JP7378275B2 - Compressor, outdoor unit and air conditioner - Google Patents

Compressor, outdoor unit and air conditioner Download PDF

Info

Publication number
JP7378275B2
JP7378275B2 JP2019203038A JP2019203038A JP7378275B2 JP 7378275 B2 JP7378275 B2 JP 7378275B2 JP 2019203038 A JP2019203038 A JP 2019203038A JP 2019203038 A JP2019203038 A JP 2019203038A JP 7378275 B2 JP7378275 B2 JP 7378275B2
Authority
JP
Japan
Prior art keywords
compressor
container
rotating shaft
refrigerant
refrigerating machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019203038A
Other languages
Japanese (ja)
Other versions
JP2021076064A (en
Inventor
裕樹 田中
量人 剱持
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Johnson Controls Air Conditioning Inc
Original Assignee
Hitachi Johnson Controls Air Conditioning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Johnson Controls Air Conditioning Inc filed Critical Hitachi Johnson Controls Air Conditioning Inc
Priority to JP2019203038A priority Critical patent/JP7378275B2/en
Publication of JP2021076064A publication Critical patent/JP2021076064A/en
Application granted granted Critical
Publication of JP7378275B2 publication Critical patent/JP7378275B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、流体を圧縮する圧縮機、該圧縮機を備えた室外機および該室外機を備えた空気調和装置に関する。 The present invention relates to a compressor that compresses fluid, an outdoor unit equipped with the compressor, and an air conditioner equipped with the outdoor unit.

空気調和装置の室外機に搭載される圧縮機には、部品数が少ないロータリ圧縮機やスクロール圧縮機が多く使用されている。ロータリ圧縮機やスクロール圧縮機は、ローラ、ベーン、旋回スクロール等の滑らせながら動く摺動部や軸受等を有し、これらの摩擦を低減させるため、冷凍機油が供給される。 Rotary compressors and scroll compressors, which have a small number of parts, are often used as compressors installed in outdoor units of air conditioners. Rotary compressors and scroll compressors have sliding parts such as rollers, vanes, and orbiting scrolls that move while sliding, bearings, and the like, and refrigerating machine oil is supplied to reduce friction therebetween.

冷凍機油は、耐用年数が10~20年と長期間にわたって使用されるため、析出物を生じさせず、低温でも固まらず、適切な粘度を維持し、通電状態のモータコイルからの漏電を防止できるものでなければならない。冷凍機油は、このような多くの条件を満たすものでなければならないことから、高価な部品の1つである。 Refrigerating machine oil is used over a long period of time, with a service life of 10 to 20 years, so it does not form precipitates, does not solidify even at low temperatures, maintains an appropriate viscosity, and can prevent electrical leakage from motor coils that are energized. It has to be something. Refrigerating machine oil is one of the expensive parts because it must satisfy many of these conditions.

圧縮機は、密閉容器内に、ローラやベーン、旋回スクロール等を有する圧縮機構と、モータコイル等を有する電動機とを有し、密閉容器内の底部の油溜りに冷凍機油が貯留される。密閉容器の油溜りの部分は、底チャンバと呼ばれ、支持部材により圧縮機を支持するために、底チャンバの底の外縁部分が平坦にされた形状のものが存在している(例えば、特許文献1参照)。 A compressor includes a compression mechanism having rollers, vanes, an orbiting scroll, etc., and an electric motor having a motor coil, etc., in a closed container, and refrigerating machine oil is stored in an oil reservoir at the bottom of the closed container. The oil sump portion of the sealed container is called a bottom chamber, and some bottom chambers have a flattened outer edge to support the compressor with a support member (for example, as disclosed in patents). (See Reference 1).

特開2004-308968号公報Japanese Patent Application Publication No. 2004-308968

従来の圧縮機の密閉容器の底部は、圧縮機を支持しやすい形状に成形したものであって、高価な部品の1つである冷凍機油の量を低減させるものではない。また、このような形状では、冷凍機油の吸込口がある中央部に、ゴミ等の不純物が集まりやすくなり、圧縮機の信頼性が低下してしまう。 The bottom of the conventional airtight container of a compressor is shaped to easily support the compressor, and does not reduce the amount of refrigerating machine oil, which is one of the expensive parts. In addition, with such a shape, impurities such as dust tend to collect in the central portion where the refrigerating machine oil suction port is located, reducing the reliability of the compressor.

そこで、冷凍機油の量を低減しつつも、高い信頼性を有する圧縮機、室外機、空気調和装置の提供が望まれている。 Therefore, it is desired to provide a compressor, an outdoor unit, and an air conditioner that have high reliability while reducing the amount of refrigerating machine oil.

本発明は、上記課題に鑑み、流体を圧縮する圧縮機であって、
流体が収容される容器と、
容器内に配置される回転軸と、
容器内に配置され、回転軸の回転により流体を圧縮する圧縮機構と
を含み、
容器は、圧縮機構の下方の底部に回転軸の一端から吸い上げられる油が貯留され、
底部は、回転軸の一端と対向する底面の中央部に、上方へ突出するように設けられる障壁部と、障壁部の外周側に、容器の内側に向けて凸形状となるように形成される窪み部とを有する、圧縮機が提供される。
In view of the above problems, the present invention is a compressor for compressing fluid, comprising:
a container in which a fluid is contained;
a rotating shaft disposed within the container;
a compression mechanism disposed in the container and compressing the fluid by rotation of a rotating shaft;
The container stores oil sucked up from one end of the rotating shaft at the bottom below the compression mechanism.
The bottom part includes a barrier part provided in a central part of the bottom face facing one end of the rotating shaft so as to protrude upward, and an outer circumferential side of the barrier part formed to have a convex shape toward the inside of the container. A compressor is provided having a recessed portion.

本発明によれば、冷凍機油の量を低減しつつも、高い信頼性を有する圧縮機、室外機、空気調和装置の提供が可能となる。 According to the present invention, it is possible to provide a compressor, an outdoor unit, and an air conditioner that have high reliability while reducing the amount of refrigerating machine oil.

空気調和装置の構成例を示した図。The figure which showed the example of a structure of an air conditioner. 室外機の構成例を示した図。The figure which showed the example of a structure of an outdoor unit. 圧縮機の構成例を示した図。The figure which showed the example of a structure of a compressor. 圧縮機構の構成例を示した図。The figure which showed the example of a structure of a compression mechanism. 圧縮機内の冷凍機油の流れを例示した図。The figure which illustrated the flow of the refrigerating machine oil in a compressor. 従来の底チャンバの形状を例示した図。The figure which illustrated the shape of the conventional bottom chamber. 本圧縮機の底チャンバの第1の例を示した図。The figure which showed the 1st example of the bottom chamber of this compressor. 本圧縮機の底チャンバの第2の例を示した図。The figure which showed the 2nd example of the bottom chamber of this compressor. 図7に示す底チャンバを、ケースに取り付けた例を示した図。FIG. 8 is a diagram showing an example in which the bottom chamber shown in FIG. 7 is attached to a case. 本圧縮機の底チャンバの第3の例を示した図。The figure which showed the 3rd example of the bottom chamber of this compressor.

本実施形態に係る圧縮機は、流体を圧縮する装置として、単体で使用し、また、いかなる装置やシステムにも搭載することができるが、ここでは、空気調和装置の室外機に搭載するものとして説明する。 The compressor according to this embodiment can be used alone as a device for compressing fluid, or can be installed in any device or system, but here, it will be used as a device to be installed in an outdoor unit of an air conditioner. explain.

図1は、空気調和装置の構成例を示した図である。空気調和装置は、同一空間内に設けられる1以上の室内機と、その空間の外部に設置される1以上の室外機とを含む。図1に例示した装置は、室内に設置された1台の室内機10と、室外に設置された1台の室外機11とから構成されている。 FIG. 1 is a diagram showing an example of the configuration of an air conditioner. An air conditioner includes one or more indoor units installed in the same space and one or more outdoor units installed outside the space. The device illustrated in FIG. 1 includes one indoor unit 10 installed indoors and one outdoor unit 11 installed outdoors.

室内機10と室外機11は、2本の配管12により接続され、配管12内を冷媒が循環するように構成されている。圧縮機は、室外機11に搭載され、この冷媒を循環させるために使用される。室内機10は、室内の空気を吸い込み、循環する冷媒により室内の空気を冷却または暖め、冷却または暖めた空気を吹き出す。これを繰り返すことにより室内を冷やし、または暖める。室外機11は、冷媒を室内機へ供給するとともに、室内機から回収し、加熱または冷却して、再び室内機10へ供給する。 The indoor unit 10 and the outdoor unit 11 are connected by two pipes 12, and the refrigerant is configured to circulate within the pipes 12. The compressor is mounted on the outdoor unit 11 and is used to circulate this refrigerant. The indoor unit 10 sucks indoor air, cools or warms the indoor air using a circulating refrigerant, and blows out the cooled or warmed air. By repeating this, the room can be cooled or warmed. The outdoor unit 11 supplies the refrigerant to the indoor unit, collects it from the indoor unit, heats or cools it, and supplies it to the indoor unit 10 again.

図2は、室外機11の構成例を示した図である。室外機11は、外気を吸い込み、吹き出すファン20と、吸い込んだ空気を温め、または冷却する熱交換器21と、室内機10と室外機11との間で冷媒を循環する圧縮機22と、室外機11を制御する制御基板23と、膨張弁24とを備えている。また、室外機11は、外気温を計測する温度センサ、圧縮機22に供給する電流を計測するセンサ、冷媒の流量を計測するセンサ、冷媒の圧力を計測するセンサ、四方弁、アキュムレータ等を備えている。 FIG. 2 is a diagram showing an example of the configuration of the outdoor unit 11. The outdoor unit 11 includes a fan 20 that sucks in and blows outside air, a heat exchanger 21 that warms or cools the sucked air, a compressor 22 that circulates refrigerant between the indoor unit 10 and the outdoor unit 11, and an outdoor It includes a control board 23 for controlling the machine 11 and an expansion valve 24. The outdoor unit 11 also includes a temperature sensor that measures the outside temperature, a sensor that measures the current supplied to the compressor 22, a sensor that measures the flow rate of refrigerant, a sensor that measures the pressure of the refrigerant, a four-way valve, an accumulator, and the like. ing.

制御基板23は、室内機10からの指示を受けて、室外機11を運転または停止し、通知された情報に基づき、ファン20や圧縮機22を制御して室内温度が設定温度になるように運転負荷を変え、室内機10へ供給する冷媒の温度や冷媒を循環する流量等を調整する。膨張弁24は、圧縮された冷媒を膨張させ、冷媒の温度を下げるために使用される。 The control board 23 receives instructions from the indoor unit 10, operates or stops the outdoor unit 11, and controls the fan 20 and compressor 22 based on the notified information so that the indoor temperature reaches the set temperature. The operating load is changed to adjust the temperature of the refrigerant supplied to the indoor unit 10, the flow rate of the refrigerant, etc. The expansion valve 24 is used to expand the compressed refrigerant and lower the temperature of the refrigerant.

ここで、運転中の空気調和装置における室外機11の動作を簡単に説明しておく。室外機11の運転が開始されると、圧縮機22が起動され、室内機10と室外機11との間の冷媒の循環が開始される。 Here, the operation of the outdoor unit 11 in the air conditioner during operation will be briefly explained. When the outdoor unit 11 starts operating, the compressor 22 is started, and the circulation of refrigerant between the indoor unit 10 and the outdoor unit 11 is started.

空気調和装置を冷房に使用する場合、圧縮機22が冷媒を圧縮し、吐出すると、高温、高圧の冷媒は、熱交換器21内に供給される。冷媒は、ファン20により吸い込まれた外気と熱交換され、冷却される。冷却後、冷媒は、膨張弁24により膨張され、温度が下がり、配管12を通して室外機11から室内機10へ送られる。 When the air conditioner is used for cooling, when the compressor 22 compresses and discharges refrigerant, the high temperature and high pressure refrigerant is supplied into the heat exchanger 21 . The refrigerant exchanges heat with the outside air sucked in by the fan 20 and is cooled. After cooling, the refrigerant is expanded by the expansion valve 24 to lower its temperature and is sent from the outdoor unit 11 to the indoor unit 10 through the pipe 12.

室内機10は、ファンと、熱交換器と、制御基板とを備えており、熱交換器内に冷媒が供給され、ファンにより吸い込まれた室内の空気と熱交換される。空気は、冷媒により冷却され、室内へ吹き出される。 The indoor unit 10 includes a fan, a heat exchanger, and a control board, and a refrigerant is supplied into the heat exchanger and exchanges heat with indoor air drawn in by the fan. The air is cooled by the refrigerant and blown into the room.

冷媒は、配管12を通り、圧縮機22へ戻される。この動作を繰り返し、吹き出された冷たい空気で室内を設定温度になるように冷却していく。 The refrigerant passes through the pipe 12 and is returned to the compressor 22. This action is repeated, and the cold air blown out cools the room to the set temperature.

空気調和装置を暖房に使用する場合、冷房の場合と逆の動作となり、圧縮機22が冷媒を断熱圧縮し、高温、高圧の状態にして吐出すると、熱交換器21ではなく、配管12を通して室内機10へ送られる。室内機10では、熱交換器内に冷媒が供給され、ファンにより吸い込まれた室内の空気と熱交換される。空気は、冷媒により温められ、室内へ吹き出される。 When the air conditioner is used for heating, the operation is the opposite of that for cooling, and when the compressor 22 adiabatically compresses the refrigerant and discharges it in a high temperature and high pressure state, it passes through the pipe 12 instead of the heat exchanger 21 into the room. Sent to machine 10. In the indoor unit 10, a refrigerant is supplied into a heat exchanger, and heat is exchanged with indoor air sucked in by a fan. The air is heated by the refrigerant and blown into the room.

冷媒は、空気に熱を与えて冷却され、配管12を通して室外機11へ送られる。室外機11では、膨張弁24により凝縮した高圧の冷媒を膨張させる。これにより、冷媒は、低温、低圧の状態になる。その後、熱交換器21内に供給され、ファン20により吸い込まれた外気と熱交換された後、圧縮機22へ戻される。この動作を繰り返し、吹き出された温かい空気で室内を設定温度になるように暖めていく。 The refrigerant cools the air by applying heat to the air, and is sent to the outdoor unit 11 through the pipe 12. In the outdoor unit 11, the expansion valve 24 expands the condensed high-pressure refrigerant. This brings the refrigerant into a low temperature and low pressure state. Thereafter, the air is supplied into the heat exchanger 21, where it exchanges heat with the outside air sucked in by the fan 20, and then returned to the compressor 22. This action is repeated, and the warm air blown out warms the room to the set temperature.

図3は、圧縮機22の構成例を示した図である。圧縮機22は、部品数が少ないロータリ圧縮機であり、密閉容器30と、回転軸40と、電動機50と、圧縮機構60とを含んで構成される。ここでは、ローラ圧縮機を例に挙げて説明するが、圧縮機は、同じく密閉容器と、回転軸と、電動機と、圧縮機構とを含むスクロール圧縮機であってもよい。 FIG. 3 is a diagram showing an example of the configuration of the compressor 22. As shown in FIG. The compressor 22 is a rotary compressor with a small number of parts, and includes a closed container 30, a rotating shaft 40, an electric motor 50, and a compression mechanism 60. Although a roller compressor will be described as an example here, the compressor may also be a scroll compressor that similarly includes a closed container, a rotating shaft, an electric motor, and a compression mechanism.

密閉容器30は、回転軸40と、電動機50と、圧縮機構60とを収容し、容器内には、冷媒が収容される。密閉容器30は、回転軸40、電動機50、圧縮機構60の周囲を包囲する中空のケース(チャンバ)30aと、ケース30aの上部を閉鎖し、ケース30aに溶接される蓋チャンバ30bと、ケース30aの下部を閉鎖し、ケース30aに溶接される底チャンバ30cとから構成される。 The airtight container 30 accommodates a rotating shaft 40, an electric motor 50, and a compression mechanism 60, and a refrigerant is accommodated within the container. The airtight container 30 includes a hollow case (chamber) 30a that surrounds the rotating shaft 40, the electric motor 50, and the compression mechanism 60, a lid chamber 30b that closes the upper part of the case 30a and is welded to the case 30a, and the case 30a. and a bottom chamber 30c that is welded to the case 30a.

回転軸40は、密閉容器30内の中央部に配置される。電動機50は、圧縮機構60を、回転軸40を介して回転駆動させるように構成され、固定子51と回転子52とを含む。 The rotating shaft 40 is arranged at the center inside the closed container 30. The electric motor 50 is configured to rotationally drive the compression mechanism 60 via the rotating shaft 40, and includes a stator 51 and a rotor 52.

固定子51は、鉄心やコイル等で構成され、回転子52は、永久磁石を含み、固定子51のコイルに電流を流すことで電磁石を形成し、電流の向きを変えて、回転子52を回転させる。なお、これは一例であり、固定子51が永久磁石を含み、回転子52が鉄心やコイル等で構成されていてもよい。 The stator 51 is composed of an iron core, coils, etc., and the rotor 52 includes a permanent magnet. By passing a current through the coil of the stator 51, an electromagnet is formed, and by changing the direction of the current, the rotor 52 is rotated. Rotate. Note that this is just an example, and the stator 51 may include a permanent magnet, and the rotor 52 may be composed of an iron core, a coil, or the like.

圧縮機構60は、電動機50の下方に離間して配置される。電動機50と圧縮機構60との間の空間が一次空間31とされ、電動機50の上部の空間が二次空間32とされる。圧縮機構60の下方には、圧縮機構60の各摺動箇所の潤滑や後述する圧縮室のシール等に使用される冷凍機油が貯留されている。 Compression mechanism 60 is spaced apart below electric motor 50 . The space between the electric motor 50 and the compression mechanism 60 is a primary space 31, and the space above the electric motor 50 is a secondary space 32. Refrigerating machine oil is stored below the compression mechanism 60, which is used for lubricating each sliding portion of the compression mechanism 60, sealing a compression chamber, etc., which will be described later.

圧縮機22は、密閉容器30の外部に、気液分離器33を備える。気液分離器33は、密閉容器30と接続され、液冷媒を分離し、ガス冷媒のみを密閉容器30内へ供給する。 The compressor 22 includes a gas-liquid separator 33 outside the closed container 30. The gas-liquid separator 33 is connected to the closed container 30, separates the liquid refrigerant, and supplies only the gas refrigerant into the closed container 30.

密閉容器30内に供給された冷媒は、圧縮機構60へ入り、圧縮され、高温、高圧の冷媒となり、一次空間31へ排出される。固定子51と回転子52との間や、固定子51と密閉容器30との間には隙間があり、冷媒は、その隙間を通して二次空間32へと流れる。密閉容器30には、冷媒を吐出するための吐出管34が設けられており、二次空間32へと流れた冷媒は、吐出管34を通して外部へと吐出される。 The refrigerant supplied into the closed container 30 enters the compression mechanism 60, is compressed, becomes a high temperature, high pressure refrigerant, and is discharged into the primary space 31. There are gaps between the stator 51 and the rotor 52 and between the stator 51 and the sealed container 30, and the refrigerant flows into the secondary space 32 through the gaps. The airtight container 30 is provided with a discharge pipe 34 for discharging the refrigerant, and the refrigerant that has flowed into the secondary space 32 is discharged to the outside through the discharge pipe 34.

図4は、圧縮機構60の構成例を示した図である。圧縮機構60は、冷媒が流入する流入口61と、冷媒を排出する排出口(図示せず)と、流入口61から流入した冷媒を圧縮するための圧縮室62とを有する容器(シリンダ)63を含む。実際には、圧縮室62は、シリンダ63の上下を、回転軸40に回転可能に支持する2つの軸受により閉鎖された密閉空間とされる。 FIG. 4 is a diagram showing an example of the configuration of the compression mechanism 60. The compression mechanism 60 includes a container (cylinder) 63 having an inlet 61 through which refrigerant flows, an outlet (not shown) through which the refrigerant is discharged, and a compression chamber 62 for compressing the refrigerant that has flowed in from the inlet 61. including. In reality, the compression chamber 62 is an airtight space closed by two bearings that rotatably support the upper and lower portions of the cylinder 63 on the rotating shaft 40 .

また、圧縮機構60は、圧縮室62の中心から偏心して配置され、圧縮室62の内周面に接触しながら圧縮室62内を回転するローラ64を含む。ローラ64は、回転軸40に設けられ、回転軸40の回転に伴って回転軸40の周りを偏心した状態で回転し、一部がシリンダ63の内面と常に僅かな隙間を有する状態を保持する。 Furthermore, the compression mechanism 60 includes a roller 64 that is arranged eccentrically from the center of the compression chamber 62 and rotates within the compression chamber 62 while contacting the inner peripheral surface of the compression chamber 62 . The roller 64 is provided on the rotating shaft 40, rotates eccentrically around the rotating shaft 40 as the rotating shaft 40 rotates, and maintains a state in which a portion thereof always has a slight gap with the inner surface of the cylinder 63. .

圧縮機構60は、ローラ64を有する圧縮室62の内部空間を2つの空間に仕切るベーン65を含む。ベーン65は、圧縮機の起動時、ベーン65の一端である背面からバネ66等の弾性体により押圧され、他端がローラ64の周部側面に当接し、押し付けられた状態となっている。圧縮機の起動後、ベーン65は、圧縮室62内と圧縮室62外(圧縮室62の外部であって密閉容器30内)の差圧によって背面が押圧され、他端がローラ64の周部側面に当接し、押し付けられた状態となる。ここでは、弾性体をバネ66として説明するが、これに限られるものではない。 The compression mechanism 60 includes a vane 65 that partitions the interior space of the compression chamber 62 having the roller 64 into two spaces. When the compressor is started, the vane 65 is pressed by an elastic body such as a spring 66 from the back side, which is one end of the vane 65, and the other end is in contact with and pressed against the peripheral side surface of the roller 64. After the compressor is started, the back side of the vane 65 is pressed by the differential pressure between the inside of the compression chamber 62 and the outside of the compression chamber 62 (outside the compression chamber 62 and inside the closed container 30), and the other end is pressed against the circumference of the roller 64. It comes into contact with the side and is pressed against it. Here, the elastic body will be explained as a spring 66, but the elastic body is not limited to this.

ローラ64の回転により流入口61が開くと、低圧の冷媒が流入口61から流入し、圧縮室62のベーン65で仕切られた1つの空間(例えば空間67)を満たす。ローラ64がさらに回転すると、空間67の体積が小さくなり、冷媒が圧縮される。ローラ64が回転し、高圧になった冷媒により排出口が開くと、冷媒が排出口から排出される。冷媒が圧縮されている間、流入口61が開き、もう1つの空間68へ低圧の冷媒が入り、空間68を満たす。そして、同じようにして圧縮され、排出口から排出される。このようにしてロータリ圧縮機は、冷媒の取り入れと圧縮を同時に行う。 When the inlet 61 opens due to rotation of the roller 64, low-pressure refrigerant flows in from the inlet 61 and fills one space (for example, the space 67) of the compression chamber 62 partitioned by the vane 65. When the roller 64 rotates further, the volume of the space 67 becomes smaller and the refrigerant is compressed. When the roller 64 rotates and the discharge port is opened by the high-pressure refrigerant, the refrigerant is discharged from the discharge port. While the refrigerant is being compressed, the inlet 61 opens and low pressure refrigerant enters another space 68 and fills the space 68. It is then compressed in the same way and discharged from the outlet. In this way, the rotary compressor simultaneously takes in and compresses refrigerant.

シリンダ63は、圧縮室62に連続し、ベーン65が嵌挿され、摺動される嵌挿部69と、バネ66を取り付けるための取付穴(スプリング穴)70とを有する。 The cylinder 63 is continuous with the compression chamber 62 and has a fitting part 69 into which the vane 65 is fitted and slid, and a mounting hole (spring hole) 70 into which the spring 66 is mounted.

バネ66は、線状部材を螺旋状に形成したコイルバネで、長手方向の一方から見ると、リング状となっている。スプリング穴70内には、ベーン65の背面側が突出しており、ベーン65の背面とバネ66の先端が当接し、バネ66が収縮した形で固定される。 The spring 66 is a coil spring formed by forming a linear member into a spiral shape, and has a ring shape when viewed from one side in the longitudinal direction. The back side of the vane 65 protrudes into the spring hole 70, and the back side of the vane 65 and the tip of the spring 66 abut, and the spring 66 is fixed in a contracted state.

次に、図5を参照して、冷凍機油の流れについて説明する。冷凍機油80は、密閉容器30内の底部であって、圧縮機構60の下側に貯留される。電動機50により回転軸40が回転すると、それに伴ってローラ64が回転し、冷媒が圧縮される。回転軸40の内部には、螺旋構造を有するパドル(油板)が設けられ、回転軸40の一端が下軸受71の一部とともに冷凍機油80に浸漬される。冷凍機油80の油面81が、破線で示すように、この例では下軸受71の高さ方向のほぼ中間の位置となっている。下軸受71は、上軸受72とともに使用され、シリンダ63を挟み、シリンダ63を回転軸40の所定位置に固定する。 Next, the flow of refrigerating machine oil will be explained with reference to FIG. Refrigerating machine oil 80 is stored at the bottom of airtight container 30 and below compression mechanism 60 . When the rotating shaft 40 is rotated by the electric motor 50, the roller 64 rotates accordingly, and the refrigerant is compressed. A paddle (oil plate) having a spiral structure is provided inside the rotating shaft 40, and one end of the rotating shaft 40, together with a portion of the lower bearing 71, is immersed in refrigerating machine oil 80. In this example, the oil level 81 of the refrigerating machine oil 80 is located at approximately the middle of the lower bearing 71 in the height direction, as shown by the broken line. The lower bearing 71 is used together with the upper bearing 72 to sandwich the cylinder 63 and fix the cylinder 63 at a predetermined position on the rotating shaft 40 .

回転軸40の回転によりパドル41が回転し、冷凍機油80がパドル41によって吸い上げられる。回転軸40には、シリンダ63へと連通する穴が設けられており、その穴を通して破線で示すシリンダ63内へ冷凍機油80が供給される。具体的には、冷凍機油80は、シリンダ63とローラ64との間、シリンダ63とベーン65との間へ供給され、さらに、回転軸40と下軸受71との間、回転軸40と上軸受72との間にも供給される。 The rotation of the rotating shaft 40 causes the paddle 41 to rotate, and the refrigerating machine oil 80 is sucked up by the paddle 41. The rotating shaft 40 is provided with a hole that communicates with the cylinder 63, and refrigerating machine oil 80 is supplied into the cylinder 63 indicated by a broken line through the hole. Specifically, the refrigerating machine oil 80 is supplied between the cylinder 63 and the roller 64, between the cylinder 63 and the vane 65, and further between the rotating shaft 40 and the lower bearing 71, and between the rotating shaft 40 and the upper bearing. It is also supplied between 72 and 72.

冷凍機油80は、回転軸40と下軸受71との間に供給されると、その間を上側から下側へと流れ、油溜りへ戻る。また、冷凍機油80は、シリンダ63とローラ64との間、シリンダ63とベーン65との間に供給されると、一部が冷媒とともに冷媒系統内を循環し、残りの多くがシリンダ63に設けられた回収穴(図示せず)から落下し、油溜りへ戻る。 When refrigerating machine oil 80 is supplied between rotary shaft 40 and lower bearing 71, it flows between them from the upper side to the lower side and returns to the oil reservoir. Further, when the refrigerating machine oil 80 is supplied between the cylinder 63 and the roller 64 and between the cylinder 63 and the vane 65, a part of the refrigerating machine oil 80 circulates in the refrigerant system together with the refrigerant, and most of the remaining part is supplied to the cylinder 63. The oil falls through the collected collection hole (not shown) and returns to the oil sump.

冷凍機油80は、回転軸40と上軸受72との間に供給されると、その間を下側から上側へと流れ、上軸受72の頂部から回転軸40の遠心力によって径方向へと飛ばされる。飛ばされた冷凍機油80の一部は、圧縮機構60により圧縮された冷媒とともに冷媒系統内を循環する。残りの多くは、上軸受72の外縁部に設けられた回収穴(図示せず)を通して落下し、油溜りへ戻る。 When the refrigerating machine oil 80 is supplied between the rotating shaft 40 and the upper bearing 72, it flows from the lower side to the upper side between them, and is blown away from the top of the upper bearing 72 in the radial direction by the centrifugal force of the rotating shaft 40. . A part of the blown refrigerating machine oil 80 circulates within the refrigerant system together with the refrigerant compressed by the compression mechanism 60. Most of the remaining oil falls through a collection hole (not shown) provided at the outer edge of the upper bearing 72 and returns to the oil reservoir.

ここで、図6を参照して、従来の圧縮機で採用される底チャンバの形状について説明する。従来の底チャンバは、底面が平坦になっている。これは、圧縮機を縦置きで設置する場合、底面が平坦でないと、安定性がなく、すぐに倒れてしまうからである。 Here, with reference to FIG. 6, the shape of the bottom chamber employed in a conventional compressor will be described. Conventional bottom chambers have a flat bottom surface. This is because when installing the compressor vertically, if the bottom surface is not flat, it will not be stable and will easily fall over.

このように底面を平坦な構造にすると、冷凍機油80が径方向に広がり、所定量を入れても、油面が低くなる。したがって、所定高さの油面にする場合、相当の量の冷凍機油80が必要になる。 When the bottom surface is made flat in this manner, the refrigerating machine oil 80 spreads in the radial direction, and even if a predetermined amount is poured, the oil level becomes low. Therefore, a considerable amount of refrigerating machine oil 80 is required to maintain the oil level at a predetermined height.

本圧縮機に採用する底チャンバの形状を図7に例示する。図7(a)は、底チャンバ30cの平面図で、図7(b)は、底チャンバ30cの側面図で、図7(c)は、図7(a)において切断線A-Aで切断した断面図である。 The shape of the bottom chamber employed in this compressor is illustrated in FIG. 7(a) is a plan view of the bottom chamber 30c, FIG. 7(b) is a side view of the bottom chamber 30c, and FIG. 7(c) is a cut along the cutting line AA in FIG. 7(a). FIG.

底チャンバ30cは、回転軸40の一端、すなわち吸込口がある側と対向する底面の中央部に、上方へ突出するように設けられる障壁部35と、障壁部35の外周側に、密閉容器30の内側に向けて凸形状となるように形成される窪み部36とを有する。 The bottom chamber 30c includes a barrier portion 35 provided at the center of the bottom surface opposite to one end of the rotating shaft 40, that is, the side where the suction port is located, so as to protrude upward, and an airtight container 30 on the outer peripheral side of the barrier portion 35. A recessed portion 36 is formed to have a convex shape toward the inner side of the recessed portion 36 .

障壁部35は、回転軸40の吸込口に対向する位置に、先端が円弧状の棒状部材を押し込むようにして底チャンバ30cに外側から窪みを設けることにより、上方へ突出した山状に形成されている。 The barrier portion 35 is formed into an upwardly protruding mountain shape by providing a depression from the outside in the bottom chamber 30c by pushing a rod-like member having an arc-shaped tip into a position facing the suction port of the rotating shaft 40. ing.

窪み部36は、障壁部35の外周側の部分を、一定の幅を有するリング状に上側へ向けて押し込むようにして底チャンバ30cに段差を設けることにより、密閉容器30の内側に向けて凸となる階段状に形成されている。図7(c)に示す例では、階段の段数が1段の窪み部36が形成されている。この階段の奥行きの長さ(径方向の長さ)は、階段の角部が圧縮機構60の下軸受71等に当接せず、底チャンバ30cの中央部の上記障壁部35を除いた平坦な面により圧縮機22が自立できる長さとして決定することができる。 The recessed portion 36 is formed to protrude toward the inside of the airtight container 30 by pushing the outer peripheral side of the barrier portion 35 upward into a ring shape having a constant width, thereby providing a step in the bottom chamber 30c. It is shaped like a staircase. In the example shown in FIG. 7(c), a recessed portion 36 having one step of stairs is formed. The depth length (radial length) of the stairs is such that the corners of the stairs do not come into contact with the lower bearing 71 etc. of the compression mechanism 60, and the stairs are flat except for the barrier part 35 in the center of the bottom chamber 30c. The length can be determined so that the compressor 22 can stand on its own.

なお、窪み部36は、図7(c)に示すように階段の段数が1段に限られるものではなく、図8に示すように3段等の2段以上の多段に形成されていてもよい。段数は、上側に配置される圧縮機構60の形状に合わせて決定することができる。 Note that the number of steps in the recessed portion 36 is not limited to one as shown in FIG. good. The number of stages can be determined according to the shape of the compression mechanism 60 arranged on the upper side.

図9を参照して、障壁部35および窪み部36について詳細に説明する。窪み部36は、貯留される冷凍機油80のデッドスペース82となる部分に形成され、デッドスペース82を削減する。デッドスペース82は、冷凍機油80が貯留される密閉容器30内のスペースにおいて、回転軸40に設けられた冷凍機油80の吸込口から径方向へ一定距離離れ、冷凍機油80の吸込みに影響を及ぼさない位置にあるスペースである。このようにデッドスペース82を削減することで、冷凍機油80の量を低減することができ、コスト低減を図ることができる。なお、窪み部36の階段の高さ(密閉容器30の内側に向けて凸形状としたときの密閉容器30の外側の底面からその凸形状の頂部までの距離)を高くすることで、デッドスペース82をさらに小さくし、冷凍機油80の量をさらに低減することができる。 With reference to FIG. 9, the barrier portion 35 and the recessed portion 36 will be described in detail. The recessed portion 36 is formed in a portion that becomes a dead space 82 of the stored refrigerating machine oil 80, and reduces the dead space 82. The dead space 82 is a space in the airtight container 30 where the refrigerating machine oil 80 is stored, and is spaced a certain distance in the radial direction from the suction port of the refrigerating machine oil 80 provided on the rotating shaft 40, and does not affect the suction of the refrigerating machine oil 80. It is a space in a position where there is no space. By reducing the dead space 82 in this way, the amount of refrigerating machine oil 80 can be reduced, and costs can be reduced. Note that dead space can be reduced by increasing the height of the stairs of the recessed portion 36 (distance from the bottom surface of the outside of the sealed container 30 to the top of the convex shape when the sealed container 30 has a convex shape toward the inside of the closed container 30). 82 can be further made smaller, and the amount of refrigerating machine oil 80 can be further reduced.

窪み部36を設けることでデッドスペース82を削減することができるが、外周側に窪み部36が設けられることから、吸込口に対向する位置にある底面の中央部の冷凍機油80の深さが、外周側に比較して深くなる。すると、冷凍機油80中のゴミ等の不純物が、底面の中央部に集まってくる。中央部には、冷凍機油80の吸込口があることから、冷凍機油80とともに不純物も吸い上げられることになる。冷凍機油80は、摩擦を低減する潤滑材として使用されるものであるが、不純物は、その摩擦を増加させる方向に作用し、圧縮機の信頼性を低下させる。 Although the dead space 82 can be reduced by providing the recess 36, since the recess 36 is provided on the outer circumferential side, the depth of the refrigerating machine oil 80 in the center of the bottom facing the suction port is reduced. , is deeper than the outer circumferential side. Then, impurities such as dust in the refrigerating machine oil 80 gather at the center of the bottom surface. Since there is a suction port for the refrigerating machine oil 80 in the center, impurities are also sucked up together with the refrigerating machine oil 80. Refrigerating machine oil 80 is used as a lubricant that reduces friction, but impurities act to increase the friction and reduce the reliability of the compressor.

障壁部35は、中央部に集まってきた不純物をその場に留め、冷凍機油80のみを吸込口へ向けて流すように作用する。これは、不純物が冷凍機油80に比較して比重が大きく、吸込口の真下には障壁部35の山の部分しかなく、その山の麓に蓄積される不純物は吸込口から離れているからである。 The barrier portion 35 acts to keep impurities that have gathered in the center in place and to allow only the refrigerating machine oil 80 to flow toward the suction port. This is because the impurities have a higher specific gravity than the refrigerating machine oil 80, and there is only a mountain part of the barrier part 35 directly below the suction port, and the impurities that accumulate at the foot of the mountain are far from the suction port. be.

このように窪み部36に加えて、障壁部35を設けることで、冷凍機油80の量を低減しつつも、高い信頼性を有する圧縮機を提供することが可能となる。したがって、この圧縮機を搭載した室外機や、その室外機を含む空気調和装置も提供することが可能となる。 By providing the barrier portion 35 in addition to the recessed portion 36 in this way, it is possible to provide a compressor with high reliability while reducing the amount of refrigerating machine oil 80. Therefore, it is possible to provide an outdoor unit equipped with this compressor and an air conditioner including the outdoor unit.

底チャンバ30cの全高Bに対する窪み部36の高さCの割合(比率)は、どれだけ深い窪みであるかを示す指標である。比率が0の場合、障壁部35の部分を除き、底面が平坦で、窪みを形成していないことを示し、比率が1の場合、全高Bの高さまで窪みを形成していることを示す。比率は、高いほどデッドスペース82が小さくなり、冷凍機油80の量を低減することができるので望ましい。なお、比率は0.1(10%)や0.2(20%)では冷凍機油80の量を充分に低減できているとは言えないことから、0.3(30%)以上であることが望ましい。 The ratio of the height C of the recess 36 to the total height B of the bottom chamber 30c is an index indicating how deep the recess is. When the ratio is 0, it indicates that the bottom surface is flat except for the barrier portion 35 and no depression is formed, and when the ratio is 1, it indicates that the depression is formed up to the total height B. The higher the ratio is, the smaller the dead space 82 becomes and the amount of refrigerating machine oil 80 can be reduced, so it is desirable. In addition, the ratio should be 0.3 (30%) or more, as it cannot be said that the amount of refrigeration oil 80 can be sufficiently reduced with 0.1 (10%) or 0.2 (20%). is desirable.

また、山状に形成された障壁部35は、その麓の径が最大の径である。障壁部35は、山の中心が回転軸40の中心に一致するように形成される。吸込口から山の麓に蓄積される不純物を吸い込まないようにするため、障壁部35の最大径は、少なくとも吸込口の径より大きくされ、好ましくは回転軸40の外径より大きくされる。 Moreover, the diameter of the mountain-shaped barrier portion 35 is the largest at the foot of the barrier portion 35 . The barrier portion 35 is formed such that the center of the mountain coincides with the center of the rotating shaft 40 . In order to prevent impurities accumulated at the foot of the mountain from being sucked in from the suction port, the maximum diameter of the barrier portion 35 is made at least larger than the diameter of the suction port, and preferably larger than the outer diameter of the rotating shaft 40.

図10は、底チャンバ30cの形状の別の例を示した図である。底チャンバ30cの障壁部35は、円形の皿状物の、底チャンバ30cの底面に対して斜め上方に延びる外縁部35aとされている。皿状物は、底チャンバ30cの内側の底面の中央部に、接着や溶接等の方法により取り付けられている。 FIG. 10 is a diagram showing another example of the shape of the bottom chamber 30c. The barrier portion 35 of the bottom chamber 30c is an outer edge portion 35a of a circular dish-like object that extends diagonally upward with respect to the bottom surface of the bottom chamber 30c. The dish-shaped object is attached to the center of the inner bottom surface of the bottom chamber 30c by a method such as adhesion or welding.

不純物は、窪み部36の階段を落ちるように中央部に集まってくるが、その反対方向である中央部から外周側へ斜め上方に延びる外縁部35aによって皿状物上へは移動することができず、外縁部35aの下側に蓄積される。このような構造では、不純物を冷凍機油80とともに吸い上げようとしても、外縁部35aが邪魔になり、吸い上げることができない。このため、図7に示した構造に比較して、不純物の吸込みをより効果的に抑止することができる。 The impurities gather in the center part as if falling down the stairs of the recessed part 36, but cannot move onto the dish-shaped object by the outer edge part 35a extending diagonally upward from the center part to the outer peripheral side in the opposite direction. First, it is accumulated on the lower side of the outer edge portion 35a. In such a structure, even if an attempt is made to suck up impurities together with the refrigerating machine oil 80, the outer edge portion 35a becomes an obstacle and the impurities cannot be sucked up. Therefore, compared to the structure shown in FIG. 7, suction of impurities can be more effectively suppressed.

底面に対する外縁部35aが延びる方向の角度は、不純物の移動が外縁部35aにより適切に抑制できる角度であればいかなる角度であってもよく、例えば15°~90°とすることができる。 The angle of the direction in which the outer edge 35a extends with respect to the bottom surface may be any angle as long as the movement of impurities can be appropriately suppressed by the outer edge 35a, and may be, for example, 15° to 90°.

図10に示す底チャンバ30cは、全高Bが、図9に示した底チャンバ30cより高くなっているが、これは、圧縮機のサイズの違い等によるものである。図10に示す例では、多くの量の冷凍機油80が必要であるため、底チャンバ30cの全高Bが高くなっている。 The total height B of the bottom chamber 30c shown in FIG. 10 is higher than that of the bottom chamber 30c shown in FIG. 9, but this is due to the difference in the size of the compressor. In the example shown in FIG. 10, since a large amount of refrigerating machine oil 80 is required, the total height B of the bottom chamber 30c is high.

これまで本発明の圧縮機、室外機および空気調和装置について上述した実施形態をもって詳細に説明してきたが、本発明は、上述した実施形態に限定されるものではなく、他の実施形態や、追加、変更、削除など、当業者が想到することができる範囲内で変更することができ、いずれの態様においても本発明の作用・効果を奏する限り、本発明の範囲に含まれるものである。 Up to now, the compressor, outdoor unit, and air conditioner of the present invention have been described in detail using the above-described embodiments, but the present invention is not limited to the above-mentioned embodiments, and may include other embodiments or additional embodiments. Modifications such as , modification, deletion, etc. can be made within the range that can be conceived by those skilled in the art, and any embodiment is included in the scope of the present invention as long as the operation and effect of the present invention is achieved.

10…室内機
11…室外機
12…配管
20…ファン
21…熱交換器
22…圧縮機
23…制御基板
24…膨張弁
30…密閉容器
30a…ケース
30b…蓋チャンバ
30c…底チャンバ
31…一次空間
32…二次空間
33…気液分離器
34…吐出管
35…障壁部
35a…外縁
36…窪み部
40…回転軸
50…電動機
51…固定子
52…回転子
60…圧縮機構
61…流入口
62…圧縮室
63…シリンダ
64…ローラ
65…ベーン
66…バネ
67、68…空間
69…嵌挿部
70…スプリング穴
71…下軸受
72…上軸受
80…冷凍機油
81…油面
82…デッドスペース
10... Indoor unit 11... Outdoor unit 12... Piping 20... Fan 21... Heat exchanger 22... Compressor 23... Control board 24... Expansion valve 30... Sealed container 30a... Case 30b... Lid chamber 30c... Bottom chamber 31... Primary space 32... Secondary space 33... Gas-liquid separator 34... Discharge pipe 35... Barrier part 35a... Outer edge 36... Hollow part 40... Rotating shaft 50... Electric motor 51... Stator 52... Rotor 60... Compression mechanism 61... Inflow port 62 …Compression chamber 63…Cylinder 64…Roller 65…Vane 66…Springs 67, 68…Space 69…Fitting part 70…Spring hole 71…Lower bearing 72…Upper bearing 80…Refrigerating machine oil 81…Oil surface 82…Dead space

Claims (6)

流体を圧縮する圧縮機であって、
前記流体が収容される容器と、
前記容器内に配置される回転軸と、
前記容器内に配置され、前記回転軸の回転により前記流体を圧縮する圧縮機構と
を含み、
前記容器は、前記圧縮機構の下方の底部に、前記回転軸の一端から吸い上げられる油が貯留され、
前記底部は、前記回転軸の一端と対向する底面の中央部に、前記容器の内側に向けて押し込まれ、上方へ突出するように山状に形成される障壁部と、前記障壁部の外周側に、前記容器の内側に向けて凸形状となるように形成される窪み部と、前記障壁部と前記窪み部との間に、圧縮機の自立を可能にする平坦な面とを有する、圧縮機。
A compressor that compresses fluid,
a container in which the fluid is contained;
a rotating shaft disposed within the container;
a compression mechanism disposed within the container and compressing the fluid by rotation of the rotation shaft;
The container stores oil sucked up from one end of the rotating shaft at the bottom below the compression mechanism,
The bottom portion includes a barrier portion formed in a mountain shape so as to be pushed toward the inside of the container and protrude upward at a central portion of the bottom surface facing one end of the rotation shaft, and an outer peripheral side of the barrier portion. The compressor has a concave portion formed to have a convex shape toward the inside of the container , and a flat surface between the barrier portion and the concave portion that enables the compressor to stand on its own. Machine.
山状に形成された前記障壁部の最大径が前記回転軸の外径より大きい、請求項に記載の圧縮機。 The compressor according to claim 1 , wherein the maximum diameter of the mountain-shaped barrier portion is larger than the outer diameter of the rotating shaft. 前記窪み部は、前記底面の外周側へ向けて階段状に形成されている、請求項1または2に記載の圧縮機。 The compressor according to claim 1 or 2 , wherein the recessed portion is formed in a step-like manner toward an outer peripheral side of the bottom surface. 前記容器は、前記回転軸および前記圧縮機構の周囲を包囲する中空のケースと、前記ケースの上部を閉鎖する蓋チャンバと、前記ケースの下部を閉鎖する底チャンバとから構成され、
前記底チャンバの底面から前記底チャンバの頂部までの第1の高さに対する該底チャンバの底面から前記窪み部の頂部までの第2の高さの割合が0.3以上である、請求項1~のいずれか1項に記載の圧縮機。
The container is composed of a hollow case surrounding the rotating shaft and the compression mechanism, a lid chamber that closes the upper part of the case, and a bottom chamber that closes the lower part of the case,
Claim 1: The ratio of the second height from the bottom of the bottom chamber to the top of the recess to the first height from the bottom of the bottom chamber to the top of the recess is 0.3 or more. The compressor according to any one of items 3 to 3 .
請求項1~のいずれか1項に記載の圧縮機を含む、室外機。 An outdoor unit comprising the compressor according to any one of claims 1 to 4 . 請求項1~のいずれか1項に記載の圧縮機を含む、空気調和装置。
An air conditioner comprising the compressor according to any one of claims 1 to 4 .
JP2019203038A 2019-11-08 2019-11-08 Compressor, outdoor unit and air conditioner Active JP7378275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019203038A JP7378275B2 (en) 2019-11-08 2019-11-08 Compressor, outdoor unit and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019203038A JP7378275B2 (en) 2019-11-08 2019-11-08 Compressor, outdoor unit and air conditioner

Publications (2)

Publication Number Publication Date
JP2021076064A JP2021076064A (en) 2021-05-20
JP7378275B2 true JP7378275B2 (en) 2023-11-13

Family

ID=75899699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019203038A Active JP7378275B2 (en) 2019-11-08 2019-11-08 Compressor, outdoor unit and air conditioner

Country Status (1)

Country Link
JP (1) JP7378275B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006037798A (en) 2004-07-26 2006-02-09 Matsushita Electric Ind Co Ltd Hermetic compressor
JP2008286151A (en) 2007-05-21 2008-11-27 Panasonic Corp Fluid machine and refrigerating cycle device equipped therewith
JP2012241573A (en) 2011-05-18 2012-12-10 Panasonic Corp Compressor
JP2017115765A (en) 2015-12-25 2017-06-29 株式会社富士通ゼネラル Compressor and air conditioner with the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006037798A (en) 2004-07-26 2006-02-09 Matsushita Electric Ind Co Ltd Hermetic compressor
JP2008286151A (en) 2007-05-21 2008-11-27 Panasonic Corp Fluid machine and refrigerating cycle device equipped therewith
JP2012241573A (en) 2011-05-18 2012-12-10 Panasonic Corp Compressor
JP2017115765A (en) 2015-12-25 2017-06-29 株式会社富士通ゼネラル Compressor and air conditioner with the same

Also Published As

Publication number Publication date
JP2021076064A (en) 2021-05-20

Similar Documents

Publication Publication Date Title
JP4715615B2 (en) Refrigeration equipment
JP4816220B2 (en) Refrigeration equipment
JP4967435B2 (en) Refrigeration equipment
JPH02196188A (en) Rotary compressor
JP2005291207A (en) Minimum flow recirculation system of scroll compressor
JP2007285681A5 (en)
EP2628950B1 (en) Hermetically enclosed rotary compressor and refrigeration cycle device
US6807821B2 (en) Compressor with internal accumulator for use in split compressor
KR20180107482A (en) Scroll compressor
CN112412801A (en) Oil circuit structure, horizontal scroll compressor and refrigeration equipment
JP5506953B2 (en) Refrigerant compressor
CN108138771B (en) Compressor bearing shell discharging device
JP7378275B2 (en) Compressor, outdoor unit and air conditioner
US11680568B2 (en) Compressor oil management system
JP2011012630A (en) Scroll compressor
JP2017053222A (en) Hermetic scroll compressor and refrigeration air conditioning equipment
JP7399193B2 (en) compressor
JP7321018B2 (en) Compressors, outdoor units and air conditioners
WO2023148867A1 (en) Compressor and refrigeration cycle device
JP2013238191A (en) Compressor
JP7213382B1 (en) Scroll compressor and refrigeration cycle device
WO2023218584A1 (en) Scroll compressor
JP6518026B1 (en) Compressor and refrigeration cycle apparatus including the same
JP2019039414A (en) Scroll compressor, control method therefor and air conditioner
WO2022118384A1 (en) Compressor and refrigeration cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231031

R150 Certificate of patent or registration of utility model

Ref document number: 7378275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150