WO2022222129A1 - 一种调光视窗及其制造方法 - Google Patents

一种调光视窗及其制造方法 Download PDF

Info

Publication number
WO2022222129A1
WO2022222129A1 PCT/CN2021/089210 CN2021089210W WO2022222129A1 WO 2022222129 A1 WO2022222129 A1 WO 2022222129A1 CN 2021089210 W CN2021089210 W CN 2021089210W WO 2022222129 A1 WO2022222129 A1 WO 2022222129A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
sub
region
area
transparent conductive
Prior art date
Application number
PCT/CN2021/089210
Other languages
English (en)
French (fr)
Inventor
方运华
乔柱
王凯
李亚君
胡健
李航
徐红祥
邸晨晨
陈月明
武春谱
张恒
Original Assignee
京东方科技集团股份有限公司
合肥京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2021/089210 priority Critical patent/WO2022222129A1/zh
Priority to CN202180000878.3A priority patent/CN116097161A/zh
Publication of WO2022222129A1 publication Critical patent/WO2022222129A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a dimming window and a manufacturing method thereof.
  • a smart dimming window is an electronic light control product, including dimming windows in the form of ECD (Electron Capture Detector), PDLC (polymer dispersed liquid crystal, polymer dispersed liquid crystal).
  • ECD Electro Capture Detector
  • PDLC polymer dispersed liquid crystal, polymer dispersed liquid crystal
  • glass partitions such as: hotel partitions, office partitions, bathroom partitions, banks, ticket hall window partitions, etc., beautiful and can protect privacy, with waterproof, heat insulation, dimming and other functions, also used in villa window glass , car window glass, wine cabinet bookcase vending cabinet and other door glass to control light entry and privacy.
  • the principle of the VA (vertical alignment) mode dye liquid crystal smart dimming window is to cure the dye liquid crystal containing a chiral agent in the middle of two transparent conductive films (such as ITO), from the top, The lower two layers of transparent conductive film are driven, and the change of light and dark can be realized by controlling the dye liquid crystal.
  • the transparent conductive film layer is no longer designed separately.
  • the method adopted in the related art is that when designing the external circuit, the array substrate and the color filter substrate are of the same size, and there is no reserved screen (Pad) edge.
  • the array substrate and the color filter substrate need to dig one avoidance hole respectively.
  • the avoidance hole on the array substrate is used to avoid the circuit bonding structure on the color filter substrate, and the avoidance hole on the color filter substrate is used to avoid the array substrate.
  • the circuit bonding (Bonding) structure With such a structure, it is difficult to dig holes on the two substrates, and there is no corresponding equipment in the factory, which leads to the problems of manual correspondence, which is time-consuming and has a high breakage rate.
  • Embodiments of the present disclosure provide a dimming window and a method for manufacturing the same, which eliminates the need to dig holes on a substrate, reduces process difficulty, reduces process time, and improves yield.
  • An embodiment of the present disclosure provides a dimming window, including:
  • the first transparent conductive layer includes a binding area located in the single substrate area, and the pattern of the binding area includes a first sub-area and a second sub-area that are spaced apart;
  • the first sub-region is bound and connected to a first driving circuit that drives the first substrate, and the second sub-region is bound and connected to a second driving circuit that drives the second substrate;
  • the first substrate is an array substrate
  • the second substrate is a color filter substrate
  • the second sub-region and the second transparent conductive layer are conductively connected by silver glue.
  • the first transparent conductive layer includes a liquid crystal driving region, the liquid crystal driving region and the orthographic projection of the second transparent conductive layer on the first substrate are completely overlapped, and the liquid crystal driving region is an entire area.
  • the whole film layer structure is covered on the first substrate, the first sub-region is formed by extending from the liquid crystal driving region, and is provided with the same layer and the same material as the liquid crystal driving region.
  • the pattern of the binding area further includes a first isolation line between the second sub-area and the first sub-area, and a first isolation line between the second sub-area and the liquid crystal driving area. the second isolation line between.
  • the first isolation line and the second isolation line are arranged perpendicular to each other.
  • both the first isolation line and the second isolation line are laser etched lines.
  • the dimming window further includes a frame sealant located between the cell-aligned first substrate and the second substrate and surrounding the periphery of the liquid crystal layer, and the binding area is located on the frame sealant. away from the outside of the liquid crystal layer.
  • the liquid crystal layer includes dye liquid crystal.
  • a first substrate is manufactured, at least one side of the first substrate is a single substrate area beyond the second substrate, a first transparent conductive layer is formed on the side of the first substrate facing the second substrate, and the first substrate is The transparent conductive layer includes a binding area located in the single substrate area, the pattern of the binding area includes a first sub-area and a second sub-area that are spaced apart, the first sub-area is connected to the driving of the first substrate
  • the first driving circuit is bound and connected, and the second sub-region is bound and connected with the second driving circuit that drives the second substrate;
  • a second transparent conductive layer is formed on the side of the second substrate facing the first substrate;
  • the first substrate and the second substrate are assembled, wherein a conductive connection is performed between the second sub-region and the second transparent conductive layer.
  • the manufacturing of the first substrate specifically includes the following steps:
  • the first conductive film is patterned to form the first transparent conductive layer.
  • the patterning of the first conductive film to form the first transparent conductive layer specifically includes:
  • the first conductive film is patterned by means of laser etching.
  • the assembling of the first substrate and the second substrate, wherein conducting a conductive connection between the second sub-region and the second transparent conductive layer specifically includes:
  • Silver glue is dotted on the second sub-region on the first substrate, and conductive connection is performed between the second sub-region and the second transparent conductive layer through the silver glue.
  • the cutting size of the first substrate of the dimming window is designed to be larger than the cutting size of the second substrate, so that at least one side of the first substrate extends beyond the second substrate, and A single substrate area is formed, and the first transparent conductive layer covered in the single substrate area is the binding area for binding the driving circuit, wherein the binding area is patterned into a first sub-area and a first sub-area separated from each other.
  • the second sub-area, the first sub-area is used to bind the driving circuit of the first substrate
  • the second sub-area is used to bind the driving circuit of the second substrate
  • the second sub-area is connected to the second sub-area on the second substrate
  • the transparent conductive layer is turned on, thereby realizing the purpose of circuit driving the two substrates by binding on the first substrate alone. It can be seen that, in the dimming window and the manufacturing method thereof provided by the embodiments of the present disclosure, by retaining a single substrate area (ie, the pad edge) protruding from the second substrate on at least one side of the first substrate, it is possible to avoid the need for digging holes Binding circuits can reduce process difficulty, reduce process time, and improve product yield.
  • FIG. 1 is a schematic diagram of a three-dimensional structure of a dimming window in the related art
  • FIG. 2 shows a schematic cross-sectional structure diagram of a dimming window in the related art on the circuit binding side
  • FIG 3 is a top view of a dimming window provided by an embodiment of the present disclosure, wherein the second substrate is located above the first substrate;
  • Fig. 4 is a schematic diagram showing the cross-sectional structure of A-A' in Fig. 3 .
  • FIG. 1 is a schematic diagram of a three-dimensional structure of a dimming window in the related art
  • FIG. 2 is a schematic cross-sectional structure diagram of a circuit binding side of the dimming window in the related art.
  • the VA mode dimming window includes an upper substrate 10 and a lower substrate 20 that are assembled in a cell, and a liquid crystal layer 30 disposed between the upper substrate 10 and the lower substrate 20 , wherein
  • the upper substrate 10 is provided with an upper transparent conductive layer 11 respectively
  • the lower substrate 20 is provided with a lower transparent conductive layer 21.
  • the upper transparent conductive layer drives the liquid crystal deflection state to realize the conversion of light and dark states.
  • the liquid crystal when the transparent conductive layers on the upper substrate 10 and the lower substrate 20 are not energized, the liquid crystal does not deflect, and the dimming window is in a transparent state; when the transparent conductive layers on the upper and lower substrates are energized, the liquid crystal When deflection occurs, the dimming window is opaque.
  • the VA mode dimming window product only involves two gray-scale display forms of light and dark, and has no specific pixel unit, so in order to adapt to many sizes, shapes and sizes For different series of products, the mask of the transparent conductive film layer is no longer designed separately, but the entire substrate is covered with the transparent conductive film layer.
  • the size of the first substrate 10 and the second substrate 20 are the same, and there is no reserved screen (Pad) edge.
  • each of the first substrate 10 and the second substrate 20 needs to dig an escape hole 40, respectively.
  • the avoidance holes on the first substrate are used to avoid circuit bonding structures on the second substrate, and the avoidance holes on the second substrate are used to avoid circuit bonding structures on the first substrate.
  • Such a structure requires holes to be dug on the two substrates respectively, which is difficult to process, and there is no corresponding equipment in the factory, which leads to the problems of manual correspondence, which is time-consuming and has a high breakage rate.
  • the embodiments of the present disclosure provide a dimming window and a manufacturing method thereof, which can reduce process difficulty, reduce time consumption, and improve product yield.
  • FIG. 3 is a top view of the structure of a dimming window provided in some embodiments of the present disclosure
  • FIG. 4 is a schematic cross-sectional structure diagram of A-A' in FIG. 3 .
  • the dimming window provided by the embodiment of the present disclosure includes a first substrate 100 and a second substrate 200 arranged in a cell, and a liquid crystal arranged between the first substrate 100 and the second substrate 200 Layer 300; the first substrate 100 is provided with a first transparent conductive layer 110 on the side facing the second substrate 200, and the second substrate 200 is provided with a second substrate 100 on the side facing the first substrate 100 Transparent conductive layer 210; at least one edge of the first substrate 100 extends beyond the second substrate 200, and the portion of the first substrate 100 beyond the second substrate 200 is a single substrate area B; wherein the The first transparent conductive layer 110 includes a binding area 111 located in the single substrate area B, and the pattern of the binding area 111 includes a first sub-area 1111 and a second sub-area 1112 that are spaced apart; the first sub-area 1112 The region 1111 is bound and connected to the first driving circuit that drives the first substrate 100 , and the second sub-region 1112 is bound and connected to the second
  • the cutting size of the first substrate 100 of the dimming window is designed to be larger than the cutting size of the second substrate 200, so that at least one side of the first substrate 100 extends beyond the second substrate 200 and is formed as a single substrate area B.
  • the first transparent conductive layer 110 covered on the side of the first substrate 100 facing the second substrate 200 is an entire film layer covering the entire surface of the first substrate 100 , wherein a part of the first transparent conductive layer 110 covers the entire surface of the first substrate 100 In the single-substrate region B, this part is the binding region 111, which is used to bind and connect the driving circuit; the binding region 111 is patterned and divided into a first sub-region 1111 and a second sub-region 1112 that are separated from each other, The first sub-region 1111 is connected to the first transparent conductive layer 110 and is bound to the driving circuit of the first substrate 100; the second sub-region 1112 is separated from the first sub-region 1111 and bound to the second substrate 200, and is in conduction with the second transparent
  • the single substrate area B ie, the Pad edge
  • the fixed circuit can reduce the difficulty of the process, reduce the time-consuming process, and improve the product yield.
  • the dimming window provided by the embodiments of the present disclosure will be described in more detail below.
  • the first substrate 100 may be an array substrate, and the second substrate 200 may be a color filter substrate.
  • the specific types of the first substrate 100 and the second substrate 200 are not limited to this, and the first substrate 100 and the second substrate 200 can be selected according to actual needs .
  • the second sub-region 1112 and the second transparent conductive layer 210 are electrically connected through silver glue 300 .
  • the silver glue 300 can be dotted on the second sub-region 1112 reserved on the first substrate 100, and the silver glue 300 can be used to achieve the purpose of conducting the second sub-region 1112 and the second transparent conductive layer 210.
  • This way easy to operate and reliable connection.
  • the conduction mode between the second sub-region 1112 and the second transparent conductive layer 210 may not be limited to this, for example, a wire may be used for direct connection, or a solder ball may be used. Welding, etc. for connection, etc.
  • the first transparent conductive layer 110 includes, in addition to the binding region 111 , a liquid crystal driving region 112 , the liquid crystal driving region 112 .
  • the area 112 is an area that completely overlaps with the orthographic projection of the second transparent conductive layer 210 on the first substrate 100
  • the liquid crystal driving area 112 is an entire film covering the entire surface of the first substrate 100 Layer structure
  • the first sub-region 1111 is formed by extending from the liquid crystal driving region 112 , and is provided with the same layer and material as the liquid crystal driving region 112 .
  • the first sub-region 1111 is made of the same layer and material as the liquid crystal driving region 112 , that is, the first sub-region 1111 and the liquid crystal driving region 112 are an integral film layer, such as As shown in FIG. 3 and FIG. 4 , the second sub-region 1112 is preferably also of the same layer and material as the first sub-region 1111 . In this way, the first sub-region 1111 and the second sub-region 1112 are fabricated in the process.
  • the first substrate 100 When the first substrate 100 is formed, it may be: firstly cover the entire surface of the first substrate 100 with a first conductive film, and then perform patterning on the part of the first conductive film located in the single substrate region B to form The binding area 111 including the first sub-area 1111 and the second sub-area 1112 . In this way, the process can be simplified, and the existing equipment in the factory can be used without adding manual work, thereby improving the efficiency.
  • first sub-region 1111 and the second sub-region 1112 may also be provided with different layers and/or different materials from the liquid crystal driving region 112.
  • the pattern of the binding area 111 further includes a first sub-area 1111 located between the second sub-area 1112 and the first sub-area 1111 An isolation line 113 and a second isolation line 114 located between the second sub-region 1112 and the liquid crystal driving region 112 .
  • the second sub-region 1112 needs to be isolated from the first sub-region 1111 and the liquid crystal driving region 112 to avoid signal interference.
  • the second sub-region 1112 It can be separated from the first sub-region 1111 by a first isolation line 113 , and the second sub-region 1112 and the liquid crystal driving region 112 can be separated by a second isolation line 114 .
  • the first isolation line 113 and the second isolation line 114 are arranged perpendicular to each other.
  • the isolation pattern used to separate the second sub-region 1112, the first sub-region 1111 and the liquid crystal driving region 112 in the binding area 111 is not limited to an isolation line pattern, but may also be an isolation pattern. Other shapes, and the specific directions of the first isolation line 113 and the second isolation line 114 are not limited to being perpendicular to each other.
  • the binding region 111 is divided into the first sub-region 1111 and the second sub-region by the first isolation line 113 and the second isolation line 114 1112, the first sub-region 1111 and the second sub-region 1112 are distributed on opposite sides, and the orthographic projections of the first sub-region 1111 and the second sub-region 1112 on the first substrate 100 are rectangular or elongated.
  • the specific projection shapes of the first sub-region 1111 and the second sub-region 1112 are not limited to this, and may also be other shapes, such as a trapezoid and the like.
  • the first isolation line 113 and the second isolation line 114 may not be limited to straight lines, but may also be arcs or the like.
  • the first isolation line 113 and the second isolation line 114 are both laser etched lines. That is to say, the first isolation lines 113 and the second isolation lines 114 are formed by a laser etching process. Compared with other etching methods, the laser etching method has the advantages of simple process and the like. Of course, it can be understood that the specific etching method for the first isolation line 113 and the second isolation line 114 is not limited to this.
  • the dimming window further includes a frame sealant located between the first substrate 100 and the second substrate 200 arranged in the cell alignment and surrounding the periphery of the liquid crystal layer 300 .
  • the binding region 111 is located on the outer side of the sealant away from the liquid crystal layer 300 .
  • the liquid crystal layer 300 includes dye liquid crystal.
  • the liquid crystal layer 300 may be a dye liquid crystal containing a chiral agent.
  • the specific material selection of the liquid crystal layer 300 is not limited herein.
  • An embodiment of the present disclosure also provides a method for manufacturing a dimming window, which is used for manufacturing the dimming window provided by the embodiment of the present disclosure, and the method includes the following steps:
  • Step S01 manufacturing a first substrate 100 , at least one side of the first substrate 100 is a single substrate region B beyond the second substrate 200 , and a first substrate 100 is formed on the side of the first substrate 100 facing the second substrate 200 .
  • a transparent conductive layer 110, the first transparent conductive layer 110 includes a binding area 111 located in the single substrate area B, and the pattern of the binding area 111 includes a first sub-area 1111 and a second sub-area that are spaced apart Area 1112, the first sub-area 1111 is bound and connected to a first driving circuit that drives the first substrate 100, and the second sub-area 1112 is bound and connected to a second driving circuit that drives the second substrate 200 ;
  • Step S02 manufacturing a second substrate 200 , a second transparent conductive layer 210 is formed on the side of the second substrate 200 facing the first substrate 100 ;
  • Step S03 assembling the first substrate 100 and the second substrate 200 , wherein a conductive connection is performed between the second sub-region 1112 and the second transparent conductive layer 210 .
  • the cutting size of the first substrate 100 of the dimming window is designed to be larger than the cutting size of the second substrate 200, so that at least one side of the first substrate 100 extends beyond the second substrate 200 and is formed as a single substrate area B.
  • the first transparent conductive layer 110 covered on the side of the first substrate 100 facing the second substrate 200 is an entire film layer covering the entire surface of the first substrate 100 , wherein a part of the first transparent conductive layer 110 covers the entire surface of the first substrate 100 In the single-substrate region B, this part is the binding region 111, which is used to bind and connect the driving circuit; the binding region 111 is patterned and divided into a first sub-region 1111 and a second sub-region 1112 that are separated from each other, The first sub-region 1111 is connected to the first transparent conductive layer 110 and is bound to the driving circuit of the first substrate 100; the second sub-region 1112 is separated from the first sub-region 1111 and bound to the second substrate 200, and is in conduction with the second transparent
  • step S01 specifically includes the following steps:
  • Step S011 cutting to obtain a first base substrate of the first substrate 100, and the single substrate region B beyond the second substrate 200 is reserved on the first base substrate;
  • Step S012 forming a first conductive film on the first substrate 100;
  • Step S013 patterning the first conductive film to form the first transparent conductive layer 110 .
  • the step S013 specifically includes: patterning the first conductive film by means of laser etching.
  • the laser etching process for the first conductive film has the advantages of high etching precision and easy operation compared with other patterning methods.
  • the step S03 specifically includes:
  • Silver glue 300 is dotted on the second sub-region 1112 on the first substrate 100 , and the second sub-region 1112 and the second transparent conductive layer 210 are electrically connected through the silver glue 300 .
  • the second sub-region 1112 can also be connected to the second transparent conductive layer 210 in other ways, for example, solder ball bonding or wire connection can also be used.

Abstract

一种调光视窗及其制造方法,调光视窗包括对盒设置的第一基板(100)和第二基板(200),第一基板(100)超出第二基板(200)外的部分为单基板区(B),第一基板(100)在面向第二基板(200)的一侧设有第一透明导电层(110),第二基板(200)在面向第一基板(100)的一侧设有第二透明导电层(210);设置于第一基板(100)与第二基板(200)之间的液晶层(300);第一透明导电层(110)包括位于单基板区(B)的绑定区域(111),绑定区域(111)的图案包括隔开设置的第一子区域(1111)和第二子区域(1112);第一子区域(1111)与驱动第一基板(100)的第一驱动电路绑定连接,第二子区域(1112)与驱动第二基板(200)的第二驱动电路绑定连接;且第二子区域(1112)与第二透明导电层(210)之间导电连接。实现单独在第一基板(100)上进行绑定即可对两个基板进行电路驱动的目的,无需在基板上进行挖孔,减少工艺难度,减少工艺耗时,且提升良率。

Description

一种调光视窗及其制造方法 技术领域
本公开涉及显示技术领域,尤其涉及一种调光视窗及其制造方法。
背景技术
在相关技术中,智慧调光视窗是一种电子控光产品,包括ECD(Electron Capture Detector,电子捕获检测器),PDLC(polymer dispersed liquid crystal,聚合物分散液晶)等方式的调光窗。一般应用在玻璃隔断,例如:酒店隔断、办公室隔断、浴室隔断、银行、售票厅窗口隔断等,美观且能保护隐私,具有防水、隔热、调光等多种功能,也应用于别墅窗户玻璃、汽车车窗玻璃、酒柜书柜售货柜等门玻璃,控制光线射入以及隐私。以PDLC智慧调光视窗为例,VA(vertical alignment)模式的染料液晶智慧调光视窗的原理是,将含手性剂的染料液晶固化在两层透明导电膜(例如ITO)中间,由上、下两层透明导电膜驱动,通过对染料液晶的控制,实现明暗变化。
智慧调光视窗产品由于只涉及明、暗两种灰阶显像形式,且无具体像素单元,从而为了适应诸多尺寸、形状、大小不一的一系列产品,不再单独设计透明导电膜层的掩模版(Mask),而是整张基板覆盖透明导电膜层。而对于驱动电路绑定(Bonding)问题,相关技术中所采取的方式是,在外接电路设计时,阵列基板和彩膜基板大小一致,无预留的屏幕(Pad)边,切割基板时,在阵列基板和彩膜基板上需要分别各挖一个避让孔,阵列基板上的避让孔用于避让彩膜基板上的电路绑定(Bonding)结构,彩膜基板上的避让孔用于避让阵列基板上的电路绑定(Bonding)结构。这样的结构,在两个基板上挖孔存在工艺难度大,且厂内无对应设备,导致多采取手动对应,且耗时长,破损率高等问题。
发明内容
本公开实施例提供了一种调光视窗及其制造方法,无需在基板上进行挖孔,减少工艺难度,减少工艺耗时,且提升良率。
本公开实施例所提供的技术方案如下:
本公开实施例提供了一种调光视窗,包括:
对盒设置的第一基板和第二基板,所述第一基板至少一侧边缘超出所述第二基板外,所述第一基板超出所述第二基板外的部分为单基板区,所述第一基板在面向所述第二基板的一侧设有第一透明导电层,所述第二基板在面向所述第一基板的一侧设有第二透明导电层;
及,设置于所述第一基板与所述第二基板之间的液晶层;
其中,
所述第一透明导电层包括位于所述单基板区的绑定区域,所述绑定区域的图案包括隔开设置的第一子区域和第二子区域;
所述第一子区域与驱动所述第一基板的第一驱动电路绑定连接,所述第二子区域与驱动所述第二基板的第二驱动电路绑定连接;
且所述第二子区域与所述第二透明导电层之间导电连接。
示例性的,所述第一基板为阵列基板,所述第二基板为彩膜基板。
示例性的,所述第二子区域与所述第二透明导电层之间通过银胶进行导电连接。
示例性的,所述第一透明导电层包括液晶驱动区域,所述液晶驱动区域与所述第二透明导电层在所述第一基板上的正投影完全重叠,且所述液晶驱动区域为整面覆盖于所述第一基板上的整面膜层结构,所述第一子区域由所述液晶驱动区域延伸形成、与所述液晶驱动区域同层且同材质设置。
示例性的,所述绑定区域的图案还包括位于所述第二子区域与所述第一子区域之间的第一隔离线、以及位于所述第二子区域与所述液晶驱动区域之间的第二隔离线。
示例性的,所述第一隔离线与所述第二隔离线相互垂直设置。
示例性的,所述第一隔离线和所述第二隔离线均为激光刻蚀线。
示例性的,所述调光视窗还包括位于对盒设置的第一基板和第二基板之 间、且围绕于所述液晶层外围的封框胶,所述绑定区域位于所述封框胶的远离所述液晶层的外侧。
示例性的,所述液晶层包括染料液晶。
一种调光视窗的制造方法,用于制造如上所述的调光视窗,所述方法包括如下步骤:
制造第一基板,所述第一基板至少一侧为超出第二基板外的单基板区,在所述第一基板的面向第二基板的一侧形成有第一透明导电层,所述第一透明导电层包括位于所述单基板区的绑定区域,所述绑定区域的图案包括隔开设置的第一子区域和第二子区域,所述第一子区域与驱动所述第一基板的第一驱动电路绑定连接,所述第二子区域与驱动所述第二基板的第二驱动电路绑定连接;
制造第二基板,所述第二基板的面向第一基板的一侧形成有第二透明导电层;
将所述第一基板与所述第二基板进行对盒,其中所述第二子区域与所述第二透明导电层之间进行导电连接。
示例性的,所述方法中,所述制造第一基板具体包括如下步骤:
切割得到第一基板的第一衬底基板,所述第一衬底基板保留超出第二基板外的所述单基板区;
在所述第一基板上形成第一导电膜;
对所述第一导电膜进行图案化处理,以形成所述第一透明导电层。
示例性的,所述对所述第一导电膜进行图案化处理,以形成所述第一透明导电层,具体包括:
采用激光刻蚀方式,对所述第一导电膜进行图案化处理。
示例性的,所述将所述第一基板与所述第二基板进行对盒,其中所述第二子区域与所述第二透明导电层之间进行导电连接,具体包括:
在所述第一基板上的所述第二子区域上点银胶,通过银胶将所述第二子区域与所述第二透明导电层之间进行导电连接。
本公开实施例所带来的有益效果如下:
本公开实施例所提供的调光视窗及其制造方法,通过将调光视窗的第一基板切割尺寸设计为大于第二基板的切割尺寸,使第一基板至少一侧超出第二基板外,而形成单基板区,在该单基板区所覆盖的第一透明导电层即为用于绑定驱动电路的绑定区域,其中该绑定区域又图案化分为相互隔开的第一子区域和第二子区域,第一子区域用于绑定第一基板的驱动电路,第二子区域用于绑定第二基板的驱动电路,且通过将第二子区域与第二基板上的第二透明导电层导通,由此实现单独在第一基板上进行绑定即可对两个基板进行电路驱动的目的。由此可见,本公开实施例所提供的调光视窗及其制造方法,通过在第一基板至少一侧保留凸出于第二基板外的单基板区(即Pad边),可以无需挖孔避让绑定电路,可以降低工艺难度,减少工艺耗时,提升产品良率。
附图说明
图1表示相关技术中的调光视窗的立体结构示意图;
图2表示相关技术中的调光视窗的在电路绑定侧的断面结构示意图;
图3表示本公开实施例所提供的调光视窗的俯视图,其中所述第二基板位于所述第一基板的上方;
图4表示图3中A-A’的断面结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分 不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在对本公开实施例所提供的调光视窗及其制造方法进行详细说明之前,有必要对于相关技术进行以下说明:
图1所示为相关技术中的调光视窗的立体结构示意图;图2所示为相关技术中的调光视窗的电路绑定侧的截面结构示意图。
如图1和图2所示,在相关技术中,VA模式的调光视窗包括对盒的上基板10和下基板20、以及设置于上基板10和下基板20之间的液晶层30,其中上基板10分别设有上透明导电层11,下基板20上设有下透明导电层21,上、下基,上的透明导电层驱动液晶偏转状态,实现对明暗状态转换。例如,图所示,上基板10、下基板20上的透明导电层未通电时,液晶未发生偏转,此时该调光视窗呈透明状态;上、下基板上的透明导电层通电时,液晶发生偏转,此时该调光视窗呈不透明状态。
如图1和图2所示,在相关技术中,VA模式的调光视窗产品由于只涉及明、暗两种灰阶显像形式,且无具体像素单元,从而为了适应诸多尺寸、形状、大小不一的一系列产品,不再单独设计透明导电膜层的掩模版(Mask),而是整张基板覆盖透明导电膜层,对于驱动电路绑定(Bonding)问题所采取的方式是,在外接电路设计时,第一基板10和第二基板20的大小一致,无预留的屏幕(Pad)边,切割基板时,在第一基板10和第二基板20需要分别各挖一个避让孔40,第一基板上的避让孔用于避让第二基板上的电路绑定(Bonding)结构,第二基板上的避让孔用于避让第一基板上的电路绑定(Bonding)结构。这样的结构,需要在两个基板上分别挖孔,存在工艺难度大,且厂内无对应设备,导致多采取手动对应,且耗时长,破损率高等问题。
为了解决上述问题,本公开实施例提供了一种调光视窗及其制造方法,能够降低工艺难度,减少耗时,提高产品良率。
图3所示为本公开一些实施例中提供的调光视窗的结构俯视图;图4所示为图3中A-A’的断面结构示意图。
如图3和图4所示,本公开实施例所提供的调光视窗包括对盒设置的第一基板100和第二基板200、以及设置于第一基板100和第二基板200之间的液晶层300;所述第一基板100在面向所述第二基板200的一侧设有第一透明导电层110,所述第二基板200在面向所述第一基板100的一侧设有第二透明导电层210;所述第一基板100至少一侧边缘超出所述第二基板200外,所述第一基板100超出所述第二基板200外的部分为单基板区B;其中,所述第一透明导电层110包括位于所述单基板区B的绑定区域111,所述绑定区域111的图案包括隔开设置的第一子区域1111和第二子区域1112;所述第一子区域1111与驱动所述第一基板100的第一驱动电路绑定连接,所述第二子区域1112与驱动所述第二基板200的第二驱动电路绑定连接;且所述第二子区域1112与所述第二透明导电层210之间导电连接。
上述方案中,通过将调光视窗的第一基板100切割尺寸设计为大于第二基板200的切割尺寸,而使得第一基板100至少一侧超出第二基板200外,并形成为单基板区B,第一基板100的面向第二基板200的一侧所覆盖的第一透明导电层110为整面覆盖第一基板100表面的整面膜层,其中该第一透明导电层110会一部分覆盖在所述单基板区B,这一部分即为绑定区域111,用于绑定连接驱动电路;该绑定区域111被图案化而分为相互隔开的第一子区域1111和第二子区域1112,所述第一子区域1111与所述第一透明导电层110连接,并绑定连接第一基板100的驱动电路;第二子区域1112与第一子区域1111隔开,并绑定第二基板200的驱动电路,且与第二基板200上的第二透明导电层210导通,从而,可实现由单独设置在第一基板100上的绑定区域111,同时对两个基板进行电路驱动的目的。
由此可见,本公开实施例所提供的调光视窗,通过在第一基板100至少一侧保留凸出于第二基板200外的单基板区B(即Pad边),可以无需挖孔避 让绑定电路,可以降低工艺难度,减少工艺耗时,提升产品良率。
以下对本公开实施例所提供的调光视窗进行更为详细的说明。
在一些示例性的实施例中,所述第一基板100可以为阵列基板,所述第二基板200为彩膜基板。当然应当理解的是,在实际应用中,所述第一基板100和所述第二基板200的具体类型不限于此,可根据实际需求,选择所述第一基板100和所述第二基板200。
此外,在一些示例性的实施例中,如图3和图4所示,所述第二子区域1112与所述第二透明导电层210之间通过银胶300进行导电连接。
在上述方案中,可通过在第一基板100上预留的第二子区域1112上点银胶300,利用银胶300来实现第二子区域1112与第二透明导电层210导通目的,这种方式,易操作,连接可靠。应当理解的是,在实际应用中,所述第二子区域1112与所述第二透明导电层210之间的导通方式可以不限于此,例如,还可以利用导线直接连接,或者利用焊球焊接等方式进行连接等。
此外,在一些示例性的实施例中,如图3和图4所示,所述第一透明导电层110除包括所述绑定区域111之外,还包括液晶驱动区域112,所述液晶驱动区域112为与所述第二透明导电层210在所述第一基板100上的正投影完全重叠的区域,且所述液晶驱动区域112为整面覆盖于所述第一基板100上的整面膜层结构,所述第一子区域1111由所述液晶驱动区域112延伸形成、与所述液晶驱动区域112同层且同材质设置。
在上述方案中,所述第一子区域1111是与所述液晶驱动区域112同层且同材质,也就是说,所述第一子区域1111与所述液晶驱动区域112为一体膜层,如图3和图4所示,所述第二子区域1112优选的也是与第一子区域1111同层且同材质,这样,在工艺制作所述第一子区域1111和所述第二子区域1112时,可以是:首先在所述第一基板100上整面覆盖第一导电膜,然后,对所述第一导电膜位于所述单基板区B的部分进行图案化处理,而形成包括所述第一子区域1111和所述第二子区域1112在内的所述绑定区域111。这样,可以简化工艺,利用厂内现有设备即可,无需增加手工作业,提高效率。
需要说明的是,在实际应用中,所述第一子区域1111和所述第二子区域 1112也可以是与所述液晶驱动区域112不同层和/或不同材质设置。
此外,作为一种示例性的实施例,如图3和图4所示,所述绑定区域111的图案还包括位于所述第二子区域1112与所述第一子区域1111之间的第一隔离线113、以及位于所述第二子区域1112与所述液晶驱动区域112之间的第二隔离线114。
采用上述方案,所述第二子区域1112需要与第一子区域1111以及所述液晶驱动区域112隔离开,以避免信号干扰,其中如图3和图4所示,所述第二子区域1112与所述第一子区域1111之间可通过第一隔离线113隔开,所述第二子区域1112和所述液晶驱动区域112之间可通过第二隔离线114隔开。且示例性的,如图3和图4所示,所述第一隔离线113与所述第二隔离线114相互垂直设置。
应当理解的是,所述绑定区域111内用于隔开所述第二子区域1112、所述第一子区域1111以及所述液晶驱动区域112的隔离图形不限于隔离线图形,还可以是其他形状,且所述第一隔离线113与所述第二隔离线114的具体走向也不限于相互垂直的状态。
例如,作为一种示例性的实施例中,所述绑定区域111被所述第一隔离线113和所述第二隔离线114划分为所述第一子区域1111和所述第二子区域1112,且第一子区域1111和第二子区域1112分布于相对两侧,且第一子区域1111和第二子区域1112在第一基板100上的正投影呈矩形或长条形。当然可以理解的是,所述第一子区域1111和所述第二子区域1112的具体投影形状不限于此,还可以是其他形状,例如,梯形等。所述第一隔离线113和所述第二隔离线114也可以不限于直线,还可以是弧线等。
此外,作为一种示例性的实施例,所述第一隔离线113和所述第二隔离线114均为激光刻蚀线。也就是说,所述第一隔离线113和所述第二隔离线114是通过激光刻蚀工艺而形成的,采用激光刻蚀方式相较于其他刻蚀方式,具有工艺简单等优点。当然可以理解的是,对于所述第一隔离线113和所述第二隔离线114的具体刻蚀方式不限于此。
此外,如图3和图4所示,所述调光视窗还包括位于对盒设置的第一基 板100和第二基板200之间、且围绕于所述液晶层300外围的封框胶,所述绑定区域111位于所述封框胶的远离所述液晶层300的外侧。
此外,所述液晶层300包括染料液晶。尤其是,液晶层300可以是采用含手性剂的的染料液晶。对于所述液晶层300的具体选材在此不进行限定。
本公开实施例还提供了一种调光视窗的制造方法,用于制造本公开实施例所提供的调光视窗,所述方法包括如下步骤:
步骤S01、制造第一基板100,所述第一基板100至少一侧为超出第二基板200外的单基板区B,在所述第一基板100的面向第二基板200的一侧形成有第一透明导电层110,所述第一透明导电层110包括位于所述单基板区B的绑定区域111,所述绑定区域111的图案包括隔开设置的第一子区域1111和第二子区域1112,所述第一子区域1111与驱动所述第一基板100的第一驱动电路绑定连接,所述第二子区域1112与驱动所述第二基板200的第二驱动电路绑定连接;
步骤S02、制造第二基板200,所述第二基板200的面向第一基板100的一侧形成有第二透明导电层210;
步骤S03、将所述第一基板100与所述第二基板200进行对盒,其中所述第二子区域1112与所述第二透明导电层210之间进行导电连接。
上述方案中,通过将调光视窗的第一基板100切割尺寸设计为大于第二基板200的切割尺寸,而使得第一基板100至少一侧超出第二基板200外,并形成为单基板区B,第一基板100的面向第二基板200的一侧所覆盖的第一透明导电层110为整面覆盖第一基板100表面的整面膜层,其中该第一透明导电层110会一部分覆盖在所述单基板区B,这一部分即为绑定区域111,用于绑定连接驱动电路;该绑定区域111被图案化而分为相互隔开的第一子区域1111和第二子区域1112,所述第一子区域1111与所述第一透明导电层110连接,并绑定连接第一基板100的驱动电路;第二子区域1112与第一子区域1111隔开,并绑定第二基板200的驱动电路,且与第二基板200上的第二透明导电层210导通,从而,可实现由单独设置在第一基板100上的绑定区域111,同时对两个基板进行电路驱动的目的。
作为一种示例性的实施例中,所述方法中,步骤S01具体包括如下步骤:
步骤S011、切割得到第一基板100的第一衬底基板,所述第一衬底基板上保留超出第二基板200外的所述单基板区B;
步骤S012、在所述第一基板100上形成第一导电膜;
步骤S013、对所述第一导电膜进行图案化处理,以形成所述第一透明导电层110。
示例性的,所述步骤S013具体包括:采用激光刻蚀方式,对所述第一导电膜进行图案化处理。
上述方案,第一导电膜采用激光刻蚀工艺相较于其他图案化方式,具有刻蚀精度高、易操作等优点。
此外,作为一种示例性的实施例,所述步骤S03具体包括:
在所述第一基板100上的所述第二子区域1112上点银胶300,通过银胶300将所述第二子区域1112与所述第二透明导电层210之间进行导电连接。
当然可以理解的是,在实际应用中,所述第二子区域1112也可以通过其他方式来与第二透明导电层210之间导通,例如,还可以利用焊球焊接或者导线连接等方式。
有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”或者可以存在中间元件。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以权利要求的保护范围为准。

Claims (13)

  1. 一种调光视窗,其特征在于,包括:
    对盒设置的第一基板和第二基板,所述第一基板至少一侧边缘超出所述第二基板外,所述第一基板超出所述第二基板外的部分为单基板区,所述第一基板在面向所述第二基板的一侧设有第一透明导电层,所述第二基板在面向所述第一基板的一侧设有第二透明导电层;
    及,设置于所述第一基板与所述第二基板之间的液晶层;
    其中,
    所述第一透明导电层包括位于所述单基板区的绑定区域,所述绑定区域的图案包括隔开设置的第一子区域和第二子区域;
    所述第一子区域与驱动所述第一基板的第一驱动电路绑定连接,所述第二子区域与驱动所述第二基板的第二驱动电路绑定连接;
    且所述第二子区域与所述第二透明导电层之间导电连接。
  2. 根据权利要求1所述的调光视窗,其特征在于,
    所述第一基板为阵列基板,所述第二基板为彩膜基板。
  3. 根据权利要求1所述的调光视窗,其特征在于,
    所述第二子区域与所述第二透明导电层之间通过银胶进行导电连接。
  4. 根据权利要求1所述的调光视窗,其特征在于,
    所述第一透明导电层包括液晶驱动区域,所述液晶驱动区域与所述第二透明导电层在所述第一基板上的正投影完全重叠,且所述液晶驱动区域为整面覆盖于所述第一基板上的整面膜层结构,所述第一子区域由所述液晶驱动区域延伸形成、与所述液晶驱动区域同层且同材质设置。
  5. 根据权利要求4所述的调光视窗,其特征在于,
    所述绑定区域的图案还包括位于所述第二子区域与所述第一子区域之间的第一隔离线、以及位于所述第二子区域与所述液晶驱动区域之间的第二隔离线。
  6. 根据权利要求5所述的调光视窗,其特征在于,
    所述第一隔离线与所述第二隔离线相互垂直设置。
  7. 根据权利要求5或6所述的调光视窗,其特征在于,
    所述第一隔离线和所述第二隔离线均为激光刻蚀线。
  8. 根据权利要求1所述的调光视窗,其特征在于,
    所述调光视窗还包括位于对盒设置的第一基板和第二基板之间、且围绕于所述液晶层外围的封框胶,所述绑定区域位于所述封框胶的远离所述液晶层的外侧。
  9. 根据权利要求1所述的调光视窗,其特征在于,
    所述液晶层包括染料液晶。
  10. 一种调光视窗的制造方法,其特征在于,用于制造如权利要求1至9任一项所述的调光视窗,所述方法包括如下步骤:
    制造第一基板,所述第一基板至少一侧为超出第二基板外的单基板区,在所述第一基板的面向第二基板的一侧形成有第一透明导电层,所述第一透明导电层包括位于所述单基板区的绑定区域,所述绑定区域的图案包括隔开设置的第一子区域和第二子区域,所述第一子区域与驱动所述第一基板的第一驱动电路绑定连接,所述第二子区域与驱动所述第二基板的第二驱动电路绑定连接;
    制造第二基板,所述第二基板的面向第一基板的一侧形成有第二透明导电层;
    将所述第一基板与所述第二基板进行对盒,其中所述第二子区域与所述第二透明导电层之间进行导电连接。
  11. 根据权利要求10所述的调光视窗的制造方法,其特征在于,
    所述方法中,所述制造第一基板具体包括如下步骤:
    切割得到第一基板的第一衬底基板,所述第一衬底基板保留超出第二基板外的所述单基板区;
    在所述第一基板上形成第一导电膜;
    对所述第一导电膜进行图案化处理,以形成所述第一透明导电层。
  12. 根据权利要求11所述的调光视窗的制造方法,其特征在于,
    所述对所述第一导电膜进行图案化处理,以形成所述第一透明导电层,具体包括:
    采用激光刻蚀方式,对所述第一导电膜进行图案化处理。
  13. 根据权利要求10所述的调光视窗的制造方法,其特征在于,
    所述将所述第一基板与所述第二基板进行对盒,其中所述第二子区域与所述第二透明导电层之间进行导电连接,具体包括:
    在所述第一基板上的所述第二子区域上点银胶,通过银胶将所述第二子区域与所述第二透明导电层之间进行导电连接。
PCT/CN2021/089210 2021-04-23 2021-04-23 一种调光视窗及其制造方法 WO2022222129A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/089210 WO2022222129A1 (zh) 2021-04-23 2021-04-23 一种调光视窗及其制造方法
CN202180000878.3A CN116097161A (zh) 2021-04-23 2021-04-23 一种调光视窗及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/089210 WO2022222129A1 (zh) 2021-04-23 2021-04-23 一种调光视窗及其制造方法

Publications (1)

Publication Number Publication Date
WO2022222129A1 true WO2022222129A1 (zh) 2022-10-27

Family

ID=83723374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/089210 WO2022222129A1 (zh) 2021-04-23 2021-04-23 一种调光视窗及其制造方法

Country Status (2)

Country Link
CN (1) CN116097161A (zh)
WO (1) WO2022222129A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104793362A (zh) * 2015-03-30 2015-07-22 深超光电(深圳)有限公司 液晶显示面板
CN106501981A (zh) * 2016-12-13 2017-03-15 昆山龙腾光电有限公司 复合型液晶显示装置及其制作方法
WO2019148165A1 (en) * 2018-01-29 2019-08-01 President And Fellows Of Harvard College Tunable blinds for windows
CN111983863A (zh) * 2019-05-24 2020-11-24 京东方科技集团股份有限公司 调光玻璃
CN212341650U (zh) * 2020-08-12 2021-01-12 苏州百斯特玻科技有限公司 一种百叶窗式调光器件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104793362A (zh) * 2015-03-30 2015-07-22 深超光电(深圳)有限公司 液晶显示面板
CN106501981A (zh) * 2016-12-13 2017-03-15 昆山龙腾光电有限公司 复合型液晶显示装置及其制作方法
WO2019148165A1 (en) * 2018-01-29 2019-08-01 President And Fellows Of Harvard College Tunable blinds for windows
CN111983863A (zh) * 2019-05-24 2020-11-24 京东方科技集团股份有限公司 调光玻璃
CN212341650U (zh) * 2020-08-12 2021-01-12 苏州百斯特玻科技有限公司 一种百叶窗式调光器件

Also Published As

Publication number Publication date
CN116097161A (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
JP3772888B2 (ja) 電気光学装置及び電子機器
TWI657289B (zh) 顯示面板
CN104460169A (zh) 电极板、电致变色板、电致变色镜及其显示装置
WO2020093983A1 (zh) 一种显示面板及其制备方法、移动终端及其制备方法
CN101369074A (zh) 显示装置
CN104900655A (zh) 阵列基板及其制备方法、显示装置
TWI310540B (en) Electro-optical device and electronic apparatus
CN111367128B (zh) 低温多晶硅显示面板及其制作方法、液晶显示装置
JP4776915B2 (ja) 表示パネル及びその製造方法、並びにこれを有する液晶表示装置
WO2021248783A1 (zh) 一种彩膜基板、显示面板、显示装置
CN102998862B (zh) 阵列基板及液晶显示面板
US11372289B2 (en) Display panel comprising at least one binding alignment block having a thickness greater than a thickness of each of a plurality of binding pins and method of manufacturing the same
KR101153299B1 (ko) 액정표시소자 및 그 제조방법
WO2021056729A1 (zh) 阵列基板、显示面板及阵列基板的制作方法
WO2022222129A1 (zh) 一种调光视窗及其制造方法
EP4075191A1 (en) Switchable glass and intelligent vehicle window
CN102227678B (zh) 液晶显示装置和液晶显示装置的tft基板的制造方法
CN111965905B (zh) 可调光面板、智能窗玻璃、制作方法及控制方法
JP3290379B2 (ja) 表示装置及びその製造方法
CN101566790A (zh) 制造液晶显示面板用掩模板
CN201489270U (zh) 制造液晶显示面板用掩模板
KR100698059B1 (ko) 액정표시장치 및 이의 제조방법
WO2020140294A1 (zh) 阵列基板及其制作方法和电子装置
CN206638948U (zh) 一种apr版及柔性基板
JP3767607B2 (ja) 電気光学装置及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937365

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE