2008138591A5 (en)
JP2007285293A (en) Compressor
CN113530856A (en) Compressor and refrigerating system
WO2024116308A1 (en) Compressor and refrigeration cycle device
JP2010112180A (en) Electric compressor
CN113944631B (en) Scroll compressor and refrigeration cycle device
WO2024069770A1 (en) Compressor and air conditioner
CN114483657B (en) Compressor and cooling device comprising same
US11378080B2 (en) Compressor
WO2023100271A1 (en) Scroll compressor and refrigeration cycle apparatus
JP7378275B2 (en) Compressor, outdoor unit and air conditioner
WO2024085065A1 (en) Electric compressor
WO2021106198A1 (en) Compressor and refrigeration cycle device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022510785

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937912

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937912

Country of ref document: EP

Kind code of ref document: A1