WO2022222085A1 - 变焦透镜以及具备变焦透镜的摄像装置 - Google Patents

变焦透镜以及具备变焦透镜的摄像装置 Download PDF

Info

Publication number
WO2022222085A1
WO2022222085A1 PCT/CN2021/088809 CN2021088809W WO2022222085A1 WO 2022222085 A1 WO2022222085 A1 WO 2022222085A1 CN 2021088809 W CN2021088809 W CN 2021088809W WO 2022222085 A1 WO2022222085 A1 WO 2022222085A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens group
lens
zoom lens
zoom
focal length
Prior art date
Application number
PCT/CN2021/088809
Other languages
English (en)
French (fr)
Inventor
帯金靖彦
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to US17/908,908 priority Critical patent/US20230359006A1/en
Priority to CN202180001462.3A priority patent/CN115516358A/zh
Priority to JP2021532297A priority patent/JP2023525415A/ja
Priority to EP21928370.2A priority patent/EP4328646A1/en
Priority to PCT/CN2021/088809 priority patent/WO2022222085A1/zh
Publication of WO2022222085A1 publication Critical patent/WO2022222085A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/177Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a negative front lens or group of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/0065Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/02Telephoto objectives, i.e. systems of the type + - in which the distance from the front vertex to the image plane is less than the equivalent focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/20Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length

Definitions

  • the present invention relates to a zoom lens including a plurality of lens groups, and an imaging device including the zoom lens.
  • an imaging device including a telescopic zoom lens that reduces the amount of reduction by relatively moving a part of the optical element in the same plane orthogonal to the optical axis when the zoom lens is changed from the imaging state to the telescopic state has been developed.
  • the size at the time of small expansion and contraction (refer to Patent Document 1).
  • the imaging apparatus 100 includes a zoom optical system 101 and an imaging element Se.
  • the zoom optical system 101 includes three lens groups (a first lens group 102 , a second lens group 103 , and a third lens group 104 ) and a low-pass filter 105 arranged in the direction of the optical axis C1 .
  • the second lens group 103 slides laterally from the optical axis C1 (see FIG. 27B ), and the first lens group 102 retreats to the position before the second lens group 103 slides (See Fig. 27C).
  • the size of the entire zoom optical system 101 in the thickness direction in this state is the size of the combination of the first lens group 102 and the third lens group 104 .
  • the dimension in the thickness direction is the dimension in the direction connecting the object to be imaged and the lens closest to the object of the zoom optical system 101 , and is the dimension in the left-right direction in FIGS. 27A to 27C .
  • the zoom optical system 101 when the zoom optical system 101 is retracted and accommodated, as described above, since the second lens group 103 slides laterally from the optical axis C1 and the first lens group 102 retreats to the position before the second lens group 103 slides, Therefore, it is possible to reduce the thickness by the number of the second lens groups 103 as compared with a general telescopic zoom optical system.
  • the size of the thickness of the two lens groups (the first lens group 102 and the third lens group 104 ) is also required when retracting and accommodating, so it cannot be said that the thickness can be reduced sufficiently. .
  • an imaging device 200 including a zoom optical system 201 that is thinned by bending the optical axis C2 using reflection prisms (reflection optical elements) 202A and 205A has been developed (refer to Patent Document 2). .
  • the zoom optical system 201 of the imaging device 200 includes a first lens group 202, a second lens group 203, a third lens group 204, and a fourth lens group 205 in this order from the object side to the image side along the optical axis C2.
  • the first lens group 202 and the fourth lens group 205 have reflecting prisms 202A and 205A, respectively, thereby achieving thinning.
  • thinning is achieved by bending the optical axis C2 with the reflection prisms 202A and 205A, but due to the distance between the reflection prisms 202A and 205A (the second lens group 203 and the third lens group are arranged) 204) is not reduced in the state where imaging is not performed, so it cannot be said that in the direction orthogonal to the thickness direction (from the reflection prism 202A of the first lens group 202 to the reflection prism 205A of the fourth lens group 205) direction: the left-right direction in FIG. 28 ) can be sufficiently downsized.
  • an imaging device 300 which includes a zoom optical system 301 including, in order from the object side to the image side along the optical axis C3: a first lens group 302, It has a positive curvature; a second lens group 303, which has a negative curvature; a reflection prism (reflection optical element) 304, which bends the optical axis C3; and a subsequent lens group 305, which includes a plurality of lens groups (refer to Patent Document 3 ).
  • a zoom optical system 301 including, in order from the object side to the image side along the optical axis C3: a first lens group 302, It has a positive curvature; a second lens group 303, which has a negative curvature; a reflection prism (reflection optical element) 304, which bends the optical axis C3; and a subsequent lens group 305, which includes a plurality of lens groups (refer to Patent Document 3 ).
  • the first lens group 302 and the second lens group 303 move during magnification change, and during telescopic storage, the reflective prism 304 moves to a position different from that during imaging.
  • a first lens group 302 and a second lens group 303 are telescopically accommodated in the space.
  • the first lens group 302 and the second lens group 303 are accommodated in the space vacated by the movement of the reflecting prism 304 when retracting and accommodating, thereby achieving thinning without imaging , but since the first lens group 302 and the second lens group 303 are telescopically accommodated (refer to FIG. 29B ), the size in the thickness direction (the size in the left-right direction in FIG. 29B ) needs to be at least these two lens groups The combined size of 302 and 303 cannot achieve sufficient thinning. Furthermore, in this zoom optical system 301, since the first lens group 302 has a positive refractive index, it is difficult to widen the angle.
  • Patent Document 1 Japanese Patent No. 4520190
  • Patent Document 2 Japanese Patent No. 5551055
  • Patent Document 3 Japanese Patent No. 4790052
  • an object of the present invention is to provide a zoom lens capable of widening the angle of view while achieving reduction in thickness and size during telescopic storage, and an imaging device including the zoom lens.
  • the zoom lens of the present invention is a zoom lens that can be telescopically accommodated
  • first lens group It is provided with a first lens group, a second lens group and a P lens group in sequence along the optical axis from the object side to the image side;
  • the first lens group has negative refractive power
  • the second lens group has a reflective optical element that bends the optical axis
  • the second lens group moves to the image side along the optical axis, and at least a part of the first lens group is telescopically accommodated into a space created by the movement of the second lens group.
  • the P lens group has positive refractive power
  • At least the first lens group of the first lens group and the second lens group is moved along the optical axis to narrow the interval with the second lens group;
  • the P lens group is moved to narrow the interval with the second lens group
  • the position of the second lens group relative to the image plane on the optical axis may be fixed.
  • the zoom lens includes an I lens group, which is arranged closer to the image side than the P lens group, and which is relative to the image on the optical axis when changing the magnification from the wide-angle end to the telephoto end.
  • the position of the face is fixed;
  • the I lens group may further include a reflective optical element that is disposed on the object side of the image plane of the zoom lens and that bends the optical axis.
  • the focal length of the first lens group is set to f1
  • the focal length of the wide-angle end is set to fw
  • the focal length of the P lens group is set as fP
  • the focal length at the wide-angle end is set as fw
  • the focal length at the telephoto end is set as ft
  • the focal length of the wide-angle end is set to fw
  • the focal length of the telephoto end is set to ft
  • the focal length of the first lens group is set to f1
  • the focal length of the P lens group is set to fP
  • the focal length at the telephoto end is set to ft
  • the focal length at the wide-angle end is set to fw
  • the lateral magnification of the P lens group in the infinity focus at the telephoto end is set to bPt
  • the infinity of the P lens group at the wide-angle end is set as bPt.
  • the focal length at the wide-angle end is set to fw
  • the focal length at the telephoto end is set to ft
  • the focal length of the second lens group is set to f2
  • the imaging device of the present invention includes:
  • an imaging element arranged at the position of the image plane of the zoom lens.
  • FIG. 1 is a schematic diagram showing a configuration of an imaging apparatus according to the present embodiment, and is a diagram showing an imaging state.
  • FIG. 2 is a schematic diagram showing the configuration of the imaging device, and is a diagram showing a state in which a zoom lens is stored.
  • 3A is a lens configuration diagram of the zoom lens of Example 1 in a wide-angle end state.
  • 3B is a lens configuration diagram of the zoom lens of Example 1 in a state of an intermediate focal position.
  • 3C is a lens configuration diagram of the zoom lens of Example 1 in a telephoto end state.
  • FIG. 4 is a longitudinal aberration diagram in the wide-angle end state of the zoom lens of Example 1.
  • FIG. 5 is a longitudinal aberration diagram in a state of an intermediate focal position of the zoom lens of Example 1.
  • FIG. 6 is a longitudinal aberration diagram in the telephoto end state of the zoom lens of Example 1.
  • Example 7A is a lens configuration diagram of the zoom lens of Example 2 in the wide-angle end state.
  • FIG. 7B is a lens configuration diagram of the zoom lens of Example 2 in a state of an intermediate focal position.
  • 7C is a lens configuration diagram of the zoom lens of Example 2 in the telephoto end state.
  • FIG. 8 is a longitudinal aberration diagram in the wide-angle end state of the zoom lens of Example 2.
  • FIG. 9 is a longitudinal aberration diagram in a state of an intermediate focal position of the zoom lens of Example 2.
  • FIG. 10 is a longitudinal aberration diagram in the telephoto end state of the zoom lens of Example 2.
  • FIG. 10 is a longitudinal aberration diagram in the telephoto end state of the zoom lens of Example 2.
  • 11A is a lens configuration diagram of the zoom lens of Example 3 in a wide-angle end state.
  • 11B is a lens configuration diagram of the zoom lens of Example 3 in a state of an intermediate focal position.
  • 11C is a lens configuration diagram of the zoom lens of Example 3 in the telephoto end state.
  • FIG. 12 is a longitudinal aberration diagram in the wide-angle end state of the zoom lens of Example 3.
  • FIG. 12 is a longitudinal aberration diagram in the wide-angle end state of the zoom lens of Example 3.
  • FIG. 13 is a longitudinal aberration diagram in a state of an intermediate focal position of the zoom lens of Example 3.
  • FIG. 14 is a longitudinal aberration diagram in the telephoto end state of the zoom lens of Example 3.
  • FIG. 14 is a longitudinal aberration diagram in the telephoto end state of the zoom lens of Example 3.
  • 15A is a lens configuration diagram of the zoom lens of Example 4 in a wide-angle end state.
  • 15B is a lens configuration diagram of the zoom lens of Example 4 in a state of an intermediate focal position.
  • 15C is a lens configuration diagram of the zoom lens of Example 4 in the telephoto end state.
  • FIG. 16 is a longitudinal aberration diagram in the wide-angle end state of the zoom lens of Example 4.
  • FIG. 17 is a longitudinal aberration diagram in the state of the intermediate focus position of the zoom lens of Example 4.
  • FIG. 18 is a longitudinal aberration diagram in the telephoto end state of the zoom lens of Example 4.
  • FIG. 18 is a longitudinal aberration diagram in the telephoto end state of the zoom lens of Example 4.
  • 19A is a lens configuration diagram of the zoom lens of Example 5 in a wide-angle end state.
  • 19B is a lens configuration diagram of the zoom lens of Example 5 in a state of an intermediate focal position.
  • 19C is a lens configuration diagram of the zoom lens of Example 5 in the telephoto end state.
  • FIG. 20 is a longitudinal aberration diagram in the wide-angle end state of the zoom lens of Example 5.
  • FIG. 20 is a longitudinal aberration diagram in the wide-angle end state of the zoom lens of Example 5.
  • FIG. 21 is a longitudinal aberration diagram in the state of the intermediate focus position of the zoom lens of Example 5.
  • FIG. 22 is a longitudinal aberration diagram in the telephoto end state of the zoom lens of Example 5.
  • FIG. 22 is a longitudinal aberration diagram in the telephoto end state of the zoom lens of Example 5.
  • 23A is a lens configuration diagram of the zoom lens of Example 6 in the wide-angle end state.
  • 23B is a lens configuration diagram of the zoom lens of Example 6 in a state of an intermediate focal position.
  • 23C is a lens configuration diagram of the zoom lens of Example 6 in the telephoto end state.
  • FIG. 24 is a longitudinal aberration diagram in the wide-angle end state of the zoom lens of Example 6.
  • FIG. 25 is a longitudinal aberration diagram in the state of the intermediate focus position of the zoom lens of Example 6.
  • FIG. 26 is a longitudinal aberration diagram in the telephoto end state of the zoom lens of Example 6.
  • 27A is a schematic diagram showing a configuration of a conventional imaging device, and is a diagram showing a photographing state.
  • 27B is a schematic diagram showing the configuration of the imaging device, and is a diagram showing a state in the middle of storing the zoom lens.
  • 27C is a schematic diagram showing the configuration of the imaging device, and is a diagram showing a state in which the zoom lens is stored.
  • FIG. 28 is a schematic diagram showing the structure of a conventional imaging device.
  • FIG. 29A is a schematic diagram showing a configuration of a conventional imaging device, and is a diagram showing an imaging state.
  • 29B is a schematic diagram showing the configuration of the imaging device, and is a diagram showing a state in which the zoom lens is stored.
  • the imaging apparatus of the present embodiment includes a foldable telescopic zoom lens (zoom optical system) 2 .
  • the first lens group G1 has a negative refractive power, so that it can cope with widening of the angle, and the expansion-contraction part is only the first lens group G1.
  • a reflective optical element I lens group GI
  • the thickness dimension (the dimension in the left-right direction in FIGS. 1 and 2 ) of the imaging device 1 is not affected by the imaging element 3 influence of appearance.
  • the reflective optical element slides during the telescopic storage, only the lenses (optical elements that constitute each lens group closer to the image side than the first lens group G1 ) correspond to the thickness of the imaging device 1 ), or the size of the first lens group G1 in the thickness direction.
  • the dimension in the thickness direction in this embodiment is the dimension in the direction connecting the object to be imaged and the lens closest to the object side of the zoom lens 2, and is the dimension in the left-right direction in FIGS. 1 and 2 . size.
  • the imaging device 1 includes: a zoom lens 2 that can be retracted and accommodated; an imaging element 3 that is arranged at an image plane position of the zoom lens 2; data.
  • the imaging element 3 is an element that converts an optical image formed by the zoom lens 2 into an electrical signal (imaging data), and the imaging element 3 of the present embodiment is an image sensor.
  • the zoom lens 2 includes at least a first lens group G1, a second lens group G2, a third lens group (P lens group) G3, and an I lens group GI in this order from the object side to the image side along the optical axis C.
  • the zoom lens 2 of this embodiment includes a first lens group G1 , a second lens group G2 , a third lens group G3 , a fourth lens group G4 , and an I lens group GI in this order from the object side to the image side along the optical axis C.
  • the fourth lens group G4 constitutes a focus lens group F. As shown in FIG.
  • the zoom lens 2 may not include the I lens group GI.
  • the lens groups G1 to GI are named for convenience, and also include lens groups composed of only one optical element (lens or the like).
  • the optical elements (lenses, etc.) whose positions on the optical axis C are fixed at the variable magnification are divided, respectively, and the optical elements that move in different trajectories.
  • the fixed at least one optical element is used as one lens group, and the moving at least one optical element in the divided area is used as another lens group.
  • the zoom lens 2 has an aperture stop 21 arranged on the image side of the second lens group G2 and a lens barrel 22 that holds the first lens group G1.
  • the lens barrel 22 is extended toward the object side during shooting (see FIG. 1 ), and is retracted and accommodated when not shooting (see FIG. 2 ).
  • this zoom lens 2 at the time of photographing, when changing the magnification from the wide-angle end to the telephoto end, at least the first lens group G1 of the first lens group G1 and the second lens group G2 is moved along the optical axis C to zoom out and The space between the second lens group G2 and the third lens group G3 is moved to narrow the space with the second lens group G2.
  • the positions of the second lens group G2 and the I lens group GI with respect to the image pickup element 3 (image plane of the zoom lens 2 ) on the optical axis C are fixed.
  • the zoom lens 2 when the zoom lens 2 is telescopically accommodated, for example, in a non-photographing state, the second lens group G2 moves to the image side along the optical axis C, and at least a part of the first lens group G1 is replaced by the second lens group G2.
  • the space created by the movement can be accommodated by expansion and contraction. That is, at the time of telescopic accommodation, at least a part of the first lens group G1 is telescopically accommodated in the space S in which the second lens group G2 is arranged at the time of photography.
  • the movement of each of the lens groups G1 to G4 and the expansion and contraction of the lens barrel 22 are performed by various conventionally known mechanisms.
  • each lens group G1 to GI of the zoom lens 2 will be described in detail.
  • the first lens group G1 includes a plurality of lenses (optical elements), and it has negative refractive power.
  • the second lens group G2 has a reflective optical element that bends the optical axis C.
  • the reflecting optical element of the present embodiment is a prism, but any optical element such as a mirror that can bend the optical path (optical axis C) may be used.
  • the second lens group G2 of the present embodiment is composed of only reflective optical elements.
  • the third lens group G3 includes a plurality of lenses (optical elements), and it has positive refractive power.
  • the I lens group GI includes a reflective optical element P, which is arranged on the object side of the imaging element 3 (image plane of the zoom lens 2 ), and an optical filter 23 that bends the optical axis C, and an optical filter 23 .
  • the light sheet 23 is arranged on the image side of the reflective optical element P.
  • the reflective optical element P of the present embodiment is a prism, but any optical element such as a mirror that can bend the optical path (optical axis C) may be used.
  • the ratio When the ratio is lower than the lower limit value (-6.000) of the formula (1), the refractive power of the first lens group G1 becomes weak, and a retrofocus-type refractive power arrangement cannot be obtained. Wide angle of field.
  • the ratio exceeds the upper limit value (-1.500) of the formula (1), the refractive power of the first lens group G1 becomes stronger, so that the widening of the angle becomes easy, but since the entire magnification variable area is In the area, it is difficult to correct lateral chromatic aberration, coma aberration, field curvature, etc. by each lens group G1 to GI, so the correction of each aberration is insufficient, and performance improvement cannot be achieved.
  • the above formula (1) shows the optimum condition of the focal length f1 of the first lens group G1.
  • the ratio preferably satisfies:
  • the focal length of the third lens group (P lens group) G3 is set to fP
  • the focal length of the wide-angle end is set to fw
  • the focal length of the telephoto end is set to ft
  • the refractive power of the third lens group G3 becomes strong, so that it becomes difficult to correct spherical aberration and the like, and performance cannot be improved.
  • the ratio exceeds the upper limit value (2.500) of the formula (2) the refractive power of the third lens group G3 becomes weak, and the total optical length becomes longer, making it difficult to integrate the optical system (zoom lens) 2 Overall miniaturization.
  • the third lens group G3 is a lens group having a positive refractive power, the total optical length can be reduced by increasing the refractive power, but on the other hand, aberration correction becomes difficult.
  • the above formula (2) shows the optimum condition of the focal length of the third lens group G3.
  • the ratio preferably satisfies:
  • the amount of movement of the first lens group G1 from the wide-angle end to the telephoto end (the image side is positive) is set to m1
  • the focal length of the wide-angle end is set to fw
  • the focal length of the telephoto end is set to When ft, satisfy:
  • the ratio When the ratio is lower than the lower limit value (0.800) of the formula (3), the movement amount of the first lens group G1 becomes small, so it is difficult to ensure a sufficient zoom ratio.
  • the ratio exceeds the upper limit value (2.500) of the formula (3), the amount of movement of the first lens group G1 becomes large, so it is difficult to reduce the thickness of mechanical parts such as the cam barrel constituting the telescopic lens, and it is difficult to The thickness becomes thinner when it is telescopically accommodated.
  • the amount of movement of the first lens group G1 that contributes to variable magnification can be increased by moving, so that the variable magnification ratio can be ensured, but on the other hand, it is difficult to reduce the thickness of the mechanical parts constituting the telescopic lens, and it is difficult to accommodate the telescopic lens. when the thickness becomes thinner.
  • the above-mentioned formula (3) shows the optimum condition for the movement amount of the first lens group G1.
  • the ratio preferably satisfies:
  • the focal length of the first lens group G1 is set to f1
  • the focal length of the third lens group (P lens group) G3 is set to fP
  • the refractive power of the first lens group G1 becomes weak, and a retrofocus-type refractive power arrangement cannot be obtained. Wide angle of field.
  • the ratio exceeds the upper limit value (-0.500) of the formula (4) the refractive power of the third lens group G3 becomes weak, and the total optical length becomes long, making it difficult to integrate the optical system (zoom lens) 2 Overall miniaturization.
  • the above-mentioned formula (4) shows the optimum condition regarding the ratio of the focal lengths of the first lens group G1 and the third lens group G3.
  • the ratio preferably satisfies:
  • the focal length at the telephoto end is set to ft
  • the focal length at the wide-angle end is set to fw
  • the lateral magnification of the third lens group (P lens group) G3 in infinity focusing at the telephoto end is set to be bPt
  • the lateral magnification of the third lens group (P lens group) G3 in infinity focusing at the wide-angle end is set to bPw, it satisfies:
  • the lens groups other than the third lens group G3 require a lens group whose magnification is reduced when changing the magnification from the wide-angle end to the telephoto end, so it is difficult to reduce And miniaturized lens group and lens number.
  • the ratio exceeds the upper limit value (4.000) of the formula (5) the lens groups other than the third lens group G3 require a lens group with increased magnification, and therefore many lens groups are moved when changing the magnification, Also, the amount of movement is large, so it is difficult to miniaturize.
  • the ratio preferably satisfies:
  • the focal length at the wide-angle end is set to fw
  • the focal length at the telephoto end is set to ft
  • the focal length of the second lens group G2 is set to f2
  • the ratio is lower than the lower limit value (-1.000) of the formula (6), since the second lens group G2 has negative strong refractive power, a lens group closer to the image side than the second lens group G2 is required Since a lens group with strong positive refractive power is arranged, it is difficult to correct spherical aberration, etc., and it is impossible to achieve high performance.
  • the ratio exceeds the upper limit value (2.000) of the formula (6), since the second lens group G2 has a positive strong refractive power, a retrofocus-type refractive power arrangement cannot be obtained, so it is difficult to Widen the field of view at the wide-angle end. In this state, the above formula (6) shows the optimum condition as the focal length of the second lens group G2.
  • the ratio preferably satisfies:
  • the first lens group G1 has negative refractive power
  • the second lens group G2 has the reflective optical element that bends the optical axis C.
  • the second lens group G2 moves to the image side along the optical axis C, and the first lens group G1 is telescopically accommodated in the space S created by the movement of the second lens group G2.
  • the first lens group G1 having a negative refractive power is disposed closest to the object side, it is easy to obtain a reverse focusing power configuration, and a wide angle can be achieved by shortening the focal length at the wide-angle end.
  • the second lens group G2 bends the optical path (optical axis C) of the light incident from the object side, and the second lens group G2 moves to the image side along the optical axis C when retracting and accommodating,
  • the first lens group G1 moves in the space S (that is, the position of the second lens group G2 in the photographing state) created by this movement, so that the zoom lens 2 as a whole can be thinned (miniaturized in size in the thickness direction). change).
  • the second lens group G2 bends the optical path to achieve thinning (miniaturization in the thickness direction) of the zoom lens 2, and the first lens group G1 can be retracted and accommodated. Further reduction in thickness (dimension in the thickness direction) of the zoom lens 2 during non-imaging (at the time of telescopic storage) is aimed at.
  • the second lens group G2 moves to the image side along the second optical axis (ie, the optical axis after bending), and the first lens group G1 moves along the first optical axis (the optical axis before bending)
  • the second lens group G2 and the first lens group G1 can move independently in two different directions by being telescopically accommodated in the space S, thereby ensuring the freedom of movement and movement space of both.
  • the second lens group G2 is moved to the image side along the optical axis C when the zoom lens 2 is accommodated, that is, the second lens group G2 moves to reduce the interval between the respective lens groups required as the zoom lens 2, so that the volume can be minimized.
  • miniaturization of the zoom lens 2 as a whole is realized.
  • the third lens group (P lens group) G3 has a positive refractive power. Also, when zooming from the wide-angle end to the telephoto end of the zoom lens 2, at least the first lens group G1 among the first lens group G1 and the second lens group G2 moves along the optical axis C to reduce the difference with the second lens group G2. interval, the third lens group (P lens group) G3 is moved to narrow the interval with the second lens group G2, the second lens group G2 and the I lens group GI on the optical axis C with respect to the image of the imaging element 3 (the zoom lens 2) face) position is fixed.
  • the third lens group G3 having a positive refractive power is arranged on the image side than the second lens group G2 whose position on the optical axis C is fixed with respect to the imaging element 3 (image plane), and the first lens group is G1 and the third lens group G3 are movable during magnification change to change the magnification of each lens group, so that the zoom lens 2 can be effectively changed in magnification. That is, the performance improvement of the zoom lens 2 can be achieved.
  • the I lens group GI has a reflective optical element that is arranged on the object side of the imaging element 3 (image plane of the zoom lens 2 ) and that bends the optical axis C. Therefore, since the I lens group GI (reflective optical element) which is closer to the image surface side than the second lens group G2 bends the optical axis C extending from the second lens group G2, the optical axis C extending from the second lens group G2 is bent. Regardless of the size, the portion from the second lens group G2 to the I lens group GI in the zoom lens 2 can be prevented from increasing in size in the thickness direction. That is, the size of the zoom lens 2 and the imaging device 1 in the thickness direction does not affect the size of the imaging element 3 .
  • the zoom lens 2 of the present embodiment and the imaging device 1 including the zoom lens 2 it is possible to provide a zoom lens capable of widening the angle of view while achieving reduction in thickness and size during retractable storage, and a zoom lens including the zoom lens. camera device.
  • Examples 1 to 6 of the zoom lens of the present invention will be described.
  • the same reference numerals are used for the structures corresponding to the respective structures of the zoom lens 2 of the above-described embodiment.
  • r is the radius of curvature
  • d is the lens thickness or lens spacing
  • nd is the refractive index of the d-line
  • vd is the d-line
  • each longitudinal aberration diagram shows spherical aberration (SA (mm)), astigmatism (AST (mm)), and distortion aberration (DIS (%)) in order from the left.
  • the vertical axis represents the F number (indicated by FNO in the figure)
  • the solid line is the characteristic of the d-line (d-line)
  • the short dashed line is the characteristic of the F-line (F-line)
  • the long dashed line is the C Line (C-line) characteristics.
  • the vertical axis represents the field angle (represented by W in the figure)
  • the solid line is the characteristic of the sagittal plane (represented by S in the figure)
  • the broken line is the characteristic of the meridional plane (represented by M in the figure).
  • the vertical axis represents the angle of view (indicated by W in the diagram).
  • FIGS. 3A to 3C are lens configuration diagrams of the zoom lens of the first embodiment, FIG. 3A shows a wide-angle state, FIG. 3B shows an intermediate focus position state, and FIG. 3C shows a telephoto end state.
  • the optical axis is shown in a state where the optical axis is not bent.
  • the reference numerals denoting the respective structures of the zoom lens are the same as those of the corresponding structures of the zoom lens 2 of the above-described embodiment.
  • the zoom lens of Embodiment 1 the third lens group is the P lens group, and the group including the parallel flat glass (optical filter) disposed on the image side is the I lens group.
  • the positions of the second lens group and the I lens group with respect to the image plane on the optical axis are fixed when the magnification is changed.
  • FIG. 4 is a longitudinal aberration diagram in the wide-angle end state
  • FIG. 5 is a longitudinal aberration diagram in the intermediate focal position state
  • FIG. 6 is a longitudinal aberration diagram in the telephoto end state, as shown in Table 1 below.
  • Table 2 shows the surface data of each lens
  • Table 2 shows the aspheric surface data (the aspheric surface coefficient not shown is 0.00.)
  • Table 3 shows various data
  • Table 4 shows the zoom lens group data
  • Table 5 shows the the zoom lens group magnification.
  • the zoom ratio is 2.662 and the image height is 4.048.
  • Group start face wide angle middle telephoto 1 1 0.000 0.000 0.000 2 5 2.439 1.665 1.502 3 7 -0.221 -0.629 -1.368 4 12 0.774 0.681 0.541
  • FIGS. 7A to 7C are lens configuration diagrams of the zoom lens according to the first embodiment, FIG. 7A shows the wide-angle state, FIG. 7B shows the intermediate focus position state, and FIG. 7C shows the telephoto end state.
  • FIGS. 7A to 7C the optical axis is shown in a state where the optical axis is not bent.
  • the reference numerals denoting the respective structures of the zoom lens are the same as those of the corresponding structures of the zoom lens 2 of the above-described embodiment.
  • the zoom lens of Embodiment 2 the third lens group is the P lens group, and the group including the parallel flat glass (optical filter) disposed on the image side is the I lens group.
  • the positions of the second lens group and the I lens group with respect to the image plane on the optical axis are fixed when the magnification is changed.
  • FIG. 8 is a longitudinal aberration diagram in the wide-angle end state
  • FIG. 9 is a longitudinal aberration diagram in the intermediate focal position state
  • FIG. 10 is a longitudinal aberration diagram in the telephoto end state, as shown in Table 6 below.
  • Table 7 shows the surface data of each lens
  • Table 7 shows the aspheric surface data (the aspheric surface coefficient not shown is 0.00.)
  • Table 8 shows various data
  • Table 9 shows the zoom lens group data
  • Table 10 shows the the zoom lens group magnification.
  • the zoom ratio is 2.646 and the image height is 4.048.
  • Group start face wide angle middle telephoto 1 1 0.000 0.000 0.000 2 5 1.000 1.000 1.000 3 7 -0.330 -0.587 -0.874 4 12 0.774 0.736 0.774
  • FIGS. 11A to 11C are lens configuration diagrams of the zoom lens according to the first embodiment.
  • FIG. 11A shows the wide-angle state
  • FIG. 11B shows the intermediate focus position state
  • FIG. 11C shows the telephoto end state.
  • the optical axis is shown in a state where the optical axis is not bent.
  • the reference numerals denoting the respective structures of the zoom lens are the same as those of the corresponding structures of the zoom lens 2 of the above-described embodiment.
  • the zoom lens of Example 3 the third lens group is the P lens group, and the group including the parallel flat glass (optical filter) disposed on the image side is the I lens group.
  • the positions of the second lens group and the I lens group with respect to the image plane on the optical axis are fixed when the magnification is changed.
  • FIG. 12 is a longitudinal aberration diagram in the wide-angle end state
  • FIG. 13 is a longitudinal aberration diagram in the intermediate focus position state
  • FIG. 14 is a longitudinal aberration diagram in the telephoto end state, as shown in Table 11 below.
  • Table 12 shows the aspheric surface data (the aspheric surface coefficient not shown is 0.00.)
  • Table 13 shows various data
  • Table 14 shows the zoom lens group data
  • Table 15 shows the surface data of each lens. the zoom lens group magnification.
  • the zoom ratio is 2.641 and the image height is 4.048.
  • Group start face wide angle middle telephoto 1 1 0.000 0.000 0.000 2 5 2.947 1.787 1.557 3 7 -0.121 -0.318 -0.537 4 13 1.183 1.259 1.328
  • FIGS. 15A to 15C are lens configuration diagrams of the zoom lens of the first embodiment.
  • FIG. 15A shows the wide-angle state
  • FIG. 15B shows the intermediate focus position state
  • FIG. 15C shows the telephoto end state.
  • the optical axis is shown in a state where the optical axis is not bent.
  • the reference numerals denoting the respective structures of the zoom lens are the same as those of the corresponding structures of the zoom lens 2 of the above-described embodiment.
  • the third lens group is the P lens group, and the group including the parallel flat glass (optical filter) disposed on the image side is the I lens group.
  • the positions of the second lens group and the I lens group with respect to the image plane on the optical axis are fixed when the magnification is changed.
  • FIG. 16 is a longitudinal aberration diagram in the wide-angle end state
  • FIG. 17 is a longitudinal aberration diagram in the intermediate focus position state
  • FIG. 18 is a longitudinal aberration diagram in the telephoto end state
  • Table 16 shows Table 17 shows the aspheric surface data (the aspheric surface coefficient not shown is 0.00.)
  • Table 18 shows various data
  • Table 19 shows the zoom lens group data
  • Table 20 shows the surface data of each lens. the zoom lens group magnification.
  • the zoom ratio is 2.676 and the image height is 4.048.
  • Group start face wide angle middle telephoto 1 1 0.000 0.000 0.000 2 5 1.000 1.000 1.000 3 7 -0.239 -0.365 -0.508 4 13 1.190 1.254 1.387
  • FIGS. 19A to 19C are lens configuration diagrams of the zoom lens according to the first embodiment.
  • FIG. 19A shows the wide-angle state
  • FIG. 19B shows the intermediate focus position state
  • FIG. 19C shows the telephoto end state.
  • the optical axis is shown in a state where the optical axis is not bent.
  • the reference numerals denoting the respective structures of the zoom lens are the same as those of the corresponding structures of the zoom lens 2 of the above-described embodiment.
  • the third lens group is the P lens group, and the group including the parallel flat glass (optical filter) disposed on the image side is the I lens group.
  • the positions of the second lens group and the I lens group with respect to the image plane on the optical axis are fixed when the magnification is changed.
  • FIG. 20 is a longitudinal aberration diagram in the wide-angle end state
  • FIG. 21 is a longitudinal aberration diagram in the intermediate focus position state
  • FIG. 22 is a longitudinal aberration diagram in the telephoto end state.
  • Table 21 below shows Table 22 shows the aspheric surface data (the aspheric surface coefficient not shown is 0.00.)
  • Table 23 shows various data
  • Table 24 shows the zoom lens group data
  • Table 25 shows the surface data of each lens. the zoom lens group magnification.
  • the zoom ratio is 2.658 and the image height is 4.048.
  • Group start face wide angle middle telephoto 1 1 0.000 0.000 0.000 2 5 0.694 0.765 0.780 3 7 -0.412 -0.651 -0.962 4 12 0.775 0.756 0.786
  • FIGS. 23A to 23C are lens configuration diagrams of the zoom lens according to the first embodiment.
  • FIG. 23A shows the wide-angle state
  • FIG. 23B shows the intermediate focus position state
  • FIG. 23C shows the telephoto end state.
  • the optical axis is shown in a state where the optical axis is not bent.
  • the reference numerals denoting the respective structures of the zoom lens are the same as those of the corresponding structures of the zoom lens 2 of the above-described embodiment.
  • the third lens group is the P lens group, and the group including the parallel flat glass (optical filter) disposed on the image side is the I lens group.
  • the positions of the second lens group and the I lens group with respect to the image plane on the optical axis are fixed when the magnification is changed.
  • FIG. 24 is a longitudinal aberration diagram in the wide-angle end state
  • FIG. 25 is a longitudinal aberration diagram in the intermediate focus position state
  • FIG. 26 is a longitudinal aberration diagram in the telephoto end state.
  • Table 26 shows Table 27 shows the aspheric surface data (the aspheric surface coefficient not shown is 0.00.), Table 28 shows various data, Table 29 shows the zoom lens group data, and Table 30 shows the surface data of each lens. the zoom lens group magnification.
  • the zoom ratio is 2.620 and the image height is 4.048.
  • Group start face wide angle middle telephoto 1 1 0.000 0.000 0.000 2 5 0.638 0.684 0.699 3 7 -0.397 -0.600 -0.881 4 13 1.184 1.237 1.276
  • Table 31 shows the values corresponding to the formulae (1) to (6) of the above-described embodiments of Examples 1 to 6 above.
  • Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Condition (1) -2.395 -3.912 -2.378 -3.514 -4.506 -3.336 Condition (2) 1.367 1.252 1.075 0.923 1.153 0.830 Condition (3) 1.212 1.678 1.368 1.614 1.740 1.480 Condition (4) -1.074 -1.921 -1.361 -2.418 -2.398 -2.482 Condition (5) 0.430 0.999 0.595 1.165 1.138 1.180 Condition (6) 1.367 0.000 0.221 0.000 -0.092 -0.093 fw 5.668 5.665 5.668 6.091 5.639 5.752 ft 15.086 14.992 14.969 15.081 14.988 15.068 f1 -13.575 -22.161 -13.481 -21.404 -25.413 -19.190 f2 43.812 0.000 41.627 0.000 -100.316 -100.176 fP 12.643 11.538 9.903 8.851 10.597 7.731 m
  • G3 Third lens group (P lens group)

Abstract

一种能够伸缩容纳的变焦透镜(2),从物体侧向像侧沿着光轴(C)依次具备第一透镜组(G1)、第二透镜组(G2)以及P透镜组(G3);第一透镜组(G1)具有负屈光度;第二透镜组(G2)具有使光轴(C)弯折的反射光学元件;在伸缩容纳时,第二透镜组(G2)沿着光轴(C)向像侧移动,第一透镜组(G1)的至少一部分被伸缩容纳到由第二透镜组(G2)的移动而产生的空间中,因此在达成伸缩容纳时的薄型化以及小型化的同时能够广角化。

Description

变焦透镜以及具备变焦透镜的摄像装置 技术领域
本发明涉及具备多个透镜组的变焦透镜以及具备该变焦透镜的摄像装置。
背景技术
在现有的智能手机等移动设备的摄像装置中,有想要搭载变焦透镜的需求,但由于变焦透镜的薄型化和小型化困难,因此很少在移动设备的摄像装置中搭载变焦透镜。因此,在现有的移动设备中,为了构成离散的变焦透镜,并排配置多个具有多个不同视场角的单焦点的摄像装置,并进行摄像。
然而,由于摄像装置的数量增加,传感器和电路等也随着摄像装置的数量而增加,因此不仅成本增加,且由于体积随着摄像装置的数量而增加,因此存在智能手机等移动设备整体变大且变重的问题。
因此,开发了如下摄像装置:其具备伸缩式的变焦透镜,所述变焦透镜在从摄影状态变为伸缩状态时,通过使光学元件的一部分在与光轴正交的同一平面内相对移动来减小伸缩容纳时的尺寸(参照专利文献1)。
如图27A~图27C所示,该摄像装置100具备变焦光学系统101和摄像元件Se。该变焦光学系统101具备在光轴C1方向上排列的三个透镜组(第一透镜组102、第二透镜组103以及第三透镜组104)和低通滤波器105。并且,在该变焦光学系统101中,在伸缩容纳时,第二透镜组103从光轴C1向侧方滑动(参照图27B),第一透镜组102后退到第二透镜组103滑动前的位置(参照图27C)。在该状态(伸缩容纳时)下的变焦光学系统101整体在厚度方向上的尺寸为第一透镜组102与第三透镜组104组合后的大小。此外,在厚度方向上的尺寸是在连接作为摄像对象的物体与变焦光学系统101的最靠近物体侧的透镜的方向上的尺寸,是在图27A~图27C中的左右方向上的尺寸。
在该变焦光学系统101中,在伸缩容纳时,如上所述,由于第二透镜组103从光轴C1向侧方滑动,并且第一透镜组102后退到第二透镜组103滑动前的位置,因此与通常的伸缩式的变焦光学系统相比,能够利用第二透镜组103的数量进行薄型化。然而,由于在该变焦光学系统101中,在伸缩容纳时,也需要两个透镜组(第一透镜组102和第三透镜组104)的厚度量的尺寸,因此不能说能够充分地进行薄型化。
另外,如图28所示,开发了如下摄像装置200:其具备通过利用反射棱镜(反射光学元件)202A、205A使光轴C2弯折来进行薄型化的变焦光学系统201(参照专利文献2)。
该摄像装置200的变焦光学系统201从物体侧向像侧沿着光轴C2依次具备第一透镜组202、第二透镜组203、第三透镜组204以及第四透镜组205,第一透镜组202和第四透镜组205分别具有反射棱镜202A、205A,从而实现了薄型化。在该变焦光学系统201中,通过利用反射棱镜202A、205A使光轴C2弯折来实现薄型化,但是由于反射棱镜202A、205A之间的距离(配置有第二透镜组203以及第三透镜组204的空间)在不进行摄像的状态下也不会缩小,因此不能说在与厚度方向正交的方向上(从第一透镜组202的反射棱镜202A朝向第四透镜组205的反射棱镜205A的方向:图28中的左右方向)能够充分地进行小型化。
另外,如图29A和图29B所示,开发了摄像装置300:其具备变焦光学系统301,所述变焦光学系统301从物体侧向像侧沿着光轴C3依次具有:第一透镜组302,其具有正曲率;第二透镜组303,其具有负曲率;反射棱镜(反射光学元件)304,其使光轴C3弯折;以及后续透镜组305,其包括多个透镜组(参照专利文献3)。在该变焦光学系统301中,在变倍时,至少第一透镜组302和第二透镜组303移动,在伸缩容纳时,反射棱镜304向与摄像时不同的位置移动,在由该移动而产生的空间中伸缩容纳有第一透镜组302和第二透镜组303。
在该变焦光学系统301中,通过在伸缩容纳时将第一透镜组302和第二透镜组303容纳在通过反射棱镜304移动而空出的空间内,实现了在不摄像的状态下的薄型化,但由于第一透镜组302和第二透镜组303被伸缩容纳(参照图29B),因此在厚度方向上的尺寸(在图29B中的左右方向上的尺寸)需要是至少这两个透镜组302、303组合的大小,不能实现充分的薄型化。并且,在该变焦光学系统301中,由于第一透镜组302具有正折射率,因此难以广角化。
现有技术文献
专利文献
专利文献1:日本专利第4520190号公报
专利文献2:日本专利第5551055号公报
专利文献3:日本专利第4790052号公报
发明内容
发明要解决的问题
因此,本发明的课题在于,提供一种在达成伸缩容纳时的薄型化以及小型化的同时能够广角化的变焦透镜以及具备该变焦透镜的摄像装置。
用于解决问题的方案
本发明的变焦透镜是能够伸缩容纳的变焦透镜,
其从物体侧向像侧沿着光轴依次具备第一透镜组、第二透镜组以及P透镜组;
所述第一透镜组具有负屈光度;
所述第二透镜组具有使所述光轴弯折的反射光学元件;
在伸缩容纳时,所述第二透镜组沿着所述光轴向像侧移动,所述第一透镜组的至少一部分被伸缩容纳到由所述第二透镜组的移动而产生的空间中。
所述P透镜组具有正屈光度;
在从广角端向远摄端变倍时,
所述第一透镜组和所述第二透镜组中至少所述第一透镜组沿着所述光轴移动以缩小与所述第二透镜组的间隔;
所述P透镜组移动以缩小与所述第二透镜组的间隔;
所述第二透镜组在所述光轴上相对于像面的位置可以是固定的。
所述变焦透镜具备I透镜组,所述I透镜组配置在比所述P透镜组更靠近像侧,并且在从广角端向远摄端变倍时,其在所述光轴上相对于像面的位置被固定;
所述I透镜组还可以具有反射光学元件,所述反射光学元件配置在该变焦透镜的像面的物体侧,并且使所述光轴弯折。
另外,在所述变焦透镜中,
在将所述第一透镜组的焦距设为f1,并将广角端的焦距设为fw时,可以满足:
-6.000≤f1/fw≤-1.500。
另外,在所述变焦透镜中,
在将所述P透镜组的焦距设为fP,将广角端的焦距设为fw,并将远摄端的焦距设为ft时,可以满足:
0.500≤fP/√(fw×ft)≤2.500。
另外,在所述变焦透镜中,
在将从广角端到远摄端的所述第一透镜组的移动量(像侧为正)设为m1,将广角端的焦距设为fw,并将远摄端的焦距设为ft时,可以满足:
0.800≤m1/√(fw×ft)≤2.500。
另外,在所述变焦透镜中,
在将所述第一透镜组的焦距设为f1,并将所述P透镜组的焦距设为fP时,可以满足:
-5.000≤f1/fP≤-0.500。
另外,在所述变焦透镜中,
在将远摄端的焦距设为ft,将广角端的焦距设为fw,将所述P透镜组在远摄端的无限远对焦中的横向倍率设为bPt,并将所述P透镜组在广角端的无限远对焦中的横向倍率设为bPw时,可以满足:
0.200≤|(ft/fw)/(bPt/bPw)|≤4.000。
另外,在所述变焦透镜中,
在将广角端的焦距设为fw,将远摄端的焦距设为ft,并将所述第二透镜组的焦距设为f2时,可以满足:
-1.000≤√(fw×ft)/f2≤2.000。
另外,本发明的摄像装置具备:
上述任一个变焦透镜,以及
摄像元件,其配置在所述变焦透镜的像面位置。
附图说明
图1是示出本实施方式的摄像装置的结构的示意图,是表示摄影状态的图。
图2是示出所述摄像装置的结构的示意图,是表示存放有变焦透镜的状态的图。
图3A是实施例1的变焦透镜的广角端状态下的透镜结构图。
图3B是实施例1的变焦透镜的中间焦点位置状态下的透镜结构图。
图3C是实施例1的变焦透镜的远摄端状态下的透镜结构图。
图4是实施例1的变焦透镜的广角端状态下的纵向像差图。
图5是实施例1的变焦透镜的中间焦点位置状态下的纵向像差图。
图6是实施例1的变焦透镜的远摄端状态下的纵向像差图。
图7A是实施例2的变焦透镜的广角端状态下的透镜结构图。
图7B是实施例2的变焦透镜的中间焦点位置状态下的透镜结构图。
图7C是实施例2的变焦透镜的远摄端状态下的透镜结构图。
图8是实施例2的变焦透镜的广角端状态下的纵向像差图。
图9是实施例2的变焦透镜的中间焦点位置状态下的纵向像差图。
图10是实施例2的变焦透镜的远摄端状态下的纵向像差图。
图11A是实施例3的变焦透镜的广角端状态下的透镜结构图。
图11B是实施例3的变焦透镜的中间焦点位置状态下的透镜结构图。
图11C是实施例3的变焦透镜的远摄端状态下的透镜结构图。
图12是实施例3的变焦透镜的广角端状态下的纵向像差图。
图13是实施例3的变焦透镜的中间焦点位置状态下的纵向像差图。
图14是实施例3的变焦透镜的远摄端状态下的纵向像差图。
图15A是实施例4的变焦透镜的广角端状态下的透镜结构图。
图15B是实施例4的变焦透镜的中间焦点位置状态下的透镜结构图。
图15C是实施例4的变焦透镜的远摄端状态下的透镜结构图。
图16是实施例4的变焦透镜的广角端状态下的纵向像差图。
图17是实施例4的变焦透镜的中间焦点位置状态下的纵向像差图。
图18是实施例4的变焦透镜的远摄端状态下的纵向像差图。
图19A是实施例5的变焦透镜的广角端状态下的透镜结构图。
图19B是实施例5的变焦透镜的中间焦点位置状态下的透镜结构图。
图19C是实施例5的变焦透镜的远摄端状态下的透镜结构图。
图20是实施例5的变焦透镜的广角端状态下的纵向像差图。
图21是实施例5的变焦透镜的中间焦点位置状态下的纵向像差图。
图22是实施例5的变焦透镜的远摄端状态下的纵向像差图。
图23A是实施例6的变焦透镜的广角端状态下的透镜结构图。
图23B是实施例6的变焦透镜的中间焦点位置状态下的透镜结构图。
图23C是实施例6的变焦透镜的远摄端状态下的透镜结构图。
图24是实施例6的变焦透镜的广角端状态下的纵向像差图。
图25是实施例6的变焦透镜的中间焦点位置状态下的纵向像差图。
图26是实施例6的变焦透镜的远摄端状态下的纵向像差图。
图27A是示出现有的摄像装置的结构的示意图,是表示摄影状态的图。
图27B是示出所述摄像装置的结构的示意图,是表示存放变焦透镜的中途状态的图。
图27C是示出所述摄像装置的结构的示意图,是表示存放有变焦透镜的状态的图。
图28是示出现有的摄像装置的结构的示意图。
图29A是示出现有的摄像装置的结构的示意图,是表示摄影状态的图。
图29B是示出所述摄像装置的结构的示意图,是表示存放有变焦透镜的状态的图。
具体实施方式
以下参照附图对本发明的一个实施方式进行说明。
如图1和图2所示,本实施方式的摄像装置具有弯折伸缩式变焦透镜(变焦光学系统)2。在该变焦透镜2中,第一透镜组G1具有负屈光度,从而能够应对广角化,伸缩部分仅为该第一透镜组G1。另外,为了促进薄型化,通过在像侧也配置反射光学元件(I透镜组GI),摄像装置1的厚度尺寸(在图1和图2中的左右方向上的尺寸)不受摄像元件3的外形的影响。另外,由于在伸缩容纳时反射光学元件(第二透镜组G2)滑动,因此与摄像装置1的厚度对应的仅为构成比第一透镜组G1更靠近像侧的各透镜组的透镜(光学元件)的最大有效直径、或者第一透镜组G1在厚度方向上的尺寸。如上所述,利用本结构能够兼顾实现广角化和薄型化。此外,本实施方式中的在厚度方向的尺寸是在连接作为摄像对象的物体与变焦透镜2的最靠近物体侧的透镜的方向上的尺寸,是在图1和图2中的左右方向上的尺寸。
具体而言,摄像装置1具备:能够伸缩容纳的变焦透镜2;摄像元件3,其配置于变焦透镜2的像面位置;以及液晶显示屏4,其显示从摄像元件3发送的摄像(图像)数据。该摄像元件3是将由变焦透镜2形成的光学影像转换为电信号(摄像数据)的元件,本实施方式的摄像元件3是图像传感器。
变焦透镜2沿着光轴C从物体侧向像侧依次至少具有第一透镜组G1、第二透镜组G2、第三透镜组(P透镜组)G3以及I透镜组GI。本实施方式的变焦透镜2沿着光轴C从物体侧向像侧依次具有第一透镜组G1、第二透镜组G2、第三透镜组G3、第四透镜组G4以及I透镜组GI。在该变焦透镜2中,第四透镜组G4构成对焦透镜组F。
此外,变焦透镜2也可以是不具备I透镜组GI的结构。另外,在本实施方式的变焦透镜2中,透镜组G1~GI是为了方便而命名的,也包括仅由一个光学元件(透镜等)构成的透镜组。另外,在变焦透镜2中,在变倍时光轴C上的位置被固定的光学元件(透镜等)和以不同轨迹移动的光学元件之间分别进行划分,将划分出的区域内的所述被固定的至少一个光学元件作为一个透镜组,并将划分出的区域内的所述移动的至少一个光学元件作为另一个透镜组。
另外,变焦透镜2具有孔径光阑21和镜筒22,所述孔径光阑21配置在第二透镜组G2的像侧,所述镜筒22保持第一透镜组G1。该镜筒22在摄影时向物体侧延伸(参照图1),在不进行摄影时被伸缩容纳(参照图2)。
在该变焦透镜2中,在摄影时,在从广角端向远摄端变倍时,第一透镜组G1和第二透镜组G2中至少第一透镜组G1沿着光轴C移动以缩小与第二透镜组G2的间隔,第三透镜组G3移动以缩小与第二透镜组G2的间隔。另外,第二透镜组G2以及I透镜组GI在光轴C上相对于摄像元件3(变焦透镜2的像面)的位置是固定的。
另外,在变焦透镜2中,在伸缩容纳时,比如,非摄影状态,第二透镜组G2沿着光轴C向像侧移动,第一透镜组G1的至少一部分被由第二透镜组G2的移动而产生的空间伸缩容纳。即,在伸缩容纳时,第一透镜组G1的至少一部分伸缩容纳在空间S中,所述空间S在摄影时配置有第二透镜组G2。此时,各透镜组G1~G4的移动和镜筒22的伸缩由以往公知的各种机构进行。
以下,对变焦透镜2的各透镜组G1~GI进行详细说明。
第一透镜组G1包括多个透镜(光学元件),并且其具有负屈光度。第二透镜组G2具有使光轴C弯折的反射光学元件。本实施方式的反射光学元件是棱镜,但只要是镜子等能够使光路(光轴C)弯折的光学元件即可。本实施方式的第二透镜组G2仅由反射光学元件构成。第三透镜组G3包括多个透镜(光学元件),并且其具有正屈光度。I透镜组GI具有反射光学元件P和光学滤光片23,所述反射光学元件P配置在摄像元件3(变焦透镜2的像面)的物体侧并且使光轴C弯折,所述光学滤光片23配置在反射光学元件P的像侧。本实施方式的反射光学元件P是棱镜,但只要是镜子等能够使光路(光轴C)弯折的光学元件即可。
在该变焦透镜2中,在将第一透镜组G1的焦距设为f1,并将广角端的焦距设为fw时,满足:
-6.000≤f1/fw≤-1.500…(1)。
通过将第一透镜组G1的焦距与广角端的焦距之比设为如上述公式(1)所示的范围,能够实现优化广角端的视场角的广角化与高性能化之间的平衡。具体如下所示。
在所述比率低于公式(1)的下限值(-6.000)时,第一透镜组G1的光焦度变弱,从而无法取得逆焦型的光焦度配置,因此难以将广角端的视场角广角化。另一方面,在所述比率超过公式(1)的上限值(-1.500)时,第一透镜组G1的光焦度变强,从而广角化变得容易,但由于在变倍区域的整个区域中,通过各透镜组G1~GI,难以修正倍率色差、彗形像差以及像面弯折等,因此各像差的修正不充分,无法实现高性能化。这样,在变焦透镜2中,若增强第一透镜组G1的光焦度则能够将广角端的视场角广角化,但另一方面,像差修正变得困难。在该状态下,上述公式(1)示出了第一透镜组G1的焦距f1的最佳条件。
此外,在本实施方式的变焦透镜2中,所述比率优选满足:
-5.500≤f1/fw≤-1.700;
更优选满足:
-5.000≤f1/fw≤-2.000。
另外,在变焦透镜2中,在将第三透镜组(P透镜组)G3的焦距设为fP,将广角端的焦距设为fw,并将远摄端的焦距设为ft时,满足:
0.500≤fP/√(fw×ft)≤2.500…(2)。
通过将第三透镜组G3的焦距与光学系统(变焦透镜)2整体的有效焦距之比设为如上述公式(2)所示的范围,能够实现优化高性能化与光学系统整体的小型化之间的平衡。具体如下所示。
在所述比率低于公式(2)的下限值(0.500)时,第三透镜组G3的光焦度变强,从而难以修正球 面像差等,无法实现高性能化。另一方面,在所述比率超过公式(2)的上限值(2.500)时,第三透镜组G3的光焦度变弱,从而光学全长变长,难以将光学系统(变焦透镜)2整体小型化。这样,由于第三透镜组G3是具有正屈光度的透镜组,因此若增强光焦度则能够减小光学全长,但另一方面,像差修正变得困难。在该状态下,上述公式(2)示出了第三透镜组G3的焦距的最佳条件。
此外,在本实施方式的变焦透镜2中,所述比率优选满足:
0.650≤fP/√(fw×ft)≤2.000;
更优选满足:
0.800≤fP/√(fw×ft)≤1.500。
另外,在变焦透镜2中,在将从广角端到远摄端的第一透镜组G1的移动量(像侧为正)设为m1,将广角端的焦距设为fw,并将远摄端的焦距设为ft时,满足:
0.800≤m1/√(fw×ft)≤2.500…(3)。
通过将第一透镜组G1的移动量与光学系统(变焦透镜)2整体的有效焦距之比设为如上述公式(3)所示的范围,能够实现优化确保变倍比率与在确保了变倍比率时伸缩容纳时的薄型化之间的平衡。具体如下所示。
在所述比率低于公式(3)的下限值(0.800)时,第一透镜组G1的移动量变小,因此难以确保充分的变倍比。另一方面,在所述比率超过公式(3)的上限值(2.500)时,第一透镜组G1的移动量变大,因此难以将构成伸缩透镜的凸轮筒等机械零件薄型化,并且难以将伸缩容纳时的厚度变薄。这样,通过移动来增大有助于变倍的第一透镜组G1的移动量,从而能够确保变倍比,但另一方面,难以将构成伸缩透镜的机械零件薄型化,进而难以将伸缩容纳时的厚度变薄。在该状态下,上述公式(3)示出了第一透镜组G1的移动量的最佳条件。
此外,在本实施方式的变焦透镜2中,所述比率优选满足:
0.900≤m1/√(fw×ft)≤2.000;
更优选满足:
1.000≤m1/√(fw×ft)≤1.800。
另外,在变焦透镜2中,在将第一透镜组G1的焦距设为f1,并将第三透镜组(P透镜组)G3的焦距设为fP时,满足:
-5.000≤f1/fP≤-0.500…(4)
通过将第一透镜组G1的焦距与第三透镜组G3的焦距之比设为如上述公式(4)所示的范围,能够实现优化广角端的视场角的广角化与光学系统整体的小型化之间的平衡。具体如下所示。
在所述比率低于公式(4)的下限值(-5.000)时,第一透镜组G1的光焦度变弱,从而无法取得逆焦型的光焦度配置,因此难以将广角端的视场角广角化。另一方面,在所述比率超过公式(4)的上限值(-0.500)时,第三透镜组G3的光焦度变弱,从而光学全长变长,难以将光学系统(变焦透镜)2整体小型化。这样,在第一透镜组G1和第三透镜组G3的光焦度的比率中,若减弱第一透镜组G1的光焦度则能够减小光学全长,但另一方面,广角化变得困难。在该状态下,上述公式(4)示出了关于第一透镜组G1和第三透镜组G3的焦距之比的最佳条件。
此外,在本实施方式的变焦透镜2中,所述比率优选满足:
-4.000≤f1/fP≤-0.700;
更优选满足:
-3.000≤f1/fP≤-0.900。
另外,在变焦透镜2中,在将远摄端的焦距设为ft,将广角端的焦距设为fw,将第三透镜组(P透镜组)G3在远摄端的无限远对焦中的横向倍率设为bPt,将第三透镜组(P透镜组)G3在广角端的无限远对焦中的横向倍率设为bPw时,满足:
0.200≤|(ft/fw)/(bPt/bPw)|≤4.000…(5)。
通过将光学系统(变焦透镜)2整体与第三透镜组G3的倍率变化的变倍比设为如上述公式(5)所示的范围,能够减小由变焦机构的简化和小型化以及各透镜组G1~GI的相对偏心等引起的组装后的设计性能的性能劣化。具体如下所示。
在所述比率低于公式(5)的下限值(0.200)时,第三透镜组G3以外的透镜组需要在从广角端向远摄端变倍时减小倍率的透镜组,因此难以削减以及小型化透镜组和透镜片数。另一方面,在所述比率超过公式(5)的上限值(4.000)时,除第三透镜组G3以外的透镜组需要增加倍率的透镜组,因此在变倍时移动的透镜组多,并且移动量也大,因此难以小型化。因此,通过有效使用伴随第三透镜组G3的移动进行的倍率变化来优化变倍比,从而设置在变倍时相对于像面固定的透镜组,由此,与在变倍时许多透镜组移动的透镜相比,能够减小由变焦机构的简化和小型化以及各透镜组的相对偏心等引起的组 装后的设计性能的性能劣化。在该状态下,上述公式(5)示出了作为P透镜组的倍率变化的最佳条件。
此外,在本实施方式的变焦透镜2中,所述比率优选满足:
0.300≤|(ft/fw)/(bPt/bPw)|≤3.000;
更优选满足:
0.400≤|(ft/fw)/(bPt/bPw)|≤2.000。
另外,在变焦透镜2中,在将广角端的焦距设为fw,将远摄端的焦距设为ft,并将第二透镜组G2的焦距设为f2时,满足:
-1.000≤√(fw×ft)/f2≤2.000…(6)。
通过将透镜系统整体的有效焦距与第二透镜组的焦距之比设为如上述公式(6)所示的范围,能够实现优化高性能化与广角端的视场角的广角化之间的平衡。具体如下所示。
在所述比率低于公式(6)的下限值(-1.000)时,由于第二透镜组G2具有负的强光焦度,因此需要在比第二透镜组G2更靠近像侧的透镜组配置具有强的正光焦度的透镜组,因此难以修正球面像差等,无法实现高性能化。另一方面,在所述比率超过公式(6)的上限值(2.000)时,由于第二透镜组G2具有正的强光焦度,因此无法取得逆焦型的光焦度配置,因此难以将广角端的视场角广角化。在该状态下,上述公式(6)示出了作为第二透镜组G2的焦距的最佳条件。
此外,在第二透镜组G2没有光学发散或会聚的光焦度时,在上述公式(6)中,将f2设为∞,计算结果(所述比率)为0。
另外,在本实施方式的变焦透镜2中,所述比率优选满足:
-0.500≤√(fw×ft)/f2≤1.750;
更优选满足:
-0.200≤√(fw×ft)/f2≤1.500。
根据如上构成的变焦透镜2,第一透镜组G1具有负屈光度,第二透镜组G2具有使光轴C弯折的反射光学元件。并且,在伸缩容纳时,第二透镜组G2沿着光轴C向像侧移动,第一透镜组G1被伸缩容纳在由第二透镜组G2的移动而产生的空间S中。这样,由于在最靠近物体侧配置有具有负屈光度的第一透镜组G1,因此容易取得逆焦的光焦度配置,通过缩短广角端的焦距能够实现广角化。
并且,第二透镜组G2(反射光学元件)使得从物体侧入射的光的光路(光轴C)弯折,并且,在伸缩容纳时第二透镜组G2沿着光轴C向像侧移动,第一透镜组G1在由该移动而产生的空间S(即,摄影状态下第二透镜组G2的位置)中移动,从而能够实现作为变焦透镜2整体的薄型化(在厚度方向上的尺寸的小型化)。
即,在变焦透镜2中,通过第二透镜组G2弯折光路,谋求该变焦透镜2的薄型化(厚度方向尺寸的小型化)的基础上,通过能够伸缩容纳第一透镜组G1,从而能够谋求非摄像时(伸缩收纳时)的该变焦透镜2的更进一步的薄型化(厚度方向尺寸的小型化)。并且,在伸缩容纳时,第二透镜组G2沿着第二光轴(即弯折后的光轴)向像侧移动,第一透镜组G1沿第一光轴(弯折前的光轴)移动以被伸缩容纳至空间S中,由此,第二透镜组G2和第一透镜组G1可在两个不同方向独立移动,可保障两者的移动自由度及移动空间。
另外,在伸缩容纳时,由于第二透镜组G2沿着光轴C向像侧移动,即,以缩小作为变焦透镜2所需的各透镜组间的间隔而移动,因此能够使体积最小化,从而实现作为变焦透镜2整体的小型化(详细而言,在图1和图2中的上下方向上的尺寸的小型化)。
另外,在本实施方式的变焦透镜2中,第三透镜组(P透镜组)G3具有正屈光度。并且,从变焦透镜2的广角端向远摄端变倍时,第一透镜组G1和第二透镜组G2中至少第一透镜组G1沿着光轴C移动以缩小与第二透镜组G2的间隔,第三透镜组(P透镜组)G3移动以缩小与第二透镜组G2的间隔,第二透镜组G2以及I透镜组GI在光轴C上相对于摄像元件3(变焦透镜2的像面)的位置被固定。这样,在比在光轴C上相对于摄像元件3(像面)的位置被固定的第二透镜组G2更靠近像侧配置有具有正屈光度的第三透镜组G3,通过使第一透镜组G1和第三透镜组G3在变倍时可动来改变各透镜组的倍率,能够使该变焦透镜2有效进行变倍。即,能够实现变焦透镜2的高性能化。
另外,在本实施方式的变焦透镜2中,
I透镜组GI具有反射光学元件,所述反射光学元件配置在摄像元件3(变焦透镜2的像面)的物体侧,并且使光轴C弯折。因此,由于比第二透镜组G2更靠近像面侧的I透镜组GI(反射光学元件)使从第二透镜组G2延伸的光轴C弯折,因此与配置于像面位置摄像元件3的大小无关,能够防止变焦透镜2中的从第二透镜组G2到I透镜组GI的部位在厚度方向上的尺寸增大。即,变焦透镜2以及摄像装置1在厚度方向上的尺寸不影响摄像元件3的大小。
如上所述,根据本实施方式的变焦透镜2以及具备该变焦透镜2的摄像装置1,能够提供在达成伸 缩容纳时的薄型化以及小型化的同时能够广角化的变焦透镜以及具备该变焦透镜的摄像装置。
接着,对本发明的变焦透镜的实施例1~6进行说明。在以下的各实施例中,对于与上述实施方式的变焦透镜2的各结构对应的结构使用相同的附图标记。另外,在以下的各实施例中的表中,r是曲率半径,d是透镜厚度或者透镜间隔,nd是d线的折射率,vd表示d线
基准的色散系数。另外,非球面由以下所示的公式1定义。
公式1
z=ch 2/[1+{1-(1+k)c 2h 2} 1/2]+A4h 4+A6h 6+A8h 8+A10h 10
(其中,c是曲率(1/r),h是距离光轴的高度,k是圆锥系数,A4、A6、A8、A10…是各次数的非球面系数。)
另外,各纵向像差图从左侧依次示出了球面像差(SA(mm))、像散(AST(mm))、畸变像差(DIS(%))。在球面像差图中,纵轴表示F数(图中用FNO表示),实线是d线(d-line)的特性,短虚线是F线(F-line)的特性,长虚线是C线(C-line)的特性。在像散图中,纵轴表示视场角(图中用W表示),实线是弧矢平面(图中用S表示)的特性,虚线是子午平面(图中用M表示)的特性。在畸变像差图中,纵轴表示视场角(图中用W表示)。
实施例1
图3A~图3C是本实施例1的变焦透镜的透镜结构图,图3A表示广角状态,图3B表示中间焦点位置状态,图3C表示远摄端状态。此外,在图3A~图3C中,以光轴没有弯折的状态示出。另外,表示变焦透镜的各结构的附图标记与上述实施方式的变焦透镜2的对应的结构的附图标记相同。
在该实施例1的变焦透镜中,第三透镜组为P透镜组,包括配置于像侧的平行平板玻璃(光学滤光片)的组为I透镜组。另外,在该变焦透镜中,在变倍时,第二透镜组以及I透镜组在光轴上相对于像面的位置被固定。
另外,图4是广角端状态下的纵向像差图,图5是中间焦点位置状态下的纵向像差图,图6是远摄端状态下的纵向像差图,下述的表1示出了各透镜的面数据,表2示出了非球面数据(未显示的非球面系数为0.00。),表3示出了各种数据,表4示出了变焦透镜组数据,表5示出了变焦透镜组倍率。
表1
面数据
面编号 r d nd vd  
1* 113.148 0.700 1.8513 40.10  
2* 6.934 2.202      
3 8.575 1.217 1.9229 20.88  
4 12.258 d4      
5* 13.501 5.500 1.5445 55.96  
6* 26.479 d6     (孔径光阑)
7* 10.980 1.200 1.4971 81.56  
8* -10.947 0.200      
9 5.400 3.000 1.5831 59.46  
10 -23.369 1.000 1.9537 32.32  
11 4.551 d11      
12* 17.489 0.825 1.5931 37.65  
13* -60.350 d13      
14 5.000 2.0010 29.13  
15 0.200      
16 0.300 1.5168 64.20  
17 0.200      
*是非球面
表2
Figure PCTCN2021088809-appb-000001
表3
各种数据
  广角 中间 远摄
焦距 5.668 9.683 15.086
F数 2.440 3.126 4.318
半视角 38.010 23.000 14.989
透镜全长 45.000 36.651 33.789
后焦距 4.903 7.114 10.452
d4 12.250 3.900 1.038
d6 7.393 4.203 0.500
d11 1.996 2.976 3.342
d13 1.818 4.028 7.365
变焦比为2.662,像高为4.048。
表4
变焦.透镜组数据
起始面 焦距 透镜构成长度 透镜移动量
1 1 -13.575 4.119 11.209
2 5 43.812 5.500 0.000
3 7 12.643 5.400 -6.896
4 12 23.604 0.825 -5.549
表5
变焦透镜组倍率
起始面 广角 中间 远摄
1 1 0.000 0.000 0.000
2 5 2.439 1.665 1.502
3 7 -0.221 -0.629 -1.368
4 12 0.774 0.681 0.541
实施例2
图7A~图7C是本实施例1的变焦透镜的透镜结构图,图7A表示广角状态,图7B表示中间焦点位置状态,图7C表示远摄端状态。此外,在图7A~图7C中,以光轴没有弯折的状态示出。另外,表示变焦透镜的各结构的附图标记与上述实施方式的变焦透镜2的对应的结构的附图标记相同。
在该实施例2的变焦透镜中,第三透镜组为P透镜组,包括配置于像侧的平行平板玻璃(光学滤光片)的组为I透镜组。另外,在该变焦透镜中,在变倍时,第二透镜组以及I透镜组在光轴上相对于像面的位置被固定。
另外,图8是广角端状态下的纵向像差图,图9是中间焦点位置状态下的纵向像差图,图10是远摄端状态下的纵向像差图,下述的表6示出了各透镜的面数据,表7示出了非球面数据(未显示的非球面系数为0.00。),表8示出了各种数据,表9示出了变焦透镜组数据,表10示出了变焦透镜组倍率。
表6
面数据
面编号 r d nd vd  
1* 84.713 0.700 1.8513 40.10  
2* 8.302 1.824      
3 11.733 1.734 1.9229 20.88  
4 24.082 d4      
5 5.500 1.5445 55.96  
6 d6     (孔径光阑)
7* 6.511 1.860 1.4971 81.56  
8* -13.589 0.200      
9 5.499 2.312 1.5831 59.46  
10 55.255 1.000 1.9537 32.32  
11 3.807 d11      
12* 15.360 3.000 1.5931 37.65  
13* -100.000 d13      
14 5.000 2.0010 29.13  
15 0.200      
16 0.300 1.5168 64.20  
17 0.200      
*是非球面
表7
Figure PCTCN2021088809-appb-000002
表8
各种数据
  广角 中间 远摄
焦距 5.665 9.578 14.992
F数 2.440 2.961 4.292
半视角 37.992 22.999 14.993
透镜全长 50.000 36.985 34.537
后焦距 3.583 4.481 3.601
d4 16.585 3.570 1.123
d6 6.787 4.494 0.500
d11 2.302 3.696 8.570
d13 0.496 1.395 0.515
变焦比为2.646,像高为4.048。
表9
变焦透镜组数据
起始面 焦距 透镜构成长度 透镜移动量
1 1 -22.161 4.257 15.463
2 5 0.000 5.500 0.000
3 7 11.538 5.372 -6.287
4 12 23.310 3.000 -0.019
表10
变焦透镜组倍率
起始面 广角 中间 远摄
1 1 0.000 0.000 0.000
2 5 1.000 1.000 1.000
3 7 -0.330 -0.587 -0.874
4 12 0.774 0.736 0.774
实施例3
图11A~图11C是本实施例1的变焦透镜的透镜结构图,图11A表示广角状态,图11B表示中间焦点位置状态,图11C表示远摄端状态。此外,在图11A~图11C中,以光轴没有弯折的状态示出。另外,表示变焦透镜的各结构的附图标记与上述实施方式的变焦透镜2的对应的结构的附图标记相同。
在该实施例3的变焦透镜中,第三透镜组为P透镜组,包括配置于像侧的平行平板玻璃(光学滤光片)的组为I透镜组。另外,在该变焦透镜中,在变倍时,第二透镜组以及I透镜组在光轴上相对于像面的位置被固定。
另外,图12是广角端状态下的纵向像差图,图13是中间焦点位置状态下的纵向像差图,图14是远摄端状态下的纵向像差图,下述的表11示出了各透镜的面数据,表12示出了非球面数据(未显示的非球面系数为0.00。),表13示出了各种数据,表14示出了变焦透镜组数据,表15示出了变焦透镜组倍率。
表11
面数据
面编号 r d nd vd  
1* 124.688 0.700 1.8513 40.10  
2* 7.080 2.567      
3 9.310 1.183 1.9229 20.88  
4 13.324 d4      
5* 12.643 5.500 1.5445 55.96  
6* 24.065 d6     (孔径光阑)
7* 8.703 1.115 1.4971 81.56  
8* --20.876 0.200      
9 4.804 1.507 1.4970 81.61  
10 296.867 0.200      
11 6.127 0.400 2.0010 29.13  
12 3.452 d12      
13* -11.685 0.961 1.5445 55.96  
14* --35.581 d14      
15 5.000 2.0010 29.13  
16 0.200      
17 0.300 1.5168 64.20  
18 0.200      
*是非球面
表12
Figure PCTCN2021088809-appb-000003
表13
各种数据
  广角 中间 远摄
焦距 5.668 9.658 14.969
F数 2.440 3.117 4.152
半视角 38.008 22.997 14.984
透镜全长 45.000 35.837 32.392
后焦距 4.985 7.429 9.676
d4 13.607 4.445 1.000
d6 6.340 3.578 0.500
d12 3.120 3.441 4.274
d14 1.899 4.341 6.585
变焦比为2.641,像高为4.048。
表14
变焦透镜组数据
起始面 焦距 透镜构成长度 透镜移动量
1 1 -13.48 4.450 12.603
2 5 41.627 5.500 0.000
3 7 9.903 3.422 -5.844
4 13 -32.275 0.961 -4.691
表15
变焦透镜组倍率
起始面 广角 中间 远摄
1 1 0.000 0.000 0.000
2 5 2.947 1.787 1.557
3 7 -0.121 -0.318 -0.537
4 13 1.183 1.259 1.328
实施例4
图15A~图15C是本实施例1的变焦透镜的透镜结构图,图15A表示广角状态,图15B表示中间焦点位置状态,图15C表示远摄端状态。此外,在图15A~图15C中,以光轴没有弯折的状态示出。另外,表示变焦透镜的各结构的附图标记与上述实施方式的变焦透镜2的对应的结构的附图标记相同。
在该实施例4的变焦透镜中,第三透镜组为P透镜组,包括配置于像侧的平行平板玻璃(光学滤光片)的组为I透镜组。另外,在该变焦透镜中,在变倍时,第二透镜组以及I透镜组在光轴上相对于像面的位置被固定。
另外,图16是广角端状态下的纵向像差图,图17是中间焦点位置状态下的纵向像差图,图18是远摄端状态下的纵向像差图,下述的表16示出了各透镜的面数据,表17示出了非球面数据(未显示的非球面系数为0.00。),表18示出了各种数据,表19示出了变焦透镜组数据,表20示出了变焦透镜组倍率。
表16
面数据
面编号 r d nd vd  
1* 70.881 0.700 1.8513 40.10  
2* 9.624 1.101      
3 8.447 1.597 1.9229 20.88  
4 10.888 d4      
5 5.500 1.5445 55.96  
6 d6     (孔径光阑)
7* 5.293 1.051 1.4971 81.56  
8* 24.889 0.200      
9 5.320 1.382 1.4970 81.61  
10 -22.560 0.200      
11 4.432 0.405 2.0010 29.13  
12 2.881 d12      
13* -18.050 0.500 1.5445 55.96  
14* 38.459 d14      
15 5.000 2.0010 29.13  
16 0.200      
17 0.300 1.5168 64.20  
18 0.200      
*是非球面
表17
Figure PCTCN2021088809-appb-000004
表18
各种数据
  广角 中间 远摄
焦距 6.091 9.812 15.081
F数 2.440 2.923 3.856
半视角 37.202 22.888 14.972
透镜全长 45.000 33.779 29.531
后焦距 4.059 5.481 8.478
d4 16.746 5.525 1.277
d6 4.632 3.053 0.500
d12 4.315 4.472 4.032
d14 0.972 2.393 5.387
变焦比为2.676,像高为4.048。
表19
变焦透镜组数据
起始面 焦距 透镜构成长度 透镜移动量
1 1 -21.404 3.397 15.465
2 5 0.000 5.500 0.000
3 7 8.851 3.238 -4.137
4 13 -22.395 0.500 -4.419
表20
变焦透镜组倍率
起始面 广角 中间 远摄
1 1 0.000 0.000 0.000
2 5 1.000 1.000 1.000
3 7 -0.239 -0.365 -0.508
4 13 1.190 1.254 1.387
实施例5
图19A~图19C是本实施例1的变焦透镜的透镜结构图,图19A表示广角状态,图19B表示中间焦点位置状态,图19C表示远摄端状态。此外,在图19A~图19C中,以光轴没有弯折的状态示出。另外,表示变焦透镜的各结构的附图标记与上述实施方式的变焦透镜2的对应的结构的附图标记相同。
在该实施例5的变焦透镜中,第三透镜组为P透镜组,包括配置于像侧的平行平板玻璃(光学滤光片)的组为I透镜组。另外,在该变焦透镜中,在变倍时,第二透镜组以及I透镜组在光轴上相对于像面的位置被固定。
另外,图20是广角端状态下的纵向像差图,图21是中间焦点位置状态下的纵向像差图,图22是远摄端状态下的纵向像差图,下述的表21示出了各透镜的面数据,表22示出了非球面数据(未显示的非球面系数为0.00。),表23示出了各种数据,表24示出了变焦透镜组数据,表25示出了变焦透镜组倍率。
表21
面数据
面编号 r d nd vd  
1* 73.189 0.700 1.8513 40.10  
2* 8.875 1.391      
3 11.844 1.957 1.9229 20.88  
4 24.294 d4      
5* -40.344 5.500 1.5445 55.96  
6* -161.762 d6     (孔径光阑)
7* 6.614 1.772 1.4971 81.56  
8* -12.017 0.200      
9 5.676 2.457 1.5831 59.46  
10 45.673 1.000 1.9537 32.32  
11 3.875 d11      
12* 16.235 3.000 1.5931 37.65  
13* -100.000 d13      
14 5.000 2.0010 29.13  
15 0.200      
16 0.300 1.5168 64.20  
17 0.200      
*是非球面
表22
Figure PCTCN2021088809-appb-000005
表23
各种数据
  广角 中间 远摄
焦距 5.639 9.589 14.988
F数 2.440 2.996 4.358
半视角 37.993 22.994 14.995
透镜全长 50.000 36.457 33.999
后焦距 3.852 4.308 3.603
d4 17.159 3.617 1.158
d6 6.504 4.288 0.500
d11 1.897 3.657 8.149
d13 0.763 1.219 0.514
变焦比为2.658,像高为4.048。
表24
变焦透镜组数据
起始面 焦距 透镜构成长度 透镜移动量
1 1 -25.413 4.048 16.002
2 5 -100.316 5.500 0.000
3 7 10.597 5.429 -6.004
4 12 24.604 3.000 0.249
表25
变焦透镜组倍率
起始面 广角 中间 远摄
1 1 0.000 0.000 0.000
2 5 0.694 0.765 0.780
3 7 -0.412 -0.651 -0.962
4 12 0.775 0.756 0.786
实施例6
图23A~图23C是本实施例1的变焦透镜的透镜结构图,图23A表示广角状态,图23B表示中间焦点位置状态,图23C表示远摄端状态。此外,在图23A~图23C中,以光轴没有弯折的状态示出。另外,表示变焦透镜的各结构的附图标记与上述实施方式的变焦透镜2的对应的结构的附图标记相同。
在该实施例6的变焦透镜中,第三透镜组为P透镜组,包括配置于像侧的平行平板玻璃(光学滤光片)的组为I透镜组。另外,在该变焦透镜中,在变倍时,第二透镜组以及I透镜组在光轴上相对于像面的位置被固定。
另外,图24是广角端状态下的纵向像差图,图25是中间焦点位置状态下的纵向像差图,图26是远摄端状态下的纵向像差图,下述的表26示出了各透镜的面数据,表27示出了非球面数据(未显示的非球面系数为0.00。),表28示出了各种数据,表29示出了变焦透镜组数据,表30示出了变焦透镜组倍率。
表26
面数据
面编号 r d nd vd  
1* 113.599 0.700 1.8513 40.10  
2* 8.716 2.298      
3 9.660 1.452 1.9229 20.88  
4 14.162 d4      
5* 14.773 5.500 1.5445 55.96  
6* 10.099 d6     (孔径光阑)
7* 8.333 1.281 1.4971 81.56  
8* -11.524 0.200      
9 4.674 1.201 1.4970 81.61  
10 38.556 0.200      
11 5.340 0.436 2.0010 29.13  
12 3.351 d12      
13* -14.101 1.000 1.5445 55.96  
14* 1402.384 d14      
15 5.000 2.0010 29.13  
16 0.200      
17 0.300 1.5168 64.20  
18 0.200      
*是非球面
表27
Figure PCTCN2021088809-appb-000006
表28
各种数据
  广角 中间 远摄
焦距 5.752 9.740 15.068
F数 2.440 3.091 4.292
半视角 37.979 22.997 14.989
透镜全长 45.000 34.467 31.222
后焦距 4.066 5.425 6.430
d4 14.818 4.285 1.040
d6 5.054 3.054 0.500
d12 4.183 4.823 6.373
d14 0.977 2.337 3.341
变焦比为2.620,像高为4.048。
表29
变焦透镜组数据
起始面 焦距 透镜构成长度 透镜移动量
1 1 -19.190 4.450 13.778
2 5 -100.176 5.500 0.000
3 7 7.731 3.318 -4.554
4 13 -25.632 1.000 -2.364
表30
变焦透镜组倍率
起始面 广角 中间 远摄
1 1 0.000 0.000 0.000
2 5 0.638 0.684 0.699
3 7 -0.397 -0.600 -0.881
4 13 1.184 1.237 1.276
以上的实施例1~6的上述实施方式的公式(1)~公式(6)所对应的值如下述的表31所示。
表31
条件式对应值
  实施例1 实施例2 实施例3 实施例4 实施例5 实施例6
条件式(1) -2.395 -3.912 -2.378 -3.514 -4.506 -3.336
条件式(2) 1.367 1.252 1.075 0.923 1.153 0.830
条件式(3) 1.212 1.678 1.368 1.614 1.740 1.480
条件式(4) -1.074 -1.921 -1.361 -2.418 -2.398 -2.482
条件式(5) 0.430 0.999 0.595 1.165 1.138 1.180
条件式(6) 1.367 0.000 0.221 0.000 -0.092 -0.093
fw 5.668 5.665 5.668 6.091 5.639 5.752
ft 15.086 14.992 14.969 15.081 14.988 15.068
f1 -13.575 -22.161 -13.481 -21.404 -25.413 -19.190
f2 43.812 0.000 41.627 0.000 -100.316 -100.176
fP 12.643 11.538 9.903 8.851 10.597 7.731
m1 11.209 15.463 12.603 15.465 16.002 13.778
mP -6.896 -6.287 -5.844 -4.137 -6.004 -4.554
bPw -0.221 -0.330 -0.121 -0.239 -0.412 -0.397
bPt -1.368 -0.874 -0.537 -0.508 -0.962 -0.881
虽然为了表现本发明,在上述中参照附图通过实施方式适当且充分地对本发明进行了说明,但是本领域技术人员应该认识到,变更和/或改良上述实施方式是容易实现的。因此,只要本领域技术人员实施的变更方式或改良方式不是脱离权利要求书中记载的权利要求范围的水平,则可以解释为该变更方式或该改良方式被包括在该权利要求范围内。
附图标记说明
1:摄像装置
2:变焦透镜
22:镜筒
23:光学滤光片
3:摄像元件
4:液晶显示屏
100:摄像装置
101:变焦光学系统
102:第一透镜组
103:第二透镜组
104:第三透镜组
105:低通滤波器
200:摄像装置
201:变焦光学系统
202:第一透镜组
202A:反射棱镜
203:第二透镜组
204:第三透镜组
205:第四透镜组
205A:反射棱镜
300:摄像装置
301:变焦光学系统
302:第一透镜组
303:第二透镜组
304:反射棱镜
305:后续透镜组
C、C1、C2、C3:光轴
F:对焦透镜组
G1:第一透镜组
G2:第二透镜组
G3:第三透镜组(P透镜组)
G4:第四透镜组
GI:I透镜组
P:反射光学元件
S:空间
Se:摄像元件

Claims (10)

  1. 一种变焦透镜,其特征在于,是能够伸缩容纳的变焦透镜,包括:
    从物体侧向像侧沿着光轴依次具备第一透镜组、第二透镜组以及P透镜组;
    所述第一透镜组具有负屈光度;
    所述第二透镜组具有使所述光轴弯折的反射光学元件;
    在伸缩容纳时,所述第二透镜组沿着所述光轴向像侧移动,所述第一透镜组的至少一部分被伸缩容纳到由所述第二透镜组的移动而产生的空间中。
  2. 根据权利要求1所述的变焦透镜,其特征在于,
    所述P透镜组具有正屈光度;
    在从广角端向远摄端变倍时,
    所述第一透镜组和所述第二透镜组中至少所述第一透镜组沿着所述光轴移动以缩小与所述第二透镜组的间隔;
    所述P透镜组移动以缩小与所述第二透镜组的间隔;
    所述第二透镜组在所述光轴上相对于像面的位置被固定。
  3. 根据权利要求1或2所述的变焦透镜,其特征在于,具备:
    I透镜组,其配置在比所述P透镜组更靠近像侧,并在从广角端向远摄端变倍时,其在所述光轴上相对于像面的位置被固定;
    所述I透镜组具有反射光学元件,所述反射光学元件配置在该变焦透镜的像面的物体侧,并且使所述光轴弯折。
  4. 根据权利要求2所述的变焦透镜,其特征在于,
    在将所述第一透镜组的焦距设为f1,并将广角端的焦距设为fw时,满足:
    -6.000≤f1/fw≤-1.500。
  5. 根据权利要求2所述的变焦透镜,其特征在于,
    在将所述P透镜组的焦距设为fP,将广角端的焦距设为fw,并将远摄端的焦距设为ft时,满足:
    0.500≤fP/√(fw×ft)≤2.500。
  6. 根据权利要求2所述的变焦透镜,其特征在于,
    以像侧为正,在将从广角端到远摄端的所述第一透镜组的移动量设为m1,将广角端的焦距设为fw,并将远摄端的焦距设为ft时,满足:
    0.800≤m1/√(fw×ft)≤2.500。
  7. 根据权利要求2所述的变焦透镜,其特征在于,
    在将所述第一透镜组的焦距设为f1,并将所述P透镜组的焦距设为fP时,满足:
    -5.000≤f1/fP≤-0.500。
  8. 根据权利要求2所述的变焦透镜,其特征在于,
    在将远摄端的焦距设为ft,将广角端的焦距设为fw,将所述P透镜组在远摄端的无限远对焦中的横向倍率设为bPt,并将所述P透镜组在广角端的无限远对焦中的横向倍率设为bPw时,满足:
    0.200≤|(ft/fw)/(bPt/bPw)|≤4.000。
  9. 根据权利要求2所述的变焦透镜,其特征在于,
    在将广角端的焦距设为fw,将远摄端的焦距设为ft,并将所述第二透镜组的焦距设为f2时,满足:
    -1.000≤√(fw×ft)/f2≤2.000。
  10. 一种摄像装置,其特征在于,具备:
    根据权利要求1~9中任一项所述的变焦透镜;以及
    摄像元件,其配置在所述变焦透镜的像面位置。
PCT/CN2021/088809 2021-04-21 2021-04-21 变焦透镜以及具备变焦透镜的摄像装置 WO2022222085A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/908,908 US20230359006A1 (en) 2021-04-21 2021-04-21 Zoom lens and camera device with zoom lens
CN202180001462.3A CN115516358A (zh) 2021-04-21 2021-04-21 变焦透镜以及具备变焦透镜的摄像装置
JP2021532297A JP2023525415A (ja) 2021-04-21 2021-04-21 ズームレンズ、及びズームレンズを備えた撮像装置
EP21928370.2A EP4328646A1 (en) 2021-04-21 2021-04-21 Zoom lens and camera device having same
PCT/CN2021/088809 WO2022222085A1 (zh) 2021-04-21 2021-04-21 变焦透镜以及具备变焦透镜的摄像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/088809 WO2022222085A1 (zh) 2021-04-21 2021-04-21 变焦透镜以及具备变焦透镜的摄像装置

Publications (1)

Publication Number Publication Date
WO2022222085A1 true WO2022222085A1 (zh) 2022-10-27

Family

ID=83723367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/088809 WO2022222085A1 (zh) 2021-04-21 2021-04-21 变焦透镜以及具备变焦透镜的摄像装置

Country Status (5)

Country Link
US (1) US20230359006A1 (zh)
EP (1) EP4328646A1 (zh)
JP (1) JP2023525415A (zh)
CN (1) CN115516358A (zh)
WO (1) WO2022222085A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040179273A1 (en) * 2003-03-10 2004-09-16 Nidec Copal Corporation Zoom lens
CN101013192A (zh) * 2006-02-03 2007-08-08 松下电器产业株式会社 变焦透镜系统、透镜镜筒、成像装置以及拍摄设备
CN101750717A (zh) * 2008-12-10 2010-06-23 佳能株式会社 光学元件驱动机构和具有该光学元件驱动机构的摄像设备
JP4520190B2 (ja) 2004-03-18 2010-08-04 Hoya株式会社 沈胴式レンズ鏡筒及び沈胴式レンズ鏡筒を備えたカメラ
CN102004303A (zh) * 2009-08-31 2011-04-06 佳能株式会社 变焦透镜和包括变焦透镜的图像拾取装置
CN102914855A (zh) * 2011-08-04 2013-02-06 佳能株式会社 变焦透镜和配有变焦透镜的图像拾取装置
JP5551055B2 (ja) 2010-12-08 2014-07-16 Hoya株式会社 ズームレンズ系
CN111399180A (zh) * 2020-04-27 2020-07-10 浙江舜宇光学有限公司 摄像透镜组

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040179273A1 (en) * 2003-03-10 2004-09-16 Nidec Copal Corporation Zoom lens
JP4520190B2 (ja) 2004-03-18 2010-08-04 Hoya株式会社 沈胴式レンズ鏡筒及び沈胴式レンズ鏡筒を備えたカメラ
CN101013192A (zh) * 2006-02-03 2007-08-08 松下电器产业株式会社 变焦透镜系统、透镜镜筒、成像装置以及拍摄设备
CN101750717A (zh) * 2008-12-10 2010-06-23 佳能株式会社 光学元件驱动机构和具有该光学元件驱动机构的摄像设备
CN102004303A (zh) * 2009-08-31 2011-04-06 佳能株式会社 变焦透镜和包括变焦透镜的图像拾取装置
JP4790052B2 (ja) 2009-08-31 2011-10-12 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP5551055B2 (ja) 2010-12-08 2014-07-16 Hoya株式会社 ズームレンズ系
CN102914855A (zh) * 2011-08-04 2013-02-06 佳能株式会社 变焦透镜和配有变焦透镜的图像拾取装置
CN111399180A (zh) * 2020-04-27 2020-07-10 浙江舜宇光学有限公司 摄像透镜组

Also Published As

Publication number Publication date
JP2023525415A (ja) 2023-06-16
EP4328646A1 (en) 2024-02-28
CN115516358A (zh) 2022-12-23
US20230359006A1 (en) 2023-11-09

Similar Documents

Publication Publication Date Title
JP4822512B2 (ja) ズームレンズ系、レンズ鏡筒、撮像装置及びカメラ
US8300318B2 (en) Zoom lens system, imaging device and camera
US20110228406A1 (en) Zoom lens system, optical device with the zoom lens system, and method of manufacturing the zoom lens system
JP4844012B2 (ja) 変倍光学系及び撮像装置
US8130452B2 (en) Electronic image pickup apparatus
US8238040B2 (en) Zoom optical system, optical apparatus equipped with zoom optical system and method for manufacturing zoom optical system
JP2008203449A (ja) ズームレンズ及び撮像装置
JP5274265B2 (ja) ズームレンズ及びそれを有する撮像装置
US8736973B2 (en) Zoom lens and image pickup apparatus equipped with zoom lens
JP5682806B2 (ja) 撮像光学系、カメラ装置および携帯情報端末装置
JP5213727B2 (ja) ズームレンズ及びそれを有する撮像装置
JP2007293052A (ja) ズームレンズ系、撮像装置及びカメラ
JP4847091B2 (ja) ズームレンズ及びそれを有する撮像装置
JP2008039838A (ja) ズームレンズ系、撮像装置及びカメラ
JP3619117B2 (ja) ズームレンズ及びそれを用いた光学機器
US7679836B2 (en) Zoom lens system and image pickup apparatus equipped with the same
US7436601B2 (en) Two-group zoom lens and an electronic imaging apparatus having it
JP2007293051A (ja) ズームレンズ系、撮像装置及びカメラ
JP3706787B2 (ja) ズームレンズ及びそれを用いた光学機器
US8395848B2 (en) Zoom lens system, imaging device and camera
US20100171850A1 (en) Zooms lens system, imaging device and camera
US20110102640A1 (en) Zoom lens system, imaging device and camera
WO2022222085A1 (zh) 变焦透镜以及具备变焦透镜的摄像装置
JP2020101750A (ja) ズームレンズ及び撮像装置
WO2024082192A1 (zh) 变焦镜头以及拍摄装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021532297

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928370

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021928370

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021928370

Country of ref document: EP

Effective date: 20231121