WO2022222742A1 - 一种含水灾害体矢量电阻率实时超前探测方法 - Google Patents

一种含水灾害体矢量电阻率实时超前探测方法 Download PDF

Info

Publication number
WO2022222742A1
WO2022222742A1 PCT/CN2022/085060 CN2022085060W WO2022222742A1 WO 2022222742 A1 WO2022222742 A1 WO 2022222742A1 CN 2022085060 W CN2022085060 W CN 2022085060W WO 2022222742 A1 WO2022222742 A1 WO 2022222742A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiving
dipole
shield machine
resistivity
dipoles
Prior art date
Application number
PCT/CN2022/085060
Other languages
English (en)
French (fr)
Inventor
姜志海
岳建华
刘树才
王绍卿
李毛飞
高兆丰
王文闯
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to US17/924,736 priority Critical patent/US20230184983A1/en
Publication of WO2022222742A1 publication Critical patent/WO2022222742A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/081Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices the magnetic field is produced by the objects or geological structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/02Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with propagation of electric current
    • G01V3/04Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with propagation of electric current using dc
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/12Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Definitions

  • the present application relates to the technical field of tunnel engineering, in particular to a real-time advance detection method for vector resistivity of water-containing disaster bodies.
  • Tunnel advanced detection technology includes advanced drilling method, geological radar method, DC resistivity method, infrared detection, electromagnetic method and seismic wave method.
  • the advanced drilling method is the most direct and accurate method of all detection technologies, but it is also quite expensive and time-consuming.
  • the advanced drilling method in front of the face requires the drill bit to be driven into the abnormal area at a fixed angle, and factors such as rock hardness and fluidity It will have a great impact on the drilling progress and the direction of the drill bit, and requires extremely high professionalism and experience.
  • geological radar method and infrared water detection method there are geological radar method and infrared water detection method.
  • the two methods have high detection accuracy for abnormal objects within 30m in front of the tunnel. Infrared is sensitive to water, and the geological radar method reflects the shape and boundary of anomalous regions more clearly.
  • the commonly used methods are the DC resistivity method and the electromagnetic method, such as high ground density, downhole DC advance detection and face transient electromagnetic advance detection.
  • the ground high-density method is relatively cumbersome and easily shielded by the high-resistance layer; the DC advance detection in the well is not very accurate in interpreting the anomaly ahead, and it is easy to falsely report; the transient electromagnetic method is convenient and fast in construction, but there are certain blind spots, and Highly susceptible to electromagnetic interference downhole.
  • the seismic wave method For long-term forecasting, that is, more than 100m in front of the face, the seismic wave method needs to be used, such as TSP advance forecasting.
  • This method requires drilling and shooting, and the construction is complicated and time-consuming, which may have a certain impact on the geological structure of the tunnel.
  • each geophysical advanced detection technology has its own application conditions and applicable scenarios, and they are all "prediction first and then excavation", that is, prediction and construction are separated, which makes the real-time performance of advanced prediction results low.
  • a real-time advance detection method for vector resistivity of water-containing disaster bodies comprising:
  • each receiving dipole on the shield machine Based on the pre-built detection environment, the potential difference of each receiving dipole on the shield machine is obtained in real time, and each receiving dipole includes each first receiving dipole and each second receiving dipole;
  • the resistivity conversion is carried out by using the constant current field resistivity calculation formula to obtain the apparent resistivity of each of the receiving dipoles;
  • the construction of the detection environment is as follows:
  • a plurality of power supply electrodes are arranged on the ground at fixed intervals along the central axis of the tunnel's intended driving direction, and two groups of adjacent power supply electrodes are combined to form a power supply dipole;
  • a preset number of first receiving electrodes are arranged around the shield machine with a preset arc length on the shield machine casing far from the shield machine cutter head, and a preset number of first receiving electrodes are arranged on the shield machine casing close to the shield machine cutter head with the preset arc length.
  • the preset number of second receiving electrodes is arranged around the shield machine with an interval arc length, and each of the second receiving electrodes is located correspondingly, and the arrangement point of each of the first receiving electrodes is arranged in the direction of the shield machine cutter head. parallel to the extension line of the shield machine shell;
  • the preset number of first receiving dipoles is formed, and each of the second receiving dipoles surrounding the shield machine shell close to the shield machine cutter head is formed.
  • the positions of the electrodes are connected by two lines, and the two second receiving electrodes on the line segment passing through the axis of the shield machine and perpendicular to the ground form a second receiving dipole, each of the first receiving electrodes and each of the second receiving electrodes.
  • the receiving electrode is used to collect the electrical signal of the tunnel, and according to the electrical signal, the potential difference of each of the first receiving dipole and the second receiving dipole in different directions of the tunnel is obtained;
  • the step of determining the detection result of the abnormal body by analyzing each of the resistivity change curves includes:
  • the formula for calculating the resistivity of the steady flow field is:
  • ⁇ U MN is the potential difference between the receiving electrode M of the receiving dipole and the receiving electrode N
  • ⁇ s is the apparent resistivity of the receiving dipole
  • k is the cloth pole constant
  • I is the supply current of the supplying dipole
  • M is the The number of one receiving electrode that receives the dipole
  • N is the number of the other receiving electrode that receives the dipole.
  • the above-mentioned real-time advanced detection method of vector resistivity of water-containing disaster bodies can obtain the potential difference of each receiving dipole on the shield machine in real time based on the pre-constructed detection environment, and each receiving dipole includes each first receiving dipole and second receiving dipole.
  • the resistivity conversion is carried out by using the resistivity calculation formula of the steady flow field to obtain the apparent resistivity of each receiving dipole;
  • the pole position is the abscissa, and the apparent resistivity is the ordinate, and the apparent resistivity curve of each receiving dipole is drawn; according to the analysis of each apparent resistivity change curve, the detection results of abnormal objects are determined, and the continuous operation of the underground shield machine is realized.
  • the receiving dipoles continuously receiving electrical signals and drawing the apparent resistivity curve of each group of receiving dipoles, the situation of the water-bearing hazard in front of the excavation is detected in real time, which improves the real-time performance of the advance forecasting results.
  • FIG. 1 is a schematic flowchart of a real-time advanced detection method for vector resistivity of water-containing disaster bodies in one embodiment
  • FIG. 2 is a schematic diagram of the construction of the detection environment of the real-time advanced detection method of vector resistivity of water-containing disaster bodies in one embodiment
  • Figure 3 is a schematic diagram of a simulated detection environment
  • Figure 5 is a schematic diagram of the potential decay curve of the N4 electrode
  • Figure 6 is a schematic diagram of the M 2 -N 2 receiving dipole resistivity curve at different distances in front of it;
  • Figure 7 is a schematic diagram of the M 4 -N 4 receiving dipole resistivity curve at different distances in front of it;
  • Figure 8 is a schematic diagram of the comparison of the receiving dipole resistivity curves of M 2 -N 2 and M 4 -N 4 at 15m in front;
  • Figure 9 is a schematic diagram of the comparison of the receiving dipole resistivity curves of M 2 -N 2 and M 4 -N 4 at 25m in front;
  • Figure 10 is a schematic diagram of the receiving dipole resistivity difference curves of M 2 -N 2 and M 4 -N 4 at 15m in front of it;
  • Figure 11 is a schematic diagram of the receiving dipole resistivity difference curves of M 2 -N 2 and M 4 -N 4 at 25m in front of it;
  • Figure 12 is a schematic diagram of the comparison of the receiving dipole resistivity curves of M 2 -N 2 and M 4 -N 4 when the front is 15m to the right;
  • Figure 13 is a schematic diagram of the comparison of the receiving dipole resistivity curves of M 2 -N 2 and M 4 -N 4 when the front is 15m to the left;
  • Fig. 14 Schematic diagram of the receiving dipole resistivity difference curves of M 2 -N 2 and M 4 -N 4 when the front is 15m to the right;
  • Fig. 15 Schematic diagram of the receiving dipole resistivity difference curves of M 2 -N 2 and M 4 -N 4 when the front is 15m to the left;
  • Figure 16 is a schematic diagram of the receiving dipole resistivity curves of M 1 -N 1 and M 3 -N 3 when the front is 15m downward;
  • Figure 17 Schematic diagram of the receiving dipole resistivity curves of M 1 -N 1 and M 3 -N 3 when the front is 15m upwards;
  • Figure 18 is a schematic diagram of the receiving dipole resistivity curves of M 1 -N 1 and M 3 -N 3 at 15m in front;
  • Figure 19 is a schematic diagram of the receiving dipole resistivity curve of M 1 -M 3 at 15m in front of it;
  • Figure 20 is a schematic diagram of the receiving dipole resistivity curve of M 1 -M 3 when the front is 15m downward;
  • Figure 21 is a schematic diagram of the receiving dipole resistivity curve of M 1 -M 3 when the front is 15m upwards;
  • Figure 22 is a schematic diagram of the received dipole resistivity curves at designated positions M 2 -N 2 and M 4 -N 4 ;
  • Figure 23 is a schematic diagram of the received dipole resistivity difference curves at designated positions M 2 -N 2 and M 4 -N 4 ;
  • Figure 24 is a schematic diagram of the received dipole resistivity curves at designated positions M 1 -N 1 and M 3 -N 3 ;
  • FIG. 25 is a schematic diagram of the received dipole resistivity curves at designated locations M 1 -M 3 .
  • a real-time advance detection method for vector resistivity of water-bearing hazard bodies including the following steps:
  • Step S220 based on the pre-built detection environment, obtain the potential difference of each receiving dipole on the shield machine in real time, and each receiving dipole includes each first receiving dipole and each second receiving dipole.
  • the construction method of the detection environment is as follows: on the ground along the central axis of the intended tunneling direction, a plurality of power supply electrodes are arranged at fixed intervals, and the adjacent power supply electrodes are combined into two groups of power supply dipoles; A preset number of first receiving electrodes are arranged around the shield machine with a preset arc length on the shell of the machine, and a preset number of first receiving electrodes are arranged around the shield machine with a preset arc length on the shell of the shield close to the cutter head of the shield machine.
  • the number of second receiving electrodes is an extension line parallel to the shield machine shell in the direction of the shield machine cutter head from the arrangement point of each first receiving electrode; according to the same extension line.
  • the first receiving electrode and the second receiving electrode form a preset number of first receiving dipoles, and the positions of the second receiving electrodes surrounding the shield machine shell near the shield machine cutter head are connected in pairs to connect the Two second receiving electrodes on the line segment passing through the axis of the shield machine and perpendicular to the ground form a second receiving dipole.
  • Each first receiving electrode and each second receiving electrode are used to collect the electrical signal of the tunnel, which is obtained from the electrical signal.
  • each first receiving dipole and the second receiving dipole tunnel in different directions; according to the continuous excavation of the shield machine underground, power is supplied to each power supply dipole in turn to form a detection environment, so that each first receiving electrode on the shield machine and each second receiving electrode can collect electrical signals.
  • the interval distance of the fixed interval is determined according to the signal strength of each first receiving electrode and each second receiving electrode on the shield machine. If an abnormal value is distinguished, the interval distance is used as the interval distance of the fixed interval. In one embodiment, in the advance exploration of the tunnel, a better observation effect can be obtained with an interval distance of 10m.
  • a survey line is arranged along the projection of the central axis of the tunnel to be excavated on the ground.
  • a plurality of power supply electrodes (C 1 , C 2 , C 3 ?? C n ) are arranged on the measuring line at intervals, and two groups of adjacent power supply electrodes are combined to form a power supply dipole (C 1 -C 2 , C 2 -C 3 ... ...C n-1 -C n ), by supplying power to the power supply dipole, a stable current field of the electric dipole source is established in the medium in front of the tunnel face.
  • first receiving electrodes (M 1 M 2 M 3 M 4 ?? M i ) are arranged around the shield machine with a preset arc length on the shield machine casing far from the shield machine cutter head, and at the shield machine close to the shield machine
  • j second receiving electrodes (N 1 N 2 N 3 N 4 ?? N j ) are arranged around the shield machine with a preset arc length at a preset interval, and each second receiving electrode is correspondingly located at, Take the arrangement point of each first receiving electrode to make an extension line parallel to the shield machine casing in the direction of the shield machine cutter head, and form a preset number of first receiving electrodes and second receiving electrodes according to the same extension line.
  • a receiving dipole (M 1 -N 1 , M 2 -N 2 , M 3 -N 3 , M 4 -N 4 , M i -N j ), and the shield machine casing close to the shield machine cutter head
  • the positions of the surrounding second receiving electrodes are connected in pairs, and the two second receiving electrodes on the line segment passing through the axis of the shield machine and perpendicular to the ground form a second receiving dipole (M a -M b , a is the number of a second receiving electrode on the line segment that passes through the axis of the shield machine and is perpendicular to the ground, b is the number of another second receiving electrode on the line segment that passes through the axis of the shield machine and is perpendicular to the ground), each The first receiving electrode and each second receiving electrode are used to collect electrical signals of the tunnels, and the potential differences in different directions of the tunnels of each of the first receiving dipoles and the second receiving dipoles are obtained according to the electrical signals.
  • the power supply dipoles C 1 -C 2 on the ground start to supply power, and the first receiving electrodes and the second receiving electrodes on the shield machine collect electrical signals; then C 2 -C 3 Power supply, each first receiving electrode and each second receiving electrode on the shield machine collect electrical signals; then C 3 -C 4 power supply, and then continue to C n-1 -C n power supply, and the shield machine continues to advance , each first receiving electrode and each second receiving electrode on the shield machine continuously collect electrical signals.
  • the method of acquiring the potential difference of each receiving dipole on the shield machine in real time includes:
  • the corresponding receiving electrode of each receiving dipole includes a first receiving electrode and a second receiving electrode
  • the receiving electrode when the receiving dipole is the second receiving dipole, the corresponding receiving electrodes are the two second receiving electrodes on the line segment that passes through the axis of the shield machine and is perpendicular to the ground) to receive the collected electrical signal, through the potential difference
  • Step S240 according to the relative positional relationship between each receiving dipole and the power supplying dipole, using a constant current field resistivity calculation formula to perform resistivity conversion to obtain the apparent resistivity of each receiving dipole.
  • the formula for calculating the resistivity of the steady flow field is:
  • ⁇ U MN is the potential difference between the receiving electrode M of the receiving dipole and the receiving electrode N
  • ⁇ S is the apparent resistivity of the receiving dipole
  • k is the cloth pole constant
  • m is the cloth pole constant
  • I is the power supply dipole.
  • Supply current M is the number of one receiving electrode that receives the dipole
  • N is the number of the other receiving electrode that receives the dipole.
  • the cloth pole constant k is determined according to the arrangement relationship between the power supply dipole and the receiving electrodes M and N.
  • the formula for calculating the cloth pole constant k is as follows:
  • AM is the distance between the power supply electrode A and the receiving electrode point M
  • BM is the distance between the power supply electrode B and the receiving electrode point M
  • AN is the distance between the power supply electrode A and the receiving electrode point N
  • BN is the power supply electrode.
  • A is the number of one power supply electrode in the power supply dipole
  • B is the number of the other power supply electrode in the power supply dipole.
  • step S260 the apparent resistivity curve of each receiving dipole is drawn with the position of the power supply dipole as the abscissa and the apparent resistivity as the ordinate.
  • the apparent resistivity is taken as the absolute value to draw the apparent resistivity curve of each receiving dipole.
  • Step S280 analyze according to each apparent resistivity change curve, and determine the detection result of the abnormal body.
  • the step of determining the detection result of the abnormal body by analyzing each resistivity change curve includes:
  • each resistivity change curve it is determined whether an abnormal body is detected; when an abnormal body is detected, according to the relative magnitude relationship of the apparent resistivity value of each first receiving dipole and the shape of the apparent resistivity curve, And the abnormal situation of the apparent resistivity curve of the second receiving dipole, the position of the abnormal body is determined.
  • the extreme value of the apparent resistivity curve is used as the basis for judging the abnormality.
  • the apparent resistivity curve curve shows a minimum value, from which the distance between the abnormal body and the face of the face can be determined.
  • the abnormal body can also be located in the shield machine. Judging whether the front of the tunneling direction is left or right, and the front is up or down, the result has high accuracy.
  • the adjacent power supply electrodes are composed of two groups of power supply dipoles (C 1 -C 2 , C 2 -C 3 ... C 10 -C 11 ), and then use a DC power supply to supply power to the electrodes. , to establish a stable current field underground.
  • first receiving electrodes M 1 M 2 M 3 M 4
  • second receiving electrodes N 1 N 2 N 3 N 4
  • the second receiving electrode N1 is correspondingly located on an extension line parallel to the shield machine casing in the direction of the shield machine cutter head from the arrangement point of the first receiving electrode M1.
  • the second receiving electrode N1 is connected to the first receiving electrode.
  • the distance between M 1 is 10m; the second receiving electrode N 2 is located correspondingly, with the arrangement point of the first receiving electrode M 2 on the extension line parallel to the shield machine casing in the direction of the shield machine cutter head, the second The distance between the receiving electrode N 2 and the first receiving electrode M 2 is 10m; the second receiving electrode N 3 is located correspondingly, and the arrangement point of the first receiving electrode M 3 is parallel to the shield machine in the direction of the shield machine cutter head.
  • the distance between the second receiving electrode N3 and the first receiving electrode M3 is 10m; the second receiving electrode N4 is located correspondingly, and the shield machine is faced with the arrangement point of the first receiving electrode M4 .
  • the direction of the cutter head is parallel to the extension line of the shield machine casing, and the distance between the second receiving electrode N 4 and the first receiving electrode M 4 is 10m.
  • first receiving dipoles (M 1 -N 1 , M 2 -N 2 , M 3 -N 3 , M 4 -N 4 ) are formed according to the first receiving electrode and the second receiving electrode on the same extension line, and Connect the positions of the second receiving electrodes around the shield machine shell close to the shield machine cutter head by two lines, and make up two second receiving electrodes on the line segment that passes through the axis of the shield machine and is perpendicular to the ground.
  • the second receiving dipoles (M 1 -M 3 ), each first receiving electrode and each second receiving electrode collect electrical signals in different directions of the tunnel.
  • the power supply dipoles C 1 -C 2 on the ground start to supply power, and each first receiving electrode and each second receiving electrode on the shield machine collect data; after that, C 2 -C 3 supplies power, and the shield machine
  • Each first receiving electrode and each second receiving electrode of the 10000C are used for data collection; followed by C3 - C4 power supply, proceed sequentially to C10 - C11 power supply, and the shield machine continues to advance, and each first receiving electrode on it
  • each second receiving electrode continuously receives signals and draws the apparent resistivity change curve of each group of receiving dipoles, so that the abnormal real-time dynamic detection of the front of the face can be realized.
  • each receiving dipole is used as a group to calculate the potential difference of each group, and further calculate the apparent resistivity according to the potential difference of each group.
  • the apparent resistivity conversion here adopts the constant flow field resistivity calculation formula based on the uniform half-space model. Because the tunnel model conforms to the half-space condition, the ground excitation is received on the shield machine. The shield machine in the tunnel is excavating, and the stratum above it can be regarded as a uniform layered medium.
  • ⁇ U MN U M -U N , where ⁇ U MN is the potential difference between the receiving electrode M receiving the dipole and the receiving electrode N, and U M is the potential of one receiving electrode M receiving the dipole , U M is the potential of the other receiving electrode M that receives the dipole.
  • ⁇ U MN is the potential difference between the receiving electrode M of the receiving dipole and the receiving electrode N
  • ⁇ s is the apparent resistivity of the receiving dipole
  • k is the cloth pole constant
  • m is the cloth pole constant
  • I is the power supply dipole.
  • Supply current M is the number of one receiving electrode that receives the dipole
  • N is the number of the other receiving electrode that receives the dipole.
  • the cloth pole constant k is determined according to the arrangement relationship between the power supply dipole and the receiving electrodes M and N.
  • the formula for calculating the cloth pole constant k is as follows:
  • AM is the distance between the power supply electrode A and the receiving electrode point M
  • BM is the distance between the power supply electrode B and the receiving electrode point M
  • AN is the distance between the power supply electrode A and the receiving electrode point N
  • BN is the power supply electrode.
  • A is the number of one power supply electrode in the power supply dipole
  • B is the number of the other power supply electrode in the power supply dipole.
  • the extreme value is used as the basis for judging abnormality. If the underground space is uniform and there is no abnormality, the curve is only affected by the tunnel, and no extreme value appears. When there is a low-resistance abnormality in front of the tunnel face in the tunneling direction of the shield machine, an obvious minimum value will be formed near the abnormal point. The distance in front of the subfront.
  • the relative magnitudes of the apparent resistivity values (that is, the apparent resistivity values) of the receiving dipoles M 2 -N 2 and M 4 -N 4 reflect that the abnormal body is located in front of the tunnel face in the tunneling direction of the shield machine Left or right.
  • the apparent resistivity of the two groups of receiving dipoles M 2 -N 2 and M 4 -N 4 can be calculated as the difference ((M 2 -N 2 )-(M 4 -N 4 )), and the difference is
  • the first branch formed by the two curves is used to judge that the abnormality is located in front of the tunnel face in the tunneling direction of the shield machine. or a biased basis. If the curve of the first branch shows the characteristics of "open mouth”, and the rate of change is obviously large, the abnormality is located in front of the tunnel face of the shield machine; if the curve of the first branch shows the characteristics of "parallel”, the abnormality is located in the shield machine. The front of the face in the tunneling direction is on the upper side; if the curve of the first branch shows the characteristics of "closed mouth", the abnormal body is neither upward nor downward.
  • the apparent resistivity curve of the M 1 -M 3 receiving dipole there is a separate response to the abnormal body located on the upper face of the tunnel face in the tunneling direction of the shield machine, which can be used as M 1 -N 1 , M 3 - N 3 two groups of receiving dipoles are auxiliary parameters outside the apparent resistivity curve. If the abnormality is located above the tunnel face in the tunneling direction of the shield machine, the curve will show a minimum value. For other azimuthal anomalies, the apparent resistivity curves of this group are almost flat.
  • the above-mentioned real-time advanced detection method of vector resistivity of water-containing disaster bodies can obtain the potential difference of each receiving dipole on the shield machine in real time based on the pre-constructed detection environment, and each receiving dipole includes each first receiving dipole and second receiving dipole.
  • the resistivity conversion is carried out by using the resistivity calculation formula of the steady flow field to obtain the apparent resistivity of each receiving dipole;
  • the pole position is the abscissa, and the apparent resistivity is the ordinate, and the apparent resistivity curve of each receiving dipole is drawn; according to the analysis of each apparent resistivity change curve, the detection results of abnormal objects are determined, and the continuous operation of the underground shield machine is realized.
  • the receiving dipoles continuously receiving electrical signals and drawing the apparent resistivity curve of each group of receiving dipoles, the situation of the water-bearing hazard in front of the excavation is detected in real time, which improves the real-time performance of the advance forecasting results.
  • simulation is carried out.
  • the specific simulation data are as follows:
  • the detection environment is shown in Figure 3.
  • the abnormal body is set as a sphere with a radius of 5m and a resistivity of 1 ⁇ m; the resistivity of the surrounding rock is 100 ⁇ m; and the resistivity of the tunnel is 10 8 ⁇ m.
  • the M 1 -M 3 apparent resistivity value curve will show a minimum value in the first branch, which can be used to judge that the abnormal body is located in front of the palm.
  • Auxiliary parameter on the square bias is a parameter on the square bias.
  • steps in the flowchart of FIG. 1 are shown in sequence according to the arrows, these steps are not necessarily executed in the sequence shown by the arrows. Unless explicitly stated herein, the execution of these steps is not strictly limited to the order, and these steps may be performed in other orders. Moreover, at least a part of the steps in FIG. 1 may include multiple sub-steps or multiple stages. These sub-steps or stages are not necessarily executed and completed at the same time, but may be executed at different times. The execution of these sub-steps or stages The sequence is also not necessarily sequential, but may be performed alternately or alternately with other steps or sub-steps of other steps or at least a portion of a phase.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Electromagnetism (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种含水灾害体矢量电阻率实时超前探测方法。该方法包括:基于预先构建的探测环境,实时获取盾构机上的各接收偶极的电位差,各接收偶极包括各第一接收偶极和第二接收偶极(S220);根据各接收偶极与供电偶极的相对位置关系和各接收偶极的电位差,利用稳流场电阻率计算公式进行电阻率转换,获得各接收偶极的视电阻率(S240);以供电偶极位置为横坐标,以视电阻率为纵坐标,绘制各接收偶极的视电阻率曲线(S260);根据各视电阻率变化曲线进行分析,确定异常体的探测结果(S280),实现了在地下盾构机不断掘进过程中,根据接收偶极不停地接收电信号并绘制各组接收偶极的视电阻率曲线,实时探测掘进前方的含水灾害体情况,提高了超前预报结果实时性。

Description

一种含水灾害体矢量电阻率实时超前探测方法 技术领域
本申请涉及隧道工程技术领域,特别是涉及一种含水灾害体矢量电阻率实时超前探测方法。
背景技术
目前,为解决城市交通拥堵问题,我国开始大规模修建地铁交通。在地铁隧道开挖过程中,必须通过隧道超前探测技术进行探测,做好不良地质体的超前预报工作,防止突水、涌泥等灾害事故的发生。
隧道超前探测技术包括超前钻探法、地质雷达法、直流电阻率法、红外探测、电磁类方法以及地震波法等。针对隧道超前探测的实际需求,常常采用两种或多种技术手段综合探测。每种方法都有其适用范围和存在一定的弊端。超前钻探方法是所有探测技术中最直接、最准确的方法,同时也相当昂贵与耗时,掌子面前方的超前钻探需要把钻头以固定角度打到异常区域,岩石的软硬和流体等因素会对钻探进度和钻头方向等造成较大影响,需要极高的专业和经验。而对于短期超前预报,有地质雷达法和红外探水法,两种方法对隧道前方30m范围内的异常体探测精度较高。红外对水敏感,地质雷达法对异常体区域形态和边界反映比较清晰。对于中长期预报,即掌子面前方30-100m以内,常用的方法有直流电阻率法和电磁类方法,比如地面高密度、井下的直流超前探和掌子面瞬变电磁超前探。地面高密度方法施工相对繁琐且易受到高阻层的屏蔽;井下的直流超前探对前方的异常解释精度不甚高,容易误报;瞬变电磁法施工方便、快捷,但存在一定盲区,而且极易受到井下的电磁干扰。对于长期预报,即掌子面前方100m以上,需要用到地震波法,比如TSP超前预报,该方法需要打孔放炮,施工比较复杂与费时,可能对隧道地质结构造成一定影响。
因此,现阶段每种物探超前探测技术有各自的应用条件和适用场景,而且都是“先预报后掘进”,即预报和施工是分离的,使得超前预报结果实时性低。
发明内容
基于此,有必要针对上述技术问题,提供一种能够提高超前预报结果实时性低的含水灾害体矢量电阻率实时超前探测方法。
一种含水灾害体矢量电阻率实时超前探测方法,所述方法包括:
基于预先构建的探测环境,实时获取盾构机上的各接收偶极的电位差,各所述接收偶极包括各第一接收偶极和第二接收偶极;
根据各所述接收偶极与供电偶极的相对位置关系和各接收偶极的电位差,利用稳流场电阻率计算公式进行电阻率转换,获得各所述接收偶极的视电阻率;
以所述供电偶极位置为横坐标,以所述视电阻率为纵坐标,绘制各所述接收偶极的视电阻率曲线;
根据各所述视电阻率变化曲线进行分析,确定异常体的探测结果;
所述探测环境的构建方式为:
在地面沿隧道拟掘进方向的中轴线以固定间隔布置多个供电电极,相邻的所述供电电极两两组合成供电偶极;
在远离盾构机刀盘的盾构机外壳上以预设间隔弧长环绕盾构机布置预设数量的第一接收电极,在靠近盾构机刀盘的盾构机外壳上以所述预设间隔弧长环绕盾构机布置所述预设数量的第二接收电极,各所述第二接收电极对应位于,以各所述第一接收电极的布置点向盾构机刀盘方向上作平行于盾构机外壳的延长线上;
按照同一延长线上的第一接收电极和第二接收电极组成所述预设数量的第一接收偶极,以及将靠近盾构机刀盘的盾构机外壳上环绕的各所述第二接收电极的位置点两两连线,将过盾构机轴心且垂直于地面的线段上的两个第二接收电极组成第二接收偶极,各所述第一接收电极和各所述第二接收电极用于采集隧道的电信号,根据所述电信号获得各所述第一接收偶极和所述第二接收偶极隧道不同方位的电位差;
根据所述盾构机在地下不断掘进,依次向各所述供电偶极供电,形成探测环境,使所述盾构机上的各所述第一接收电极和各所述第二接收电极得以采集到电信号。
在其中一个实施例中,所述根据各所述电阻率变化曲线进行分析,确定异常体的探测结果的步骤,包括:
根据各所述电阻率变化曲线中是否出现极小值,确定是否探测到异常体;
当探测到异常体时,根据各所述第一接收偶极的视电阻率值相对大小关系和视电阻率曲线的形态,以及所述第二接收偶极的视电阻率曲线的异常情况,确定异常体的位置。
在其中一个实施例中,所述稳流场电阻率计算公式为:
Figure PCTCN2022085060-appb-000001
其中,ΔU MN为接收偶极的接收电极M与接收电极N之间的电位差,ρ s为接收偶极的视电阻率,k为布极常数,I为供电偶极的供电电流,M为接收偶极的一个接收电极的编号,N为接收偶极的另一个接收电极的编号。
上述含水灾害体矢量电阻率实时超前探测方法,通过基于预先构建的探测环境,实时获取盾构机上的各接收偶极的电位差,各接收偶极包括各第一接收偶极和第二接收偶极;根据各接收偶极与供电偶极的相对位置关系和各接收偶极的电位差,利用稳流场电阻率计算公式进行电阻率转换,获得各接收偶极的视电阻率;以供电偶极位置为横坐标,以视电阻率为纵坐标,绘制各接收偶极的视电阻率曲线;根据各视电阻率变化曲线进行分析,确定异常体的探测结果,实现了在地下盾构机不断掘进过程中,根据接收偶极不停地接收电信号并绘制各组接收偶极的视电阻率曲线,实时探测掘进前方的含水灾害体情况,提高了超前预报结果实时性。
附图说明
图1为一个实施例中含水灾害体矢量电阻率实时超前探测方法的流程示意图;
图2为一个实施例中含水灾害体矢量电阻率实时超前探测方法的探测环境构建示意图;
图3为一个模拟的探测环境示意图;
图4为Y-Z截面(x=0)电势分布;
图5N 4电极电位衰减曲线示意图;
图6正前方不同距离时M 2-N 2接收偶极电阻率曲线示意图;
图7正前方不同距离时M 4-N 4接收偶极电阻率曲线示意图;
图8正前方15m时M 2-N 2和M 4-N 4接收偶极电阻率曲线对比示意图;
图9正前方25m时M 2-N 2和M 4-N 4接收偶极电阻率曲线对比示意图;
图10正前方15m时M 2-N 2和M 4-N 4接收偶极电阻率差曲线示意图;
图11正前方25m时M 2-N 2和M 4-N 4接收偶极电阻率差曲线示意图;
图12前方15m偏右时M 2-N 2和M 4-N 4接收偶极电阻率曲线对比示意图;
图13前方15m偏左时M 2-N 2和M 4-N 4接收偶极电阻率曲线对比示意图;
图14前方15m偏右时M 2-N 2和M 4-N 4接收偶极电阻率差曲线示意图;
图15前方15m偏左时M 2-N 2和M 4-N 4接收偶极电阻率差曲线示意图;
图16前方15m偏下时M 1-N 1和M 3-N 3接收偶极电阻率曲线示意图;
图17前方15m偏上时M 1-N 1和M 3-N 3接收偶极电阻率曲线示意图;
图18正前方15m时M 1-N 1和M 3-N 3接收偶极电阻率曲线示意图;
图19正前方15m时M 1-M 3接收偶极电阻率曲线示意图;
图20正前方15m偏下时M 1-M 3接收偶极电阻率曲线示意图;
图21正前方15m偏上时M 1-M 3接收偶极电阻率曲线示意图;
图22指定位置M 2-N 2和M 4-N 4接收偶极电阻率曲线示意图;
图23指定位置M 2-N 2和M 4-N 4接收偶极电阻率差曲线示意图;
图24指定位置M 1-N 1和M 3-N 3接收偶极电阻率曲线示意图;
图25指定位置M 1-M 3接收偶极电阻率曲线示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在一个实施例中,如图1所示,提供了一种含水灾害体矢量电阻率实时超前探测方法,包括以下步骤:
步骤S220,基于预先构建的探测环境,实时获取盾构机上的各接收偶极的电位差,各接收偶极包括各第一接收偶极和第二接收偶极。
其中,探测环境的构建方式为:在地面沿隧道拟掘进方向的中轴线以固定间隔布置多个供电电极,相邻的供电电极两两组合成供电偶极;在远离盾构机刀盘的盾构机外壳上以预设间隔弧长环绕盾构机布置预设数量的第一接收电极,在靠近盾构机刀盘的盾构机外壳上以预设间隔弧长环绕盾构机布置预设数量的第二接收电极,各第二接收电极对应位于,以各第一接收电极的布置点向盾构机刀盘方向上作平行于盾构机外壳的延长线上;按照同一延长线上的第一接收电极和第二接收电极组成预设数量的第一接收偶极,以及将靠近盾构机刀盘的盾构机外壳上环绕的各第二接收电极的位置点两两连线,将过盾构机轴心且垂直于地面的线段上的两个第二接收电极组成第二接收偶极,各第一接收电极和各第二接收电极用于采集隧道的电信号,根据电信号获得各第一接收偶极和第二接收偶极隧道不 同方位的电位差;根据盾构机在地下不断掘进,依次向各供电偶极供电,形成探测环境,使盾构机上的各第一接收电极和各第二接收电极得以采集到电信号。
其中,固定间隔的间隔距离根据盾构机上的各第一接收电极和各第二接收电极的信号强度而定,根据预先试验,在试验中某一间隔距离下接收到的电位信号较强,可区分出异常值,则采用此间隔距离作为固定间隔的间隔距离,在一个实施例中,在隧道超前探中,以10m的间隔距离可以取得较好观测效果。
在一个实施例中,根据隧道掌子面的停头所在位置,沿着隧道拟掘进方向的中轴线在地面的投影布设测线,测线长度等于要探测掌子面前方的距离,然后以固定间隔在测线上布置多个供电电极(C 1,C 2,C 3……C n),相邻的供电电极两两组合成供电偶极(C 1-C 2,C 2-C 3……C n-1-C n),通过给供电偶极供电,使隧道掌子面前方介质中建立起电偶极子源的稳定电流场。
在远离盾构机刀盘的盾构机外壳上以预设间隔弧长环绕盾构机布置i个的第一接收电极(M 1M 2M 3M 4……M i),在靠近盾构机刀盘的盾构机外壳上以预设间隔弧长环绕盾构机布置j个的第二接收电极(N 1N 2N 3N 4……N j),各第二接收电极对应位于,以各第一接收电极的布置点向盾构机刀盘方向上作平行于盾构机外壳的延长线上,按照同一延长线上的第一接收电极和第二接收电极组成预设数量的第一接收偶极(M 1-N 1,M 2-N 2,M 3-N 3,M 4-N 4,M i-N j),以及将靠近盾构机刀盘的盾构机外壳上环绕的各第二接收电极的位置点两两连线,将过盾构机轴心且垂直于地面的线段上的两个第二接收电极组成第二接收偶极(M a-M b,a为过盾构机轴心且垂直于地面的线段上的一个第二接收电极的编号,b为过盾构机轴心且垂直于地面的线段上的另一个第二接收电极的编号),各第一接收电极和各第二接收电极用于采集隧道的电信号,根据电信号获得各第一接收偶极和第二接收偶极隧道不同方位的电位差。
盾构机开始在隧道中掘进时,地面上的供电偶极C 1-C 2开始供电,盾构机上的各第一接收电极和各第二接收电极进行电信号采集;之后C 2-C 3供电,盾构机上的各第一接收电极和各第二接收电极进行电信号采集;紧接着C 3-C 4供电,依次进行下去至C n-1-C n供电,而盾构机不断前进,盾构机上的各第一接收电极和各第二接收电极不停地电信号采集。
在一个实施例中,实时获取盾构机上的各接收偶极的电位差的方式包括:
根据组成各接收偶极对应的接收电极(该接收电极为第一接收电极或第二接收电极,当接收偶极为第一接收偶极时,对应的接收电极包括一个第一接收电极和一个第二接收电极,当接收偶极为第二接收偶极时,对应的接收电极为过盾构机轴心且垂直于地面的线段上的两个第二接收电极)接收采集到的电信号,通过电位差计算公式,确定各接收偶极的电位差;电位差计算公式为:ΔU MN=U M-U N,其中,ΔU MN为接收偶极的接收电极M与接收电极N之间的电位差,U M为接收偶极的一个接收电极M的电位,U M为接收偶极的另一个接收电极M的电位。
步骤S240,根据各接收偶极与供电偶极的相对位置关系,利用稳流场电阻率计算公式进行电阻率转换,获得各接收偶极的视电阻率。
在一个实施例中,稳流场电阻率计算公式为:
Figure PCTCN2022085060-appb-000002
其中,ΔU MN为接收偶极的接收电极M与接收电极N之间的电位差,ρ S为接收偶极的 视电阻率,k为布极常数,其单位为m,I为供电偶极的供电电流,M为接收偶极的一个接收电极的编号,N为接收偶极的另一个接收电极的编号。
其中,布极常数k根据供电的供电偶极和接收电极M、N的排列关系确定,计算布极常数k的公式如下:
Figure PCTCN2022085060-appb-000003
其中,AM为供电电极A和接收电极M点之间的距离,BM为供电电极B和接收电极M点之间的距离,AN为供电电极A和接收电极N点之间的距离,BN为供电电极B和接收电极N点之间的距离,A为供电的供电偶极中的一个供电电极编号,B为供电的供电偶极中的另一个供电电极编号。
步骤S260,以供电偶极位置为横坐标,以视电阻率为纵坐标,绘制各接收偶极的视电阻率曲线。
其中,视电阻率取绝对值绘制各接收偶极的视电阻率曲线。
步骤S280,根据各视电阻率变化曲线进行分析,确定异常体的探测结果。
在一个实施例中,根据各电阻率变化曲线进行分析,确定异常体的探测结果的步骤,包括:
根据各电阻率变化曲线中是否出现极小值,确定是否探测到异常体;当探测到异常体时,根据各第一接收偶极的视电阻率值相对大小关系和视电阻率曲线的形态,以及第二接收偶极的视电阻率曲线的异常情况,确定异常体的位置。
其中,首先以视电阻率曲线的极值作为判断异常的依据,当掌子面前方有低阻异常时,视电阻率曲线曲线出现极小值,由此可以确定异常体距掌子面的距离;其次,通过各第一接收偶极的视电阻率值相对大小关系和视电阻率曲线的形态,以及第二接收偶极的视电阻率曲线的异常情况,还可对异常体位于盾构机掘进方向的前方偏左还是偏右和前方偏上还是偏下进行判断,结果具有较高的准确性。
如图2所示,提供一种含水灾害体矢量电阻率实时超前探测方法,以以隧道掌子面停头在地面的投影为起始点(x=0),沿着隧道中轴线在地面的投影布设测线100m(GPS标定测线走向方位)为例进行说明,具体步骤如下:
在地面沿隧道拟掘进方向的中轴线以间隔10m逐点打入10个供电电极(C 1C 2C 3……C 10),根据地表土壤情况打入10cm-15cm深,使之与地表电性耦合最好,相邻的供电电极两两组合成供电偶极C 1-C 2,C 2-C 3……C 10-C 11),然后采用直流电源给电极供电,供电电流I=5A,在地下建立稳定电流场。
在远离盾构机刀盘的盾构机外壳上以预设间隔弧长环绕盾构机布置4个的第一接收电极(M 1M 2M 3M 4),在靠近盾构机刀盘的盾构机外壳上以预设间隔弧长环绕盾构机布置4个的第二接收电极(N 1N 2N 3N 4)。第二接收电极N 1对应位于,以第一接收电极M 1的布置点向盾构机刀盘方向上作平行于盾构机外壳的延长线上,第二接收电极N 1到第一接收电极M 1之间的距离为10m;第二接收电极N 2对应位于,以第一接收电极M 2的布置点向盾构机刀盘方向上作平行于盾构机外壳的延长线上,第二接收电极N 2到第一接收电极M 2之间的距离为10m;第二接收电极N 3对应位于,以第一接收电极M 3的布置点向盾构机刀盘方向上作平行于盾构机外 壳的延长线上,第二接收电极N 3到第一接收电极M 3之间的距离为10m;第二接收电极N 4对应位于,以第一接收电极M 4的布置点向盾构机刀盘方向上作平行于盾构机外壳的延长线上,第二接收电极N 4到第一接收电极M 4之间的距离为10m。
按照同一延长线上的第一接收电极和第二接收电极组成4个第一接收偶极(M 1-N 1,M 2-N 2,M 3-N 3,M 4-N 4),以及将靠近盾构机刀盘的盾构机外壳上环绕的各第二接收电极的位置点两两连线,将过盾构机轴心且垂直于地面的线段上的两个第二接收电极组成第二接收偶极(M 1-M 3),各第一接收电极和各第二接收电极采集隧道不同方位的电信号。
盾构机开始掘进之后,地面的供电偶极C 1-C 2开始供电,盾构机上的各第一接收电极和各第二接收电极进行数据采集;之后C 2-C 3供电,盾构机上的各第一接收电极和各第二接收电极进行数据采集;紧接着C 3-C 4供电,依次进行下去至C 10-C 11供电,而盾构机不断前进,其上各第一接收电极和各第二接收电极不停地接收信号并绘制出各组接收偶极的视电阻率变化曲线,如此便可实现对掌子面前方异常实时动态地探测。
当各第一接收电极和各第二接收电极收到电信号之后,以各接收偶极为一组,计算各组的电位差,进一步根据各组的电位差计算成视电阻率。这里的视电阻率换算采用以均匀半空间模型的稳流场电阻率计算公式。因为隧道模型符合半空间条件,地面激发盾构机上接收。隧道内盾构机在掘进,其上地层可以看作是均匀层状介质。
电位差计算公式为:ΔU MN=U M-U N,其中,ΔU MN为接收偶极的接收电极M与接收电极N之间的电位差,U M为接收偶极的一个接收电极M的电位,U M为接收偶极的另一个接收电极M的电位。
稳流场电阻率计算公式为:
Figure PCTCN2022085060-appb-000004
其中,ΔU MN为接收偶极的接收电极M与接收电极N之间的电位差,ρ s为接收偶极的视电阻率,k为布极常数,其单位为m,I为供电偶极的供电电流,M为接收偶极的一个接收电极的编号,N为接收偶极的另一个接收电极的编号。
其中,布极常数k根据供电的供电偶极和接收电极M、N的排列关系确定,计算布极常数k的公式如下:
Figure PCTCN2022085060-appb-000005
其中,AM为供电电极A和接收电极M点之间的距离,BM为供电电极B和接收电极M点之间的距离,AN为供电电极A和接收电极N点之间的距离,BN为供电电极B和接收电极N点之间的距离,A为供电的供电偶极中的一个供电电极编号,B为供电的供电偶极中的另一个供电电极编号。
以地面的供电偶极位置为横坐标,以视电阻率(取绝对值)为纵坐标,绘制各组接收偶极的视电阻率曲线。
在M 2-N 2或者M 4-N 4接收偶极的视电阻率曲线中,以极值作为判断异常的依据。如果地下空间均匀无异常,则曲线只受隧道影响,无极值出现。当盾构机掘进方向的掌子面前方存在低阻异常时,会在异常点附近形成明显的极小值,极小值点横坐标的坐标值a就是异常 体位于盾构机掘进方向的掌子面前方的距离。
同时,M 2-N 2、M 4-N 4两组接收偶极的视电阻率值(即视电阻率的值)相对大小关系反应了异常体是位于盾构机掘进方向的掌子面前方偏左还是偏右。首先定义x=0到x=a之间的曲线为首支曲线(即掌子面到异常体之间的区域)。如果首支曲线的视电阻率值M 2-N 2>M 4-N 4,那么异常体是位于盾构机掘进方向的掌子面前方偏左;如果首支曲线的视电阻率值M 2-N 2<M 4-N 4,那么异常体是位于盾构机掘进方向的掌子面前方偏右;如果首支曲线的视电阻率值M 2-N 2=M 4-N 4,那么异常体是位于盾构机掘进方向的掌子面正前方。
为了方便判断,可以将M 2-N 2、M 4-N 4两组接收偶极的视电阻率做差((M 2-N 2)-(M 4-N 4)),以此差值作为ρ值绘制电阻率差值曲线。此时,若曲线呈现“先正后负”,则异常体位于盾构机掘进方向的掌子面前方偏左;若曲线呈现“先负后正”,则异常体位于盾构机掘进方向的掌子面前方偏右;若曲线始终趋于ρ=0或围绕ρ=0在小幅度范围内上下跳动,则异常体位于盾构机掘进方向的掌子面正前方。
在M 1-N 1、M 3-N 3两组接收偶极的视电阻率曲线中,以两条曲线构成的首支形态特点作为判断异常位于盾构机掘进方向的掌子面前方偏上或者偏下的依据。如果首支曲线呈现“张口”的特点,变化率明显较大,则异常位于盾构机掘进方向的掌子面前方偏下;如果首支曲线呈现“平行”的特点,那么异常位于盾构机掘进方向的掌子面前方偏上;如果首支曲线呈现“闭口”的特点,则异常体既不偏上也不偏下。
另外,在M 1-M 3接收偶极的视电阻率曲线中,对位于盾构机掘进方向的掌子面偏上位置的异常体有单独响应,可作为M 1-N 1、M 3-N 3两组接收偶极的视电阻率曲线外的辅助参数,如果异常位于盾构机掘进方向的掌子面偏上方,则曲线出现极小值。对于其他方位异常,该组视电阻率曲线近乎平直变化。
上述含水灾害体矢量电阻率实时超前探测方法,通过基于预先构建的探测环境,实时获取盾构机上的各接收偶极的电位差,各接收偶极包括各第一接收偶极和第二接收偶极;根据各接收偶极与供电偶极的相对位置关系和各接收偶极的电位差,利用稳流场电阻率计算公式进行电阻率转换,获得各接收偶极的视电阻率;以供电偶极位置为横坐标,以视电阻率为纵坐标,绘制各接收偶极的视电阻率曲线;根据各视电阻率变化曲线进行分析,确定异常体的探测结果,实现了在地下盾构机不断掘进过程中,根据接收偶极不停地接收电信号并绘制各组接收偶极的视电阻率曲线,实时探测掘进前方的含水灾害体情况,提高了超前预报结果实时性。
为验证上述含水灾害体矢量电阻率实时超前探测方法的有效性,进行模拟,具体模拟数据如下:
如图3所示探测环境,在模拟中,异常体设置为球体,半径为5m,电阻率为1Ω·m;围岩电阻率为100Ω·m;隧道电阻率为10 8Ω·m。分别模拟低阻球体在掌子面:正前方15m,25m和30m;前方偏右15m,偏左15m;前方偏上10m,偏下10m等不同位置。
以下各视电阻率曲线都是在数据取绝对值之后进行绘制:
1、均匀半空间电流场分布:供电偶极C 2-C 3工作时,半空间Y-Z方向截面(x=0)电势分布如图4所示。取接收电极N 4的电位数据,绘制其电位衰减(取绝对值之后)如图5所示,符合地面电偶极子源的稳定电流场之电位衰减规律。
2、异常体位于盾构机掘进方向的掌子面正前方的定位:如图6-图11所示,M 2-N 2与 M 4-N 4两组接收偶极的视电阻率曲线图上各自出现极小值,那么掌子面前方有异常,并且极小值点对应横坐标的坐标值a就是异常体位于掌子面前方的距离;在掌子面前方有异常的基础上,若在同一张视电阻率曲线图上M 2-N 2与M 4-N 4接收偶极的视电阻率值相等,那么异常体位于掌子面正前方,既不偏左也不偏右;进一步地,M 2-N 2与M 4-N 4的视电阻率值之差曲线维持在0Ω·m上下振动,幅度不超过1Ω·m时(即收敛于0Ω·m),那么异常体位于掌子面正前方,既不偏左也不偏右,该判断更加直接和简便。
3、异常体横向位置的定位:如图12-图15所示,在同一张电阻率曲线图中,若首支曲线视电阻率值M 4-N 4<M 2-N 2,即M 4-N 4在M 2-N 2下方,那么异常体在掌子面前方偏右;反之,若首支曲线视电阻率值M 4-N 4>M 2-N 2,即M 2-N 2在M 4-N 4下方,那么异常体在掌子面前方偏,进一步地,若M 2-N 2与M 4-N 4视电阻率值之差曲线呈现“先正后负”的特点,那么异常体位于掌子面前方偏右;若M 2-N 2与M 4-N 4视电阻率值之差曲线呈现“先负后正”的特点,那么异常体位于掌子面前方偏左,该判断更加直接和简便。
4、异常体纵向位置的定位:为方便比较,如图16-图21所示(采用对数坐标),在同一张视电阻率曲线图上,若M 1-N 1和M 3-N 3视电阻率值曲线构成的首支呈现“张口”的特点,且变化剧烈(曲线陡峭),那么异常位于掌子面前方偏下的位置;若M 1-N 1和M 3-N 3视电阻率值曲线构成的首支呈现“平行”的特点,那么异常位于掌子面前方偏上的位置;若M 1-N 1和M 3-N 3曲线构成的首支呈现“闭口”的特点,那么异常位于掌子面前方既不偏上也不偏下的位置,即正前方。在此基础上,特别地对于异常体出现在掌子面前方偏上的位置,M 1-M 3视电阻率值曲线会在首支出现极小值,这可以作为判断异常体位于掌子面前方偏上的辅助参数。
5、空间任意方位异常体的定位:异常体坐标设为(15,-15,50),半径r=5m,即异常体处于掌子面前方15m,延伸范围为空间内半径为5m的球体,且偏右方偏下方,以下称为“指定位置”。图22-图25所示,可以看到,异常特征与异常体实际位置吻合,图22中两条视电阻率曲线都在x=15m处出现极值;图23中曲线呈现“先正后负”的特点;图24两条曲线构成的首支形态恰为“张口”形,较陡峭。而图25和先前的模拟结果也一致。
应该理解的是,虽然图1的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图1中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (3)

  1. 一种含水灾害体矢量电阻率实时超前探测方法,其特征在于,所述方法包括:
    基于预先构建的探测环境,实时获取盾构机上的各接收偶极的电位差,各所述接收偶极包括各第一接收偶极和第二接收偶极;
    根据各所述接收偶极与供电偶极的相对位置关系和各接收偶极的电位差,利用稳流场电阻率计算公式进行电阻率转换,获得各所述接收偶极的视电阻率;
    以所述供电偶极位置为横坐标,以所述视电阻率为纵坐标,绘制各所述接收偶极的视电阻率曲线;
    根据各所述视电阻率变化曲线进行分析,确定异常体的探测结果;
    所述探测环境的构建方式为:
    在地面沿隧道拟掘进方向的中轴线以固定间隔布置多个供电电极,相邻的所述供电电极两两组合成供电偶极;
    在远离盾构机刀盘的盾构机外壳上以预设间隔弧长环绕盾构机布置预设数量的第一接收电极,在靠近盾构机刀盘的盾构机外壳上以所述预设间隔弧长环绕盾构机布置所述预设数量的第二接收电极,各所述第二接收电极对应位于,以各所述第一接收电极的布置点向盾构机刀盘方向上作平行于盾构机外壳的延长线上;
    按照同一延长线上的第一接收电极和第二接收电极组成所述预设数量的第一接收偶极,以及将靠近盾构机刀盘的盾构机外壳上环绕的各所述第二接收电极的位置点两两连线,将过盾构机轴心且垂直于地面的线段上的两个第二接收电极组成第二接收偶极,各所述第一接收电极和各所述第二接收电极用于采集隧道的电信号,根据所述电信号获得各所述第一接收偶极和所述第二接收偶极隧道不同方位的电位差;
    根据所述盾构机在地下不断掘进,依次向各所述供电偶极供电,形成探测环境,使所述盾构机上的各所述第一接收电极和各所述第二接收电极得以采集到电信号。
  2. 根据权利要求1所述的方法,其特征在于,所述根据各所述电阻率变化曲线进行分析,确定异常体的探测结果的步骤,包括:
    根据各所述电阻率变化曲线中是否出现极小值,确定是否探测到异常体;
    当探测到异常体时,根据各所述第一接收偶极的视电阻率值相对大小关系和视电阻率曲线的形态,以及所述第二接收偶极的视电阻率曲线的异常情况,确定异常体的位置。
  3. 根据权利要求1所述的方法,其特征在于,所述稳流场电阻率计算公式为:
    Figure PCTCN2022085060-appb-100001
    其中,ΔU MN为接收偶极的接收电极M与接收电极N之间的电位差,ρ S为接收偶极的视电阻率,k为布极常数,I为供电偶极的供电电流,M为接收偶极的一个接收电极的编号,N为接收偶极的另一个接收电极的编号。
PCT/CN2022/085060 2021-04-20 2022-04-02 一种含水灾害体矢量电阻率实时超前探测方法 WO2022222742A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/924,736 US20230184983A1 (en) 2021-04-20 2022-04-02 Vector-resistivity-based real-time advanced detection method for water-bearing hazard body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110425736.3 2021-04-20
CN202110425736.3A CN113156518B (zh) 2021-04-20 2021-04-20 一种含水灾害体矢量电阻率实时超前探测方法

Publications (1)

Publication Number Publication Date
WO2022222742A1 true WO2022222742A1 (zh) 2022-10-27

Family

ID=76869059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085060 WO2022222742A1 (zh) 2021-04-20 2022-04-02 一种含水灾害体矢量电阻率实时超前探测方法

Country Status (3)

Country Link
US (1) US20230184983A1 (zh)
CN (1) CN113156518B (zh)
WO (1) WO2022222742A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113156518B (zh) * 2021-04-20 2022-07-08 中国矿业大学 一种含水灾害体矢量电阻率实时超前探测方法
CN117192628B (zh) * 2023-11-03 2024-01-26 北京科技大学 深部破碎含水地层分布识别方法
CN117214958B (zh) * 2023-11-09 2024-01-26 中交第二公路勘察设计研究院有限公司 一种基于长距离水平定向钻超前地质探测感知预报系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5199818A (en) * 1990-03-09 1993-04-06 Kabushiki Kaisha Komatsu Seisakusho Method and apparatus for detecting collapse of natural ground in shield driving method
CN104007472A (zh) * 2014-06-11 2014-08-27 中煤科工集团西安研究院有限公司 孔中直流电法超前探测方法
CN106907145A (zh) * 2017-02-09 2017-06-30 武汉地大华睿地学技术有限公司 一种随钻超前预报的视电阻率测量系统及方法
CN109461359A (zh) * 2018-11-16 2019-03-12 高军 一种隧道含水地质构造超前探测方法
CN110333542A (zh) * 2019-08-05 2019-10-15 安徽国科骄辉科技有限公司 一种长电极源直流电场的隧道超前探新方法
CN111650652A (zh) * 2020-07-17 2020-09-11 安徽理工大学 坑道三方向视电阻率超前探测方法
CN112558178A (zh) * 2020-12-03 2021-03-26 中铁工程装备集团有限公司 一种盾构机综合地质预报方法
CN113156518A (zh) * 2021-04-20 2021-07-23 中国矿业大学 一种含水灾害体矢量电阻率实时超前探测方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0301980D0 (en) * 2003-01-28 2003-02-26 Natural Environment Res Systems and methods for resistivity measurement
US9891339B2 (en) * 2011-06-10 2018-02-13 Sofia N. Davydycheva Method and apparatus for detecting and mapping subsurface anomalies
US20140253131A1 (en) * 2013-03-05 2014-09-11 Ce Liu Apparatus and Method for Directional Resistivity Measurement While Drilling Using Slot Antenna
CN104407394B (zh) * 2014-11-26 2015-07-22 山东大学 基于电阻率跨孔ct的地铁盾构区间孤石精细化探测方法
CN105804763B (zh) * 2016-03-11 2017-03-29 山东大学 盾构掘进机搭载的超前三维电阻率跨孔ct孤石探测系统及探测方法
EP3960934A4 (en) * 2019-04-26 2022-11-23 The Water Inc. DETECTION AND CONFIRMATION SYSTEM FOR GROUNDWATER VEINS AND FOR PHREATIC TABLES IN GROUNDWATER VEINS

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5199818A (en) * 1990-03-09 1993-04-06 Kabushiki Kaisha Komatsu Seisakusho Method and apparatus for detecting collapse of natural ground in shield driving method
CN104007472A (zh) * 2014-06-11 2014-08-27 中煤科工集团西安研究院有限公司 孔中直流电法超前探测方法
CN106907145A (zh) * 2017-02-09 2017-06-30 武汉地大华睿地学技术有限公司 一种随钻超前预报的视电阻率测量系统及方法
CN109461359A (zh) * 2018-11-16 2019-03-12 高军 一种隧道含水地质构造超前探测方法
CN110333542A (zh) * 2019-08-05 2019-10-15 安徽国科骄辉科技有限公司 一种长电极源直流电场的隧道超前探新方法
CN111650652A (zh) * 2020-07-17 2020-09-11 安徽理工大学 坑道三方向视电阻率超前探测方法
CN112558178A (zh) * 2020-12-03 2021-03-26 中铁工程装备集团有限公司 一种盾构机综合地质预报方法
CN113156518A (zh) * 2021-04-20 2021-07-23 中国矿业大学 一种含水灾害体矢量电阻率实时超前探测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XING XIUJU, WU ZHENGFEI; ZHANG YIRUI; JIANG QIPING: "Application of 3D Transient Electromagnetic Advance Detection Technology in Tunnel Water Exploration", MODERN TUNNELLING TECHNOLOGY, ZHONGTIE XI'NAN KEXUE YANJIUYUAN, CN, vol. 57, no. 1, 1 February 2020 (2020-02-01), CN , pages 162 - 167, XP055979192, ISSN: 1009-6582, DOI: 10.13807/j.cnki.mtt.2020.01.024 *

Also Published As

Publication number Publication date
CN113156518A (zh) 2021-07-23
CN113156518B (zh) 2022-07-08
US20230184983A1 (en) 2023-06-15

Similar Documents

Publication Publication Date Title
WO2022222742A1 (zh) 一种含水灾害体矢量电阻率实时超前探测方法
CN101706585B (zh) 一种用于地下掘进工程中的隐患电法超前预报方法
WO2021243967A1 (zh) 一种三维电阻率层析成像方法及系统
CN109143378B (zh) 一种在煤矿巷道内顺层超前探测含水构造的二次时差方法
CN102508303A (zh) 地下工程聚焦层析激发极化超前探测方法
CN103645514A (zh) 多同性源电极阵列电阻率的地下工程超前探测方法及系统
CN105842740A (zh) 固定点旋转照射大功率瞬变电磁探测方法
CN110673216B (zh) 一种单孔电阻率探测溶洞方法
KR100944096B1 (ko) 스트리머 전기비저항 탐사 시스템 및 이를 이용한 하저지반구조 해석 방법
CN102444111B (zh) 地下溶洞造影探测法
CN106869913A (zh) 一种利用井地电位技术探测油田注水井水驱前缘的方法
CN110989001A (zh) 一种运用hdd技术的桩基三维钻孔ct探测方法
Guo et al. Water-bearing body prospecting ahead of tunnel face using moving electrical-source method
CN106405672B (zh) 一种tbm施工隧道三维激发极化超前预报干扰去除方法
CN113204056B (zh) 一种用于确定煤岩界面剖面分布位置的反演方法
CN212301392U (zh) 一种盾构机施工孤石探测装置
Ishak et al. Interrelationship between borehole lithology and electrical resistivity for geotechnical site investigation
CN105091855B (zh) 浅水滩涂根石断面探测方法
JP2018063124A (ja) 地質探査装置及び地質探査方法
CN113447991A (zh) 地下电性异常体重建方法及装置
CN110552688A (zh) 一种水平钻孔随钻信号阵列定位引导方法
CN111812728B (zh) 一种井地电阻率ct观测系统及其工作方法
Louis et al. Accurate subsurface characterization for highway applications using resistivity inversion methods
JP2002311152A (ja) 地盤の任意断面可視化方法
CN114814964B (zh) 一种基于可变源距直流电阻率的巷道前方富水区判别方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22790851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22790851

Country of ref document: EP

Kind code of ref document: A1