WO2022222620A1 - 一种通信方法、装置及光总线网络 - Google Patents

一种通信方法、装置及光总线网络 Download PDF

Info

Publication number
WO2022222620A1
WO2022222620A1 PCT/CN2022/079417 CN2022079417W WO2022222620A1 WO 2022222620 A1 WO2022222620 A1 WO 2022222620A1 CN 2022079417 W CN2022079417 W CN 2022079417W WO 2022222620 A1 WO2022222620 A1 WO 2022222620A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical head
target
head end
controller
target optical
Prior art date
Application number
PCT/CN2022/079417
Other languages
English (en)
French (fr)
Inventor
汪宇宙
邓波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22790729.2A priority Critical patent/EP4319079A1/en
Publication of WO2022222620A1 publication Critical patent/WO2022222620A1/zh
Priority to US18/487,226 priority patent/US20240048239A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/02Standardisation; Integration
    • H04L41/0213Standardised network management protocols, e.g. simple network management protocol [SNMP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/278Bus-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/02Standardisation; Integration
    • H04L41/0233Object-oriented techniques, for representation of network management data, e.g. common object request broker architecture [CORBA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0064Arbitration, scheduling or medium access control aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects

Definitions

  • the present application relates to the technical field of industrial data communication, and in particular, to a communication method, device and optical bus network.
  • Field bus is an industrial data bus that has developed rapidly in recent years. It is mainly used to solve the digital communication between field devices such as intelligent instruments, controllers, and actuators in industrial fields, as well as these field devices and advanced equipment. Information transfer between control systems.
  • Most industrial control networks based on fieldbus are serial network architectures based on Ethernet (ethernet network), which have problems such as high delay (millisecond level), low bandwidth, poor ability with slave stations, and poor anti-interference ability. , it has been unable to meet the higher requirements of the future industrial control network in all aspects.
  • the optical communication technology using light waves as the information carrier has become the main communication technology in the world because of its transmission frequency bandwidth, high anti-interference and low signal attenuation, which is far superior to the transmission of cable and microwave communication. transfer method.
  • Embodiments of the present application provide a communication method, apparatus, and optical bus network, and provide a management mechanism for an optical head end and/or at least one optical terminal managed by the optical head end in an optical bus network by a controller.
  • the present application provides a communication method, which can be applied to an optical bus network
  • the optical bus network includes a target optical head end and at least one optical terminal managed by the target optical head end
  • the optical bus network also A controller is included, and the method includes: when the controller discovers the target optical head, sending a target optical head identification to the target optical head, and the target optical head identification is used to identify the target optical head;
  • the controller determines a target management protocol in the management protocols supported by the target optical head; the controller transmits target information with the target optical head according to the target optical head identification and the target management protocol, and the target The information is used by the controller to manage the target optical head end and/or the at least one optical terminal managed by the target optical head end.
  • the controller serving as the management center can send the target optical head identification to the found target optical head, and determine the target management protocol, and further, the controller can be based on the target optical head identification and the target optical head.
  • the management protocol realizes the management of the target optical head end and/or at least one optical terminal managed by the target optical head end, the solution can be used for the transmission of various types of target information, and has good scalability.
  • the target management protocol is used to define a frame structure of a message carrying the target information; wherein, the frame structure includes a header field and a payload field, and the target optical head end identifier is located in The header field and the target information are located in the payload field.
  • the transmission of various target information can be realized by extending the definition of the payload field, and the management scope of the controller to the target optical head end and/or at least one optical terminal managed by the target optical head end can be further improved.
  • the target information adopts at least one type-length-content TLV structure, wherein the type field in each TLV structure is used to carry management object type indication information, and the length in each TLV structure The field is used to indicate the length of the object content corresponding to the management object, and the content field in each TLV structure is used to carry the object content.
  • the controller or the target optical head end can encapsulate the same type of target information for different objects into at least one TLV structure located in the payload field to improve management efficiency.
  • the frame structure further includes other fields for carrying other information that needs to be further transmitted.
  • the frame structure may further include a protocol data unit PDU type field, where the PDU type field in the frame structure is used to carry a predetermined value, and the predetermined value is used to indicate that the frame structure is a management protocol frame structure.
  • the frame structure further includes a command indicator, where the command indicator is used to indicate that the frame structure corresponds to any of the following message types: read operation, read response operation, set operation, set response operation, and event reporting operate.
  • the frame structure further includes an event field, where the event field is used to carry the alarm event information reported by the target optical head end to the controller.
  • sending the target optical head identifier to the target optical head includes: the controller broadcasts a discovery packet, the discovery packet contains the destination identifier corresponding to the discovery packet; the controller receives the discovery packet response sent by the target optical head according to the destination identifier, and the discovery packet response includes the media access control MAC of the target optical head. address; the controller sends the target optical head identification to the target optical head according to the MAC address of the target optical head.
  • the controller can discover the target optical head through broadcast discovery, and instruct the target optical head to report its own MAC address, so that the controller can send a unique target optical head identification to the target optical head, and then based on the target optical head identification Realize the management and maintenance of the target optical head end.
  • the controller determines the target management protocol among the management protocols supported by the target optical head end, including: the controller receives the first version information from the target optical head end, wherein the The first version information is used to indicate the version of the management protocol supported by the target optical head end; the controller determines the target management protocol among the management protocols supported by the target optical head end according to the first version information.
  • the controller can know the management protocol supported by the target optical head end according to the first version information reported by the target optical head end, so as to negotiate and determine the target management protocol.
  • the first version information may be actively reported by the target optical head end, or may be reported by the target optical head end in response to a query message from the controller, and this application reports the first version information.
  • the mechanism is not limited.
  • the controller determines, according to the first version information, the target management protocol among management protocols supported by the optical head end, including: the controller according to the first version information and second version information, the target management protocol is determined from the management protocols supported by both the controller and the optical head, and the second version information is used to indicate the version of the management protocol supported by the controller.
  • the target management protocol is a management protocol of the latest version supported by both the controller and the target optical head end.
  • the optical bus network includes a plurality of optical head ends, and the target optical head end is any one of the plurality of optical head ends; wherein the controller and the target optical head end are located in the same physical entity; or, the controller is provided independently of the plurality of optical head ends.
  • an embodiment of the present application provides a communication method, which can be applied to an optical bus network, where the optical bus network includes a target optical head end and at least one optical terminal managed by the target optical head end, the optical bus network
  • the bus network further includes a controller, and the method includes: the target optical head end receives a target optical head end identification from the controller, and the target optical head end identification is sent by the controller when the target optical head end is found.
  • the target optical head transmits target information with the controller according to the target optical head identification and the target management protocol, wherein the target information is used by the controller to realize For the management of the target optical head end and/or at least one optical terminal managed by the target optical head end, the target management protocol is determined by the controller in the management protocol supported by the target optical head end.
  • the target management protocol is used to define a frame structure of a message carrying the target information; wherein, the frame structure includes a header field and a payload field, and the target optical head end identifier is located in The header field and the target information are located in the payload field.
  • the target information adopts at least one type-length-content TLV structure, wherein the type field in each TLV structure is used to carry management object type indication information, and the length in each TLV structure The field is used to indicate the length of the object content corresponding to the management object, and the content field in each TLV structure is used to carry the object content.
  • the frame structure further includes a type field, and the type field in the frame structure is used to carry a predetermined value, and the predetermined value is used to indicate that the frame structure is a management protocol frame structure.
  • the optical bus frame structure further includes a command indicator, where the command indicator is used to indicate that the optical bus frame structure corresponds to any of the following message types: read operation, read response Operation, setting operation, setting response operation, event reporting operation.
  • the frame structure further includes an event field, where the event field is used to carry the alarm event information reported by the target optical head end to the controller.
  • the target optical head end receiving the target optical head end identifier from the controller includes: receiving, by the target optical head end, a discovery message from the controller, in which the discovery message Including the destination identifier corresponding to the discovery packet; the target optical head end sends a discovery packet response to the controller according to the destination identifier, and the discovery packet response includes the MAC address of the target optical head end; the The target optical head end receives the target optical head end identifier sent by the controller according to the MAC address of the target optical head end.
  • the method further includes: the target optical head end sends first version information to the controller based on the target optical head end identifier, where the first version information is used to indicate the The version of the management protocol supported by the target optical head.
  • the target management protocol is a management protocol of the latest version supported by both the target optical head end and the controller.
  • the target optical head end has a broadcast discovery state, a unicast discovery state and a working state; wherein, when the target optical head end is in the broadcast discovery state, it is used to receive the target from the controller Optical head identification; after the target optical head terminal receives the target optical head identification from the controller, it is used to communicate with the controller based on the target optical head identification in a unicast discovery state, so as to make The controller determines the target management protocol; when the target optical head end is in a working state, it is configured to transmit the target information to the controller according to the target optical head end identifier and the target management protocol.
  • the optical bus network includes a plurality of optical head ends, and the target optical head end is any one of the plurality of optical head ends; wherein the controller and the target optical head end are located in the same physical entity; or, the controller is provided independently of the plurality of optical head ends.
  • an embodiment of the present application provides a communication device, where the communication device has the function of implementing the controller in the first aspect above.
  • This function can be implemented by hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the communication device may be a controller, or a module in the controller, such as a chip or a system of chips or a circuit.
  • the communication apparatus may include a transceiver and a processor.
  • the processor can be configured to support the communication device to perform the corresponding functions of the controller shown above, and the transceiver is used to support the communication between the communication device and the optical head end or the optical terminal or the like.
  • the transceiver may be an independent receiver, an independent transmitter, a transceiver with integrated transceiver functions, or an interface circuit.
  • the communication device may further include a memory, which may be coupled to the processor, and stores necessary program instructions and data of the communication device.
  • the transceiver can send the target optical head identification to the target optical head, and the target optical head identification is used to identify the target optical head;
  • the target management protocol is determined in the management protocols supported by the optical head;
  • the processor can transmit target information with the target optical head through the transceiver according to the target optical head identification and the target management protocol, and the target information is used for the
  • the controller implements management of the target optical head end and/or the at least one optical terminal managed by the target optical head end.
  • the target management protocol is used to define a frame structure of a message carrying the target information; wherein, the frame structure includes a header field and a payload field, and the target optical head end identifier is located in The header field and the target information are located in the payload field.
  • the target information adopts at least one type-length-content TLV structure, wherein the type field in each TLV structure is used to carry management object type indication information, and the length in each TLV structure The field is used to indicate the length of the object content corresponding to the management object, and the content field in each TLV structure is used to carry the object content.
  • the frame structure further includes other fields for carrying other information that needs to be further transmitted.
  • the frame structure may further include a protocol data unit PDU type field, where the PDU type field in the frame structure is used to carry a predetermined value, and the predetermined value is used to indicate that the frame structure is a management protocol frame structure.
  • the frame structure further includes a command indicator, where the command indicator is used to indicate that the frame structure corresponds to any of the following message types: read operation, read response operation, set operation, set response operation, and event reporting operate.
  • the frame structure further includes an event field, where the event field is used to carry the alarm event information reported by the target optical head end to the controller.
  • the transceiver is configured to: broadcast a discovery message, where the discovery message includes a destination identifier corresponding to the discovery message; receive a message sent by the target optical head according to the destination identifier A discovery packet response, where the discovery packet response includes the MAC address of the target optical head end; according to the MAC address of the target optical head end, the target optical head end identifier is sent to the target optical head end.
  • the processor is configured to: receive first version information from the target optical head end through a transceiver, where the first version information is used to indicate a management protocol supported by the target optical head end the version; according to the first version information, determine the target management protocol among the management protocols supported by the target optical head end.
  • the processor is configured to: determine the target management protocol in management protocols supported by both the controller and the optical head according to the first version information and the second version information , the second version information is used to indicate the version of the management protocol supported by the controller.
  • the target management protocol is a management protocol of the latest version supported by both the controller and the target optical head end.
  • the optical bus network includes a plurality of optical head ends, and the target optical head end is any one of the plurality of optical head ends; wherein the controller and the target optical head end are located in the same physical entity; or, the controller is provided independently of the plurality of optical head ends.
  • an embodiment of the present application provides a communication device, where the communication device has the function of implementing the controller in the second aspect above.
  • This function can be implemented by hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the communication device may be an optical head end, or a component that can be used for an optical head end, such as a chip or a chip system or a circuit.
  • the communication apparatus may include a transceiver and a processor.
  • the processor may be configured to support the communication device to perform the corresponding functions of the optical head end shown above, and the transceiver to support communication between the communication device and a controller or the like.
  • the transceiver may be an independent receiver, an independent transmitter, a transceiver with integrated transceiver functions, or an interface circuit.
  • the communication device may further include a memory, which may be coupled to the processor, and stores necessary program instructions and data for the communication device.
  • the transceiver is used to receive the target optical head identification from the controller, and the target optical head identification is sent by the controller when the target optical head is found, and is used to identify the target optical head; processing The controller is configured to transmit target information with the controller through the transceiver according to the target optical head identification and target management protocol, wherein the target information is used by the controller to realize the target optical head and/or the target optical head.
  • the target management protocol is determined by the controller in the management protocol supported by the target optical head end.
  • the target management protocol is used to define a frame structure of a message carrying the target information; wherein, the frame structure includes a header field and a payload field, and the target optical head end identifier is located in The header field and the target information are located in the payload field.
  • the target information adopts at least one type-length-content TLV structure, wherein the type field in each TLV structure is used to carry management object type indication information, and the length in each TLV structure The field is used to indicate the length of the object content corresponding to the management object, and the content field in each TLV structure is used to carry the object content.
  • the frame structure further includes a protocol data unit PDU type field, and the PDU type field in the frame structure is used to carry a predetermined value, and the predetermined value is used to indicate that the frame structure is Manages the protocol frame structure.
  • the optical bus frame structure further includes a command indicator, where the command indicator is used to indicate that the optical bus frame structure corresponds to any of the following message types: read operation, read response Operation, setting operation, setting response operation, event reporting operation.
  • the frame structure further includes an event field, where the event field is used to carry the alarm event information reported by the target optical head end to the controller.
  • the target optical head end receiving the target optical head end identifier from the controller includes: receiving, by the target optical head end, a discovery message from the controller, in which the discovery message Including the destination identifier corresponding to the discovery packet; the target optical head end sends a discovery packet response to the controller according to the destination identifier, and the discovery packet response includes the MAC address of the target optical head end; the The target optical head end receives the target optical head end identifier sent by the controller according to the MAC address of the target optical head end.
  • the transceiver is further configured to: the target optical head end sends first version information to the controller based on the target optical head end identification, where the first version information is used to indicate The version of the management protocol supported by the target optical head end.
  • the target management protocol is a management protocol of the latest version supported by both the target optical head end and the controller.
  • the target optical head end has a broadcast discovery state, a unicast discovery state and a working state; wherein, when the target optical head end is in the broadcast discovery state, it is used to receive the target from the controller Optical head identification; after the target optical head terminal receives the target optical head identification from the controller, it is used to communicate with the controller based on the target optical head identification in a unicast discovery state, so as to make The controller determines the target management protocol; when the target optical head end is in a working state, it is configured to transmit the target information to the controller according to the target optical head end identifier and the target management protocol.
  • the optical bus network includes a plurality of optical head ends, and the target optical head end is any one of the plurality of optical head ends; wherein the controller and the target optical head end are located in the same physical entity; or, the controller is provided independently of the plurality of optical head ends.
  • an embodiment of the present application provides an optical bus network, including the communication device according to the third aspect and at least one communication device according to the fourth aspect. Further, optionally, the optical bus network may further include at least one optical terminal.
  • the optical bus network is any of the following passive optical network PONs: gigabit passive optical network GPON; 10 gigabit passive optical network XG-PON; 50 gigabit passive optical network Passive Optical Network 50G-PON; Ethernet Passive Optical Network EPON; 10 Gigabit Ethernet Passive Optical Network 10G-EPON; Code Division Multiple Access Passive Optical Network CDMA-PON; Frequency Division Multiplexing Passive Optical Network FDM- PON; 10 Gigabit symmetrical passive optical network XGS-PON.
  • passive optical network PONs gigabit passive optical network GPON; 10 gigabit passive optical network XG-PON; 50 gigabit passive optical network Passive Optical Network 50G-PON; Ethernet Passive Optical Network EPON; 10 Gigabit Ethernet Passive Optical Network 10G-EPON; Code Division Multiple Access Passive Optical Network CDMA-PON; Frequency Division Multiplexing Passive Optical Network FDM- PON;
  • an embodiment of the present application provides a computer-readable storage medium, where a computer program or instruction is stored in the computer-readable storage medium, and when the computer program or instruction is executed by a communication device, the communication device is made to execute the above-mentioned first Aspect or the method in any possible implementation of the first aspect, or cause the communication apparatus to perform the method in the above-mentioned second aspect or any possible implementation of the second aspect.
  • the present application provides a computer program product, the computer program product comprising a computer program or an instruction, when the computer program or instruction is executed by a communication device, the communication device is made to perform the above-mentioned first aspect or any of the first aspects.
  • the method in a possible implementation manner, or the communication device is caused to perform the above-mentioned second aspect or the method in any possible implementation manner of the second aspect.
  • FIG. 1 is a schematic structural diagram of an applicable optical bus network of the application
  • FIG. 2 is an example of a network element/module in an optical bus network provided by the present application
  • 3 is a protocol stack architecture of an optical bus network provided by the application
  • FIG. 4 is a schematic diagram of state transition of a target optical head end provided by the present application.
  • FIG. 5 is a schematic flowchart of a method of a communication method provided by the present application.
  • FIG. 6 is a schematic flowchart of a method of a communication method provided by the present application.
  • FIG. 7 is a schematic flowchart of a method of a communication method provided by the present application.
  • FIG. 8 is a schematic diagram of a payload area field for carrying target information provided by the present application.
  • FIG. 9 is a schematic diagram of a communication device provided by the present application.
  • FIG. 10 is a schematic diagram of a communication device provided by this application.
  • FIG. 1 shows a schematic diagram of a system architecture of an optical bus network to which the embodiments of the present application are applied.
  • the optical bus network may include a controller and an optical communication system, and further, optionally, the optical bus network system may further include a field control device.
  • the optical communication system may include: an optical head end (OHE) on the central office side (or called the central office end), an optical distribution network (ODN), and an optical terminal (optical terminator, OT) on the user side.
  • OHE can be connected with OT through ODN.
  • ODN includes backbone fibers, splitters and branch fibers.
  • an optical communication system includes N OTs as an example, and the N OTs are OT1, OT2, . . . , OTN respectively.
  • An optical splitter can also be called an optical splitter, which can be a fiber optic junction device with multiple input ends and multiple output ends, which is used for coupling and distribution of optical signals.
  • the OHE and the optical splitter are connected by the backbone fiber.
  • the optical splitter and the OT are connected through branch fibers.
  • Field control devices such as transmission devices (such as servo drives and servo motors), sensing devices (such as sensors), input/output port (input/output, I/O) devices, etc. It should be understood that these field control devices may be collectively referred to as slave stations.
  • the controller may be, for example, a programmable logic controller (PCL).
  • PCL programmable logic controller
  • PLC can be used to manage and maintain OHE, OT and various types of field control equipment.
  • the system composed of PLC, OHE, ODN, OT, and various slave stations can be used to provide the ability of "one network to the end", and the industrial optical bus has better delay and jitter, and can Support more reliable redundant protection networking.
  • the optical bus network can also be connected to Ethernet/IP Internet equipment and the like.
  • each structure in the optical bus network system shown in FIG. 1 above are only for example, and do not constitute a limitation to the present application.
  • the OHE, OT, optical splitter, and the number of ports included in the optical splitter included in the optical communication system in FIG. 1 are only examples, which are not limited in this application.
  • the optical communication system may be a PON system, wherein the PON system may be, for example, a gigabit-capable PON (GPON) system, an Ethernet passive optical network (ethernet PON, EPON) system, 10 Gigabit Ethernet passive optical network (10Gb/s ethernet passive optical network, 10G-EPON) system, time division and wavelength division multiplexing passive optical network (time and wavelength division multiplexing passive optical network, TWDM-PON), 10 Gigabit Bit passive optical network (10gigabit-capable passive optical network, XG-PON) system or 10-gigabit symmetric passive optical network (10-gigabit-capable symmetric passive optical network, XGS-PON) system, etc.
  • GPON gigabit-capable PON
  • GPON gigabit-capable PON
  • Ethernet passive optical network ethernet PON, EPON
  • 10Gb/s ethernet passive optical network 10G-EPON
  • time division and wavelength division multiplexing passive optical network time and wavelength division multiple
  • the rate of the PON system may be increased to 25Gbps, 50Gbps or even 100Gbps, so the optical communication system may also be a PON system with a higher transmission rate, which is not limited in this application.
  • the above-mentioned PON system may be a PON system supporting a single wavelength, or a PON system supporting multiple wavelengths.
  • the transmission direction in which data or optical signals carrying data are transmitted from the OHE to the OT is called the downstream direction.
  • the direction in which data or optical signals carrying data are transmitted from the OT to the OHE is called the upstream direction.
  • the way that the OHE transmits the optical signal to the OT can be broadcast or unicast; the way that the OT transmits the optical signal to the OHE can be unicast.
  • the PON system is a multi-point to point (MP2P) system; for the downstream direction, the PON system is a point 2 multiple point (P2MP) system.
  • the optical bus network is a single-fiber bidirectional access network, and its topology can be a tree type, and the optical bus network can also be called It is a P2MP communication system.
  • the optical bus system composed of the OHE on the central office side, the OT on the user side, and the ODN is a single-fiber bidirectional system.
  • the PLC and the optical head can communicate through the service node interface (SNI).
  • SNI service node interface
  • the communication between the optical terminal and the slave station it manages can be realized through the user network interface (UNI).
  • ODN includes the optical fiber point after the optical head end (downlink)/optical terminal (uplink) optical connection point (ie optical connector or fusion point); the optical terminal (downlink)/optical head end (uplink) optical connection point (ie optical The fiber point before the connector or splice point); the interface at the reference point R/S and S/R, can support all the protocol units required for transmission between the optical head end and the optical terminal.
  • the signal sent by the optical head end can reach each optical terminal through a 1:n passive optical splitter (or a cascade of several splitters).
  • TMDA time division multiple access
  • An optical distribution network provides one or more optical channels between an optical head end or one or more optical terminals, each optical channel is restricted to a specific wavelength window.
  • the optical head end and the PLC can be deployed in an integrated system, for example, both are deployed at the optical head end.
  • the PLC is specifically implemented as a PLC (vPLC) module, the optical head end and the PLC
  • the interface between the modules is the internal software transceiver interface.
  • the PLC and the optical head can be deployed separately, and the PLC and the optical head are connected by an external interface.
  • the SNI interface of the optical bus system can be an Ethernet interface (such as FE, GE, 10GE, etc.) or a PCIE interface. A sort of.
  • the UNI interface can be one or more of an Ethernet interface (such as FE, GE, 10GE, etc.), an SPI interface, a servo motor monitoring and drive interface (such as AD, GPIO, RS422, PWM control, etc.).
  • Ethernet interface such as FE, GE, 10GE, etc.
  • SPI interface such as SPI
  • servo motor monitoring and drive interface such as AD, GPIO, RS422, PWM control, etc.
  • the optical head is mainly used to complete the bearing and multiplexing of bus services/Ethernet services on the P2MP communication system.
  • the optical head end may include, for example, a PLC (vPLC) module (optional), an optical bus central office module, a central office Ethernet service module (optional), a point-to-multipoint (P2MP) central office module, and a head-end optical module. Wait.
  • the PLC (vPLC) module can be used to complete the programming and management of multiple industrial network control modules (such as the optical head end and the optical terminal managed by the optical head end, etc.), and at the same time, for example, it can realize some computing functions of the industrial control module.
  • the optical bus central office module can be used to complete the bearing of optical bus services, and its business data is the data of the control machine or the query/collection machine (eg PLC module, etc.).
  • the central office Ethernet service module can be used to carry central office Ethernet services.
  • the external interfaces provided by this module are Ethernet interfaces, such as FE, GE, and 10GE.
  • the P2MP central office module can be used to complete the link layer communication of multiple optical terminals in the P2MP network.
  • the head-end optical module can be used to complete the optical signal transmission of the optical head-end and the reception of the optical signal of the optical terminal.
  • the light here can be single wavelength or multi-wavelength, which is not limited in this application.
  • the optical splitter is mainly used to complete the function of point-to-multipoint optical splitting/combining.
  • the optical splitter may be one-stage or multi-stage, and may also be equal-ratio or unequal-ratio optical fibers, which are not limited in this application.
  • Each optical terminal is mainly used to complete the function of obtaining industrial control information or Ethernet information on the P2MP system.
  • the optical terminals included in the optical bus network can be divided into optical bus terminals and Ethernet optical terminals.
  • the bus optical terminal and the Ethernet optical terminal may include the same modules, such as terminal optical modules, point To multipoint (P2MP) terminal module; or, the bus optical terminal and the Ethernet optical terminal may include corresponding modules for supporting the service type provided by themselves, for example, the bus optical terminal includes an optical bus terminal module, an industrial control module; Ethernet optical terminal The terminal includes a terminal Ethernet service module.
  • the terminal optical module can be used to complete the optical signal reception of the optical head end and the transmission of the optical signal of the optical terminal.
  • the P2MP terminal module can be used to complete the link layer communication of multiple optical terminals in the P2MP network.
  • the optical bus terminal module can be used to complete the analysis of the optical bus data, and to read and write the industrial control module.
  • the industrial control module may include a module for controlling industrial equipment/IO, and the industrial equipment may be a sensor, a server IO device, and the like.
  • the terminal Ethernet service module (optional) is mainly used to carry the optical terminal Ethernet service, and the interface provided externally can be an Ethernet interface, such as FE, GE, 10GE, etc.
  • the optical fiber connection is used between the optical head end and the optical splitter, and between the optical splitter and the optical terminal.
  • the optical fiber can be a common optical fiber, or an optical fiber combined with optoelectronics, which can supply power to the optical terminal.
  • the optical bus network shown in FIG. 1 and FIG. 2 is used to provide comprehensive carrying capacity, which can carry both original industrial bus services and common Ethernet/IP services.
  • the protocol stack architecture of the optical bus network is described below with reference to FIG. 3 .
  • the network model of the optical bus network may include a physical layer, a data link layer, a network layer, a transport layer, a Session layer (optional), presentation layer (optional), application layer protocol layer.
  • the physical layer of the optical bus network may be formed by a P2MP optical network, and when the optical bus system is a single-fiber bidirectional system, the uplink and downlink should use different wavelengths respectively.
  • the data link layer may include a media access control (media access control, MAC) layer, an optical bus (OptiXBus) link layer, and a link layer for ordinary Ethernet/IP services.
  • the MAC layer protocol is located in the lower half of the data link layer in the OSI seven-layer protocol. It is mainly responsible for controlling and linking the physical medium of the physical layer.
  • the MAC protocol can determine whether data can be sent. If it can be sent, then Add some control information to the data, and finally send the data and control information to the physical layer in a specified frame structure; when receiving data, the MAC protocol first determines whether the input information has a transmission error, and if no transmission error occurs, remove the control. The information is sent to the optical bus data link layer.
  • the link layer of the optical bus (OptiXBus) and the link layer of the ordinary Ethernet/IP service are located in the upper part of the data link layer.
  • the two link layers need to be isolated at the data link layer.
  • the link layer of the ordinary Ethernet/IP service The layer should conform to the definition of Institute of Electrical and Electronics Engineers (IEEE) 802.3, and can be used to support the IP protocol of the network layer, the user data protocol of the transport layer (user datagram protocol, UDP) and the transmission control protocol (transmission control protocol).
  • the application protocol of the industrial bus of the application layer such as SNMP/1588, HTTPS/SFTP
  • the link layer of the optical bus can be extended and defined according to the requirements of the industrial bus on the basis of Ethernet, and can support data from The process data object (PDO) of the application layer, the service data object (service data objec, SDO), and the optical head end management channel data and other payloads
  • the application layer of the optical bus network can also include an application adaptation layer and Used to support industrial control protocols such as PDO, SDO, etc., such as CANopen protocol, Safety protocol, etc.
  • the link layer frame structure of the optical bus network is exemplified below with reference to Table 1.
  • the link layer of the optical bus network can be based on standard Ethernet, and the corresponding link layer frame structure can include the relevant fields of the Ethernet frame, and can carry out more detailed division on the bearer content. It can be understood that when the optical bus data needs to be transmitted between PLCs, or the optical bus data needs to be transmitted to the IP Internet, a virtual local area network (VLAN) header or an IP header can also be added to the packet header. , which is not limited in this application.
  • VLAN virtual local area network
  • each network node in the optical bus network can be assigned a unique MAC address based on the IEEE802.3 standard, so as to distinguish different nodes.
  • the MAC address may be 48 bits, wherein the upper 24 bits may be the manufacturer identifier, and the lower 24 bits may be allocated by the manufacturer.
  • EtherType is used to indicate the upper layer protocol type.
  • FCS frame check sequence
  • CPC cyclic redundancy check
  • the total length of the frame structure supported by the optical terminal and the optical bus is not less than 2000 bytes.
  • the PDU is the payload unit of the optical bus, and the maximum length that can be carried is 1978 bytes.
  • the definition of the data format of the PDU can be shown in Table 2 below.
  • the PDU may carry payloads such as PDO data, SDO data, and management channel data.
  • PDO data, SDO data, and management channel data are carried in different frame structures, which can be distinguished by the types of PDUs.
  • a frame structure can also support carrying multiple PDUs.
  • the frame structure supports sending a broadcast message with the destination slave ID as the broadcast slave ID.
  • the frame structure can support cycle data of different cycles, and can use offset addresses to operate different cycle data.
  • the specified transmission sequence may be that each byte is from top to bottom, and the byte is from low bit to high bit, which will not be repeated here.
  • the embodiments of the present application provide a communication method, which can be implemented by the above-mentioned optical bus network, for example, by a controller (eg PLC) and each optical head end (hereinafter referred to as the target optical head end for ease of distinction).
  • a controller eg PLC
  • each optical head end hereinafter referred to as the target optical head end for ease of distinction.
  • the optical bus network shown in FIG. 1 and FIG. 2 is taken as an example below to introduce the communication method of the present application with reference to the accompanying drawings and embodiments.
  • any network node needs to have its own ID.
  • the controller acts as the management center of the entire optical bus network, and the ID of the controller itself can be preset.
  • the allocation can be manually configured by the operator, or can be allocated by a higher-level controller, which is not limited in this application.
  • the controller needs to discover each optical head end, and can assign a corresponding target optical head end identification to any found target optical head end, so as to manage and maintain the target optical head end according to the target optical head end identification in the future.
  • the target optical head end identifier can be directly assigned by the controller, manually configured by the operator, or assigned by other equipment, which is not limited in the present application.
  • the communication scheme of the present application is introduced by taking the method that the controller sends the target optical head identification to the target optical head, and regards it as an example in which the controller assigns the target optical head identification to the target optical head. Any limitations on the communication scheme of this application.
  • the controller may be various implementation manners for the controller to assign an ID to each optical head end, which is not limited in this application.
  • the allocation method that the controller can adopt is to use a class C address and allocate the same ID of the 12th bit as the ID of the controller and the optical head end.
  • the optical terminal can assign an identifier to the corresponding slave station when the optical terminal discovers the slave station, and the optical terminal can also report the identifier assigned to the managed slave station to the controller, It is not repeated here.
  • the target optical head end needs to go through the following three states: broadcast discovery state, unicast discovery state and normal working state.
  • Broadcast discovery state In this state, the controller needs to complete the broadcast discovery process of the target optical head end, and assign (ie send) an ID to the target optical head end.
  • the destination ID of the broadcast discovery message sent by the controller may be 0xDFFF, and the source ID of the response message from the target optical head end is 0xDFFF.
  • the controller can assign the target optical head identification to the target optical head. After the target optical head receives the target optical head identification assigned by the controller, it can find the target optical head from the broadcast The state transitions to the unicast discovery state.
  • (2) Unicast discovery state In this state, the controller and the target optical head end can negotiate the version of the management protocol. During this negotiation process, the controller and the target optical head end can use the target optical head end identification ID to conduct unicast communication to complete the management protocol negotiation. After the protocol negotiation is completed, the target optical head end can migrate from the unicast discovery state to the normal working state. It should be noted that the target management protocol negotiated by the controller and the target optical head can be used to define the frame structure of the message communicated between the controller and the target optical head, so that the controller can realize the control of the target optical head and/or the target optical head. Management and maintenance of at least one optical terminal managed.
  • the controller and the target optical head end lose contact (for example, the target optical head end goes offline), or the target optical head end receives the controller offline message, the state of the target optical head end returns to the broadcast discovery state.
  • the communication method may include the following steps:
  • the controller When finding the target optical head end, the controller sends a target optical head end identification to the target optical head end, where the target optical head end identification is used to identify the target optical head end. Correspondingly, the target optical head end receives the target optical head end identification from the controller.
  • S510 may include the following steps:
  • the controller broadcasts a discovery message, and the discovery message includes a destination identifier corresponding to the discovery message, for example, 0xDFFF.
  • the target optical head end receives the discovery message from the controller, and sends a response message to the controller according to the destination identifier included in the discovery message, which is called a discovery message response.
  • the source ID of the discovery packet response is 0xDFFF, and the discovery packet response can be used to indicate that the target optical head has received the discovery packet broadcast by the controller.
  • the discovery packet response can include the target optical head. MAC address of the terminal.
  • the controller receives the discovery packet response sent by the target optical head according to the target identifier, and sends the target optical head identifier to the target optical head according to the MAC address of the target optical head. It can be understood that, during implementation, the controller can encapsulate the target optical head ID assigned to the target optical head and the MAC address reported by the target optical head together into an optical head ID allocation message and send it to the target optical head to notify the target optical head. The bald end has been found complete.
  • the target optical head end receives the target optical head end identification from the controller.
  • the target optical head can obtain the target optical head identifier allocated by the controller by comparing the MAC address contained in the message with its own MAC address.
  • the target optical head end has obtained the target optical head end identification assigned by the controller, the target optical head end can be transferred from the broadcast discovery state to the unicast discovery state, and can unicast with the controller based on the target optical head end identification. communication.
  • the target optical head end can also send a response message to the controller at S514 to indicate that it has received the optical head terminal ID allocation message and knows that it has received the optical head end ID allocation message.
  • the target optical head can also feedback an error reminder to the controller at S514, so that the controller sends the corresponding target optical head identification to the target optical head again.
  • the controller may also send the optical head ID assignment message to the target optical head, but does not receive a response message from the target optical head within a preset period of time, that is, the default transmission is successful, at this time, the controller can default.
  • the optical head end discovery process has been completed, and the subsequent protocol negotiation process can be performed.
  • S520 The controller determines the target management protocol in the management protocols supported by the target optical head end.
  • S520 may include the following steps:
  • the first version information may be actively reported by the target optical head end after obtaining the target optical head end identification assigned by the controller; or, the first version information may also be the response of the target optical head end.
  • the query message is used to query the version of the management protocol supported by the target optical head, and the query message may include the target optical head identifier previously allocated for the target optical head;
  • the controller may also include indication information in the optical head ID allocation message carrying the target optical head identification when sending the target optical head identification to the target optical head, and the indication information is used for Instructs the target optical head end to report the version of the management protocol supported by itself. This application does not limit the transmission triggering method of the first version information.
  • S522 The controller determines a target management protocol among management protocols supported by the target optical head end according to the first version information.
  • the controller may acquire second version information, where the second version information is used to indicate the version of the management protocol supported by the controller. Then, the controller may determine the target management protocol from management protocols supported by both the controller and the optical head according to the first version information and the second version information. For example, the target management protocol may be the latest version of the management protocol supported by both the target optical head end and the controller. It can be understood that the second version information may be stored locally in the controller, or the second version information may be acquired by the controller from the cloud or other devices, which is not limited in this application.
  • the controller may locally cache the version information of the target management protocol, and send a notification message to the target optical head, where the notification message is used to indicate the version of the target management protocol.
  • the target optical head end receives the communication message from the controller, and knows the target management protocol negotiated and determined by both parties.
  • the basic protocol negotiation process has been completed between the controller and the target optical head. Subsequently, the controller and the target optical head can communicate based on the target management protocol. At the same time, the controller can manage and manage the target optical head. maintain.
  • the controller transmits target information with the target optical head according to the target optical head identification and the target management protocol, and the target information is used by the controller to realize the control of the target optical head and/or the target optical head Management of at least one optical terminal for management.
  • the controller may perform operation and maintenance management on the target optical head end and/or at least one optical terminal managed by the target optical head end, including but not limited to: querying various statistical information, device information, version of the optical head end information, etc.; configure the PDO parameters of the slave station of any optical terminal, as well as the addressing mode, etc.; equipment software update, equipment operation (reset, de-registration) and other operations; by receiving the alarm events reported by the optical head end to perform optical path diagnosis and fault location, etc.
  • the controller may instruct at least one optical terminal managed by the target optical head end, and before implementing S530, the controller may send the optical terminal authentication information to the target optical head end.
  • the target optical head end receives the optical terminal authentication information from the controller, establishes a connection with at least one optical terminal, and manages the at least one optical terminal. Then, the target optical head end can send a response message to the controller, where the response message is used to indicate the processing result of the authentication information of the optical terminal by the target optical head end, so that the controller knows at least one optical terminal managed by the optical head end, which is convenient for subsequent processing of the optical terminal. At least one optical terminal is managed and maintained.
  • any management channel information between the controller and the target optical head end can be used as a handshake message.
  • the handshake between the controller and the target optical head is guaranteed by the controller, and the handshake timeout can be set to no more than 1 second (s).
  • the handshake timeout time can also be configured to other values according to application scenarios, business requirements, etc., and details are not described here.
  • the controller can realize the management and maintenance of the target optical head end and the optical terminal managed by the target optical head end based on the configuration data and/or the configuration message.
  • the transmission of configuration messages is a data synchronization method.
  • the data synchronization between the controller and the optical head can support two ways: (1) each time the controller configures the target optical head, it sends all the configuration data to the target optical head, and the target The optical head end does not need to store this configuration data. (2) After the controller sends the configuration data to the target optical head, it then sends a configuration message to the target optical head.
  • the target optical head needs to store the configuration data, and the controller can obtain the data of the target optical head to ensure the relationship between the two parties.
  • controller and the target optical head end can be implemented based on the frame structures defined in Tables 1 to 3 above through interaction.
  • the controller and the target optical head can exchange management messages based on the management channel (or called management channel messages, operation, management and maintenance (OAM) messages) to achieve the above-mentioned combination of Fig. 4-
  • OAM management and maintenance
  • the frame structures for realizing different purposes can be distinguished by the type of PDU.
  • the type field of the PDU indicates that the transmitted frame structure is the management message of the management channel.
  • the value of the type field of the PDU indicates that the transmitted frame structure is used to transmit the PDO data.
  • a management message may refer to a message used to implement a management function, including but not limited to a message sent by the controller to the target optical head for carrying configuration data, configuration parameters, etc., or , a message sent by the controller to the target optical head to instruct the target optical head to report data related to management purposes, or a packet of data related to management purposes reported by the target optical head to the controller.
  • the target management protocol may be used to define the frame structure shown in Table 1 to Table 3 above, and the management message may use the frame structure shown in Table 1 to Table 3 above.
  • the target information for implementing the management function may be carried in the payload field (payload) field in the PDU in the frame structure.
  • the target information may adopt at least one type-length-content TLV structure, wherein the type field in each TLV structure is used to carry management object type indication information; the length field in each TLV structure is used to indicate the corresponding management object The length of the object content; the content field in each TLV structure is used to carry the object content.
  • the information to be transmitted can be encapsulated in the above frame structure and transmitted to the opposite end, and the opposite end device can parse the received frame structure, from the frame structure.
  • the target information is acquired, so that the controller implements the management of the target optical head end and/or at least one optical terminal managed by the target optical head end based on the target information.
  • the same type of operation for different objects can be completed through the type field in each TLV structure.
  • the type ID (type ID) range assignment can be as follows: 0x0 ⁇ 0xFFF are operations related to the optical head; 0x1000 ⁇ 0x1FFF are operations related to the optical terminal/slave; 0xF000 ⁇ 0xFFF are the extended fields defined by the manufacturer; The remaining fields are temporarily reserved.
  • the length of the object content can be in the range of 0-1024 bytes or other numerical ranges.
  • TLV structures that can be encapsulated in a management channel message, corresponding to the same operation type. For example, a message for querying the contents of multiple objects may be encapsulated in a management channel message; a message for configuring contents of multiple objects may be encapsulated in a management channel message.
  • specific operations can be distinguished according to the command indicator cmd.
  • the event field can be used for Event event reporting, including but not limited to slave station event reporting, whether there is data to be sent, or other interrupt events. The event field can be reported in the form of a bit mask. For specific definitions, refer to the detailed introductions in Tables 2 to 3 above, which will not be repeated here.
  • the management object as an optical head end as an example, and in conjunction with Table 4-Table 6, the attribute definition of at least one extended TLV structure in the OAM message is exemplified.
  • the value of the Type ID field when the value of the Type ID field is different, it can indicate different operations on the management object (such as OHE). For example, when the value of the Type ID field is 0x0, it is used to indicate that the transmitted management message is used to indicate the device information of the optical head. ; When the value of the Type ID field is 0x1, the management message used to indicate that the transmission is used to indicate the ID allocation of the optical head; when the value of the Type ID field is 0x2, the management message used to indicate that the transmission is used to indicate the optical bus. Protocol version information. It can be understood that "whether it is optional" is used to indicate a required operation and/or optional operation on the management object.
  • OHE device info is used to define the relevant device information of the optical head end.
  • OHE device info The attribute definitions of OHE device info are shown in Table 5 below:
  • OHE ID used to define the optical head end identification assigned to the optical head end.
  • OHE ID The attribute definitions of OHE ID are shown in Table 6 below:
  • Bus version which is used to define the bus version supported by the optical head.
  • the management protocol can be assigned version numbers according to 1, 2...
  • the target management protocol negotiated and determined between them may be the latest version of the management protocol supported by both the controller and the optical head end.
  • the controller and the optical head can encapsulate the target information to be transmitted into a TLV structure located in the payload field of the PDU according to the format based on the relevant attribute definitions in Tables 5 to 7 above, and transmit To the peer device, in order to realize the discovery and configuration management of the optical head end by the controller, so that the controller and the optical head end can better transmit relevant information for realizing various management purposes, with good scalability.
  • the device management solution can also support the controller to diagnose, analyze and process the optical paths and faults attached to the optical head, so as to facilitate the maintenance of the optical bus network in the later stage and improve the management efficiency.
  • FIG. 9 is a schematic block diagram of an apparatus 900 provided by an embodiment of the present application, which is used to implement the functions of a controller or an optical head end in an optical bus network in the foregoing method.
  • the apparatus may be a software module or a system-on-a-chip.
  • the chip system may be composed of chips, and may also include chips and other discrete devices.
  • the apparatus 900 includes a communication module 901 .
  • the communication module 901 can communicate with the outside.
  • the processing module 902 is used for processing.
  • the communication module 901 may also be referred to as a communication interface, a transceiver module, an input/output interface, and the like.
  • the communication module may include a sending module and a receiving module, which are respectively used to perform the steps of sending or receiving by the controller or the optical head in the above flowcharts in FIGS. 5-7 .
  • the apparatus 900 may implement the steps implemented by the controller in the above processes shown in FIGS. 5-7 .
  • the communication module 901 is configured to perform the transceiver-related operations on the controller side in the above method embodiments.
  • the processing module 902 is configured to perform processing-related operations on the controller side in the above method embodiments, including but not limited to: generating information and messages sent by the communication module 901 , and/or demodulating signals received by the communication module 901 decoding, etc.
  • the communication module 901 can be used to communicate with other devices.
  • the communication module 901 can send the target optical head end identification to the target optical head end when the controller finds the target optical head end, and the target optical head end identification is used to identify the target optical head end;
  • the processing module 902 can The target management protocol is determined in the management protocol supported by the target optical head;
  • the processing module 902 can transmit target information with the target optical head through the communication module 901 according to the target optical head identification and the target management protocol, and the target information
  • the controller is used for managing the target optical head end and/or the at least one optical terminal managed by the target optical head end.
  • the target management protocol is used to define a frame structure of a message carrying the target information; wherein, the frame structure includes a header field and a payload field, the target optical head end identifier is located in the header field, and the The target information is located in the payload field.
  • the target information adopts at least one type-length-content TLV structure, wherein the type field in each TLV structure is used to carry the management object type indication information, and the length field in each TLV structure is used to indicate the management object.
  • the length of the corresponding object content, and the content field in each TLV structure is used to carry the object content.
  • the frame structure further includes other fields for carrying other information that needs to be further transmitted.
  • the frame structure may further include a protocol data unit PDU type field, where the PDU type field in the frame structure is used to carry a predetermined value, and the predetermined value is used to indicate that the frame structure is a management protocol frame structure.
  • the frame structure further includes a command indicator, where the command indicator is used to indicate that the frame structure corresponds to any of the following message types: read operation, read response operation, set operation, set response operation, and event reporting operate.
  • the frame structure further includes an event field, where the event field is used to carry the alarm event information reported by the target optical head end to the controller.
  • the communication module 901 is configured to: broadcast a discovery message, where the discovery message includes a destination identifier corresponding to the discovery message; receive a discovery message response sent by the target optical head end according to the destination identifier , the discovery packet response includes the MAC address of the target optical head end; according to the MAC address of the target optical head end, the target optical head end identifier is sent to the target optical head end.
  • the processing module 902 is configured to: receive first version information from the target optical head end through a transceiver, where the first version information is used to indicate the version of the management protocol supported by the target optical head end; according to For the first version information, the target management protocol is determined in the management protocols supported by the target optical head end.
  • the processing module 902 is configured to: according to the first version information and the second version information, determine the target management protocol in the management protocols supported by both the controller and the optical head, and the first The second version information is used to indicate the version of the management protocol supported by the controller.
  • the target management protocol is a management protocol of the latest version supported by both the controller and the target optical head end.
  • the optical bus network includes a plurality of optical heads, and the target optical head is any one of the plurality of optical heads; wherein, the controller and the target optical head are located in the same physical entity; or, The controller is provided independently of the plurality of optical head ends.
  • the apparatus 900 may implement the steps implemented by the optical terminal in the above-mentioned processes shown in FIG. 5 to FIG. 7 .
  • the communication module 901 is configured to perform the transceiver-related operations on the optical terminal side in the above method embodiments.
  • the processing module 902 is configured to perform processing-related operations on the optical terminal side in the above method embodiments, including but not limited to: generating information and messages sent by the communication module 901 , and/or demodulating the signals received by the communication module 901 decoding, etc.
  • the communication module 901 is configured to receive a target optical head end identifier from the controller, where the target optical head end identifier is sent by the controller when the target optical head end is discovered, and is used to identify the target optical head end
  • the processing module 902 is used to transmit target information through the transceiver and the controller according to the target optical head identification and the target management protocol, wherein the target information is used by the controller to realize the target optical head.
  • management of at least one optical terminal managed by the target optical head terminal and/or the target optical head terminal, and the target management protocol is determined by the controller in the management protocol supported by the target optical head terminal.
  • the target management protocol is used to define a frame structure of a message carrying the target information; wherein, the frame structure includes a header field and a payload field, the target optical head end identifier is located in the header field, and the The target information is located in the payload field.
  • the target information adopts at least one type-length-content TLV structure, wherein the type field in each TLV structure is used to carry the management object type indication information, and the length field in each TLV structure is used to indicate the management object.
  • the length of the corresponding object content, and the content field in each TLV structure is used to carry the object content.
  • the frame structure further includes a protocol data unit PDU type field, and the PDU type field in the frame structure is used to carry a predetermined value, and the predetermined value is used to indicate that the frame structure is a management protocol frame structure.
  • the optical bus frame structure further includes a command indicator, where the command indicator is used to indicate that the optical bus frame structure corresponds to any of the following message types: read operation, read response operation, set operation, set Response operations and event reporting operations.
  • the frame structure further includes an event field, where the event field is used to carry the alarm event information reported by the target optical head end to the controller.
  • the target optical head receiving the target optical head identifier from the controller includes: the target optical head receiving a discovery packet from the controller, where the discovery packet includes the discovery packet corresponding destination identifier; the target optical head sends a discovery packet response to the controller according to the destination identifier, and the discovery packet response includes the MAC address of the target optical head; the target optical head receives the The controller sends the identifier of the target optical head according to the MAC address of the target optical head.
  • the communication module 901 is further configured to: the target optical head end sends first version information to the controller based on the target optical head end identifier, where the first version information is used to indicate the target optical head end Version of the supported management protocol.
  • the target management protocol is a management protocol of the latest version supported by both the target optical head end and the controller.
  • the target optical head end has a broadcast discovery state, a unicast discovery state and a working state; wherein, when the target optical head end is in a broadcast discovery state, it is used to receive the target optical head end identification from the controller; the After the target optical head termination receives the target optical head end identification from the controller, it is used to communicate with the controller based on the target optical head end identification in a unicast discovery state, so that the controller determines the target optical head end identification. the target management protocol; when the target optical head is in a working state, it is used to transmit the target information with the controller according to the target optical head identifier and the target management protocol.
  • the optical bus network includes a plurality of optical heads, and the target optical head is any one of the plurality of optical heads; wherein, the controller and the target optical head are located in the same physical entity; or, The controller is provided independently of the plurality of optical head ends.
  • the division of modules in the embodiments of the present application is schematic, and is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of the present application may be integrated into one processing unit. In the device, it can also exist physically alone, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.
  • the function of the communication module in the above embodiments may be implemented by a transceiver (also referred to as a transceiver), and the function of the processing module may be implemented by a processor.
  • the transceiver may include a transmitter and/or a receiver, etc., for implementing the functions of the transmitting module and/or the receiving module, respectively.
  • FIG. 10 The following description is given with reference to FIG. 10 as an example.
  • FIG. 10 is a schematic block diagram of an apparatus 1000 provided by an embodiment of the present application.
  • the apparatus 1000 shown in FIG. 10 may be a hardware circuit implementation method of the apparatus shown in FIG. 9 , and the apparatus may be applicable to the above-mentioned FIGS. 5-7 In the shown process, the functions of the controller and the optical head end in the above method embodiments are performed.
  • FIG. 10 shows only the main components of the device.
  • the apparatus 1000 shown in FIG. 10 includes at least one processor 1001 .
  • the apparatus 1000 may also include at least one memory 1002 for storing program instructions and/or data.
  • Memory 1002 is coupled to processor 1001 .
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1001 may cooperate with the memory 1002 , the processor 1001 may execute program instructions stored in the memory 1002 , and at least one of the at least one memory 1002 may be included in the processor 1001 .
  • the apparatus 1000 may further include a communication interface 1003 for communicating with other devices through a transmission medium, so that the communication apparatus 1000 may communicate with other devices.
  • the communication interface may be a transceiver, a circuit, a bus, a module, or other types of communication interfaces.
  • the transceiver when the communication interface is a transceiver, the transceiver may include an independent receiver and an independent transmitter; it may also be a transceiver integrating a transceiver function, or an interface circuit.
  • connection medium between the above-mentioned processor 1001 , the memory 1002 , and the communication interface 1003 is not limited in the embodiments of the present application.
  • the memory 1002, the processor 1001, and the communication interface 1003 are connected through a communication bus 1004 in FIG. 10.
  • the bus is represented by a thick line in FIG. 10, and the connection mode between other components is only a schematic illustration , not as a limitation.
  • the bus may include an address bus, a data bus, a control bus, and the like. For convenience of presentation, only one thick line is used in FIG. 10, but it does not mean that there is only one bus or one type of bus.
  • the apparatus 1000 may be used to implement the steps performed by the controller in the above-mentioned processes shown in FIGS. 5-7 .
  • the apparatus 1000 may be a controller, or a chip or circuit within a controller.
  • the communication interface is used to perform the operations related to the sending and receiving of the optical head in the above embodiments
  • the processor 1001 is used to perform the processing related operations of the optical head in the above method embodiments, including but not limited to: generating the information sent by the communication interface 1003, message, and/or demodulate and decode the signal received by the communication interface 1003, etc.
  • the communication interface 1003 may be used to communicate with other devices.
  • the communication interface 1003 can send the target optical head end identification to the target optical head end when the controller finds the target optical head end, the target optical head end identification is used to identify the target optical head end;
  • the processor 1001 can The target management protocol is determined in the management protocols supported by the target optical head;
  • the processor 1001 can transmit target information with the target optical head through the communication interface 1003 according to the target optical head identification and the target management protocol, and the target information
  • the controller is used for managing the target optical head end and/or the at least one optical terminal managed by the target optical head end.
  • the target management protocol is used to define a frame structure of a message carrying the target information; wherein, the frame structure includes a header field and a payload field, the target optical head end identifier is located in the header field, and the The target information is located in the payload field.
  • the target information adopts at least one type-length-content TLV structure, wherein the type field in each TLV structure is used to carry the management object type indication information, and the length field in each TLV structure is used to indicate the management object.
  • the length of the corresponding object content, and the content field in each TLV structure is used to carry the object content.
  • the frame structure further includes other fields for carrying other information that needs to be further transmitted.
  • the frame structure may further include a protocol data unit PDU type field, where the PDU type field in the frame structure is used to carry a predetermined value, and the predetermined value is used to indicate that the frame structure is a management protocol frame structure.
  • the frame structures used for different purposes can be distinguished by the PDU type field.
  • the frame structure further includes a command indicator, where the command indicator is used to indicate that the frame structure corresponds to any of the following message types: read operation, read response operation, set operation, set response operation, and event reporting operate.
  • the frame structure further includes an event field, where the event field is used to carry the alarm event information reported by the target optical head end to the controller.
  • the communication interface 1003 is used to: broadcast a discovery message, where the discovery message includes a destination identifier corresponding to the discovery message; receive a discovery message response sent by the target optical head end according to the destination identifier , the discovery packet response includes the MAC address of the target optical head end; according to the MAC address of the target optical head end, the target optical head end identifier is sent to the target optical head end.
  • the processor 1001 is configured to: receive first version information from the target optical head end through a transceiver, where the first version information is used to indicate the version of the management protocol supported by the target optical head end; according to For the first version information, the target management protocol is determined in the management protocols supported by the target optical head end.
  • the processor 1001 is configured to: according to the first version information and the second version information, determine the target management protocol in the management protocols supported by both the controller and the optical head end, and the first The second version information is used to indicate the version of the management protocol supported by the controller.
  • the target management protocol is a management protocol of the latest version supported by both the controller and the target optical head end.
  • the optical bus network includes a plurality of optical heads, and the target optical head is any one of the plurality of optical heads; wherein, the controller and the target optical head are located in the same physical entity; or, The controller is provided independently of the plurality of optical head ends.
  • the apparatus 1000 may be used to implement the steps performed by the optical head in the above-mentioned processes shown in FIG. 5 to FIG. 7 .
  • the apparatus 1000 may be an optical head, or a chip or circuit within an optical head.
  • the communication interface is used to perform the operations related to the sending and receiving of the optical head in the above embodiments
  • the processor 1001 is used to perform the processing related operations of the optical head in the above method embodiments, including but not limited to: generating the information sent by the communication interface 1003, message, and/or demodulate and decode the signal received by the communication interface 1003, etc.
  • the communication interface 1003 is used to receive a target optical head end identifier from the controller, where the target optical head end identifier is sent by the controller when the target optical head end is discovered, and is used to identify the target optical head end ;
  • the processor 1001 is configured to transmit target information with the controller through the communication interface 1003 according to the target optical head identification and target management protocol, wherein the target information is used by the controller to achieve the target For the management of the optical head end and/or at least one optical terminal managed by the target optical head end, the target management protocol is determined by the controller in the management protocol supported by the target optical head end.
  • the target management protocol is used to define a frame structure of a message carrying the target information; wherein, the frame structure includes a header field and a payload field, the target optical head end identifier is located in the header field, and the The target information is located in the payload field.
  • the target information adopts at least one type-length-content TLV structure, wherein the type field in each TLV structure is used to carry the management object type indication information, and the length field in each TLV structure is used to indicate the management object.
  • the length of the corresponding object content, and the content field in each TLV structure is used to carry the object content.
  • the frame structure further includes a protocol data unit PDU type field, and the PDU type field in the frame structure is used to carry a predetermined value, and the predetermined value is used to indicate that the frame structure is a management protocol frame structure.
  • the optical bus frame structure further includes a command indicator, where the command indicator is used to indicate that the optical bus frame structure corresponds to any of the following message types: read operation, read response operation, set operation, set Response operations and event reporting operations.
  • the frame structure further includes an event field, where the event field is used to carry the alarm event information reported by the target optical head end to the controller.
  • the target optical head receiving the target optical head identifier from the controller includes: the target optical head receiving a discovery packet from the controller, where the discovery packet includes the discovery packet corresponding destination identifier; the target optical head sends a discovery packet response to the controller according to the destination identifier, and the discovery packet response includes the MAC address of the target optical head; the target optical head receives the The controller sends the identifier of the target optical head according to the MAC address of the target optical head.
  • the communication interface 1003 is further configured to: the target optical head end sends first version information to the controller based on the target optical head end identifier, where the first version information is used to indicate the target optical head end Version of the supported management protocol.
  • the target management protocol is a management protocol of the latest version supported by both the target optical head end and the controller.
  • the target optical head end has a broadcast discovery state, a unicast discovery state and a working state; wherein, when the target optical head end is in a broadcast discovery state, it is used to receive the target optical head end identification from the controller; the After the target optical head termination receives the target optical head end identification from the controller, it is used to communicate with the controller based on the target optical head end identification in a unicast discovery state, so that the controller determines the target optical head end identification. the target management protocol; when the target optical head is in a working state, it is used to transmit the target information with the controller according to the target optical head identifier and the target management protocol.
  • the optical bus network includes a plurality of optical heads, and the target optical head is any one of the plurality of optical heads; wherein, the controller and the target optical head are located in the same physical entity; or, The controller is provided independently of the plurality of optical head ends.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which can implement or The methods, steps and logic block diagrams disclosed in the embodiments of this application are executed.
  • a general purpose processor may be a microprocessor or any conventional processor or the like. The steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or may also be a volatile memory (volatile memory), for example Random-access memory (RAM).
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing program instructions and/or data.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented in software, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present invention are generated.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment, or other programmable apparatus.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server or data center by wire (eg coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available media that can be accessed by a computer, or a data storage device such as a server, data center, etc. that includes one or more available media integrated.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, digital video discs (DVD)), or semiconductor media (eg, SSDs), and the like.
  • “at least one” refers to one or more, and “multiple” refers to two or more.
  • “And/or”, which describes the relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, it can indicate that A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one (a) of a, b, or c can represent: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c can be single or multiple.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Small-Scale Networks (AREA)
  • Optical Communication System (AREA)

Abstract

一种通信方法、装置及光总线网络,涉及工业数据通信技术领域。该方法中,所述控制器在发现所述目标光头端时,向所述目标光头端发送目标光头端标识,所述目标光头端标识用于标识所述目标光头端;所述控制器在所述目标光头端支持的管理协议中确定目标管理协议;所述控制器根据所述目标光头端标识和所述目标管理协议,与所述目标光头端传输目标信息,所述目标信息用于所述控制器实现对所述目标光头端和/或所述目标光头端所管理的所述至少一个光终端的管理。通过该方法,提供了在光总线网络中,由控制器对光头端和/或光头端所管理的至少一个光终端的管理机制。

Description

一种通信方法、装置及光总线网络
相关申请的交叉引用
本申请要求于2021年4月19日提交中国国家知识产权局、申请号202110420859.8、申请名称为“一种通信方法、装置及光总线网络”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及工业数据通信技术领域,特别涉及一种通信方法、装置及光总线网络。
背景技术
现场总线(field bus)是近年来迅速发展起来的一种工业数据总线,主要用于解决工业现场的智能化仪器仪表、控制器、执行机构等现场设备间的数字通信、以及这些现场设备和高级控制系统之间的信息传递问题。目前,基于现场总线的工业控制网络大多是以以太网(ethernet network)为基础的串行网络架构,存在高时延(毫秒级别)、低带宽、带从站能力差、抗干扰能力差等问题,已经无法满足未来工业控制网络在各个方面的更高要求。
随着通信业的飞速发展,以光波作为信息载体的光通信技术,以其传输频带宽、抗干扰性高和信号衰减小,而远优于电缆、微波通信的传输,已成为世界通信中主要传输方式。
目前,如何在工业控制网络中引入光通信技术,并管理新引入的光通信设备,尚无解决方案。
发明内容
本申请实施例提供一种通信方法、装置及光总线网络,提供了在光总线网络中,由控制器对光头端和/或光头端所管理的至少一个光终端的管理机制。
第一方面,本申请提供一种通信方法,该方法可应用于光总线网络,所述光总线网络包括目标光头端和所述目标光头端所管理的至少一个光终端,所述光总线网络还包括控制器,所述方法包括:所述控制器在发现所述目标光头端时,向所述目标光头端发送目标光头端标识,所述目标光头端标识用于标识所述目标光头端;所述控制器在所述目标光头端支持的管理协议中确定目标管理协议;所述控制器根据所述目标光头端标识和所述目标管理协议,与所述目标光头端传输目标信息,所述目标信息用于所述控制器实现对所述目标光头端和/或所述目标光头端所管理的所述至少一个光终端的管理。
基于该方案,在光总线网络中,可由作为管理中心的控制器,向所发现的目标光头端发送目标光头端标识,并确定目标管理协议,进而,控制器可基于该目标光头端标识和目标管理协议,实现对目标光头端和/或目标光头端所管理的至少一个光终端的管理,该方案可用于多种类型的目标信息的传输,具有良好的扩展性。
在一种可能的实现方式中,所述目标管理协议用于定义承载所述目标信息的消息的帧结构;其中,所述帧结构中包括头域和净荷字段,所述目标光头端标识位于所述头域,所述目标信息位于所述净荷字段。如此,可以通过对净荷字段的扩展定义,实现多种目标信 息的传输,进一步提高控制器对目标光头端和/或目标光头端所管理的至少一个光终端的管理范围。
在一种可能的实现方式中,所述目标信息采用至少一个类型-长度-内容TLV结构,其中,每个TLV结构中的类型字段用于承载管理对象类型指示信息,每个TLV结构中的长度字段用于指示管理对象对应的对象内容的长度,每个TLV结构中的内容字段用于承载所述对象内容。
基于该方案,控制器或者目标光头端可以将针对不同对象的同一类型的目标信息,封装为位于净荷字段的至少一个TLV结构中,提高管理效率。
在一种可能的实现方式中,所述帧结构中还包括其它字段,用于承载需要进一步传输的其它信息。例如,所述帧结构中还可以包括协议数据单元PDU类型字段,所述帧结构中的PDU类型字段用于承载预定值,所述预定值用于指示所述帧结构为管理协议帧结构。如此,可以通过PDU类型字段区分用于实现不同用途的帧结构。例如,所述帧结构中还包括命令指示符,所述命令指示符用于指示所述帧结构对应于以下任一种消息类型:读操作、读响应操作、设置操作、设置响应操作、事件上报操作。例如,所述帧结构中还包括事件字段,所述事件字段用于承载所述目标光头端向所述控制器上报的告警事件信息。
应理解,此处仅是对帧结构中所包括的字段的示例说明而非任何限定,在具体实施时,该帧结构中可以根据业务需求或应用场景等,对帧结构中所包括的字段进行定义或协商,在此不再赘述。
在一种可能的实现方式中,所述控制器在发现所述目标光头端时,向所述目标光头端发送目标光头端标识,包括:所述控制器广播发现报文,所述发现报文中包含所述发现报文对应的目的标识;所述控制器接收所述目标光头端根据所述目的标识发送的发现报文响应,所述发现报文响应包含所述目标光头端的媒体访问控制MAC地址;所述控制器根据所述目标光头端的MAC地址,向所述目标光头端发送所述目标光头端标识。
基于该方案,控制器可以通过广播发现的方式发现目标光头端,并指示目标光头端上报自身的MAC地址,以便控制器向目标光头端发送唯一的目标光头端标识,进而基于该目标光头端标识实现对目标光头端的管理和维护。
在一种可能的实现方式中,所述控制器在所述目标光头端支持的管理协议中确定目标管理协议,包括:所述控制器接收来自所述目标光头端的第一版本信息,其中,所述第一版本信息用于指示所述目标光头端支持的管理协议的版本;所述控制器根据所述第一版本信息,在所述目标光头端支持的管理协议中确定所述目标管理协议。
基于该方案,控制器可以根据目标光头端上报的第一版本信息,知悉该目标光头端所支持的管理协议,从而协商确定目标管理协议。可以理解的是,在本申请中,第一版本信息可以是目标光头端主动上报的,也可以是目标光头端响应于来自控制器的查询消息上报的,本申请对此第一版本信息的上报机制不做限定。
在一种可能的实现方式中,所述控制器根据所述第一版本信息,在所述光头端支持的管理协议中确定所述目标管理协议,包括:所述控制器根据所述第一版本信息和第二版本信息,在所述控制器和所述光头端均支持的管理协议中确定所述目标管理协议,所述第二版本信息用于指示所述控制器支持的管理协议的版本。示例的,所述目标管理协议为所述控制器和所述目标光头端均支持的最新版本的管理协议。
在一种可能的实现方式中,所述光总线网络包括多个光头端,所述目标光头端为所述 多个光头端中的任一个;其中,所述控制器与所述目标光头端位于同一物理实体;或者,所述控制器独立于所述多个光头端设置。
第二方面,本申请实施例提供了一种通信方法,该方法可应用于光总线网络,所述光总线网络包括目标光头端和所述目标光头端所管理的至少一个光终端,所述光总线网络还包括控制器,所述方法包括:所述目标光头端接收来自所述控制器的目标光头端标识,所述目标光头端标识为所述控制器在发现所述目标光头端时发送的、且用于标识所述目标光头端;所述目标光头端根据所述目标光头端标识和目标管理协议,与所述控制器传输目标信息,其中,所述目标信息用于所述控制器实现对所述目标光头端和/或所述目标光头端所管理的至少一个光终端的管理,所述目标管理协议为所述控制器在所述目标光头端支持的管理协议中确定的。
在一种可能的实现方式中,所述目标管理协议用于定义承载所述目标信息的消息的帧结构;其中,所述帧结构中包括头域和净荷字段,所述目标光头端标识位于所述头域,所述目标信息位于所述净荷字段。
在一种可能的实现方式中,所述目标信息采用至少一个类型-长度-内容TLV结构,其中,每个TLV结构中的类型字段用于承载管理对象类型指示信息,每个TLV结构中的长度字段用于指示管理对象对应的对象内容的长度,每个TLV结构中的内容字段用于承载所述对象内容。
在一种可能的实现方式中,所述帧结构中还包括类型字段,所述帧结构中的类型字段用于承载预定值,所述预定值用于指示所述帧结构为管理协议帧结构。
在一种可能的实现方式中,所述光总线帧结构中还包括命令指示符,所述命令指示符用于指示所述光总线帧结构对应于以下任一种消息类型:读操作、读响应操作、设置操作、设置响应操作、事件上报操作。
在一种可能的实现方式中,所述帧结构中还包括事件字段,所述事件字段用于承载所述目标光头端向所述控制器上报的告警事件信息。
在一种可能的实现方式中,所述目标光头端接收来自所述控制器的目标光头端标识,包括:所述目标光头端接收来自所述控制器的发现报文,所述发现报文中包含所述发现报文对应的目的标识;所述目标光头端根据所述目的标识,向所述控制器发送发现报文响应,所述发现报文响应包含所述目标光头端的MAC地址;所述目标光头端接收所述控制器根据所述目标光头端的MAC地址发送的所述目标光头端标识。
在一种可能的实现方式中,所述方法还包括:所述目标光头端基于所述目标光头端标识,向所述控制器发送第一版本信息,所述第一版本信息用于指示所述目标光头端支持的管理协议的版本。
在一种可能的实现方式中,所述目标管理协议为所述目标光头端和所述控制器均支持的最新版本的管理协议。
在一种可能的实现方式中,所述目标光头端具有广播发现状态、单播发现状态和工作状态;其中,所述目标光头端处于广播发现状态时,用于接收来自所述控制器的目标光头端标识;所述目标光头端接从所述控制器收到所述目标光头端标识后,用于在单播发现状态下,基于所述目标光头端标识与所述控制器通信,以使所述控制器确定所述目标管理协议;所述目标光头端处于工作状态时,用于根据所述目标光头端标识和所述目标管理协议与所述控制器传输所述目标信息。
在一种可能的实现方式中,所述光总线网络包括多个光头端,所述目标光头端为所述多个光头端中的任一个;其中,所述控制器与所述目标光头端位于同一物理实体;或者,所述控制器独立于所述多个光头端设置。
第三方面,本申请实施例提供了一种通信装置,该通信装置具有实现上述第一方面中的控制器的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的实现方式中,该通信装置可以是控制器,或者是控制器中的模块,例如芯片或芯片系统或电路。有益效果可参见上述第一方面的描述,在此不再赘述。该通信装置可以包括收发器和处理器。该处理器可配置为支持该通信装置执行以上所示控制器的相应功能,该收发器用于支持该通信装置与光头端或光终端等之间的通信。其中,收发器可以为独立的接收器、独立的发射器、集成收发功能的收发器、或者接口电路。可选的,该通信装置还可以包括存储器,该存储器可以与处理器耦合,其保存该通信装置必要的程序指令和数据。
其中,收发器可以在控制器发现所述目标光头端时,向所述目标光头端发送目标光头端标识,所述目标光头端标识用于标识所述目标光头端;处理器可以在所述目标光头端支持的管理协议中确定目标管理协议;处理器可以根据所述目标光头端标识和所述目标管理协议,通过收发器与所述目标光头端传输目标信息,所述目标信息用于所述控制器实现对所述目标光头端和/或所述目标光头端所管理的所述至少一个光终端的管理。
在一种可能的实现方式中,所述目标管理协议用于定义承载所述目标信息的消息的帧结构;其中,所述帧结构中包括头域和净荷字段,所述目标光头端标识位于所述头域,所述目标信息位于所述净荷字段。
在一种可能的实现方式中,所述目标信息采用至少一个类型-长度-内容TLV结构,其中,每个TLV结构中的类型字段用于承载管理对象类型指示信息,每个TLV结构中的长度字段用于指示管理对象对应的对象内容的长度,每个TLV结构中的内容字段用于承载所述对象内容。
在一种可能的实现方式中,所述帧结构中还包括其它字段,用于承载需要进一步传输的其它信息。例如,所述帧结构中还可以包括协议数据单元PDU类型字段,所述帧结构中的PDU类型字段用于承载预定值,所述预定值用于指示所述帧结构为管理协议帧结构。如此,可以通过PDU类型字段区分用于实现不同用途的帧结构。例如,所述帧结构中还包括命令指示符,所述命令指示符用于指示所述帧结构对应于以下任一种消息类型:读操作、读响应操作、设置操作、设置响应操作、事件上报操作。例如,所述帧结构中还包括事件字段,所述事件字段用于承载所述目标光头端向所述控制器上报的告警事件信息。
应理解,此处仅是对帧结构中所包括的字段的示例说明而非任何限定,在具体实施时,该帧结构中可以根据业务需求或应用场景等,对帧结构中所包括的字段进行定义或协商,在此不再赘述。
在一种可能的实现方式中,所述收发器用于:广播发现报文,所述发现报文中包含所述发现报文对应的目的标识;接收所述目标光头端根据所述目的标识发送的发现报文响应,所述发现报文响应包含所述目标光头端的媒体访问控制MAC地址;根据所述目标光头端的MAC地址,向所述目标光头端发送所述目标光头端标识。
在一种可能的实现方式中,所述处理器用于:通过收发器接收来自所述目标光头端的 第一版本信息,其中,所述第一版本信息用于指示所述目标光头端支持的管理协议的版本;根据所述第一版本信息,在所述目标光头端支持的管理协议中确定所述目标管理协议。
在一种可能的实现方式中,所述处理器用于:根据所述第一版本信息和第二版本信息,在所述控制器和所述光头端均支持的管理协议中确定所述目标管理协议,所述第二版本信息用于指示所述控制器支持的管理协议的版本。示例的,所述目标管理协议为所述控制器和所述目标光头端均支持的最新版本的管理协议。
在一种可能的实现方式中,所述光总线网络包括多个光头端,所述目标光头端为所述多个光头端中的任一个;其中,所述控制器与所述目标光头端位于同一物理实体;或者,所述控制器独立于所述多个光头端设置。
第四方面,本申请实施例提供了一种通信装置,该通信装置具有实现上述第二方面中的控制器的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的实现方式中,该通信装置可以是光头端,或者是可用于光头端的部件,例如芯片或芯片系统或者电路。有益效果可参见上述第二方面的描述,此处不再赘述。该通信装置可以包括:收发器和处理器。该处理器可被配置为支持该通信装置执行以上所示光头端的相应功能,该收发器用于支持该通信装置与控制器等之间的通信。其中,收发器可以为独立的接收器、独立的发射器、集成收发功能的收发器、或者是接口电路。可选地,该通信装置还可以包括存储器,该存储器可以与处理器耦合,其保存该通信装置必要的程序指令和数据。
其中,收发器用于接收来自所述控制器的目标光头端标识,所述目标光头端标识为所述控制器在发现所述目标光头端时发送的、且用于标识所述目标光头端;处理器用于根据所述目标光头端标识和目标管理协议,通过所述收发器与所述控制器传输目标信息,其中,所述目标信息用于所述控制器实现对所述目标光头端和/或所述目标光头端所管理的至少一个光终端的管理,所述目标管理协议为所述控制器在所述目标光头端支持的管理协议中确定的。
在一种可能的实现方式中,所述目标管理协议用于定义承载所述目标信息的消息的帧结构;其中,所述帧结构中包括头域和净荷字段,所述目标光头端标识位于所述头域,所述目标信息位于所述净荷字段。
在一种可能的实现方式中,所述目标信息采用至少一个类型-长度-内容TLV结构,其中,每个TLV结构中的类型字段用于承载管理对象类型指示信息,每个TLV结构中的长度字段用于指示管理对象对应的对象内容的长度,每个TLV结构中的内容字段用于承载所述对象内容。
在一种可能的实现方式中,所述帧结构中还包括协议数据单元PDU类型字段,所述帧结构中的PDU类型字段用于承载预定值,所述预定值用于指示所述帧结构为管理协议帧结构。
在一种可能的实现方式中,所述光总线帧结构中还包括命令指示符,所述命令指示符用于指示所述光总线帧结构对应于以下任一种消息类型:读操作、读响应操作、设置操作、设置响应操作、事件上报操作。
在一种可能的实现方式中,所述帧结构中还包括事件字段,所述事件字段用于承载所述目标光头端向所述控制器上报的告警事件信息。
在一种可能的实现方式中,所述目标光头端接收来自所述控制器的目标光头端标识,包括:所述目标光头端接收来自所述控制器的发现报文,所述发现报文中包含所述发现报文对应的目的标识;所述目标光头端根据所述目的标识,向所述控制器发送发现报文响应,所述发现报文响应包含所述目标光头端的MAC地址;所述目标光头端接收所述控制器根据所述目标光头端的MAC地址发送的所述目标光头端标识。
在一种可能的实现方式中,所述收发器还用于:所述目标光头端基于所述目标光头端标识,向所述控制器发送第一版本信息,所述第一版本信息用于指示所述目标光头端支持的管理协议的版本。
在一种可能的实现方式中,所述目标管理协议为所述目标光头端和所述控制器均支持的最新版本的管理协议。
在一种可能的实现方式中,所述目标光头端具有广播发现状态、单播发现状态和工作状态;其中,所述目标光头端处于广播发现状态时,用于接收来自所述控制器的目标光头端标识;所述目标光头端接从所述控制器收到所述目标光头端标识后,用于在单播发现状态下,基于所述目标光头端标识与所述控制器通信,以使所述控制器确定所述目标管理协议;所述目标光头端处于工作状态时,用于根据所述目标光头端标识和所述目标管理协议与所述控制器传输所述目标信息。
在一种可能的实现方式中,所述光总线网络包括多个光头端,所述目标光头端为所述多个光头端中的任一个;其中,所述控制器与所述目标光头端位于同一物理实体;或者,所述控制器独立于所述多个光头端设置。
第五方面,本申请实施例提供了一种光总线网络,包括如上述第三方面所述的通信装置、至少一个如上述第四方面所述的通信装置。进一步地,可选的,该光总线网络中还可以包括至少一个光终端。
在一种可能的实现方式中,所述光总线网络为以下任一种无源光网络PON:千兆比特无源光网络GPON;10千兆比特无源光网络XG-PON;50千兆比特无源光网络50G-PON;以太网无源光网络EPON;10千兆以太无源光网络10G-EPON;码分多址无源光网络CDMA-PON;频分复用无源光网络FDM-PON;10千兆比特对称无源光网络XGS-PON。
第六方面,本申请实施例提供了一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序或指令,当计算机程序或指令被通信装置执行时,使得该通信装置执行上述第一方面或第一方面的任意可能的实现方式中的方法、或者使得该通信装置执行上述第二方面或第二方面的任意可能的实现方式中的方法。
第七方面,本申请提供一种计算机程序产品,该计算机程序产品包括计算机程序或指令,当该计算机程序或指令被通信装置执行时,使得该通信装置执行上述第一方面或第一方面的任意可能的实现方式中的方法、或者使得该通信装置执行上述第二方面或第二方面的任意可能的实现方式中的方法。
附图说明
图1为本申请的可应用的一种光总线网络的架构示意图;
图2为本申请提供的光总线网络中的网元/模块的示例;
图3为本申请提供的光总线网络的协议栈架构;
图4为本申请提供的目标光头端的状态迁移示意图;
图5为本申请提供的一种通信方法的方法流程示意图;
图6为本申请提供的一种通信方法的方法流程示意图;
图7为本申请提供的一种通信方法的方法流程示意图;
图8为本申请提供的用于承载目标信息的净荷区字段的示意图;
图9为本申请提供的一种通信装置的示意图;
图10为本申请提供的一种通信装置的示意图。
具体实施方式
下面将结合附图,对本申请实施例进行详细描述。
图1示出了本申请实施例适用的光总线网络的系统架构示意图。该光总线网络可包括控制器和光通信系统,进一步,可选地,该光总线网络系统还可包括现场控制设备。其中,光通信系统可以包括:局侧(或称为局端)的光头端(optical head end,OHE)、光分配网络(optical distribution network,ODN)、用户侧的光终端(optical terminator,OT),OHE可通过ODN与OT连接。ODN包括主干光纤、分光器(splitter)和分支光纤。图1中以光通信系统包括N个OT为例,N个OT分别为OT1、OT2、……、OTN。分光器也可以称为光分路器,可以是具有多个输入端和多个输出端的光纤汇接器件,用于光信号的耦合和分配。OHE与分光器之间通过主干光纤连接。分光器与OT之间通过分支光纤连接。现场控制设备例如传动设备(如伺服驱动器和伺服电机)、传感设备(如传感器)、输入/输出端口(input/output,I/O)设备等。应理解,这些现场控制设备可以统称为从站。控制器例如可以是可编程逻辑控制器(programmable logic controller,PCL)。PLC作为整个光总线网络系统的管理中心,可用于管理和维护OHE、OT以及各种类型的现场控制设备。PLC、OHE、ODN、OT、各个从站组成的系统(也可以称为工业光总线)可用于提供“一网到底”的能力,且该工业光总线具有更优秀的时延和抖动,并可支持更可靠的冗余保护组网。进一步,可选地,该光总线网络还可接入以太/IP互联网设备等。
需要说明的是,上述图1中所示的光总线网络系统中的各个结构的形态和数量仅用于举例,并不构成对本申请的限定。另外,图1中的光通信系统中包括的OHE、OT、分光器、以及分光器包括的端口的数量也仅是示例,本申请对此不做限定。
此处,光通信系统可以是PON系统,其中,PON系统例如可以是千兆比特无源光网络(gigabit-capable PON,GPON)系统、以太网无源光网络(ethernet PON,EPON)系统、10千兆以太无源光网络(10Gb/s ethernet passive optical network,10G-EPON)系统、时分和波分复用无源光网络(time and wavelength division multiplexing passive optical network,TWDM-PON)、10千兆比特无源光网络(10gigabit-capable passive optical network,XG-PON)系统或者10千兆比特对称无源光网络(10-gigabit-capable symmetric passive optical network,XGS-PON)系统等。随着未来演进的新技术的出现,PON系统的速率可能会提升到25Gbps、50Gbps甚至100Gbps,因此光通信系统还可以是更高传输速率的PON系统,本申请对此不做限定。
在一种可能的实现方式中,上述PON系统可以是支持单波长的PON系统,也可以是支持多波长的PON系统。
需要说明的是,本申请所描述的系统架构是为了更加清楚的说明本申请的技术方案,并不构成对本申请提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本申请提供的技术方案对于出现下述类似的技术问题,同样适用。
基于上述图1,数据或承载数据的光信号从OHE传输至OT的传输方向称为下行方向。数据或承载数据的光信号从OT传输至OHE的方向称为上行方向。OHE向OT传输光信号的方式可以是广播,也可以为单播;OT向OHE传输光信号的方式可以单播。应理解,对于上行方向,该PON系统是多点对点(multi-point to point,MP2P)系统;对于下行方向,该PON系统是点到多点(point 2 multiple point,P2MP)系统。
其中,以该光总线网络采用点到多点(point to multipoint,P2MP)结构为例,该光总线网络是单纤双向接入网络,其拓扑结构可为树型,该光总线网络也可以称为是一种P2MP通信系统。该光总线网络中,局侧的OHE、用户侧的OT、以及ODN组成的光总线系统为单纤双向系统,PLC与光头端之间可通过业务节点接口(service node interface,SNI)实现通信,光终端与其所管理的从站之间可通过用户网络接口(user network interface,UNI)实现通信。在ODN中,包括光头端(下行)/光终端(上行)光连接点(即光连接器或熔接点)之后的光纤点;光终端(下行)/光头端(上行)光连接点(即光连接器或熔接点)之前的光纤点;参考点R/S和S/R处的接口,可支持光头端和光终端之间传输所需的所有协议单元。在下行方向(OHE到光OT的方向),光头端发送的信号可通过一个1:n的无源光分路器(或几个分路器的级联)到达各个光终端。在上行方向(OT至OHE的方向),任一个光终端发送的信号只会到达光头端,而不会到达其它光终端。为了避免数据冲突并提高网络利用效率,上行方向可采用时分复用接入(time division multiple access,TMDA)等多种接入方式、并对各个OT的数据进行仲裁。光分配网络在一个光头端或一个或多个光终端之间提供一条或多条光通道,每个光通道被限制在一个特定波长窗口内。
下面,参阅图2,以控制器为PLC为例,介绍本申请的光总线网络的各个网络节点分别包括的网元/模块的功能。
参阅图2所示,在具体实施时,光头端和PLC可以在一个合一的系统中部署,例如均部署在光头端,此时,该PLC具体实现为PLC(vPLC)模块,光头端和PLC模块之间的接口为内部的软件收发接口。或者,PLC和光头端可以采用分离式部署,PLC与光头端之间采用外部接口连接,此时,光总线系统的SNI接口可以为以太接口(例如FE、GE、10GE等)或者PCIE接口中的一种。可选的,UNI接口可以为以太接口(例如FE、GE、10GE等)、SPI接口、伺服电机监控和驱动接口(例如AD,GPIO,RS422,PWM控制等)的一种或多种,本申请对此不做限定。
光头端主要用于完成总线业务/以太业务在P2MP通信系统上的承载和复用。在该光头端中,例如可以包括PLC(vPLC)模块(可选)、光总线局端模块、局端以太业务模块(可选)、点到多点(P2MP)局端模块、头端光模块等。其中,PLC(vPLC)模块可以用于完成多个工业网控制模块(例如光头端以及光头端所管理的光终端等)的编程和管理,同时,例如可以实现工业控制模块的部分计算功能。光总线局端模块可用于完成光总线业务的承载,其业务数据为控制机器或者查询/采集机器(例如PLC模块等)的数据。局端以太业务模块可用于承载局端以太业务,该模块对外提供的接口为以太接口,例如FE、GE、10GE等。P2MP局端模块可用于完成P2MP网络中多个光终端的链路层通信。头端光模块可用于完成光头端的光信号发送和光终端的光信号的接收,这里的光可以为单波长或多波长, 本申请对此不做限定。
光分路器主要用于完成点到多点光分路/合路的功能。本申请中,光分路器可以为一级或多级,也可以为等比或不等比光纤,本申请对此不做限定。
每个光终端主要用于完成在P2MP系统上获取工业控制信息或以太信息的功能。其中,按照光终端提供的业务类型,光总线网络中所包括的光终端可以分为光总线终端和以太光终端,总线光终端和以太光终端中可以包括相同的模块,例如终端光模块、点到多点(P2MP)终端模块;或者,总线光终端和以太光终端中可以包括用于支持自身提供的业务类型的相应模块,例如总线光终端中包括光总线终端模块、工业控制模块;以太光终端中包括终端以太业务模块。其中,在光终端中,终端光模块可用于完成光头端的光信号接收和光终端的光信号的发送。P2MP终端模块可用于完成P2MP网络中多个光终端的链路层通信。光总线终端模块可用于完成光总线数据的解析,并对工业控制模块进行读写操作。工业控制模块可以包括控制工业设备/IO的模块,工业设备可以为传感器、伺服器IO设备等。终端以太业务模块(可选)主要用于承载光终端以太业务,其对外提供的接口可以为以太接口,例如FE、GE、10GE等。
光头端与光分路器之间、光分路器与光终端之间使用光纤连接。本申请中,该光纤可以为普通光纤,也可以为光电合一的光纤,可以为光终端供电。
本申请中,图1和图2所示的光总线网络用于提供综合承载能力,既可以承载原有的工业总线业务,也可以承载普通的以太/IP业务。下面结合图3介绍该光总线网络的协议栈架构。
参阅图3所示,参考开放式系统互联(open system interconnect,OSI)模型的七层协议,该光总线网络的网络模型可以包括分别对应于物理层、数据链路层、网络层、传输层、会话层(可选)、表示层(可选)、应用层的协议层。
示例的,该光总线网络的物理层可由一个P2MP的光网构成,在光总线系统为单纤双向系统时,上下行应分别使用不同的波长。
数据链路层可包括媒体访问控制(media access control,MAC)层、光总线(OptiXBus)链路层、普通以太/IP业务的链路层。其中,MAC层协议位于OSI七层协议中数据链路层的下半部分,主要负责控制与链接物理层的物理介质,在发送数据时,MAC协议可以实现判断是否可以发送数据,如果可以发送则给数据加上一些控制信息,最终将数据以及控制信息以规定的帧结构发送到物理层;在接收数据时,MAC协议首先判断输入的信息是否发生传输错误,如果没有发生传输错误,则去掉控制信息发送至光总线数据链路层。光总线(OptiXBus)的链路层和普通以太/IP业务的链路层位于数据链路层的上半部分,这两链路层在数据链路层需要隔离,普通以太/IP业务的链路层应符合电气及电子工程师协会(institute of electrlcal and electronics engineers,IEEE)802.3的定义,可用于支持网络层的IP协议、传输层的用户数据协议(user datagram protocol,UDP)和传输控制协议(transmission control protocol,TCP)、应用层的工业总线的应用协议,例如SNMP/1588、HTTPS/SFTP;光总线的链路层可以是在以太网的基础上按工业总线的要求进行扩展定义,可支持来自应用层的过程数据对象(process data object,PDO)、服务数据对象(service data objec,SDO)、以及光头端管理通道数据等净荷,该光总线网络的应用层还可以包括应用适配层以及用于支持PDO、SDO等的工业控制协议,例如CANopen协议、安全(Safety)协议等。
可以理解的是,在此仅是对本申请的光总线网络适用的协议栈架构的示例说明,而非 任何限定,在具体实施时,还可以根据应用需求或应用场景等,设立所需光总线网络的协议栈架构,在此不再赘述。
由于光总线网络的业务主要依赖于数据链路层,为了便于理解,下面结合表1对该光总线网络的链路层帧结构进行示例说明。
如表1所示,光总线网络的链路层可以标准的以太网为基础,相应的链路层帧结构中可包括以太帧的相关字段,并且可在承载内容上进行更细致的划分。可以理解的是,当光总线数据需要在PLC之间传递,或者需要将光总线数据传递到IP互联网时,还可以在报文头中增加虚拟局域网(virtual local area network,VLAN)头或者IP头,本申请对此不做限定。
表1
Figure PCTCN2022079417-appb-000001
其中,光总线网络中的每个网络节点,可基于IEEE802.3标准分配有唯一的MAC地址,以便于区分不同的节点。示例的,该MAC地址可为48bit,其中高24bit位可为厂商标识符,低24bit位可由厂商自行分配,同时,需保证每个节点具有唯一的MAC地址。在光总线链路层帧结构中,承载在源地址(source address,SA)和目的地址(destination address,DA)字段的内容分别用于标明发送该帧结构的源点和目的地的地址。以太类型(EtherType)用于标明上层协议类型。帧校验序列(frame check sequence,FCS)可采用循环冗余校验码(cyclic redundancy check,CPC)-32校验。
如表1所示,光终端和光总线支持的帧结构的总长度不小于2000字节。其中,PDU为光总线的净荷单元,可以承载的最大长度为1978字节,该PDU的数据格式的定义可如下表2所示。
表2
Figure PCTCN2022079417-appb-000002
Figure PCTCN2022079417-appb-000003
示例的,在表2所示的PDU数据格式中,各个字段的含义可如下表3所示。
表3
Figure PCTCN2022079417-appb-000004
Figure PCTCN2022079417-appb-000005
需要说明的是,具体实施时,该PDU可以承载PDO数据、SDO数据、管理通道数据等净荷。其中,PDO数据、SDO数据、管理通道数据,承载为不同的帧结构,可通过PDU的类型来进行区分。为提升传输效率,一个帧结构中也可以支持承载多个PDU。并且,该帧结构支持以目的从站ID为广播从站ID来发送广播消息。对于一个从站来说,可以支持不同周期的周期数据,可以使用偏移地址来操作不同的周期数据。链路层数据帧在线路上传输时,规定的传输顺序可以是各字节从上到下,字节内从低bit位到高bit位,在此不再赘述。
本申请实施例提供了一种通信方法,该通信方法可由上述光总线网络实现,例如由控制器(例如PLC)和每个光头端(为便于区分,下文中称为目标光头端)协同实现。为了便于理解,下面以图1和图2所示的光总线网络为例,结合附图及实施例,对本申请的通信方法进行介绍。
需要说明的是,本申请中为了实现对光总线网络中的不同网络节点的标识、管理和维护,任一网络节点需要有自身的ID。其中,控制器作为整个光总线网络的管理中心,控制器本身的ID可以为预置的,在具体实施时,在存在多个控制器且多个控制器互通的情况下,控制器本身的ID分配可由操作人员手工配置,或者可由更高层的控制器进行分配, 本申请对此不做限定。控制器需要发现每个光头端,并可以为所发现的任一个目标光头端分配相应的目标光头端标识,以便在后续根据该目标光头端标识对目标光头端进行管理和维护。可以理解的是,本申请中,目标光头端标识可由控制器直接分配,也可由操作人员手工配置,或者可由其它设备进行分配,本申请对此不做限定。下文中,为了方便描述,以由控制器向目标光头端发送目标光头端标识,视作控制器向目标光头端分配目标光头端标识的方式为例,介绍本申请的通信方案,并不理解为对本申请的通信方案的任何限定。
应理解,控制器对每个光头端的ID分配可以有多种实现方式,本申请对此不做限定。作为简单示例,控制器可以采用的分配方式为使用C类地址,分配第12bit相同的ID作为控制器和光头端的ID。可选的,对于下挂在任一光终端的从站,可由光终端在发现从站时,为相应从站分配标识,光终端也可将为所管理的从站分配的标识上报给控制器,在此不再赘述。
参阅图4所示,在控制器发现目标光头端之前、直到该目标光头端进行正常工作,目标光头端需要经历以下三个状态:广播发现状态、单播发现状态以及正常工作状态。
(1)广播发现状态:在此状态内,需要完成控制器对目标光头端的广播发现过程,并为目标光头端分配(即发送)ID。其中,控制器发送的广播发现报文的目的ID可为0xDFFF,目标光头端回应消息的源ID为0xDFFF。根据目标光头端回应的消息中携带的MAC地址,控制器可以为该目标光头端分配目标光头端标识,目标光头端在接收到控制器为其分配的目标光头端标识后,即可从广播发现状态迁移至单播发现状态。
(2)单播发现状态:此状态内,控制器与目标光头端可以进行管理协议版本的协商。此协商过程中,控制器和目标光头端可使用目标光头端标识ID进行单播通讯,以完成管理协议协商。协议协商完成后,目标光头端即可从单播发现状态迁移至正常工作状态。需要说明的是,控制器和目标光头端所协商的目标管理协议可用于定义控制器与目标光头端之间通信的消息的帧结构,以便控制器实现对目标光头端和/或目标光头端所管理的至少一个光终端的管理和维护。
(3)正常工作状态:此状态内,控制器可对目标光头端和/或目标光头端所管理的至少一个光终端进行操作、管理和维护。
可以理解的是,当控制器和目标光头端之间失去联系(例如目标光头端下线),或者目标光头端接收到控制器下线消息时,目标光头端的状态回到广播发现状态。
为了便于理解,下面,以控制器和目标光头端为例,结合图5,对该通信方法的具体实现细节进行介绍。
参阅图5所示,该通信方法可以包括以下步骤:
广播发现目标光头端过程
S510:控制器在发现目标光头端时,向所述目标光头端发送目标光头端标识,所述目标光头端标识用于标识所述目标光头端。相应地,所述目标光头端接收来自所述控制器的目标光头端标识。
具体的,参阅图6所示,S510可以包括以下步骤:
S511:控制器广播发现报文,该发现报文中包含发现报文对应的目的标识,例如为0xDFFF。
S512:目标光头端接收来自控制器的发现报文,并根据该发现报文中所包含的目的标识,向所述控制器发送一个回应消息,称为发现报文响应。其中,该发现报文响应的源ID 为0xDFFF,且该发现报文响应可用于表明目标光头端自身已经接收到控制器广播的发现报文,同时,该发现报文响应可以包含所述目标光头端的MAC地址。
S513:控制器接收所述目标光头端根据所述目的标识发送的发现报文响应,并根据所述目标光头端的MAC地址,向所述目标光头端发送所述目标光头端标识。可以理解的是,在实施时,控制器可以将为目标光头端分配的目标光头端标识,以及目标光头端上报的MAC地址一起封装为一个光头端ID分配消息发送给目标光头端,以通知目标光头端已经发现完成。
相应的,目标光头端接收来自所述控制器的目标光头端标识。其中,目标光头端在接收到来自PLC的光头端ID分配消息后,可以通过将该消息中包含的MAC地址与自身的MAC地址进行比对,获取控制器为其分配的目标光头端标识。此时,目标光头端已经获取到控制器为其分配的目标光头端标识,该目标光头端可由广播发现状态迁移至单播发现状态,并可以基于该目标光头端标识,与控制器进行单播通信。
可选的,在实施时,若目标光头端成功接收到光头端ID分配消息,目标光头端还可以在S514向控制器发送一个回应消息,以表明其已经收到光头端ID分配消息,并知悉自身所分配获得的目标光头端标识。或者,若目标光头端未能成功接收到光头端ID分配消息,目标光头端还可在S514向控制器反馈错误提醒,以便控制器再次向目标光头端发送相应的目标光头端标识。或者,在实施时,控制器也可以在向目标光头端发送光头端ID分配消息后,在预设时间段内未接收来自目标光头端的回应消息,即默认发送成功,此时,控制器可以默认已经完成光头端发现过程,并可以进行后续的协议协商的过程。
单播发现目标光头端过程
S520:控制器在目标光头端支持的管理协议中确定目标管理协议。
具体的,参阅图7所示,S520可以包括以下步骤:
S521:目标光头端基于所述目标光头端标识,向所述控制器发送第一版本信息,相应地,控制器接收来自目标光头端的第一版本信息。本申请中,该第一版本信息可用于指示所述目标光头端支持的管理协议的版本。
可以理解的是,在具体实施时,第一版本信息可以是目标光头端在获取到控制器为其分配的目标光头端标识后主动上报的;或者,第一版本信息也可以是目标光头端响应于来自控制器的查询消息后发送的,该查询消息用于查询目标光头端支持的管理协议的版本,该查询消息中可以包括之前为该目标光头端分配的目标光头端标识;或者,在一种实现方式中,为了减少消息交互开销,控制器也可在向目标光头端发送目标光头端标识时,在承载该目标光头端标识的光头端ID分配消息中包含指示信息,该指示信息用于指示目标光头端上报自身支持的管理协议的版本,本申请对于第一版本信息的传输触发方式不做限定。
S522:控制器根据所述第一版本信息,在所述目标光头端支持的管理协议中确定目标管理协议。
具体的,控制器可以获取第二版本信息,所述第二版本信息用于指示所述控制器支持的管理协议的版本。然后,控制器可以根据所述第一版本信息和第二版本信息,在所述控制器和所述光头端均支持的管理协议中确定所述目标管理协议。示例的,该目标管理协议可以为所述目标光头端和所述控制器均支持的最新版本的管理协议。可以理解的是,第二版本信息可以在控制器本地存储,或者第二版本信息可以是控制器从云端或其他设备处获取的,本申请对此不做限定。
S523:控制器可以在本地缓存目标管理协议的版本信息,并向所述目标光头端发送通知消息,所述通知消息用于指示所述目标管理协议的版本。相应地,目标光头端接收来自所述控制器的通信消息,并知悉双方协商确定的目标管理协议。
至此,控制器和目标光头端双方之间完成基本协议协商过程,后续,控制器和目标光头端双方之间可以基于该目标管理协议进行通信,同时,控制器可实现对该目标光头端的管理和维护。
目标光头端正常工作过程
S530:控制器根据目标光头端标识和目标管理协议,与所述目标光头端传输目标信息,所述目标信息用于所述控制器实现对所述目标光头端和/或所述目标光头端所管理的至少一个光终端的管理。
示例的,在S530,控制器可以对目标光头端和/或所述目标光头端所管理的至少一个光终端进行运维管理,包括但不限于:查询光头端的各种统计信息、设备信息、版本信息等;配置任一光终端的从站的PDO参数、以及寻址方式等;设备软件更新、设备操作(复位、去注册)等操作;通过接收光头端上报的告警事件(event)来进行光路诊断和故障定位等。
可以理解的是,在具体实施时,可由控制器指示目标光头端所管理的至少一个光终端,实施S530之前,控制器可向目标光头端发送光终端认证信息。相应地,目标光头端接收来自控制器的光终端认证信息,建立和至少一个光终端的连接,并对该至少一个光终端进行管理。然后,目标光头端可向控制器发送响应消息,该响应消息用于指示对目标光头端对该光终端认证信息的处理结果,以便控制器知悉光头端所管理的至少一个光终端,便于后续该至少一个光终端进行管理和维护。并且,控制器和目标光头端之间的任意的管理通道信息均可以作为握手消息。控制器和目标光头端之间的握手由控制器来保证,握手超时时间可以设置为不超过1秒(s)。当然,在实施时,握手超时时间也可以根据应用场景、业务需求等配置为其它数值,在此不再赘述。
需要说明的是,在上述通信方法中,控制器可以基于配置数据和/或配置消息,实现对目标光头端以及目标光头端所管理的光终端的管理和维护,双方之间关于配置数据和/或配置消息的传输为一种数据同步方式。其中,本申请中,控制器和光头端之间的数据同步可支持两种方式:(1)控制器每次对目标光头端进行配置时,均向目标光头端下发所有的配置数据,目标光头端无需存储该配置数据。(2)控制器向目标光头端下发配置数据后,再向目标光头端下发配置消息,目标光头端需要存储配置数据,控制器可通过获取目标光头端的数据的方式,来保证双方之间数据的同步。本申请对,控制器和光头端之间的数据同步不做限定。当然,考虑到光总线网络的整体性能,控制器和光头端之间的数据同步方式可选上述方式(1)。
本申请中,控制器与目标光头端之间可以通过交互基于上述表1-表3定义的帧结构实现通信。其中,控制器与目标光头端之间可以通过交互基于管理通道的管理报文(或称为管理通道消息、操作、管理和维护(operation,administration and maintenance,OAM)消息),实现上文中结合图4-图7介绍的通信方法。
其中,如上文中表2和表3所示,可以通过PDU的类型(type)来进行区分用于实现不同用途的帧结构。例如,在PDU的type字段取值为2时,表示传输的帧结构为管理通 道的管理报文。在PDU的type字段取值为0时,表示传输的帧结构用于传输PDO数据,具体定义可参见上文表2-表3的详细介绍,在此不再赘述。
由于本申请主要关注于由控制器实现对目标光头端和/或目标光头端所管理的至少一个光终端的管理机制,下面结合附图及实施例,对本申请中控制器和目标光头端之间交互的管理报文的相关属性进行介绍。可以理解的,本申请中,管理报文可以是指用于实现管理功能的报文,包括但不限于控制器向目标光头端下发的用于承载配置数据、配置参数等的报文,或者,控制器向目标光头端下发的用于指示目标光头端上报相关能够管理用途的数据的报文,或者,目标光头端向控制器上报的相关能够管理用途的数据的报文等。
示例的,本申请中,目标管理协议可以用于定义如上述表1-表3所示的帧结构,管理报文可以采用上文中表1-表3所示的帧结构。其中,参阅图8所示,用于实现管理功能的目标信息可以承载在该帧结构中的PDU中的净荷区(payload)字段。
具体的,目标信息可以采用至少一个类型-长度-内容TLV结构,其中,每个TLV结构中的类型字段用于承载管理对象类型指示信息;每个TLV结构中的长度字段用于指示管理对象对应的对象内容的长度;每个TLV结构中的内容字段用于承载所述对象内容。控制器和目标光头端之间,可以根据管理需求,将所需传输的信息封装在上述帧结构中并传输至对端,对端设备可以对接收到的帧结构进行解析,从该帧结构中获取目标信息,从而基于目标信息实现控制器对目标光头端和/或目标光头端所管理的至少一个光终端的管理。
需要说明的是,本申请中,在一个管理通道消息所包含的至少一个TLV结构中,可以通过每个TLV结构中的类型字段完成针对不同对象的同一类操作。示例的,类型ID(type ID)范围分配可以如下所示:0x0~0xFFF为光头端相关的操作;0x1000~0x1FFF为光终端/从站相关的操作;0xF000~0xFFF为厂商自定义的扩展字段;其余字段暂时保留。对象内容的长度的范围可以为0-1024字节或者是其它数值范围。例如,当消息类型对应读(get)操作时,内容区长度为0;当消息类型对应设置(set)操作时,内容区长度为0。在一个管理通道消息中可以封装的多个TLV结构,对应于同一操作类型。例如,查询多个对象内容的消息可以封装在一个管理通道消息中;针对多个对象的配置内容的消息可以封装在一个管理通道消息中。管理通道报文可以根据命令指示符cmd来区分具体的操作。Event事件上报可使用event字段,包括但不限于从站事件上报、是否有数据待发送、或者其他中断事件等。该event字段可用bit掩码的方式上报。具体定义可参见上文表2-表3的详细介绍,在此不再赘述。
为了便于理解,下面以管理对象为光头端为例,结合表4-表6,对OAM消息中扩展的至少一个TLV结构的属性定义进行示例说明。
表4
Figure PCTCN2022079417-appb-000006
其中,Type ID字段取值不同时,可以表示对管理对象(例如OHE)的不同操作,例如,Type ID字段取值为0x0时,用于表示传输的管理报文是用于指示光头端的设备信息;Type ID字段取值为0x1时,用于表示传输的管理报文是用于指示光头端ID分配;Type ID字段取值为0x2时,用于表示传输的管理报文是用于指示光总线协议版本信息。可以理解的是,“是否可选”用于指示对管理对象的必选操作和/或可选操作。
具体的,表4中,(1)OHE device info,用于定义光头端的相关设备信息。
OHE device info的属性定义如下表5所示:
表5
Figure PCTCN2022079417-appb-000007
(2)OHE ID,用于定义为光头端分配的光头端标识。
OHE ID的属性定义如下表6所示:
表6
字节数 字段 描述
2 Type ID 0x1
2 Length 值为8。
6 MAC address 采用光头端的MAC地址
2 Node ID 为光头端分配的节点ID
(3)Bus version,用于定义光头端支持的总线版本。
Bus version的属性定义如下表7所示:
表7
Figure PCTCN2022079417-appb-000008
需要说明的是,本申请中,随着管理协议的发展和更新,管理协议可以按照1、2……n依次分配版本号,控制器和光头端各自支持的管理协议可以不限于一版,双方之间所协商确定的目标管理协议,可以为控制器和光头端均支持的最新版本的管理协议。
在实施时,控制器和光头端之间可以根据需要,基于上述表5-表7的相关属性定义,将所需传输的目标信息,按格式封装成位于PDU的payload字段的TLV结构,并传输至对端设备,以便实现控制器对光头端进行发现和配置管理,使得控制器和光头端之间可以较好地传输用于实现多种管理用途的相关信息,具有良好的扩展性。并且,该设备管理方案还可以支持控制器对光头端下挂的光路以及故障等进行诊断分析处理,便于后期维护光总线网络,提高管理效率。
图9是本申请实施例提供的装置900的示意性框图,用于实现上述方法中光总线网络中的控制器或者光头端的功能。例如,该装置可以是软件模块或芯片系统。所述芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。该装置900包括通信模块901。通信模块901,可以与外部进行通信。处理模块902,用于进行处理。通信模块901,还可以称为通信接口、收发模块、输入\输出接口等。例如,通信模块可以包括发送模块和接收模块,分别用于执行上文图5-图7流程中由控制器或光头端的发送或接收的步骤。
在一种示例中,装置900可实现上文图5-图7所示流程中控制器实现的步骤。通信模块901,用于执行上文方法实施例中控制器侧的收发相关操作。处理模块902用于执行上文方法实施例中控制器侧的处理相关操作,包括但不限于:生成由通信模块901发送的信息、消息,和/或,对通信模块901接收的信号进行解调解码等。
比如,在处理模块902的控制下,通信模块901可用于与其他设备进行通信。例如,通信模块901可以在控制器发现所述目标光头端时,向所述目标光头端发送目标光头端标识,所述目标光头端标识用于标识所述目标光头端;处理模块902可以在所述目标光头端支持的管理协议中确定目标管理协议;处理模块902可以根据所述目标光头端标识和所述目标管理协议,通过通信模块901与所述目标光头端传输目标信息,所述目标信息用于所述控制器实现对所述目标光头端和/或所述目标光头端所管理的所述至少一个光终端的管理。
示例的,所述目标管理协议用于定义承载所述目标信息的消息的帧结构;其中,所述帧结构中包括头域和净荷字段,所述目标光头端标识位于所述头域,所述目标信息位于所述净荷字段。
示例的,所述目标信息采用至少一个类型-长度-内容TLV结构,其中,每个TLV结构中的类型字段用于承载管理对象类型指示信息,每个TLV结构中的长度字段用于指示管理对象对应的对象内容的长度,每个TLV结构中的内容字段用于承载所述对象内容。
示例的,所述帧结构中还包括其它字段,用于承载需要进一步传输的其它信息。例如,所述帧结构中还可以包括协议数据单元PDU类型字段,所述帧结构中的PDU类型字段用于承载预定值,所述预定值用于指示所述帧结构为管理协议帧结构。如此,可以通过PDU类型字段区分用于实现不同用途的帧结构。例如,所述帧结构中还包括命令指示符,所述命令指示符用于指示所述帧结构对应于以下任一种消息类型:读操作、读响应操作、设置操作、设置响应操作、事件上报操作。例如,所述帧结构中还包括事件字段,所述事件字段用于承载所述目标光头端向所述控制器上报的告警事件信息。
应理解,此处仅是对帧结构中所包括的字段的示例说明而非任何限定,在具体实施时,该帧结构中可以根据业务需求或应用场景等,对帧结构中所包括的字段进行定义或协商,在此不再赘述。
示例的,所述通信模块901用于:广播发现报文,所述发现报文中包含所述发现报文对应的目的标识;接收所述目标光头端根据所述目的标识发送的发现报文响应,所述发现报文响应包含所述目标光头端的媒体访问控制MAC地址;根据所述目标光头端的MAC地址,向所述目标光头端发送所述目标光头端标识。
示例的,所述处理模块902用于:通过收发器接收来自所述目标光头端的第一版本信息,其中,所述第一版本信息用于指示所述目标光头端支持的管理协议的版本;根据所述第一版本信息,在所述目标光头端支持的管理协议中确定所述目标管理协议。
示例的,所述处理模块902用于:根据所述第一版本信息和第二版本信息,在所述控制器和所述光头端均支持的管理协议中确定所述目标管理协议,所述第二版本信息用于指示所述控制器支持的管理协议的版本。示例的,所述目标管理协议为所述控制器和所述目标光头端均支持的最新版本的管理协议。
示例的,所述光总线网络包括多个光头端,所述目标光头端为所述多个光头端中的任一个;其中,所述控制器与所述目标光头端位于同一物理实体;或者,所述控制器独立于所述多个光头端设置。
在一种示例中,装置900可实现上文图5-图7所示流程中光终端实现的步骤。通信模块901,用于执行上文方法实施例中光终端侧的收发相关操作。处理模块902用于执行上文方法实施例中光终端侧的处理相关操作,包括但不限于:生成由通信模块901发送的信息、消息,和/或,对通信模块901接收的信号进行解调解码等。
比如,通信模块901用于接收来自所述控制器的目标光头端标识,所述目标光头端标识为所述控制器在发现所述目标光头端时发送的、且用于标识所述目标光头端;处理模块902用于根据所述目标光头端标识和目标管理协议,通过所述收发器与所述控制器传输目标信息,其中,所述目标信息用于所述控制器实现对所述目标光头端和/或所述目标光头端所管理的至少一个光终端的管理,所述目标管理协议为所述控制器在所述目标光头端支持的管理协议中确定的。
示例的,所述目标管理协议用于定义承载所述目标信息的消息的帧结构;其中,所述帧结构中包括头域和净荷字段,所述目标光头端标识位于所述头域,所述目标信息位于所述净荷字段。
示例的,所述目标信息采用至少一个类型-长度-内容TLV结构,其中,每个TLV结构中的类型字段用于承载管理对象类型指示信息,每个TLV结构中的长度字段用于指示管理对象对应的对象内容的长度,每个TLV结构中的内容字段用于承载所述对象内容。
示例的,所述帧结构中还包括协议数据单元PDU类型字段,所述帧结构中的PDU类型字段用于承载预定值,所述预定值用于指示所述帧结构为管理协议帧结构。
示例的,所述光总线帧结构中还包括命令指示符,所述命令指示符用于指示所述光总线帧结构对应于以下任一种消息类型:读操作、读响应操作、设置操作、设置响应操作、事件上报操作。
示例的,所述帧结构中还包括事件字段,所述事件字段用于承载所述目标光头端向所述控制器上报的告警事件信息。
示例的,所述目标光头端接收来自所述控制器的目标光头端标识,包括:所述目标光头端接收来自所述控制器的发现报文,所述发现报文中包含所述发现报文对应的目的标识;所述目标光头端根据所述目的标识,向所述控制器发送发现报文响应,所述发现报文响应包含所述目标光头端的MAC地址;所述目标光头端接收所述控制器根据所述目标光头端的MAC地址发送的所述目标光头端标识。
示例的,所述通信模块901还用于:所述目标光头端基于所述目标光头端标识,向所述控制器发送第一版本信息,所述第一版本信息用于指示所述目标光头端支持的管理协议的版本。
示例的,所述目标管理协议为所述目标光头端和所述控制器均支持的最新版本的管理协议。
示例的,所述目标光头端具有广播发现状态、单播发现状态和工作状态;其中,所述目标光头端处于广播发现状态时,用于接收来自所述控制器的目标光头端标识;所述目标光头端接从所述控制器收到所述目标光头端标识后,用于在单播发现状态下,基于所述目标光头端标识与所述控制器通信,以使所述控制器确定所述目标管理协议;所述目标光头端处于工作状态时,用于根据所述目标光头端标识和所述目标管理协议与所述控制器传输所述目标信息。
示例的,所述光总线网络包括多个光头端,所述目标光头端为所述多个光头端中的任一个;其中,所述控制器与所述目标光头端位于同一物理实体;或者,所述控制器独立于所述多个光头端设置。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
可以理解的是,上述实施例中的通信模块的功能可以由收发器(也可称为收发机)实现,处理模块的功能可以由处理器实现。收发器可以包括发射器和/或接收器等,分别用于实现发送模块和/或接收模块的功能。以下结合图10举例进行说明。
图10是本申请实施例提供的装置1000的示意性框图,图10所示的装置1000可以为 图9所示的装置的一种硬件电路的实现方法,该装置可适用上述图5-图7所示的流程中,执行上述方法实施例中控制器、光头端的功能。为了便于说明,图10仅示出了该装置的主要部件。
图10所示的装置1000包括至少一个处理器1001。装置1000还可包括至少一个存储器1002,用于存储程序指令和/或数据。存储器1002和处理器1001耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性、机械性或其它的形式,用于装置、单元或模块之间的信息交互。处理器1001可以和存储器1002协同操作,处理器1001可以执行存储器1002中存储的程序指令,所述至少一个存储器1002中的至少一个可以包括于处理器1001中。
装置1000还可包括通信接口1003,用于通过传输介质和其它设备进行通信,从而用于通信装置1000可以和其它设备进行通信。在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。在本申请实施例中,通信接口为收发器时,收发器可以包括独立的接收器、独立的发射器;也可以集成收发功能的收发器、或者是接口电路。
应理解,本申请实施例中不限定上述处理器1001、存储器1002以及通信接口1003之间的连接介质。本申请实施例在图10中以存储器1002、处理器1001以及通信接口1003之间通过通信总线1004连接,总线在图10中以粗线表示,其它部件之间的连接方式,仅是示意性说明,并不作为限定。所述总线可以包括地址总线、数据总线、控制总线等。为了便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线等。
在一种示例中,装置1000可以用于实现上述图5-图7所示流程中控制器执行的步骤。装置1000可以是控制器,或者控制器内的芯片或电路。通信接口用于执行上文实施例中光头端侧收发的相关操作,处理器1001用于执行上文方法实施例中光头端的处理相关操作,包括但不限于:生成由通信接口1003发送的信息、消息,和/或,对通信接口1003接收的信号进行解调解码等。
比如,在处理器1001的控制下,通信接口1003可用于与其他设备进行通信。例如,通信接口1003可以在控制器发现所述目标光头端时,向所述目标光头端发送目标光头端标识,所述目标光头端标识用于标识所述目标光头端;处理器1001可以在所述目标光头端支持的管理协议中确定目标管理协议;处理器1001可以根据所述目标光头端标识和所述目标管理协议,通过通信接口1003与所述目标光头端传输目标信息,所述目标信息用于所述控制器实现对所述目标光头端和/或所述目标光头端所管理的所述至少一个光终端的管理。
示例的,所述目标管理协议用于定义承载所述目标信息的消息的帧结构;其中,所述帧结构中包括头域和净荷字段,所述目标光头端标识位于所述头域,所述目标信息位于所述净荷字段。
示例的,所述目标信息采用至少一个类型-长度-内容TLV结构,其中,每个TLV结构中的类型字段用于承载管理对象类型指示信息,每个TLV结构中的长度字段用于指示管理对象对应的对象内容的长度,每个TLV结构中的内容字段用于承载所述对象内容。
示例的,所述帧结构中还包括其它字段,用于承载需要进一步传输的其它信息。例如,所述帧结构中还可以包括协议数据单元PDU类型字段,所述帧结构中的PDU类型字段用于承载预定值,所述预定值用于指示所述帧结构为管理协议帧结构。如此,可以通过PDU 类型字段区分用于实现不同用途的帧结构。例如,所述帧结构中还包括命令指示符,所述命令指示符用于指示所述帧结构对应于以下任一种消息类型:读操作、读响应操作、设置操作、设置响应操作、事件上报操作。例如,所述帧结构中还包括事件字段,所述事件字段用于承载所述目标光头端向所述控制器上报的告警事件信息。
应理解,此处仅是对帧结构中所包括的字段的示例说明而非任何限定,在具体实施时,该帧结构中可以根据业务需求或应用场景等,对帧结构中所包括的字段进行定义或协商,在此不再赘述。
示例的,所述通信接口1003用于:广播发现报文,所述发现报文中包含所述发现报文对应的目的标识;接收所述目标光头端根据所述目的标识发送的发现报文响应,所述发现报文响应包含所述目标光头端的媒体访问控制MAC地址;根据所述目标光头端的MAC地址,向所述目标光头端发送所述目标光头端标识。
示例的,所述处理器1001用于:通过收发器接收来自所述目标光头端的第一版本信息,其中,所述第一版本信息用于指示所述目标光头端支持的管理协议的版本;根据所述第一版本信息,在所述目标光头端支持的管理协议中确定所述目标管理协议。
示例的,所述处理器1001用于:根据所述第一版本信息和第二版本信息,在所述控制器和所述光头端均支持的管理协议中确定所述目标管理协议,所述第二版本信息用于指示所述控制器支持的管理协议的版本。示例的,所述目标管理协议为所述控制器和所述目标光头端均支持的最新版本的管理协议。
示例的,所述光总线网络包括多个光头端,所述目标光头端为所述多个光头端中的任一个;其中,所述控制器与所述目标光头端位于同一物理实体;或者,所述控制器独立于所述多个光头端设置。
在一种示例中,装置1000可以用于实现上述图5-图7所示流程中光头端执行的步骤。装置1000可以是光头端,或者光头端内的芯片或电路。通信接口用于执行上文实施例中光头端侧收发的相关操作,处理器1001用于执行上文方法实施例中光头端的处理相关操作,包括但不限于:生成由通信接口1003发送的信息、消息,和/或,对通信接口1003接收的信号进行解调解码等。
比如,通信接口1003用于接收来自所述控制器的目标光头端标识,所述目标光头端标识为所述控制器在发现所述目标光头端时发送的、且用于标识所述目标光头端;处理器1001用于根据所述目标光头端标识和目标管理协议,通过所述通信接口1003与所述控制器传输目标信息,其中,所述目标信息用于所述控制器实现对所述目标光头端和/或所述目标光头端所管理的至少一个光终端的管理,所述目标管理协议为所述控制器在所述目标光头端支持的管理协议中确定的。
示例的,所述目标管理协议用于定义承载所述目标信息的消息的帧结构;其中,所述帧结构中包括头域和净荷字段,所述目标光头端标识位于所述头域,所述目标信息位于所述净荷字段。
示例的,所述目标信息采用至少一个类型-长度-内容TLV结构,其中,每个TLV结构中的类型字段用于承载管理对象类型指示信息,每个TLV结构中的长度字段用于指示管理对象对应的对象内容的长度,每个TLV结构中的内容字段用于承载所述对象内容。
示例的,所述帧结构中还包括协议数据单元PDU类型字段,所述帧结构中的PDU类 型字段用于承载预定值,所述预定值用于指示所述帧结构为管理协议帧结构。
示例的,所述光总线帧结构中还包括命令指示符,所述命令指示符用于指示所述光总线帧结构对应于以下任一种消息类型:读操作、读响应操作、设置操作、设置响应操作、事件上报操作。
示例的,所述帧结构中还包括事件字段,所述事件字段用于承载所述目标光头端向所述控制器上报的告警事件信息。
示例的,所述目标光头端接收来自所述控制器的目标光头端标识,包括:所述目标光头端接收来自所述控制器的发现报文,所述发现报文中包含所述发现报文对应的目的标识;所述目标光头端根据所述目的标识,向所述控制器发送发现报文响应,所述发现报文响应包含所述目标光头端的MAC地址;所述目标光头端接收所述控制器根据所述目标光头端的MAC地址发送的所述目标光头端标识。
示例的,所述通信接口1003还用于:所述目标光头端基于所述目标光头端标识,向所述控制器发送第一版本信息,所述第一版本信息用于指示所述目标光头端支持的管理协议的版本。
示例的,所述目标管理协议为所述目标光头端和所述控制器均支持的最新版本的管理协议。
示例的,所述目标光头端具有广播发现状态、单播发现状态和工作状态;其中,所述目标光头端处于广播发现状态时,用于接收来自所述控制器的目标光头端标识;所述目标光头端接从所述控制器收到所述目标光头端标识后,用于在单播发现状态下,基于所述目标光头端标识与所述控制器通信,以使所述控制器确定所述目标管理协议;所述目标光头端处于工作状态时,用于根据所述目标光头端标识和所述目标管理协议与所述控制器传输所述目标信息。
示例的,所述光总线网络包括多个光头端,所述目标光头端为所述多个光头端中的任一个;其中,所述控制器与所述目标光头端位于同一物理实体;或者,所述控制器独立于所述多个光头端设置。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、 专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,SSD)等。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。

Claims (29)

  1. 一种设备管理方法,其特征在于,应用于光总线网络,所述光总线网络包括目标光头端和所述目标光头端所管理的至少一个光终端,所述光总线网络还包括控制器,所述方法包括:
    所述控制器在发现所述目标光头端时,向所述目标光头端发送目标光头端标识,所述目标光头端标识用于标识所述目标光头端;
    所述控制器在所述目标光头端支持的管理协议中确定目标管理协议;
    所述控制器根据所述目标光头端标识和所述目标管理协议,与所述目标光头端传输目标信息,所述目标信息用于所述控制器实现对所述目标光头端和/或所述目标光头端所管理的所述至少一个光终端的管理。
  2. 根据权利要求1所述的方法,其特征在于,所述目标管理协议用于定义承载所述目标信息的消息的帧结构;其中,所述帧结构中包括头域和净荷字段,所述目标光头端标识位于所述头域,所述目标信息位于所述净荷字段。
  3. 根据权利要求2所述的方法,其特征在于,所述目标信息采用至少一个类型-长度-内容TLV结构,其中,每个TLV结构中的类型字段用于承载管理对象类型指示信息,每个TLV结构中的长度字段用于指示管理对象对应的对象内容的长度,每个TLV结构中的内容字段用于承载所述对象内容。
  4. 根据权利要求2或3所述的方法,其特征在于,所述帧结构中还包括协议数据单元PDU类型字段,所述帧结构中的PDU类型字段用于承载预定值,所述预定值用于指示所述帧结构为管理协议帧结构。
  5. 根据权利要求2-4中任一项所述的方法,其特征在于,所述帧结构中还包括命令指示符,所述命令指示符用于指示所述帧结构对应于以下任一种消息类型:读操作、读响应操作、设置操作、设置响应操作、事件上报操作。
  6. 根据权利要求2-5中任一项所述的方法,其特征在于,所述帧结构中还包括事件字段,所述事件字段用于承载所述目标光头端向所述控制器上报的告警事件信息。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述控制器在发现所述目标光头端时,向所述目标光头端发送目标光头端标识,包括:
    所述控制器广播发现报文,所述发现报文中包含所述发现报文对应的目的标识;
    所述控制器接收所述目标光头端根据所述目的标识发送的发现报文响应,所述发现报文响应包含所述目标光头端的媒体访问控制MAC地址;
    所述控制器根据所述目标光头端的MAC地址,向所述目标光头端发送所述目标光头端标识。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述控制器在所述目标光头端支持的管理协议中确定目标管理协议,包括:
    所述控制器接收来自所述目标光头端的第一版本信息,其中,所述第一版本信息用于指示所述目标光头端支持的管理协议的版本;
    所述控制器根据所述第一版本信息,在所述目标光头端支持的管理协议中确定所述目标管理协议。
  9. 根据权利要求8所述的方法,其特征在于,所述控制器根据所述第一版本信息,在所述光头端支持的管理协议中确定所述目标管理协议,包括:
    所述控制器根据所述第一版本信息和第二版本信息,在所述控制器和所述光头端均支持的管理协议中确定所述目标管理协议,所述第二版本信息用于指示所述控制器支持的管理协议的版本。
  10. 根据权利要求9所述的方法,其特征在于,所述目标管理协议为所述控制器和所述目标光头端均支持的最新版本的管理协议。
  11. 根据权利要求1-10中任一项所述的方法,其特征在于,所述光总线网络包括多个光头端,所述目标光头端为所述多个光头端中的任一个;
    其中,所述控制器与所述目标光头端位于同一物理实体;或者,
    所述控制器独立于所述多个光头端设置。
  12. 一种通信方法,其特征在于,应用于光总线网络,所述光总线网络包括目标光头端和所述目标光头端所管理的至少一个光终端,所述光总线网络还包括控制器,所述方法包括:
    所述目标光头端接收来自所述控制器的目标光头端标识,所述目标光头端标识为所述控制器在发现所述目标光头端时发送的、且用于标识所述目标光头端;
    所述目标光头端根据所述目标光头端标识和目标管理协议,与所述控制器传输目标信息,其中,所述目标信息用于所述控制器实现对所述目标光头端和/或所述目标光头端所管理的至少一个光终端的管理,所述目标管理协议为所述控制器在所述目标光头端支持的管理协议中确定的。
  13. 根据权利要求12所述的方法,其特征在于,所述目标管理协议用于定义承载所述目标信息的消息的帧结构;其中,所述帧结构中包括头域和净荷字段,所述目标光头端标识位于所述头域,所述目标信息位于所述净荷字段。
  14. 根据权利要求13所述的方法,其特征在于,所述目标信息采用至少一个类型-长度-内容TLV结构,其中,每个TLV结构中的类型字段用于承载管理对象类型指示信息,每个TLV结构中的长度字段用于指示管理对象对应的对象内容的长度,每个TLV结构中的内容字段用于承载所述对象内容。
  15. 根据权利要求13或14所述的方法,其特征在于,所述帧结构中还包括协议数据单元PDU类型字段,所述帧结构中的PDU类型字段用于承载预定值,所述预定值用于指示所述帧结构为管理协议帧结构。
  16. 根据权利要求13-15中任一项所述的方法,其特征在于,所述帧结构中还包括命令指示符,所述命令指示符用于指示所述帧结构对应于以下任一种消息类型:读操作、读响应操作、设置操作、设置响应操作、事件上报操作。
  17. 根据权利要求13-16中任一项所述的方法,其特征在于,所述帧结构中还包括事件字段,所述事件字段用于承载所述目标光头端向所述控制器上报的告警事件信息。
  18. 根据权利要求12-17中任一项所述的方法,其特征在于,所述目标光头端接收来自所述控制器的目标光头端标识,包括:
    所述目标光头端接收来自所述控制器的发现报文,所述发现报文中包含所述发现报文对应的目的标识;
    所述目标光头端根据所述目的标识,向所述控制器发送发现报文响应,所述发现报文响应包含所述目标光头端的MAC地址;
    所述目标光头端接收所述控制器根据所述目标光头端的MAC地址发送的所述目标光 头端标识。
  19. 根据权利要求12-18中任一项所述的方法,其特征在于,所述方法还包括:
    所述目标光头端基于所述目标光头端标识,向所述控制器发送第一版本信息,所述第一版本信息用于指示所述目标光头端支持的管理协议的版本。
  20. 根据权利要求19所述的方法,其特征在于,所述目标管理协议为所述目标光头端和所述控制器均支持的最新版本的管理协议。
  21. 根据权利要求12-20中任一项所述的方法,其特征在于,所述目标光头端具有广播发现状态、单播发现状态和工作状态;
    其中,所述目标光头端处于广播发现状态时,用于接收来自所述控制器的目标光头端标识;所述目标光头端接从所述控制器收到所述目标光头端标识后,用于在单播发现状态下,基于所述目标光头端标识与所述控制器通信,以使所述控制器确定所述目标管理协议;所述目标光头端处于工作状态时,用于根据所述目标光头端标识和所述目标管理协议与所述控制器传输所述目标信息。
  22. 根据权利要求12-21中任一项所述的方法,其特征在于,所述光总线网络包括多个光头端,所述目标光头端为所述多个光头端中的任一个;
    其中,所述控制器与所述目标光头端位于同一物理实体;或者,
    所述控制器独立于所述多个光头端设置。
  23. 一种通信装置,其特征在于,包括收发器和处理器;
    所述收发器,用于与其他设备进行通信;
    所述处理器,用于调用程序指令,以实现如权利要求1-11中任一项所述的方法。
  24. 根据权利要求23所述的通信装置,其特征在于,所述控制器包括存储器,所述存储器存储有所述处理器调用的程序指令。
  25. 一种通信装置,其特征在于,包括收发器和处理器;
    所述收发器,用于与其他设备进行通信;
    所述处理器,用于调用程序指令,以实现如权利要求12-22中任一项所述的方法。
  26. 根据权利要求25所述的通信装置,其特征在于,所述光头端包括存储器,所述存储器存储有所述处理器调用的程序指令。
  27. 一种光总线网络,其特征在于,包括如权利要求23或24所述的通信装置、至少一个如权利要求25或26所述的通信装置。
  28. 根据权利要求27所述的光总线网络,其特征在于,所述光总线网络为以下任一种无源光网络PON:
    千兆比特无源光网络GPON;
    10千兆比特无源光网络XG-PON;
    50千兆比特无源光网络50G-PON;
    以太网无源光网络EPON;
    10千兆以太无源光网络10G-EPON;
    码分多址无源光网络CDMA-PON
    频分复用无源光网络FDM-PON;
    10千兆比特对称无源光网络XGS-PON。
  29. 一种计算机可读存储介质,其特征在于,存储有计算机指令,当所述计算机指令被 计算机执行时,使得如权利要求1-11或12-22中任一项所述的方法被执行。
PCT/CN2022/079417 2021-04-19 2022-03-04 一种通信方法、装置及光总线网络 WO2022222620A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22790729.2A EP4319079A1 (en) 2021-04-19 2022-03-04 Communication method and apparatus and optical bus network
US18/487,226 US20240048239A1 (en) 2021-04-19 2023-10-16 Communication method and apparatus, and optical bus network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110420859.8A CN115225448A (zh) 2021-04-19 2021-04-19 一种通信方法、装置及光总线网络
CN202110420859.8 2021-04-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/487,226 Continuation US20240048239A1 (en) 2021-04-19 2023-10-16 Communication method and apparatus, and optical bus network

Publications (1)

Publication Number Publication Date
WO2022222620A1 true WO2022222620A1 (zh) 2022-10-27

Family

ID=83605798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079417 WO2022222620A1 (zh) 2021-04-19 2022-03-04 一种通信方法、装置及光总线网络

Country Status (4)

Country Link
US (1) US20240048239A1 (zh)
EP (1) EP4319079A1 (zh)
CN (1) CN115225448A (zh)
WO (1) WO2022222620A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110535847A (zh) * 2019-08-23 2019-12-03 北京无极芯动科技有限公司 网络处理器及网络数据的入栈处理方法
CN111464339A (zh) * 2020-03-19 2020-07-28 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 一种基于动态重构的异构工业网络互联方法及通用有线通信模块
US20210003996A1 (en) * 2019-07-03 2021-01-07 Rockwell Automation Technologies, Inc. Automatic discovery and persistence of data for industrial automation equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210003996A1 (en) * 2019-07-03 2021-01-07 Rockwell Automation Technologies, Inc. Automatic discovery and persistence of data for industrial automation equipment
CN110535847A (zh) * 2019-08-23 2019-12-03 北京无极芯动科技有限公司 网络处理器及网络数据的入栈处理方法
CN111464339A (zh) * 2020-03-19 2020-07-28 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 一种基于动态重构的异构工业网络互联方法及通用有线通信模块

Also Published As

Publication number Publication date
EP4319079A1 (en) 2024-02-07
US20240048239A1 (en) 2024-02-08
CN115225448A (zh) 2022-10-21

Similar Documents

Publication Publication Date Title
US10728214B2 (en) Method for access network virtualization and proxy node
US9455785B2 (en) Unified network management of hybrid fiber coaxial (HFC) network
US9130878B2 (en) Traffic switching in hybrid fiber coaxial (HFC) network
WO2016169246A1 (zh) 接入汇聚装置和认证注册方法
US7428586B2 (en) System and method for discovering undiscovered nodes using a registry bit in a point-to-multipoint network
JP2021168480A (ja) Dcnパケット処理方法、ネットワークデバイスおよびネットワークシステム
US9380133B2 (en) Communication method, apparatus and system
JP5295273B2 (ja) データストリームフィルタリング装置及び方法
KR101466183B1 (ko) Siepon 프로토콜을 통한 에너지 효율적 이더넷 파워 관리
WO2016188184A1 (zh) 一种数据传输方法和装置
WO2012136102A1 (zh) 控制同轴宽带接入终端的方法和系统
CN111585791B (zh) 一种数据同步配置方法、系统及存储介质
WO2023208116A1 (zh) 一种管控方法、装置、通信设备和计算机存储介质
WO2022222620A1 (zh) 一种通信方法、装置及光总线网络
WO2022088888A1 (zh) 一种多级pon网络管理方法以及相关装置
WO2017020292A1 (zh) 一种光接入设备及光接入系统
WO2022222621A1 (zh) 一种基于光通信的设备控制系统、方法和装置
WO2022222902A1 (zh) 一种通信方法及相关设备
CN112333574B (zh) 通信接入终端产品快速发现及管理方法及系统
CN108449204B (zh) 一种rof设备管理系统及方法
JP7243202B2 (ja) ネットワーク管理装置、方法、及びプログラム
JP2020072332A (ja) ネットワーク管理装置、方法、及びプログラム
CN116389387A (zh) 多节点服务器、带外管理控制器以及数据转发方法
US20170048139A1 (en) Interconnecting an Overlay Management Control Network (OMCN) to a Non-OMCN
JP2010232996A (ja) 冗長的な複数の経路を構成したイーサネットネットワークにおけるパケット転送方法、スイッチ装置、プログラム及びデータ構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22790729

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022790729

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022790729

Country of ref document: EP

Effective date: 20231030

NENP Non-entry into the national phase

Ref country code: DE