WO2022220516A1 - 전도성 플라스틱을 이용한 진단 장치 및 그 장치의 제조 방법 - Google Patents

전도성 플라스틱을 이용한 진단 장치 및 그 장치의 제조 방법 Download PDF

Info

Publication number
WO2022220516A1
WO2022220516A1 PCT/KR2022/005207 KR2022005207W WO2022220516A1 WO 2022220516 A1 WO2022220516 A1 WO 2022220516A1 KR 2022005207 W KR2022005207 W KR 2022005207W WO 2022220516 A1 WO2022220516 A1 WO 2022220516A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
width
diagnostic device
base plate
insulator
Prior art date
Application number
PCT/KR2022/005207
Other languages
English (en)
French (fr)
Inventor
민창욱
안문경
Original Assignee
주식회사 시큐어메드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 시큐어메드 filed Critical 주식회사 시큐어메드
Publication of WO2022220516A1 publication Critical patent/WO2022220516A1/ko
Priority to US18/379,727 priority Critical patent/US20240075472A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/046Function or devices integrated in the closure
    • B01L2300/047Additional chamber, reservoir
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0848Specific forms of parts of containers
    • B01L2300/0851Bottom walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0427Electrowetting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • B29C2045/169Making multilayered or multicoloured articles injecting electrical circuits, e.g. one layer being made of conductive material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2507/00Use of elements other than metals as filler
    • B29K2507/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0005Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof

Definitions

  • the present invention relates to a diagnostic apparatus using electrowetting and a method for manufacturing the same. More specifically, the present invention relates to a diagnostic device that simplifies a production process by injection molding a conductive plastic to form an electrode, and a method for manufacturing the same.
  • Electrowetting refers to a phenomenon in which the surface tension of a fluid changes due to an electric field applied to the fluid.
  • a fluid whose surface tension is changed by electrowetting may have a different solid-liquid contact angle due to a potential difference according to an applied electrical signal.
  • a fluid whose surface tension is changed by electrowetting may move on the electrode according to an applied electrical signal.
  • a technical problem to be solved through some embodiments of the present invention is to provide a diagnostic apparatus having a structure capable of simplifying a production process, and a method of manufacturing the same.
  • Another technical problem to be solved through some embodiments of the present invention is to provide a diagnostic device having a structure capable of lowering production cost and a method of manufacturing the same.
  • Another technical problem to be solved through some embodiments of the present invention is to provide a diagnostic apparatus that can be used as a disposable cartridge and a method of manufacturing the same.
  • a diagnostic apparatus includes a base plate made of an insulator and at least one formed through the base plate and moving a fluid located on the surface based on an applied voltage.
  • the base plate has a first injection gate formed by injecting the insulator into a first space of a mold, and the electrode includes a second injection gate that is distinct from the first injection gate. It may be formed by injecting conductive plastic into the second space of the
  • an upper width of the electrode is a width greater than a central width of the electrode by a first reference size
  • a lower width of the electrode is a width greater than a central width of the electrode by a second reference size
  • the first The reference size may be larger than the second reference size.
  • the width of the electrode may be tapered from the upper portion of the electrode toward the middle, and tapered from the lower portion of the electrode toward the middle.
  • the conductive plastic may include at least one of carbon nanotubes, graphene, and carbon fibers
  • the insulator may include polycarbonate (PC), poly methyl methacrylate (PMMA), and cyclic olefin polymer (COP).
  • COC Cyclic Olefin Copolymer
  • PET Polyethylene Terephthalate
  • PI Polyimide
  • PE Polyethylene
  • Acrylic ABS (Acrylonitrile butadienestyrene)
  • PVDF Polyvinylidene fluoride
  • PTFE Polytetrafluoroethylene
  • PS Polystyrene
  • PP It may include at least one of (Polypropylene) and PVC (Polyvinyl chrloride).
  • an upper width of an electrode gap formed from two or more electrodes may be smaller than a lower width of the electrode gap.
  • the width of the electrode gap may be tapered from the middle of the electrode gap toward the top, and tapered from the middle of the electrode gap toward the bottom.
  • the base plate of the electrode gap may be formed by injecting the insulator into the lower part of the electrode gap.
  • it may further include a reservoir (Reservoir) for inducing the fluid accommodated in the housing.
  • a reservoir Reservoir
  • the upper width of the adjacent electrode formed adjacent to the reservoir may be greater than the upper width of the other electrode formed on the base plate.
  • the number of the adjacent electrodes may be determined based on the size of the reservoir.
  • a diagnostic device having a structure capable of increasing the yield and lowering the defect rate through a very simple injection molding process compared to a conventional diagnostic device manufacturing process including a photo process, a metal deposition process, an etching process, etc. is provided. can do.
  • a diagnostic apparatus having a structure in which the liquid accommodated in the housing can move more smoothly along the reservoir and the electrode based on the electrowetting signal.
  • FIG. 1 is an exemplary diagram of a diagnostic apparatus according to an embodiment of the present invention.
  • FIG. 2 is an exemplary view of an upper portion of the electrode plate described with reference to FIG. 1 .
  • FIG. 3 is an exemplary view of the lower portion of the electrode plate described with reference to FIG. 1 .
  • FIG. 4 is an exemplary cross-sectional view of the electrode plate described with reference to FIG. 1 .
  • FIG. 5 is an exemplary view for explaining the housing and the electrode plate described with reference to FIG. 1 in more detail.
  • FIG. 6 is an exemplary view for explaining the structure of the electrode described with reference to FIGS. 2 to 4 in more detail.
  • FIG. 7 is an exemplary view for explaining the structure of the base plate described with reference to FIGS. 2 to 4 in more detail.
  • FIG. 8 is another exemplary view of an upper portion of the electrode plate described with reference to FIG. 1 .
  • FIG. 1 is an exemplary diagram of a diagnostic apparatus according to an embodiment of the present invention.
  • 1 shows a diagnostic device including an electrode plate 10, a housing 20, and a substrate 30, FIG. 1 only shows a preferred embodiment for achieving the object of the present invention, Some components may be added or deleted.
  • a reader (not shown) implemented as a computing device may be further included in the diagnostic device, wherein the reader generates an electrowetting signal (i.e., electrical signal) for guiding the fluid accommodated in the housing to the target electrode.
  • an electrowetting signal i.e., electrical signal
  • FIG. 1 represent functional components that are functionally separated, and a plurality of components may be implemented in a form that is integrated with each other in an actual physical environment.
  • components of the exemplary diagnostic apparatus shown in FIG. 1 will be described in more detail.
  • the housing 20 may contain a fluid.
  • the housing 20 may include a fluid accommodating part for accommodating the fluid.
  • a sample containing DNA to perform PCR Polymerase Chain Reaction
  • the scope of the present invention is not limited to this example.
  • the structure of the housing 20 may further include components other than the fluid receiving unit depending on the purpose for which the diagnostic device is used. That is, it should be noted that the housing 20 may be configured to accommodate a fluid and provide additional functions in addition to forming the exterior of the diagnostic apparatus, and all known technologies of the diagnostic apparatus may be referred to.
  • the electrode plate 10 may induce polarization in the fluid through an electrowetting signal for moving the fluid accommodated in the housing 20 to the position of the target electrode.
  • the electrode plate 10 may include at least one electrode for passing the electrowetting signal.
  • the electrode plate 10 may include a base plate and at least one electrode formed through the base plate.
  • the base plate may be made of an insulator.
  • the surface tension between the electrode and the fluid may be changed along the electrode formed through the electrically insulated base plate by using electrowetting.
  • the fluid can move between the electrodes adjacent to each other by using the change in the contact angle between the electrode and the fluid due to the change in surface tension.
  • the substrate 30 may transmit an electrowetting signal to the electrode plate 10 .
  • the substrate 30 may be any one of a glass substrate, a silicon substrate, a printed circuit board (PCB), and a thin film transistor (TFT).
  • PCB printed circuit board
  • TFT thin film transistor
  • the scope of the present invention is not limited to these examples, and all known techniques having a structure capable of transmitting an electrowetting signal transmitted by a reader (not shown) to the electrode plate 10 may be applied to the present invention. have.
  • a reader (not shown) implemented as a computing device may be included in the diagnostic device, but in an environment where the diagnostic device is manufactured for one-time use, a plurality of diagnostic devices are connected to the reader through connectors and are used only once. 1, not including the reader may reduce the manufacturing cost of the diagnostic device.
  • the fluid accommodated in the housing 20 may be moved to the position of the target electrode.
  • cells, vesicles, etc. from sample samples such as animal blood, urine, feces, saliva, nasopharyngeal smear, nasal stroma, oropharyngeal smear, cerebrospinal fluid, skin tissue, hair, other somatic cells, body tissue and semen , proteins and nucleic acids may be automatically extracted and purified, gene amplification, translation, synthesis and diagnosis may be performed, immunodiagnosis using antigen-antibody reaction may be performed, and compounds may be synthesized and prepared. Furthermore, heavy metals, substances harmful to the human body and narcotics can be tested. It should be noted that the technical fields in which the diagnostic apparatus exemplified above may be used are merely exemplary, and the above-described diagnostic apparatus may be used in various other technical fields.
  • FIG. 2 is an exemplary view of an upper portion of the electrode plate 10 described with reference to FIG. 1
  • FIG. 3 is an exemplary view of a lower portion of the electrode plate 10 described with reference to FIG. 1
  • FIG. 4 is a view of FIG. 1 . It is an exemplary cross-sectional view of the electrode plate 10 described with reference.
  • FIG. 2 shows the structure of the upper portion 11 of an exemplary electrode formed on the electrode plate 10 .
  • the upper part 11 of the electrode shown in FIG. 2 is formed in a rectangular shape, it should be noted that this is only an example and the structure of the upper part 11 of the electrode may be changed.
  • FIG. 3 shows the structure of the lower portion 12 of an exemplary electrode formed under the electrode plate 10 .
  • the lower portion 12 of the electrode shown in FIG. 3 is formed in a circle, it should be noted that this is only an example and the structure of the lower portion 12 of the electrode may be changed.
  • the electrode 13 may be formed through the base plate.
  • the electrode may be formed by injection molding of a conductive plastic.
  • the electrode of the diagnostic apparatus may be manufactured by a simplified process without a complicated process similar to a semiconductor process including a photo process and a metal deposition process.
  • the conductive plastic constituting the electrode may include a mixture of PC (Polycarbonate).
  • the mixture may include at least one of carbon nanotubes, graphene, and carbon fibers, which are conductive materials together with PC.
  • PC Polycarbonate
  • all known mixtures for conducting electrical signals can be applied to the present invention for producing electrodes.
  • the insulator constituting the base plate is PC (Polycarbonate), PMMA (Poly Methyl Methacrylate), COP (Cyclic Olefin Polymer), COC (Cyclic Olefin Copolymer), PET (Polyethylene Terephthalate), containing at least one of PI (Polyimide), PE (Polyethylene), Acrylic, ABS (Acrylonitrilebutadiene styrene), PVDF (Polyvinylidene fluoride), PTFE (Polytetrafluoroethylene), PS (Polystyrene), PP (Polypropylene) and PVC (Polyvinyl chrloride) can be done.
  • PC Polycarbonate
  • PMMA Poly Methyl Methacrylate
  • COP Cyclic Olefin Polymer
  • COC Cyclic Olefin Copolymer
  • PET Polyethylene Terephthalate
  • PI Polyimide
  • PE Polyethylene
  • Acrylic Acrylic
  • ABS Ac
  • the electrode and base plate may be formed by Double Shot Injection Molding. More specifically, in the base plate, a first injection gate (or nozzle) is formed by injecting an insulator into a first space of a first mold, and an electrode is a second injection gate (or nozzle) distinguished from the first injection gate. ) may be formed by injecting conductive plastic into the second mold or the second space of the first mold.
  • the first injection gate and the second injection gate may be a configuration included in an injector having two or more injection gates, but the scope of the present invention is not limited thereto. It may be a configuration included in the injector.
  • electrodes and base plates made of different materials can be manufactured by a simplified process without a complicated process similar to a semiconductor process including a photo process and a metal deposition process. All known methods of performing double-shot injection molding for manufacturing electrodes and base plates made of different materials can be applied to the present invention.
  • the electrode and the base plate may be formed by insert injection molding or overmolding. More specifically, the electrode may be formed by injecting an insulator into the first mold to form the base plate, inserting the formed base plate into the second mold, and then injecting the conductive plastic into the second mold. Conversely, the base plate may be formed by first injecting a conductive plastic into the third mold to form an electrode, inserting the formed electrode into the fourth mold, and then injecting an insulator into the fourth mold. According to the present embodiment, electrodes and base plates having different configurations can be manufactured through a simplified process without a complicated process similar to a semiconductor process including a photo process and a metal deposition process.
  • the housing 20 may be coupled to the upper portion of the electrode plate 10 formed according to the various methods described above.
  • the fluid accommodated in the fluid accommodating part (not shown) of the housing 20 may move along the electrodes 13 formed on the electrode plate 10 based on the electrowetting signal.
  • the fluid moves in a position and/or direction guided by the electrowetting signal through the space between the top surface of the electrode 13 formed on the electrode plate 10 and the bottom surface of the housing facing the top surface of the electrode.
  • can be 5 shows an exemplary state of the fluid 70 moving along the electrode 13 based on the electrowetting signal, with respect to the movement of the fluid accommodated in the fluid receiving part (not shown) of the housing 20 . will be described later in more detail with reference to FIG.
  • FIGS. 6 and 7 are exemplary views for explaining in more detail the structure of the electrode described with reference to FIGS. 2 to 4
  • FIG. 7 is a more detailed description of the structure of the base plate described with reference to FIGS. 2 to 4 .
  • the upper width 14 of the electrode formed on the electrode plate 10 is greater than the central width 15 of the electrode by a first reference size
  • the lower width 16 of the electrode is the central width of the electrode.
  • the width is larger by the second reference size than (15).
  • the central portion of the electrode may refer to an arbitrary position between the upper portion and the lower portion of the electrode.
  • the position of the middle part of the electrode may vary depending on the use of the diagnostic device, and the central width 15 of the electrode is smaller than the upper width 14 and the lower width 16 of the electrode.
  • the electrode should be construed as being included in the scope of the present invention.
  • the first reference size and the second reference size may vary according to the purpose of the diagnostic apparatus.
  • the first reference size may be larger than the second reference size. Since the upper portion of the electrode plate 10 is a portion in contact with the fluid and the lower portion of the electrode plate 10 is a portion through which an electric signal is conducted, it is preferable that the upper width 14 of the electrode is larger than the lower width 16 of the electrode.
  • the width of the electrode may be tapered from the top to the middle of the electrode and tapered from the bottom of the electrode toward the middle. According to the present embodiment, by increasing the adhesion between the electrodes and the base plate having different configurations, it is possible to increase the yield of the manufactured electrode plate 10 and reduce the defect rate.
  • an upper width of the electrode may be greater than or equal to a central width of the electrode, and a central width of the electrode may be formed to be greater than or equal to a lower width of the electrode.
  • the electrode may be formed in a tapered shape from top to bottom.
  • each of the upper width 14 , the middle width 15 , and the lower width 16 of the electrode may vary.
  • the electrode gap 7 illustrates an exemplary electrode spacing formed from two or more electrodes formed on the electrode plate 10 .
  • the electrode gap may be a base plate portion made of an insulator.
  • the upper width 17 of the electrode gap may be smaller than the lower width 18 of the electrode gap.
  • the base plate of the electrode gap may be formed by placing an injection gate in the lower portion 40 of the electrode gap and injecting an insulator.
  • the pressure generated when the insulator constituting the base plate is injected can be reduced.
  • the yield of the manufactured electrode plate 10 may be increased and the defect rate may be reduced.
  • the width of the electrode spacing may be tapered from the middle to the top of the electrode spacing, and tapered from the middle to the bottom of the electrode spacing. According to the present embodiment, by increasing the adhesion between the electrodes and the base plate having different configurations, it is possible to increase the yield of the manufactured electrode plate 10 and reduce the defect rate.
  • FIG. 8 is another exemplary view of an upper portion of the electrode plate described with reference to FIG. 1 .
  • the electrode plate 10 may further include a reservoir 19 for dispensing the fluid accommodated in the housing 20 .
  • the fluid accommodated in the housing 20 may primarily flow into the reservoir 19 .
  • the reservoir 19 of the present disclosure may be formed in various structures for dispensing a fluid to an adjacent electrode, for example, a structure in which a fluid is directly introduced into the reservoir 19 from the outside without passing through the housing 20 It should be noted that the scope of the present disclosure is not excluded.
  • the upper width of the adjacent electrode 50a formed adjacent to the reservoir 19 may be greater than the upper width of the other electrode 50b. Since the adjacent electrode 50a is positioned adjacent to the reservoir 19 compared to the other electrodes 50b, it may be positioned in a path through which a fluid to be moved to the target electrode necessarily moves based on the electrowetting signal. Accordingly, in order for the adjacent electrode 50a to receive a larger amount of fluid compared to the other electrodes 50b or to induce electrowetting by applying a voltage to a larger amount of fluid, the adjacent electrode 50a has a different size electrode 50b. may be formed relatively larger than the size of
  • the number of adjacent electrodes 50a may be determined based on the size of the reservoir 19 . For example, as the size of the reservoir 19 increases, the number of adjacent electrodes 50a may increase, and as the size of the reservoir 19 decreases, the number of adjacent electrodes 50a may decrease. Although the number of adjacent electrodes 50a shown in FIG. 8 is five, it should be noted that this is merely exemplary and does not limit the scope of the present invention.
  • a diagnosis apparatus according to an exemplary embodiment of the present invention has been described with reference to FIGS. 1 to 8 .
  • a diagnostic apparatus can be manufactured using only a simple process.
  • the manufacturing cost of the diagnostic device may be reduced, and the manufacturing cost of the diagnostic device may be reduced to a manufacturing cost suitable for use as a disposable cartridge (or disposable kit). have.
  • a diagnostic device having a structure capable of increasing the yield and lowering the defect rate through a very simple injection molding process compared to the conventional diagnostic device manufacturing process including a photo process, a metal deposition process, an etching process, etc. can provide
  • a diagnostic apparatus having a structure in which the liquid accommodated in the housing can move more smoothly along the reservoir and the electrode based on the electrowetting signal.

Abstract

본 발명은 진단 장치 및 그 장치의 제조 방법에 관한 것이다. 본 발명의 일 실시예에 따른 진단 장치는, 절연체로 이루어진 베이스 플레이트 및 상기 베이스 플레이트를 관통하여 형성되고, 인가된 전압에 기초하여 표면에 위치한 유체를 이동시키는 적어도 하나의 전극을 포함하되, 상기 베이스 플레이트는 제1 인젝션 게이트가 몰드(Mold)의 제1 공간에 상기 절연체를 주입하여 형성된 것이고, 상기 전극은 상기 제1 인젝션 게이트와 구별되는 제2 인젝션 게이트가 상기 몰드의 제2 공간에 전도성 플라스틱을 주입하여 형성된 것일 수 있다.

Description

전도성 플라스틱을 이용한 진단 장치 및 그 장치의 제조 방법
본 발명은 일렉트로웨팅(Electrowetting)을 이용한 진단 장치 및 그 장치의 제조 방법에 관한 것이다. 보다 구체적으로, 전도성 플라스틱을 인젝션 몰딩(Injection Molding)하여 전극을 형성함으로써 생산 공정을 간소화시킨 진단 장치 및 그 장치의 제조 방법에 관한 것이다.
일렉트로웨팅이란 유체에 인가되는 전기장으로 인해서 유체의 표면 장력이 변하는 현상을 의미한다. 예를 들어, 일렉트로웨팅에 의해 표면 장력이 변화된 유체는 인가된 전기 신호에 따라 전위차로 인한 고체-액체 간 접촉각이 달라질 수 있다. 다른 예를 들어, 일렉트로웨팅에 의해 표면 장력이 변화된 유체는 인가된 전기 신호에 따라 전극 상에서 이동할 수도 있다.
다양한 기술 분야에서 이러한 일렉트로웨팅을 이용하기 위한 시도가 계속되고 있다. 예를 들어, 카메라 렌즈의 두께를 제어하거나 전자 종이(Electronic Paper)의 상용화를 위해 일렉트로웨팅을 이용하기 위한 시도가 계속되고 있다.
본 발명의 몇몇 실시예를 통해 해결하고자 하는 기술적 과제는, 생산 공정을 간소화시킬 수 있는 구조를 가진 진단 장치 및 그 장치의 제조 방법을 제공하는 것이다.
본 발명의 몇몇 실시예를 통해 해결하고자 하는 다른 기술적 과제는, 생산 단가를 낮출 수 있는 구조를 가진 진단 장치 및 그 장치의 제조 방법을 제공하는 것이다.
본 발명의 몇몇 실시예를 통해 해결하고자 하는 또 다른 기술적 과제는, 일회용 카트리지로 이용될 수 있는 진단 장치 및 그 장치의 제조 방법을 제공하는 것이다.
본 발명의 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명의 기술 분야에서의 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
상기 기술적 과제를 해결하기 위한, 본 발명의 일 실시예에 따른 진단 장치는, 절연체로 이루어진 베이스 플레이트 및 상기 베이스 플레이트를 관통하여 형성되고, 인가된 전압에 기초하여 표면에 위치한 유체를 이동시키는 적어도 하나의 전극을 포함하되, 상기 베이스 플레이트는 제1 인젝션 게이트가 몰드(Mold)의 제1 공간에 상기 절연체를 주입하여 형성된 것이고, 상기 전극은 상기 제1 인젝션 게이트와 구별되는 제2 인젝션 게이트가 상기 몰드의 제2 공간에 전도성 플라스틱을 주입하여 형성된 것일 수 있다.
일 실시예에서, 상기 전극의 상부 너비는 상기 전극의 중부 너비보다 제1 기준 크기만큼 큰 너비이고, 상기 전극의 하부 너비는 상기 전극의 중부 너비보다 제2 기준 크기만큼 큰 너비이고, 상기 제1 기준 크기는 상기 제2 기준 크기보다 큰 것일 수 있다. 여기서, 상기 전극의 너비는, 상기 전극의 상부에서 중부를 향하여 테이퍼링(tapering)되고, 상기 전극의 하부에서 중부를 향하여 테이퍼링되는 것일 수 있다.
일 실시예에서, 상기 전도성 플라스틱은, 탄소 나노튜브, 그래핀, 탄소 섬유 중 적어도 하나를 포함하여 이루어질 수 있고, 상기 절연체는, PC(Polycarbonate), PMMA(Poly Methyl Methacrylate), COP(Cyclic Olefin Polymer), COC(Cyclic Olefin Copolymer), PET(Polyethylene Terephthalate), PI(Polyimide), PE(Polyethylene), Acrylic, ABS (Acrylonitrile butadienestyrene), PVDF (Polyvinylidene fluoride), PTFE (Polytetrafluoroethylene), PS (Polystyrene), PP (Polypropylene) 및 PVC (Polyvinyl chrloride) 중 적어도 하나를 포함하여 이루어질 수 있다.
일 실시예에서, 두개 이상의 전극으로부터 형성된 전극 간격의 상부 너비는 상기 전극 간격의 하부 너비보다 작은 것일 수 있다. 여기서, 상기 전극 간격의 너비는, 상기 전극 간격의 중부에서 상부를 향하여 테이퍼링되고, 상기 전극 간격의 중부에서 하부를 향하여 테이퍼링되는 것일 수 있다. 또한, 상기 전극 간격의 베이스 플레이트는, 상기 전극 간격의 하부로 상기 절연체를 주입하여 형성된 것일 수 있다.
일 실시예에서, 하우징에 수용된 유체를 유도하는 리저버(Reservoir)를 더 포함할 수 있다. 여기서, 상기 리저버에 인접하여 형성된 인접 전극의 상부 너비는 상기 베이스 플레이트에 형성된 다른 전극의 상부 너비보다 큰 것일 수 있다. 이때, 상기 인접 전극의 개수는 상기 리저버의 크기에 기초하여 결정되는 것일 수 있다.
본 실시예에 따르면, 포토 공정, 메탈 증착 공정, 에칭 공정 등을 포함하는 종래의 진단 장치 제조 공정에 비해 매우 간단한 사출 성형 공정을 통해, 수율을 높이고 불량율을 낮출 수 있는 구조를 가진 진단 장치를 제공할 수 있다.
본 실시예에 따르면, 일렉트로웨팅 신호에 기초하여, 하우징에 수용된 액체가 리저버 및 전극을 따라, 보다 원활하게 이동할 수 있는 구조를 가진 진단 장치를 제공할 수 있다.
본 개시의 효과는 이상에서 언급한 효과를 제한되지 않으며, 언급되지 않은 다른 효과들은 청구범위의 기재로부터 본 개시가 속한 기술분야에서 통상의 지식을 가진자("통상의 기술자"라 함)에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시예에 따른 진단 장치의 예시적인 도면이다.
도 2는 도 1을 참조하여 설명된 전극 플레이트 상부의 예시적인 도면이다.
도 3은 도 1을 참조하여 설명된 전극 플레이트 하부의 예시적인 도면이다.
도 4는 도 1을 참조하여 설명된 전극 플레이트의 예시적인 단면도이다.
도 5는 도 1을 참조하여 설명된 하우징과 전극 플레이트를 보다 구체적으로 설명하기 위한 예시적인 도면이다.
도 6은 도 2 내지 도 4를 참조하여 설명된 전극의 구조를 보다 구체적으로 설명하기 위한 예시적인 도면이다.
도 7은 도 2 내지 도 4를 참조하여 설명된 베이스 플레이트의 구조를 보다 구체적으로 설명하기 위한 예시적인 도면이다.
도 8은 도 1을 참조하여 설명된 전극 플레이트 상부의 다른 예시적인 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명한다. 본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명의 기술적 사상은 이하의 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 이하의 실시예들은 본 발명의 기술적 사상을 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명의 기술적 사상은 청구항의 범주에 의해 정의될 뿐이다.
각 도면의 구성 요소들에 참조부호를 부가함에 있어서, 동일한 구성 요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다. 본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다.
또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성 요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
명세서에서 사용되는 "포함한다 (comprises)" 및/또는 "포함하는 (comprising)"은 언급된 구성 요소, 단계, 동작 및/또는 소자는 하나 이상의 다른 구성 요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다.
이하, 본 발명의 다양한 실시예들에 대하여 첨부된 도면에 따라 상세하게 설명한다.
도 1은 본 발명의 일 실시예에 따른 진단 장치의 예시적인 도면이다. 도 1은 전극 플레이트(10), 하우징(20) 및 기판(30)이 포함된 진단 장치를 도시하고 있으나, 도 1은 본 발명의 목적을 달성하기 위한 바람직한 실시예를 도시하고 있을 뿐이며 필요에 따라 일부 구성 요소가 추가되거나 삭제될 수 있다. 예를 들어, 컴퓨팅 장치로 구현된 리더기(미도시)가 진단 장치에 더 포함될 수 있으며, 이때 리더기는 하우징에 수용되는 유체를 대상 전극으로 유도하기 위한 일렉트로웨팅 신호(i.e., 전기 신호)를 생성 및 제어할 수 있다. 또한, 도 1에 도시된 예시적인 진단 장치의 구성 요소들은 기능적으로 구분되는 기능 요소들을 나타낸 것으로서, 복수의 구성 요소가 실제 물리적 환경에서는 서로 통합되는 형태로 구현될 수도 있음에 유의해야 한다. 이하, 도 1에 도시된 예시적인 진단 장치의 구성 요소에 대해 보다 구체적으로 설명하기로 한다.
하우징(20)은 유체를 수용할 수 있다. 이때, 하우징(20)은 유체를 수용하기 위한 유체 수용부를 포함할 수 있다. 예를 들어, PCR(Polymerase Chain Reaction)을 수행하기 위해 DNA가 포함된 시료가 하우징(20)의 유체 수용부에 수용될 수 있으나. 본 예시에 본 발명의 범위가 한정되는 것은 아니다.
몇몇 실시예에서, 하우징(20)의 구조는 진단 장치가 이용되는 용도에 따라 유체 수용부 외의 구성을 더 포함할 수 있다. 즉, 하우징(20)은 유체를 수용하고, 진단 장치의 외관을 형성하는 외에 추가된 기능을 제공하도록 구성될 수 있으며, 이때 공지된 진단 장치의 모든 기술이 참조될 수 있음을 유의해야 한다.
다음으로, 전극 플레이트(10)는 하우징(20)에 수용된 유체를 대상 전극의 위치로 이동시키기 위한 일렉트로웨팅 신호를 통해 유체에 분극을 유도시킬 수 있다. 이때, 전극 플레이트(10)는 일렉트로웨팅 신호를 통전시키기 위한 전극을 적어도 하나 포함할 수 있다.
몇몇 실시예에서, 전극 플레이트(10)는 베이스 플레이트 및 베이스 플레이트를 관통하여 형성된 적어도 하나의 전극을 포함할 수 있다. 여기서, 베이스 플레이트는 절연체로 이루어질 수 있다. 본 실시예에 따르면, 일렉트로웨팅을 이용하여, 전기적으로 절연된 베이스 플레이트를 관통하여 형성된 전극을 따라 전극과 유체가 사이의 표면장력을 변화시킬 수 있다. 이러한 표면장력의 변화로 인한 전극과 유체가 이루는 접촉각의 변화를 이용하여 서로 인접한 전극 사이에서 유체가 이동할 수 있다. 전극 플레이트(10)에 형성된 전극의 구조에 관해서는 추후 명세서의 기재를 통해 구체화될 것이다.
다음으로, 기판(30)은 전극 플레이트(10)에 일렉트로웨팅 신호를 전달할 수 있다. 예를 들어, 기판(30)은 유리 기판, 실리콘 기판, PCB(Printed Circuit Board) 및 TFT(Thin Film Transistor) 중 어느 하나일 수 있다. 다만, 본 예시들에 본 발명의 범위가 한정되는 것은 아니고, 리더기(미도시)가 전송한 일렉트로웨팅 신호를 전극 플레이트(10)에 전달할 수 있는 구조를 가진 모든 공지된 기술이 본 발명에 적용될 수 있다.
몇몇 실시예에서, 컴퓨팅 장치로 구현된 리더기(미도시)가 진단 장치에 포함될 수 있으나, 진단 장치가 일회용으로 제조되어, 다수의 진단 장치가 커넥터로 리더기에 연결되어 일회적으로 이용되는 환경이라면, 도 1과 같이 리더기를 포함하지 않는 것이 진단 장치의 제조 단가를 감소시킬 수 있다.
지금까지 도 1을 참조하여 설명된 본 발명의 일 실시예에 따른 예시적인 진단 장치에 따르면, 하우징(20)에 수용된 유체를 대상 전극의 위치로 이동시킬 수 있다.
상술한 진단 장치를 이용하면, 동물의 혈액, 소변, 대변, 타액, 비인두 도말, 비강도, 구인두 도말, 뇌척수액, 피부 조직, 머리카락, 기타 체세포, 체내 조직 및 정액 등의 시료 샘플로부터 세포, 소포, 단백질 및 핵산 등을 자동으로 추출 및 정제할 수 있고, 유전자 증폭, 해독, 합성 및 진단할 수도 있고, 항원 항체 반응을 이용한 면역 진단을 수행할 수도 있고, 화합물을 합성 및 제조할 수도 있다. 나아가, 중금속, 인체 유해물질 및 마약을 검사할 수도 있다. 앞서 예시된 진단 장치가 이용될 수 있는 기술 분야는 예시적인 것에 불과하며, 이외에도 다양한 기술 분야에서 상술한 진단 장치가 이용될 수 있음을 유의해야 한다.
이하, 도 2 내지 도 4를 참조하여, 전극 플레이트(10)의 구조에 대해 보다 구체적으로 설명하기로 한다. 도 2는 도 1을 참조하여 설명된 전극 플레이트(10) 상부의 예시적인 도면이고, 도 3은 도 1을 참조하여 설명된 전극 플레이트(10) 하부의 예시적인 도면이고, 도 4는 도 1을 참조하여 설명된 전극 플레이트(10)의 예시적인 단면도이다.
도 2는 전극 플레이트(10) 상부에 형성된 예시적인 전극의 상부(11) 구조를 도시하고 있다. 도 2에 도시된 전극의 상부(11)는 사각형으로 형성되어 있으나, 이는 예시적인 것일 뿐 전극의 상부(11) 구조는 얼마든지 달라질 수 있음을 유의해야 한다.
도 3은 전극 플레이트(10) 하부에 형성된 예시적인 전극의 하부(12) 구조를 도시하고 있다. 도 3에 도시된 전극의 하부(12)는 원으로 형성되어 있으나, 이는 예시적인 것일 뿐 전극의 하부(12) 구조는 얼마든지 달라질 수 있음을 유의해야 한다.
도 4는 예시적인 전극의 측부 구조를 도시하고 있다. 도 4를 참조하면 전극(13)은 베이스 플레이트를 관통하여 형성될 수 있음을 이해할 수 있다. 전극과 관련하여, 몇몇 실시예에서는, 전극은 전도성 플라스틱의 인젝션 몰딩으로 형성된 것일 수 있다. 본 실시예에 따르면, 포토 공정 및 메탈 증착 공정 등을 포함하는 반도체 공정과 유사한 복잡한 공정 없이도, 간소화된 공정으로 진단 장치의 전극을 제조할 수 있다.
전극과 관련하여, 다른 몇몇 실시예에서는, 전극을 구성하는 전도성 플라스틱은 PC(Polycarbonate)의 혼합물을 포함할 수 있다. 이때, 혼합물은 PC와 함께 전도성 물질인 탄소 나노튜브, 그래핀, 탄소 섬유 중 적어도 하나를 포함하여 이루어질 수 있다. 이외에도 전기 신호를 통전시키기 위한 공지된 모든 혼합물이 전극을 제조하기 위해 본 발명에 적용될 수 있음을 유의해야 한다.
베이스 플레이트와 관련하여, 몇몇 실시예에서는, 베이스 플레이트를 구성하는 절연체는 PC(Polycarbonate), PMMA(Poly Methyl Methacrylate), COP(Cyclic Olefin Polymer), COC(Cyclic Olefin Copolymer), PET(Polyethylene Terephthalate), PI(Polyimide), PE(Polyethylene), Acrylic, ABS (Acrylonitrilebutadiene styrene), PVDF (Polyvinylidene fluoride), PTFE (Polytetrafluoroethylene), PS (Polystyrene), PP (Polypropylene) 및 PVC (Polyvinyl chrloride) 중 적어도 하나를 포함하여 이루어질 수 있다. 이외에도 전기 신호를 절연시키기 위한 열가소성 수지를 포함한 공지된 모든 구성이 절연체를 제조하기 위해 본 발명에 적용될 수 있음을 유의해야 한다.
전극 및 베이스 플레이트와 관련하여, 몇몇 실시예에서는, 전극 및 베이스 플레이트는 더블 샷 인젝션 몰딩(Double Shot Injection Molding)으로 형성될 수 있다. 보다 구체적으로, 베이스 플레이트는 제1 인젝션 게이트(또는 노즐)가 제1 몰드(Mold)의 제1 공간에 절연체를 주입하여 형성되고, 전극은 제1 인젝션 게이트와 구별되는 제2 인젝션 게이트(또는 노즐)가 제2 몰드 또는 제1 몰드의 제2 공간에 전도성 플라스틱을 주입하여 형성될 수 있다. 여기서, 제1 인젝션 게이트 및 제2 인젝션 게이트는 인젝션 게이트를 두개 이상 구비한 인젝터(Injector)에 포함된 구성일 수 있으나, 본 발명의 범위가 이에 한정되는 것은 아니고 단일한 인젝션 게이트를 구비한 서로 다른 인젝터에 포함된 구성일 수도 있다. 본 실시예에 따르면, 포토 공정 및 메탈 증착 공정 등을 포함하는 반도체 공정과 유사한 복잡한 공정 없이도, 간소화된 공정으로 서로 다른 재료로 이루어진 전극 및 베이스 플레이트를 제조할 수 있다. 서로 다른 재료로 이루어진 전극 및 베이스 플레이트를 제조하기 위해, 더블 샷 인젝션 몰딩을 수행하는 공지된 모든 방법이 본 발명에 적용될 수 있다.
전극 및 베이스 플레이트와 관련하여, 다른 몇몇 실시예에서는, 전극 및 베이스 플레이트가 인서트 인젝션 몰딩(Insert Injection Molding) 또는 오버몰딩(Overmolding)으로 형성될 수도 있다. 보다 구체적으로, 제1 몰드에 절연체를 주입하여 베이스 플레이트를 형성하고, 형성된 베이스 플레이트를 제2 몰드에 삽입(insert)한 후 제2 몰드에 전도성 플라스틱을 주입함으로써 전극을 형성할 수 있다. 이와 반대로, 먼저 제3 몰드에 전도성 플라스틱을 주입하여 전극을 형성하고, 형성된 전극을 제4 몰드에 삽입한 후 제4 몰드에 절연체를 주입함으로써 베이스 플레이트를 형성할 수도 있다. 본 실시예에 따르면, 포토 공정 및 메탈 증착 공정 등을 포함하는 반도체 공정과 유사한 복잡한 공정 없이도, 간소화된 공정으로 서로 다른 구성으로 이루어진 전극 및 베이스 플레이트를 제조할 수 있다.
앞서 설명된, 더블 샷 인젝션 몰딩, 인서트 인젝션 몰딩, 및 오버몰딩 외에도, 둘 이상의 서로 다른 재료로 구성된 제품을 만들기 위해 서로 다른 재료를 사출 성형하는 다양한 기법들이 본 개시의 범위에 포함될 수 있음을 유의해야 한다.
상술한 다양한 방법들에 따라 형성된 전극 플레이트(10)의 상부에, 도 5에 도시된 바와 같이, 하우징(20)이 결합될 수 있다. 여기서, 하우징(20)의 유체 수용부(미도시)에 수용된 유체는, 일렉트로웨팅 신호에 기초하여 전극 플레이트(10)에 형성된 전극(13)을 따라 이동할 수 있다. 몇몇 실시예에서, 유체는 전극 플레이트(10)에 형성된 전극(13)의 상면과 전극의 상면과 대면하는 하우징의 저면 사이의 공간을 통해, 일렉트로웨팅 신호에 의해 가이드되는 위치 및/또는 방향으로 이동될 수 있다. 도 5는 일렉트로웨팅 신호에 기초하여 전극(13)을 따라 이동하고 있는 유체(70)의 예시적인 모습을 도시하고 있으며, 하우징(20)의 유체 수용부(미도시)에 수용된 유체의 이동에 관해서는 추후 도 8을 참조하여 보다 구체적으로 설명하기로 한다.이하, 도 6 및 도 7을 참조하여, 전극 플레이트(10)에 포함된 전극 및 베이스 플레이트의 구조를 보다 구체적으로 설명하기로 한다. 도 6은 도 2 내지 도 4를 참조하여 설명된 전극의 구조를 보다 구체적으로 설명하기 위한 예시적인 도면이고, 도 7은 도 2 내지 도 4를 참조하여 설명된 베이스 플레이트의 구조를 보다 구체적으로 설명하기 위한 예시적인 도면이다. 도 6에 도시된 전극 및 도 7에 도시된 베이스플레이트 각각은 본 발명의 몇몇 실시예들을 설명하기 위한 예시 도면이므로, 본 개시의 범위가 도 6 및 도 7에 도시된 구조에 한정되지 않음을 유의해야 한다.
도 6을 참조하면, 전극 플레이트(10)에 형성된 전극의 상부 너비(14)는 전극의 중부 너비(15)보다 제1 기준 크기만큼 큰 너비이고, 전극의 하부 너비(16)는 전극의 중부 너비(15)보다 제2 기준 크기만큼 큰 너비임을 알 수 있다. 여기서, 전극의 중부는 전극의 상부와 하부 사이의 임의의 위치를 의미할 수 있다. 몇몇 실시예에서, 전극의 중부의 위치는 진단 장치의 용도에 따라 달라질 수 있으며, 전극의 중부 너비(15)가 전극의 상부 너비(14) 및 전극의 하부 너비(16) 보다 작게 형성된 모든 구조의 전극이 본 발명의 범위에 포함되는 것으로 해석하여야 한다. 또한, 제1 기준 크기 및 제2 기준 크기는 진단 장치의 용도에 따라 얼마든지 달라질 수 있음을 유의해야 한다.
기준 크기와 관련하여, 몇몇 실시예에서는, 제1 기준 크기가 제2 기준 크기보다 큰 것일 수 있다. 전극 플레이트(10)의 상부는 유체와 접촉하는 부분이고 전극 플레이트(10)의 하부는 전기 신호가 전도되는 부분이므로, 전극의 상부 너비(14)가 전극의 하부 너비(16) 보다 큰 것이 바람직할 수 있다.
전극과 관련하여, 몇몇 실시예에서는, 전극의 너비는 전극의 상부에서 중부를 향하여 테이퍼링(tapering)되고, 전극의 하부에서 중부를 향하여 테이퍼링되는 것일 수 있다. 본 실시예에 따르면, 서로 다른 구성으로 이루어진 전극 및 베이스 플레이트의 접착력이 높아짐으로써, 제조되는 전극 플레이트(10)의 수율을 높이고 불량율을 낮출 수 있다.
전극과 관련하여, 다른 몇몇 실시예에서는, 전극의 상부 너비가 전극의 중부 너비보다 크거나 같고, 전극의 중부 너비가 전극의 하부 너비보다 크거나 같도록 형성될 수도 있다. 몇몇 실시예에서, 전극은, 상부에서 하부를 향하여 테이퍼링된 형상으로 형성될 수 있다.
지금까지 도 6을 참조하여, 본 발명의 몇몇 실시예에 따른 전극의 구조를 설명하였다. 다만, 도 6에 도시된 것과 달리, 전극의 상부 너비(14), 중부 너비(15) 및 하부 너비(16) 각각은 얼마든지 달라질 수 있음을 유의해야 한다.
도 7은 전극 플레이트(10)에 형성된 두개 이상의 전극으로부터 형성된 예시적인 전극 간격을 도시하고 있다. 여기서, 전극 간격은 절연체로 이루어진 베이스 플레이트 부분일 수 있다.
전극 간격과 관련하여, 몇몇 실시예에서는, 전극 간격의 상부 너비(17)가 전극 간격의 하부 너비(18)보다 작은 것일 수 있다. 여기서, 전극 간격의 베이스 플레이트는 전극 간격의 하부(40)로 인젝션 게이트를 위치시켜 절연체를 주입하여 형성된 것일 수 있다. 전극 간격의 하부 너비(18)를 전극 간격의 상부 너비(17)보다 크게 형성함으로써, 베이스 플레이트를 구성하는 절연체의 주입 시 발생하는 압력을 줄일 수 있다. 절연체의 주입 시 발생하는 압력을 줄임에 따라, 제조되는 전극 플레이트(10)의 수율을 높이고 불량율을 낮출 수도 있다.
전극 간격과 관련하여, 다른 몇몇 실시예에서는, 전극 간격의 너비가 전극 간격의 중부에서 상부를 향하여 테이퍼링되고, 전극 간격의 중부에서 하부를 향하여 테이퍼링되는 것일 수 있다. 본 실시예에 따르면, 서로 다른 구성으로 이루어진 전극 및 베이스 플레이트의 접착력이 높아짐으로써, 제조되는 전극 플레이트(10)의 수율을 높이고 불량율을 낮출 수 있다.
이하, 도 8을 참조하여, 전극 플레이트(10)에 포함될 수 있는 리저버(Reservoir, 19) 및 전극(50a, 50b)을 보다 구체적으로 설명하기로 한다. 도 8은 도 1을 참조하여 설명된 전극 플레이트 상부의 다른 예시적인 도면이다.
도 8에 도시된 바와 같이, 전극 플레이트(10)는 하우징(20)에 수용된 유체를 디스펜스(dispense)하는 리저버(19)를 더 포함할 수 있다. 본 실시예에 따르면, 하우징(20)에 수용된 유체가 1차적으로 리저버(19)로 유입될 수 있다. 또한, 본 개시의 리저버(19)는 인접 전극에 유체를 디스펜스하는 다양한 구조로 형성될 수 있으며, 예를 들어, 하우징(20)을 거치지 않고 외부로부터 리저버(19)에 유체가 직접 유입되는 구조 또한 본 개시의 범위에서 배제되지 않음을 유의해야 한다.
또한, 도 8에 도시된 바와 같이, 리저버(19)에 인접하여 형성된 인접 전극(50a)의 상부 너비는 다른 전극(50b)의 상부 너비보다 큰 것일 수 있다. 인접 전극(50a)은 다른 전극(50b)과 비교할 때 리저버(19)에 인접해 위치하고 있으므로, 일렉트로웨팅 신호에 기초하여 대상 전극으로 이동될 유체가 필수적으로 이동하는 경로에 위치할 수 있다. 따라서, 인접 전극(50a)이 다른 전극(50b)에 비해 많은 양의 유체를 수용하거나 많은 양의 유체에 전압을 가하여 일렉트로웨팅을 유도하기 위해서, 인접 전극(50a)의 크기가 다른 전극(50b)의 크기보다 상대적으로 크게 형성될 수 있다.
인접 전극과 관련하여, 몇몇 실시예에서는, 인접 전극(50a)의 개수는 리저버(19)의 크기에 기초하여 결정될 수 있다. 예를 들어, 리저버(19)의 크기가 클수록 인접 전극(50a)의 개수를 증가시킬 수 있으며, 리저버(19)의 크기가 작을수록 인접 전극(50a)의 개수를 감소시킬 수 있다. 도 8에 도시된 인접 전극(50a)의 개수는 5개이지만, 이는 예시적인 것일 뿐 본 발명의 범위를 한정하는 것은 아님을 유의해야 한다.
지금까지 도 1 내지 도 8을 참조하여 본 발명의 일 실시예에 따른 진단 장치에 대하여 설명하였다. 본 실시예에 따르면, 메탈 전극이 증착 형성된 종래의 진단 장치와 달리 간단한 공정만으로 진단 장치를 제조할 수 있다. 본 실시예에 따라 진단 장치의 제조 공정이 간단해짐으로써, 진단 장치의 제조 단가가 감소될 수 있으며, 일회용 카트리지(또는 일회용 키트)로 이용하기에 적합한 제조 단가로 진단 장치의 제조 단가가 감소될 수도 있다.
또한 본 실시예에 따르면, 포토 공정, 메탈 증착 공정, 에칭 공정 등을 포함하는 종래의 진단 장치 제조 공정에 비해 매우 간단한 사출 성형 공정을 통해, 수율을 높이고 불량율을 낮출 수 있는 구조를 가진 진단 장치를 제공할 수 있다.
나아가 본 실시예에 따르면, 일렉트로웨팅 신호에 기초하여, 하우징에 수용된 액체가 리저버 및 전극을 따라, 보다 원활하게 이동할 수 있는 구조를 가진 진단 장치를 제공할 수 있다.
지금까지 도 1 내지 도 8를 참조하여 본 발명의 다양한 실시예들 및 그 실시예들에 따른 효과들을 언급하였다. 본 발명의 기술적 사상에 따른 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 명세서의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
이상에서, 본 발명의 실시예를 구성하는 모든 구성 요소들이 하나로 결합되거나 결합되어 동작하는 것으로 설명되었다고 해서, 본 발명의 기술적 사상이 반드시 이러한 실시예에 한정되는 것은 아니다. 즉, 본 발명의 목적 범위 안에서라면, 그 모든 구성 요소들이 하나 이상으로 선택적으로 결합하여 동작할 수도 있다.
이상 첨부된 도면을 참조하여 본 발명의 실시예들을 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 본 발명이 다른 구체적인 형태로도 실시될 수 있다는 것을 이해할 수 있다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명에 의해 정의되는 기술적 사상의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (13)

  1. 절연체로 이루어진 베이스 플레이트; 및
    상기 베이스 플레이트를 관통하여 형성되고, 인가된 전압에 기초하여 표면에 위치한 유체를 이동시키는 적어도 하나의 전극을 포함하되,
    상기 베이스 플레이트는 제1 인젝션 게이트가 몰드(Mold)의 제1 공간에 상기 절연체를 주입하여 형성된 것이고, 상기 전극은 상기 제1 인젝션 게이트와 구별되는 제2 인젝션 게이트가 상기 몰드의 제2 공간에 전도성 플라스틱을 주입하여 형성된 것인,
    진단 장치.
  2. 제1 항에 있어서,
    상기 전극의 상부 너비는 상기 전극의 중부 너비보다 제1 기준 크기만큼 큰 너비이고, 상기 전극의 하부 너비는 상기 전극의 중부 너비보다 제2 기준 크기만큼 큰 너비이고,
    상기 제1 기준 크기는 상기 제2 기준 크기보다 큰 것인,
    진단 장치.
  3. 제2 항에 있어서,
    상기 전극의 너비는,
    상기 전극의 상부에서 중부를 향하여 테이퍼링(tapering)되고, 상기 전극의 하부에서 중부를 향하여 테이퍼링되는 것인,
    진단 장치.
  4. 제1 항에 있어서,
    상기 전극의 상부 너비는 상기 전극의 중부 너비 이상이고, 상기 전극의 상기 중부 너비는 상기 전극의 하부 너비 이상인,
    진단 장치.
  5. 제1 항에 있어서,
    상기 전도성 플라스틱은,
    탄소 나노튜브, 그래핀, 탄소 섬유 중 적어도 하나를 포함하여 이루어진,
    진단 장치.
  6. 제1 항에 있어서,
    상기 절연체는,
    PC(Polycarbonate), PMMA(Poly Methyl Methacrylate), COP(Cyclic Olefin Polymer), COC(Cyclic Olefin Copolymer), PET(Polyethylene Terephthalate), PI(Polyimide), PE(Polyethylene), Acrylic, ABS(Acrylonitrile butadienestyrene), PVDF(Polyvinylidene fluoride), PTFE(Polytetrafluoroethylene), PS(Polystyrene), PP(Polypropylene) 및 PVC(Polyvinyl chrloride) 중 적어도 하나를 포함하여 이루어지는,
    진단 장치.
  7. 제1 항에 있어서,
    두개 이상의 전극으로부터 형성된 전극 간격의 상부 너비는 상기 전극 간격의 하부 너비보다 작은 것인,
    진단 장치.
  8. 제7 항에 있어서,
    상기 전극 간격의 너비는,
    상기 전극 간격의 중부에서 상부를 향하여 테이퍼링되고, 상기 전극 간격의 중부에서 하부를 향하여 테이퍼링되는 것인,
    진단 장치.
  9. 제7 항에 있어서,
    상기 전극 간격의 베이스 플레이트는,
    상기 전극 간격의 하부로 상기 절연체를 주입하여 형성된 것인,
    진단 장치.
  10. 제1 항에 있어서,
    하우징에 수용된 유체를 디스펜스(dispense)하는 리저버(reservoir)를 더 포함하는,
    진단 장치.
  11. 제10 항에 있어서,
    상기 베이스 플레이트에 형성된 전극 중 상기 리저버에 인접하여 형성된 인접 전극의 상부 너비는 상기 베이스 플레이트에 형성된 나머지 전극의 상부 너비보다 큰 것인,
    진단 장치.
  12. 제11 항에 있어서,
    상기 인접 전극의 개수는 상기 리저버의 크기에 기초하여 결정되는 것인,
    진단 장치.
  13. 절연체로 이루어진 베이스 플레이트; 및
    상기 베이스 플레이트를 관통하여 형성되고, 인가된 전압에 기초하여 표면에 위치한 유체를 이동시키는 적어도 하나의 전극을 포함하되,
    상기 베이스 플레이트는 제1 몰드(Mold)에 상기 절연체를 주입하여 형성된 것이고, 상기 전극은 상기 제1 몰드와 구별되는 제2 몰드에 전도성 플라스틱을 주입하여 형성된 것인,
    진단 장치.
PCT/KR2022/005207 2021-04-13 2022-04-11 전도성 플라스틱을 이용한 진단 장치 및 그 장치의 제조 방법 WO2022220516A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/379,727 US20240075472A1 (en) 2021-04-13 2023-10-13 Diagnostic apparatus using conductive plastic and method for manufacturing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210047718 2021-04-13
KR10-2021-0047718 2021-04-13
KR1020210149309A KR102423154B1 (ko) 2021-04-13 2021-11-03 전도성 플라스틱을 이용한 진단 장치 및 그 장치의 제조 방법
KR10-2021-0149309 2021-11-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/379,727 Continuation US20240075472A1 (en) 2021-04-13 2023-10-13 Diagnostic apparatus using conductive plastic and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2022220516A1 true WO2022220516A1 (ko) 2022-10-20

Family

ID=82609275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/005207 WO2022220516A1 (ko) 2021-04-13 2022-04-11 전도성 플라스틱을 이용한 진단 장치 및 그 장치의 제조 방법

Country Status (3)

Country Link
US (1) US20240075472A1 (ko)
KR (1) KR102423154B1 (ko)
WO (1) WO2022220516A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141153A (ja) * 2000-10-31 2002-05-17 Sumitomo Bakelite Co Ltd 電気接続部材の製造方法
US20110312622A1 (en) * 2010-06-17 2011-12-22 Geneasys Pty Ltd Microfluidic device with low-volume hybridization chambers for electrochemiluminescent detection of target sequences
KR20150004429A (ko) * 2012-05-30 2015-01-12 니폰샤신인사츠가부시키가이샤 사출 성형품 및 그 제조 방법
KR20150047909A (ko) * 2013-10-25 2015-05-06 전남대학교산학협력단 미세유체 칩과 그의 제조방법, 미세유체 칩의 제조 방법에 의해 제조된 미세유체 칩, 그리고 미세유체 칩을 제조하기 위한 사출 성형 몰드
US20170216838A1 (en) * 2014-05-14 2017-08-03 University Of Limerick Microfluidic device with channel plates

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8349276B2 (en) 2002-09-24 2013-01-08 Duke University Apparatuses and methods for manipulating droplets on a printed circuit board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141153A (ja) * 2000-10-31 2002-05-17 Sumitomo Bakelite Co Ltd 電気接続部材の製造方法
US20110312622A1 (en) * 2010-06-17 2011-12-22 Geneasys Pty Ltd Microfluidic device with low-volume hybridization chambers for electrochemiluminescent detection of target sequences
KR20150004429A (ko) * 2012-05-30 2015-01-12 니폰샤신인사츠가부시키가이샤 사출 성형품 및 그 제조 방법
KR20150047909A (ko) * 2013-10-25 2015-05-06 전남대학교산학협력단 미세유체 칩과 그의 제조방법, 미세유체 칩의 제조 방법에 의해 제조된 미세유체 칩, 그리고 미세유체 칩을 제조하기 위한 사출 성형 몰드
US20170216838A1 (en) * 2014-05-14 2017-08-03 University Of Limerick Microfluidic device with channel plates

Also Published As

Publication number Publication date
KR102423154B1 (ko) 2022-07-20
US20240075472A1 (en) 2024-03-07

Similar Documents

Publication Publication Date Title
CN107754962B (zh) 一种数字微流控液滴驱动装置及驱动方法
US11440006B2 (en) Microfluidic detection chip for multi-channel rapid detection
BRPI0607213B1 (pt) aparelho para manipulação de gotículas em uma placa de circuito impresso
WO2017078059A1 (ja) エレクトロウェッティング装置およびその製造方法並びに液滴注入方法
WO2016006842A1 (ko) 미세유체 칩, 이의 제조 방법 및 이를 이용한 분석 장치
CN107855142A (zh) 一种基于微流控技术的检测芯片及检测设备
US20130038922A1 (en) Optical element, optical element array, display device, and electronic apparatus
WO2011126249A2 (ko) 외부동력 없이 유체가 이동하는 유체분석용 칩
CN108393105A (zh) 一种微流控芯片及其控制系统、控制方法
WO2019132405A1 (ko) 핵산 추출용 카트리지의 유로 구조
WO2022220516A1 (ko) 전도성 플라스틱을 이용한 진단 장치 및 그 장치의 제조 방법
US20210316301A1 (en) Microfluidic apparatus and manufacturing method thereof
US6835293B2 (en) Analysis system
CN207680634U (zh) 一种基于微流控技术的检测芯片及检测设备
CN100520341C (zh) 液滴操作装置
WO2014035164A1 (ko) 히터 유닛이 반복 배치된 열 블록을 포함하는 전기화학적 신호를 검출하기 위한 pcr 칩, 이를 포함하는 pcr 장치, 및 이를 이용한 실시간 pcr 방법
CN109254396B (zh) 用于侧面加载介质上电润湿装置的间隔件
WO2022265427A1 (ko) 기포형성 방지 미세유체 칩 및 이의 제조 방법
WO2014014268A1 (ko) 금속 나노입자를 이용하여 전기화학적 신호를 검출하는 실시간 pcr 장치
WO2014017821A1 (ko) 히터 유닛이 반복 배치된 열 블록을 포함하는 전기화학적 신호를 검출하기 위한 실시간 pcr 장치, 및 이를 이용한 실시간 pcr 방법
CN214612440U (zh) 微流控芯片和核酸检测仪
KR20240010194A (ko) 전도성 폴리머를 이용한 진단 장치 및 그것의 전극 구조
KR20240010193A (ko) 전도성 폴리머를 이용한 진단 장치 및 그것의 리저버 구조
KR20240010196A (ko) 전도성 폴리머를 이용한 진단 장치 및 그것의 제조 방법
KR20240010195A (ko) 전도성 폴리머를 이용한 진단 장치 및 그것의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22788372

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22788372

Country of ref document: EP

Kind code of ref document: A1