WO2022222570A1 - 谐振器封装体和震荡器 - Google Patents

谐振器封装体和震荡器 Download PDF

Info

Publication number
WO2022222570A1
WO2022222570A1 PCT/CN2022/074809 CN2022074809W WO2022222570A1 WO 2022222570 A1 WO2022222570 A1 WO 2022222570A1 CN 2022074809 W CN2022074809 W CN 2022074809W WO 2022222570 A1 WO2022222570 A1 WO 2022222570A1
Authority
WO
WIPO (PCT)
Prior art keywords
heater
resonator
temperature
casing
housing
Prior art date
Application number
PCT/CN2022/074809
Other languages
English (en)
French (fr)
Inventor
伍伟
王锦辉
李�浩
苏宏良
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022222570A1 publication Critical patent/WO2022222570A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02102Means for compensation or elimination of undesirable effects of temperature influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • H03B5/32Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02834Means for compensation or elimination of undesirable effects of temperature influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
    • H03L1/04Constructional details for maintaining temperature constant

Definitions

  • the present application relates to the technical field of temperature control of resonators, and in particular, to a resonator package and an oscillator.
  • An oscillator is a device used to generate a repeating electrical signal, usually a periodic sine or square wave electrical signal.
  • the oscillator mainly includes a housing, a chip and a resonator package in structure, and the chip and the resonator package are both located in the housing.
  • the resonator in the resonator package is the core part of the oscillator, which is used to generate an electrical signal of a specific frequency, and the circuit for controlling the resonator is integrated in the chip.
  • the frequency of the electrical signal generated by the resonator package is affected by temperature.
  • the temperature of the resonator deviates from the target temperature more, the stability of the frequency of the electrical signal output by the oscillator is poor.
  • the application provides a resonator package and an oscillator, which can alleviate the problem that the temperature of the resonator deviates from the target temperature in the related art.
  • the technical solution is as follows:
  • a resonator package in one aspect, includes a first housing, a resonator, at least one first heater, and at least one second heater;
  • the resonator, the at least one first heater, and the at least one second heater are all located in the first housing;
  • the at least one first heater is fixed to the resonator, and the at least one second heater is fixed to the shell wall of the first housing.
  • the resonator package has a first heater and a second heater to heat the environment where the resonator is located, which can reduce the temperature difference between the temperature of the resonator and the target temperature, so that the temperature of the resonator can be When the target temperature is reached, the stability of the frequency of the electrical signal output by the oscillator where the resonator package is located can be improved.
  • the first heater is in contact with the resonator, most of the heat can be transferred into the resonator to heat up the resonator, and the second heater is in contact with the first housing and can transfer most of the heat to the first housing .
  • the difference between the temperature of the resonator and the temperature of the first casing can be reduced, the heat absorbed by the first casing from the first heater or the resonator can be reduced, and the efficiency of heating the resonator can be improved, so that the resonator can be heated.
  • the temperature can quickly rise to the target temperature.
  • the at least one second heater is located on the inner surface of the first housing.
  • the at least one second heater is embedded in the shell wall of the first shell.
  • the first heater includes a support beam and a heating part, one end of the support beam is fixed to the shell wall of the first casing, and the other end is fixed to the heating part, so the heating part and the resonator are fixed;
  • the second heater is adjacent to or in contact with the connection between the support beam and the first housing.
  • the second heater may be close to or in contact with the connection between the support beam of the first heater and the first casing, so that the second heater For heating the connection, the temperature of the connection increases, reducing the temperature difference between the connection and the first heater, so as to weaken the heat conduction between the connection and the first heater, so that the first heater generates Most of the heat of the resonator is conducted to the resonator to heat the resonator, so that the temperature of the resonator can approach or reach the target temperature, and can approach or reach the target temperature relatively quickly.
  • the heating temperature of the second heater is lower than the heating temperature of the first heater.
  • the heating temperature of the second heater is equal to the heating temperature of the first heater, or even higher than the heating temperature of the first heater, then it will occur that the first shell has been heated by the second heater. If the temperature inside the body is heated to a relatively high temperature (eg, close to the target temperature), the second heater further heats the resonator, making it easier to heat the resonator above the target temperature.
  • the heating temperature of the second heater is lower than the heating temperature of the first heater, since the maximum heating temperature of the second heater is lower than the target temperature, it is difficult for the second heater to change the temperature of the first housing It is heated to a temperature close to the target temperature, so that although the first heater further heats the resonator, it is not easy to heat the temperature of the resonator to a temperature higher than the target temperature.
  • the resonator package further includes at least one third heater
  • the at least one third heater is located outside the first casing and fixed to the outer surface of the first casing.
  • the first shell of the resonator package since the first shell of the resonator package is easily affected by the external ambient temperature, the heat of the first shell is easily absorbed by the environment where it is located.
  • the first shell A heater is also fixed on the outer surface of the first casing, for example, at least one third heater is fixed, and the outer surface of the first casing is heated by the third heater.
  • the first heater mainly heats the resonator
  • the second heater mainly heats the junction between the first heater and the first shell, so as to increase the temperature of the junction and reduce the heating of the junction from the first
  • the heater absorbs more heat
  • the third heater mainly heats the entire first shell to increase the temperature of the first shell, reduce the influence of the temperature of the external environment on the first shell, and make the inside of the first shell
  • the resonator is able to reach and maintain the target temperature.
  • a thermally conductive layer is laid between the third heater and the first housing.
  • the solution shown in the present application can promote the temperature of the third heater to be quickly absorbed by the first casing, and can ensure that the heat generated by the third heater can be quickly and uniformly conducted to the first casing.
  • the heating temperature of the third heater is lower than the heating temperature of the second heater.
  • the heating temperature of the third heater is lower than the heating temperature of the second heater, which can reduce or even avoid the situation that the temperature of the resonator exceeds the target temperature.
  • the resonator package further includes at least one second casing
  • the at least one second casing and the first casing are sequentially arranged from the outer layer to the inner layer, and the first casing is located at the innermost layer.
  • the number of the second housing is one, then, the first housing is located in the second housing.
  • the number of the second shells is multiple, then the first shell and the multiple second shells are sequentially arranged from the inner layer to the outer layer, and the first shell is located in the innermost layer.
  • the plurality of second shells serve to insulate the first shells.
  • the resonator package further includes at least one fourth heater
  • the fourth heater is fixed to the outer surface of at least one of the second housings.
  • the second casing is also fixed with at least one fourth heater, so that the second casing has both the function of heat preservation and the function of heating the first casing.
  • the inner surface of at least one of the second casings is covered with a heat radiation layer.
  • the heat radiation layer is used to speed up the transfer of the temperature on the shell wall of the second shell to the cavity of the second shell, so as to increase the temperature inside the second shell and reduce the temperature of the second shell.
  • the temperature difference between the first shell and the second shell reduces the excessive heat absorbed by the second shell of the first shell.
  • the first housing is maintained at a constant temperature as much as possible. Once the first shell is maintained in a constant temperature state, it is also beneficial to maintain the resonator in a constant temperature state.
  • At least one of the second shells has a heat-resistant pad on the inner side, and the heat-resistant pad is located at the connection between the second shell and the first shell, or is located at the the connection between the two second shells.
  • the heating temperature of the fourth heater fixed on the outer surface of the at least one second shell increases from the outer layer to the inner layer, and is lower than the heating temperature of the second heater .
  • the solution shown in this application can reduce or even avoid the situation where the temperature of the resonator exceeds the target temperature.
  • the resonator package further includes a first temperature sensor, and the first temperature sensor is fixed in the first housing;
  • the side parts of the resonator are respectively fixed with the first temperature sensor and the first heater, so that the resonator is suspended in the place through the support of the first temperature sensor and the first heater. in the chamber of the first housing.
  • the first temperature sensor located in the first casing can not only be used to monitor the temperature of the resonator, but also can be used to fix the resonator.
  • the first temperature sensor and the first heater are both connected with The shell wall of the first shell is fixed, and the side parts of the resonator are respectively fixed with the first temperature sensor and the first heater, so that the resonator is supported by the first temperature sensor and the first heater, and is suspended in the first shell in the chamber.
  • an oscillator in another aspect, includes a housing, a chip and the resonator package described above;
  • both the chip and the resonator package are located in the housing;
  • the chip is electrically connected to the resonator, the first heater and the second heater, respectively.
  • the resonator package included in the oscillator, the first heater and the second heater are used to heat the environment where the resonator is located, so that the temperature of the resonator can be maintained at the target temperature as much as possible, thereby improving the temperature of the resonator.
  • the chip includes an oscillator circuit, a fractional frequency division phase-locked loop FPLL circuit, a temperature control circuit and a temperature compensation circuit;
  • the oscillator circuit is electrically connected to the resonator and the FPLL circuit, respectively;
  • the temperature control circuit is electrically connected to the first heater and the second heater, respectively;
  • the temperature compensation circuit is electrically connected to the oscillation circuit or the FPLL circuit.
  • the temperature compensation circuit can be electrically connected to the oscillation circuit, and the temperature compensation circuit adjusts the parameters in the oscillation circuit based on the deviation between the temperature of the resonator and the target temperature, so that the output frequency of the oscillator is relatively stable. electrical signal.
  • the temperature compensation circuit can also be electrically connected to the FPLL circuit, and the temperature compensation circuit adjusts the parameters in the FPLL circuit based on the deviation between the temperature of the resonator and the target temperature, so that the oscillator outputs an electrical signal with a relatively stable frequency.
  • FIG. 2 is a schematic structural diagram of a resonator package provided by the present application.
  • FIG. 3 is a schematic structural diagram of a resonator package provided by the present application.
  • FIG. 4 is a schematic structural diagram of a resonator package provided by the present application.
  • FIG. 5 is a schematic structural diagram of a resonator package provided by the present application.
  • FIG. 6 is a schematic structural diagram of a resonator package provided by the present application.
  • FIG. 7 is a schematic structural diagram of a resonator package provided by the present application.
  • FIG. 8 is a schematic structural diagram of a resonator package provided by the present application.
  • FIG. 9 is a schematic structural diagram of a resonator package provided by the present application.
  • FIG. 10 is a schematic structural diagram of a resonator package provided by the present application.
  • FIG. 11 is a schematic structural diagram of a resonator package provided by the present application.
  • FIG. 12 is a schematic structural diagram of a resonator package provided by the present application.
  • FIG. 13 is a schematic diagram of an internal circuit connection of an oscillator provided by the present application.
  • 15 is a schematic diagram of an internal circuit connection of an oscillator provided by the present application.
  • FIG. 16 is a schematic structural diagram of an oscillator provided by the present application.
  • the second housing 701, the heat radiation layer; 702, the fixing column; 703, the first substrate; 704, the first packaging shell;
  • the first temperature sensor 11. The second temperature sensor; 12. The third temperature sensor;
  • 201 oscillation circuit
  • 202 FPLL circuit
  • 203 temperature control circuit
  • An embodiment of the present application provides a resonator package, which is a device after packaging a resonator, and the resonator is a device that uses acoustic wave resonance to achieve electrical frequency selection.
  • the resonator When pressure is applied to the resonator, the resonator generates a voltage, a process that can be called the piezoelectric effect, and when a voltage is applied to the resonator, the resonator deforms slightly, a process that can be called the inverse piezoelectric effect.
  • resonance is also called resonance, which is a phenomenon in which the vibration frequency of an object is the same or close to the natural frequency of the object, and the amplitude of the object increases sharply, resulting in
  • the frequency at resonance may be referred to as the resonant frequency.
  • the resonator vibrates under the action of voltage, the vibration that is far away from the natural frequency is gradually attenuated, and the vibration that is the same or close to the fixed frequency is retained, and finally the resonator vibrates at the resonant frequency, then in this
  • the electrical signal generated at the resonant frequency is also an electrical signal with a relatively pure frequency, and then the acoustic wave resonance realizes electrical frequency selection, so that the resonator generates an electrical signal with a relatively stable frequency.
  • TCF temperature coefficient of frequency
  • T 1 and T 2 are the temperature of the resonator
  • f(T 1 ) is the frequency of the resonator when the temperature is T 1
  • f(T 2 ) is the frequency of the resonator when the temperature is T 2 .
  • TCF has positive and negative points. If TCF is positive, it means that the frequency drifts in the direction of increasing frequency with the increase of temperature. If TCF is negative, it means that the frequency drifts in the direction of decreasing frequency with the increase of temperature. .
  • the temperature when the TCF is 0 can be called the target temperature. Then, in order to promote the resonator to generate an electrical signal with a stable frequency, it is necessary to control the temperature of the resonator to maintain the target temperature as much as possible.
  • the target temperature is high, such as above 85 degrees Celsius, which is higher than the ambient temperature where the resonator is located. It is necessary to increase the temperature of the environment where the resonator is located to control the temperature of the resonator to maintain the target temperature as much as possible.
  • the resonator package of the embodiment of the present application can use a plurality of heaters in combination to maintain the temperature of the resonator at a constant temperature of the target temperature as much as possible.
  • the oscillator may include a housing 100 , a chip 200 and a resonator package 300 to be described below.
  • the chip 200 and the resonator package 300 are both packaged in the housing 100 , the resonator 2 of the resonator package 300 is electrically connected to the chip 200 , the chip 200 is integrated with an oscillating circuit, and the oscillating circuit is electrically connected to the resonator 2 .
  • the resonator 2 can input the electrical signal to the oscillator circuit, and the oscillator circuit performs some processing on the electrical signal and then outputs it.
  • the resonator package in this embodiment controls the resonator to maintain a constant temperature state of the target temperature through a combination of multiple heaters.
  • the multiple heaters can also be controlled by the chip 200.
  • the chip 200 also A temperature control circuit is integrated, and the temperature control circuit is used to control the heating temperature of the heater. The specific process will be described in detail when the oscillator is introduced below.
  • the temperature control circuit mainly controls the heating temperature of the heater through the temperature of the resonator.
  • the temperature control circuit can obtain the temperature of the resonator through the temperature sensor, or the temperature control circuit can also use the output frequency in the oscillation circuit to reverse the temperature. push the temperature of the resonator.
  • This embodiment does not limit the manner in which the temperature control circuit obtains the temperature of the resonator, which can be flexibly selected according to the actual situation.
  • the above-mentioned plurality of heaters may include a first heater 3 , a second heater 4 , a third heater 5 and a fourth heater 8 which will be drawn out below.
  • FIG. 2 it is a schematic view of the structure of the resonator package.
  • FIG. 2 is a schematic view taken along the thickness direction of the resonator package, and the top cover is not installed.
  • the resonator package includes a first housing 1 , a resonator 2 , at least one first heater 3 and at least one second heater 4 .
  • the resonator 2 , the at least one first heater 3 and the at least one second heater 4 are all located in the first housing 1 .
  • at least one first heater 3 is fixed to the resonator 2
  • at least one second heater 4 is fixed to the shell wall of the first casing 1 .
  • the first housing 1 may include a substrate 101 and an upper cover 102.
  • the substrate 101 may have a first groove 1011, and both the resonator 2 and the at least one first heater 3 are Located in the groove 1011 , the second heater 4 may be located outside the groove 1011 and on the upper surface of the substrate 101 .
  • the upper cover 102 may have a second groove 1021, the upper cover 102 is covered on the substrate 101, and the two may be fixed by bonding.
  • the positions of the first groove 1011 and the second groove 1021 On the contrary, the resonator 2, the first heater 3 and the second heater 4 are all located in the cavity formed by the first groove 1011 and the second groove 1021, and the resonator 2 is suspended in the cavity and is not connected to the first shell.
  • the shell walls of the body 1 are in contact to form thermal isolation from the first shell 1 to reduce heat transfer.
  • the side of the first heater 3 can be fixed on the groove wall of the first groove 1011, the second heater 4 can be fixed on the groove wall of the second groove 1021, and the bottom of the second heater 4 can be fixed on the substrate On the upper surface of 101 , the top of the second heater 4 is in contact with the second groove 1021 , so that the second heater 4 can heat the first casing 1 .
  • first heater 3 and the second heater 4 are both heating devices, and their materials may be materials with good Joule heating properties, such as metal, polycrystalline silicon, or doped monocrystalline silicon.
  • the number of the first heater 3 and the second heater 4 may be one or more, and the specific number of the first heater 3 and the second heater 4 is not limited in this embodiment, which can be flexibly based on the actual situation choose.
  • the number of the first heaters 3 may be two, and the resonator 2 is connected between the two first heaters 3 .
  • the number of the first heaters 3 may be two or more, and the resonator 2 is located in the space enclosed by the plurality of first heaters 3 .
  • the number of the first heaters 3 is not limited, and can be selected flexibly according to the actual situation.
  • the number of the second heaters 4 may be two, and the two second heaters 4 are located on opposite sides of the position of the groove 1011 .
  • there may also be one second heater 4 and the second heater 4 is an annular structure surrounding the groove 1011 of the substrate 101 .
  • the number and shape of the second heaters 4 are not limited in this embodiment, and can be selected flexibly according to the actual situation.
  • the resonator 2 , the at least one first heater 3 and the at least one second heater 4 are all located in the first housing 1 .
  • the first heater 3 mainly heats the resonator 2, so the first heater 3 is in contact with the resonator 2, for example, the first heater 3 and the resonator 2 are fixed.
  • the second heater 4 mainly heats the first casing 1 , so the second heater 4 is in contact with the casing wall of the first casing 1 , for example, the second heater 4 is fixed to the casing wall of the first casing 1 .
  • the shell wall of the first shell 1 may be the substrate 101 or the upper cover 102 .
  • first heater 3 and a second heater 4 in the resonator package to heat the environment where the resonator 2 is located, which can promote the temperature of the resonator 2 to be maintained at the target temperature as much as possible, thereby improving the temperature of the resonator package.
  • the stability of the frequency of the electrical signal output by the oscillator is not limited.
  • the first heater 3 since the first heater 3 is in contact with the resonator 2, most of the heat can be transferred to the resonator 2 to increase the temperature of the resonator 2, and the second heater 4 is in contact with the first housing 1, which can transfer most of the heat to the resonator 2. transmitted to the first housing 1 .
  • the difference between the temperature of the resonator 2 and the temperature of the first casing 1 can be reduced, the heat absorbed by the first casing 1 from the first heater 3 or the resonator 2 can be reduced, and the heating of the resonator 2 can be improved. , so that the temperature of the resonator 2 can quickly rise to the target temperature.
  • the first heater 3 includes a support beam 31 and a heating part 32 , one end of the support beam 31 is fixed to the shell wall (eg, side shell wall) of the first casing 1 , and the other end And the heating part 32 is fixed, and the side part of the heating part 32 can be fixed with the side part of the resonator 2 .
  • the heating part 32 of the first heater 3 is suspended in the first casing 1 through the support beam 31
  • the resonator 2 is suspended in the first casing 1 through the first heater 3 .
  • the resonator 2 may include a resonance part 21 and a connecting column 22 , the connecting column 22 is located at the side of the resonance part 21 , and the connecting column 22 is fixed on the heating part 32 of the first heater 3 and the substrate 101 and the upper cover 102 of the resonator 2 and the first casing 1 are not in contact.
  • the resonator 2 may include not only the resonance part 21 and the connecting column 22 , but also the connecting frame 23 , and the contour shape of the connecting frame 23 is adapted to the contour shape of the resonance part 21 .
  • the resonance part 21 is located in the connection frame 23
  • the connection post 22 is connected between the resonance part 21 and the connection frame 23 .
  • the outer side of the connection frame 23 is fixed to the heating portion 23 of the first heater 2 .
  • this embodiment does not limit the fixing manners of the resonator 2 and the first heater 3, which can be flexibly selected according to the actual situation.
  • the second heater 4 is fixed to the shell wall of the first shell 1 for heating the first shell 1.
  • the second heater 4 may be fixed on the upper surface of the substrate 101 of the first casing 1.
  • the shell wall of the first casing 1 has a thickness
  • the second heater 4 can be embedded in the shell wall of the first casing 1 , for example, the substrate 101 has a thickness
  • the second heater 4 may be embedded in the substrate 101 .
  • the second heater 4 can be fixed on the inner surface of the shell wall of the first casing 1 , for example, the second heater 4 can be fixed on the groove wall of the first groove 1011 of the substrate 101 .
  • the second heater 4 since the second heater 4 is located near or in contact with the connection between the support beam 31 and the first shell 1, the second heater 4 can heat the connection, the temperature of the connection increases, and the connection is reduced.
  • the temperature difference between the junction and the first heater 3 can weaken the heat conduction between the connection and the first heater 3, so that most of the heat generated by the first heater 3 is conducted to the resonator 2, which is used for the resonator. Heating can make the temperature of the resonator 2 approach or reach the target temperature, and can approach or reach the target temperature relatively quickly.
  • the maximum heating temperature of the first heater 3 can be controlled to be the target temperature, or slightly lower than the target temperature.
  • the heating temperature of the second heater 4 is lower than the heating temperature of the first heater 3 .
  • the maximum heating temperature of the first heater 3 is the target temperature, while the maximum heating temperature of the second heater 4 may be lower than the target temperature.
  • the maximum heating temperature of the first heater 3 and the second heater The difference between the maximum heating temperatures of 4 can be between 1 and 30 degrees Celsius.
  • the heating temperature of the second heater 4 is lower than the heating temperature of the first heater 3, the reason why the heating can be reduced so that the temperature of the resonator is higher than the target temperature is that if the heating temperature of the second heater 4 and the first heating temperature If the heating temperature of the heater 3 is equal to or even higher than the heating temperature of the first heater 3, then it may occur that the temperature in the first housing 1 has been heated to a relatively high level (for example, close to the target temperature) by the second heater 4 ), then the second heater 3 further heats the resonator 2, and it is easier to heat the temperature of the resonator 2 to be higher than the target temperature.
  • the heating temperature of the second heater 4 is lower than the heating temperature of the first heater, since the maximum heating temperature of the second heater 4 is lower than the target temperature, it is difficult for the second heater 4 to heat the first shell
  • the temperature of the body 1 is heated to a temperature close to the target temperature, so that although the first heater 3 further heats the resonator 2, it is not easy to heat the temperature of the resonator 2 to a temperature higher than the target temperature.
  • the resonator 2 is heated by the combination of at least one first heater 3 and at least one second heater 4, and the first heater 3 is used for heating the resonator 2, and the second heater 4 is used for heating the resonator 2 on the one hand.
  • the connection between the first heater 3 and the first shell 1 is heated, and on the other hand, it is used to heat the entire first shell 1, which can reduce the heat transfer between the resonator 2 and the first shell 1 and improve the resonance.
  • the efficiency of the heater 2 for heating is provided.
  • the heating temperature of the second heater 4 is lower than the heating temperature of the first heater 3 , which can reduce or even avoid heating the resonator 2 to a temperature higher than the target temperature.
  • the resonator package may further include at least one third heater 5 , and the at least one third heater 5 is located outside the first casing 1 and fixed to the casing wall of the first casing 1 .
  • the third heater 5 is similar to the first heater 3 and the second heater 4, and is also a heating device, and its material can also be a material with good Joule heating properties such as metal, polysilicon or doped single crystal silicon.
  • the third heater 5 may be fixed on the outer surface of the substrate 101 of the first casing 1 , and the third heater 5 may also be fixed on the outer surface of the upper cover 102 of the first casing 1 .
  • the outer surface of the bottom 101 and the outer surface of the upper cover 102 may both be fixed with the third heater 5 .
  • the first heater 3 mainly heats the resonator 2
  • the second heater 4 heats the connection between the first heater 3 and the first casing 1 on the one hand, and heats the entire first casing 1 on the other hand
  • the third heater 5 heats the entire first casing 1 .
  • the three heaters are combined to heat the resonator package, so that the temperature of the resonator 2 in the resonator package can approach or reach the target temperature, and can quickly approach or reach the target temperature.
  • thermally conductive layer 6 is laid to ensure that the heat generated by the third heater 5 can be quickly and uniformly conducted to the first housing 1 .
  • the material of the thermal conductive layer 6 may be materials with high thermal conductivity such as silicon carbide SiC, copper, diamond, gold, silver, graphene, and carbon nanotubes.
  • a thermally conductive layer 6 can be laid on the outer surface of one of the shell walls of the first shell 1 , and then the third heater 5 can be fixed on the surface of the thermally conductive layer 6 . Due to the high thermal conductivity of the thermally conductive layer 6 , In addition, the area of the thermally conductive layer 6 is also large, so that the heat of the third heater 5 can be quickly and uniformly conducted to the first casing 1 through the thermally conductive layer 6 .
  • the thermally conductive layer 6 may also be laid on the entire outer surface of the first casing 1 to make the temperature of the first casing 1 more uniform.
  • this embodiment does not limit whether the thermal conductive layer 6 is laid on the surface of the first casing 1 corresponding to the third heater 5 or the thermal conductive layer 6 is laid on the entire outer surface of the first casing 1. According to the actual situation, Flexible options.
  • the heating temperature may be lower than the heating temperature of the second heater 4, wherein the difference between the maximum heating temperature of the second heater 4 and the maximum heating temperature of the third heater 5 may be Take a value between 1 and 30 degrees Celsius.
  • the heating temperature of the third heater 5 is lower than the heating temperature of the second heater 4 , and it is possible to reduce or even avoid the situation where the temperature of the resonator 2 exceeds the target temperature.
  • the resonator package includes three types of heaters: the first heater 3, the second heater 4 and the third heater 5.
  • the first heater 3 mainly heats the resonator 2, and the second heater 4 and
  • the third heater 5 mainly heats the first shell 1, and the second heater 4 is located on the inner surface of the first shell 1 or embedded in the shell wall of the first shell 1, and the third heater is located in the first shell 1 outer surface of body 1.
  • the inside of the first shell 1 is heated by a second heater 4, and the outside of the first shell 1 is heated by a third heater 5, so that even if the external environment of the first shell 1 absorbs the heat of the first shell 1 Although the second heater 4 and the third heater 5 jointly heat the first casing 1 inside and outside, the heat dissipation of the first casing 1 can be reduced. Once the heat dissipation of the first casing 1 is reduced, the heat absorbed by the first casing 1 from the resonator 2 can also be reduced, thereby reducing the heat transfer between the first casing 1 and the resonator 2 .
  • the efficiency of heating the resonator 2 can be improved, the temperature of the resonator 2 can quickly reach the target temperature, and the resonator 2 can be maintained at a constant temperature of the target temperature. state.
  • the heating temperatures of the third heater 5 , the second heater 4 and the first heater 3 are sequentially increased, and the highest heating temperature of the first heater 3 is the target temperature, so that the resonator 2 can be reduced or even avoided. When the temperature exceeds the target temperature.
  • the resonator package may further include at least one second casing 7 , wherein the material of the second casing 7 may be
  • the metal may also be ceramic or the like, which is not limited in this embodiment.
  • the first casing 1 is located in the second casing 7 .
  • the first shell 1 and the plurality of second shells 7 are sequentially arranged from the inner layer to the outer layer, and the first shell 1 is located in the innermost layer.
  • the number of the second casings 7 is not limited in this embodiment, which can be flexibly selected according to the actual situation.
  • one second casing 7 can be used as an example.
  • the contact area of the two is larger, and the heat transfer between the two is faster.
  • the inner side of the second casing 7 adjacent to the first casing 1 has a plurality of fixing columns 702
  • the first casing 1 is fixed on the fixing column 702, so that the contact area between the first casing 1 and the second casing 7 can be reduced, and the heat transfer between the two can be weakened.
  • the inner side of the second shell 7 of the outer layer also has a plurality of fixing columns 702, and the second shell 7 of the inner layer is fixed to the fixing columns 702 to reduce the number of two Heat transfer between the second housings 7 .
  • the fixing column 702 of the second shell 7 another function of the fixing column 702 of the second shell 7 is that, because the shell wall of the second shell 7 is relatively thin, it is difficult to fix the first shell 1 or the second shell 7 inside, so it can be fixed in the A mounting hole is provided in the fixing column 702 for the inner first casing 1 or the inner second casing 7 to be fixedly installed.
  • At least one second shell The inner side of the casing 7 is provided with a heat-resisting pad 9 , and the heat-resisting pad 9 is located at the connection between the second casing 7 and the first casing 1 , or at the connection between the two second casings 7 .
  • the material of the heat-resistant pad 9 may be a high molecular polymer or a high molecular compound material such as silica gel, rubber or polycarbonate, or the material may also be a nanofiber aerogel.
  • thermal pad 9 between the fixing post 702 of the second housing 7 adjacent to the first housing 1 and the first housing 1 to reduce the heat transfer from the fixing post 702 to the second housing 7, so that the A housing 1 is kept as stable as possible.
  • the resonator package is heated for the resonator 2 by the combination of the first heater 3, the second heater 4 and the third heater 5, and the resonator 2 is heated by the at least one second housing 7
  • the thermal insulation can reduce the influence of the external ambient temperature of the first casing 1 on the first casing 1 and reduce the heat absorption of the external ambient temperature on the first casing 1 to enhance the thermal insulation effect of the first casing 1 .
  • the temperature of the resonator 2 in the first casing 1 can be maintained at a constant temperature of the target temperature.
  • the second housing 7 may also be heated by a heater to reduce heat dissipation.
  • the resonator package may further include at least one fourth heater 8 ; at least one first heater 8 ; A fourth heater 8 is fixed on the outer surface of the second casing 7 .
  • the number of the second casing 7 is one or more. If there is one, at least one fourth heater 8 can be fixed on the outer surface of the second casing 7 . Then, the second casing 7 not only has the function of heat preservation, but also has the function of heating the first casing 1 , so that the first casing 1 can maintain a constant temperature state.
  • the number of the second casings 7 is plural, then at least one fourth heater 8 can be fixed on the outer surface of a part of the second casing 7 among the plurality of second casings 7 , and the other part of the second casing 7 can be fixed.
  • the fourth heater 8 may not be fixed. In this way, among the plurality of second casings 7, the second casing 7 with the fourth heater 8 fixed to it plays the role of heat preservation and heating, and the second casing 7 without the fourth heater 8 fixed to the second shell 7 plays the role of heat preservation effect.
  • At least one fourth heater 8 may be fixed to each of the multiple second shells 7, so that so many second shells 7 are provided with thermal insulation and heating effect.
  • this embodiment does not limit which outer surface of the second casing 7 is fixed to the fourth heater 8 and how many fourth heaters 8 are fixed, and can be flexibly selected according to the actual situation.
  • a thermally conductive layer 6 may also be laid between the fourth heater 8 and the fixed second housing 7 to ensure the first The heat generated by the four heaters 8 can be quickly and uniformly conducted to the fixed second housing 7 .
  • a heat radiation layer 701 is laid on the inner surface of at least one second casing 7 .
  • the material of the heat radiation layer 701 may be a water-based carbon nanotube fan thermal coating, a metal oxide mixed coating such as titanium dioxide or zirconium dioxide, or the like.
  • the heat radiation layer 701 may be laid on the inner surface of the second casing 7 .
  • the heat radiation layer 701 may be laid on the inner surface of all the second casings 7 , or the heat radiation layer 701 may be laid on the inner surface of a part of the second casings 7 . Radiation layer 701 .
  • the heat radiation layer 701 is used to speed up the transfer of the temperature on the shell wall of the second shell 7 to the cavity of the second shell 7 , so as to increase the temperature inside the second shell 7 and reduce the temperature of the second shell 7 .
  • the temperature difference between the first shell 1 and the second shell 7 reduces the excessive heat absorbed by the second shell 7 from the first shell 1 . Therefore, the first casing 1 is maintained in a constant temperature state as much as possible. Once the first casing 1 is maintained in a constant temperature state, it is also beneficial to maintain the resonator 2 in a constant temperature state.
  • the heating temperature of the fourth heater 8 fixed on the outer surface of at least one second casing 7 increases from the outer layer to the inner layer, and is lower than the heating temperature of the second heater 4, specifically lower than the heating temperature of the third heater 8 the heating temperature of the device 4.
  • the heating temperature of the fourth heater 8 fixed on the second casing 7 of the outer layer is lower than the heating temperature of the fourth heater 8 fixed on the second casing 7 of the adjacent inner layer , and both are lower than the heating temperature of the third heater 5 , so as to reduce or even avoid the situation that the temperature of the resonator 2 exceeds the target temperature.
  • the heating temperatures of the fourth heaters 8 fixed on different second housings 7 are different, and their heating temperature relationship increases from the outer layer to the inner layer, and is lower than the heating temperature of the third heater 8 .
  • the resonator package body is combined to heat the resonator 2 through the first heater 3, the second heater 4, the third heater 5 and the fourth heater 8, which can reduce the influence of the resonator 2 by the external ambient temperature.
  • the resonator 2 can approach or reach the target temperature, and can also approach or reach the target temperature relatively quickly.
  • the temperatures of the plurality of heaters in the resonator package can be monitored by temperature sensors.
  • the resonator package further includes at least one first temperature sensor 10 , at least one first temperature sensor 10 .
  • a temperature sensor 10 is located in the first housing 1 .
  • the first temperature sensor 10 may be close to or in contact with the resonator 2 to accurately monitor the temperature of the resonator 2 .
  • the number of the first temperature sensors 10 can be multiple, for example, two, the two first temperature sensors 10 The sensors 10 may be located on opposite sides of the location of the resonator 2 .
  • the number of the first temperature sensors 10 is two or more, and the two or more first temperature sensors 10 are evenly distributed around the resonator 2 .
  • the first temperature sensor 10 located in the first housing 1 can not only be used to monitor the temperature of the resonator 2, but also can be used to fix the resonator 2.
  • the temperature sensor 10 and the first heater 3 are both fixed to the shell wall of the first casing 1, and the side parts of the resonator 2 are respectively fixed to the first temperature sensor 10 and the first heater 3, so that the resonator 2 passes through the first temperature sensor 10 and the first heater 3 respectively.
  • the temperature sensor 10 and the support of the first heater 3 are suspended in the cavity of the first housing 1 .
  • the resonator 2 may be located between the first heater 3 and the first temperature sensor 10, and the connection on one side of the resonator 2
  • the column 22 is fixed to the first heater 3
  • the connecting column 22 on the other side of the resonator 2 is fixed to the first temperature sensor 10 .
  • the number of the first heaters 3 is one and the number of the first temperature sensors 10 is multiple, or the number of the first heaters 3 is multiple, or the first heaters 3 and the first temperature sensors 10 are multiple, the number of the first temperature sensor 10 is one, the resonator 2 can be located in the space enclosed by the first heater 3 and the first temperature sensor 10, and can be suspended via the first heater 3 and the first temperature sensor 10 It is located in the chamber of the first housing 1 , as shown in FIG. 11 .
  • the temperature inside the first casing 1 can be monitored by the first temperature sensor 10
  • the temperature outside the first casing 1 can be monitored by the second temperature sensor located outside the first casing 1
  • the resonator package further includes at least one second temperature sensor 11 , and the at least one second temperature sensor 11 is fixed on the outer surface of the first casing 1 .
  • the second temperature sensor 11 may be close to or in contact with the third heater 5 so as to accurately monitor the temperature of the third heater 5 .
  • the temperature of the fourth heater 8 can also be monitored by a temperature sensor.
  • the resonator package further includes at least one third temperature sensor 12 .
  • At least one third temperature sensor 12 may also be fixed on the outer surface of the second housing 7 .
  • both the third temperature sensor 12 and the fourth heater 8 located in the same second housing 7 may be close to or in contact with each other.
  • a solution of the resonator package may be that the resonator package includes a first heater 3 and a second heater 4, the first heater 3 heats the resonator 2, and the second heater 4 To heat the connection between the first heater 3 and the first casing 1 , and also to heat the entire first casing 1 , the heating temperature of the first heater 3 is higher than that of the second heater 4 .
  • the resonator package includes a first heater 3, a second heater 4 and a third heater 5, the first heater 3 heats the resonator 2, and the second heater 3 heats the resonator 2.
  • the heater 4 heats the connection between the first heater 3 and the first casing 1 , and also heats the entire first casing 1 , and the third heater 5 heats the entire first casing 1 .
  • the above two solutions are to reduce the temperature difference between the resonator 2 and the first shell 1, so as to reduce the heat transfer between the first shell 1 and the resonator 2, so that the resonator 2 can approach or reach the target temperature, And it can quickly heat up to the target temperature and maintain it at the target temperature.
  • the resonator package includes a first heater 3 , a second heater 4 , a third heater 5 and a fourth heater 8
  • the resonator package includes a first heater 3 , a second heater 4 , a third heater 5 and a fourth heater 8
  • a casing 1 and a second casing 7 A casing 1 and a second casing 7 .
  • the resonator 2, the first heater 3 and the second heater 4 are all housed in the first case 1, while the first case 1 is housed in the second case 7, and the fourth heater 8 is fixed in the first case 1.
  • the fourth heater 8 heats the second casing 7 .
  • the second shell 7 keeps the first shell 1 warm, which reduces the influence of the ambient temperature on the first shell 1 and reduces the heat dissipation of the first shell 1.
  • the heat transfer between the first housing 1 and the internal resonator 2 can be reduced, so that the resonator 2 can approach or reach the target temperature, and it is also beneficial for the resonator 2 to maintain the target temperature.
  • wafer-level packaging also known as wafer-level packaging
  • wafer-level packaging takes the wafer as the processing object, and simultaneously packages and leads multiple resonators on the wafer. and testing, etc., and finally cut into individual devices.
  • the resonator involved may be a crystal cut (stress compensated, SC) resonator, or a crystal cut AT resonator, or the like.
  • the packaging method of the resonator package can also use MEMS technology.
  • MEMS technology uses silicon micromachining technology to simultaneously manufacture hundreds of thousands of devices on a silicon wafer, and mass production can greatly reduce production costs.
  • the resonators involved may be MEMS resonators, such as Si-MEMS resonators, MEMS-BAW resonators, MEMS-SAW resonators, and the like.
  • this embodiment does not specifically limit the processing method for processing the resonator package, which can be flexibly selected according to the situation.
  • a first heater and a second heater are provided in the resonator package to heat the environment where the resonator is located, so that the temperature of the resonator can be maintained at the target temperature as much as possible, thereby improving the resonator package.
  • the first heater is in contact with the resonator, most of the heat can be transferred into the resonator to heat up the resonator, and the second heater is in contact with the first housing and can transfer most of the heat to the first housing .
  • the difference between the temperature of the resonator and the temperature of the first casing can be reduced, the heat absorbed by the first casing from the first heater or the resonator can be reduced, and the efficiency of heating the resonator can be improved, so that the resonator can be heated.
  • the temperature can quickly rise to the target temperature.
  • the oscillator includes a housing 100 , a chip 200 and the resonator package 300 described above.
  • the chip 200 and the resonator package 300 are both located in the first casing 100 , and the chip 200 is electrically connected to the resonator 2 , the first heater 3 and the second heater 4 , respectively.
  • the electrical connection between the chip 200 and the resonator 2, the first heater 3 and the second heater 4 may be, as shown in FIG. 1, the first housing 1 of the resonator package 300 is along the Through holes may be provided along the thickness direction, and conductive media may be deposited in the through holes.
  • the first end of the through hole deposited with the conductive medium is electrically connected to the components inside the first casing 1 through gold wires, and the second end of the through hole deposited with the conductive medium is electrically connected to the chip outside the first casing 1 through the gold wire 200 electrical connections.
  • the components inside the first casing 1 and the chip 200 outside the first casing 1 are electrically connected.
  • the number of through holes in the first casing 1 may correspond one-to-one with the number of components inside the first casing 1 that need to be electrically connected to the chip 200 , and the components referred to may be the resonator 2 , the first heater Either of the heater 3 and the second heater 4.
  • Another way to achieve electrical connection may be that the inner surface of the bottom of the first casing 1 has circuits, the outer surface of the bottom has pads, and the components inside the first casing 1 are connected to the first casing 1 In the circuit on the inner surface of the bottom, the pads on the outer surface of the bottom are soldered to the chip 200 outside the first casing 1, or, electrically connected by gold wires, the components inside the first casing 1 and the first casing can also be realized. Electrical connection of the chip 200 outside the body 1 .
  • this embodiment does not specifically limit the specific implementation of the electrical connection between the chip 200 and the components inside the first casing 1 .
  • the housing 100 may include a substrate and a package. After the chip 200 and the resonator package 300 are fixed on the substrate, the chip 200 and the resonator package 300 are packaged in the package, so that the chip 200 and the resonator package are packaged in the package. 300 is located in the housing 100 formed by the substrate and the package.
  • an oscillator circuit 201 and a fractional phase locked loop (FPLL) circuit 202 are integrated into the chip 200 .
  • the resonator 2 is electrically connected to the oscillation circuit 201, and the oscillation circuit 201 is electrically connected to the FPLL circuit 202.
  • the resonator 2 transmits electrical signals to the oscillation circuit 201, and the oscillation circuit 201 transmits the processed electrical signals.
  • the FPLL circuit 202 outputs an electrical signal.
  • the oscillation circuit 201 is used for receiving the electrical signal sent by the resonator 2 and processing the electrical signal, for example, performing amplification and noise reduction processing on the electrical signal.
  • the FPLL circuit 202 is a phase-locked loop circuit, which belongs to the phase error control circuit.
  • the phase error control circuit 201 By comparing the phase difference between the input electrical signal and the electrical signal output by the oscillation circuit 201, a phase corresponding to the two electrical signals is generated. Poor error voltage, the error voltage is processed and then adjusted to the frequency or phase of the oscillator circuit, so that the oscillator locks a frequency to output, and improves the stability of the frequency of the electrical signal output by the oscillator.
  • the chip 200 not only integrates the oscillator circuit 201 and the FPLL circuit 202 necessary for the oscillator, but also integrates the temperature control circuit 203 .
  • the temperature control circuit 203 may further include a first temperature control circuit 2031 and a second temperature control circuit 2032, the first temperature control circuit 2031 is electrically connected to the first heater 3, and the second temperature control circuit 2032 and the first temperature control circuit 2032 are electrically connected to the first heater 3.
  • the two heaters 4 are electrically connected.
  • the first temperature control circuit 2031 can acquire the temperature from the first temperature sensor 10 and generate a control signal to control the heating temperature of the first heater 3 .
  • the second temperature control circuit 2032 may also acquire the temperature from the first temperature sensor 10, and generate a control signal to control the heating temperature of the second heater 4.
  • the resonator package 300 uses the first heater 3 and the second heater 4 to heat the resonator 2 to keep the resonator 2 at the target temperature as much as possible, it is difficult for the temperature of the resonator 2 to be completely equal to the target temperature. Then, the frequency output by the oscillator can be further adjusted by the compensation circuit, so that the oscillator can output a relatively stable frequency signal to the outside.
  • the chip 200 further includes a temperature compensation circuit 204 .
  • the temperature compensation circuit 204 can be electrically connected to the oscillation circuit 201 . Adjust the parameters in the oscillator so that the oscillator can output an electrical signal with a relatively stable frequency.
  • the temperature compensation circuit 204 can also be electrically connected to the FPLL circuit 202, and the temperature compensation circuit 204 adjusts the parameters in the FPLL circuit 202 based on the deviation between the temperature of the resonator 2 and the target temperature, so that the external output frequency of the oscillator is relatively high stable electrical signal.
  • the temperature control circuit 203 can also include a third temperature control circuit 2033.
  • the circuit 2033 is electrically connected to the third heater 5 .
  • the third temperature control circuit 2033 may control the heating temperature of the third heater 5 according to the control signal generated by the first temperature control circuit 2031 or the second temperature control circuit 2032 .
  • the temperature of the third heater 5 can be monitored by the second temperature sensor 11 , then the third temperature control circuit 2033 can obtain the temperature from the second temperature sensor 11 and generate The control signal is used to control the heating temperature of the third heater 5 .
  • the resonator package may further include the fourth heater 8, and correspondingly, as shown in FIG. 15, the temperature control circuit 203 may further include the fourth temperature control circuit 2034, the fourth temperature control circuit 2034 and the fourth temperature control circuit 2034.
  • the heater 8 is electrically connected.
  • the fourth temperature control circuit 2034 may control the heating temperature of the fourth heater 8 according to a control signal generated by the first temperature control circuit 2031 or the second temperature control circuit 2032 or the third temperature control circuit 2033 .
  • the temperature of the fourth heater 8 can be monitored by the third temperature sensor 12, then the fourth temperature control circuit 2034 can obtain the temperature from the third temperature sensor 12, and generate The control signal is used to control the heating temperature of the fourth heater 8 .
  • the first temperature control circuit 2031, the second temperature control circuit 2032, the third temperature control circuit 2033 and the fourth temperature control circuit 2034 may use a table look-up control method to control the temperature of the corresponding heaters, or,
  • the temperature of the corresponding heater can also be controlled by a proportional-integral-derivative (proportion-integral-derivative, PID) control method.
  • PID control method is a control deviation formed according to the given value and the actual output value, and the deviation is formed by a linear combination of proportional, integral and differential to form a control variable, and the controlled object (such as the temperature of the heater) is controlled.
  • the third heater 5 , the first temperature sensor 10 and the second temperature sensor 11 need to be electrically connected to the chip 200
  • the fourth heater 8 and the third temperature sensor 12 located outside the second housing 7 also need to be electrically connected to the chip 200 .
  • the specific electrical connection scheme can refer to the above.
  • the electrical connection can be achieved by means of through-silicon vias, while if the material of the second casing 7 is a material that is difficult to perforate, or the perforation process of the second casing 7 is complicated
  • the number of chips 200 may be two, one chip 200 is located inside the second casing 7 and is used to control the operation of the devices inside the second casing 7 , and the other chip 200 is located in the second casing 7 .
  • the outside of the casing 7 is used to control the operation of the devices outside the second casing 7, and the specific electrical connection scheme can be referred to the above.
  • the second housing 7 of the resonator package 300 includes a first substrate 703 and a first packaging housing 704 , a chip 200 and the first housing 1 are both fixed on the surface of the first substrate 703 , and then the first An encapsulation case 704 encloses the first casing 1 and the chip 200 therein.
  • the housing 100 includes a second substrate 110 and a second packaging shell 120 , the second housing 7 and a chip 200 are both fixed on the surface of the second substrate 110 , and then the second packaging shell 120 encapsulates the second housing 7 and the chip 200 . 200 in it.
  • the outer surface of the first substrate 703 has pads, which can be electrically connected to the chip 200 outside the second housing 7, and the outer surface of the second substrate 110 also has pads, which can be electrically connected to the main board where the oscillator is located.
  • the encapsulation of the oscillator may take the form of a vacuum encapsulation, eg, the interior of the housing 100 is a vacuum.
  • the package size of the oscillator can support surface mount technology (SMD) 2520, SMD3225, SMD5030 and SMD7050 and other sizes.
  • SMD surface mount technology
  • the oscillator includes the resonator package described above, and the resonator package has a first heater and a second heater to heat the environment where the resonator is located, which can promote the resonator The temperature is maintained at the target temperature as much as possible, thereby improving the frequency stability of the electrical signal output by the oscillator where the resonator package is located.
  • the first heater is in contact with the resonator, most of the heat can be transferred into the resonator to heat up the resonator, and the second heater is in contact with the first housing and can transfer most of the heat to the first housing .
  • the difference between the temperature of the resonator and the temperature of the first casing can be reduced, the heat absorbed by the first casing from the first heater or the resonator can be reduced, and the efficiency of heating the resonator can be improved, so that the resonator can be heated.
  • the temperature can quickly rise to the target temperature.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Oscillators With Electromechanical Resonators (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

一种谐振器封装体和震荡器,属于谐振器的温度控制技术领域。谐振器封装体包括第一壳体(1)、谐振器(2)、至少一个第一加热器(3)和至少一个第二加热器(4);谐振器(2)、至少一个第一加热器(3)和至少一个第二加热器(4)均位于第一壳体(1)中;至少一个第一加热器(3)和谐振器(2)固定,至少一个第二加热器(4)和第一壳体(1)固定。谐振器封装体使用第一加热器(3)和第二加热器(4)为谐振器(2)加热,能够促使谐振器(2)的温度尽量维持在目标温度,进而能够提高振荡器(2)的频率的稳定性。

Description

谐振器封装体和震荡器
本申请要求于2021年04月23日提交的申请号为202110441947.6、发明名称为“一种时钟振荡器”、于2021年06月30日提交的申请号为202110736886.6、发明名称为“谐振器封装体和震荡器”,以及,于2021年06月30日提交的申请号为202121476738.7、发明名称为“谐振器封装体和震荡器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及谐振器的温度控制技术领域,特别涉及一种谐振器封装体和震荡器。
背景技术
振荡器是一种用来产生重复电信号的器件,该电信号通常是周期性的正弦波或方波电信号。
振荡器在结构上主要包括外壳、芯片和谐振器封装体,芯片和谐振器封装体均位于外壳中。谐振器封装体中的谐振器是振荡器的核心部件,用于产生特定频率的电信号,芯片中集成有用于控制谐振器的电路。
但是谐振器封装体产生的电信号的频率会受温度影响,当谐振器所处的温度偏离目标温度较多时,振荡器向外输出的电信号的频率的稳定性较差。
发明内容
本申请提供了一种谐振器封装体和震荡器,能够缓解相关技术中谐振器的温度偏离目标温度的问题,所述技术方案如下:
一方面,提供了一种谐振器封装体,所述谐振器封装体包括第一壳体、谐振器、至少一个第一加热器和至少一个第二加热器;
所述谐振器、所述至少一个第一加热器和所述至少一个第二加热器均位于所述第一壳体中;
所述至少一个第一加热器和所述谐振器固定,所述至少一个第二加热器和所述第一壳体的壳壁固定。
本申请所示的方案,该谐振器封装体内有第一加热器和第二加热器为谐振器所在环境进行加热,能够减少谐振器的温度和目标温度之间的温差,促使谐振器的温度能够达到目标温度,进而能够提高谐振器封装体所在的振荡器向外输出的电信号的频率的稳定性。
而且,由于第一加热器与谐振器接触,能够将大部分热量传递至谐振器中,为谐振器升温,第二加热器与第一壳体接触,能够将大部分热量传递至第一壳体。这样,可以减少谐振器的温度和第一壳体的温度之间的差距,减少第一壳体从第一加热器或者谐振器吸收的热量,进而提高为谐振器进行加热的效率,使得谐振器的温度能够快速上升至目标温度。
在一种可能的实现方式中,所述至少一个第二加热器位于所述第一壳体的内表面。
在一种可能的实现方式中,所述至少一个第二加热器嵌在所述第一壳体的壳壁中。
在一种可能的实现方式中,所述第一加热器包括支撑梁和加热部,所述支撑梁的一端和所述第一壳体的壳壁固定,另一端和所述加热部固定,所述加热部和所述谐振器固定;
所述第二加热器与所述支撑梁和所述第一壳体的连接处靠近或接触。
本申请所示的方案,由于第一加热器和第一壳体之间有连接,那么,第一加热器的热量容易通过连接处进行热传导。相应的,为了减弱第一加热器和第一壳体之间的热传导,第二加热器可以与第一加热器的支撑梁和第一壳体的连接处靠近或接触,以使第二加热器为该连接处进行加热,该连接处的温度升高,减少该连接处与第一加热器之间的温差,以减弱该连接处和第一加热器之间的热传导,使得第一加热器产生的热量大部分都传导至谐振器,为谐振器进行加热,能够使谐振器的温度接近或达到目标温度,且能较快的接近或达到目标温度。
在一种可能的实现方式中,所述第二加热器的加热温度低于所述第一加热器的加热温度。
本申请所示的方案,如果第二加热器的加热温度和第一加热器的加热温度相等,甚至高于第一加热器的加热温度,那么,会出现通过第二加热器已经将第一壳体内的温度加热至比较高了(例如,接近目标温度),那么,第二加热器为谐振器进一步加热,比较容易将谐振器的温度加热至高于目标温度。
而如果第二加热器的加热温度低于第一加热器的加热温度,那么,由于第二加热器的最高加热温度低于目标温度,那么,第二加热器很难将第一壳体的温度加热至接近目标温度,这样第一加热器虽然为谐振器进一步加热,但是也不容易出现将谐振器的温度加热至高于目标温度的情况。
在一种可能的实现方式中,所述谐振器封装体还包括至少一个第三加热器;
所述至少一个第三加热器位于所述第一壳体外,且固定于所述第一壳体的外表面。
本申请所示的方案,由于谐振器封装体的第一壳体容易受到外界环境温度的影响,第一壳体的热量容易被所在环境吸收,为了减弱第一壳体的散热,第一壳体的外表面也固定有加热器,例如,固定至少一个第三加热器,通过第三加热器为第一壳体的外表面加热。
这样,第一加热器主要为谐振器加热,第二加热器主要为第一加热器和第一壳体的连接处进行加热,以升高该连接处的温度,减少该连接处从第一加热器吸收较多的热量,第三加热器主要为整个第一壳体进行加热,以升高第一壳体的温度,减弱外界环境的温度对第一壳体的影响,使第一壳体内部的谐振器能够达到并维持在目标温度。
在一种可能的实现方式中,所述第三加热器和所述第一壳体之间铺设有导热层。
本申请所示的方案,能够促使第三加热器的温度快速被第一壳体吸收,能够确保第三加热器产生的热量能够快速均匀传导至第一壳体。
在一种可能的实现方式中,所述第三加热器的加热温度低于所述第二加热器的加热温度。
本申请所示的方案,第三加热器的加热温度低于第二加热器的加热温度,能够减小甚至避免谐振器的温度超过目标温度的情况。
在一种可能的实现方式中,所述谐振器封装体还包括至少一个第二壳体;
所述至少一个第二壳体和所述第一壳体由外层至内层依次排布,且所述第一壳体位于最内层。
本申请所示的方案,第二壳体的数量为一个,那么,第一壳体位于第二壳体中。又例如, 第二壳体的数量为多个,那么,第一壳体和多个第二壳体依次由内层至外层排布,第一壳体位于最内层。这多个第二壳体起到为第一壳体保温的作用。
在一种可能的实现方式中,所述谐振器封装体还包括至少一个第四加热器;
至少一个所述第二壳体的外表面固定有所述第四加热器。
本申请所示的方案,第二壳体也固定有至少一个第四加热器,使得第二壳体既具备保温作用和又具备为第一壳体加热的作用。
在一种可能的实现方式中,至少一个所述第二壳体的内表面铺设有热辐射层。
本申请所示的方案,热辐射层用于加快第二壳体的壳壁上的温度传递至第二壳体的腔室中,以提高第二壳体内部的温度,减小第二壳体和第一壳体之间的温差,减少第二壳体吸收第一壳体过多的热量。从而使第一壳体尽可能维持在恒温状态。而第一壳体一旦维持在恒温状态,那么,也有利于使谐振器维持在恒温状态。
在一种可能的实现方式中,至少一个所述第二壳体的内侧具有阻热垫,所述阻热垫位于所述第二壳体和所述第一壳体的连接处,或,位于两个所述第二壳体的连接处。
本申请所示的方案,和第一壳体邻近的第二壳体的固定柱和第一壳体之间具有阻热垫,能够减少热量由固定柱传递至第二壳体,使第一壳体的尽可能维持保持稳定。
在一种可能的实现方式中,所述至少一个第二壳体的外表面上固定的第四加热器的加热温度由外层至内层递增,且低于所述第二加热器的加热温度。
本申请所示的方案,能够减少甚至避免谐振器的温度超过目标温度的情况。
在一种可能的实现方式中,所述谐振器封装体还包括第一温度传感器,所述第一温度传感器固定于所述第一壳体中;
所述谐振器的侧部分别与所述第一温度传感器和所述第一加热器固定,以使所述谐振器通过所述第一温度传感器和所述第一加热器的支撑,悬空在所述第一壳体的腔室中。
本申请所示的方案,位于第一壳体中的第一温度传感器不仅能够用来监测谐振器的温度,还能用来固定谐振器,相应的,第一温度传感器和第一加热器均与第一壳体的壳壁固定,谐振器的侧部分别与第一温度传感器和第一加热器固定,以使谐振器通过第一温度传感器和第一加热器的支撑,悬空位于第一壳体的腔室中。
另一方面,提供了一种振荡器,所述振荡器包括外壳、芯片和上述所述的谐振器封装体;
所述芯片和所述谐振器封装体均位于所述外壳中;
所述芯片分别与所述谐振器、所述第一加热器和所述第二加热器电连接。
本申请所示的方案,该振荡器包括的谐振器封装体,其第一加热器和第二加热器为谐振器所在环境进行加热,能够促使谐振器的温度尽量维持在目标温度,进而能够提高谐振器封装体所在的振荡器向外输出的电信号的频率的稳定性。
在一种可能的实现方式中,所述芯片中包括振荡电路、小数分频锁相环FPLL电路、温度控制电路和温度补偿电路;
所述振荡电路分别与所述谐振器和所述FPLL电路电连接;
所述温度控制电路分别与所述第一加热器和所述第二加热器电连接;
所述温度补偿电路与所述振荡电路或者所述FPLL电路电连接。
本申请所示的方案,温度补偿电路可以与振荡电路电连接,温度补偿电路基于谐振器的温度和目标温度的偏差,对振荡电路中的参数进行调整,以使振荡器向外输出频率较为稳定 的电信号。
或者,温度补偿电路也可以与FPLL电路电连接,温度补偿电路基于谐振器的温度和目标温度的偏差,对FPLL电路中的参数进行调整,以使振荡器向外输出频率较为稳定的电信号。
附图说明
图1是本申请提供的一种振荡器的结构示意图;
图2是本申请提供的一种谐振器封装体的结构示意图;
图3是本申请提供的一种谐振器封装体的结构示意图;
图4是本申请提供的一种谐振器封装体的结构示意图;
图5是本申请提供的一种谐振器封装体的结构示意图;
图6是本申请提供的一种谐振器封装体的结构示意图;
图7是本申请提供的一种谐振器封装体的结构示意图;
图8是本申请提供的一种谐振器封装体的结构示意图;
图9是本申请提供的一种谐振器封装体的结构示意图;
图10是本申请提供的一种谐振器封装体的结构示意图;
图11是本申请提供的一种谐振器封装体的结构示意图;
图12是本申请提供的一种谐振器封装体的结构示意图;
图13是本申请提供的一种振荡器的内部电路连接示意图;
图14是本申请提供的一种振荡器的内部电路连接示意图;
图15是本申请提供的一种振荡器的内部电路连接示意图;
图16是本申请提供的一种振荡器的结构示意图。
图例说明
1、第一壳体;101、衬底;1011、第一凹槽;102、上盖;1021、第二凹槽;
2、谐振器;21、谐振部件;22、连接柱;23、连接框;
3、第一加热器;4、第二加热器;5、第三加热器;6、导热层;
7、第二壳体;701、热辐射层;702、固定柱;703、第一基板;704、第一封装壳;
8、第四加热器;9、阻热垫;
10、第一温度传感器;11、第二温度传感器;12、第三温度传感器;
100、外壳;200、芯片;300、谐振器封装体;
110、第二基板;120、第二封装壳;
201、振荡电路;202、FPLL电路;203、温度控制电路;
2031、第一温度控制电路;2032、第二温度控制电路;2033、第三温度控制电路;2034、第四温度控制电路。
具体实施方式
本申请实施例提供了一种谐振器封装体,是一种对谐振器进行封装后的装置,谐振器是一种利用声波谐振实现电学选频的器件。
对谐振器施加压力时,谐振器便会产生电压,该过程可以称为压电效应,而对谐振器施 加电压时,谐振器便会发生轻微形变,该过程可以称为逆压电效应。
谐振器通过声波谐振实现电学选频的原理可以是,其中,谐振又称共振,是一种物体振动时的振动频率和物体的固有频率相同或者接近时,物体的振幅急剧增大的现象,产生谐振时的频率可以称为谐振频率。那么,谐振器在电压作用下振动时,和固有频率相差较远的振动逐渐被衰减掉,而和固定频率相同或接近的振动被保留下来,最终谐振器在谐振频率下发生振动,那么在该谐振频率下产生的电信号也是频率较为纯净的电信号,进而声波谐振实现电学选频,使得谐振器产生频率较为稳定的电信号。
但是谐振器的频率会受温度影响,频率对温度变化的灵敏度可以用频率温度系数(temperature coefficient of frequency,TCF)来表示,TCF也即是,在一定温度范围内,温度每升高一摄氏度时,频率的相对平均变化率,其计算公式如下:
Figure PCTCN2022074809-appb-000001
式中,T 1和T 2均为谐振器的温度,f(T 1)是谐振器在温度为T 1时的频率,f(T 2)是谐振器在温度为T 2时的频率。
其中,TCF有正负之分,TCF为正,则说明频率随温度的升高而向频率升高的方向漂移,TCF为负,则说明频率随着温度的升高而向频率降低的方向漂移。
那么,为了促使谐振器产生频率稳定的电信号,需要让TCF尽可能为0,以使频率不随温度变化。
其中,TCF为0时的温度可以称为目标温度,那么,为了促使谐振器产生频率稳定的电信号,需要控制谐振器的温度尽可能维持在目标温度。
通常情况下,目标温度较高,如在85摄氏度以上,高于谐振器所在的环境温度,需要为谐振器所在环境进行升温,才能控制谐振器的温度尽可能维持在目标温度。
本申请实施例的谐振器封装体可以通过使用多个加热器联合作用,以使谐振器的温度尽可能维持在目标温度的恒温状态。
介绍该谐振器封装体之前,首先简单介绍一下该谐振器封装体所应用的振荡器,如图1所示,该振荡器可以包括外壳100、芯片200和下面即将介绍的谐振器封装体300。其中,芯片200和谐振器封装体300均封装在外壳100中,谐振器封装体300的谐振器2与芯片200电连接,芯片200中集成有振荡电路,振荡电路与谐振器2电连接,谐振器2可以将电信号输入至振荡电路,振荡电路对电信号进行一些处理后向外输出,例如,振荡电路对从谐振器2接收到的电信号进行放大和降噪处理后向外输出。
由上述所述,本实施例中的谐振器封装体通过多个加热器联合控制谐振器维持在目标温度的恒温状态,这多个加热器也可以由芯片200来控制,例如,芯片200中还集成有温度控制电路,温度控制电路用来控制加热器的加热温度,具体过程在下文介绍振荡器时再详细说明。
其中,温度控制电路主要是通过谐振器的温度来控制加热器的加热温度,温度控制电路可以通过温度传感器来获取谐振器的温度,或者,温度控制电路也可以通过振荡电路中输出的频率来反推谐振器的温度。本实施例对温度控制电路获取谐振器的温度的方式不做限定,可以根据实际情况灵活选择。
由于本方案的改进点通过多个加热器为谐振器加热,以及多个加热器的位置排布,以及 如何减弱外部环境温度对谐振器的温度影响等,那么,下面将介绍该谐振器封装体。
其中,上述所述的多个加热器可以包括下文将要引出的第一加热器3、第二加热器4、第三加热器5和第四加热器8。
如图2所示,为谐振器封装体的结构示意图,图2是沿着谐振器封装体的厚度方向截取,且未安装上盖的示意图。
如图2所示,该谐振器封装体包括第一壳体1、谐振器2、至少一个第一加热器3和至少一个第二加热器4。谐振器2、至少一个第一加热器3和至少一个第二加热器4均位于第一壳体1中。其中,至少一个第一加热器3和谐振器2固定,至少一个第二加热器4和第一壳体1的壳壁固定。
在一种示例中,第一壳体1可以包括衬底101和上盖102,如图2所示,衬底101可以具有第一凹槽1011,谐振器2和至少一个第一加热器3均位于凹槽1011中,第二加热器4可以位于凹槽1011外且在衬底101的上表面。如图3所示,上盖102可以具有第二凹槽1021,上盖102盖合在衬底101上,两者可以通过键合相固定,第一凹槽1011和第二凹槽1021的位置相对,谐振器2、第一加热器3和第二加热器4均位于第一凹槽1011和第二凹槽1021形成的腔室中,谐振器2悬空位于腔室中,不与第一壳体1的壳壁接触,以和第一壳体1形成热隔离,减少热量传递。
其中,第一加热器3的侧部可以固定在第一凹槽1011的槽壁,第二加热器4可以固定在第二凹槽1021的槽壁,第二加热器4的底部固定于衬底101的上表面,第二加热器4的顶部与第二凹槽1021接触,这样第二加热器4能够为第一壳体1加热。
其中,第一加热器3和第二加热器4均是一种加热装置,其材质可以是金属、多晶硅或掺杂单晶硅等具有良好焦耳热特性的材料。
其中,第一加热器3和第二加热器4的数量均可以是一个或多个,本实施例对第一加热器3和第二加热器4的具体数量不做限定,可以根据实际情况灵活选择。
例如,如图2所示,第一加热器3的数量可以是两个,谐振器2连接在两个第一加热器3之间。或者,第一加热器3的数量可以是两个以上,谐振器2位于这多个第一加热器3围成的空间中。本实施例对第一加热器3的数量不做限定,可以根据实际情况灵活选择。
例如,如图2所示,第二加热器4的数量可以是两个,两个第二加热器4位于凹槽1011的位置相对的两侧。又例如,如图4所示,第二加热器4也可以是一个,且第二加热器4为环状结构,围在衬底101的凹槽1011的周围。其中,本实施例对第二加热器4的数量及形状不做限定,可以根据实际情况灵活选择。
如图2所示,谐振器2、至少一个第一加热器3和至少一个第二加热器4均位于第一壳体1中。其中,第一加热器3主要为谐振器2加热,所以,第一加热器3和谐振器2接触,例如,第一加热器3和谐振器2固定。第二加热器4主要为第一壳体1加热,所以,第二加热器4和第一壳体1的壳壁接触,例如,第二加热器4和第一壳体1的壳壁固定。其中,第一壳体1的壳壁可以是衬底101,也可以是上盖102。
可见,该谐振器封装体内有第一加热器3和第二加热器4为谐振器2所在环境进行加热,能够促使谐振器2的温度尽量维持在目标温度,进而能够提高谐振器封装体所在的振荡器向外输出的电信号的频率的稳定性。
而且,由于第一加热器3与谐振器2接触,能够将大部分热量传递至谐振器2中,为谐振器2升温,第二加热器4与第一壳体1接触,能够将大部分热量传递至第一壳体1。这样,可以减少谐振器2的温度和第一壳体1的温度之间的差距,减少第一壳体1从第一加热器3或者谐振器2吸收的热量,进而提高为谐振器2进行加热的效率,使得谐振器2的温度能够快速上升至目标温度。
在一种示例中,如图2所示,第一加热器3包括支撑梁31和加热部32,支撑梁31的一端和第一壳体1的壳壁(如侧壳壁)固定,另一端和加热部32固定,而加热部32的侧部可以与谐振器2的侧部固定。这样,第一加热器3的加热部32通过支撑梁31悬空在第一壳体1中,而谐振器2通过第一加热器3悬空位于第一壳体1中。
在一种示例中,如图5所示,谐振器2可以包括谐振部件21和连接柱22,连接柱22位于谐振部件21的侧部,连接柱22固定在第一加热器3的加热部32上,且谐振器2和第一壳体1的衬底101和上盖102均不接触。
在另一种示例中,如图6所示,谐振器2不仅可以包括谐振部件21和连接柱22,还可以包括连接框23,连接框23的轮廓形状和谐振部件21的轮廓形状相适配,谐振部件21位于连接框23中,且连接柱22连接在谐振部件21和连接框23之间。而连接框23的外侧固定在第一加热器2的加热部23上。
其中,本实施例对谐振器2和第一加热器3的固定方式不做限定,可以根据实际情况灵活选择。
如上述所述,第二加热器4和第一壳体1的壳壁固定,用于为第一壳体1加热,相应的,一种方式可以是,如图2所示,第二加热器4可以固定在第一壳体1的衬底101的上表面。另一种方式可以是,如图7所示,第一壳体1的壳壁具有厚度,第二加热器4可以嵌在第一壳体1的壳壁中,例如,衬底101具有厚度,第二加热器4可以嵌在衬底101中。或者,另一种方式可以是,第二加热器4可以固定于第一壳体1的壳壁内表面,例如,第二加热器4可以固定于衬底101的第一凹槽1011的槽壁。
如图2所示,由于第一加热器3和第一壳体1之间有连接,那么,第一加热器3的热量容易通过连接处进行热传导。相应的,为了减弱第一加热器3和第一壳体1之间的热传导,如图2所示,第二加热器4可以与第一加热器3的支撑梁31和第一壳体1的壳壁的连接处靠近或接触。
这样,由于第二加热器4位于靠近或接触支撑梁31和第一壳体1连接处,那么,第二加热器4能够为该连接处进行加热,该连接处的温度升高,减少该连接处和第一加热器3之间的温差,以减弱该连接处和第一加热器3之间的热传导,使得第一加热器3产生的热量大部分都传导至谐振器2,为谐振器进行加热,能够使谐振器2的温度接近或达到目标温度,且能较快的接近或达到目标温度。
如上述所述,谐振器2的温度越与目标温度接近,那么谐振器2产生的电信号的频率的稳定性越好。那么可以控制第一加热器3的最高加热温度为目标温度,或者略小于目标温度。
而在为谐振器2加热升温时,如果温度升至高于目标温度,那么谐振器2产生的电信号的频率的稳定性也会变差,为了减小谐振器2升温至超过目标温度,相应的,第二加热器4的加热温度低于第一加热器3的加热温度。
例如,第一加热器3的最高加热温度为目标温度,而第二加热器4的最高加热温度可以 低于目标温度,作为一种示例,第一加热器3的最高加热温度和第二加热器4的最高加热温度之间的差值可以在1至30摄氏度之间取值。
其中,第二加热器4的加热温度低于第一加热器3的加热温度,能够减少加热致使谐振器的温度高于目标温度的原因是,如果第二加热器4的加热温度和第一加热器3的加热温度相等,甚至高于第一加热器3的加热温度,那么,会出现通过第二加热器4已经将第一壳体1内的温度加热至比较高了(例如,接近目标温度),那么,第二加热器3为谐振器2进一步加热,比较容易将谐振器2的温度加热至高于目标温度。
而如果第二加热器4的加热温度低于第一加热器的加热温度,那么,由于第二加热器4的最高加热温度低于目标温度,那么,第二加热器4很难将第一壳体1的温度加热至接近目标温度,这样第一加热器3虽然为谐振器2进一步加热,但是也不容易出现将谐振器2的温度加热至高于目标温度。
这样,通过至少一个第一加热器3和至少一个第二加热器4联合为谐振器2进行加热,且第一加热器3用来为谐振器2加热,第二加热器4一方面用来为第一加热器3和第一壳体1的连接处加热,另一方面用来为整个第一壳体1加热,可以减少谐振器2和第一壳体1之间的热传递,提高为谐振器2进行加热的效率。
而且,第二加热器4的加热温度低于第一加热器3的加热温度,能够减小甚至避免为谐振器2进行加热至温度高于目标温度的情况。
由于谐振器封装体的第一壳体1容易受到外界环境温度的影响,第一壳体1的热量容易被所在环境吸收,为了减弱第一壳体1的散热,相应的,如图8所示,该谐振器封装体还可以包括至少一个第三加热器5,至少一个第三加热器5位于第一壳体1外,且固定于第一壳体1的壳壁。
其中,第三加热器5同第一加热器3和第二加热器4类似,也是一种加热装置,其材质也可以是金属、多晶硅或掺杂单晶硅等具有良好焦耳热特性的材料。
在一种示例中,第一壳体1的衬底101的外表面可以固定有第三加热器5,第一壳体1的上盖102的外表面也可以固定有第三加热器5,衬底101的外表面和上盖102的外表面可以均固定有第三加热器5。
这样,第一加热器3主要为谐振器2加热,第二加热器4一方面为第一加热器3和第一壳体1的连接处加热,另一方面为整个第一壳体1加热,第三加热器5为整个第一壳体1加热。三者加热器联合为该谐振器封装体加热,能够使谐振器封装体内的谐振器2的温度接近或达到目标温度,且能够快速接近或达到目标温度。
在一种示例中,为了促使第三加热器5的温度能够快速被第一壳体1吸收,相应的,如图8所示,第三加热器5和第一壳体1的壳壁之间铺设有导热层6,以确保第三加热器5产生的热量能够快速均匀传导至第一壳体1。
其中,导热层6的材质可以是碳化硅SiC、铜、金刚石、金、银、石墨烯和碳纳米管等导热系数较高的材料。
如图8所示,可以在第一壳体1的其中一个壳壁的外表面铺设导热层6,然后在导热层6的表面固定第三加热器5,由于导热层6的导热系数较高,且导热层6的面积也较大,使得第三加热器5的热量可以通过导热层6快速均匀传导至第一壳体1。
或者,也可以在第一壳体1的整个外表面均铺设导热层6,以使第一壳体1的温度较为均匀。其中,本实施例对在第一壳体1的对应第三加热器5的表面铺设导热层6,还是在第一壳体1的整个外表面铺设导热层6不做限定,可以根据实际情况,灵活选择。
关于第三加热器5的加热温度,其加热温度可以低于第二加热器4的加热温度,其中,第二加热器4的最高加热温度和第三加热器5的最高加热温度的差值可以在1至30摄氏度之间取值。第三加热器5的加热温度低于第二加热器4的加热温度,能够减小甚至避免谐振器2的温度超过目标温度的情况。
由上述可知,该谐振器封装体包括第一加热器3、第二加热器4和第三加热器5三种加热器,第一加热器3主要为谐振器2加热,第二加热器4和第三加热器5主要为第一壳体1加热,且第二加热器4位于第一壳体1的内表面或者嵌在第一壳体1的壳壁中,第三加热器位于第一壳体1的外表面。
其中,第一壳体1的内部有第二加热器4加热,第一壳体1的外部有第三加热器5加热,这样,即使第一壳体1的外部环境吸收第一壳体1的较多热量,但是由第二加热器4和第三加热器5内外共同为第一壳体1加热,可以减少第一壳体1的散热量。而一旦第一壳体1的散热量减少的少了,那么也能减少第一壳体1从谐振器2吸收的热量,降低第一壳体1和谐振器2之间的热传递。所以,通过三种加热器联合为谐振器2进行加热,能够提高为谐振器2进行加热的效率,使谐振器2的温度能够快速达到目标温度,也能够使谐振器2维持在目标温度的恒温状态。
而且,第三加热器5、第二加热器4和第一加热器3的加热温度依次升高,第一加热器3的最高加热温度为目标温度,这样,能够减小甚至避免谐振器2的温度超过目标温度的情况。
为了进一步减少外界环境吸收第一壳体1的温度,相应的,如图9所示,该谐振器封装体还可以包括至少一个第二壳体7,其中,第二壳体7的材质可以是金属,也可以是陶瓷等,本实施例对此不做限定。
例如,第二壳体7的数量为一个,那么,第一壳体1位于第二壳体7中。又例如,第二壳体7的数量为多个,那么,第一壳体1和多个第二壳体7依次由内层至外层排布,第一壳体1位于最内层。
其中,本实施例对第二壳体7的数量不做限定,可以根据实际情况灵活选择,本实施例的附图中可以以一个第二壳体7进行示例。
在一种示例中,如果第一壳体1的底部外表面和第二壳体7的底部内表面接触,那么,两者的接触面积较大,两者之间的热传递也就较快。
那么,为了减少第一壳体1和第二壳体7之间的热传递,如图9所示,和第一壳体1相邻的第二壳体7的内侧具有多个固定柱702,第一壳体1固定于固定柱702上,这样可以减少第一壳体1和第二壳体7之间的接触面积,减弱两者之间的热传递。同样,对于相邻的两个第二壳体7,外层的第二壳体7的内侧也具有多个固定柱702,内层的第二壳体7固定于固定柱702,以减少两个第二壳体7之间的热传递。
其中,第二壳体7的固定柱702的另一个作用是,由于第二壳体7的壳壁比较薄,难以供内部的第一壳体1或者第二壳体7固定,所以,可以在固定柱702中设置安装孔,以供内部的第一壳体1或者内部的第二壳体7固定安装。
为了进一步降低第一壳体1和第二壳体7之间的热传递,以及相邻的两个第二壳体7之间的热传递,相应的,如图9所示,至少一个第二壳体7的内侧具有阻热垫9,阻热垫9位于第二壳体7和第一壳体1的连接处,或,位于两个第二壳体7的连接处。
其中,阻热垫9的材质可以是,硅胶、橡胶或聚碳酸脂等高分子聚合物或高分子化合物材料,或者,其材质还可以是纳米纤维气凝胶。
例如,和第一壳体1邻近的第二壳体7的固定柱702和第一壳体1之间具有阻热垫9,以减少热量由固定柱702传递至第二壳体7,使第一壳体1的尽可能维持保持稳定。
如上述所述,该谐振器封装体通过第一加热器3、第二加热器4和第三加热器5联合为谐振器2进行加热,而通过至少一个第二壳体7为谐振器2进行保温,能够减弱第一壳体1的外部环境温度对第一壳体1的影响,减小外部环境温度对第一壳体1的吸热量,以增强第一壳体1的保温效果。而一旦第一壳体1的保温效果较好,那么,便能促使第一壳体1内的谐振器2的温度维持在目标温度的恒温状态。
在一种示例中,第二壳体7也可以通过加热器的加热,来减少散热,相应的,如图9所示,谐振器封装体还可以包括至少一个第四加热器8;至少一个第二壳体7的外表面固定有第四加热器8。
如上述所述,第二壳体7的数量为一个或多个,如果为一个,则该第二壳体7的外表面可以固定至少一个第四加热器8。那么,该第二壳体7的不仅具备保温作用,还具备为第一壳体1加热的作用,以使第一壳体1能够维持恒温状态。
而如果第二壳体7的数量为多个,那么,这多个第二壳体7中可以一部分第二壳体7的外表面固定至少一个第四加热器8,另一部分第二壳体7也可以不固定第四加热器8。这样,这多个第二壳体7中固定有第四加热器8的第二壳体7起到保温和加热的作用,而未固定有第四加热器8的第二壳体7起到保温作用。
而在第二壳体7的数量为多个的方案中,这多个第二壳体7也可以均固定有至少一个第四加热器8,使得这么多第二壳体7均是具备保温和加热作用。
其中,本实施例对哪些第二壳体7的外表面固定第四加热器8,以及固定几个第四加热器8均不做限定,可以根据实际情况灵活选择。
为了加快第四加热器8将热量快速均匀传导至所在第二壳体7,相应的,第四加热器8和所固定的第二壳体7之间也可以铺设有导热层6,以确保第四加热器8产生的热量能够快速均匀传导至所固定的第二壳体7。
为了增强第二壳体7为第一壳体1加热的效果,相应的,如图7所示,至少一个第二壳体7的内表面铺设有热辐射层701。
其中,热辐射层701的材质可以是水性碳纳米管扇热涂层、二氧化钛或者二氧化锆等金属氧化物混合涂层等。
例如,如果第二壳体7的数量为一个,那么,可以在该第二壳体7的内表面铺设热辐射层701。又例如,如果第二壳体7的数量为多个,那么,可以在所有第二壳体7的内表面铺设热辐射层701,或者,也可以在一部分第二壳体7的内表面铺设热辐射层701。
其中,热辐射层701用于加快第二壳体7的壳壁上的温度传递至第二壳体7的腔室中,以提高第二壳体7内部的温度,减小第二壳体7和第一壳体1之间的温差,减少第二壳体7吸收第一壳体1过多的热量。从而使第一壳体1尽可能维持在恒温状态。而第一壳体1一旦维持在恒温状态,那么,也有利于使谐振器2维持在恒温状态。
其中,至少一个第二壳体7的外表面上固定的第四加热器8的加热温度由外层至内层递增,且低于第二加热器4的加热温度,具体是低于第三加热器4的加热温度。例如,可以参见图10所示外层的第二壳体7上固定的第四加热器8的加热温度低于邻近的内层的第二壳体7上固定的第四加热器8的加热温度,且均低于第三加热器5的加热温度,以减少甚至避免谐振器2的温度超过目标温度的情况。
例如,固定在不同第二壳体7上的第四加热器8的加热温度不相同,且它们的加热温度关系由外层至内层递增,且均低于第三加热器8的加热温度。
需要指出的是,同一个第二壳体7上固定有两个或两个以上第四加热器8,那么,固定在同一个第二壳体7上的多个第四加热器8的加热温度可以相同。
这样,该谐振器封装体通过第一加热器3、第二加热器4、第三加热器5和第四加热器8联合为谐振器2加热,能够降低谐振器2受外部环境温度的影响,使得谐振器2能接近或者达到目标温度,且还能较快的接近或达到目标温度。
如上述所述,该谐振器封装体的多个加热器的温度可以通过温度传感器监测,相应的,如图11所示,该谐振器封装体还包括至少一个第一温度传感器10,至少一个第一温度传感器10位于第一壳体1中。
为了监测谐振器2处的温度,第一温度传感器10可以靠近或接触谐振器2,以准确监测谐振器2的温度。
由于温度可能在谐振器2上分布不均匀,为了更准确获知谐振器2的温度,相应的,第一温度传感器10的数量可以是多个,例如,可以是两个,这两个第一温度传感器10可以位于谐振器2的位置相对的两侧。又例如,第一温度传感器10的数量为两个以上,这两个以上第一温度传感器10均匀分布在谐振器2的周围。
在一种示例中,位于第一壳体1中的第一温度传感器10不仅能够用来监测谐振器2的温度,还能用来固定谐振器2,相应的,如图11所示,第一温度传感器10和第一加热器3均与第一壳体1的壳壁固定,谐振器2的侧部分别与第一温度传感器10和第一加热器3固定,以使谐振器2通过第一温度传感器10和第一加热器3的支撑,悬空位于第一壳体1的腔室中。
例如,第一加热器3的数量为一个,第一温度传感器10的数量为一个,那么,谐振器2可以位于第一加热器3和第一温度传感器10之间,谐振器2一侧的连接柱22与第一加热器3固定,谐振器2另一侧的连接柱22与第一温度传感器10固定。
又例如,第一加热器3的数量为一个,第一温度传感器10的数量为多个,或者,第一加热器3的数量为多个,或者,第一加热器3和第一温度传感器10均为多个,第一温度传感器10的数量为一个,谐振器2可以位于第一加热器3和第一温度传感器10围成的空间中,经由第一加热器3和第一温度传感器10悬空位于第一壳体1的腔室中,可以参见图11所示。
由上述可知,第一壳体1内部的温度可以由第一温度传感器10监测,对于第一壳体1外部的温度,可以由位于第一壳体1外部的第二温度传感器来监测。例如,如图12所示,该 谐振器封装体还包括至少一个第二温度传感器11,至少一个第二温度传感器11固定于第一壳体1的外表面。例如,如图12所示,第二温度传感器11可以与第三加热器5靠近或接触,以便于准确监测第三加热器5的温度。
而对于第四加热器8的温度,也可以由温度传感器来监测,例如,如图12所示,该谐振器封装体还包括至少一个第三温度传感器12,对于固定有第四加热器8的第二壳体7的外表面也可以固定有至少一个第三温度传感器12。如图12所示,位于同一个第二壳体7的第三温度传感器12和第四加热器8两者可以相互靠近或接触。
基于上述所述,该谐振器封装体的一种方案可以是,谐振器封装体包括第一加热器3和第二加热器4,第一加热器3为谐振器2加热,第二加热器4为第一加热器3和第一壳体1的连接处加热,也为整个第一壳体1加热,第一加热器3的加热温度高于第二加热器4的加热温度。
该谐振器封装体的另一种方案可以是,该谐振器封装体包括第一加热器3、第二加热器4和第三加热器5,第一加热器3为谐振器2加热,第二加热器4为第一加热器3和第一壳体1的连接处加热,也为整个第一壳体1加热,第三加热器5为整个第一壳体1加热。
上述两种方案都是为了缩小谐振器2和第一壳体1之间的温差,以减少第一壳体1和谐振器2之间的热传递,使谐振器2能够接近或达到目标温度,且能够快速升温至目标温度,并维持在目标温度。
该谐振器封装体的另一种方案可以是,该谐振器封装体包括第一加热器3、第二加热器4、第三加热器5和第四加热器8,该谐振器封装体包括第一壳体1和第二壳体7。谐振器2、第一加热器3和第二加热器4均被封装在第一壳体1中,而第一壳体1被封装在第二壳体7中,第四加热器8固定在第二壳体7的外表面。其中,第四加热器8为第二壳体7加热。
该方案中,第二壳体7为第一壳体1保温,减弱环境温度对第一壳体1的影响,减少第一壳体1的散热,而一旦第一壳体1的散热减弱,那么,便能减少第一壳体1和内部的谐振器2之间的热传递,使得谐振器2能够接近或达到目标温度,还有利于谐振器2维持在目标温度。
关于谐振器封装体的封装方式,可以采用圆片级封装(也称为晶圆级封装),是以晶圆(wafe)为加工对象,在晶圆上同时对多个谐振器进行封装、引线和测试等,最后切割成单个器件。例如,所涉及的谐振器可以是晶体切割方式(stress compensated,SC)谐振器,或者,晶体切割方式AT谐振器等。
谐振器封装体的封装方式,也可以采用MEMS技术,MEMS技术是用硅微加工工艺在一片硅片上可同时制造成百上千个器件,批量生产可大大降低生产成本。例如,所涉及到的谐振器可以是MEMS谐振器,如Si-MEMS谐振器、MEMS-BAW谐振器、MEMS-SAW谐振器等。
其中,本实施例对加工谐振器封装体的加工方式不做具体限定,可以根据情况灵活选择。
在本申请所示的方案中,该谐振器封装体内有第一加热器和第二加热器为谐振器所在环境进行加热,能够促使谐振器的温度尽量维持在目标温度,进而能够提高谐振器封装体所在的振荡器向外输出的电信号的频率的稳定性。
而且,由于第一加热器与谐振器接触,能够将大部分热量传递至谐振器中,为谐振器升 温,第二加热器与第一壳体接触,能够将大部分热量传递至第一壳体。这样,可以减少谐振器的温度和第一壳体的温度之间的差距,减少第一壳体从第一加热器或者谐振器吸收的热量,进而提高为谐振器进行加热的效率,使得谐振器的温度能够快速上升至目标温度。
本申请实施例还提供了一种振荡器,如图1所示,该振荡器包括外壳100、芯片200和上述所述的谐振器封装体300。其中,芯片200和谐振器封装体300均位于第一壳体100中,且芯片200分别与谐振器2、第一加热器3和第二加热器4电连接。
在一种示例中,芯片200和谐振器2、第一加热器3和第二加热器4的电连接方式可以是,如图1所示,谐振器封装体300的第一壳体1在沿着厚度方向可以设置通孔,通孔中沉积导电介质。沉积有导电介质的通孔的第一端通过金线与第一壳体1内部的元器件电连接,沉积有导电介质的通孔的第二端通过金线与第一壳体1外部的芯片200电连接。进而,实现第一壳体1内部的元器件和第一壳体1外部的芯片200电连接。其中,第一壳体1的通孔的数量可以和第一壳体1内部的需要和芯片200电连接的元器件的数量一一对应,所指的元器件可以是谐振器2、第一加热器3和第二加热器4中的任一一种。
另一种实现电连接的方式还可以是,第一壳体1的底部的内表面具有电路,底部的外表面具有焊盘,第一壳体1内部的元器件接入到第一壳体1底部内表面上的电路中,底部外表面的焊盘与第一壳体1外部的芯片200焊接,或者,通过金线电连接,也能实现第一壳体1内部的元器件和第一壳体1外部的芯片200的电连接。
其中,本实施例对芯片200和第一壳体1内部的元器件的电连接的具体实施方式不做具体限定。
例如,外壳100可以包括基板和封装壳,将芯片200和谐振器封装体300固定在基板上以后,再将芯片200和谐振器封装体300封装在封装壳中,使得芯片200和谐振器封装体300位于基板和封装壳形成的外壳100中。
在一种示例中,芯片200中集成有振荡电路201和小数分频锁相环(fractional phase locked loop,FPLL)电路202。如图13所示,谐振器2与振荡电路201电连接,振荡电路201和FPLL电路202电连接,这样,谐振器2将电信号传输至振荡电路201,振荡电路201将处理后的电信号传输至FPLL电路202,FPLL电路202将电信号输出。
其中,振荡电路201用于接收谐振器2发送的电信号,对电信号进行处理,例如,对电信号进行放大和降噪处理等。
其中,FPLL电路202是一种锁相环电路,属于相位误差控制电路,通过比较输入的电信号与振荡电路201输出的电信号之间的相位差,产生一个对应于这两个电信号的相位差的误差电压,该误差电压经处理后再去调整振荡电路的频率或相位,以使振荡器锁定一个频率向外输出,提高振荡器向外输出的电信号的频率的稳定性。
在一种示例中,芯片200中不仅集成有振荡器所必需的振荡电路201和FPLL电路202,还可以集成温度控制电路203。如图13所示,温度控制电路203又可以包括第一温度控制电路2031和第二温度控制电路2032,第一温度控制电路2031与第一加热器3电连接,第二温度控制电路2032和第二加热器4电连接。这样,第一温度控制电路2031可以从第一温度传感器10获取温度,并生成控制信号,对第一加热器3的加热温度进行控制。第二温度控制电路2032也可以从第一温度传感器10获取温度,并生成控制信号,对第二加热器4的加热温 度进行控制。
该谐振器封装体300虽然通过第一加热器3和第二加热器4为谐振器2进行加热,使谐振器2尽可能维持在目标温度,但是谐振器2的温度和目标温度难以完全相等,那么,可以通过补偿电路对振荡器输出的频率做进一步调整,使振荡器向外输出较为稳定的频率信号。
相应的,如图13所示,芯片200还包括温度补偿电路204,温度补偿电路204可以与振荡电路201电连接,温度补偿电路204基于谐振器2的温度和目标温度的偏差,对振荡电路201中的参数进行调整,以使振荡器向外输出频率较为稳定的电信号。
或者,温度补偿电路204也可以与FPLL电路202电连接,温度补偿电路204基于谐振器2的温度和目标温度的偏差,对FPLL电路202中的参数进行调整,以使振荡器向外输出频率较为稳定的电信号。
由上述所述,第一壳体1的外表面也可以固定有第三加热器5,相应的,如图14所示,温度控制电路203还可以包括第三温度控制电路2033,第三温度控制电路2033与第三加热器5电连接。
在一种示例中,第三温度控制电路2033可以依据第一温度控制电路2031或者第二温度控制电路2032生成的控制信号,来控制第三加热器5的加热温度。在另一种示例中,如图11所示,第三加热器5的温度可以由第二温度传感器11来监测,那么,第三温度控制电路2033可以从第二温度传感器11获取温度,并生成控制信号,来控制第三加热器5的加热温度。
如上述所述,谐振器封装体还可以包括第四加热器8,相应的,如图15所示,温度控制电路203还可以包括第四温度控制电路2034,第四温度控制电路2034和第四加热器8电连接。
在一种示例中,第四温度控制电路2034可以依据第一温度控制电路2031或者第二温度控制电路2032或第三温度控制电路2033生成的控制信号,来控制第四加热器8的加热温度。在另一种示例中,如图12所示,第四加热器8的温度可以由第三温度传感器12来监测,那么,第四温度控制电路2034可以从第三温度传感器12获取温度,并生成控制信号,来控制第四加热器8的加热温度。
需要指出的是,第一温度控制电路2031、第二温度控制电路2032、第三温度控制电路2033和第四温度控制电路2034可以采用查表控制方法来控制所对应的加热器的温度,或者,也可以通过比例积分微分控制(proportion-integral-derivative,PID)控制方法来控制所对应的加热器的温度。其中,PID控制方法,是一种根据给定值和实际输出值构成控制偏差,将偏差按比例、积分和微分通过线性组合构成控制量,对被控对象(如加热器的温度)进行控制。
在一种示例中,对于谐振器封装体包括第二壳体7的方案中,考虑到位于第二壳体7内部的器件,如谐振器2、第一加热器3、第二加热器4、第三加热器5、第一温度传感器10和第二温度传感器11需要和芯片200电连接,而位于第二壳体7外部的第四加热器8和第三温度传感器12也需要和芯片200电连接,无论芯片200位于第二壳体7外,还是位于第二壳体7内,都需要对第二壳体7进行穿孔处理,以使第二壳体7内部和外部的器件都能与芯片200电连接,具体电连接方案可以参考上述所述。
如果第二壳体7的材质为硅,可以通过硅穿孔的方式实现电连接,而如果对于第二壳体7的材质为难以穿孔的材质,或者,第二壳体7的穿孔工艺较为复杂的情况,如图16所示, 芯片200的数量可以是两个,一个芯片200位于第二壳体7的内部,用于控制第二壳体7内部的器件的工作,另一个芯片200位于第二壳体7的外部,用于控制第二壳体7外部的器件的工作,具体电连接方案可以参考上述所述。
如图16所示,谐振器封装体300的第二壳体7包括第一基板703和第一封装壳704,一个芯片200和第一壳体1均固定在第一基板703的表面,然后第一封装壳704将第一壳体1和该芯片200罩在其中。同样,外壳100包括第二基板110和第二封装壳120,第二壳体7和一个芯片200均固定在第二基板110的表面,然后第二封装壳120将第二壳体7和该芯片200罩在其中。其中,第一基板703的外表面具有焊盘,能够与第二壳体7外部的芯片200电连接,第二基板110的外表面也具有焊盘,能够与振荡器所在主板电连接。
在一种示例中,振荡器的封装可以采取真空封装,例如,外壳100的内部为真空。振荡器的封装尺寸可以支持表面贴装技术(surface mount technology,SMD)2520、SMD3225、SMD5030和SMD7050等尺寸。
在本申请所示的方案中,该振荡器包括上述所述的谐振器封装体,该谐振器封装体内有第一加热器和第二加热器为谐振器所在环境进行加热,能够促使谐振器的温度尽量维持在目标温度,进而能够提高谐振器封装体所在的振荡器向外输出的电信号的频率的稳定性。
而且,由于第一加热器与谐振器接触,能够将大部分热量传递至谐振器中,为谐振器升温,第二加热器与第一壳体接触,能够将大部分热量传递至第一壳体。这样,可以减少谐振器的温度和第一壳体的温度之间的差距,减少第一壳体从第一加热器或者谐振器吸收的热量,进而提高为谐振器进行加热的效率,使得谐振器的温度能够快速上升至目标温度。
以上所述仅为本申请一个实施例,并不用以限制本申请,凡在本申请原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (16)

  1. 一种谐振器封装体,其特征在于,所述谐振器封装体包括第一壳体(1)、谐振器(2)、至少一个第一加热器(3)和至少一个第二加热器(4);
    所述谐振器(2)、所述至少一个第一加热器(3)和所述至少一个第二加热器(4)均位于所述第一壳体(1)中;
    所述至少一个第一加热器(3)和所述谐振器(2)固定,所述至少一个第二加热器(4)和所述第一壳体(1)固定。
  2. 根据权利要求1所述的谐振器封装体,其特征在于,所述至少一个第二加热器(4)位于所述第一壳体(1)的内表面。
  3. 根据权利要求1所述的谐振器封装体,其特征在于,所述至少一个第二加热器(4)嵌在所述第一壳体(1)的壳壁中。
  4. 根据权利要求1至3任一所述的谐振器封装体,其特征在于,所述第一加热器(3)包括支撑梁(31)和加热部(32),所述支撑梁(31)的一端和所述第一壳体(1)固定,另一端和所述加热部(32)固定,所述加热部(32)和所述谐振器(2)固定;
    所述第二加热器(4)与所述支撑梁(31)和所述第一壳体(1)的连接处靠近或接触。
  5. 根据权利要求1至4任一所述的谐振器封装体,其特征在于,所述第二加热器(4)的加热温度低于所述第一加热器(3)的加热温度。
  6. 根据权利要求1至5任一所述的谐振器封装体,其特征在于,所述谐振器封装体还包括至少一个第三加热器(5);
    所述至少一个第三加热器(5)位于所述第一壳体(1)外,且固定于所述第一壳体(1)的外表面。
  7. 根据权利要求6所述的谐振器封装体,其特征在于,所述第三加热器(5)和所述第一壳体(1)之间铺设有导热层(6)。
  8. 根据权利要求6或7所述的谐振器封装体,其特征在于,所述第三加热器(5)的加热温度低于所述第二加热器(4)的加热温度。
  9. 根据权利要求1至8任一所述的谐振器封装体,其特征在于,所述谐振器封装体还包括至少一个第二壳体(7);
    所述至少一个第二壳体(7)和所述第一壳体(1)由外层至内层依次排布,且所述第一壳体(1)位于最内层。
  10. 根据权利要求9所述的谐振器封装体,其特征在于,所述谐振器封装体还包括至少一个第四加热器(8);
    至少一个所述第二壳体(7)的外表面固定有所述第四加热器(8)。
  11. 根据权利要求10所述的谐振器封装体,其特征在于,至少一个所述第二壳体(7)的内表面铺设有热辐射层(701)。
  12. 根据权利要求9至11任一所述的谐振器封装体,其特征在于,至少一个所述第二壳体(7)的内侧具有阻热垫(9),所述阻热垫(9)位于所述第二壳体(7)和所述第一壳体(1)的连接处,或,位于两个所述第二壳体(7)的连接处。
  13. 根据权利要求10至12任一所述的谐振器封装体,其特征在于,所述至少一个第二壳体(7)的外表面上固定的第四加热器(8)的加热温度由外层至内层递增,且低于所述第二加热器(4)的加热温度。
  14. 根据权利要求1至13任一所述的谐振器封装体,其特征在于,所述谐振器封装体还包括第一温度传感器(10),所述第一温度传感器(10)固定于所述第一壳体(1)中;
    所述谐振器(2)的侧部分别与所述第一温度传感器(10)和所述第一加热器(3)固定,以使所述谐振器(2)通过所述第一温度传感器(10)和所述第一加热器(3)的支撑,悬空在所述第一壳体(1)的腔室中。
  15. 一种振荡器,其特征在于,所述振荡器包括外壳(100)、芯片(200)和权利要求1至14任一所述的谐振器封装体(300);
    所述芯片(200)和所述谐振器封装体(300)均位于所述外壳(100)中;
    所述芯片(200)分别与所述谐振器(2)、所述第一加热器(3)和所述第二加热器(4)电连接。
  16. 根据权利要求15所述的振荡器,其特征在于,所述芯片(200)中包括振荡电路(201)、小数分频锁相环FPLL电路(202)、温度控制电路(203)和温度补偿电路(204);
    所述振荡电路(201)分别与所述谐振器(2)和所述FPLL电路(202)电连接;
    所述温度控制电路(203)分别与所述第一加热器(3)和所述第二加热器(4)电连接;
    所述温度补偿电路(204)与所述振荡电路(201)或者所述FPLL电路(202)电连接。
PCT/CN2022/074809 2021-04-23 2022-01-28 谐振器封装体和震荡器 WO2022222570A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202110441947.6 2021-04-23
CN202110441947 2021-04-23
CN202110736886.6A CN115242209A (zh) 2021-04-23 2021-06-30 谐振器封装体和震荡器
CN202121476738.7U CN216751694U (zh) 2021-04-23 2021-06-30 谐振器封装体和振荡器
CN202121476738.7 2021-06-30
CN202110736886.6 2021-06-30

Publications (1)

Publication Number Publication Date
WO2022222570A1 true WO2022222570A1 (zh) 2022-10-27

Family

ID=81908013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074809 WO2022222570A1 (zh) 2021-04-23 2022-01-28 谐振器封装体和震荡器

Country Status (2)

Country Link
CN (2) CN115242209A (zh)
WO (1) WO2022222570A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024152923A1 (zh) * 2023-01-18 2024-07-25 华为技术有限公司 Mems振荡器及电子设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117526887A (zh) * 2022-07-30 2024-02-06 华为技术有限公司 一种温度控制装置及相关设备
CN117318625A (zh) * 2023-09-22 2023-12-29 深圳市兴威帆电子技术有限公司 晶体振荡器的温度恒定装置及方法、芯片
CN117097288B (zh) * 2023-10-19 2024-02-13 麦斯塔微电子(深圳)有限公司 双模谐振装置、双输出mems振荡器及温度补偿方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009200747A (ja) * 2008-02-20 2009-09-03 Nippon Dempa Kogyo Co Ltd 水晶振動子の恒温構造及びこれを用いた恒温型の水晶発振器
CN103117704A (zh) * 2013-01-17 2013-05-22 广东大普通信技术有限公司 双槽恒温晶体振荡器
CN104852728A (zh) * 2015-03-27 2015-08-19 台湾晶技股份有限公司 采用内嵌式加热装置封装的恒温晶体振荡器
CN108093679A (zh) * 2015-06-19 2018-05-29 芯时光公司 微机电谐振器
CN108432126A (zh) * 2015-12-24 2018-08-21 株式会社村田制作所 压电振荡装置及其制造方法
CN211830710U (zh) * 2020-04-15 2020-10-30 上海鸿晔电子科技股份有限公司 一种恒温晶体振荡器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009200747A (ja) * 2008-02-20 2009-09-03 Nippon Dempa Kogyo Co Ltd 水晶振動子の恒温構造及びこれを用いた恒温型の水晶発振器
CN103117704A (zh) * 2013-01-17 2013-05-22 广东大普通信技术有限公司 双槽恒温晶体振荡器
CN104852728A (zh) * 2015-03-27 2015-08-19 台湾晶技股份有限公司 采用内嵌式加热装置封装的恒温晶体振荡器
CN108093679A (zh) * 2015-06-19 2018-05-29 芯时光公司 微机电谐振器
CN108432126A (zh) * 2015-12-24 2018-08-21 株式会社村田制作所 压电振荡装置及其制造方法
CN211830710U (zh) * 2020-04-15 2020-10-30 上海鸿晔电子科技股份有限公司 一种恒温晶体振荡器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024152923A1 (zh) * 2023-01-18 2024-07-25 华为技术有限公司 Mems振荡器及电子设备

Also Published As

Publication number Publication date
CN216751694U (zh) 2022-06-14
CN115242209A (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
WO2022222570A1 (zh) 谐振器封装体和震荡器
US20220337218A1 (en) Microelectromechanical resonator
JP7241817B2 (ja) 微小電気機械共振器
US6731180B1 (en) Evacuated hybrid ovenized oscillator
JP4885207B2 (ja) 多段型とした恒温型の水晶発振器
JP5351082B2 (ja) 熱的に制御された圧電共振子を含む発振子デバイス
CN101084575B (zh) 用于检测特殊的红外电磁辐射的部件
TWI558096B (zh) 溫度補償微機電振盪器
CN109195904A (zh) 烘箱控制mems振荡器
JP2010081052A (ja) 恒温型の水晶発振器
TWI542138B (zh) 溫度補償振盪器與其控制方法
CN107697880B (zh) 一种基于soi-mems的温控隔振平台及系统
US20220302894A1 (en) Resonator device
US11689184B2 (en) Resonator device
JP5741869B2 (ja) 圧電デバイス
US20240186947A1 (en) Microelectromechanical System Oven-Controlled Oscillator
JP5362344B2 (ja) 多段型とした恒温型の水晶発振器
JP2014195235A (ja) 一体型温度センサをもつ共振器
US11949379B2 (en) Oscillator
US20230268885A1 (en) Oscillator
JP7570367B2 (ja) オーブン制御型mems発振器及びシステム及びそれを校正する方法
WO2024027326A1 (zh) 一种温度控制装置及相关设备
JP2022084802A (ja) オーブン制御型mems発振器及びシステム及びそれを校正する方法
JP2013183213A (ja) 温度制御型デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22790680

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22790680

Country of ref document: EP

Kind code of ref document: A1