WO2022223085A1 - Verfahren zum testen eines assistenzsystems - Google Patents
Verfahren zum testen eines assistenzsystems Download PDFInfo
- Publication number
- WO2022223085A1 WO2022223085A1 PCT/DE2022/200068 DE2022200068W WO2022223085A1 WO 2022223085 A1 WO2022223085 A1 WO 2022223085A1 DE 2022200068 W DE2022200068 W DE 2022200068W WO 2022223085 A1 WO2022223085 A1 WO 2022223085A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transfer function
- test
- measuring points
- vehicle
- assistance system
- Prior art date
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 51
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000005259 measurement Methods 0.000 claims abstract description 27
- 238000012546 transfer Methods 0.000 claims abstract description 20
- 238000011156 evaluation Methods 0.000 claims abstract description 17
- 230000001133 acceleration Effects 0.000 claims abstract description 4
- 230000006870 function Effects 0.000 description 18
- 238000005457 optimization Methods 0.000 description 6
- 238000013450 outlier detection Methods 0.000 description 4
- 230000006872 improvement Effects 0.000 description 3
- 230000009897 systematic effect Effects 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 238000013213 extrapolation Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000000528 statistical test Methods 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/32—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
- B60T8/88—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means
- B60T8/885—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means using electrical circuitry
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T17/00—Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
- B60T17/18—Safety devices; Monitoring
- B60T17/22—Devices for monitoring or checking brake systems; Signal devices
- B60T17/221—Procedure or apparatus for checking or keeping in a correct functioning condition of brake systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
- B60W30/09—Taking automatic action to avoid collision, e.g. braking and steering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/04—Monitoring the functioning of the control system
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T2201/00—Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
- B60T2201/02—Active or adaptive cruise control system; Distance control
- B60T2201/022—Collision avoidance systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T2270/00—Further aspects of brake control systems not otherwise provided for
- B60T2270/40—Failsafe aspects of brake control systems
- B60T2270/406—Test-mode; Self-diagnosis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0001—Details of the control system
- B60W2050/0019—Control system elements or transfer functions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0001—Details of the control system
- B60W2050/0019—Control system elements or transfer functions
- B60W2050/0028—Mathematical models, e.g. for simulation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0001—Details of the control system
- B60W2050/0019—Control system elements or transfer functions
- B60W2050/0028—Mathematical models, e.g. for simulation
- B60W2050/0037—Mathematical models of vehicle sub-units
- B60W2050/0041—Mathematical models of vehicle sub-units of the drive line
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0062—Adapting control system settings
Definitions
- the present invention relates to a method for testing an assistance system, in particular an automatic emergency braking system or an emergency brake assistant or an emergency evasion assistance system, for a vehicle.
- Generic vehicles such. B. Passenger vehicles (cars), trucks (trucks) or motorcycles are increasingly being equipped with driver assistance systems that use sensor systems to detect the environment, recognize the traffic situation and can support the driver, e.g. B. by a braking or steering intervention or by the output of a visual or acoustic warning.
- Radar sensors, lidar sensors, camera sensors or the like are regularly used as sensor systems for detecting the surroundings or surroundings. From the sensor data determined by the sensors, conclusions can then be drawn about the environment.
- the (partially) automated, driver-perceptible vehicle behavior in driver assistance systems is subsumed under the term driving function.
- the processed sensor information is used to recognize the surroundings in order to give instructions for driver warnings/information or for controlled steering, braking and acceleration.
- generic driving functions can help to avoid accidents with other road users or to facilitate complicated driving maneuvers by supporting or even completely taking over the driving task or vehicle guidance.
- the vehicle z. B. by an emergency brake assistant (EBA, Emergency Brake Assist) an automatic emergency braking (AEB, Automatic Emergency Brake) or by an active Lane keeping assistants with steering assistance are kept in lane (LKA, Lane Keeping Assist).
- EBA Emergency Brake Assist
- AEB Automatic Emergency Brake
- LKA Lane Keeping Assist
- automated braking intervention is of great importance, especially when driving a vehicle (fully) automatically. Automated braking is initiated in a critical surrounding situation or scene, particularly when a collision is imminent.
- Generic emergency braking systems react, for example, to braking vehicles or other road users, such as pedestrians or cyclists, located in the front and rear area. Due to the respective traffic scenario or the respective scene, it is necessary to brake quickly and severely, particularly at higher vehicle speeds.
- the performance validation of the automatic emergency braking is of particular importance. It must be ensured, for example, that various tests, e.g. B. acceptance tests such as UNECE or classification tests such as xxNCAP, are passed with a high degree of certainty. Such tests are carried out with a limited number of repetitions and sometimes on a random basis. This results in high requirements and the probability of passing each individual test. A high number of multiple repetitions is therefore required to validate such tests, for example the test is repeated 275 to 500 times at a corresponding speed of the ego vehicle in order to obtain a 95% confidence interval. This procedure requires an enormous amount of time and money.
- DE 10 2018 004 429 A1 discloses a method for testing a brake assistance system for a vehicle, in which a cluster-analytical characterization of driving situations is determined based on detected sensor signals for detecting the surroundings and their system reactions when the vehicle is running in motion. As part of the test procedure, the collision time TTC (time-to-collision) is determined at different speeds of the vehicle for different escalation levels.
- TTC time-to-collision
- the object of the present invention is now to provide a method for testing an emergency brake assistance system, with which the repetition rate of the test scenario can be reduced.
- the method according to the invention for testing an assistance system or an emergency braking assistance system and/or an emergency evasion assistance system for a vehicle is characterized in that the following method steps are carried out:
- TTC time to collision
- the speed and/or the overlap and/or the collision point and/or the target speed i.e. the speed of the target object
- the acceleration and/or another vehicle parameter are provided as parameters.
- Multiple measurement points are preferably generated for each parameter value (e.g. for each speed value).
- various speeds of the vehicle or so-called sampling points or measuring points at which the collision time is to be determined are first determined in advance.
- a function can expediently be selected as the reference transfer function, which includes collision times that can be expected at different speeds with the emergency brake assistance system.
- Such expectation values or expectation functions can e.g. B. created and / or calculated in the context of preliminary investigations or test scenarios. For the comparison, these can then e.g. B. stored in a memory and a computing unit (z. B. computer or processor that is used to carry out the method) are made accessible.
- a tolerance range of the reference transfer function can be provided, which preferably has a lower tolerance threshold and an upper tolerance threshold. This allows measurement points to be easily selected as measurement points that lie within an expected measurement range.
- an evaluation criterion it can be determined whether the measuring points or some of the measuring points are within the tolerance range. Accordingly, measurement points or functions that are not within the tolerance range could affect a comparison in such a way that the Comparison sufficient differences are found, which could then lead to a failure of the test.
- the distance between the tolerance range, in particular the lower and/or upper tolerance threshold, and the reference transfer function can also be used as an evaluation criterion.
- the comparison can be carried out in a particularly simple manner.
- test security can be further improved, with the number of repetitions being reduced, since e.g. B. Measuring points are no longer generated for all defined parameter values or speeds, but only for certain parameter values (so-called preferred parameter values) or speeds. As a result, the number of repetitions is significantly reduced, even if the test fails at the beginning.
- the additional measurement points are thus preferably only generated for a few definable preferred parameter values, e.g. B. Additional measurement points are generated at characteristic speeds. For this purpose, some characteristic speeds (e.g. limit speed with max. performance) are defined, at which more intensive testing is then carried out.
- characteristic speeds e.g. limit speed with max. performance
- An interpolation and/or extrapolation of the results for other parameter values can then be expediently carried out on the basis of the additionally generated measurement points of the preferred parameter values, e.g. For example, an interpolation and/or extrapolation of the additional measurement points at the characteristic speeds can take place for other speed values. This saves additional measurements to a particular extent, since only a few samples (preferred parameter values) need to be tested or measuring points need to be generated.
- Measurement outliers can be used, so to speak, to identify systematic, non-statistical errors when implementing the function or performing the measurement.
- FIG. 1 shows a simplified representation of a test according to the method according to the invention, in which measuring points (+) of the TTC were determined at different speeds v of the vehicle;
- FIG. 2 shows a simplified representation of the test from FIG. 1 , with tolerance thresholds drawn in and additional measurement points for selected fault samples;
- FIG. 3 shows a simplified representation of the test from FIG. 2, with the required TTC and the distance (arrow) between the lower tolerance threshold and the expected TTC drawn in;
- FIG. 4 shows a simplified representation of the test from FIG.
- FIG. 5 shows a simplified schematic representation of an embodiment of a flow chart of the method according to the invention.
- the test method is used to test an emergency brake assistant with regard to its functionality.
- a regression analysis is used to determine the relationship between the expected activation behavior of the automatic emergency braking, expressed as TTC (Time to Collision), and the respective sample number (ie the respective speed v of the test object). vehicle) of the repeated test, and to determine the transfer function.
- TTC Time to Collision
- sample number ie the respective speed v of the test object. vehicle
- the regression algorithm calculates the transfer function of collision time with respect to ego speed.
- This can e.g. B. with a mean tolerance threshold below TS_1 and above TS_2, which represent ⁇ 2m, as shown in Fig. 2.
- a standard deviation of the expected TTC (TTC_exp) can also be selected as a function for the tolerance threshold.
- the result of the multiple measurement or the measurement points can then be compared with the expected emergency braking behavior (expected TTC-exp).
- the test can B. are considered passed.
- the distance between the lower tolerance threshold TS_1 of the measured TTC and the TTC required to pass (TTC_req) can serve as an evaluation criterion or limit value, as shown in FIG. 3 using the double arrow. With sufficient distance z. B. it can be assumed that the emergency braking system behaves as expected and no additional examination or testing is required.
- the distance A is not sufficient, an improvement in system performance is required. If no system improvement is possible (e.g. in the case of systematic errors), the additional number of repetitions for each sample (ego speed) is calculated separately. This will require additional iterations at the trial (ego speed) where the behavior is not as expected. Additionally, an additional distribution can be determined, e.g. B. on the basis of a certain number of repetitions with several main samples, which are taken at definable parameter preferences (here at characteristic speeds). For example, as shown in Fig. 2 (based on the ellipses), at four Main samples (20, 30, 45 and 60 kph) each 12-15 additional measurements are carried out.
- the 12 to 15 repetitions at selected master samples or speeds are then used to reduce the variation and maximize the mean at the reference speed so that the results can be interpolated for other speed values. This is followed by identification and recalculation of the sample size as required.
- the large number of tests with real vehicles can be reduced to a minimum using this test method (compared to the prior art by a factor of 10), since only a smaller number of tests are necessary even if the test fails.
- the present invention includes an outlier detection. If the test z. B. does not deliver the expected result, incorrect measuring points or outliers are sorted out or sorted out as cases where optimization is required. Accordingly, a so-called “clean up” or “algo optimization” is then necessary (e.g. by sorting out the outliers, carrying out the test again with additional measuring points or the like). This process is only completed when the result or the emergency braking behavior corresponds to the expectation or is within the scope of the expectation. 4 shows the principle of outlier detection, with the encircled measurement points being outliers that were detected because they are no longer within the definable tolerance range between TS_1 and TS_2.
- FIG. 5 shows an embodiment of a simplified flow chart of the method according to the invention.
- the measurement data 1 of the TTC are recorded and fed to the regression model 2 .
- Statistical tests 3 can then be carried out using the calculated regression model (essentially whether the test result is within the definable limit values or within a definable tolerance range) in order to check whether the emergency braking system behaves as expected if the emergency braking system behaves as expected , the test is passed (Passed 4) and no additional examination or testing is required. Otherwise there is either an error 5, e.g. B. System errors, driving scenario errors, Evaluation setup error or the like. These errors must then be corrected (optimization 8). Furthermore, any outliers can also be recognized and eliminated (outlier recognition 6 and evaluation of the outlier recognition 7). This is also followed by the optimization 8 of the test process. Following the optimization 8, the test can then be carried out again using the existing measurement data 1 or additional new measurement data 1.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Human Computer Interaction (AREA)
- Traffic Control Systems (AREA)
Abstract
Die vorliegende Erfindung betrifft ein Verfahren zum Testen eines Assistenzsystems, insbesondere eines Notbrems- und/oder Notausweichassistenzsystems, für ein Fahrzeug, das dadurch gekennzeichnet ist, dass folgende Verfahrensschritte durchgeführt werden: - Erstellen von Messpunkten der Auslösezeitpunkte bei verschiedenen Parametern (z. B. Geschwindigkeit, Beschleunigung, Kollisionspunkt oder dergleichen) eines Fahrzeuges, - Erstellen einer Transferfunktion anhand der Messpunkte, - Vergleichen der Transferfunktion mit mindestens einer Referenz-Transferfunktion, - Auswerten des Vergleichs anhand mindestens eines festlegbaren Auswertekriteriums, und - Erstellen eines Ergebnisses des Tests anhand der Auswertung, wonach der Test als bestanden oder nicht bestanden gilt.
Description
Beschreibung
Verfahren zum Testen eines Assistenzsystems
Die vorliegende Erfindung betrifft ein Verfahren zum Testen eines Assistenzsystems, insbesondere eines automatischen Notbremssystems bzw. eines Notbremsassistenten oder eines Notausweichassistenzsystems, für ein Fahrzeug.
Technologischer Hintergrund
Gattungsgemäße Fahrzeuge, wie z. B. Personenkraftfahrzeuge (PKW), Lastkraftwagen (LKW) oder Motorräder, werden zunehmend mit Fahrerassistenzsystemen ausgerüstet, welche mit Hilfe von Sensorsystemen die Umgebung erfassen, Verkehrssituation erkennen und den Fahrer unterstützen können, z. B. durch einen Brems- oder Lenkeingriff oder durch die Ausgabe einer optischen oder akustischen Warnung. Als Sensorsysteme zur Umfeld- bzw. Umgebungserfassung werden regelmäßig Radarsensoren, Lidarsensoren, Kamerasensoren oder dergleichen eingesetzt. Aus den durch die Sensoren ermittelten Sensordaten können anschließend Rückschlüsse auf die Umgebung gezogen werden.
Unter den Begriff Fahrfunktion wird insbesondere das (teil-)automatisierte, fahrererlebbare Fahrzeugverhalten bei Fahrerassistenzsystemen subsummiert. Dabei werden die verarbeiteten Sensorinformationen zur Umfelderkennung verwendet, um darauf basierend Anweisungen zur Fahrerwarnung/-lnformation oder zum geregelten Lenken, Bremsen und Beschleunigen zu geben. Dadurch können gattungsgemäße Fahrfunktionen helfen, Unfälle mit anderen Verkehrsteilnehmern zu vermeiden oder komplizierte Fahrmanöver zu erleichtern, indem sie die Fahraufgabe bzw. die Fahrzeugführung unterstützen oder sogar komplett übernehmen. Beispielsweise kann das Fahrzeug z. B. durch einen Notbremsassistenten (EBA, Emergency Brake Assist) eine automatische Notbremsung (AEB, Automatic Emergency Brake) oder durch einen aktiven
Spurhalteassistenten mit Lenkunterstützung in der Spur gehalten werden (LKA, Lane Keeping Assist). Neben der Notbremsung in Gefahrensituationen ist insbesondere beim (voll-) automatisierten Führen eines Fahrzeuges der automatisierte Bremseneingriff von großer Bedeutung. Eine automatisierte Bremsung wird dabei in einer kritischen Umfeldsituation bzw. Szene insbesondere bei einer drohenden Kollision eingeleitet.
Gattungsgemäße Notbremssysteme reagieren beispielsweise auf im Front- und Heckbereich befindliche, bremsende Fahrzeuge oder andere Verkehrsteilnehmer, wie Fußgänger oder Radfahrer. Aufgrund des jeweiligen Verkehrsszenarios bzw. der jeweiligen Szene muss insbesondere bei höheren Fahrzeuggeschwindigkeiten schnell and stark gebremst werden. Bei der Sicherstellung der Funktionsfähigkeit eines Notbremssystems ist die Leistungsvalidierung der automatischen Notbremsung von besonderer Bedeutung. Dabei muss beispielsweise sichergestellt werden, dass diverse Test, z. B. Abnahmetests wie UNECE oder Einstufungstests wie xxNCAP, mit hoher Sicherheit bestanden werden. Die Durchführung derartiger Tests erfolgt mit limitierter Anzahl von Wiederholungen und teilweise stichprobenartig. Daraus ergibt sich eine hohe Anforderungen and die Wahrscheinlichkeit zum Bestehen jedes einzelnen Tests. Zur Absicherung derartigen Tests ist daher eine hohe Anzahl von Mehrfachwiederholungen erforderlich, beispielsweise wird der Test bei entsprechender Geschwindigkeit des Ego-Fahrzeuges 275-mal bis 500-mal wiederholt, um ein 95 % Konfidenzintervall zu erhalten. Diese Vorgehensweise bedingt einen enormen Zeit- und Kostenaufwand.
Druckschriftlicher Stand der Technik
Aus der DE 10 2018 004 429 A1 ist ein Verfahren zum Testen eines Bremsassistenzsystems für ein Fahrzeug bekannt, bei dem eine clusteranalytische Charakterisierung von Fahrsituationen basierend auf erfassten Sensorsignalen zur Umfelderfassung und deren System reaktionen im Fährbetrieb des Fahrzeugs ermittelt wird. Im Rahmen des Testverfahren wird die Kollisionszeit TTC (Time-to-Collision) bei verschiedenen Geschwindigkeiten des Fahrzeuges für verschiedene Eskalationsstufen ermittelt.
Aufgabe der vorliegenden Erfindung
Ausgehend vom Stand der Technik besteht die Aufgabe der vorliegenden Erfindung nunmehr darin, ein Verfahren zur Testung eines Notbremsassistenzsystems zur Verfügung zu stellen, mit dem die Wiederholungsrate des Testszenarios reduziert werden kann.
Lösung der Aufgabe
Die vorstehende Aufgabe wird durch die gesamte Lehre des Anspruchs 1 gelöst. Zweckmäßige Ausgestaltungen der Erfindung sind in den Unteransprüchen beansprucht.
Das erfindungsgemäße Verfahren zum Testen eines Assistenzsystems bzw. eines Notbremsassistenzsystems und/oder eines Notausweichassistenzsystems für ein Fahrzeug ist dadurch, gekennzeichnet, dass folgende Verfahrensschritte durchgeführt werden:
Erstellen von Messpunkten der Auslösezeitpunkte für Bremsung/Warnung bei verschiedenen Parameterwerten eines Parameters des Fahrzeuges gemessen in verbleibender Zeit bis zur Kollision (TTC)
Erstellen einer Transferfunktion anhand der Messpunkte,
Vergleichen der Transferfunktion mit mindestens einer Referenz-Transferfunktion mit Intervall Grenzen,
Auswerten des Vergleichs mit mindestens einer Referenz-Transferfunktion anhand mindestens eines festlegbaren Auswertekriteriums, und
Erstellen eines Ergebnisses des Tests anhand der Auswertung, wonach der Test als bestanden oder nicht bestanden gilt.
Daraus resultieren die Vorteile, dass die Probe- und Wiederholungszahl eines Notbremstests (z. B. AEB- Nutzszenen Vom Fahrversuch im Zielfahrzeug gefahren) reduziert werden kann. Dadurch können der Zeit- und Kostenaufwand in besonderem Maße eingespart und zum Schutz für Umwelt, Mitarbeiter und Material beigetragen werden. Ferner kann eine Bewertungsübersicht über die
System leistung, die für eine schnelle Verfolgung und Verbesserung eingesetzt werden kann, bereitgestellt werden.
Gemäß einer bevorzugten Ausgestaltung der Erfindung ist als Parameter die Geschwindigkeit und/oder die Überlappung und/oder der Kollisionspunkt und/oder die Targetgeschwindigkeit (d. h. die Geschwindigkeit die Zielobjekts) und/oder die Beschleunigung und/oder ein anderer Fahrzeugparameter vorgesehen.
Vorzugsweise werden für jeden Parameterwert (z. B. bei jedem Geschwindigkeitswert) mehrere Messpunkte erzeugt. Hierbei werden im Vorfeld zunächst verschiedene Geschwindigkeiten des Fahrzeuges bzw. sogenannte Probennahmepunkte bzw. Messpunkte festgelegt, bei denen die Bestimmung der Kollisionszeit erfolgen soll.
Zweckmäßigerweise kann als Referenz-Transferfunktion eine Funktion ausgewählt werden, welche Kollisionszeiten umfasst, die bei dem Notbremsassistenzsystem zu verschiedenen Geschwindigkeiten erwartet werden können. Derartige Erwartungswerte bzw. Erwartungsfunktionen können z. B. im Rahmen von Voruntersuchungen oder Testszenarien erstellt und/oder berechnet werden. Für den Vergleich können diese dann z. B. in einem Speicher hinterlegt und einer Recheneinheit (z. B. Computer oder Prozessor, der für die Durchführung des Verfahrens herangezogen wird) zugänglich gemacht werden.
Gemäß einer bevorzugten Ausgestaltung der Erfindung kann ein Toleranzbereich der Referenz-Transferfunktion vorgesehen sein, der vorzugsweise eine untere Toleranzschwelle und eine obere Toleranzschwelle aufweist. Dadurch können Messpunkte in einfacher Weise als Messpunkte ausgewählt werden, die innerhalb eines erwarteten Messbereichs liegen.
Ferner kann als Auswertekriterium bestimmt werden, ob sich die Messpunkte oder ein Teil der Messpunkte innerhalb des Toleranzbereichs befinden. Dementsprechend könnten sich Messpunkte oder Funktionen, die nicht innerhalb des Toleranzbereichs liegen, bei einem Vergleich derart auswirken, dass durch den
Vergleich ausreichende Unterschiede festgestellt werden, die dann zu einem nichtbestehen des Tests führen könnten.
Alternativ oder zusätzlich kann als Auswertekriterium auch der Abstand zwischen dem Toleranzbereich, insbesondere der unteren und/oder oberen Toleranzschwelle, und der Referenz-Transferfunktion herangezogen werden. Dadurch kann der Vergleich in besonders einfacherWeise durchgeführt werden.
Zweckmäßigerweise können, sofern der Test als nicht bestanden gilt, zusätzliche Messpunkte erzeugt werden. Dadurch kann die Testsicherheit noch zusätzlich verbessert werden, wobei sich die Wiederholungsanzahl verringert, da hier z. B. Messpunkte nicht mehr zu allen festgelegten Parameterwerten bzw. Geschwindigkeiten, sondern nur noch zu bestimmten Parameterwerten (sogenannte Parametervorzugswerte) bzw. Geschwindigkeiten erzeugt werden. Die Wiederholungsanzahl wird dadurch, selbst bei einem anfänglichen Nichtbestehen in besonderem Maße verringert.
Vorzugsweise werden die zusätzlichen Messpunkte somit nur bei einigen festlegbaren Parametervorzugswerten erzeugt, z. B. werden zusätzliche Messpunkte bei charakteristischen Geschwindigkeiten erzeugt. Hierzu werden einige charakteristische Geschwindigkeiten (z. B. Grenzgeschwindigkeit mit max. Performance) festgelegt, an denen dann verstärkt getestet wird.
Zweckmäßigerweise kann dann anhand der zusätzlich erzeugten Messpunkte der Parametervorzugswerte eine Interpolation und/oder Extrapolation der Ergebnisse für andere Parameterwerte erfolgen, z. B. kann eine Interpolation und/oder Extrapolation der zusätzlichen Messpunkte bei den charakteristischen Geschwindigkeiten für andere Geschwindigkeitswerte erfolgen. Dadurch werden zusätzliche Messungen in besonderem Maße eingespart, da hier nur noch zu einigen wenigen Proben (Parametervorzugswerte) getestet werden muss bzw. Messpunkte erzeugt werden müssen.
Ferner können Messpunkte, die sich nicht innerhalb des Toleranzbereichs oder innerhalb eines festlegbaren Abstands zum Toleranzbereich befinden, als
Ausreißer bzw. Messausreißer erkannt und vorzugsweise aussortiert oder durch Eliminierung von systematischen Fehlern vermieden werden. Messausreißer können sozusagen zur Identifikation von systematischen nicht statistischen Fehlern bei Implementierung der Funktion oder Messdurchführung verwendet werden.
Beschreibung der Erfindung anhand von Ausführungsbeispielen
Im Folgenden wird die Erfindung anhand von zweckmäßigen Ausführungsbeispielen näher erläutert. Es zeigen:
Fig. 1 eine vereinfachte Darstellung eines Tests nach dem erfindungsgemäßen Verfahren, bei dem Messpunkte (+) der TTC bei verschiedenen Geschwindigkeiten v des Fahrzeuges ermittelt wurden;
Fig. 2 eine vereinfachte Darstellung des Tests aus Fig. 1 , mit eingezeichneten Toleranzschwellen und zusätzlichen Messpunkten bei ausgewählten Flauptproben;
Fig. 3 eine vereinfachte Darstellung des Tests aus Fig. 2, mit eingezeichneter benötigter TTC und dem Abstand (Pfeil) zwischen der unteren Toleranzschwelle und der erwarteten TTC;
Fig. 4 eine vereinfachte Darstellung des Tests aus Fig. 2, bei dem zwei Ausreißer, die außerhalb des Toleranzbereichs liegen, erkannt und markiert wurden, sowie
Fig. 5 eine vereinfachte schematische Darstellung einer Ausgestaltung eines Ablaufschemas des erfindungsgemäßen Verfahrens.
Gemäß einer bevorzugten Ausgestaltung der vorliegenden Erfindung, wird das Testverfahren, eingesetzt, um einen Notbremsassistenten hinsichtlich seiner Funktionsfähigkeit zu testen. Hierbei wird eine Regressionsanalyse verwendet, um die Beziehung zwischen dem erwarteten Aktivierungsverhalten der automatischen Notbremsung, ausgedrückt als TTC (Time to Collision), und der jeweiligen Probennummer (d. h. die jeweilige Geschwindigkeit v des zu testenden
Fahrzeuges) des wiederholten Tests, und der Transferfunktion zu ermitteln. In Fig. ist diese Beziehung zwischen Aktivierungsverhalten (Messpunkte „+“ von TTC bei Geschwindigkeit v) und Transferfunktion anhand eines Diagramms dargestellt. Wie in Fig. 1 gezeigt, kann die Transferfunktion mit einer bestimmten Probenanzahl (vorliegend 9 Mal bzw. 9 Messungen bei verschiedenen Geschwindigkeiten v) durchgeführt werden, die jeweils mehrfach (vorliegend 3 Mal) durchgeführt werden. Der Regressionsalgorithmus berechnet die Transferfunktion der Kollisionszeit in Bezug auf die Ego-Geschwindigkeit. Diese kann z. B. mit einer mittleren Toleranzschwelle unterhalb TS_1 und oberhalb TS_2, welche ± 2m repräsentieren, wie in Fig. 2 dargestellt. Ferner kann als Funktion für die Toleranzschwelle auch eine Standardabweichung der erwarteten TTC (TTC_exp) gewählt werden. Das Ergebnis der Mehrfachmessung bzw. die Messpunkte kann/können dann mit dem erwarteten Notbremsverhalten (erwartete TTC-exp) verglichen werden. Wenn das Ergebnis zeigt, dass ein festlegbarer nicht über- bzw. unterschritten Grenzwert wird bzw. ein Auswerteparameter oder Auswertekriterium erfüllt oder nicht erfüllt ist, kann der Test z. B. als bestanden gelten. Beispielsweise kann als Auswertekriterium bzw. Grenzwert der Abstand zwischen der unteren Toleranzschwelle TS_1 der gemessenen TTC und der zum Bestehen benötigten TTC (TTC_req) dienen, wie in Fig. 3 anhand des Doppelpfeils dargestellt. Bei ausreichendem Abstand kann z. B. angenommen werden, dass sich das Notbremssystem wie erwartet verhält und keine zusätzliche Prüfung bzw. Testung benötigt wird.
Demgegenüber ist eine Verbesserung der System leistung erforderlich, wenn kein ausreichender Abstand A vorliegt. Ist keine Systemverbesserung möglich (z. B. bei systematischen Fehlern), wird die zusätzliche Wiederholungszahl für jede Probe (Ego-Geschwindigkeit) getrennt berechnet. Dadurch werden zusätzliche Wiederholungen bei der Probe (Ego-Geschwindigkeit) erforderlich, bei der das Verhalten nicht wie erwartet ausfällt. Flierzu kann eine zusätzliche Verteilung bestimmt werden, z. B. anhand von einer bestimmten Anzahl an Wiederholungen bei mehreren Hauptproben, die zu festlegbaren Parametervorzugswerten (vorliegend zu charakteristischen Geschwindigkeiten) genommen werden. Beispielsweise können wie in Fig. 2 (anhand der Ellipsen) dargestellt, an vier
Hauptproben (20, 30, 45 und 60 kph) jeweils 12-15 zusätzliche Messungen durchgeführt werden. Die 12 bis 15 Wiederholung bei ausgewählten Hauptproben bzw. Geschwindigkeiten dienen dann zur Verringerung der Variation und zur Maximierung des Mittelwerts bei der Bezugsgeschwindigkeit, so dass eine Interpolation der Ergebnisse für andere Geschwindigkeitswerte erfolgen kann. Im Anschluss erfolgen dann Identifizierung und Neuberechnung der Probengröße nach Bedarf. Demzufolge kann die große Anzahl an Tests mit realen Fahrzeugen durch dieses Testverfahren auf ein Minimum reduziert werden (im Vergleich zum Stand der Technik etwa um Faktor 10 weniger), da selbst bei einem „Nichtbestehen“ nur eine geringere Anzahl an Tests notwendig wird.
Ferner umfasst die vorliegende Erfindung eine Ausreißer-Erkennung. Sofern der Test z. B. nicht das erwartete Ergebnis liefert, werden falsche Messpunkte bzw. Ausreißer aussortiert oder als Fälle aussortiert, bei denen es einer Optimierung bedarf. Dementsprechend ist dann ein sogenanntes „clean up“ oder „algo Optimierung“ notwendig (z. B. durch Aussortieren der Ausreißer, erneutes Durchführen mit zusätzlichen Messpunkten oder dergleichen). Dieser Prozess wird erst abgeschlossen, wenn das Ergebnis bzw. das Notbremsverhalten der Erwartung entspricht bzw. im Rahmen der Erwartung liegt. In Fig. 4 ist das Prinzip der Ausreißer-Erkennung dargestellt, wobei die eingekreisten Messpunkte Ausreißer sind, die erkannt wurden, da sich diese nicht mehr innerhalb des festlegbaren Toleranzbereichs zwischen TS_1 und TS_2 befinden.
In Fig. 5 ist eine Ausgestaltung eines vereinfachten Ablaufschemas des erfindungsgemäßen Verfahrens dargestellt. Die Messdaten 1 der TTC werden dabei aufgezeichnet und dem Regressionsmodell 2 zugeführt. Anhand des berechneten Regressionsmodells können dann statistische Tests 3 durchgeführt werden (im Wesentlichen, ob sich das Testergebnis innerhalb der festlegbaren Grenzwerte befindet oder innerhalb eines festlegbaren Toleranzbereichs liegt), um zu überprüfen, ob sich das Notbremssystem wie erwartet verhält Sofern sich das Notbremssystem wie erwartet verhält, ist der Test bestanden (Bestanden 4) und keine zusätzliche Prüfung bzw. Testung wird benötigt. Anderenfalls liegt entweder ein Fehler 5 vor, wie z. B. Systemfehler, Fahrszenario-Fehler,
Auswertungs-Setup-Fehler oder dergleichen. Diese Fehler müssen dann behoben werden (Optimierung 8). Ferner können auch etwaige Ausreißer erkannt und eliminiert werden (Ausreißererkennung 6 und Evaluation der Ausreißererkennung 7). Im Anschluss daran erfolgt ebenfalls die Optimierung 8 des Testvorgangs. Im Anschluss an die Optimierung 8 kann der Test dann erneut anhand der vorhanden Messdaten 1 oder zusätzlichen neuen Messdaten 1 durchgeführt werden.
Bezugszeichenliste
1 Aufzeichnen von Messdaten
2 Erstellen des Regressionsmodells 3 statistische Tests
4 Test bestanden
5 Fehler
6 Ausreißererkennung
7 Evaluation der Ausreißererkennung 8 Optimierung
Claims
1. Verfahren zum Testen eines Assistenzsystems, insbesondere eines Notbrems- und/oder Notausweichassistenzsystems, für ein Fahrzeug, gekennzeichnet durch folgende Verfahrensschritte
- Erstellen von Messpunkten der Kollisionszeit (TTC) bei mindestens einem festlegbaren Parameter eines Fahrzeuges,
- Erstellen einer Transferfunktion anhand der Messpunkte,
- Vergleichen der Transferfunktion mit mindestens einer Referenz-T ransferfunktion,
- Auswerten des Vergleichs anhand mindestens eines festlegbaren Auswertekriteriums, und
- Erstellen eines Ergebnisses des Tests anhand der Auswertung, wonach der Test als bestanden oder nicht bestanden gilt.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass als Parameter des Fahrzeuges die Geschwindigkeit (v) und/oder die Überlappung und/oder der Kollisionspunkt und/oder die Targetgeschwindigkeit und/oder die Beschleunigung vorgesehen ist.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass für jeden Parameter mehrere Messpunkte erzeugt werden.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Referenz-Transferfunktion eine Funktion umfassend Auslösezeitpunkte, die bei dem Notbremsassistenzsystem zu verschiedenen Parameterwerten erwartet werden können, vorgesehen ist.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Toleranzbereich der Referenz-Transferfunktion vorgesehen ist, der vorzugsweise eine untere Toleranzschwelle (TS_1) und eine obere Toleranzschwelle (TS_2) aufweist.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass als Auswertekriterium bestimmt wird, ob sich die Messpunkte oder ein Teil der Messpunkte innerhalb des Toleranzbereichs befinden.
7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass als Auswertekriterium der Abstand zwischen dem Toleranzbereich, insbesondere der unteren Toleranzschwelle (TS_1), und der Referenz-Transferfunktion herangezogen wird.
8. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sofern der Test als nicht bestanden gilt, zusätzliche Messpunkte erzeugt werden.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die zusätzlichen
Messpunkte nur bei einigen festlegbaren Parametervorzugswerten erzeugt werden.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass anhand der zusätzlich erzeugten Messpunkte der Parametervorzugswerte eine Interpolation und/oder Extrapolation der Ergebnisse für andere Geschwindigkeitswerte erfolgt.
11. Verfahren nach mindestens einem der Ansprüche 5-10, dadurch gekennzeichnet, dass Messpunkte, die sich nicht innerhalb des Toleranzbereichs oder innerhalb eines festlegbaren Abstands zum Toleranzbereich befinden, als Ausreißer erkannt und vorzugsweise aussortiert werden.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102021203847.6 | 2021-04-19 | ||
DE102021203847.6A DE102021203847A1 (de) | 2021-04-19 | 2021-04-19 | Verfahren zum Testen eines Assistenzsystems |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022223085A1 true WO2022223085A1 (de) | 2022-10-27 |
Family
ID=81579499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2022/200068 WO2022223085A1 (de) | 2021-04-19 | 2022-04-06 | Verfahren zum testen eines assistenzsystems |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102021203847A1 (de) |
WO (1) | WO2022223085A1 (de) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011088805A1 (de) * | 2011-12-16 | 2013-06-20 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren zum Entwickeln und/oder Testen eines Fahrerassistenzsystems |
DE102018004429A1 (de) | 2018-06-04 | 2019-12-05 | Daimler Ag | Verfahren zum Testen eines Bremsassistenzsystems für ein Fahrzeug |
DE102020005507A1 (de) * | 2020-09-09 | 2021-01-07 | Daimler Ag | Verfahren zum Testen einer automatisierten Fahrfunktion |
DE102019124018A1 (de) * | 2019-09-06 | 2021-03-11 | Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr | Verfahren zum Optimieren von Tests von Regelsystemen für automatisierte Fahrdynamiksysteme |
-
2021
- 2021-04-19 DE DE102021203847.6A patent/DE102021203847A1/de active Pending
-
2022
- 2022-04-06 WO PCT/DE2022/200068 patent/WO2022223085A1/de active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011088805A1 (de) * | 2011-12-16 | 2013-06-20 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren zum Entwickeln und/oder Testen eines Fahrerassistenzsystems |
DE102018004429A1 (de) | 2018-06-04 | 2019-12-05 | Daimler Ag | Verfahren zum Testen eines Bremsassistenzsystems für ein Fahrzeug |
DE102019124018A1 (de) * | 2019-09-06 | 2021-03-11 | Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr | Verfahren zum Optimieren von Tests von Regelsystemen für automatisierte Fahrdynamiksysteme |
DE102020005507A1 (de) * | 2020-09-09 | 2021-01-07 | Daimler Ag | Verfahren zum Testen einer automatisierten Fahrfunktion |
Also Published As
Publication number | Publication date |
---|---|
DE102021203847A1 (de) | 2022-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2285632B1 (de) | Fahrerassistenzsystem | |
EP2464992B1 (de) | Kollisionsüberwachung für ein kraftfahrzeug | |
DE102017113747A1 (de) | Dynamische anpassung von radarparametern | |
AT523834B1 (de) | Verfahren und System zum Testen eines Fahrerassistenzsystems | |
WO2018068917A1 (de) | Kategorisierung von fahrzeugen in der umgebung eines kraftfahrzeugs | |
DE102019206875B3 (de) | Erkennen einer Bankettfahrt eines Kraftfahrzeugs | |
DE102015218361A1 (de) | Verfahren und Testeinheit zur Verifizierung einer Fahrzeugfunktion | |
DE102016204018A1 (de) | Verfahren und Vorrichtung zur Bestimmung der Querneigung einer Fahrbahn | |
EP1873737A1 (de) | Verfahren zur Erkennung einer kritischen Situation vor einem Kraftfahrzeug | |
WO2017102150A1 (de) | Verfahren zum bewerten einer durch zumindest einen sensor eines fahrzeugs erfassten gefahrensituation, verfahren zum steuern einer wiedergabe einer gefahrenwarnung und verfahren zum wiedergeben einer gefahrenwarnung | |
WO2020064453A1 (de) | Verfahren und vorrichtung zum verbessern einer objekterkennung eines radargeräts unter zuhilfenahme einer lidar-umgebungskarte | |
DE102015109940A1 (de) | Manövrierung eines Gespannes mit einem Kraftwagen und einem Anhänger | |
DE102008046488A1 (de) | Probabilistische Auslösestrategie | |
AT521724A1 (de) | Verfahren und Vorrichtung zur Analyse eines Sensordatenstroms sowie Verfahren zum Führen eines Fahrzeugs | |
DE102018005864A1 (de) | Verfahren zum Testen eines Totwinkelassistenzsystems für ein Fahrzeug | |
WO2022223085A1 (de) | Verfahren zum testen eines assistenzsystems | |
DE102018123735A1 (de) | Verfahren und Vorrichtung zum Verbessern einer Objekterkennung eines Radargeräts | |
WO2022251890A1 (de) | Verfahren und system zum testen eines fahrerassistenzsystems für ein fahrzeug | |
DE102018004429A1 (de) | Verfahren zum Testen eines Bremsassistenzsystems für ein Fahrzeug | |
DE102016208076A1 (de) | Verfahren und vorrichtung zur auswertung eines eingabewerts in einem fahrerassistenzsystem, fahrerassistenzsystem und testsystem für ein fahrerassistenzsystem | |
DE102020208544A1 (de) | Hybride Auswertung von Radardaten für die Klassifikation von Objekten | |
DE102009013326A1 (de) | Verfahren zur Steuerung eines Fahrzeugs | |
DE102019217586A1 (de) | Bestimmung einer diskreten Repräsentation eines Fahrbahnabschnitts vor einem Fahrzeug | |
DE102019102919A1 (de) | Verfahren, Vorrichtung, Computerprogramm und Computerprogrammprodukt zum Betreiben eines Fahrzeuges | |
DE102021101130A1 (de) | Verfahren zum Bestimmen einer Kollisionsgefahr sowie zur Milderung oder Vermeidung einer Kollision, Computerprogramm, computerlesbares Medium, Kollisionsgefahrüberwachungssystem und bewegliches Objekt |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22720548 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22720548 Country of ref document: EP Kind code of ref document: A1 |