WO2022222902A1 - 一种通信方法及相关设备 - Google Patents

一种通信方法及相关设备 Download PDF

Info

Publication number
WO2022222902A1
WO2022222902A1 PCT/CN2022/087553 CN2022087553W WO2022222902A1 WO 2022222902 A1 WO2022222902 A1 WO 2022222902A1 CN 2022087553 W CN2022087553 W CN 2022087553W WO 2022222902 A1 WO2022222902 A1 WO 2022222902A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
slave station
head end
optical head
terminal
Prior art date
Application number
PCT/CN2022/087553
Other languages
English (en)
French (fr)
Inventor
郑刚
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22791010.6A priority Critical patent/EP4310613A1/en
Publication of WO2022222902A1 publication Critical patent/WO2022222902A1/zh
Priority to US18/489,235 priority patent/US20240048240A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/278Bus-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication method and related equipment.
  • Fieldbus network also known as fieldbus (FieldBus)
  • FieldBus Fieldbus
  • FieldBus is a basic network of equipment, generally can indicate a kind of application in the production field, and implement two-way multi-node between field devices, between field devices and control devices. digital communication technology.
  • a fieldbus network generally includes slave stations and a master station for controlling the slave stations, wherein the slave stations may include sensors, servers, input/output (I/O) devices, and the like.
  • the communication between the master station and the slave station can be carried out by means of twisted pair connection, so as to realize the management of the slave station.
  • the current operating cycle of the fieldbus network is at the millisecond (ms) level, which cannot meet the higher-level low-latency requirements of future industrial manufacturing. Therefore, how to realize the management of slave stations through lower-latency communication in the fieldbus network is a technical problem that needs to be solved urgently.
  • Embodiments of the present application provide a communication method and related equipment, which are used to realize the management process of slave stations through optical fiber communication, which can greatly reduce the transmission rate compared with the communication method of twisted pair connection in the traditional fieldbus network. delay and improve communication efficiency.
  • a first aspect of the embodiments of the present application provides a communication method, and the method may be executed by an optical head end or a component (for example, a processor, a chip, or a chip system, etc.) of the optical head end.
  • the method includes: the optical head first determines a first correspondence, where the first correspondence is used to indicate the correspondence between the slave station device identifier and the slave node identifier; then, the optical head receives the first message from the optical terminal,
  • the first message includes device information, and the device information includes a first device identifier, and the first device identifier is used to indicate the first slave station to which the optical terminal is connected; after that, the optical head terminal determines the first slave station in the first correspondence A first node identifier corresponding to a device identifier; further, the optical head end sends the first node identifier to the optical terminal.
  • the optical head first determines a first correspondence that includes the correspondence between the slave device identifier and the slave node identifier, and the first correspondence is used to configure the slave to go online; then, the first slave goes online
  • the optical head end receives the first message containing the first device identifier from the optical terminal through the optical fiber communication connection with the optical terminal, and determines the first device identifier corresponding to the first message in the first correspondence.
  • a node identifier further, the optical head end sends the first node identifier to the optical terminal through the optical fiber communication connection with the optical terminal.
  • the first slave station is configured to go online through optical fiber communication between the optical head end and the optical head end, that is, the management process of the slave station is realized through optical fiber communication. In this way, the transmission delay can be greatly reduced and the communication efficiency can be improved.
  • the optical head end determining the first correspondence includes: the optical head receiving the first correspondence from a programmable logic controller (PLC) .
  • PLC programmable logic controller
  • the PLC can realize the management of the slave station through the programming and management of multiple industrial network control modules, and at the same time, part of the calculation of the industrial control module can be placed in the PLC.
  • the PLC can be integrated in the optical head and implemented as a module of the optical head (for example, a virtual programmable logic controller (vPLC) module); alternatively, the PLC can also be integrated in other equipment independent of the optical head , which is not limited here.
  • vPLC virtual programmable logic controller
  • the first correspondence including the correspondence between the slave device identifier and the slave node identifier can be configured through the PLC, so that the operator can manage one or more optical heads by setting the PLC on the PLC. .
  • the method further includes: sending a notification message to the PLC, where the notification message is used to indicate The first slave station is online, and the notification message includes the first node identifier.
  • the optical head end may send a notification message to the PLC for indicating that the first slave station is online, so that the PLC determines that the first slave station has After going online, the subsequent PLC can implement other management operations for the first slave station, such as the interaction of device capability information, the interaction of process data object (PDO) configuration information, and the interaction of PDO data.
  • PDO process data object
  • the method further includes: the optical head end sends first indication information to the optical terminal , the first indication information is used to request the device capability information of the first slave station; then, the optical head end receives the device capability information from the optical terminal.
  • the optical head end after the optical head end sends the first node identifier to the optical terminal, that is, after the optical head end determines that the first slave station is online, the optical head end can further obtain the The device capability information of the first slave station, so that the optical head can subsequently implement other management operations on the first slave station according to the device capability information of the first slave station, such as interaction of PDO configuration information, interaction of PDO data, etc.
  • the method further includes: the optical head end sends the device capability information to the PLC.
  • the optical head end after the optical head end obtains the device capability information of the first slave station, the optical head end can send the device capability information to the PLC, so that the PLC can realize the first slave station according to the device capability information. Other management operations.
  • the method before the optical head end sends the first indication information to the optical terminal, the method further includes: the optical head end receives the first indication information from the PLC.
  • the optical head end may send the first indication information for requesting the device capability information of the first slave station to the optical terminal based on the indication of the PLC.
  • the method further includes: the optical head end determines the PDO configuration of the first slave station information; the optical head end sends the PDO configuration information to the optical terminal.
  • the optical head end after the optical head end sends the first node identifier to the optical terminal, that is, after the optical head end determines that the first slave station is online, the optical head end can determine the PDO configuration information of the first slave station to the optical terminal, So that the PDO data can be exchanged between the subsequent optical head end and the optical terminal based on the PDO configuration information.
  • the PDO configuration information includes at least one of the following: a sending period of the PDO data, a memory access address of the PDO data, and a mapping of the PDO data object.
  • the PDO configuration information may specifically include the transmission period of the PDO data, the memory access address of the PDO data, the mapping of the PDO data object, and/or other PDO configuration information, providing a variety of flexible PDO configuration information. way of implementation.
  • the optical head end determining the PDO configuration information of the first slave station includes: the optical head end receiving the PDO configuration information of the first slave station from the PLC.
  • the optical head can determine the PDO configuration information of the first slave station based on the configuration of the PLC, and after determining that the first slave station is online, send the PDO configuration information of the first slave station to the first slave station, In order to enable the subsequent PLC and the first slave station to be connected through the optical fiber communication between the optical head end and the optical terminal, the PDO data interaction is performed based on the PDO configuration information.
  • the method before the optical head end sends the first node identifier to the optical terminal, the method further includes: the optical head end determines a second correspondence, the second The corresponding relationship is used to indicate the corresponding relationship between the optical terminal and at least one slave station connected to the optical terminal, and the at least one slave station includes the first slave station.
  • the optical terminal may be connected to at least one slave station to implement communication with the at least one slave station, that is, one optical terminal may correspond to one or more slave stations.
  • the optical head end Before the optical head end sends the first node identifier to the optical terminal, that is, before the optical head end determines that the first slave station is online, the optical head end can be preconfigured in the optical head end or configured to the optical head end through PLC, so that The optical head end determines the corresponding relationship between the optical terminal and at least one slave station connected to the optical terminal, and then can determine the first slave station in the at least one slave station corresponding to the optical terminal based on the corresponding relationship, and implement the corresponding relationship. Management of the first slave.
  • the first node identifier is carried in an optical network terminal management control interface OMCI message, and the OMCI message further includes a port identifier GEMport of a gigabit passive optical network encapsulation mode ID; or, the first node identifier is carried in an operation, management and maintenance OAM message, and the OAM message further includes a logical link identifier LLID.
  • the optical head end and the optical terminal can be implemented through various communication modes, wherein the communication mode is a gigabit PON (gigabit passive optical network, GPON) in a passive optical network (passive optical network, PON) or
  • the first node identifier sent by the optical head end to the optical terminal can be carried in the optical network terminal management and control interface (optical network terminal management and control interface, OMCI) message and carry the gigabit passive optical network encapsulation mode.
  • the communication mode is a gigabit PON (gigabit passive optical network, GPON) in a passive optical network (passive optical network, PON) or
  • the first node identifier sent by the optical head end to the optical terminal can be carried in the optical network terminal management and control interface (optical network terminal management and control interface, OMCI) message and carry the gigabit passive optical network encapsulation mode.
  • OMCI optical network terminal management and control interface
  • Port identification GPON/10G GPON/50G GPON encapsulation mode/method port identifier, GEMport ID
  • the communication method is Ethernet PON (ethernetpassive optical network, EPON), 10 Gigabit Ethernet PON (10G ethernet passive optical network, 10G -EPON) or other EPON networks
  • the first node identifier sent by the optical head end to the optical terminal can be carried in the optical network terminal management and control interface (operation administration and maintenance, OAM) message, and carry the logical link identifier (logical link identifier). link identifier, LLID).
  • the first correspondence is carried in an optical bus link layer message, where the optical bus link layer message includes at least one of the following: a destination media interface Incoming control (media access control, MAC) address, the PLC's media access control MAC address, ether type, protocol data unit PDU number, time stamp, frame check sequence.
  • MAC media interface Incoming control
  • the target MAC address may indicate the MAC addresses of one or more optical head ends.
  • the optical bus link layer message sent can carry the above at least one piece of information, which provides various flexibility of the optical bus link layer message way of implementation.
  • the first node identifier includes at least one of the following: a type identifier, a length value, a MAC address, and a node identifier.
  • the MAC address may indicate the MAC address of the optical terminal or the first slave station.
  • the first node identifier allocated by the optical head end to the first slave station based on the first correspondence relationship may include the above at least one piece of information, providing multiple flexible implementations of the first node identifier.
  • the device information includes at least one of the following: a type identifier, a length value, a node identifier, a supplier identifier of the optical terminal or the first slave station, the The MAC address of the optical terminal or the first slave station, the OT model of the optical terminal, the hardware version of the optical terminal or the first slave station, the software version of the optical terminal or the first slave station, the optical terminal or the first slave station Chip model of the slave station, chip revision information of the optical terminal or the first slave station, chip version of the optical terminal or the first slave station, chip design date of the optical terminal or the first slave station, response to user operation The obtained input parameters.
  • the device information from the optical terminal received by the optical head end may include the above at least one item of information, wherein the first device identifier may include part of the above device information, providing multiple flexible implementations of the device information Way.
  • the method further includes: the optical head end sends second indication information to the optical terminal, where the second indication information is used to instruct the first slave station to enter an emergency state.
  • the second indication information is used to instruct the first slave station to enter an emergency state, and specifically may instruct the first slave station to enter an emergency stop state.
  • the first slave station In the emergency stop state, the first slave station is no longer periodically Execute the action, close or shut down the action executed by the first slave, so as to prevent damage to people or machines.
  • the optical head end managing the first slave station it can send the second indication information for instructing the first slave station to enter the emergency state to the optical terminal, so that the first slave station connected to the optical terminal enters the security protection state to prevent injury to humans or machines.
  • the method further includes: the optical head end receiving the second indication information from the PLC.
  • the method further includes: the optical head end sends third indication information to the optical terminal, The third indication information is used to request the process data PDO of the first slave station; the optical head end receives the PDO from the optical terminal.
  • the optical head end after the optical head end sends the first node identifier to the optical terminal, that is, after the optical head end determines that the first slave station is online, the optical head end can send a request for the PDO of the first slave station to the optical terminal.
  • the third indication information is received, and the PDO from the terminal is received, so as to realize the interaction of PDO data and realize the management of the first slave station.
  • the method further includes: the optical head end sending the PDO to the PLC.
  • the optical head end can determine the PDO configuration information of the first slave station based on the configuration of the PLC, and after determining that the first slave station is online and receiving the PDO of the first slave station, can send the PDO to the PLC, In order to realize the management of the first slave station by PLC.
  • the method before the optical head end sends the third indication information to the optical terminal, the method further includes: the optical head end receives the third indication information from the PLC.
  • the optical head end can determine the PDO configuration information of the first slave station based on the configuration of the PLC, and after determining that the first slave station is online, can send a request for the first slave station to the optical head end based on the instruction of the PLC The third indication information of the PDO.
  • the method before the optical head end sends third indication information to the optical terminal, the method further includes: the optical head end sends fourth indication information to the optical terminal, the The fourth indication information is used to instruct the first slave station to enter the operating state.
  • the first slave station entering the operating state may instruct the first slave station to start the fieldbus operation.
  • the optical head end after the optical head end sends the first node identifier to the optical terminal, that is, after the optical head end determines that the first slave station is online, the optical head end can send a message to the optical terminal to indicate that the first slave station enters the operating state the fourth indication information, and the interaction of PDO data is performed based on the third indication information after the first slave station enters the operating state.
  • the method further includes: the optical head end receiving the fourth indication information from the PLC.
  • a second aspect of the embodiments of the present application provides a communication method, and the method may be executed by a PLC, or may be executed by a component of the PLC (for example, a processor, a chip, or a chip system, etc.).
  • the method includes: the programmable logic controller PLC sends a first correspondence relationship to the optical head end, where the first correspondence relationship is used to indicate the correspondence relationship between the slave station device identification and the slave station node identification, and the correspondence relationship indicates at least the first device
  • the identifier corresponds to the first node identifier, and the first device identifier is used to indicate the first slave station connected by the optical terminal; then, the PLC receives a notification message from the optical head end, and the notification message is used to instruct the first slave station to go online, And the notification message includes the first node identifier.
  • the PLC first sends to the optical head a first correspondence that includes the correspondence between the slave device identifier and the slave node identifier, and the first correspondence is used to configure the slave to go online; then, at the first slave During the online process of the station, after the optical head end configures the first slave station to go online through the optical fiber communication connection with the optical terminal, the PLC receives the notification message from the optical head end to instruct the first slave station to go online, so that the operator can
  • the management of one or more optical head ends is realized by setting the PLC, and the management process of the slave station is realized through optical fiber communication between the optical head end and the optical terminal. Compared with the twisted pair in the traditional fieldbus network
  • the connected communication method can greatly reduce the transmission delay and improve the communication efficiency.
  • the PLC can realize the management of the slave station through the programming and management of multiple industrial network control modules, and at the same time, part of the calculation of the industrial control module can be placed in the PLC.
  • the PLC can be integrated in the optical head and implemented as a module of the optical head (for example, a virtual programmable logic controller (vPLC) module); alternatively, the PLC can also be integrated in other equipment independent of the optical head , which is not limited here.
  • vPLC virtual programmable logic controller
  • the method further includes: the PLC sends first indication information to the optical head end, the first indication The information is used to request the device capability information of the first slave station; the PLC receives the device capability information from the optical head end.
  • the optical head end can further obtain the information of the first slave station through the optical communication connection with the optical terminal.
  • device capability information and after the optical head end obtains the device capability information of the first slave station, the optical head end can send the device capability information to the PLC, so that the PLC can realize the first slave station according to the device capability information other management operations.
  • the method further includes: the PLC sends the PDO configuration information of the first slave station to the optical head end .
  • the PLC after the PLC receives the notification message from the optical head, that is, after the PLC determines that the first slave is online, the PLC sends the PDO configuration information of the first slave to the optical head, so that the optical head can determine and send The PDO configuration information of the first slave station of the optical terminal, and the subsequent PLC and the first slave station can exchange PDO data based on the PDO configuration information.
  • the PDO configuration information includes at least one of the following: a sending period of the PDO data, a memory access address of the PDO data, and a mapping of the PDO data object.
  • the PDO configuration information may specifically include the transmission period of the PDO data, the memory access address of the PDO data, the mapping of the PDO data object, and/or other PDO configuration information, providing a variety of flexible PDO configuration information. way of implementation.
  • the first correspondence is carried in an optical bus link layer message, where the optical bus link layer message includes at least one of the following: a destination MAC address , The source MAC address of the PLC, the Ethernet type, the number of PDUs of the protocol data unit, the time stamp, and the frame check sequence.
  • the target MAC address may indicate the MAC addresses of one or more optical head ends.
  • the optical bus link layer message sent can carry the above at least one piece of information, which provides various flexibility of the optical bus link layer message way of implementation.
  • the first node identifier includes at least one of the following: a type identifier, a length value, a MAC address, and a node identifier.
  • the MAC address may indicate the MAC address of the optical terminal or the first slave station.
  • the first node identifier allocated by the optical head end to the first slave station based on the first correspondence relationship may include the above at least one piece of information, providing multiple flexible implementations of the first node identifier.
  • the device information includes at least one of the following: a type identifier, a length value, a node identifier, a supplier identifier of the optical terminal or the first slave station, the MAC address of the optical terminal or the first slave station, OT model of the optical terminal or the first slave station, hardware version of the optical terminal or the first slave station, software version of the optical terminal or the first slave station , the chip model of the optical terminal or the first slave station, the chip revision information of the optical terminal or the first slave station, the chip version of the optical terminal or the first slave station, the optical terminal or the first slave station.
  • the device information from the optical terminal received by the optical head end may include the above at least one item of information, wherein the first device identifier may include part of the above device information, providing multiple flexible implementations of the device information Way.
  • the method further includes: the PLC sends second indication information to the optical head end, where the second indication information is used to instruct the first slave station to enter an emergency state .
  • the second indication information is used to instruct the first slave station to enter an emergency state, and specifically may instruct the first slave station to enter an emergency stop state.
  • the first slave station In the emergency stop state, the first slave station is no longer periodically Execute the action, close or shut down the action executed by the first slave, so as to prevent damage to people or machines.
  • the PLC that manages the first slave station it can send second indication information to the optical head end for instructing the first slave station to be in an emergency state, so that the first slave station corresponding to the optical terminal connected to the optical head end enters the A state of safety protection to prevent injury to people or machines.
  • the method further includes: the PLC sends third indication information to the optical head end, the third indication information Used to request the process data PDO of the first slave station; then, the PLC receives the PDO from the optical head end.
  • the PLC after the PLC receives the notification message from the optical head end, that is, after the PLC determines that the first slave station is online, the PLC sends the third indication information for requesting the process data PDO of the first slave station to the optical head end, So that the optical head can determine and send the PDO to the PLC, and enable the PLC and the first slave to exchange PDO data.
  • the method before the PLC sends the third indication information to the optical head end, the method further includes: the PLC sends fourth indication information to the optical head end, and the third indication information is sent to the optical head end.
  • Four indication information is used to instruct the first slave station to enter the operating state.
  • the first slave station entering the operating state may instruct the first slave station to start the fieldbus operation.
  • the PLC after the PLC receives the notification message from the optical head end, that is, after the PLC determines that the first slave station is online, the PLC can send to the optical head end fourth indication information for indicating that the first slave station enters the operating state, And the interaction of PDO data is performed after the first slave station enters the operating state.
  • a third aspect of the embodiments of the present application provides a communication method, and the method may be performed by an optical terminal, or may be performed by a component of the optical terminal (for example, a processor, a chip, or a chip system, etc.).
  • the method includes: the optical terminal sends a first message to the optical head end, where the first message includes a first device identifier, and the first device identifier is used to indicate a first slave station connected to the optical terminal; then, the optical terminal receives information from the optical terminal.
  • the first node identifier of the optical head end wherein the first device identifier corresponds to the first node identifier.
  • the optical terminal sends the first message containing the first device identifier to the optical terminal through the optical fiber communication connection with the optical head end, so that the optical head end is in the first corresponding
  • the first node identification corresponding to the first device identification is determined in the relationship, wherein the first corresponding relationship is used to indicate the corresponding relationship between the slave station device identification and the slave station node identification; further, the optical terminal passes between the optical terminal and the optical head end.
  • the optical fiber communication connection receives the first node identification from the optical head end.
  • the first slave station is configured to go online through optical fiber communication between the optical head end and the optical head end, that is, the management process of the slave station is realized through optical fiber communication. In this way, the transmission delay can be greatly reduced and the communication efficiency can be improved.
  • the method further includes: the optical terminal receives the first indication information from the optical head end, The first indication information is used to request the device capability information of the first slave station; then, the optical terminal determines the device capability information according to the first indication information; after that, the optical terminal sends the device capability information to the optical head end.
  • the optical terminal after the optical terminal receives the first node identifier from the optical head end, that is, after the optical terminal determines that the first slave station is online, the optical terminal can further obtain the first slave through the optical communication connection with the optical head end. indication information, and send the device capability information of the first slave station to the optical head end based on the first indication information, so that the optical head end can subsequently implement other management operations on the first slave station according to the device capability information of the first slave station, For example, the interaction of PDO configuration information, the interaction of PDO data, and so on.
  • the method further includes: the optical terminal receives the first slave station from the optical head end. PDO configuration information; then, the optical terminal sends the PDO configuration information to the first slave station.
  • the optical terminal after the optical terminal receives the first node identifier from the optical head end, that is, after the optical terminal determines that the first slave station is online, the optical terminal can also receive the PDO configuration information from the optical head end, and send the first slave station. PDO configuration information, so that the interaction of PDO data can be implemented based on the PDO configuration information subsequently.
  • the first node identifier is carried in an optical network terminal management control interface OMCI message, and the OMCI message further includes a port identifier GEMport of a gigabit passive optical network encapsulation mode ID; or, the first node identifier is carried in an operation, management and maintenance OAM message, and the OAM message further includes a logical link identifier LLID.
  • the optical head end and the optical terminal can be implemented through various communication modes, wherein the communication mode is a gigabit PON (gigabit passive optical network, GPON) in a passive optical network (passive optical network, PON).
  • the first node identifier sent by the optical head end to the optical terminal can be carried in the optical network terminal management and control interface (optical network terminal management and control interface, OMCI) message and carry the port identifier of the gigabit passive optical network encapsulation mode (GPON/ 10G GPON/50G GPON encapsulation mode/method port identifier, GEMport ID); when the communication method is Ethernet PON (ethernetpassive optical network, EPON), 10 Gigabit Ethernet PON (10G ethernet passive optical network, 10G-EPON),
  • the first node identifier sent by the optical head end to the optical terminal may be carried in an optical network terminal management and control interface (operation administration and maintenance, OAM) message, and carry a logical link identifier (logical
  • the first node identifier includes at least one of the following: a type identifier, a length value, a MAC address, and a node identifier.
  • the MAC address may indicate the MAC address of the optical terminal or the first slave station.
  • the first node identifier allocated by the optical head end to the first slave station based on the first correspondence relationship may include the above at least one piece of information, providing multiple flexible implementations of the first node identifier.
  • the first device identifier includes at least one of the following: a type identifier, a length value, a node identifier, and a supplier identifier of the optical terminal or the first slave station , the MAC address of the optical terminal or the first slave station, the OT model of the optical terminal or the first slave station, the hardware version of the optical terminal or the first slave station, the software version, the chip model of the optical terminal or the first slave station, the chip revision information of the optical terminal or the first slave station, the chip version of the optical terminal or the first slave station, the optical terminal or the first slave station The chip design date of the slave station, and the input parameters obtained in response to user operations.
  • the device information from the optical terminal received by the optical head end may include the above at least one item of information, wherein the first device identifier may include part of the above device information, providing multiple flexible implementations of the device information Way.
  • the method further includes: the optical terminal receives second indication information from the optical head end, where the second indication information is used to instruct the first slave station to enter an emergency state; then, the optical terminal sends the second indication information to the first slave station.
  • the second indication information is used to instruct the first slave station to enter an emergency state, and specifically may instruct the first slave station to enter an emergency stop state.
  • the first slave station In the emergency stop state, the first slave station is no longer periodically Execute the action, close or shut down the action executed by the first slave, so as to prevent damage to people or machines.
  • the optical terminal can send second indication information for instructing the first slave station to be in an emergency state, and thereafter, the optical terminal sends the second instruction information to the first slave station Instructing information to make the first slave station enter a safety protection state to prevent injury to humans or machines.
  • the method further includes: the optical terminal receives third indication information from the optical head end , the third indication information is used to request the process data PDO corresponding to the node identifier of the first slave station; then, the optical terminal determines the PDO according to the third indication information; after that, the optical terminal sends the PDO to the optical head end .
  • the optical terminal after the optical terminal receives the first node identifier from the optical head end, that is, after the optical terminal determines that the first slave station is online, the optical terminal can also receive a request from the optical head end for requesting the corresponding node identifier of the first slave station and send the PDO to the optical head based on the third indication information, so as to realize the interaction of PDO data.
  • the method before the optical terminal receives the third indication information from the optical head end, the method further includes: the optical terminal receives the fourth indication information from the optical head end, The fourth indication information is used to instruct the first slave station corresponding to the node identifier of the first slave station to enter the operating state; then, the optical terminal sends the fourth indication information to the first slave station.
  • the first slave station entering the operating state may instruct the first slave station to start the fieldbus operation.
  • the optical terminal after the optical terminal receives the first node identifier from the optical head end, that is, after the optical terminal determines that the first slave station is online, the optical terminal can receive a message sent from the optical head end to instruct the first slave station to enter the operating state the fourth indication information, and the interaction of PDO data is performed based on the third indication information after the first slave station enters the operating state.
  • a fourth aspect of the embodiments of the present application provides an optical head, including:
  • a processing unit configured to determine a first correspondence, where the first correspondence is used to indicate the correspondence between the slave station device identifier and the slave station node identifier;
  • Transceiver unit for receiving the first message from optical terminal, this first message includes equipment information, and this equipment information includes first equipment identification, and this first equipment identification is used to indicate the first slave station that this optical terminal is connected;
  • the processing unit is further configured to determine, in the first correspondence, a first node identifier corresponding to the first device identifier;
  • the transceiver unit is further configured to send the first node identifier to the optical terminal.
  • the processing unit is specifically configured to receive the first correspondence from the programmable logic controller PLC through the transceiver unit.
  • the transceiver unit is further configured to send a notification message to the PLC, where the notification message is used to indicate that the first slave station is online, and the notification message includes the first node identifier.
  • the transceiver unit is further configured to send first indication information to the optical terminal, where the first indication information is used to request device capability information of the first slave station;
  • the transceiver unit is further configured to receive the device capability information from the optical terminal.
  • the transceiver unit is also used for sending the device capability information to the PLC.
  • the transceiver unit is further configured to receive the first indication information from the PLC.
  • the processing unit is further configured to determine the PDO configuration information of the first slave station
  • the transceiver unit is further configured to send the PDO configuration information to the optical terminal.
  • the PDO configuration information includes at least one of the following:
  • the sending cycle of the PDO data the memory access address of the PDO data, and the mapping of the PDO data object.
  • the processing unit is specifically configured to receive the PDO configuration information of the first slave station from the PLC through the transceiver unit.
  • the processing unit is further configured to determine a second correspondence, where the second correspondence is used to indicate a correspondence between the optical terminal and at least one slave station connected to the optical terminal, the at least one slave station includes the first Slaves.
  • the first node identification is carried in the optical network terminal management control interface OMCI message and the OMCI message also includes the port identification GEMport ID of the gigabit passive optical network encapsulation mode; or,
  • the first node identifier is carried in an operation, management and maintenance OAM message and the OAM message further includes a logical link identifier LLID.
  • the first correspondence is carried in an optical bus link layer message, where the optical bus link layer message includes at least one of the following:
  • Destination MAC address Destination MAC address, MAC address of the PLC's media access control, Ethernet type, protocol data unit PDU number, time stamp, frame check sequence.
  • the first node identifier includes at least one of the following:
  • Type identifier For example, length value, MAC address, node identifier.
  • the device information includes at least one of the following:
  • Type identifier Type identifier, length value, node identifier, supplier identifier of the optical terminal or the first slave station, MAC address of the optical terminal or the first slave station, OT model of the optical terminal, the optical terminal or the first slave station the hardware version of the optical terminal, the software version of the optical terminal or the first slave station, the chip model of the optical terminal or the first slave station, the chip revision information of the optical terminal or the first slave station, the optical terminal or the first slave station.
  • the transceiver unit is further configured to send second indication information to the optical terminal, where the second indication information is used to instruct the first slave station to enter an emergency state.
  • the transceiver unit is also used for the optical terminal to send third indication information, where the third indication information is used to request the process data PDO of the first slave station;
  • the optical head end receives the PDO from the optical terminal.
  • the transceiver unit is also used for sending the PDO to the PLC.
  • the transceiver unit is further configured to receive the third indication information from the PLC.
  • the transceiver unit is further configured to send fourth indication information to the optical terminal, where the fourth indication information is used to instruct the first slave station to enter an operating state.
  • the component modules of the communication device may also be used to perform the steps performed in each possible implementation manner of the first aspect.
  • the first aspect which will not be repeated here.
  • a fifth aspect of the embodiments of the present application provides a programmable logic controller PLC, including:
  • a processing unit configured to determine a first correspondence, where the first correspondence is used to indicate a correspondence between the slave station device identification and the slave node identification, and the correspondence at least indicates that the first device identification corresponds to the first node identification,
  • the first device identifier is used to indicate the first slave station to which the optical terminal is connected;
  • a transceiver unit configured to send the first correspondence to the optical head
  • the transceiver unit is further configured to receive a notification message from the optical head, where the notification message is used to instruct the first slave station to go online, and the notification message includes the first node identifier.
  • the transceiver unit is further configured to send first indication information to the optical head, where the first indication information is used to request device capability information of the first slave station;
  • the PLC receives the device capability information from the optical head.
  • the transceiver unit is further configured to send the PDO configuration information of the first slave station to the optical head end.
  • the PDO configuration information includes at least one of the following:
  • the sending cycle of the PDO data the memory access address of the PDO data, and the mapping of the PDO data object.
  • the first correspondence is carried in an optical bus link layer message, where the optical bus link layer message includes at least one of the following:
  • Destination MAC address Destination MAC address, source MAC address of the PLC, ether type, protocol data unit PDU number, time stamp, frame check sequence.
  • the first node identifier includes at least one of the following:
  • Type identifier For example, length value, MAC address, node identifier.
  • the device information includes at least one of the following:
  • Type identifier Type identifier, length value, node identifier, supplier identifier of the optical terminal or the first slave station, MAC address of the optical terminal or the first slave station, OT model of the optical terminal or the first slave station, the Hardware version of the optical terminal or the first slave station, software version of the optical terminal or the first slave station, chip model of the optical terminal or the first slave station, chip revision of the optical terminal or the first slave station information, the chip version of the optical terminal or the first slave station, the chip design date of the optical terminal or the first slave station, and input parameters obtained in response to user operations.
  • the transceiver unit is further configured to send second indication information to the optical head end, where the second indication information is used to instruct the first slave station to enter an emergency state.
  • the transceiver unit is further configured to send third indication information to the optical head, where the third indication information is used to request the process data PDO of the first slave station;
  • the transceiver unit is also used for receiving the PDO from the optical head end.
  • the transceiver unit is further configured to send fourth indication information to the optical head end, where the fourth indication information is used to instruct the first slave station to enter an operating state.
  • the component modules of the communication device may also be used to perform the steps performed in each possible implementation manner of the second aspect.
  • the second aspect which will not be repeated here.
  • a sixth aspect of the embodiments of the present application provides an optical terminal, including:
  • a processing unit configured to determine a first device identifier, where the first device identifier is used to indicate the first slave station connected to the optical terminal;
  • transceiver unit configured to send a first message to the optical head, where the first message includes the first device identifier
  • the transceiver unit is further configured to receive a first node identifier from the optical head, where the first device identifier corresponds to the first node identifier.
  • the transceiver unit is also used to receive the first indication information from the optical head, and the first indication information is used to request the equipment capability information of the first slave station;
  • the processing unit is further configured to determine the device capability information according to the first indication information
  • the transceiver unit is further configured to send the device capability information to the optical head end.
  • the transceiver unit is further configured to receive the PDO configuration information from the first slave station of the optical head end;
  • the transceiver unit is further configured to send the PDO configuration information to the first slave station.
  • the first node identification is carried in the optical network terminal management control interface OMCI message and the OMCI message also includes the port identification GEMport ID of the gigabit passive optical network encapsulation mode; or,
  • the first node identifier is carried in an operation, management and maintenance OAM message and the OAM message further includes a logical link identifier LLID.
  • the first node identifier includes at least one of the following:
  • Type identifier For example, length value, MAC address, node identifier.
  • the first device identifier includes at least one of the following:
  • Type identifier Type identifier, length value, node identifier, supplier identifier of the optical terminal or the first slave station, MAC address of the optical terminal or the first slave station, OT model of the optical terminal or the first slave station, the Hardware version of the optical terminal or the first slave station, software version of the optical terminal or the first slave station, chip model of the optical terminal or the first slave station, chip revision of the optical terminal or the first slave station information, the chip version of the optical terminal or the first slave station, the chip design date of the optical terminal or the first slave station, and input parameters obtained in response to user operations.
  • the transceiver unit is further configured to receive second indication information from the optical head, where the second indication information is used to instruct the first slave station to enter an emergency state;
  • the transceiver unit is further configured to send the second indication information to the first slave station.
  • the transceiver unit is further configured to receive third indication information from the optical head, where the third indication information is used to request the process data PDO corresponding to the node identifier of the first slave station;
  • the processing unit is further configured to determine the PDO according to the third indication information
  • the transceiver unit is also used for sending the PDO to the optical head end.
  • the transceiver unit is further configured to receive fourth indication information from the optical head, where the fourth indication information is used to instruct the first slave station corresponding to the node identifier of the first slave station to enter the operating state;
  • the transceiver unit is further configured to send the fourth indication information to the first slave station.
  • the component modules of the communication device may also be used to perform the steps performed in each possible implementation manner of the third aspect.
  • the third aspect which will not be repeated here.
  • a seventh aspect of an embodiment of the present application provides an optical head end, including an optical transceiver, and a processor coupled to the optical transceiver; wherein the processor is configured to execute any one of the methods performed by the optical head end in the embodiments of the present application. some or all of the steps.
  • An eighth aspect of an embodiment of the present application provides a PLC, including an optical transceiver, and a processor coupled to the optical transceiver; wherein the processor is configured to execute part of any method executed by the PLC in the embodiments of the present application or all steps.
  • a ninth aspect of an embodiment of the present application provides an optical line terminal, including an optical transceiver, and a processor coupled to the optical transceiver; wherein the processor is configured to execute any one of the embodiments of the present application executed by the optical line terminal some or all of the steps of the method.
  • a tenth aspect of an embodiment of the present application provides a communication system, the communication system comprising: the optical head in the fourth aspect or the seventh aspect and any implementation manner thereof, and the fifth aspect or the eighth aspect and any embodiment thereof in the PLC.
  • the communication system further includes the optical terminal in the sixth aspect or the ninth aspect and any embodiment thereof.
  • An eleventh aspect of the embodiments of the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, wherein, when the computer program is executed by hardware, it can realize any arbitrary operation performed by the optical head in the embodiments of the present application. Some or all of the steps of a method.
  • a twelfth aspect of an embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, wherein, when the computer program is executed by hardware, any one of the embodiments of the present application executed by the PLC can be implemented. some or all of the steps of a method.
  • a thirteenth aspect of an embodiment of the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, wherein, when the computer program is executed by hardware, any computer program executed by the optical terminal in the embodiment of the present application can be implemented. Some or all of the steps of a method.
  • a fourteenth aspect of the embodiments of the present application provides a computer program product including instructions, when the computer program product runs on an optical network unit, the optical network unit causes the optical network unit to perform part or all of the methods performed by the optical head end in the above aspects step.
  • a fifteenth aspect of the embodiments of the present application provides a computer program product including instructions, which, when the computer program product is run on an optical line terminal, causes the optical line terminal to perform some or all of the steps of the methods performed by the PLC in the above aspects .
  • a sixteenth aspect of the embodiments of the present application provides a computer program product including instructions, when the computer program product is run on an optical line terminal, the optical line terminal causes the optical line terminal to perform part or all of the methods performed by the optical terminal in the above aspects step.
  • Fig. 1 is a schematic diagram of field bus network realization
  • FIG. 2 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • 3a is another schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 3b is another schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a communication method provided by an embodiment of the present application.
  • FIG. 5 is another schematic diagram of a communication method provided by an embodiment of the present application.
  • FIG. 6 is another schematic diagram of a communication method provided by an embodiment of the present application.
  • FIG. 7a is another schematic diagram of a communication method provided by an embodiment of the present application.
  • FIG. 7b is another schematic diagram of a communication method provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an optical head provided in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a PLC provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of an optical terminal according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • the Industrial Internet is a core component of Industry 4.0.
  • the broad industrial Internet is the "industrial Internet", including manufacturing, energy, electricity, water, transportation, medical, aviation and many other industries.
  • the narrow industrial Internet focuses on industrial production and manufacturing.
  • Ethernet network The traditional industrial manufacturing network is divided into three levels: Ethernet network, Control Network, and Fieldbus (Device Level Network).
  • Control Network Control Network
  • Fieldbus Fieldbus
  • the Ethernet network uses a traditional piece of technology for data communication between factory networks.
  • the Ethernet can be applied to back-office hosts and servers (Back-Office Mainframes and Servers (ERP, MES, CAPP, PDM, etc.)), office application networks, data services, Data storage (Office Applications, Internetworking. Data Servers, Storage), connection between devices such as Control Network Gateway, such as Corporate Network;
  • Back-Office Mainframes and Servers ERP, MES, CAPP, PDM, etc.
  • office application networks office application networks
  • data services Data services
  • Data storage Data storage
  • Control Network Gateway such as Corporate Network
  • the control network is used for workshop-level communication to communicate between multiple bus controllers.
  • the line segment connection with diamond-shaped frame line can be applied to the connection between Control Network Gateway, PC Based Controllers and Programmable Logic Controllers (PLC) and other devices;
  • PLC Programmable Logic Controller
  • Fieldbus is a basic network of equipment, which can specifically indicate a multi-node digital communication technology applied to the production site to implement two-way multi-node digital communication between field devices and between field devices and control devices.
  • the line segment connection with rectangular frame line can be applied to motors, drives, actuators (Motors, Drives, Actuators), robots (Robotics), sensors and other Input/Output Devices (Sensors and other Input/Output Devices) ) and other connections between devices.
  • the above-mentioned traditional industrial manufacturing network mainly includes the following shortcomings: the three-level network standards are different, they cannot be interconnected, the machine data cannot be seen in the upper-layer network, the value of machine data cannot be maximized, and intelligent production cannot be fully realized. ; In addition, the operating cycles of industrial buses are all at the ms level, which cannot meet the low-latency requirements of the microsecond (us) level of future industrial manufacturing; the 100-megabyte bandwidth of industrial buses cannot meet the demands of large bandwidths such as machine vision.
  • Ethernet control automation technology (ethernet control automation technology, EtherCAT) is an open-architecture fieldbus system based on Ethernet. Among them, EtherCAT sets a new standard for the real-time performance and topology flexibility of the system, and at the same time, it also meets or even reduces the use cost of fieldbus. EtherCAT also features high-precision device synchronization, optional cable redundancy, and functional safety protocols.
  • EtherCAT the operation principle of EtherCAT includes:
  • EtherCAT uses standard Ethernet data frames and a physical layer that conforms to the Ethernet standard IEEE 802.3. But it is not compatible with standard Ethernet equipment and requires special chips.
  • the EtherCAT master sends a message, which passes through all nodes.
  • the operation mechanism of "On the fly” can ensure the efficient transmission of data. While the data frame is being transmitted on the network, each node reads the data addressed to the node in the frame, and writes the data that needs to be exchanged into the frame.
  • the reception and decoding of data frames, the extraction and insertion of data, and the forwarding of data frames are all implemented by hardware, which makes the time for EtherCAT data frames to pass through each slave station extremely small, and the delay is about 100. ⁇ 500 nanoseconds (ns).
  • the EtherCAT master is the only node in the network segment that can actively send EtherCAT data frames, and other nodes only transmit data frames. This avoids unpredictable delays, thus guaranteeing the real-time performance of EtherCAT.
  • EtherCAT only supports multiple application layer protocols, including COE (CANopen over EtherCAT), SOE (Sercos over EtherCAT), EOE (EtherNet over EtherCAT), and supports TCP/IP and FOE (File Access over EtherCAT).
  • EtherCAT specifies the status and operation functions of the station. The brief introduction of each status function is as follows:
  • Pre-Op Pre-operational state (POP), in this state, the site only communicates with mailboxes, and does not interact with process data.
  • POP Pre-operational state
  • Safe-Op Safe operation (SOP), in this state, the station can carry out mailbox communication, and allow process data input, but not output.
  • the station In operation state, the station can carry out complete data communication and is in normal working state.
  • Bootstrap Bootstrap mode, only for FoE mailbox communication, used for firmware update.
  • POWERLINK is a real-time communication technology developed and put into use in 2001. Its physical layer and data link layer are based on Ethernet, and the application layer adopts CANopen. POWERLINK uses technologies such as polling, multiplexing, and polling chain (Poll Request Chian) to continuously optimize its communication efficiency PowerLink.
  • POWERLINK uses the time slot communication network management mechanism (slot communication network). management, SCNM) to avoid data collisions that may occur during communication. Only transmit data frames. This avoids unpredictable delays and ensures the real-time performance of powerlink.
  • the next behavior of the node is determined according to the node number. If the node number of the node is 1 to 239, it means that the node is a slave station, and then it should enter the state machine of the slave station. If the node number is 240 and the 14th bit of the NMT_StartUp_U32 object (index 1F80h) is 0, it means that the node is a standard master. If the 14th bit of the NMT_StartUp_U32 object (index 1F80h) is 1, it means that the node is the redundant master station and enters the state machine of the redundant master station.
  • the state machine of the redundant master station mainly has two large states, one is the active state and the other is the standby state. When active, the node works as the active master. When in the standby state, the node is the standby master. When the node starts up and enters the state machine of the redundant master station, it first checks whether it can receive the SOC and SOA data frames within the specified time. If it can be received, it means that there are other active master stations on the network. Should enter the standby state; otherwise enter the active state.
  • Active state When the node works in the Active state of the redundant master station, its function is the same as that of the standard master station. In addition, the function of switching to the standby state has been added. When the node receives SOC, SOA, AMNI and other messages, it switches from Active state to standby state.
  • 2.2.standby state When the node is working in the standby state of the redundant master station, from the perspective of the active master station, the standby master station works like a standard slave station, receives PollReq data frames from the active master station, and replies to PollRes data frame. In addition, it has the following functions:
  • the standby master station learns its status information by monitoring the data frame information of PollResponse, StatusResponse and IdentResponse of the node, and updates the information to its own list. This information is needed to achieve a seamless handover when taking over the work of the active master.
  • the current operating cycle of the fieldbus network is in the millisecond (ms) level, which cannot meet the higher-level low-latency requirements of future industrial manufacturing. Therefore, how to realize the management of slave stations through lower-latency communication in the fieldbus network is a technical problem that needs to be solved urgently. Further, the current fieldbus network also includes other points to be improved, such as the number of supported nodes is small, the twisted pair network cable is easily affected by electromagnetic radiation and causes bit errors, and does not support common service bearers (such as industrial cameras, etc.).
  • the embodiments of the present application provide a communication method and related equipment, which are used to realize the management process of the slave station by means of optical fiber communication. Greatly reduces transmission delay and improves communication efficiency.
  • FIG. 2 it is a schematic diagram of a network architecture according to an embodiment of the present application.
  • the PLC is used as the master station to manage the slave stations (transmission equipment, sensing equipment, IO equipment, Ethernet equipment, etc.) through the optical head end and the optical terminal as the transmission medium.
  • a possible network architecture of the bus system shown in Figure 2 provides the capability of "one network to the end", and traditional industrial equipment can be connected to the optical bus network, including transmission equipment, sensing equipment, IO Equipment, etc.; equipment that can also be connected to the Ethernet/IP Internet in the optical bus network.
  • the interface between the PLC and the optical head can be called the Service Node Interface (SNI), and can be connected through the IP Internet, and the interface between the optical terminal and the respective connected slaves can be called the user network Interface (User Network Interface, UNI).
  • SNI Service Node Interface
  • User Network Interface User Network Interface
  • the PLC and the optical head end may be merged and integrated, as shown in FIG. 3a, or they may be designed separately and independently, as shown in FIG. 3b.
  • the SNI of the optical bus system can be one of the Ethernet interfaces (FE, GE, 10GE) or the PCIE interface; if the optical head end and the vPLC are in a When deployed in the integrated system, the interface between the optical head and the vPLC is the internal software transceiver interface.
  • the UNI interface is one or more of Ethernet interfaces (FE, GE, 10GE), SPI interfaces, servo motor monitoring and drive interfaces (AD, GPIO, RS422, PWM control, etc.).
  • a complete optical bus system can include the following parts:
  • Optical head end It mainly completes the bearing and multiplexing of bus services/Ethernet services on the point-to-multipoint communication system.
  • PLC (vPLC) module to complete the programming and management of multiple industrial network control modules, and at the same time, part of the calculation of the industrial control module can be placed in this module.
  • the PLC can realize the management of the slave station through the programming and management of multiple industrial network control modules, and at the same time, part of the calculation of the industrial control module can be placed in the PLC.
  • the PLC can be integrated in the optical head and implemented as a module of the optical head (for example, a virtual programmable logic controller (vPLC) module); alternatively, the PLC can also be integrated in other equipment independent of the optical head , which is not limited here.
  • the PLC can be replaced with any controller module that requires extremely high real-time performance.
  • the PLC can be an independent device or a module in a server composed of a general-purpose CPU.
  • Optical bus central office module completes the carrying of optical bus services, and the business data is the data of the control machine or the query/collection machine.
  • Central office Ethernet service module bears central office Ethernet services, and the external interfaces provided by the device are Ethernet ports, such as FE, GE, 10GE, etc.
  • Point-to-multipoint central office module completes the link layer communication of multiple optical terminals in a point-to-multipoint network.
  • This module can be the central office module in PON communication, and the PON standard can be GPON, EPON, 10G GPON, 10G EPON, 50G GPON, CDMA PON, FDM PON, etc.
  • Head end optical module complete the optical signal transmission of the optical head end and the reception of the optical terminal signal.
  • the light here can be single wavelength or multi-wavelength.
  • the optical splitter completes the function of point-to-multipoint optical splitting/combining.
  • the optical splitter here can be one-stage or multi-stage, and the optical splitter can also be equal-ratio or unequal-ratio optical fibers.
  • a single optical terminal completes the function of obtaining industrial control information or Ethernet information on a point-to-multipoint system. According to the types of services provided, it can be divided into common bus optical terminals and common bus optical terminals.
  • Terminal optical module complete the optical signal reception of the optical head and the transmission of the optical terminal signal.
  • Point-to-multipoint terminal module completes the link layer communication of multiple optical terminals in a point-to-multipoint network.
  • This module can be a terminal module in PON communication, and the PON standard can be GPON, EPON, 10G GPON, 10G EPON, 50G PON, CDMA PON, FDM PON, etc.
  • Optical bus terminal module complete the analysis of optical bus data, and read and write operations to the industrial control module.
  • Industrial control module a module that controls industrial equipment/IO.
  • Industrial equipment can be sensors, servers, IO devices, etc.
  • Terminal Ethernet service module bears the terminal Ethernet service, and the interface provided by the device pair is the Ethernet port, such as FE, GE, 10GE, etc.
  • optical fiber connections are used between the optical head end and the optical splitter and between the optical splitter and the optical terminal.
  • the optical fiber here can be an ordinary optical fiber, or an optical fiber integrated with photoelectricity, which can provide power for the optical terminal.
  • FIG. 4 is a schematic diagram of a communication method according to an embodiment of the present application.
  • the method includes the following steps.
  • the method shown in FIG. 4 can be applied to the network architectures shown in FIG. 2 , FIG. 3 a and FIG. 3 b .
  • PLC sends the first correspondence to the optical head
  • the PLC sends the first correspondence to the optical head end in step S100, and the first correspondence is used to indicate the correspondence between the slave device identifier and the slave node identifier.
  • the optical head end receives the first correspondence from the PLC in step S100.
  • step S100 is an optional step.
  • step S100 may not be executed, that is, the process of the PLC transmitting the first correspondence to the optical head can be regarded as the internal interaction of the equipment; when When the PLC and the optical head are designed separately and independently, the optical head may receive the first correspondence in step S100 through a communication connection with the PLC.
  • the first correspondence is carried in an optical bus link layer message, where the optical bus link layer message includes at least one of the following items: target media access control (media access control, MAC ) address, the PLC's media access control MAC address, ether type, protocol data unit PDU number, time stamp, frame check sequence.
  • target media access control media access control
  • the PLC's media access control MAC address may indicate the MAC addresses of one or more optical head ends.
  • the sent optical bus link layer message may carry the above at least one item of information.
  • the frame formats shown in Table 1 may be further encapsulated by the implementation manner shown in FIG. 5 .
  • the content of the management channel is encapsulated in the payload field of the PDU data.
  • the content of the management channel is all transmitted using a type-length-value (type-length-value, TLV) structure, which can be called an extended OAM format.
  • a management channel message can encapsulate multiple TLV messages, but requires the same operation for all messages.
  • a message for querying the contents of multiple objects can be encapsulated in a management channel message.
  • the length of L only indicates the length of the content area, and the range is 0-1024 bytes. When the message type is get (read operation), the length of the content area is 0. When the message type is set response (set response operation), the content area length is 0.
  • the cmd field in the PDU message is defined as follows:
  • type ID different operations can be completed through the type field in the TLV structure.
  • the allocation is as follows: 0x0 ⁇ 0xFFF, operations related to optical head; 0x1000 ⁇ 0x1FFF, operations related to optical terminal/slave; 0xF000 ⁇ 0xFFF, customized by the manufacturer Extended fields; the remaining fields are temporarily reserved.
  • the first corresponding relationship involved in step S100 and the following can be a table, graph, text, code, etc., or a corresponding relationship between the identification of the slave station equipment and the identification of the slave station node in various other forms.
  • the corresponding relationship specifically indicates a slave node identifier (or referred to as a node ID) allocated to a slave corresponding to a certain slave device identifier, which is not limited here.
  • the device identifier of the slave station can indicate either the device identifier of the slave station or the device identifier of the optical terminal, which are collectively referred to as device information.
  • the device information includes at least one of the following: a type identifier, a length value, a node identifier, a supplier identifier of the optical terminal or the first slave station, the optical terminal or the first slave station the MAC address of the optical terminal, the OT model of the optical terminal, the hardware version of the optical terminal or the first slave station, the software version of the optical terminal or the first slave station, the chip model of the optical terminal or the first slave station, the optical terminal or the first slave station Chip revision information of the terminal or the first slave station, chip version of the optical terminal or the first slave station, chip design date of the optical terminal or the first slave station, input parameters obtained in response to user operations.
  • the device information from the optical terminal received by the optical head end may include the above at least one item of information, wherein the device identifier of the slave station may include part of the above device information.
  • the device information can be implemented in the manner shown in Table 2.
  • the node identifier of the slave station may indicate the node identifier of the slave station, or the node identifier of the slave station.
  • the node identification of the optical terminal can be indicated, and the two are collectively referred to as node identification (or node ID).
  • the node identifier includes at least one of the following: a type identifier, a length value, a MAC address, and a node identifier.
  • the MAC address may indicate the MAC address of the optical terminal or the first slave station.
  • the node ID can be implemented in the manner shown in Table 3.
  • the optical head end determines the first correspondence
  • step S100 is an optional step.
  • the optical head determines the first correspondence according to step S100;
  • the information in the PLC module for example, vPLC
  • the PLC module for example, vPLC
  • the first correspondence is used to indicate the correspondence between the slave device identifier and the slave node identifier.
  • the optical terminal sends a first message to the optical head
  • the optical terminal sends a first message to the optical head, wherein the first message includes device information, and the device information includes a first device identifier, and the first device identifier is used to indicate the first slave connected to the optical terminal. stand.
  • the optical head end receives the first message from the optical terminal in step S102.
  • the device information contained in the first message includes at least one of the following: type identifier, length value, node identifier, supplier identifier of the optical terminal or the first slave station, MAC of the optical terminal or the first slave station address, OT model of the optical terminal, hardware version of the optical terminal or the first slave station, software version of the optical terminal or the first slave station, chip model of the optical terminal or the first slave station, the optical terminal or the first slave station Chip revision information of the first slave station, chip version of the optical terminal or the first slave station, chip design date of the optical terminal or the first slave station, input parameters obtained in response to user operations.
  • type identifier the length value
  • node identifier supplier identifier of the optical terminal or the first slave station
  • MAC of the optical terminal or the first slave station address OT model of the optical terminal
  • hardware version of the optical terminal or the first slave station software version of the optical terminal or the first slave station
  • chip model of the optical terminal or the first slave station chip model of the optical terminal or the first slave station
  • the first slave station may be a certain slave station connected to the optical terminal, or may be a plurality of slave stations connected to the optical terminal, which is not limited here.
  • the optical terminal may execute step S102 based on the trigger condition to send the first message to the optical head end.
  • the trigger condition may include that the optical terminal detects that the first slave station is triggered to perform power-on or restart, the optical terminal detects that the optical terminal itself is triggered to perform power-on or restart, the optical head end receives the instruction information from the optical head end, The optical head end receives the instruction information from the PLC, or other trigger conditions, which are not limited here.
  • the optical head determines the first node identifier corresponding to the first device identifier in the first correspondence
  • the optical head further determines the first node identifier corresponding to the first device identifier from the optical head in step S102 according to the first correspondence determined in step S101, that is, the optical head is the first device in step S103
  • the slave ID assigned by the corresponding first slave station is the first node identifier.
  • the first node identifier includes at least one of the following: a type identifier, a length value, a MAC address, and a node identifier.
  • a type identifier for the implementation process, reference may be made to the relevant description in the foregoing step S100, and details are not repeated here.
  • the optical head end sends the first node identifier to the optical terminal
  • the optical head end sends the first node identifier to the optical terminal in step S104, and correspondingly, the optical terminal receives the first node identifier sent from the optical head end in step S104.
  • the optical terminal determines that the first slave station is online at the optical head end, and the working state of the first slave station is the initial state.
  • the first node identifier is carried in an optical network terminal management control interface OMCI message, and the OMCI message further includes a port identifier GEMport ID of a gigabit passive optical network encapsulation mode; or, the first node
  • the identity is carried in the operation, management and maintenance OAM message and the OAM message also includes the logical link identity LLID.
  • the optical head end and the optical terminal can be implemented through various communication methods, wherein, when the communication method is a gigabit PON (gigabit passive optical network, GPON) in a passive optical network (passive optical network, PON), the optical head
  • the first node identifier sent by the end to the optical terminal can be carried in the optical network terminal management and control interface (optical network terminal management and control interface, OMCI) message and carry the port identifier (GPON/10G GPON) of the gigabit passive optical network encapsulation mode.
  • the communication method is a gigabit PON (gigabit passive optical network, GPON) in a passive optical network (passive optical network, PON)
  • the first node identifier sent by the end to the optical terminal can be carried in the optical network terminal management and control interface (optical network terminal management and control interface, OMCI) message and carry the port identifier (GPON/10G GPON) of the gigabit passive optical network encapsulation mode.
  • the first node identifier sent to the optical terminal may be carried in an optical network terminal management and control interface (operation administration and maintenance, OAM) message, and carry a logical link identifier (logical link identifier, LLID).
  • OAM operation administration and maintenance
  • the link layer message of the optical bus which corresponds to the message format received by the optical bus central office module in the optical head end, including 12 bits of Ethernet header (12B) and 2 bits of Ethernet type (Ethertype 2B) , indicating that the number of PDUs is 0 (PDU0), and the Frame Check Sequence (FCS) is 4 bits (4B).
  • this message needs to be converted into a point-to-multipoint management message, that is, the optical head end midpoint to multipoint central office module and the optical terminal 0 midpoint to multipoint mid-year high point Management messages transmitted between modules.
  • this message is an OMCI message
  • this message is an OAM message
  • the point-to-multipoint identifier needs to be added before the management message.
  • this ID number is GEMport ID
  • EPON/10G EPON system this ID is LLID.
  • the optical head end may further determine a second correspondence relationship, where the second correspondence relationship is used to indicate the relationship between the optical terminal and at least one slave station connected to the optical terminal
  • the at least one slave station includes the first slave station.
  • the optical terminal may be connected to at least one slave station to implement communication with the at least one slave station, that is, one optical terminal may correspond to one or more slave stations.
  • the optical head end Before the optical head end sends the first node identifier to the optical terminal in step S104, that is, before the optical head end determines that the first slave station is online, the optical head end can be pre-configured in the optical head end, or configured to the optical head end through PLC.
  • the optical head end determines the correspondence between the optical terminal and at least one slave station connected to the optical terminal, and then can determine the first slave station in the at least one slave station corresponding to the optical terminal based on the correspondence, and Realize the management of the first slave station.
  • the optical head end sends a notification message to the PLC
  • the optical head end sends a notification message to the PLC for indicating that the first slave station is online in step S105, and the notification message includes the first node identifier.
  • the PLC receives the notification message from the optical head end in step S105.
  • the PLC determines that the first slave station has been online at the optical head end, and that the working state of the first slave station is the initial state.
  • the method further includes: sending a notification message to the PLC, where the notification message is used to indicate that the first slave station is online, and The notification message includes the first node identification.
  • the optical head end may send a notification message for indicating that the first slave station is online to the PLC, so that the PLC determines that the first slave station is online, Subsequent PLCs can implement other management operations for the first slave station, such as the interaction of device capability information, the interaction of process data object (PDO) configuration information, and the interaction of PDO data.
  • PDO process data object
  • the optical head first determines a first correspondence that includes the correspondence between the slave device identifier and the slave node identifier, and the first correspondence is used to configure the slave to go online; then, the first slave goes online
  • the optical head end receives the first message containing the first device identifier from the optical terminal through the optical fiber communication connection with the optical terminal, and determines the first device identifier corresponding to the first message in the first correspondence.
  • a node identifier further, the optical head end sends the first node identifier to the optical terminal through the optical fiber communication connection with the optical terminal.
  • the first slave station is configured to go online through optical fiber communication between the optical head end and the optical head end, that is, the management process of the slave station is realized through optical fiber communication. In this way, the transmission delay can be greatly reduced and the communication efficiency can be improved.
  • the optical head end can manage the slave station connected to the optical terminal, so that the first slave station goes online on the optical head end (or PLC) side, and the first slave station is in initial state. Thereafter, other management operations may be further performed on the slave station, so that the first slave station enters a pre-operational state, an operational state, an emergency state, and the like.
  • the PLC needs to complete the numbering of the slave stations, and the optical terminal needs to establish a normal connection relationship with the optical head end; when the first slave station is in the pre-operation state, In this state, the PLC needs to negotiate with the slave station to complete all the configuration work.
  • the slave station starts fieldbus work at this time.
  • the slave station enters the emergency protection state, and should not execute any operation instructions at this time, and the slave station should enter the safety protection state.
  • the above-mentioned different states of the first slave station may not be limited to the above-mentioned four states.
  • a state representation, or the initial state and the pre-operational state are combined into the same state representation, etc.), or implemented through other state names (for example, the operational state is represented by the synchronous state, or the pre-operational state is represented by the pre-synchronized state, etc. ), which is not limited here.
  • the communication method may further include the following steps.
  • the optical head end sends the first indication information to the optical terminal
  • the optical head end sends first indication information for requesting the device capability information of the first slave station to the optical terminal in step S106.
  • the optical terminal receives the first indication information from the optical head end in step S106.
  • the optical terminal may switch from the initial state to the pre-operation state after receiving the first indication information in step S106.
  • step S106 is an optional step, that is, after the optical terminal (or the first slave station) determines in step S104 that the first slave station enters the initial state, it can enter the initial state within a predetermined period of time (or in response to a user operation) In the pre-operational state, step S107 is performed, and step S106 does not need to be performed in this scenario.
  • step S104 after the optical head end sends the first node identifier to the optical terminal, the optical head end sends first indication information to the optical terminal in step S106, the first indication The information is used to request the device capability information of the first slave station.
  • the optical head end can further obtain the device capability information of the first slave station through the optical communication connection with the optical terminal, so that the optical head end can obtain the device capability information of the first slave station.
  • other management operations on the first slave station may be implemented according to the device capability information of the first slave station, such as interaction of PDO configuration information, interaction of PDO data, and the like.
  • step S106 the first indication information sent by the optical head end to the optical terminal may come from a PLC, and the optical head end triggers the execution of step S106 based on the instruction of the PLC.
  • the device capability information is exchanged between the PLC, the optical head end, the optical terminal and the first slave station, that is, after step S106, the first slave station sends the first slave station to the PLC through the optical terminal and the optical head end in turn. device capability information.
  • the device capability information may also be referred to as data dictionary information, or capability information, or other information used to indicate the device capability of the first slave station.
  • the device capability information may be an ordered object group, describing some or all of the parameters of the corresponding slave station, and may include the storage location of the communication data, and the device capability information may be obtained through electronic data files (Electronic Data Sheet, EDS). ) as a file.
  • EDS Electronic Data Sheet
  • the device capability information may include: device identifier information (for example: manufacturer ID, product code, version number, serial number), device manufacturer device name, manufacturer hardware version, manufacturer software version, receiving PDO mapping structure , send at least one item of the PDO mapping structure or other information.
  • step S107 after the optical terminal sends the device capability information to the optical head end, the optical head end sends the device capability information to the PLC. Specifically, after the optical head end obtains the device capability information of the first slave station, the optical head end can send the device capability information to the PLC, so that the PLC can implement other management of the first slave station according to the device capability information operate.
  • the optical head end sends second indication information to the optical terminal
  • the optical head end sends the second indication information to the optical terminal in step S108 for indicating that the first slave station enters the emergency state, and correspondingly, the optical terminal receives the second indication information from the optical head end in step S108 .
  • the optical terminal after receiving the second indication information in step S108, the optical terminal further sends the second indication information to the first slave station.
  • the optical head end sends the second indication information to the optical terminal based on the instruction of the PLC.
  • the method further includes: the optical head end sends second indication information to the optical terminal, where the second indication information is used to instruct the first slave station to enter an emergency state.
  • the second indication information is used to instruct the first slave station to enter an emergency state, and specifically may instruct the first slave station to enter an emergency stop state.
  • the first slave station In the emergency stop state, the first slave station is no longer periodically Execute the action, close or shut down the action executed by the first slave, so as to prevent damage to people or machines.
  • the optical head end managing the first slave station it can send the second indication information to the optical terminal for instructing the first slave station to enter the emergency state, so that the first slave station connected to the optical terminal enters the safety protection state, To prevent injury to people or machines.
  • the method further includes: the optical head end receiving the second indication information from the PLC.
  • the trigger conditions of step S108 can be various, for example, in response to the user's operation instruction, the PLC detects that the optical terminal or the equipment of the first slave station is abnormal, and the optical head end detects the equipment of the optical terminal or the first slave station. Exceptions or other trigger conditions are not limited here.
  • step S108 may be performed before or after any step shown in FIG. 4 , so that the first slave station enters an emergency state after receiving the second indication information, and closes or shuts down the actions performed by the first slave station to prevent Injury to people or machines.
  • step S108 if the optical head end or the PLC determines that the first slave station does not need to maintain the emergency state, the optical terminal can send a message of releasing the emergency state of the slave station to the first slave station, so that the first slave station receives the release of the slave station. Emergency message and exit the emergency state, and switch to the initial state.
  • PLC sends PDO configuration information to the optical head
  • the PLC sends the PDO configuration information to the optical head end in step S109, and correspondingly, the optical head end receives the PDO configuration information from the PLC in step S109.
  • step S104 after step S104, that is, after the optical head end determines that the first slave station is online, the optical head end can determine the PDO configuration information of the first slave station to the optical terminal, so that the subsequent optical head end and the optical terminal PDO data can be exchanged between them based on the PDO configuration information.
  • the PDO configuration information includes at least one of the following: a sending cycle of the PDO data, a memory access address of the PDO data, and a mapping of the PDO data object, or other PDO configuration information, such as a single parameter specifying the cycle cycle of the slave station. Slave cycle, cyclic data amount indicating the length of data sent and received within the cyclic cycle, etc.
  • the optical head end may determine the PDO configuration information of the first slave station based on the configuration of the PLC, and after determining that the first slave station is online, send the PDO configuration information of the first slave station to the first slave station, In order to enable the subsequent PLC and the first slave station to be connected through the optical fiber communication between the optical head end and the optical terminal, the PDO data interaction is performed based on the PDO configuration information.
  • the optical head end determines the POD configuration information
  • step S109 is an optional step.
  • the optical head determines the POD configuration information according to step S109; when step S109 is not executed, the optical head reads the PLC contained in itself in step S110 by reading the PLC. information in a module (eg vPLC) to determine the POD configuration information.
  • a module eg vPLC
  • the optical head end sends PDO configuration information to the optical terminal
  • the optical head end sends the PDO configuration information to the optical terminal in step S111, and correspondingly, the optical terminal receives the PDO configuration information from the optical head end in step S111. Thereafter, the optical terminal may configure the first slave station based on the PDO configuration information.
  • the PDO configuration information in the pre-operational state can be issued, so that the first slave station performs related configuration for the subsequent PDO data exchange process based on the PDO configuration information.
  • the configuration process from step S109 to step S111 may not be executed.
  • the first slave station when the first slave station has a historical access process with the optical head (or PLC), the first slave station can use the historical access process.
  • the optical head end (or PLC) may perform the configuration process from step S109 to step S111 only when the PDO configuration information of the first slave station is updated.
  • the optical head end sends fourth indication information to the optical terminal
  • the optical head end sends fourth indication information to the optical terminal in step S112, and correspondingly, the optical terminal receives the fourth indication information from the optical head end in step S110.
  • the fourth indication information is used to instruct the first slave station to enter the operating state, for example, the first slave station entering the operating state may instruct the first slave station to start the fieldbus operation.
  • the optical head end may send fourth indication information to the optical terminal for instructing the first slave station to enter the operating state, and enter the operation state at the first slave station. After the state, the interaction of PDO data is carried out.
  • the fourth indication information sent by the optical head end to the optical terminal may come from a PLC, and the optical head end triggers the execution of step S112 based on the instruction of the PLC.
  • step S112 is an optional step, that is, after the optical terminal (or the first slave station) determines in step S104 that the first slave station enters the initial state, it can enter the initial state within a predetermined period of time (or in response to a user operation) In the operating state, step S113 is performed, and step S112 does not need to be performed in this scenario.
  • equipment capability information is exchanged between the PLC, the optical head end, the optical terminal and the first slave station, that is, after step S113, the PLC sends a request for the first slave station to the first slave station through the optical head end and the optical terminal in turn.
  • the third indication information of the PDO of a slave station after that, the first slave station sends the PDO of the first slave station to the PLC through the optical terminal and the optical head end in turn, so as to realize the PDO data exchange.
  • step S113 the optical head end sends third indication information to the optical terminal, where the third indication information is used to request the process data PDO of the first slave station;
  • the optical head end receives the PDO from the optical terminal.
  • the optical head end can send the third indication information for requesting the PDO of the first slave station to the optical terminal, and receive the PDO from the terminal, so as to realize the interaction of PDO data, Realize the management of the first slave station.
  • the third indication information sent by the optical head end to the optical terminal may come from a PLC, and the optical head end triggers the execution of step S113 based on the instruction of the PLC.
  • the management of the first slave station can be realized by the communication method, and the switching of the first slave station in different states can be realized.
  • the implementation of the specific handover process may be implemented as an example shown in Table 4.
  • the switch to the pre-operation state can be triggered based on the event that the slave station assigns the slave station ID successfully, for example, the aforementioned step S106;
  • the switch to the operational state may be triggered based on the receipt of the operational state start message, for example, the aforementioned step S112;
  • the state of the slave station is in the pre-operational state, the operational state or the emergency state, it can be triggered to switch to the initial state based on the event that the slave station goes offline;
  • the switch to the emergency state may be triggered based on the event of receiving the emergency state message or monitoring the abnormality by the slave station, for example, the aforementioned step S108;
  • the state of the slave station is the pre-operational state or the operational state, it can trigger the switch to the initial state based on the receipt of the initial state message;
  • the switch to the initial state can be triggered based on the receipt of the message for releasing the emergency state of the slave station.
  • the communication method can be represented as the implementation shown in FIG. 7b in combination with the switching of the above-mentioned multiple states.
  • FIG. 1 shows the flow chart of a typical slave station from online to normal operation.
  • the operator can manage the slave station on the PLC side.
  • the specific steps are as follows:
  • the PLC configures the slave station authentication information and the slave station ID to the optical head end (for example, step S100 ), and then the optical terminal sends an optical terminal online message to the optical head end (for example, step S102 ), after that, the optical head end Allocate a slave node ID to the optical terminal (for example, step S104), and send a notification message to the PLC that the optical terminal is online successfully (for example, step S105);
  • the PLC and the master station interact with the data dictionary of the slave station, and the PLC obtains the capability of the slave station (optional, for example, step S107), and then the PLC converts the “single slave station cycle”, “cycle
  • the POD data model configuration such as "data volume” is configured to the slave station through the optical head end (for example, step S109 to step S111), so as to realize the address management between the PLC and the slave station, and configure the PDO related information;
  • the global time synchronization and the operation state are started (for example, step S112), and then, in a small cycle, the PLC sends the PDO data to the optical terminal through the optical head, and the optical terminal writes the PDO data to the slave station. ; After that, the optical terminal collects the slave station data, and reports the PDO response data to the PLC through the optical head terminal, so as to realize the interaction of the PDO data (for example, step S113).
  • FIG. 8 is a schematic diagram of a device of an optical head end 800 according to an embodiment of the present application.
  • the optical head end 800 includes a processing unit 801 and a transceiver unit 802 .
  • a processing unit 801 configured to determine a first correspondence, where the first correspondence is used to indicate a correspondence between a slave station device identifier and a slave station node identifier;
  • a transceiver unit 802 configured to receive a first message from the optical terminal, where the first message includes device information, the device information includes a first device identifier, and the first device identifier is used to indicate the first slave station connected to the optical terminal;
  • the processing unit 801 is further configured to determine the first node identifier corresponding to the first device identifier in the first correspondence;
  • the transceiver unit 802 is further configured to send the first node identifier to the optical terminal.
  • the processing unit 801 is specifically configured to receive the first correspondence from the programmable logic controller PLC through the transceiver unit.
  • the transceiver unit 802 is further configured to send a notification message to the PLC, where the notification message is used to indicate that the first slave station is online, and the notification message includes the first node identifier.
  • the transceiver unit 802 is further configured to send first indication information to the optical terminal, where the first indication information is used to request device capability information of the first slave station;
  • the transceiver unit 802 is further configured to receive the device capability information from the optical terminal.
  • the transceiver unit 802 is further configured to send the device capability information to the PLC.
  • the transceiver unit 802 is further configured to receive the first indication information from the PLC.
  • the processing unit 801 is further configured to determine the PDO configuration information of the first slave station
  • the transceiver unit 802 is further configured to send the PDO configuration information to the optical terminal.
  • the PDO configuration information includes at least one of the following:
  • the sending cycle of the PDO data the memory access address of the PDO data, and the mapping of the PDO data object.
  • the processing unit 801 is specifically configured to receive the PDO configuration information of the first slave station from the PLC through the transceiver unit.
  • the processing unit 801 is further configured to determine a second correspondence, where the second correspondence is used to indicate a correspondence between the optical terminal and at least one slave station connected to the optical terminal, the at least one slave station includes the first A slave station.
  • the first node identification is carried in the optical network terminal management control interface OMCI message and the OMCI message also includes the port identification GEMport ID of the gigabit passive optical network encapsulation mode; or,
  • the first node identifier is carried in an operation, management and maintenance OAM message and the OAM message further includes a logical link identifier LLID.
  • the first correspondence is carried in an optical bus link layer message, where the optical bus link layer message includes at least one of the following:
  • Destination MAC address Destination MAC address, MAC address of the PLC's media access control, Ethernet type, protocol data unit PDU number, time stamp, frame check sequence.
  • the first node identifier includes at least one of the following:
  • Type identifier For example, length value, MAC address, node identifier.
  • the device information includes at least one of the following:
  • Type identifier Type identifier, length value, node identifier, supplier identifier of the optical terminal or the first slave station, MAC address of the optical terminal or the first slave station, OT model of the optical terminal, the optical terminal or the first slave station the hardware version of the optical terminal, the software version of the optical terminal or the first slave station, the chip model of the optical terminal or the first slave station, the chip revision information of the optical terminal or the first slave station, the optical terminal or the first slave station.
  • the transceiver unit 802 is further configured to send second indication information to the optical terminal, where the second indication information is used to instruct the first slave station to enter an emergency state.
  • the transceiver unit 802 is further configured for the optical terminal to send third indication information, where the third indication information is used to request the process data PDO of the first slave station;
  • the optical head end receives the PDO from the optical terminal.
  • the transceiver unit 802 is further configured to send the PDO to the PLC.
  • the transceiver unit 802 is further configured to receive the third indication information from the PLC.
  • the transceiver unit 802 is further configured to send fourth indication information to the optical terminal, where the fourth indication information is used to instruct the first slave station to enter an operating state.
  • FIG. 9 is a schematic diagram of a PLC 900 according to an embodiment of the present application.
  • the PLC 900 includes a processing unit 901 and a transceiver unit 902 .
  • the processing unit 901 is configured to determine a first correspondence, where the first correspondence is used to indicate a correspondence between a slave device identifier and a slave node identifier, and the correspondence at least indicates that the first device identifier corresponds to the first node identifier , the first device identifier is used to indicate the first slave station connected by the optical terminal;
  • a transceiver unit 902 configured to send the first correspondence to the optical head
  • the transceiver unit 902 is further configured to receive a notification message from the optical head end, where the notification message is used to instruct the first slave station to go online, and the notification message includes the first node identifier.
  • the transceiver unit 902 is further configured to send first indication information to the optical head end, where the first indication information is used to request device capability information of the first slave station;
  • the PLC receives the device capability information from the optical head.
  • the transceiver unit 902 is further configured to send the PDO configuration information of the first slave station to the optical head end.
  • the PDO configuration information includes at least one of the following:
  • the sending cycle of the PDO data the memory access address of the PDO data, and the mapping of the PDO data object.
  • the first correspondence is carried in an optical bus link layer message, where the optical bus link layer message includes at least one of the following:
  • Destination MAC address Destination MAC address, source MAC address of the PLC, ether type, protocol data unit PDU number, time stamp, frame check sequence.
  • the first node identifier includes at least one of the following:
  • Type identifier For example, length value, MAC address, node identifier.
  • the device information includes at least one of the following:
  • Type identifier Type identifier, length value, node identifier, supplier identifier of the optical terminal or the first slave station, MAC address of the optical terminal or the first slave station, OT model of the optical terminal or the first slave station, the Hardware version of the optical terminal or the first slave station, software version of the optical terminal or the first slave station, chip model of the optical terminal or the first slave station, chip revision of the optical terminal or the first slave station information, the chip version of the optical terminal or the first slave station, the chip design date of the optical terminal or the first slave station, and input parameters obtained in response to user operations.
  • the transceiver unit 902 is further configured to send second indication information to the optical head end, where the second indication information is used to instruct the first slave station to enter an emergency state.
  • the transceiver unit 902 is further configured to send third indication information to the optical head end, where the third indication information is used to request the process data PDO of the first slave station;
  • the transceiver unit 902 is further configured to receive the PDO from the optical head end.
  • the transceiver unit 902 is further configured to send fourth indication information to the optical head end, where the fourth indication information is used to instruct the first slave station to enter an operating state.
  • the specific implementation process of the processing unit 901 and the transceiver unit 902 in the PLC 900 may refer to the descriptions in the foregoing method embodiments, which will not be repeated here.
  • FIG. 10 is a schematic diagram of an optical terminal 1000 according to an embodiment of the present application.
  • the optical terminal 1000 includes a processing unit 1001 and a transceiver unit 1002 .
  • a processing unit 1001 configured to determine a first device identifier, where the first device identifier is used to indicate the first slave station connected to the optical terminal;
  • a transceiver unit 1002 configured to send a first message to the optical head, where the first message includes the first device identifier
  • the transceiver unit 1002 is further configured to receive a first node identifier from the optical head end, where the first device identifier corresponds to the first node identifier.
  • the transceiver unit 1002 is further configured to receive first indication information from the optical head end, where the first indication information is used to request device capability information of the first slave station;
  • the processing unit 1001 is further configured to determine the device capability information according to the first indication information
  • the transceiver unit 1002 is further configured to send the device capability information to the optical head end.
  • the transceiver unit 1002 is further configured to receive the PDO configuration information from the first slave station of the optical head end;
  • the transceiver unit 1002 is further configured to send the PDO configuration information to the first slave station.
  • the first node identification is carried in the optical network terminal management control interface OMCI message and the OMCI message also includes the port identification GEMport ID of the gigabit passive optical network encapsulation mode; or,
  • the first node identifier is carried in an operation, management and maintenance OAM message and the OAM message further includes a logical link identifier LLID.
  • the first node identifier includes at least one of the following:
  • Type identifier For example, length value, MAC address, node identifier.
  • the first device identification includes at least one of the following:
  • Type identifier Type identifier, length value, node identifier, supplier identifier of the optical terminal or the first slave station, MAC address of the optical terminal or the first slave station, OT model of the optical terminal or the first slave station, the Hardware version of the optical terminal or the first slave station, software version of the optical terminal or the first slave station, chip model of the optical terminal or the first slave station, chip revision of the optical terminal or the first slave station information, the chip version of the optical terminal or the first slave station, the chip design date of the optical terminal or the first slave station, and input parameters obtained in response to user operations.
  • the transceiver unit 1002 is further configured to receive second indication information from the optical head end, where the second indication information is used to instruct the first slave station to enter an emergency state;
  • the transceiver unit 1002 is further configured to send the second indication information to the first slave station.
  • the transceiver unit 1002 is further configured to receive third indication information from the optical head, where the third indication information is used to request the process data PDO corresponding to the node identifier of the first slave station;
  • the processing unit 1001 is further configured to determine the PDO according to the third indication information
  • the transceiver unit 1002 is further configured to send the PDO to the optical head end.
  • the transceiver unit 1002 is further configured to receive fourth indication information from the optical head end, where the fourth indication information is used to instruct the first slave station corresponding to the node identifier of the first slave station to enter the operating state;
  • the transceiver unit 1002 is further configured to send the fourth indication information to the first slave station.
  • FIG. 11 is a schematic diagram of an implementation of a communication device provided by an embodiment of the present application.
  • the communication device may be an optical head end, a PLC, or an optical terminal in any of the foregoing embodiments.
  • the communication device includes at least a processor 1101 , a memory 1102 and an optical transceiver 1103 .
  • the memory 1102 is used to store the computer program executed by the optical head
  • the processor 1101 is used to execute the computer program to process the relevant data/signaling and pass the optical
  • the transceiver 1103 realizes the transmission and reception of data/signaling.
  • the processor 1101 can execute the implementation process corresponding to the processing unit 801 shown in FIG. 8, and the optical transceiver 1103 can execute the implementation process corresponding to the transceiver unit 802 shown in FIG. 8, which will not be repeated here.
  • the memory 1102 is used to store the computer program executed by the PLC
  • the processor 1101 is used to execute the computer program to process the relevant data/signaling and pass the optical transceiver 1103 realizes the sending and receiving of data/signaling.
  • the processor 1101 can execute the implementation process corresponding to the processing unit 901 shown in FIG. 9
  • the optical transceiver 1103 can execute the implementation process corresponding to the transceiver unit 902 shown in FIG. 9 , which is not repeated here.
  • the memory 1102 is used to store the computer program executed by the optical terminal
  • the processor 1101 is used to execute the computer program to process the relevant data/signaling and pass the optical
  • the transceiver 1103 realizes the transmission and reception of data/signaling.
  • the processor 1101 can execute the implementation process corresponding to the processing unit 1001 shown in FIG. 10
  • the optical transceiver 1103 can execute the implementation process corresponding to the transceiver unit 1002 shown in FIG. 10 , which will not be repeated here.
  • Embodiments of the present application also provide a computer-readable storage medium that stores one or more computer-executable instructions.
  • the processor executes the communication device (via an optical head, PLC, etc.) as described in the foregoing embodiments. or when the optical terminal is implemented) the method described in the possible implementation manner.
  • the embodiments of the present application also provide a computer program product (or computer program) that stores one or more computers.
  • the processor executes the above communication device (through an optical head, PLC or When the optical terminal is implemented) possible implementation methods.
  • An embodiment of the present application also provides a chip system, where the chip system includes at least one processor, which is used to support terminal equipment to implement the above-mentioned communication apparatus (when implemented by an optical head end, PLC or optical terminal) involved in the possible implementation manners. Function.
  • the chip system further includes an interface circuit, and the interface circuit provides program instructions and/or data for the at least one processor.
  • the chip system may further include a memory for storing necessary program instructions and data of the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • An embodiment of the present application further provides a communication system, and the network system architecture includes the communication device (including an optical head end and a PLC) in any of the foregoing embodiments.
  • the communication system may further include the optical terminal in any of the foregoing embodiments.
  • the communication system may further include the slave station in any of the foregoing embodiments.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit, if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Optical Communication System (AREA)
  • Small-Scale Networks (AREA)

Abstract

本申请实施例提供了一种通信方法及相关设备,用于通过光纤通信的方式实现从站的管理过程,相比于传统的现场总线网络中的双绞线连接的通信方式,可以大大降低传输时延,提升通信效率。在该方法中,光头端首先确定第一对应关系,该第一对应关系用于指示从站设备标识和从站节点标识之间的对应关系;然后,该光头端接收来自光终端的第一消息,该第一消息包括设备信息,该设备信息包括第一设备标识,该第一设备标识用于指示该光终端连接的第一从站;此后,该光头端在该第一对应关系中确定该第一设备标识对应的第一节点标识;进一步地,该光头端向该光终端发送该第一节点标识。

Description

一种通信方法及相关设备
本申请要求于2022年4月12日提交中国国家知识产权局、申请号为202210379386.6、申请名称为“一种通信方法及相关设备”的中国专利申请的优先权,以及要求于2021年4月19日提交中国国家知识产权局、申请号为202110419555.X、申请名称为“一种通信方法及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及相关设备。
背景技术
现场总线网络,也可以称为现场总线(FieldBus),是一种设备基本的网络,一般可以指示一种应用于生产现场,在现场设备之间、现场设备与控制装置之间实行双向的多节点数字通信技术。
一般地,现场总线网络一般包括从站以及用于控制从站的主站,其中,从站可以包括传感器、伺服器、输入/输出(Input/Output,I/O)设备等。目前,在现场总线网络中,主站和从站之间的通信可以通过双绞线连接的方式进行通信,以实现对从站的管理。
然而,受限于双绞线的硬件特性,当前的现场总线网络的运行周期均在毫秒(ms)级别,无法满足未来工业制造更高级别的低时延要求。因此,如何在现场总线网络中通过更低时延的通信,以实现对从站的管理,是一个亟待解决的技术问题。
发明内容
本申请实施例提供了一种通信方法及相关设备,用于通过光纤通信的方式实现从站的管理过程,相比于传统的现场总线网络中的双绞线连接的通信方式,可以大大降低传输时延,提升通信效率。
本申请实施例第一方面提供了一种通信方法,该方法可以由光头端执行,也可以由光头端的部件(例如处理器、芯片、或芯片系统等)执行。该方法包括:光头端首先确定第一对应关系,该第一对应关系用于指示从站设备标识和从站节点标识之间的对应关系;然后,该光头端接收来自光终端的第一消息,该第一消息包括设备信息,该设备信息包括第一设备标识,该第一设备标识用于指示该光终端连接的第一从站;此后,该光头端在该第一对应关系中确定该第一设备标识对应的第一节点标识;进一步地,该光头端向该光终端发送该第一节点标识。
基于上述技术方案,光头端首先确定包含有从站设备标识和从站节点标识的对应关系的第一对应关系,且该第一对应关系用于配置从站上线;然后,在第一从站上线过程中,光头端通过与光终端之间的光纤通信连接,接收来自于该光终端的包含有第一设备标识的第一消息,并在该第一对应关系中确定第一设备标识对应的第一节点标识;进一步地,光头端再通过与光终端之间的光纤通信连接向光终端发送该第一节点标识。其中,光头端与光头端之间通过光纤通信的方式配置第一从站上线,即通过光纤通信的方式实现从站的管 理过程,相比于传统的现场总线网络中的双绞线连接的通信方式,可以大大降低传输时延,提升通信效率。
在本申请实施例第一方面的一种可能的实现方式中,该光头端确定第一对应关系包括:该光头端接收来自可编程逻辑控制器(programmable logic controller,PLC)的该第一对应关系。
需要说明的是,PLC可以通过多个工业网控制模块的编程和管理以实现对从站的管理,同时可以将工业控制模块的部分计算放在PLC中。其中,PLC可以集成在光头端中,作为光头端的一个模块(例如,虚拟可编程逻辑控制器(virtual programmable logic controller,vPLC)模块)实现;或者,PLC也可以是集成在独立于光头端的其它设备中,此处不做限定。
基于上述技术方案,包含有从站设备标识和从站节点标识的对应关系的第一对应关系可以通过PLC配置,使得操作人员可以在PLC上通过对PLC的设置实现对一个或多个光头端的管理。
在本申请实施例第一方面的一种可能的实现方式中,在该光头端向该光终端发送该第一节点标识之后,该方法还包括:向PLC发送通知消息,该通知消息用于指示该第一从站上线,且该通知消息包括该第一节点标识。
基于上述技术方案,在光头端向该光终端发送该第一节点标识之后,光头端可以向该PLC发送用于指示该第一从站上线的通知消息,以使得PLC确定该第一从站已上线,后续PLC可以对该第一从站实现其它的管理操作,例如设备能力信息的交互、过程数据(process data object,PDO)配置信息的交互、PDO数据的交互等。
在本申请实施例第一方面的一种可能的实现方式中,在该光头端向该光终端发送该第一节点标识之后,该方法还包括:该光头端向该光终端发送第一指示信息,该第一指示信息用于请求该第一从站的设备能力信息;然后,该光头端接收来自该光终端的设备能力信息。
基于上述技术方案,在该光头端向该光终端发送该第一节点标识之后,即光头端确定第一从站上线之后,光头端可以进一步通过与光终端之间的光线通信连接,获取得到该第一从站的设备能力信息,以使得光头端后续可以根据该第一从站的设备能力信息实现对第一从站的其它管理操作,例如PDO配置信息的交互、PDO数据的交互等。
在本申请实施例第一方面的一种可能的实现方式中,该方法还包括:该光头端向PLC发送该设备能力信息。
基于上述技术方案,在光头端获取得到该第一从站的设备能力信息之后,该光头端可以向PLC发送该设备能力信息,以使得PLC可以根据该设备能力信息实现对该第一从站的其它管理操作。
在本申请实施例第一方面的一种可能的实现方式中,在该光头端向该光终端发送第一指示信息之前,该方法还包括:该光头端接收来自PLC的该第一指示信息。
基于上述技术方案,光头端可以基于PLC的指示,向光终端发送用于请求该第一从站的设备能力信息的第一指示信息。
在本申请实施例第一方面的一种可能的实现方式中,在该光头端向该光终端发送该第一节点标识之后,该方法还包括:该光头端确定该第一从站的PDO配置信息;该光头端向该光终端发送该PDO配置信息。
基于上述技术方案,在该光头端向该光终端发送该第一节点标识之后,即光头端确定第一从站上线之后,光头端可以确定并向光终端该第一从站的PDO配置信息,以使得后续光头端和光终端之间可以基于该PDO配置信息进行PDO数据的交互。
在本申请实施例第一方面的一种可能的实现方式中,该PDO配置信息包括以下至少一项:PDO数据的发送周期、该PDO数据的内存访问地址和该PDO数据对象的映射。
基于上述技术方案,PDO配置信息具体可以包括PDO数据的发送周期、该PDO数据的内存访问地址和该PDO数据对象的映射,和/或其它的PDO配置信息,提供了PDO配置信息的多种灵活的实现方式。
在本申请实施例第一方面的一种可能的实现方式中,该光头端确定该第一从站的PDO配置信息包括:该光头端接收来自PLC的该第一从站的PDO配置信息。
基于上述技术方案,光头端可以基于PLC的配置,确定该第一从站的PDO配置信息并在确定第一从站上线之后,向该第一从站发送该第一从站的PDO配置信息,以使得后续PLC和第一从站之间可以通过光头端和光终端的光纤通信连接,基于该PDO配置信息进行PDO数据的交互。
在本申请实施例第一方面的一种可能的实现方式中,在该光头端向该光终端发送该第一节点标识之前,该方法还包括:该光头端确定第二对应关系,该第二对应关系用于指示该光终端和连接至该光终端的至少一个从站之间的对应关系,该至少一个从站包括该第一从站。
基于上述技术方案,光终端可以连接至至少一个从站以实现与至少一个从站之间的通信,即一个光终端可以对应一个或多个从站。在该光头端向该光终端发送该第一节点标识之前,即光头端确定第一从站上线之前,可以通过在光头端中预配置的方式,或者是通过PLC向光头端配置的方式,使得光头端确定该光终端和连接至该光终端的至少一个从站之间的对应关系,后续可以基于该对应关系在该光终端对应的至少一个从站中确定第一从站,并实现对该第一从站的管理。
在本申请实施例第一方面的一种可能的实现方式中,该第一节点标识承载于光网络终端管理控制接口OMCI消息且该OMCI消息还包括吉比特无源光网络封装模式的端口标识GEMport ID;或,该第一节点标识承载于操作、管理和维护OAM消息且该OAM消息还包括逻辑链路标识LLID。
基于上述技术方案,光头端和光终端之间可以通过多种通信方式实现,其中,该通信方式为无源光网络(passive optical network,PON)中的千兆PON(gigabit passive optical network,GPON)或者其它的PON网络时,光头端向光终端发送的第一节点标识可以承载于光网络终端管理控制接口(optical network terminal management and control interface,OMCI)消息中并携带吉比特无源光网络封装模式的端口标识(GPON/10G GPON/50G GPON encapsulation mode/method port identifier,GEMport ID);该通信方 式为以太网PON(ethernetpassive optical network,EPON)、10千兆以太网PON(10G ethernet passive optical network,10G-EPON)或者其它的EPON网络时,光头端向光终端发送的第一节点标识可以承载于光网络终端管理和控制接口(operation administration and maintenance,OAM)消息中,并携带逻辑链路标识(logical link identifier,LLID)。
在本申请实施例第一方面的一种可能的实现方式中,该第一对应关系承载于光总线链路层消息中,其中,该光总线链路层消息包括以下至少一项:目的媒体接入控制(media access control,MAC)地址、该PLC的媒体访问控制MAC地址、以太类型、协议数据单元PDU数量、时戳、帧校验序列。
可选地,目标MAC地址可以指示一个或多个光头端的MAC地址。
基于上述技术方案,PLC与光头端之间用于通信的光总线链路中,所发送的光总线链路层消息可以承载上述至少一项信息,提供了光总线链路层消息的多种灵活的实现方式。
在本申请实施例第一方面的一种可能的实现方式中,该第一节点标识包括以下至少一项:类型标识、长度值、MAC地址、节点标识。
可选地,该MAC地址可以指示光终端或第一从站的MAC地址。
基于上述技术方案,光头端基于第一对应关系为第一从站分配的第一节点标识可以包括上述至少一项信息,提供了第一节点标识的多种灵活的实现方式。
在本申请实施例第一方面的一种可能的实现方式中,该设备信息包括以下至少一项:类型标识、长度值、节点标识、该光终端或该第一从站的供应商标识、该光终端或该第一从站的MAC地址、光终端OT模型、该光终端或该第一从站的硬件版本、该光终端或该第一从站的软件版本、该光终端或该第一从站的芯片型号、该光终端或该第一从站的芯片修订信息、该光终端或该第一从站的芯片版本、该光终端或该第一从站的芯片设计日期、响应用户操作得到的输入参数。
基于上述技术方案,光头端所接收的来自于光终端的设备信息可以包括上述至少一项信息,其中,第一设备标识可以包括上述设备信息的部分信息,提供了设备信息的多种灵活的实现方式。
在本申请实施例第一方面的一种可能的实现方式中,该方法还包括:该光头端向该光终端发送第二指示信息,该第二指示信息用于指示该第一从站进入紧急态。
可选地,该第二指示信息用于指示该第一从站进入紧急态,具体可以指示第一从站进入紧急停止的状态,在该紧急停止的状态下,第一从站不再周期性的执行动作,关闭或者关断第一从站执行的动作,以防止对人或者机器造成的伤害。
基于上述技术方案,作为管理第一从站的光头端,可以向光终端发送用于指示该第一从站进行紧急态的第二指示信息,使得光终端所连接的第一从站进入安全保护状态,以防止对人或者机器造成的伤害。
可选地,该方法还包括:该光头端接收来自该PLC的该第二指示信息。
在本申请实施例第一方面的一种可能的实现方式中,该光头端向该光终端发送该第一节点标识之后,该方法还包括:该光头端向该光终端发送第三指示信息,该第三指示信息 用于请求该第一从站的过程数据PDO;该光头端接收来自该光终端的该PDO。
基于上述技术方案,在该光头端向该光终端发送该第一节点标识之后,即光头端确定第一从站上线之后,光头端可以向光终端发送用于请求该第一从站的PDO的第三指示信息,并接收来自该终端的PDO,以实现PDO数据的交互,实现对第一从站的管理。
在本申请实施例第一方面的一种可能的实现方式中,该方法还包括:该光头端向该PLC发送该PDO。
基于上述技术方案,光头端可以基于PLC的配置,确定该第一从站的PDO配置信息并在确定第一从站上线并接收得到该第一从站的PDO之后,可以向PLC发送该PDO,以实现PLC对该第一从站的管理。
在本申请实施例第一方面的一种可能的实现方式中,该光头端向该光终端发送第三指示信息之前,该方法还包括:该光头端接收来自PLC的该第三指示信息。
基于上述技术方案,光头端可以基于PLC的配置,确定该第一从站的PDO配置信息并在确定第一从站上线之后,可以基于PLC的指示向光头端发送用于请求该第一从站的PDO的第三指示信息。
在本申请实施例第一方面的一种可能的实现方式中,在该光头端向光终端发送第三指示信息之前,该方法还包括:该光头端向该光终端发送第四指示信息,该第四指示信息用于指示该第一从站进入操作态。
可选地,第一从站进入操作态可以指示第一从站启动现场总线工作。
基于上述技术方案,在该光头端向该光终端发送该第一节点标识之后,即光头端确定第一从站上线之后,光头端可以向光终端发送用于指示该第一从站进入操作态的第四指示信息,并在第一从站进入操作态之后基于该第三指示信息进行PDO数据的交互。
可选地,该方法还包括:该光头端接收来自PLC的该第四指示信息。
本申请实施例第二方面提供了一种通信方法,该方法可以由PLC执行,也可以由PLC的部件(例如处理器、芯片、或芯片系统等)执行。该方法包括:可编程逻辑控制器PLC向光头端发送第一对应关系,该第一对应关系用于指示从站设备标识和从站节点标识之间的对应关系,该对应关系至少指示第一设备标识对应于第一节点标识,该第一设备标识用于指示光终端连接的第一从站;然后,该PLC接收来自该光头端的通知消息,该通知消息用于指示该第一从站上线,且该通知消息包括该第一节点标识。
基于上述技术方案,PLC首先向光头端发送包含有从站设备标识和从站节点标识的对应关系的第一对应关系,且该第一对应关系用于配置从站上线;然后,在第一从站上线过程中,光头端通过与光终端之间的光纤通信连接配置第一从站上线之后,PLC接收来自该光头端的用于指示该第一从站上线的通知消息,使得操作人员可以在PLC上通过对PLC的设置实现对一个或多个光头端的管理,并且,在光头端和光终端之间通过光纤通信的方式实现从站的管理过程,相比于传统的现场总线网络中的双绞线连接的通信方式,可以大大降低传输时延,提升通信效率。
需要说明的是,PLC可以通过多个工业网控制模块的编程和管理以实现对从站的管理,同时可以将工业控制模块的部分计算放在PLC中。其中,PLC可以集成在光头端中,作为 光头端的一个模块(例如,虚拟可编程逻辑控制器(virtual programmable logic controller,vPLC)模块)实现;或者,PLC也可以是集成在独立于光头端的其它设备中,此处不做限定。
在本申请实施例第二方面的一种可能的实现方式中,在该PLC接收来自该光头端的通知消息之后,该方法还包括:该PLC向该光头端发送第一指示信息,该第一指示信息用于请求该第一从站的设备能力信息;该PLC接收来自该光头端的该设备能力信息。
基于上述技术方案,在该PLC接收来自该光头端的通知消息之后,即PLC确定第一从站上线之后,光头端可以进一步通过与光终端之间的光线通信连接,获取得到该第一从站的设备能力信息,并且,在光头端获取得到该第一从站的设备能力信息之后,该光头端可以向PLC发送该设备能力信息,以使得PLC可以根据该设备能力信息实现对该第一从站的其它管理操作。
在本申请实施例第二方面的一种可能的实现方式中,在该PLC接收来自该光头端的通知消息之后,该方法还包括:该PLC向该光头端发送该第一从站的PDO配置信息。
基于上述技术方案,在该PLC接收来自该光头端的通知消息之后,即PLC确定第一从站上线之后,PLC向光头端发送该第一从站的PDO配置信息,以使得光头端可以确定并向光终端该第一从站的PDO配置信息,并且,后续PLC和第一从站之间可以基于该PDO配置信息进行PDO数据的交互。
在本申请实施例第二方面的一种可能的实现方式中,该PDO配置信息包括以下至少一项:PDO数据的发送周期、该PDO数据的内存访问地址和该PDO数据对象的映射。
基于上述技术方案,PDO配置信息具体可以包括PDO数据的发送周期、该PDO数据的内存访问地址和该PDO数据对象的映射,和/或其它的PDO配置信息,提供了PDO配置信息的多种灵活的实现方式。
在本申请实施例第二方面的一种可能的实现方式中,该第一对应关系承载于光总线链路层消息中,其中,该光总线链路层消息包括以下至少一项:目的MAC地址、该PLC的源MAC地址、以太类型、协议数据单元PDU数量、时戳、帧校验序列。
可选地,目标MAC地址可以指示一个或多个光头端的MAC地址。
基于上述技术方案,PLC与光头端之间用于通信的光总线链路中,所发送的光总线链路层消息可以承载上述至少一项信息,提供了光总线链路层消息的多种灵活的实现方式。
在本申请实施例第二方面的一种可能的实现方式中,该第一节点标识包括以下至少一项:类型标识、长度值、MAC地址、节点标识。
可选地,该MAC地址可以指示光终端或第一从站的MAC地址。
基于上述技术方案,光头端基于第一对应关系为第一从站分配的第一节点标识可以包括上述至少一项信息,提供了第一节点标识的多种灵活的实现方式。
在本申请实施例第二方面的一种可能的实现方式中,该设备信息包括以下至少一项:类型标识、长度值、节点标识、该光终端或该第一从站的供应商标识、该光终端或该第一从站的MAC地址、该光终端或该第一从站的OT模型、该光终端或该第一从站的硬件版本、该光终端或该第一从站的软件版本、该光终端或该第一从站的芯片型号、该光终端或该第 一从站的芯片修订信息、该光终端或该第一从站的芯片版本、该光终端或该第一从站的芯片设计日期、响应用户操作得到的输入参数。
基于上述技术方案,光头端所接收的来自于光终端的设备信息可以包括上述至少一项信息,其中,第一设备标识可以包括上述设备信息的部分信息,提供了设备信息的多种灵活的实现方式。
在本申请实施例第二方面的一种可能的实现方式中,该方法还包括:该PLC向该光头端发送第二指示信息,该第二指示信息用于指示该第一从站进入紧急态。
可选地,该第二指示信息用于指示该第一从站进入紧急态,具体可以指示第一从站进入紧急停止的状态,在该紧急停止的状态下,第一从站不再周期性的执行动作,关闭或者关断第一从站执行的动作,以防止对人或者机器造成的伤害。
基于上述技术方案,作为管理第一从站的PLC,可以向光头端发送用于指示该第一从站进行紧急态的第二指示信息,使得光头端所连接光终端对应的第一从站进入安全保护状态,以防止对人或者机器造成的伤害。
在本申请实施例第二方面的一种可能的实现方式中,在该PLC接收来自该光头端的通知消息之后,该方法还包括:该PLC向光头端发送第三指示信息,该第三指示信息用于请求该第一从站的过程数据PDO;然后,该PLC接收来自该光头端的该PDO。
基于上述技术方案,在该PLC接收来自该光头端的通知消息之后,即PLC确定第一从站上线之后,PLC向光头端发送用于请求该第一从站的过程数据PDO的第三指示信息,以使得光头端可以确定并向PLC发送该PDO,并且,使得PLC和第一从站之间进行PDO数据的交互。
在本申请实施例第二方面的一种可能的实现方式中,在该PLC向光头端发送该第三指示信息之前,该方法还包括:该PLC向该光头端发送第四指示信息,该第四指示信息用于指示该第一从站进入操作态。
可选地,第一从站进入操作态可以指示第一从站启动现场总线工作。
基于上述技术方案,在该PLC接收来自该光头端的通知消息之后,即PLC确定第一从站上线之后,PLC可以向光头端发送用于指示该第一从站进入操作态的第四指示信息,并在第一从站进入操作态之后进行PDO数据的交互。
本申请实施例第三方面提供了一种通信方法,该方法可以由光终端执行,也可以由光终端的部件(例如处理器、芯片、或芯片系统等)执行。该方法包括:光终端向光头端发送第一消息,该第一消息包括第一设备标识,该第一设备标识用于指示该光终端连接的第一从站;然后,该光终端接收来自该光头端的第一节点标识,其中,该第一设备标识对应于该第一节点标识。
基于上述技术方案,在第一从站上线过程中,光终端通过与光头端之间的光纤通信连接,向该光终端发送包含有第一设备标识的第一消息,使得光头端在第一对应关系中确定第一设备标识对应的第一节点标识,其中,第一对应关系用于指示从站设备标识和从站节点标识之间的对应关系;进一步地,光终端再通过与光头端之间的光纤通信连接接收来自该光头端的第一节点标识。其中,光头端与光头端之间通过光纤通信的方式配置第一从站 上线,即通过光纤通信的方式实现从站的管理过程,相比于传统的现场总线网络中的双绞线连接的通信方式,可以大大降低传输时延,提升通信效率。
在本申请实施例第三方面的一种可能的实现方式中,在该光终端接收来自该光头端的第一节点标识之后,该方法还包括:该光终端接收来自该光头端的第一指示信息,该第一指示信息用于请求该第一从站的设备能力信息;然后,该光终端根据该第一指示信息确定该设备能力信息;此后,该光终端向该光头端发送该设备能力信息。
基于上述技术方案,在光终端接收来自该光头端的第一节点标识之后,即光终端确定第一从站上线之后,光终端可以进一步通过与光头端之间的光线通信连接,获取得到该第一指示信息,并基于该第一指示信息向光头端发送第一从站的设备能力信息,以使得光头端后续可以根据该第一从站的设备能力信息实现对第一从站的其它管理操作,例如PDO配置信息的交互、PDO数据的交互等。
在本申请实施例第三方面的一种可能的实现方式中,在该光终端接收来自该光头端的第一节点标识之后,该方法还包括:该光终端接收来自该光头端的第一从站的PDO配置信息;然后,该光终端向该第一从站发送该PDO配置信息。
基于上述技术方案,在光终端接收来自该光头端的第一节点标识之后,即光终端确定第一从站上线之后,光终端还可以接收来自光头端的PDO配置信息,并向第一从站发送该PDO配置信息,以使得后续可以基于该PDO配置信息实现PDO数据的交互。
在本申请实施例第三方面的一种可能的实现方式中,该第一节点标识承载于光网络终端管理控制接口OMCI消息且该OMCI消息还包括吉比特无源光网络封装模式的端口标识GEMport ID;或,该第一节点标识承载于操作、管理和维护OAM消息且该OAM消息还包括逻辑链路标识LLID。
基于上述技术方案,光头端和光终端之间可以通过多种通信方式实现,其中,该通信方式为无源光网络(passive optical network,PON)中的千兆PON(gigabit passive optical network,GPON)时,光头端向光终端发送的第一节点标识可以承载于光网络终端管理控制接口(optical network terminal management and control interface,OMCI)消息中并携带吉比特无源光网络封装模式的端口标识(GPON/10G GPON/50G GPON encapsulation mode/method port identifier,GEMport ID);该通信方式为以太网PON(ethernetpassive optical network,EPON)、10千兆以太网PON(10G ethernet passive optical network,10G-EPON)时,光头端向光终端发送的第一节点标识可以承载于光网络终端管理和控制接口(operation administration and maintenance,OAM)消息中,并携带逻辑链路标识(logical link identifier,LLID)。
在本申请实施例第三方面的一种可能的实现方式中,该第一节点标识包括以下至少一项:类型标识、长度值、MAC地址、节点标识。
可选地,该MAC地址可以指示光终端或第一从站的MAC地址。
基于上述技术方案,光头端基于第一对应关系为第一从站分配的第一节点标识可以包括上述至少一项信息,提供了第一节点标识的多种灵活的实现方式。
在本申请实施例第三方面的一种可能的实现方式中,该第一设备标识包括以下至少一 项:类型标识、长度值、节点标识、该光终端或该第一从站的供应商标识、该光终端或该第一从站的MAC地址、该光终端或该第一从站的OT模型、该光终端或该第一从站的硬件版本、该光终端或该第一从站的软件版本、该光终端或该第一从站的芯片型号、该光终端或该第一从站的芯片修订信息、该光终端或该第一从站的芯片版本、该光终端或该第一从站的芯片设计日期、响应用户操作得到的输入参数。
基于上述技术方案,光头端所接收的来自于光终端的设备信息可以包括上述至少一项信息,其中,第一设备标识可以包括上述设备信息的部分信息,提供了设备信息的多种灵活的实现方式。
在本申请实施例第三方面的一种可能的实现方式中,该方法还包括:该光终端接收来自该光头端的第二指示信息,该第二指示信息用于指示该第一从站进入紧急态;然后,该光终端向该第一从站发送该第二指示信息。
可选地,该第二指示信息用于指示该第一从站进入紧急态,具体可以指示第一从站进入紧急停止的状态,在该紧急停止的状态下,第一从站不再周期性的执行动作,关闭或者关断第一从站执行的动作,以防止对人或者机器造成的伤害。
基于上述技术方案,作为管理第一从站的光头端,可以向光终端发送用于指示该第一从站进行紧急态的第二指示信息,此后,光终端向第一从站发送该第二指示信息,以使得第一从站进入安全保护状态,以防止对人或者机器造成的伤害。
在本申请实施例第三方面的一种可能的实现方式中,在该光终端接收来自该光头端的该第一节点标识之后,该方法还包括:该光终端接收来自该光头端的第三指示信息,该第三指示信息用于请求该第一从站的节点标识对应的过程数据PDO;然后,该光终端根据该第三指示信息确定该PDO;此后,该光终端向该光头端发送该PDO。
基于上述技术方案,在光终端接收来自该光头端的第一节点标识之后,即光终端确定第一从站上线之后,光终端还可以接收来自光头端的用于请求该第一从站的节点标识对应的过程数据PDO的第三指示信息,并基于该第三指示信息向光头端发送该PDO,以实现PDO数据的交互。
在本申请实施例第三方面的一种可能的实现方式中,在该光终端接收来自该光头端的第三指示信息之前,该方法还包括:该光终端接收来自该光头端的第四指示信息,该第四指示信息用于指示该第一从站的节点标识对应的第一从站进入操作态;然后,该光终端向该第一从站发送该第四指示信息。
可选地,第一从站进入操作态可以指示第一从站启动现场总线工作。
基于上述技术方案,在光终端接收来自该光头端的第一节点标识之后,即光终端确定第一从站上线之后,光终端可以接收来自光头端发送的用于指示该第一从站进入操作态的第四指示信息,并在第一从站进入操作态之后基于该第三指示信息进行PDO数据的交互。
本申请实施例第四方面提供了一种光头端,包括:
处理单元,用于确定第一对应关系,该第一对应关系用于指示从站设备标识和从站节点标识之间的对应关系;
收发单元,用于接收来自光终端的第一消息,该第一消息包括设备信息,该设备信息 包括第一设备标识,该第一设备标识用于指示该光终端连接的第一从站;
该处理单元,还用于在该第一对应关系中确定该第一设备标识对应的第一节点标识;
该收发单元,还用于向该光终端发送该第一节点标识。
在本申请实施例第四方面的一种可能的实现方式中,
该处理单元,具体用于通过该收发单元接收来自可编程逻辑控制器PLC的该第一对应关系。
在本申请实施例第四方面的一种可能的实现方式中,
该收发单元,还用于向PLC发送通知消息,该通知消息用于指示该第一从站上线,且该通知消息包括该第一节点标识。
在本申请实施例第四方面的一种可能的实现方式中,
该收发单元,还用于向该光终端发送第一指示信息,该第一指示信息用于请求该第一从站的设备能力信息;
该收发单元,还用于接收来自该光终端的该设备能力信息。
在本申请实施例第四方面的一种可能的实现方式中,
该收发单元,还用于向PLC发送该设备能力信息。
在本申请实施例第四方面的一种可能的实现方式中,
该收发单元,还用于接收来自PLC的该第一指示信息。
在本申请实施例第四方面的一种可能的实现方式中,
该处理单元,还用于确定该第一从站的PDO配置信息;
该收发单元,还用于向该光终端发送该PDO配置信息。
在本申请实施例第四方面的一种可能的实现方式中,该PDO配置信息包括以下至少一项:
PDO数据的发送周期、该PDO数据的内存访问地址和该PDO数据对象的映射。
在本申请实施例第四方面的一种可能的实现方式中,
该处理单元,具体用于通过该收发单元接收来自PLC的该第一从站的PDO配置信息。
在本申请实施例第四方面的一种可能的实现方式中,
该处理单元,还用于确定第二对应关系,该第二对应关系用于指示该光终端和连接至该光终端的至少一个从站之间的对应关系,该至少一个从站包括该第一从站。
在本申请实施例第四方面的一种可能的实现方式中,
该第一节点标识承载于光网络终端管理控制接口OMCI消息且该OMCI消息还包括吉比特无源光网络封装模式的端口标识GEMport ID;或,
该第一节点标识承载于操作、管理和维护OAM消息且该OAM消息还包括逻辑链路标识LLID。
在本申请实施例第四方面的一种可能的实现方式中,该第一对应关系承载于光总线链路层消息中,其中,该光总线链路层消息包括以下至少一项:
目的MAC地址、该PLC的媒体访问控制MAC地址、以太类型、协议数据单元PDU数量、时戳、帧校验序列。
在本申请实施例第四方面的一种可能的实现方式中,该第一节点标识包括以下至少一项:
类型标识、长度值、MAC地址、节点标识。
在本申请实施例第四方面的一种可能的实现方式中,该设备信息包括以下至少一项:
类型标识、长度值、节点标识、该光终端或该第一从站的供应商标识、该光终端或该第一从站的MAC地址、光终端OT模型、该光终端或该第一从站的硬件版本、该光终端或该第一从站的软件版本、该光终端或该第一从站的芯片型号、该光终端或该第一从站的芯片修订信息、该光终端或该第一从站的芯片版本、该光终端或该第一从站的芯片设计日期、响应用户操作得到的输入参数。
在本申请实施例第四方面的一种可能的实现方式中,
该收发单元,还用于向该光终端发送第二指示信息,该第二指示信息用于指示该第一从站进入紧急态。
在本申请实施例第四方面的一种可能的实现方式中,
该收发单元,还用于该光终端发送第三指示信息,该第三指示信息用于请求该第一从站的过程数据PDO;
该光头端接收来自该光终端的该PDO。
在本申请实施例第四方面的一种可能的实现方式中,
该收发单元,还用于向该PLC发送该PDO。
在本申请实施例第四方面的一种可能的实现方式中,
该收发单元,还用于接收来自PLC的该第三指示信息。
在本申请实施例第四方面的一种可能的实现方式中,
该收发单元,还用于向该光终端发送第四指示信息,该第四指示信息用于指示该第一从站进入操作态。
本申请实施例第四方面中,通信装置的组成模块还可以用于执行第一方面的各个可能实现方式中所执行的步骤,具体均可以参阅第一方面,此处不再赘述。
本申请实施例第五方面提供了一种可编程逻辑控制器PLC,包括:
处理单元,用于确定第一对应关系,该第一对应关系用于指示从站设备标识和从站节点标识之间的对应关系,该对应关系至少指示第一设备标识对应于第一节点标识,该第一设备标识用于指示光终端连接的第一从站;
收发单元,用于向光头端发送该第一对应关系;
该收发单元,还用于接收来自该光头端的通知消息,该通知消息用于指示该第一从站上线,且该通知消息包括该第一节点标识。
在本申请实施例第五方面的一种可能的实现方式中,
该收发单元,还用于向该光头端发送第一指示信息,该第一指示信息用于请求该第一从站的设备能力信息;
该PLC接收来自该光头端的该设备能力信息。
在本申请实施例第五方面的一种可能的实现方式中,
该收发单元,还用于向该光头端发送该第一从站的PDO配置信息。
在本申请实施例第五方面的一种可能的实现方式中,该PDO配置信息包括以下至少一项:
PDO数据的发送周期、该PDO数据的内存访问地址和该PDO数据对象的映射。
在本申请实施例第五方面的一种可能的实现方式中,该第一对应关系承载于光总线链路层消息中,其中,该光总线链路层消息包括以下至少一项:
目的MAC地址、该PLC的源MAC地址、以太类型、协议数据单元PDU数量、时戳、帧校验序列。
在本申请实施例第五方面的一种可能的实现方式中,该第一节点标识包括以下至少一项:
类型标识、长度值、MAC地址、节点标识。
在本申请实施例第五方面的一种可能的实现方式中,该设备信息包括以下至少一项:
类型标识、长度值、节点标识、该光终端或该第一从站的供应商标识、该光终端或该第一从站的MAC地址、该光终端或该第一从站的OT模型、该光终端或该第一从站的硬件版本、该光终端或该第一从站的软件版本、该光终端或该第一从站的芯片型号、该光终端或该第一从站的芯片修订信息、该光终端或该第一从站的芯片版本、该光终端或该第一从站的芯片设计日期、响应用户操作得到的输入参数。
在本申请实施例第五方面的一种可能的实现方式中,
该收发单元,还用于向该光头端发送第二指示信息,该第二指示信息用于指示该第一从站进入紧急态。
在本申请实施例第五方面的一种可能的实现方式中,
该收发单元,还用于向光头端发送第三指示信息,该第三指示信息用于请求该第一从站的过程数据PDO;
该收发单元,还用于接收来自该光头端的该PDO。
在本申请实施例第五方面的一种可能的实现方式中,
该收发单元,还用于向该光头端发送第四指示信息,该第四指示信息用于指示该第一从站进入操作态。
本申请实施例第五方面中,通信装置的组成模块还可以用于执行第二方面的各个可能实现方式中所执行的步骤,具体均可以参阅第二方面,此处不再赘述。
本申请实施例第六方面提供了一种光终端,包括:
处理单元,用于确定第一设备标识,该第一设备标识用于指示该光终端连接的第一从站;
收发单元,用于向光头端发送第一消息,该第一消息包括该第一设备标识;
该收发单元,还用于接收来自该光头端的第一节点标识,其中,该第一设备标识对应于该第一节点标识。
在本申请实施例第六方面的一种可能的实现方式中,
该收发单元,还用于接收来自该光头端的第一指示信息,该第一指示信息用于请求该 第一从站的设备能力信息;
该处理单元,还用于根据该第一指示信息确定该设备能力信息;
该收发单元,还用于向该光头端发送该设备能力信息。
在本申请实施例第六方面的一种可能的实现方式中,
该收发单元,还用于接收来自该光头端的第一从站的PDO配置信息;
该收发单元,还用于向该第一从站发送该PDO配置信息。
在本申请实施例第六方面的一种可能的实现方式中,
该第一节点标识承载于光网络终端管理控制接口OMCI消息且该OMCI消息还包括吉比特无源光网络封装模式的端口标识GEMport ID;或,
该第一节点标识承载于操作、管理和维护OAM消息且该OAM消息还包括逻辑链路标识LLID。
在本申请实施例第六方面的一种可能的实现方式中,该第一节点标识包括以下至少一项:
类型标识、长度值、MAC地址、节点标识。
在本申请实施例第六方面的一种可能的实现方式中,该第一设备标识包括以下至少一项:
类型标识、长度值、节点标识、该光终端或该第一从站的供应商标识、该光终端或该第一从站的MAC地址、该光终端或该第一从站的OT模型、该光终端或该第一从站的硬件版本、该光终端或该第一从站的软件版本、该光终端或该第一从站的芯片型号、该光终端或该第一从站的芯片修订信息、该光终端或该第一从站的芯片版本、该光终端或该第一从站的芯片设计日期、响应用户操作得到的输入参数。
在本申请实施例第六方面的一种可能的实现方式中,
该收发单元,还用于接收来自该光头端的第二指示信息,该第二指示信息用于指示该第一从站进入紧急态;
该收发单元,还用于向该第一从站发送该第二指示信息。
在本申请实施例第六方面的一种可能的实现方式中,
该收发单元,还用于接收来自该光头端的第三指示信息,该第三指示信息用于请求该第一从站的节点标识对应的过程数据PDO;
该处理单元,还用于根据该第三指示信息确定该PDO;
该收发单元,还用于向该光头端发送该PDO。
在本申请实施例第六方面的一种可能的实现方式中,
该收发单元,还用于接收来自该光头端的第四指示信息,该第四指示信息用于指示该第一从站的节点标识对应的第一从站进入操作态;
该收发单元,还用于向该第一从站发送该第四指示信息。
本申请实施例第六方面中,通信装置的组成模块还可以用于执行第三方面的各个可能实现方式中所执行的步骤,具体均可以参阅第三方面,此处不再赘述。
本申请实施例第七方面提供一种光头端,包括光收发器,与该光收发器耦合的处理器; 其中,该处理器用于执行本申请实施例中由光头端执行的任意一种方法的部分或全部步骤。
本申请实施例第八方面提供一种PLC,包括光收发器,与该光收发器耦合的处理器;其中,该处理器用于执行本申请实施例中由PLC执行的任意一种方法的部分或全部步骤。
本申请实施例第九方面提供一种光线路终端,包括光收发器,与该光收发器耦合的处理器;其中,该处理器用于执行本申请实施例中由光线路终端执行的任意一种方法的部分或全部步骤。
本申请实施例第十方面提供一种通信系统,该通信系统包括:第四方面或第七方面及其任一实现方式中的光头端、以及第五方面或第八方面及其任一实施例中的PLC。
可选地,该通信系统还包括第六方面或第九方面及其任一实施例中的光终端。
本申请实施例第十一方面提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,其中,该计算机程序被硬件执行时能够实现本申请实施例中由光头端执行的任意一种方法的部分或全部步骤。
本申请实施例第十二方面提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,其中,该计算机程序被硬件执行时能够实现本申请实施例中由PLC执行的任意一种方法的部分或全部步骤。
本申请实施例第十三方面提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,其中,该计算机程序被硬件执行时能够实现本申请实施例中由光终端执行的任意一种方法的部分或全部步骤。
本申请实施例第十四方面提供一种包括指令的计算机程序产品,当该计算机程序产品在光网络单元上运行时,使得光网络单元执行以上各方面中由光头端执行的方法的部分或全部步骤。
本申请实施例第十五方面提供一种包括指令的计算机程序产品,当该计算机程序产品在光线路终端上运行时,使得光线路终端执行以上各方面中由PLC执行的方法的部分或全部步骤。
本申请实施例第十六方面提供一种包括指令的计算机程序产品,当该计算机程序产品在光线路终端上运行时,使得光线路终端执行以上各方面中由光终端执行的方法的部分或全部步骤。
附图说明
图1为现场总线网络实现的一个示意图;
图2为本申请实施例提供的一种通信系统的一个示意图;
图3a为本申请实施例提供的一种通信系统的另一个示意图;
图3b为本申请实施例提供的一种通信系统的另一个示意图;
图4为本申请实施例提供的一种通信方法的一个示意图;
图5为本申请实施例提供的一种通信方法的另一个示意图;
图6为本申请实施例提供的一种通信方法的另一个示意图;
图7a为本申请实施例提供的一种通信方法的另一个示意图;
图7b为本申请实施例提供的一种通信方法的另一个示意图;
图8为本申请实施例提供的一种光头端的一个示意图;
图9为本申请实施例提供的一种PLC的一个示意图;
图10为本申请实施例提供的一种光终端的一个示意图;
图11为本申请实施例提供的一种通信设备的一个示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
工业互联网是工业4.0的核心组成部分。广义的工业互联网即“产业互联网”,包括制造,能源,电力,水务,交通,医疗,航空等众多行业,狭义的工业互联网聚焦工业生产制造方面。
传统工业制造网络分为以太互联网(Ethernet network)、控制网(Control Network)、和现场总线(Device Level Network)三级网络。
示例性的,以太互联网使用的是传统的一条技术,用于在工厂网络间进行数据通信。如图1所示带圆形框线的线段连接,以太互联网可以应用于后台主机和服务器(Back-Office Mainframes andServers(ERP,MES,CAPP,PDM,etc.))、办公室应用网络、数据服务、数据存储(Office Applications,Internetworking.Data Servers,Storage),控制网关(Control Network Gateway)等设备之间的连接,例如公司网络(Corporate Network);
控制网用在车间级通信,用于在多个总线控制器之间进行通信。如图1所示带菱形框线的线段连接,可以应用于Control Network Gateway、电脑控制器(PC Based Controllers)以及可编程逻辑控制器(Programmable Logic Controllers,PLC)等设备之间的连接;
现场总线(FieldBus)是一种设备基本的网络,具体可以指示一种应用于生产现场,在现场设备之间、现场设备与控制装置之间实行双向的多节点数字通信技术。如图1所示带矩形框线的线段连接,可以应用于电机、驱动器、执行机构(Motors,Drives,Actuators)、机械手(Robotics)、传感器和其它输入/输出装置(Sensors and other Input/Output Devices)等设备之间的连接。
上述传统的工业制造网络主要包括以下的缺点:三级网络标准各不相同,不能互联互通,机器的数据在上层网络中不能看到,无法最大化机器数据的价值,也不能完全实现智能化生产;此外,工业总线的运行周期均在ms级别,无法满足未来工业制造微秒(us)级别的低时延要求;工业总线百兆级带宽无法满足机器视觉等大带宽诉求。
下面将介绍基于上述三级网络所构建的常用的网络架构的实现方式。
实现方式一
以太网控制自动化技术(ethernet control automation technology,EtherCAT)是 一个以以太网为基础的开放架构的现场总线系统。其中,EtherCAT为系统的实时性能和拓扑的灵活性树立了新的标准,同时,它还符合甚至降低了现场总线的使用成本。EtherCAT的特点还包括高精度设备同步,可选线缆冗余,和功能性安全协议。
其中,EtherCAT运行原理包括:
1.EtherCAT采用标准的以太网数据帧和符合以太网标准IEEE 802.3的物理层。但是与标准的以太网设备并不兼容,需要专用的芯片。
2.EtherCAT主站发送一个报文,报文经过所有节点。“随传(On the fly)”的运行机制能保证数据的高效率传输。数据帧在网络传输的同时,每个节点读取帧中寻址到该节点的数据,并将需要交换的数据写入帧。
3.在从站中,数据帧的接收与解码,数据的提取与插入,数据帧的转发都由硬件来实现的,这使得EtherCAT数据帧经过每个从站的时间极小,延迟约为100~500纳秒(ns)。
4.当某一网段或分支上的最后一个节点检测到开放端口(无下一个从站)时,利用以太网技术的全双工特性,将报文返回给主站。
5.EtherCAT主站是网段内唯一能够主动发送EtherCAT数据帧的节点,其他节点仅传送数据帧。这样避免不可预知的延时,从而保证EtherCAT的实时性能。
6.EtherCAT只多种应用层协议,包括COE(CANopen over EtherCAT)、SOE(Sercos over EtherCAT)、EOE(EtherNet over EtherCAT)支持TCP/IP、FOE(File Access over EtherCAT)。
具体地,EtherCAT对于站点所处的状态与运行功能进行了规范,各状态功能简介如下:
Init:初始化状态,站点在此状态下将检查数据链路是否正确,与应用层无数据交互。
Pre-Op:预操作状态(POP),站点在此状态下仅进行邮箱通信,不进行过程数据交互。
Safe-Op:安全运行(SOP),站点在此状态下可进行邮箱通信,并允许过程数据输入,不可输出。
OP:操作状态,站点可进行完全的数据通信,处于正常的工作状态。
Bootstrap:引导模式,仅适用于FoE的邮箱通信,用于固件的更新。
实现方式二
POWERLINK是在2001年开发并投入使用的实时通信技术,其物理层与数据链路层基于以太网,应用层采用CANopen。POWERLINK采用轮询、多路复用、轮询链(Poll Request Chian)等技术不断优化其通信效率PowerLink。
其中,POWERLINK基本运行原理如下:在普通以太网上实现的方案,无需ASIC芯片,用户可以在各种平台上实现Powerlink,如FPGA、ARM、x86等;PowerLink运用时间槽通信网络管理机制(slot communication network management,SCNM)来避免通信过程中可能产生的数据碰撞。仅传送数据帧。这样避免不可预知的延时,从而保证powerlink的实时性能。
1.启动:POWERLINK设备在启动时,根据节点号来决定该节点接下来的行为。如果该节点的节点号为1至239,那说明该节点是从站,接下来应该进入到从站的状态机。如果节点号是240且NMT_StartUp_U32 object(index 1F80h)的第14bit为0,则说明该节点是标准的主站。如果NMT_StartUp_U32 object(index 1F80h)的第14bit为1,则说 明该节点是冗余主站,进入到冗余主站的状态机。
2.冗余主站的状态机:冗余主站的状态机主要有两个大的状态,一个是active状态,一个是standby状态。当处于活动状态时,该节点作为活动的主站在工作。当处于standby状态时,该节点处于备用主站。当节点启动完成,进入到冗余主站的状态机时,首先检测是否能在规定的时间内受到SOC和SOA数据桢,如果能收到,说明在网络上有其他的活动主站,该节点应该进入到standby状态;否则进入到active状态。
2.1.Active状态:当节点工作在冗余主站的Active状态时,他的作用和标准的主站一样。此外增加了切换到standby状态的功能。当该节点收到了SOC,SOA,AMNI等消息时,就从Active状态切换到standby状态。
2.2.standby状态:当节点工作在冗余主站的standby状态时,从活动主站的角度看,备用主站的就像标准的从站那样工作,从活动主站接收PollReq数据桢,回复PollRes数据桢。此外他还具有如下功能:
1)定时检测SOA和SOC数据桢。如果在规定的时间内没有收到SOA和SOC,需要切换状态,接管活动主站的工作。
2)监控网络上其他节点的状态,备用主站通过监听节点的PollResponse,StatusResponse,IdentResponse这些数据桢的信息来得知其状态信息,并将这些信息更新到自己的列表中。在接管活动主站的工作时,需要这些信息,来达到无缝切换。
在上述几种实现方式中,受限于双绞线的硬件特性,当前的现场总线网络的运行周期均在毫秒(ms)级别,无法满足未来工业制造更高级别的低时延要求。因此,如何在现场总线网络中通过更低时延的通信,以实现对从站的管理,是一个亟待解决的技术问题。进一步地,当前现场总线网络还包括其它的待改进点,如支持的节点数小,双绞网线易受到电磁辐射影响导致误码,不支持普通业务承载(如工业摄像头等)。
为此,本申请实施例提供了一种通信方法及相关设备,用于通过光纤通信的方式实现从站的管理过程,相比于传统的现场总线网络中的双绞线连接的通信方式,可以大大降低传输时延,提升通信效率。
下面首先介绍本申请实施例所应用的网络架构。
如图2所示,为本申请实施例的网络架构的一个示意图。
在图2中,PLC作为主站,用于通过光头端和光终端作为传输媒介,实现对从站(传动设备、传感设备、IO设备、以太设备等)的管理。
其中,图2所示的一种总线系统可能的网络架构,提供了“一网到底”的能力,在该光总线网络中既可以接入传统的工业设备,包括传动设备、传感设备、IO设备等;在光总线网络中还可以接入以太/IP互联网的设备。具体地,PLC和光头端之间的接口可以称为业务节点接口(Service Node Interface,SNI),并且可以通过IP互联网进行连接,光终端和各自连接的从站之间的接口可以称为用户网络接口(User Network Interface,UNI)。
进一步地,图2所示网络架构中PLC和光头端可以是合并集成在一起的,如图3a所示;也可以是分离独立设计的,如图3b所示。在网络结构中,如果PLC和光头端系统为分离式外部接口连接时,光总线系统的SNI可以为以太接口(FE、GE、10GE)或者PCIE接口中的 一种;如果光头端和vPLC在一个合一系统中部署时,光头端和vPLC之间的接口为内部的软件收发接口。UNI接口为以太接口(FE、GE、10GE)、SPI接口、伺服电机监控和驱动接口(AD,GPIO,RS422,PWM控制等)的一种或多种。
如图3a和图3b所示网络系统架构,一般地,完整的光总线系统可以包括如下几个部分:
1.光头端:主要完成总线业务/以太业务在点到多点通信系统上的承载和复用。
2.PLC(vPLC)模块:完成多个工业网控制模块的编程和管理,同时可以将工业控制模块的部分计算放在此模块。
需要说明的是,PLC可以通过多个工业网控制模块的编程和管理以实现对从站的管理,同时可以将工业控制模块的部分计算放在PLC中。其中,PLC可以集成在光头端中,作为光头端的一个模块(例如,虚拟可编程逻辑控制器(virtual programmable logic controller,vPLC)模块)实现;或者,PLC也可以是集成在独立于光头端的其它设备中,此处不做限定。此外,PLC可以替换为任意的对实时性要求极高的控制器模块,例如PLC是可以一个独立的设备,也可以是一个由通用CPU组成服务器中的一个模块。
3.光总线局端模块:完成光总线业务的承载,业务数据为控制机器或者查询/采集机器的数据。
4.(可选)局端以太业务模块:承载局端以太业务,设备对外提供的接口为以太口,如FE、GE、10GE等。
5.点到多点局端模块:完成点到多点网络多个光终端的链路层通信。此模块可以为PON通信中的局端模块,PON制式可以为GPON、EPON、10G GPON、10G EPON、50G GPON,CDMA PON、FDM PON等。
6.头端光模块:完成光头端的光信号发送和光终端信号的接收。这里光可以为单波长或多波长。
7.光分路器:光分路器完成点到多点光分路/合路的功能。这里的光分路器可以为一级或者多级,分光器也可以为等比或不等比光纤。
8.光终端:单个光终端完成在点到多点系统上获取工业控制信息或以太信息的功能。按提供的业务类型可以分为共总线光终端和共总线光终端。
9.终端光模块:完成光头端的光信号接收和光终端信号的发送。
10.点到多点终端模块:完成点到多点网络多个光终端的链路层通信。此模块可以为PON通信中的终端模块,PON制式可以为GPON、EPON、10G GPON、10G EPON、50G PON,CDMA PON、FDM PON等。
11.光总线终端模块:完成光总线数据的解析,并对工业控制模块进行读写操作。
12.工业控制模块:控制工业设备/IO的模块,工业设备可以为传感器、伺服器、IO设备等。
13.(可选)终端以太业务模块:承载终端以太业务,设备对提供的接口为以太口,如FE、GE、10GE等。
在图2、图3a和图3b所示网络架构中,光头端与分光器之间以及分光器与光终端之 间使用光纤连接。这里的光纤可以为普通的光纤,也可以是光电合一的光纤,可以为光终端提供供电。
请参阅图4,为本申请实施例提供的一种通信方法的一个示意图,该方法包括如下步骤。其中,图4所示方法可以应用于图2、图3a和图3b所示网络架构中。
S100.PLC向光头端发送第一对应关系;
本实施例中,PLC在步骤S100中向光头端发送第一对应关系,且该第一对应关系用于指示从站设备标识和从站节点标识之间的对应关系。相应的,光头端在步骤S100中接收来自该PLC的第一对应关系。
如前述图2、图3a和图3b所示,PLC和光头端可以是合并集成在一起的,也可以是分离独立设计的。其中,步骤S100为可选步骤,当PLC和光头端合并集成在同一个设备实现时,步骤S100可以不执行,即PLC向光头端传输第一对应关系的过程可以视为设备的内部交互;当PLC和光头端分离独立设计时,光头端可以通过与PLC之间的通信连接,在步骤S100中接收该第一对应关系。
在一种可能的实现方式中,该第一对应关系承载于光总线链路层消息中,其中,该光总线链路层消息包括以下至少一项:目的媒体接入控制(media access control,MAC)地址、该PLC的媒体访问控制MAC地址、以太类型、协议数据单元PDU数量、时戳、帧校验序列。可选地,目标MAC地址可以指示一个或多个光头端的MAC地址。具体地,PLC与光头端之间用于通信的光总线链路中,所发送的光总线链路层消息可以承载上述至少一项信息。
其中,光总线链路层消息中的帧格式定义的一种实现示例可以如表1所示:
Figure PCTCN2022087553-appb-000001
表1
具体地,表1所示帧格式可以进一步通过图5所示实现方式进行封装。例如,管理通道的内容封装在PDU数据的有效载荷(payload)字段。管理通道的内容全部使用类型-长度-值(type-length-value,TLV)的结构进行传输,可以称之为扩展OAM格式。一个管理通道消息中可以封装多个TLV消息,但是要求对所有消息的操作是一样的。例如,查询多个对象内容的消息是可以封装在一个管理通道消息中的。L的长度仅表示内容区的长度,范围为0-1024字节。当消息类型为get(读操作)时,内容区长度为0。当消息类型为set response(设置响应操作)时,内容区长度为0。
当从站管理通道消息时,PDU消息中的cmd字段定义如下:
0:NOP,忽略无意义;
1:get(读操作);
2:get response(读响应操作);
3:set(设置操作);
4:set response(设置响应操作)。
5:event(事件)。
其中,通过TLV结构中的类型字段可以完成不同的操作。类型ID(type ID)的范围的一种实现方式中,分配如下:0x0~0xFFF,光头端相关的操作;0x1000~0x1FFF,光终端/从站相关的操作;0xF000~0xFFF,为厂商自定义的扩展字段;其余字段暂时保留。
此外,步骤S100及后文所涉及的第一对应关系可以通过表格、图形、文字、代码等,或者是通过其它多种不同的形式承载从站设备标识和从站节点标识的对应关系,该对应关系具体指示为某一个从站设备标识对应的从站分配的从站节点标识(或称为节点ID),此处不做限定。
进一步地,考虑到光终端和从站之间的对应关系可以是一对多,即一个光终端可以连接一个或多个从站,而在一个光终端对应于一个从站的场景下,在第一对应关系中,从站设备标识既可以指示从站的设备标识,也可以指示光终端的设备标识,两者统称为设备信息。
在一种可能的实现方式中,该设备信息包括以下至少一项:类型标识、长度值、节点标识、该光终端或该第一从站的供应商标识、该光终端或该第一从站的MAC地址、光终端OT模型、该光终端或该第一从站的硬件版本、该光终端或该第一从站的软件版本、该光终端或该第一从站的芯片型号、该光终端或该第一从站的芯片修订信息、该光终端或该第一从站的芯片版本、该光终端或该第一从站的芯片设计日期、响应用户操作得到的输入参数。
即,光头端所接收的来自于光终端的设备信息可以包括上述至少一项信息,其中,从站设备标识可以包括上述设备信息的部分信息。
作为一个实现示例,该设备信息可以通过表2所示方式实现。
Figure PCTCN2022087553-appb-000002
Figure PCTCN2022087553-appb-000003
表2
在一种可能的实现方式中,与设备信息相对应的,在一个光终端对应于一个从站的场景下,在第一对应关系中,从站节点标识既可以指示从站的节点标识,也可以指示光终端的节点标识,两者统称为节点标识(或称为节点ID)。其中,节点标识包括以下至少一项:类型标识、长度值、MAC地址、节点标识。可选地,该MAC地址可以指示光终端或第一从站的MAC地址。
作为一个实现示例,该节点ID可以通过表3所示方式实现。
Figure PCTCN2022087553-appb-000004
表3
S101.光头端确定第一对应关系;
本实施例中,由上述内容可知,步骤S100为可选步骤,当步骤S100执行时,光头端根据步骤S100确定第一对应关系;当步骤S100不执行时,光头端在步骤S101中通过读取自身所包含的PLC模块(例如vPLC)中的信息,以确定该第一对应关系。
其中,第一对应关系用于指示从站设备标识和从站节点标识之间的对应关系,具体实现过程可以参考前述步骤S100的描述,此处不再赘述。
S102.光终端向光头端发送第一消息;
本实施例中,光终端向光头端发送第一消息,其中,该第一消息包括设备信息,该设备信息包括第一设备标识,该第一设备标识用于指示该光终端连接的第一从站。相应的,光头端在步骤S102中接收来自该光终端的第一消息。
其中,第一消息所包含的设备信息包括以下至少一项:类型标识、长度值、节点标识、该光终端或该第一从站的供应商标识、该光终端或该第一从站的MAC地址、光终端OT模型、该光终端或该第一从站的硬件版本、该光终端或该第一从站的软件版本、该光终端或该第一从站的芯片型号、该光终端或该第一从站的芯片修订信息、该光终端或该第一从站的芯片版本、该光终端或该第一从站的芯片设计日期、响应用户操作得到的输入参数。该实现过程可以参考前述步骤S100中的相关描述,此处不再赘述。
此外,该第一从站可以为该光终端所连接的某一个从站,也可以为该光终端所连接的多个从站,此处不做限定。
具体地,在光终端可以基于触发条件执行步骤S102向光头端发送该第一消息。例如,该触发条件可以包括光终端检测到该第一从站被触发执行开机或重新启动、光终端检测到该光终端自身被触发执行开机或重新启动、光头端接收得到来自光头端的指示信息、光头端接收得到来自PLC的指示信息、或者是其它的触发条件,此处不做限定。
S103.光头端在第一对应关系中确定第一设备标识对应的第一节点标识;
本实施例中,光头端根据步骤S101中确定得到的第一对应关系,进一步确定步骤S102中来自光头端的第一设备标识对应的第一节点标识,即光头端在步骤S103中为该第一设备标识对应的第一从站分配的从站ID为该第一节点标识。
其中,该第一节点标识包括以下至少一项:类型标识、长度值、MAC地址、节点标识。该实现过程可以参考前述步骤S100中的相关描述,此处不再赘述。
S104.光头端向光终端发送第一节点标识;
本实施例中,光头端在步骤S104中向光终端发送第一节点标识,相应的,光终端在步骤S104中接收来自光头端发送的第一节点标识。其中,光终端在步骤S104中接收得到第一节点标识后,确定该第一从站已在该光头端上线,并且该第一从站的工作状态为初始态。
在一种可能的实现方式中,该第一节点标识承载于光网络终端管理控制接口OMCI消息且该OMCI消息还包括吉比特无源光网络封装模式的端口标识GEMport ID;或,该第一节点标识承载于操作、管理和维护OAM消息且该OAM消息还包括逻辑链路标识LLID。
具体地,光头端和光终端之间可以通过多种通信方式实现,其中,该通信方式为无源光网络(passive optical network,PON)中的千兆PON(gigabit passive optical network,GPON)时,光头端向光终端发送的第一节点标识可以承载于光网络终端管理控制 接口(optical network terminal management and control interface,OMCI)消息中并携带吉比特无源光网络封装模式的端口标识(GPON/10G GPON/50G GPON encapsulation mode/method port identifier,GEMport ID);该通信方式为以太网PON(ethernetpassive optical network,EPON)、10千兆以太网PON(10G ethernet passive optical network,10G-EPON)时,光头端向光终端发送的第一节点标识可以承载于光网络终端管理和控制接口(operation administration and maintenance,OAM)消息中,并携带逻辑链路标识(logical link identifier,LLID)。
作为一种实现示例,请参阅图6所示实现过程,以光头端与某一个光终端(光终端0)的通信过程作为举例。其中,PLC发送给光头端的是光总线的链路层消息,对应于光头端中光总线局端模块所接收得到的消息格式,包括以太头12比特(12B),以太类型2比特(Ethertype 2B)、指示PDU数量为0(PDU0)、帧校验序列(Frame Check Sequence,FCS)4比特(4B)。对于需要发送给光终端/从站的时候,需要将此消息转换为点到多点的管理消息,即光头端中点到多点局端模块与光终端0中点到多点中年高点模块之间所传输的管理消息。
在GPON/10G GPON系统中此消息为OMCI消息,在EPON/10G EPON系统中,此消息为OAM消息。在管理消息前都需要加上点到多点的标识,在GPON/10G GPON系统中此ID号为GEMport ID,在EPON/10G EPON系统中,此ID为LLID。此后,光终端0中的光总线终端模块再提取得到管理消息净荷,并直接根据该管理消息净荷实现向从站下发指令,以实现对从站的管理。
需要说明的是,光头端与光终端之间进行交互的其它消息也可以通过多种通信方式实现实现,可以参考上述内容,此处不再赘述。
在一种可能的实现方式中,在步骤S104之前,该光头端还可以确定第二对应关系,该第二对应关系用于指示该光终端和连接至该光终端的至少一个从站之间的对应关系,该至少一个从站包括该第一从站。具体地,光终端可以连接至至少一个从站以实现与至少一个从站之间的通信,即一个光终端可以对应一个或多个从站。在在步骤S104该光头端向该光终端发送该第一节点标识之前,即光头端确定第一从站上线之前,可以通过在光头端中预配置的方式,或者是通过PLC向光头端配置的方式,使得光头端确定该光终端和连接至该光终端的至少一个从站之间的对应关系,后续可以基于该对应关系在该光终端对应的至少一个从站中确定第一从站,并实现对该第一从站的管理。
S105.光头端向PLC发送通知消息;
本实施例中,光头端在步骤S105中向PLC发送用于指示该第一从站上线的通知消息,且该通知消息包括第一节点标识。相应的,PLC在步骤S105中接收得到来自该光头端的通知消息。其中,PLC在步骤S105中接收得到通知消息后,确定该第一从站已在该光头端上线,并且该第一从站的工作状态为初始态。
在一种可能的实现方式中,在该光头端向该光终端发送该第一节点标识之后,该方法还包括:向PLC发送通知消息,该通知消息用于指示该第一从站上线,且该通知消息包括该第一节点标识。具体地,在光头端向该光终端发送该第一节点标识之后,光头端可以向 该PLC发送用于指示该第一从站上线的通知消息,以使得PLC确定该第一从站已上线,后续PLC可以对该第一从站实现其它的管理操作,例如设备能力信息的交互、过程数据(process data object,PDO)配置信息的交互、PDO数据的交互等。
基于上述技术方案,光头端首先确定包含有从站设备标识和从站节点标识的对应关系的第一对应关系,且该第一对应关系用于配置从站上线;然后,在第一从站上线过程中,光头端通过与光终端之间的光纤通信连接,接收来自于该光终端的包含有第一设备标识的第一消息,并在该第一对应关系中确定第一设备标识对应的第一节点标识;进一步地,光头端再通过与光终端之间的光纤通信连接向光终端发送该第一节点标识。其中,光头端与光头端之间通过光纤通信的方式配置第一从站上线,即通过光纤通信的方式实现从站的管理过程,相比于传统的现场总线网络中的双绞线连接的通信方式,可以大大降低传输时延,提升通信效率。
在上述步骤S100至步骤S105的实现过程中,可以实现光头端对光终端所连接的从站进行管理,使得该第一从站在光头端(或PLC)侧上线,并且该第一从站处于初始态。此后,还可以对该从站进一步的执行其它的管理操作,使得该第一从站进入预操作态、操作态、紧急态等。
具体地,当第一从站处于初始态时,在此状态中,PLC需要完成对从站的编号,光终端需要和光头端建立正常的连接关系;当第一从站处于预操作状态时,在此状态中,PLC需要和从站进行能力协商,完成所有的配置工作。当第一从站处于操作态时,从站此时启动现场总线工作。当第一从站处于紧急状态时,从站进入紧急保护状态,此时不应该执行任何的操作指令,从站应进入安全保护状态。
需要说明的是,上述对第一从站的不同状态可以不局限于上述四种状态实现,例如,可以将上述不同的状态进行合并或拆分描述(例如将预操作态和操作态合并为同一个状态表示,或者是将初始态和预操作态合并为同一个状态表示等),或者是通过其它的状态命名实现(例如操作态使用同步态表示,或者是预操作态使用预同步态表示等),此处不做限定。
下面将通过具体的实现示例进行说明,基于图4所示步骤S100至步骤S105,该通信方法还可以包括如下步骤。
S106.光头端向光终端发送第一指示信息;
本实施例中,光头端在步骤S106中向光终端发送用于请求该第一从站的设备能力信息的第一指示信息。相应的,光终端在步骤S106中接收得到来自光头端的第一指示信息。
其中,光终端在步骤S106接收得到第一指示信息之后,可以从初始态切换为预操作态。
需要说明的是,步骤S106为可选步骤,即光终端(或第一从站)在步骤S104中确定第一从站进入初始态之后,可以在预定时长内(或者是响应于用户操作)进入预操作态并执行步骤S107,该场景下无需执行步骤S106。
在一种可能的实现方式中,在步骤S104中,该光头端向该光终端发送该第一节点标识之后,该光头端在步骤S106中向该光终端发送第一指示信息,该第一指示信息用于请求该第一从站的设备能力信息。具体地,在步骤S104之后,即光头端确定第一从站上线之后, 光头端可以进一步通过与光终端之间的光线通信连接,获取得到该第一从站的设备能力信息,以使得光头端后续可以根据该第一从站的设备能力信息实现对第一从站的其它管理操作,例如PDO配置信息的交互、PDO数据的交互等。
此外,在步骤S106中,光头端向光终端发送的第一指示信息可以来自于PLC,光头端基于PLC的指示触发执行步骤S106。
S107.PLC、光头端、光终端和第一从站之间进行设备能力信息交互;
本实施例中,PLC、光头端、光终端和第一从站之间进行设备能力信息交互,即在步骤S106之后,第一从站依次通过光终端、光头端向PLC发送该第一从站的设备能力信息。
可选地,设备能力信息也可以称为数据字典信息,或者是能力信息,或者是其它用于指示该第一从站的设备能力的信息。
示例性的,该设备能力信息可以是一个有序的对象组,描述了对应从站的部分或全部参数,可以包括通讯数据的存放位置,设备能力信息可以通过电子数据文档(Electronic Data Sheet,EDS)文件的形式传输。一般地,设备能力信息可以包括:设备标识符信息(例如:制造商ID、产品码、版本号、序列号)、设备商设备名称、制造商硬件版本、制造商软件版本、接收PDO映射结构体、发送PDO映射结构体或者是其它信息中的至少一项。
在一种可能的实现方式中,在步骤S107中,光终端向光头端发送该设备能力信息之后,该光头端向PLC发送该设备能力信息。具体地,在光头端获取得到该第一从站的设备能力信息之后,该光头端可以向PLC发送该设备能力信息,以使得PLC可以根据该设备能力信息实现对该第一从站的其它管理操作。
S108.光头端向光终端发送第二指示信息;
本实施例中,光头端在步骤S108中向光终端发送用于指示该第一从站进入紧急态的第二指示信息,相应的,光终端在步骤S108中接收来自该光头端的第二指示信息。
可选地,光终端在步骤S108中接收得到该第二指示信息之后,还向该第一从站发送该第二指示信息。
可选地,光头端基于PLC的指示向该光终端发送该第二指示信息。
在一种可能的实现方式中,该方法还包括:该光头端向该光终端发送第二指示信息,该第二指示信息用于指示该第一从站进入紧急态。
可选地,该第二指示信息用于指示该第一从站进入紧急态,具体可以指示第一从站进入紧急停止的状态,在该紧急停止的状态下,第一从站不再周期性的执行动作,关闭或者关断第一从站执行的动作,以防止对人或者机器造成的伤害。具体地,作为管理第一从站的光头端,可以向光终端发送用于指示该第一从站进行紧急态的第二指示信息,使得光终端所连接的第一从站进入安全保护状态,以防止对人或者机器造成的伤害。
可选地,该方法还包括:该光头端接收来自该PLC的该第二指示信息。
需要说明的是,步骤S108的触发条件可以为多种,例如响应于用户的操作指令、PLC检测到光终端或第一从站的设备异常、光头端检测到光终端或第一从站的设备异常或者是其它的触发条件,此处不做限定。
此外,步骤S108的执行可以是在图4所示任意步骤之前或之后,使得第一从站接收得 到第二指示信息之后进入紧急态,并关闭或者关断第一从站执行的动作,以防止对人或者机器造成的伤害。
进一步地,在步骤S108之后,若光头端或PLC确定第一从站无需保持紧急态,可以通过光终端向第一从站发送解除从站紧急态消息,使得第一从站收到解除从站紧急态消息并退出紧急态,并切换至初始态。
S109.PLC向光头端发送PDO配置信息;
本实施例中,PLC在步骤S109中向光头端发送PDO配置信息,相应的,光头端在步骤S109中接收来自该PLC的PDO配置信息。
在一种可能的实现方式中,在步骤S104之后,即光头端确定第一从站上线之后,光头端可以确定并向光终端该第一从站的PDO配置信息,以使得后续光头端和光终端之间可以基于该PDO配置信息进行PDO数据的交互。
具体地,该PDO配置信息包括以下至少一项:PDO数据的发送周期、该PDO数据的内存访问地址和该PDO数据对象的映射或者是其它的PDO配置信息,例如指定从站的循环周期的单个从站周期、指示循环周期内收发的数据长度的周期数据量等。
在步骤S109中,光头端可以基于PLC的配置,确定该第一从站的PDO配置信息并在确定第一从站上线之后,向该第一从站发送该第一从站的PDO配置信息,以使得后续PLC和第一从站之间可以通过光头端和光终端的光纤通信连接,基于该PDO配置信息进行PDO数据的交互。
S110.光头端确定POD配置信息;
本实施例中,前述步骤S109为可选步骤,当步骤S109执行时,光头端根据步骤S109确定POD配置信息;当步骤S109不执行时,光头端在步骤S110中通过读取自身所包含的PLC模块(例如vPLC)中的信息,以确定该POD配置信息。
S111.光头端向光终端发送PDO配置信息;
本实施例中,光头端在步骤S111中向光终端发送PDO配置信息,相应的,光终端在步骤S111中接收来自该光头端的PDO配置信息。此后,光终端可以基于该PDO配置信息配置该第一从站。
具体地,通过步骤S109至步骤S111的配置过程,可以实现在预操作态下的PDO配置信息的下发,使得第一从站基于该PDO配置信息为后续的PDO数据交互过程进行相关配置。
可选地,步骤S109至步骤S111的配置过程也可以不执行,例如,当第一从站与该光头端(或PLC)存在历史接入的过程时,第一从站可以沿用该历史接入的PDO配置;进一步地,光头端(或PLC)可以在该第一从站的PDO配置信息存在更新时,才执行步骤S109至步骤S111的配置过程。
S112.光头端向光终端发送第四指示信息;
本实施例中,光头端在步骤S112中向光终端发送第四指示信息,相应的,光终端在步骤S110中接收来自该光头端的第四指示信息。
具体地,该第四指示信息用于指示该第一从站进入操作态,例如,第一从站进入操作态可以指示第一从站启动现场总线工作。其中,在步骤S104之后,即光头端确定第一从站 上线之后,光头端可以向光终端发送用于指示该第一从站进入操作态的第四指示信息,并在第一从站进入操作态之后进行PDO数据的交互。
可选地,光头端向光终端发送的第四指示信息可以来自于PLC,光头端基于PLC的指示触发执行步骤S112。
需要说明的是,步骤S112为可选步骤,即光终端(或第一从站)在步骤S104中确定第一从站进入初始态之后,可以在预定时长内(或者是响应于用户操作)进入操作态并执行步骤S113,该场景下无需执行步骤S112。
S113.PLC、光头端、光终端和第一从站之间进行PDO数据交互;
本实施例中,PLC、光头端、光终端和第一从站之间进行设备能力信息交互,即在步骤S113之后,PLC依次通过光头端、光终端向该第一从站发送用于请求第一从站的PDO的第三指示信息,此后,第一从站依次通过光终端、光头端向PLC发送该第一从站的PDO,以实现PDO数据交互。
在一种可能的实现方式中,在步骤S104之后,在步骤S113中,该光头端向该光终端发送第三指示信息,该第三指示信息用于请求该第一从站的过程数据PDO;该光头端接收来自该光终端的该PDO。其中,光头端确定第一从站上线之后,光头端可以向光终端发送用于请求该第一从站的PDO的第三指示信息,并接收来自该终端的PDO,以实现PDO数据的交互,实现对第一从站的管理。
可选地,光头端向光终端发送的第三指示信息可以来自于PLC,光头端基于PLC的指示触发执行步骤S113。
本实施例中,通过上述步骤S106至步骤S113的实现过程,可以通过该通信方法实现对第一从站的管理,实现第一从站在不同状态下的切换。具体切换过程的实现可以如表4所示示例实现。
Figure PCTCN2022087553-appb-000005
表4
示例性的,表4所示实现示例可以通过图7a所示切换过程进行描述,包括如下过程:
若从站的状态为初始态,可以基于从站分配从站ID成功这一事件触发切换为预操作态,例如前述步骤S106;
若从站的状态为预操作态,可以基于收到操作态启动消息触发切换为操作态,例如前述步骤S112;
若从站的状态的预操作态、操作态或紧急态,可以基于从站下线这一事件触发切换为初始态;
若从站的状态为预操作态或操作态,可以基于收到进入紧急态消息或者从站监测到异常这一事件触发切换为紧急态,例如前述步骤S108;
若从站的状态为预操作态或操作态,可以基于收到进入初始态消息触发切换为初始态;
若从站的状态为紧急态,可以基于收到解除从站紧急态消息触发切换为初始态。
此外,作为该通信方法的另一种实现示例,结合上述多种状态的切换可以将该通信方法表示为图7b所示实现方式。
如图所示,表示了一个典型的从站从上线到正常工作的流程图,操作员可以在PLC端实现对从站的管理,具体步骤如下:
在初始态的实现过程中,PLC向光头端进行配置从站认证信息和从站ID(例如步骤S100),然后,光终端向光头端发送光终端上线消息(例如步骤S102),此后,光头端向光终端分配从节点ID(例如步骤S104),并向PLC发送光终端上线成功的通知消息(例如步骤S105);
在预操作态的实现过程中,PLC和总站之间进行从站数据字典的交互,PLC获取从站的能力(可选,例如步骤S107),然后,PLC把“单个从站周期”、“周期数据量”等POD数据模型配置通过光头端配置给从站(例如步骤S109至步骤S111),实现PLC和从站之间进行地址管理,配置PDO相关信息;
在操作态的实现过程中,全局时间同步和操作态启动(例如步骤S112),然后,在一个小周期内,PLC通过光头端向光终端发送PDO数据,光终端再将PDO数据写入从站;此后,光终端采集从站数据,并通过光头端向PLC上报PDO回应数据,以实现PDO数据的交互(例如步骤S113)。
上面从方法的角度对本申请实施例进行了说明,下面从具体装置实现的角度对本申请实施例中的通信装置进行介绍。
请参阅图8,为本申请实施例提供的光头端800的一个装置示意图。其中,光头端800包括处理单元801和收发单元802。
处理单元801,用于确定第一对应关系,该第一对应关系用于指示从站设备标识和从站节点标识之间的对应关系;
收发单元802,用于接收来自光终端的第一消息,该第一消息包括设备信息,该设备信息包括第一设备标识,该第一设备标识用于指示该光终端连接的第一从站;
该处理单元801,还用于在该第一对应关系中确定该第一设备标识对应的第一节点标识;
该收发单元802,还用于向该光终端发送该第一节点标识。
在一种可能的实现方式中,
该处理单元801,具体用于通过该收发单元接收来自可编程逻辑控制器PLC的该第一对应关系。
在一种可能的实现方式中,
该收发单元802,还用于向PLC发送通知消息,该通知消息用于指示该第一从站上线,且该通知消息包括该第一节点标识。
在一种可能的实现方式中,
该收发单元802,还用于向该光终端发送第一指示信息,该第一指示信息用于请求该第一从站的设备能力信息;
该收发单元802,还用于接收来自该光终端的该设备能力信息。
在一种可能的实现方式中,
该收发单元802,还用于向PLC发送该设备能力信息。
在一种可能的实现方式中,
该收发单元802,还用于接收来自PLC的该第一指示信息。
在一种可能的实现方式中,
该处理单元801,还用于确定该第一从站的PDO配置信息;
该收发单元802,还用于向该光终端发送该PDO配置信息。
在一种可能的实现方式中,该PDO配置信息包括以下至少一项:
PDO数据的发送周期、该PDO数据的内存访问地址和该PDO数据对象的映射。
在一种可能的实现方式中,
该处理单元801,具体用于通过该收发单元接收来自PLC的该第一从站的PDO配置信息。
在一种可能的实现方式中,
该处理单元801,还用于确定第二对应关系,该第二对应关系用于指示该光终端和连接至该光终端的至少一个从站之间的对应关系,该至少一个从站包括该第一从站。
在一种可能的实现方式中,
该第一节点标识承载于光网络终端管理控制接口OMCI消息且该OMCI消息还包括吉比特无源光网络封装模式的端口标识GEMport ID;或,
该第一节点标识承载于操作、管理和维护OAM消息且该OAM消息还包括逻辑链路标识LLID。
在一种可能的实现方式中,该第一对应关系承载于光总线链路层消息中,其中,该光总线链路层消息包括以下至少一项:
目的MAC地址、该PLC的媒体访问控制MAC地址、以太类型、协议数据单元PDU数量、时戳、帧校验序列。
在一种可能的实现方式中,该第一节点标识包括以下至少一项:
类型标识、长度值、MAC地址、节点标识。
在一种可能的实现方式中,该设备信息包括以下至少一项:
类型标识、长度值、节点标识、该光终端或该第一从站的供应商标识、该光终端或该第一从站的MAC地址、光终端OT模型、该光终端或该第一从站的硬件版本、该光终端或该第一从站的软件版本、该光终端或该第一从站的芯片型号、该光终端或该第一从站的芯片修订信息、该光终端或该第一从站的芯片版本、该光终端或该第一从站的芯片设计日期、响应用户操作得到的输入参数。
在一种可能的实现方式中,
该收发单元802,还用于向该光终端发送第二指示信息,该第二指示信息用于指示该第一从站进入紧急态。
在一种可能的实现方式中,
该收发单元802,还用于该光终端发送第三指示信息,该第三指示信息用于请求该第一从站的过程数据PDO;
该光头端接收来自该光终端的该PDO。
在一种可能的实现方式中,
该收发单元802,还用于向该PLC发送该PDO。
在一种可能的实现方式中,
该收发单元802,还用于接收来自PLC的该第三指示信息。
在一种可能的实现方式中,
该收发单元802,还用于向该光终端发送第四指示信息,该第四指示信息用于指示该第一从站进入操作态。
其中,光头端800中的处理单元801和收发单元802的具体实现过程可以参考前述方法实施例中的描述,此处不再赘述。
请参阅图9,为本申请实施例提供的PLC900的一个示意图。其中,该PLC900包括处理单元901和收发单元902。
处理单元901,用于确定第一对应关系,该第一对应关系用于指示从站设备标识和从站节点标识之间的对应关系,该对应关系至少指示第一设备标识对应于第一节点标识,该第一设备标识用于指示光终端连接的第一从站;
收发单元902,用于向光头端发送该第一对应关系;
该收发单元902,还用于接收来自该光头端的通知消息,该通知消息用于指示该第一从站上线,且该通知消息包括该第一节点标识。
在一种可能的实现方式中,
该收发单元902,还用于向该光头端发送第一指示信息,该第一指示信息用于请求该第一从站的设备能力信息;
该PLC接收来自该光头端的该设备能力信息。
在一种可能的实现方式中,
该收发单元902,还用于向该光头端发送该第一从站的PDO配置信息。
在一种可能的实现方式中,该PDO配置信息包括以下至少一项:
PDO数据的发送周期、该PDO数据的内存访问地址和该PDO数据对象的映射。
在一种可能的实现方式中,该第一对应关系承载于光总线链路层消息中,其中,该光总线链路层消息包括以下至少一项:
目的MAC地址、该PLC的源MAC地址、以太类型、协议数据单元PDU数量、时戳、帧校验序列。
在一种可能的实现方式中,该第一节点标识包括以下至少一项:
类型标识、长度值、MAC地址、节点标识。
在一种可能的实现方式中,该设备信息包括以下至少一项:
类型标识、长度值、节点标识、该光终端或该第一从站的供应商标识、该光终端或该第一从站的MAC地址、该光终端或该第一从站的OT模型、该光终端或该第一从站的硬件版本、该光终端或该第一从站的软件版本、该光终端或该第一从站的芯片型号、该光终端或该第一从站的芯片修订信息、该光终端或该第一从站的芯片版本、该光终端或该第一从站的芯片设计日期、响应用户操作得到的输入参数。
在一种可能的实现方式中,
该收发单元902,还用于向该光头端发送第二指示信息,该第二指示信息用于指示该第一从站进入紧急态。
在一种可能的实现方式中,
该收发单元902,还用于向光头端发送第三指示信息,该第三指示信息用于请求该第一从站的过程数据PDO;
该收发单元902,还用于接收来自该光头端的该PDO。
在一种可能的实现方式中,
该收发单元902,还用于向该光头端发送第四指示信息,该第四指示信息用于指示该第一从站进入操作态。
其中,PLC900中的处理单元901和收发单元902的具体实现过程可以参考前述方法实施例中的描述,此处不再赘述。
请参阅图10,为本申请实施例提供的光终端1000的一个示意图。其中,该光终端1000包括处理单元1001和收发单元1002。
处理单元1001,用于确定第一设备标识,该第一设备标识用于指示该光终端连接的第一从站;
收发单元1002,用于向光头端发送第一消息,该第一消息包括该第一设备标识;
该收发单元1002,还用于接收来自该光头端的第一节点标识,其中,该第一设备标识对应于该第一节点标识。
在一种可能的实现方式中,
该收发单元1002,还用于接收来自该光头端的第一指示信息,该第一指示信息用于请求该第一从站的设备能力信息;
该处理单元1001,还用于根据该第一指示信息确定该设备能力信息;
该收发单元1002,还用于向该光头端发送该设备能力信息。
在一种可能的实现方式中,
该收发单元1002,还用于接收来自该光头端的第一从站的PDO配置信息;
该收发单元1002,还用于向该第一从站发送该PDO配置信息。
在一种可能的实现方式中,
该第一节点标识承载于光网络终端管理控制接口OMCI消息且该OMCI消息还包括吉比特无源光网络封装模式的端口标识GEMport ID;或,
该第一节点标识承载于操作、管理和维护OAM消息且该OAM消息还包括逻辑链路标识LLID。
在一种可能的实现方式中,该第一节点标识包括以下至少一项:
类型标识、长度值、MAC地址、节点标识。
在一种可能的实现方式中,该第一设备标识包括以下至少一项:
类型标识、长度值、节点标识、该光终端或该第一从站的供应商标识、该光终端或该第一从站的MAC地址、该光终端或该第一从站的OT模型、该光终端或该第一从站的硬件版本、该光终端或该第一从站的软件版本、该光终端或该第一从站的芯片型号、该光终端或该第一从站的芯片修订信息、该光终端或该第一从站的芯片版本、该光终端或该第一从站的芯片设计日期、响应用户操作得到的输入参数。
在一种可能的实现方式中,
该收发单元1002,还用于接收来自该光头端的第二指示信息,该第二指示信息用于指示该第一从站进入紧急态;
该收发单元1002,还用于向该第一从站发送该第二指示信息。
在一种可能的实现方式中,
该收发单元1002,还用于接收来自该光头端的第三指示信息,该第三指示信息用于请求该第一从站的节点标识对应的过程数据PDO;
该处理单元1001,还用于根据该第三指示信息确定该PDO;
该收发单元1002,还用于向该光头端发送该PDO。
在一种可能的实现方式中,
该收发单元1002,还用于接收来自该光头端的第四指示信息,该第四指示信息用于指示该第一从站的节点标识对应的第一从站进入操作态;
该收发单元1002,还用于向该第一从站发送该第四指示信息。
其中,光终端1000中的处理单元1001和收发单元1002的具体实现过程可以参考前述方法实施例中的描述,此处不再赘述。
请参阅图11,为本申请实施例提供的一种通信设备的一个实现示意图,该通信设备可以是前述任意实施例中的光头端、PLC或者光终端。其中,该通信设备至少包括处理器1101、存储器1102以及光收发器1103。
当图11所示通信设备实现前述光头端所对应的方法时,该存储器1102用于存储光头端执行的计算机程序,处理器1101用于执行该计算机程序,以处理相关数据/信令并通过光收发器1103实现数据/信令的收发。其中,该处理器1101可以执行前述图8所示处理单 元801对应的实现过程,光收发器1103可以执行前述图8所示收发单元802对应的实现过程,此处不再赘述。
当图11所示通信设备实现前述PLC所对应的方法时,该存储器1102用于存储PLC执行的计算机程序,处理器1101用于执行该计算机程序,以处理相关数据/信令并通过光收发器1103实现数据/信令的收发。其中,该处理器1101可以执行前述图9所示处理单元901对应的实现过程,光收发器1103可以执行前述图9所示收发单元902对应的实现过程,此处不再赘述。
当图11所示通信设备实现前述光终端所对应的方法时,该存储器1102用于存储光终端执行的计算机程序,处理器1101用于执行该计算机程序,以处理相关数据/信令并通过光收发器1103实现数据/信令的收发。其中,该处理器1101可以执行前述图10所示处理单元1001对应的实现过程,光收发器1103可以执行前述图10所示收发单元1002对应的实现过程,此处不再赘述。
本申请实施例还提供一种存储一个或多个计算机执行指令的计算机可读存储介质,当计算机执行指令被处理器执行时,该处理器执行如前述实施例中通信装置(通过光头端、PLC或光终端实现时)可能的实现方式所述的方法。
本申请实施例还提供一种存储一个或多个计算机的计算机程序产品(或称计算机程序),当计算机程序产品被该处理器执行时,该处理器执行上述通信装置(通过光头端、PLC或光终端实现时)可能实现方式的方法。
本申请实施例还提供了一种芯片系统,该芯片系统包括至少一个处理器,用于支持终端设备实现上述通信装置(通过光头端、PLC或光终端实现时)可能的实现方式中所涉及的功能。可选的,所述芯片系统还包括接口电路,所述接口电路为所述至少一个处理器提供程序指令和/或数据。
在一种可能的设计中,该芯片系统还可以包括存储器,存储器,用于保存该终端设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例还提供了一种通信系统,该网络系统架构包括上述任一实施例中的通信装置(包括光头端、PLC)。
可选地,该通信系统还可以包括前述任一实施例中的光终端。
可选地,该通信系统还可以包括前述任一实施例中的从站。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以所述权利要求的保护范围为准。

Claims (33)

  1. 一种通信方法,其特征在于,包括:
    光头端确定第一对应关系,所述第一对应关系用于指示从站设备标识和从站节点标识之间的对应关系;
    所述光头端接收来自光终端的第一消息,所述第一消息包括设备信息,所述设备信息包括第一设备标识,所述第一设备标识用于指示所述光终端连接的第一从站;
    所述光头端在所述第一对应关系中确定所述第一设备标识对应的第一节点标识;
    所述光头端向所述光终端发送所述第一节点标识。
  2. 根据权利要求1所述的方法,其特征在于,所述光头端确定所述第一对应关系包括:
    所述光头端接收来自可编程逻辑控制器PLC的所述第一对应关系。
  3. 根据权利要求1或2所述的方法,其特征在于,在所述光头端向所述光终端发送所述第一节点标识之后,所述方法还包括:
    向PLC发送通知消息,所述通知消息用于指示所述第一从站上线,且所述通知消息包括所述第一节点标识。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,在所述光头端向所述光终端发送所述第一节点标识之后,所述方法还包括:
    所述光头端向所述光终端发送第一指示信息,所述第一指示信息用于请求所述第一从站的设备能力信息;
    所述光头端接收来自所述光终端的所述设备能力信息。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    所述光头端向PLC发送所述设备能力信息。
  6. 根据权利要求4或5所述的方法,其特征在于,在所述光头端向所述光终端发送第一指示信息之前,所述方法还包括:
    所述光头端接收来自PLC的所述第一指示信息。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,在所述光头端向所述光终端发送所述第一节点标识之后,所述方法还包括:
    所述光头端确定所述第一从站的PDO配置信息;
    所述光头端向所述光终端发送所述PDO配置信息。
  8. 根据权利要求7所述的方法,其特征在于,所述PDO配置信息包括以下至少一项:
    PDO数据的发送周期、所述PDO数据的内存访问地址和所述PDO数据对象的映射。
  9. 根据权利要求7或8所述的方法,其特征在于,所述光头端确定所述第一从站的PDO配置信息包括:
    所述光头端接收来自PLC的所述第一从站的PDO配置信息。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,在所述光头端向所述光终端发送所述第一节点标识之前,所述方法还包括:
    所述光头端确定第二对应关系,所述第二对应关系用于指示所述光终端和连接至所述光终端的至少一个从站之间的对应关系,所述至少一个从站包括所述第一从站。
  11. 根据权利要求1至10任一项所述的方法,其特征在于,
    所述第一节点标识承载于光网络终端管理控制接口OMCI消息且所述OMCI消息还包括吉比特无源光网络封装模式的端口标识GEMport ID;或,
    所述第一节点标识承载于操作、管理和维护OAM消息且所述OAM消息还包括逻辑链路标识LLID。
  12. 根据权利要求2至11任一项所述的方法,其特征在于,所述第一对应关系承载于光总线链路层消息中,其中,所述光总线链路层消息包括以下至少一项:
    目的MAC地址、所述PLC的媒体访问控制MAC地址、以太类型、协议数据单元PDU数量、时戳、帧校验序列。
  13. 根据权利要求1至12任一项所述的方法,其特征在于,所述第一节点标识包括以下至少一项:
    类型标识、长度值、MAC地址、节点标识。
  14. 根据权利要求1至13任一项所述的方法,其特征在于,所述设备信息包括以下至少一项:
    类型标识、长度值、节点标识、所述光终端或所述第一从站的供应商标识、所述光终端或所述第一从站的MAC地址、光终端OT模型、所述光终端或所述第一从站的硬件版本、所述光终端或所述第一从站的软件版本、所述光终端或所述第一从站的芯片型号、所述光终端或所述第一从站的芯片修订信息、所述光终端或所述第一从站的芯片版本、所述光终端或所述第一从站的芯片设计日期、响应用户操作得到的输入参数。
  15. 根据权利要求1至14任一项所述的方法,其特征在于,所述方法还包括:
    所述光头端向所述光终端发送第二指示信息,所述第二指示信息用于指示所述第一从站进入紧急态。
  16. 根据权利要求1至15任一项所述的方法,其特征在于,所述光头端向所述光终端发送所述第一节点标识之后,所述方法还包括:
    所述光头端向所述光终端发送第三指示信息,所述第三指示信息用于请求所述第一从站的过程数据PDO;
    所述光头端接收来自所述光终端的所述PDO。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    所述光头端向所述PLC发送所述PDO。
  18. 根据权利要求16或17所述的方法,其特征在于,所述光头端向所述光终端发送第三指示信息之前,所述方法还包括:
    所述光头端接收来自PLC的所述第三指示信息。
  19. 根据权利要求16至18任一项所述的方法,其特征在于,在所述光头端向光终端发送第三指示信息之前,所述方法还包括:
    所述光头端向所述光终端发送第四指示信息,所述第四指示信息用于指示所述第一从站进入操作态。
  20. 一种通信方法,其特征在于,包括:
    可编程逻辑控制器PLC向光头端发送第一对应关系,所述第一对应关系用于指示从站设备标识和从站节点标识之间的对应关系,所述对应关系至少指示第一设备标识对应于第一节点标识,所述第一设备标识用于指示光终端连接的第一从站;
    所述PLC接收来自所述光头端的通知消息,所述通知消息用于指示所述第一从站上线,且所述通知消息包括所述第一节点标识。
  21. 根据权利要求20所述的方法,其特征在于,在所述PLC接收来自所述光头端的通知消息之后,所述方法还包括:
    所述PLC向所述光头端发送第一指示信息,所述第一指示信息用于请求所述第一从站的设备能力信息;
    所述PLC接收来自所述光头端的所述设备能力信息。
  22. 根据权利要求20或21所述的方法,其特征在于,在所述PLC接收来自所述光头端的通知消息之后,所述方法还包括:
    所述PLC向所述光头端发送所述第一从站的PDO配置信息。
  23. 根据权利要求22所述的方法,其特征在于,所述PDO配置信息包括以下至少一项:
    PDO数据的发送周期、所述PDO数据的内存访问地址和所述PDO数据对象的映射。
  24. 根据权利要求20至23任一项所述的方法,其特征在于,所述第一对应关系承载于光总线链路层消息中,其中,所述光总线链路层消息包括以下至少一项:
    目的MAC地址、所述PLC的源MAC地址、以太类型、协议数据单元PDU数量、时戳、帧校验序列。
  25. 根据权利要求20至24任一项所述的方法,其特征在于,所述第一节点标识包括以下至少一项:
    类型标识、长度值、MAC地址、节点标识。
  26. 根据权利要求20至25任一项所述的方法,其特征在于,所述设备信息包括以下至少一项:
    类型标识、长度值、节点标识、所述光终端或所述第一从站的供应商标识、所述光终端或所述第一从站的MAC地址、所述光终端或所述第一从站的OT模型、所述光终端或所述第一从站的硬件版本、所述光终端或所述第一从站的软件版本、所述光终端或所述第一从站的芯片型号、所述光终端或所述第一从站的芯片修订信息、所述光终端或所述第一从站的芯片版本、所述光终端或所述第一从站的芯片设计日期、响应用户操作得到的输入参数。
  27. 根据权利要求20至26任一项所述的方法,其特征在于,所述方法还包括:
    所述PLC向所述光头端发送第二指示信息,所述第二指示信息用于指示所述第一从站进入紧急态。
  28. 根据权利要求20至27任一项所述的方法,其特征在于,在所述PLC接收来自所述光头端的通知消息之后,所述方法还包括:
    所述PLC向光头端发送第三指示信息,所述第三指示信息用于请求所述第一从站的过程数据PDO;
    所述PLC接收来自所述光头端的所述PDO。
  29. 根据权利要求28所述的方法,其特征在于,在所述PLC向光头端发送所述第三指示信息之前,所述方法还包括:
    所述PLC向所述光头端发送第四指示信息,所述第四指示信息用于指示所述第一从站进入操作态。
  30. 一种光头端,其特征在于,包括光收发器,以及与所述光收发器耦合的处理器;其中,所述处理器用于执行权利要求1至19任意一项所述的方法。
  31. 一种可编程逻辑控制器PLC,其特征在于,包括光收发器,以及与所述光收发器耦合的处理器;其中,所述处理器用于执行权利要求20至29任意一项所述的方法。
  32. 一种通信系统,其特征在于,包括:如权利要求30所述的光头端和如权利要求31所述的可编程逻辑控制器PLC。
  33. 根据权利要求32所述的通信系统,其特征在于,所述系统还包括:
    光终端,以及连接于所述光终端的至少一个从站。
PCT/CN2022/087553 2021-04-19 2022-04-19 一种通信方法及相关设备 WO2022222902A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22791010.6A EP4310613A1 (en) 2021-04-19 2022-04-19 Communication method and related device
US18/489,235 US20240048240A1 (en) 2021-04-19 2023-10-18 Communication method and related device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110419555.X 2021-04-19
CN202110419555 2021-04-19
CN202210379386.6 2022-04-12
CN202210379386.6A CN115225153A (zh) 2021-04-19 2022-04-12 一种通信方法及相关设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/489,235 Continuation US20240048240A1 (en) 2021-04-19 2023-10-18 Communication method and related device

Publications (1)

Publication Number Publication Date
WO2022222902A1 true WO2022222902A1 (zh) 2022-10-27

Family

ID=83606097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087553 WO2022222902A1 (zh) 2021-04-19 2022-04-19 一种通信方法及相关设备

Country Status (4)

Country Link
US (1) US20240048240A1 (zh)
EP (1) EP4310613A1 (zh)
CN (1) CN115225153A (zh)
WO (1) WO2022222902A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100020681A1 (en) * 2006-07-04 2010-01-28 Sharp Kabushiki Kaisha Communication apparatus and device, communication apparatus control method and control program, and computer readable recording medium
CN106444657A (zh) * 2016-09-14 2017-02-22 长飞光纤光缆股份有限公司 一种Modbus主站指令处理方法及主站控制器
CN106873541A (zh) * 2015-12-13 2017-06-20 姚秋丽 一种基于DSP的EtherCAT分布式伺服运动控制系统
CN106873553A (zh) * 2017-02-09 2017-06-20 北京东土科技股份有限公司 基于工业互联网操作系统的现场设备控制管理方法及装置
CN107632593A (zh) * 2017-10-12 2018-01-26 深圳市雷赛控制技术有限公司 一种EtherCAT总线的控制方法和设备
CN207819935U (zh) * 2018-02-09 2018-09-04 云南煤业能源股份有限公司 一种plc通讯装置
CN112083685A (zh) * 2020-09-10 2020-12-15 深圳市雷赛控制技术有限公司 Plc主机及plc系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100020681A1 (en) * 2006-07-04 2010-01-28 Sharp Kabushiki Kaisha Communication apparatus and device, communication apparatus control method and control program, and computer readable recording medium
CN106873541A (zh) * 2015-12-13 2017-06-20 姚秋丽 一种基于DSP的EtherCAT分布式伺服运动控制系统
CN106444657A (zh) * 2016-09-14 2017-02-22 长飞光纤光缆股份有限公司 一种Modbus主站指令处理方法及主站控制器
CN106873553A (zh) * 2017-02-09 2017-06-20 北京东土科技股份有限公司 基于工业互联网操作系统的现场设备控制管理方法及装置
CN107632593A (zh) * 2017-10-12 2018-01-26 深圳市雷赛控制技术有限公司 一种EtherCAT总线的控制方法和设备
CN207819935U (zh) * 2018-02-09 2018-09-04 云南煤业能源股份有限公司 一种plc通讯装置
CN112083685A (zh) * 2020-09-10 2020-12-15 深圳市雷赛控制技术有限公司 Plc主机及plc系统

Also Published As

Publication number Publication date
EP4310613A1 (en) 2024-01-24
CN115225153A (zh) 2022-10-21
US20240048240A1 (en) 2024-02-08

Similar Documents

Publication Publication Date Title
Pigan et al. Automating with PROFINET: Industrial communication based on Industrial Ethernet
US7668994B2 (en) Method for optimizing bandwidth utilization in bus systems
JP6984664B2 (ja) 自動化ネットワーク用のスイッチデバイス
JP2021057892A5 (zh)
CN201100949Y (zh) 网络设备
WO2020063995A1 (zh) Pon网络,用于pon网络的方法及装置,以及机器人系统
CN103581164A (zh) 用于在可冗余操作的工业通信网络中进行消息传输的方法和用于可冗余操作的工业通信网络的通信设备
US7852857B2 (en) Coupler for a ring topology network and an ethernet-based network
CN112769598B (zh) 一种网络通信系统及其通信实现方法
US20230300500A1 (en) Data Transmission Method and Related Device
CN113612801B (zh) Epa网关设备和epa跨网通信的方法
KR101179431B1 (ko) 이더캣 네트워크 시스템 및 이의 운용 방법
CN114338274B (zh) 一种异构工业现场总线融合方法及系统
CA3142519A1 (en) Multipoint ethernet bus
WO2022222902A1 (zh) 一种通信方法及相关设备
US11778073B2 (en) Protocol converter and automation system
CN115174370B (zh) 一种分布式混合数据确定性传输装置及方法
EP2677693B1 (en) Communication system
EP4216566A1 (en) Multi-level pon management method and related apparatus
CN111800394B (zh) 一种基于TRDP和Modbus的协议转换网关的方法
WO2022222620A1 (zh) 一种通信方法、装置及光总线网络
Vincent FOUNDATION fieldbus high speed ethernet control system
CN217770112U (zh) Epa网关设备和epa跨网通信系统
Park et al. Design of an integrated fieldbus gateway
CN110417762B (zh) 一种具有报文打包技术的模块集成系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791010

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022791010

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022791010

Country of ref document: EP

Effective date: 20231016

NENP Non-entry into the national phase

Ref country code: DE