WO2022220350A1 - 투명 초음파 센서 기반 광학-초음파 융합 내시경 프로브, 내시경 장치 및 카테터 장치 - Google Patents
투명 초음파 센서 기반 광학-초음파 융합 내시경 프로브, 내시경 장치 및 카테터 장치 Download PDFInfo
- Publication number
- WO2022220350A1 WO2022220350A1 PCT/KR2021/014448 KR2021014448W WO2022220350A1 WO 2022220350 A1 WO2022220350 A1 WO 2022220350A1 KR 2021014448 W KR2021014448 W KR 2021014448W WO 2022220350 A1 WO2022220350 A1 WO 2022220350A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transparent
- ultrasonic sensor
- ultrasonic
- based optical
- optical
- Prior art date
Links
- 239000000523 sample Substances 0.000 title claims abstract description 102
- 239000013307 optical fiber Substances 0.000 claims abstract description 74
- 239000010410 layer Substances 0.000 claims description 136
- 230000004927 fusion Effects 0.000 claims description 105
- 238000000034 method Methods 0.000 claims description 58
- 230000003287 optical effect Effects 0.000 claims description 44
- 239000000463 material Substances 0.000 claims description 21
- 239000004593 Epoxy Substances 0.000 claims description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 20
- 239000011521 glass Substances 0.000 claims description 18
- 239000011241 protective layer Substances 0.000 claims description 15
- 230000006870 function Effects 0.000 claims description 14
- 229920001296 polysiloxane Polymers 0.000 claims description 10
- 229920000052 poly(p-xylylene) Polymers 0.000 claims description 9
- 239000012780 transparent material Substances 0.000 claims description 9
- 239000002033 PVDF binder Substances 0.000 claims description 8
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 8
- 239000004020 conductor Substances 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- 239000002041 carbon nanotube Substances 0.000 claims description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 3
- 229910021389 graphene Inorganic materials 0.000 claims description 3
- 239000011810 insulating material Substances 0.000 claims description 3
- 238000002604 ultrasonography Methods 0.000 description 37
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 12
- 238000010586 diagram Methods 0.000 description 10
- 239000000835 fiber Substances 0.000 description 10
- 230000002829 reductive effect Effects 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 230000008878 coupling Effects 0.000 description 7
- 238000010168 coupling process Methods 0.000 description 7
- 238000005859 coupling reaction Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 125000003700 epoxy group Chemical group 0.000 description 6
- 229920000647 polyepoxide Polymers 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 238000012014 optical coherence tomography Methods 0.000 description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 230000004907 flux Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000012634 optical imaging Methods 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 230000007480 spreading Effects 0.000 description 3
- 238000012285 ultrasound imaging Methods 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000002073 fluorescence micrograph Methods 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 238000007517 polishing process Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000002042 Silver nanowire Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 210000000748 cardiovascular system Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000005331 crown glasses (windows) Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 210000002429 large intestine Anatomy 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 210000004088 microvessel Anatomy 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 230000009993 protective function Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 208000019553 vascular disease Diseases 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4444—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
- A61B8/4461—Features of the scanning mechanism, e.g. for moving the transducer within the housing of the probe
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4416—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to combined acquisition of different diagnostic modalities, e.g. combination of ultrasound and X-ray acquisitions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00064—Constructional details of the endoscope body
- A61B1/00071—Insertion part of the endoscope body
- A61B1/0008—Insertion part of the endoscope body characterised by distal tip features
- A61B1/00091—Nozzles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00064—Constructional details of the endoscope body
- A61B1/00071—Insertion part of the endoscope body
- A61B1/0008—Insertion part of the endoscope body characterised by distal tip features
- A61B1/00094—Suction openings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00163—Optical arrangements
- A61B1/00165—Optical arrangements with light-conductive means, e.g. fibre optics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00163—Optical arrangements
- A61B1/00174—Optical arrangements characterised by the viewing angles
- A61B1/00177—Optical arrangements characterised by the viewing angles for 90 degrees side-viewing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/04—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
- A61B1/05—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/06—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
- A61B1/0615—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements for radial illumination
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/06—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
- A61B1/07—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/08—Detecting organic movements or changes, e.g. tumours, cysts, swellings
- A61B8/0833—Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/12—Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4444—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
- A61B8/445—Details of catheter construction
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4483—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4483—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
- A61B8/4494—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0093—Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
- A61B5/0095—Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying light and detecting acoustic waves, i.e. photoacoustic measurements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6846—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
- A61B5/6847—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
- A61B5/6852—Catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/08—Detecting organic movements or changes, e.g. tumours, cysts, swellings
Definitions
- the present invention relates to a transparent ultrasonic sensor-based optical-ultrasonic fusion endoscopic probe, an endoscopic device, and a catheter device.
- Ultrasonic sensors or transducers use the characteristics of piezoelectric materials to convert electrical energy into acoustic energy, deliver this energy to the target object, and convert the reflected acoustic energy back into an electrical signal to measure the physical distance from the object. and a sensor that enables image acquisition of an object.
- the conventional ultrasonic sensor is opaque, fusion with an optical device requiring a transparent medium is impossible, and it is also impossible to arrange the irradiated laser and the ultrasonic sensor on the same axis.
- This off-axis arrangement is disadvantageous in taking images for various reasons. For example, there are problems such as poor alignment of the system, increase in complexity, increase in system size, or decrease in signal-to-noise ratio (SNR).
- SNR signal-to-noise ratio
- the present inventor presented a structure of a single crystal transparent ultrasonic sensor based on lithium niobate (LNO) and a method for manufacturing the same in Korean Patent Application No. 10-2020-0039208 ("Transparent ultrasonic sensor and manufacturing method thereof")
- Korean Patent Application No. 10-2020-0110777 (“Transparent ultrasonic sensor-based ultrasonic optical complex imaging system”), an ultrasonic optical complex imaging system using a transparent ultrasonic sensor has been proposed.
- Patent Document 1 US Registered Patent Publication No. 8,784,321
- Patent Document 2 Korean Patent Application No. 10-2020-0039208
- Patent Document 3 Korean Patent Application No. 10-2020-0110777
- a transparent ultrasonic sensor-based optical-ultrasonic fusion endoscope probe, an endoscope device and A catheter device is provided.
- a transparent ultrasonic sensor-based optical-ultrasonic fusion endoscope probe is an optical fiber laser unit emitting light. It is disposed between the object to be measured and the optical fiber laser unit, transmits the light emitted from the optical fiber laser unit, is coaxially aligned with the light emitted from the optical fiber laser unit, and radiates ultrasonic waves to the object and is reflected.
- a transparent ultrasonic sensor for receiving ultrasonic waves, and a camera for acquiring an image of an object through the transparent ultrasonic sensor includes the probe, a scanning unit connected to the probe by a cable to control a scanning operation of the probe; and a front end for providing an optical output to the probe through the cable and for signal processing an image acquired by the probe, a transparent ultrasonic sensor-based optical-ultrasonic fusion catheter according to an embodiment of the present invention
- the device includes a catheter inserted into a preset object, a scanning unit connected to the catheter with a cable to control a scanning operation of the catheter, and an optical output to the catheter through the cable, and an image acquired by the probe and a front end for signal processing, wherein the catheter is disposed between an optical fiber laser unit emitting light from the front end, an object to be measured and the optical fiber laser unit, and the light emitted from the optical fiber laser unit.
- a transparent ultrasonic sensor that transmits the light, is coaxially aligned with the light emitted from the optical fiber laser unit, emits ultrasonic waves to the object, receives reflected ultrasonic waves, and transmits the ultrasonic waves to the front end portion.
- FIG. 1 is a schematic configuration diagram of a transparent ultrasonic sensor-based optical-ultrasonic fusion endoscope device or catheter device according to an embodiment of the present invention.
- FIG. 2 is a schematic front perspective view of an optical-ultrasonic fusion endoscopic probe based on a transparent ultrasonic sensor according to an embodiment of the present invention.
- 3A to 3D are schematic front perspective views of a transparent ultrasonic sensor-based optical-ultrasonic fusion endoscopic probe according to various embodiments of the present disclosure
- FIGS. 4A to 4C are schematic configuration diagrams of a transparent ultrasonic sensor-based optical-ultrasonic fusion endoscopic probe or catheter according to various embodiments of a front-viewing type of the present invention.
- 5A to 5C are schematic configuration diagrams of a transparent ultrasonic sensor-based optical-ultrasonic fusion endoscopic probe or catheter according to various embodiments of the present disclosure in which a reflector is added to a front-viewing type probe or catheter.
- 6A to 6I are schematic configuration diagrams of a transparent ultrasonic sensor-based optical-ultrasonic fusion endoscopic probe or catheter according to various embodiments of the present disclosure in which a reflector is added to a side-viewing type probe or catheter.
- FIG. 7A to 7D are views each showing an embodiment of a reflector employed in a transparent ultrasonic sensor-based optical-ultrasonic fusion endoscope device or catheter device according to an embodiment of the present invention.
- FIG. 8 is a schematic configuration diagram of a transparent ultrasonic sensor-based optical-ultrasonic fusion endoscope device or catheter device according to another embodiment of the present invention.
- FIG. 9A is a front view of a transparent ultrasonic sensor employed in a transparent ultrasonic sensor-based optical-ultrasonic fusion endoscope device or catheter device according to an embodiment of the present invention
- FIG. 98B is a rear view of the transparent ultrasonic sensor according to an embodiment of the present invention. it is do
- FIG. 10 is a schematic cross-sectional view in one direction of a transparent ultrasonic sensor employed in a transparent ultrasonic sensor-based optical-ultrasonic fusion endoscope device or catheter device according to an embodiment of the present invention.
- FIG. 11 is a schematic exploded perspective view of a transparent ultrasonic sensor employed in a transparent ultrasonic sensor-based optical-ultrasonic fusion endoscope device or catheter device according to an embodiment of the present invention.
- 12A and 12B show a concave-concave acoustic lens and a plano-convex shape in the transparent ultrasonic sensor employed in the transparent ultrasonic sensor-based optical-ultrasonic fusion endoscope device or catheter device according to an embodiment of the present invention, respectively. It is an example illustrating the path of light when an acoustic lens is used.
- 13A and 13B are respectively when the corrective lens is not used and the corrective lens is used in the transparent ultrasonic sensor employed in the transparent ultrasonic sensor-based optical-ultrasound fusion endoscope device or the catheter device according to an embodiment of the present invention; It is an example showing the path of light by way of example.
- FIG 14 and 15 are views showing the photoacoustic image results obtained by the transparent ultrasonic sensor-based optical-ultrasonic fusion catheter device according to an embodiment of the present invention.
- FIG. 1 is a schematic configuration diagram of a transparent ultrasonic sensor-based optical-ultrasonic fusion endoscope device or catheter device according to an embodiment of the present invention.
- the transparent ultrasonic sensor-based optical-ultrasonic fusion endoscope device or catheter device 100 includes an endoscopic probe or catheter 110 , a manipulation unit 120 and a front end unit 130 . may include.
- the endoscopic probe or catheter 110 may be inserted into a preset object to acquire an ultrasound image, a photoacoustic image, and the like of an object to be photographed. As described above, the endoscopic probe or catheter 110 may be inserted into a preset object to acquire an ultrasound image or a photoacoustic image of an object to be photographed.
- the outer diameter may be about 5 to 15 mm, and in the case of a catheter inserted into a narrow place such as a cardiovascular system or a microvessel, the outer diameter may be about 0.5 to 1 mm.
- the manipulation unit 120 may control the movement of the endoscopic probe or catheter 110 connected through a cable.
- the manipulation unit 120 may include a knob unit 121 , a suction valve 122 , an air/water valve 123 , and an instrument port 124 .
- the knob unit 121 may control the movement of the endoscopic probe or catheter 110 according to a user's manipulation, and the suction valve 122 may control the suction operation of the suction unit installed in the endoscopic probe or catheter 110 to be described later.
- the air / water valve 123 can control the operation of the water nozzle device installed in the endoscopic probe or catheter 110 to be described later, and the instrument port 124 is installed in the endoscopic probe or catheter 110 to be described later. It is possible to control the operation of the medical device through the forceps hole.
- the front-end unit 130 transmits an ultrasound signal to the endoscopic probe or catheter 110 through a laser source 131 that provides a laser through an optical fiber cable and a signal line, receives the reflected ultrasound signal, and processes the signal, and the obtained light
- the signal processing unit 132 may include a signal processing unit 132 for processing and displaying an acoustic image.
- FIG. 2 is a schematic front perspective view of an optical-ultrasonic fusion endoscopic probe based on a transparent ultrasonic sensor according to an embodiment of the present invention.
- a transparent ultrasonic sensor-based optical-ultrasonic fusion endoscope probe 110 includes an ultrasonic sensor 111 , an optical fiber laser unit 112 and a camera 113 . may include.
- the optical fiber laser unit 112 may receive a laser beam from the laser source 131 of the front-end unit 130 and emit light to the outside of the probe 110 .
- the optical fiber laser unit 112 may be a laser device of various wavelengths for photoacoustic, OCT, NIRF (Near Infra Fluorescence), NIRS (Near Infra Spectroscopy), and fluorescence images. In addition to lasers, it can also be a small camera (CCD, CMOS sensor), LED, etc.
- a plurality of optical fiber laser units 112 may be disposed within a limited size to simultaneously acquire a plurality of optical images.
- the transparent ultrasonic sensor 111 is disposed between the object to be measured and the optical fiber laser unit 112 , is coaxially aligned with the light emitted from the optical fiber laser unit 112 , and is emitted from the optical fiber laser unit 112 .
- the ultrasound image may be obtained by transmitting an ultrasonic wave through a signal line, and is connected to the signal processing unit 132 of the front-end unit 130 through a signal line to radiate an ultrasonic wave to the object and receive the reflected ultrasonic wave.
- the camera 113 is connected to the signal processing unit 132 of the front-end unit 130 through a signal line, acquires an image of the object through the transparent ultrasonic sensor 111, and transmits the acquired image to the signal processing unit 132. have.
- the transparent ultrasonic sensor-based optical-ultrasonic fusion endoscope probe 110 allows the light from the optical fiber laser unit 112 to pass through the rear surface of the transparent ultrasonic sensor 111 , Optical/ultrasound images or signals can be acquired at the same location as light and ultrasound Since exactly the same location information can be shared, the problem of location mismatch between conventional ultrasound and optical images can be overcome.
- 3A to 3D are schematic front perspective views of a transparent ultrasonic sensor-based optical-ultrasonic fusion endoscopic probe according to various embodiments of the present disclosure
- the transparent ultrasonic sensor-based optical-ultrasonic fusion endoscope probe 110 is a suction unit 114 for sucking a preset material, forceps It may further include a ball 115 and a water nozzle device 116 for jetting water. As described above, since the volume of the device is reduced, the number of forceps holes may be increased in an extra portion of the device to provide a plurality of forceps holes 115 for performing preset medical functions such as incision and suturing.
- a transparent ultrasonic sensor-based optical-ultrasonic fusion endoscope probe 110 may acquire an ultrasonic image (a) of an object through a transparent ultrasonic sensor 111, and , Referring to FIG. 3B , an image (b) of an object may be acquired through the camera 113 , and referring to FIG. 3C , photoacoustic using the optical fiber laser unit 112 and the transparent ultrasonic sensor 111 . Images a and c may be acquired, and referring to FIG. 3D , a fluorescence image d may be acquired by using the optical fiber laser unit 112 alone.
- the transparent ultrasound sensor-based optical-ultrasonic fusion endoscope probe or catheter 110 may be a front viewing type or a side viewing type.
- the transparent ultrasound sensor may focus or radiate an ultrasound signal.
- FIGS. 4A to 4C are schematic configuration diagrams of a transparent ultrasonic sensor-based optical-ultrasonic fusion endoscopic probe or catheter according to various embodiments of a front-viewing type of the present invention.
- a transparent ultrasonic sensor-based optical-ultrasonic fusion endoscope probe or catheter 110 is a transparent ultrasonic sensor 111 that transmits and receives ultrasonic waves (a) from the tip to the front.
- the optical fiber laser unit 112 may be positioned to emit light c through the transparent ultrasonic sensor 111 .
- a transparent ultrasonic sensor-based optical-ultrasonic fusion endoscope probe or catheter 110 includes an optical lens 117 between the transparent ultrasonic sensor 111 and the optical fiber laser unit 112 . ) to focus the light c from the optical fiber laser unit 112 .
- the optical lens 117 may be various, such as a GRIN lens, a ball lens, a convex lens.
- a transparent ultrasonic sensor-based optical-ultrasonic fusion endoscope probe or catheter 110 includes a plurality of optical lenses between the transparent ultrasonic sensor 111 and the optical fiber laser unit 112 .
- the optical lens 117 may be any lens or diffuser capable of spreading light.
- the transparent ultrasonic sensor-based optical-ultrasonic fusion endoscope probe or catheter 110 may further include a reflector.
- 5A to 5C are schematic configuration diagrams of a transparent ultrasonic sensor-based optical-ultrasonic fusion endoscopic probe or catheter according to various embodiments of the present disclosure in which a reflector is added to a front-viewing type probe or catheter.
- a front-viewing type transparent ultrasonic sensor-based optical-ultrasonic fusion endoscope probe or catheter 110 further includes a reflector 118, a transparent ultrasonic sensor-based
- the side of the optical-ultrasonic fusion endoscope probe or catheter 110 may transmit and receive ultrasound, and may emit light.
- a camera not shown
- an image of an object may be acquired.
- the reflector 118 may be disposed at the front end of the transparent ultrasonic sensor 111 to change the angle between the ultrasonic wave of the transparent ultrasonic sensor 111 and the light from the optical fiber laser unit 112 .
- 6A to 6I are schematic configuration diagrams of a transparent ultrasonic sensor-based optical-ultrasonic fusion endoscopic probe or catheter according to various embodiments of the present disclosure in which a reflector is added to a side-viewing type probe or catheter.
- the transparent ultrasonic sensor-based optical-ultrasonic fusion endoscope probe or catheter 110 according to various embodiments of the present invention of a side-viewing type is a transparent ultrasonic sensor 111 for transmitting and receiving ultrasonic waves (a).
- the optical fiber laser unit 112 is positioned on the back side of the transparent ultrasonic sensor 111 to emit light (c), and the optical fiber laser is located between the transparent ultrasonic sensor 111 and the optical fiber laser unit 112 . It may include a reflector 118 that may change the angle of light from the portion 112 .
- the optical lens 117 is disposed between the reflecting plate 118 and the optical fiber laser unit 112 to focus the light c from the optical fiber laser unit 112 , or a plurality of optical lenses 117 are arranged Thus, the angle and distance at which the light c from the optical fiber laser unit 112 is spread can be adjusted.
- FIG. 7A to 7D are views each showing an embodiment of a reflector employed in a transparent ultrasonic sensor-based optical-ultrasonic fusion endoscope device or catheter device according to an embodiment of the present invention.
- various types of reflectors may be used in the transparent ultrasonic sensor-based optical-ultrasonic fusion endoscope device or catheter device according to an embodiment of the present invention.
- the reflective plate include a reflective mirror, a prism, a beam splitter, a dichroic mirror, and the like, and may include any type of reflective plate capable of reflecting light or ultrasonic waves.
- FIG. 8 is a schematic configuration diagram of a transparent ultrasonic sensor-based optical-ultrasonic fusion endoscope device or catheter device according to another embodiment of the present invention.
- a transparent ultrasonic sensor-based optical-ultrasonic fusion endoscope device or catheter device 200 is a side-viewing-type probe or catheter endoscopic probe or catheter 210, scanning unit 220 and a front-end unit 230 may be included.
- the endoscope probe or catheter 210 may be inserted into a pre-set object to acquire an ultrasound image, a photoacoustic image, and the like of an object to be photographed.
- the scanning unit 220 may control scanning of the endoscopic probe or catheter 210 connected through a cable. That is, the scanning unit 220 may rotate the endoscopic probe or catheter 210 by 360 degrees to control a scanning operation to acquire an ultrasound image, an optoacoustic image, and the like of an object.
- the scanning unit 220 may include a motor 221 , an optical fiber rotation joint 222 , and a slip ring 223 .
- the motor 221 may provide a torque for rotating the endoscopic probe or catheter 210 .
- the optical fiber rotation joint part 222 is connected to the endoscopic probe or catheter 210 that rotates according to the torque of the motor 221 and is connected to the rotating optical fiber cable (fiber b) and the front end part 230 and is fixed to the optical fiber. It can provide coaxial alignment between fiber a.
- the fixed optical fiber cable (fiber a) and the optical fiber cable rotated by the motor (fiber b) are spaced approximately several um apart, and the rotating optical fiber cable (
- the laser may be transmitted to the fiber b), and the optical fiber rotation joint 222 is connected to the endoscopic probe or catheter 210 that rotates according to the torque of the motor 221 and is connected to the rotating optical fiber cable (fiber b) and the front It is connected to the end portion 230 to provide coaxial alignment between the fixed optical fiber cables (fiber a) so that the laser is transmitted from the fixed optical fiber cable (fiber a) to the rotating optical fiber cable (fiber b) like a dotted line. can do.
- the slip ring 223 is electrically connected to a signal line (line b) connected to the front end part 230 and fixed to the endoscopic probe or catheter 110 rotated by a motor 221 and a signal line (line b). connection can be provided.
- the front-end unit 230 transmits an ultrasound signal to the endoscope probe or catheter 210 through a laser source 231 providing a laser through an optical fiber cable (fiber a) and a signal line (line a), and the reflected ultrasound signal It may include a signal processing unit 232 for receiving and signal processing, and for processing and displaying the acquired photoacoustic image.
- FIG. 9A is a front view of a transparent ultrasonic sensor employed in a transparent ultrasonic sensor-based optical-ultrasonic fusion endoscope device or a catheter device according to an embodiment of the present invention
- FIG. 9B is a rear view of the transparent ultrasonic sensor according to an embodiment of the present invention
- 10 is a schematic one-way cross-sectional view of a transparent ultrasonic sensor employed in a transparent ultrasonic sensor-based optical-ultrasonic fusion endoscope device or catheter device according to an embodiment of the present invention
- Figure 11 is an embodiment of the present invention
- the transparent ultrasonic sensor 111 has a circular shape having a circular planar shape, but is not limited thereto.
- the transparent ultrasonic sensor 111 includes a protective layer 111-1 and an acoustic lens positioned behind the protective layer 111-1 from the right.
- the matching part 111-3 having the matching part 111-3, the piezoelectric part 111-5 positioned behind the matching part 111-3, and the first and second housings 111-7a connected to the piezoelectric part 111-5 , 111-7b), the rear layer 111-6 positioned behind the piezoelectric part 111-5, and the insulating part 111-8 positioned between the first and second housings 111-7a and 111-7b , and a correction lens unit 111-9 positioned behind the second housing 111-7b.
- the protective layer 111-1 is to physically and electrically protect the transparent ultrasonic sensor 111 and to reduce a difference in acoustic impedance with a medium to which an ultrasonic signal is to be irradiated, that is, an object. Accordingly, the protective layer 111-1 has a protective function and may operate as a matching layer that performs acoustic impedance matching between a liquid (eg, water) and a living body.
- a liquid eg, water
- the protective layer 111-1 may be made of a transparent material.
- the protective layer 111-1 may contain parylene, which is a transparent polymer.
- the acoustic impedance of the protective layer 111-1 may be about 284 Maryls.
- the protective layer 111-1 is, as shown in FIGS. 10 and 11 , the front and side surfaces of the piezoelectric part 111-5 and the second housing 111-7b positioned at the outermost edge of the transparent ultrasonic sensor 111 . ) can be located on the side of the
- the protective layer 111-1 may eventually constitute the front and side surfaces of the transparent ultrasonic sensor 111 .
- the matching part 111-3 located behind the protective layer 111-1 reduces the difference in acoustic impedance with the medium to which the ultrasonic signal generated from the piezoelectric part 111-5 is to be irradiated, that is, the object. it is for
- the acoustic impedance of the corresponding medium must be adjusted as much as possible in order to efficiently transmit the ultrasonic signal in water, living tissue, or other medium other than air. Energy loss can be minimized.
- Each acoustic lens of the matching unit 111-3 of this example may be of a focused type using an acoustic lens capable of focusing light and ultrasonic signals.
- the matching unit 111-3 has a focus control function, the ultrasound signal reflected by the object and incident on the transparent ultrasound sensor 111 is accurately focused on the desired position of the piezoelectric unit 111-5. .
- the focus of the ultrasound image obtained by the ultrasound signal output from the piezoelectric unit 111-5 is adjusted by the focusing function of the matching unit 111-3, so that a clear ultrasound image can be obtained.
- the sharpness of an image obtained by the operation of the transparent ultrasonic sensor 111 is improved, so that a clear image of a desired part of an object irradiated with an ultrasonic signal can be obtained.
- the matching unit 111-3 uses an acoustic lens, the curvature of the surface is constant and the transparency of the surface is improved, so that it is possible to reduce the loss of the ultrasonic signal during transmission and reception of the ultrasonic signal irradiated to or reflected from the object.
- an additional transmission or blocking layer may be formed on the matching unit 111-3 to transmit or block only a signal of a desired wavelength band.
- the acoustic lens provided in the matching part 111-3 may be made of at least one of transparent glass, transparent epoxy, and transparent silicone.
- Such an acoustic lens may be selected according to the function of the acoustic lens.
- the piezoelectric material provided in the piezoelectric part 111 - 5 is not in the form of a polymer such as PVDF or PVDF-TrFE. In this case, it may be more preferable that the acoustic lens is made of glass.
- the acoustic impedance is as high as 30-40Mrayls, but in the case of glass, it is low as 10-15Mrayls.
- the acoustic lens can be made of glass.
- the acoustic lens may be made of transparent epoxy or transparent silicone.
- a matching layer (approx. If 7-20 Mrayls) already exist, a separate acoustic impedance matching operation is unnecessary, so epoxies or silicones (approximately 1 to 3 Mrayls) having an acoustic impedance similar to biological tissue or water are appropriate. That is, since the acoustic impedances of epoxies and silicones have almost similar acoustic impedances to those of living tissue or water, separate acoustic impedance matching is unnecessary.
- the acoustic lens when the acoustic lens is made of glass, an optical lens may be used.
- the acoustic lens since glass has a faster luminous flux than water, the acoustic lens may be designed in a concave shape such as a plano-concave (see FIG. 12A ).
- the acoustic lens is made of transparent epoxy
- a polishing process is performed on the primarily manufactured acoustic lens to improve transparency as much as possible to finally complete the acoustic lens.
- the epoxies have a faster luminous flux than water, so that the acoustic lens can also be manufactured in a concave shape.
- the acoustic lens can be manufactured in a convex shape such as a plano-convex shape (see FIG. 12B ). As such, when the acoustic lens is manufactured in a plano-convex shape, the acoustic lens may have a function of collecting light.
- the piezoelectric part 111-5 is, as shown in FIGS. 10 and 11, a piezoelectric layer 111-5a and first and second electrode layers ( 111-5b, 111-5c) may be provided.
- the piezoelectric layer 111-5a is a layer in which a piezoelectric effect and an inverse piezoelectric effect occur, and, as already described, may contain a piezoelectric material that is at least one of lithium niobite (LNO), PMN-PT, PVDF, and PVDF-TrFE.
- LNO lithium niobite
- PMN-PT PMN-PT
- PVDF PVDF-TrFE
- the electromechanical coupling coefficient of LNO is very high, about 0.49, so the electromechanical energy conversion efficiency is very good.
- the transparent ultrasonic sensor may be suitable for a large aperture single element transducer having a large opening.
- LNO has a high Curie temperature, it can withstand well even at a high temperature, so that the development of a transparent ultrasonic sensor 111 with good heat resistance can be achieved.
- the piezoelectric layer 111 - 5a is formed of LNO, a single element ultrasonic sensor having a center frequency of 10 to 400 MHz can be easily developed.
- the piezoelectric layer 111-5a contains PMN-PT
- the piezoelectric performance (d33 ⁇ 1500-2800 pC/N) and electromechanical coupling coefficient (k>09) of PMN-PT are very high.
- the performance of the transparent ultrasonic sensor 111 may be improved.
- the PMN-PT has a high dielectric constant, so that the transparent ultrasonic sensor 111 suitable for a small aperture single or array ultrasound transducer may be developed.
- the piezoelectric layer 111 - 5a contains at least one of PVDF and PVDF-TrFE, it may have the following characteristics.
- PVDF and PVDF-TrFE have a polymer film form, and may be flexible and stretchable piezoelectric layer 111-5a can be manufactured, thereby making piezoelectric layer 111-5a ) can be reduced, and it may be possible to manufacture the transparent ultrasonic sensor 111 for a signal of a high frequency band of about 100 MHz by the reduced thickness.
- PVDF and PVDF-TrFE have relatively low electromechanical coupling coefficient and high receiving constant, have a wider bandwidth compared to other piezoelectric materials, and can be easily fabricated in both single and array types.
- a single element may mean an ultrasonic transducer in which the number of all components including a piezoelectric material is one.
- an array-type element eg, an array ultrasonic transducer
- an ultrasonic transducer may be an ultrasonic transducer in which the number of all components including a piezoelectric material is plural (n), and generally may be configured in a form mainly used in hospitals. have.
- the shape may be a linear shape, a convex shape, a 2D matrix, or the like.
- both single or array ultrasonic transducers with small apertures may be manufactured.
- the first and second electrode layers 111-5b and 111-5c respectively positioned on the front and rear surfaces of the piezoelectric layer 111-5a receive a (+) drive signal and a (-) drive signal from a drive signal generator (not shown). Each received and exerted a reverse piezoelectric effect on the piezoelectric layer (111-5a) so that the ultrasonic signal can be transmitted toward the object 200, conversely, the piezoelectric layer (111-5a) by the ultrasonic signal received by being reflected by the object It receives the electrical signal generated by the piezoelectric effect of
- the first and second electrode layers 111-5b and 111-5c may be made of a transparent conductive material as described above, for example, AgNW (silver nanowire), ITO, carbon nanotube, and graphene. may contain at least one of
- the size of the first electrode layer 111-5b and the second electrode layer 111-5c may be different from each other.
- the diameter (or diameter) of the second electrode layer 111-5c is the first electrode layer. Different from the diameter of 111 - 5b, a portion (eg, an edge) of the second electrode layer 111 - 5c may be drawn out from an edge of the first electrode layer 111 - 5b.
- the piezoelectric material ie, the piezoelectric layer 111-5a
- the piezoelectric material vibrates back and forth to generate an ultrasonic signal. Instead, the ultrasonic signal is generated from the reverse side as well.
- the ultrasonic signal generated from the rear surface acts as a noise signal.
- a portion of the ultrasonic signal reflected by the object and returned may pass through the matching unit 111-5 and output toward the correcting lens unit 111-9.
- the rear layer 111-6 is positioned on the rear surface of the piezoelectric part 111-5 to attenuate the ultrasonic signal generated from the rear surface of the piezoelectric part 111-5 and to attenuate the ultrasonic signal reflected by the object. can be performed.
- the rear layer 111-6 is located on the rear surface of the piezoelectric unit 111-5 (ie, the surface opposite to the front surface of the piezoelectric unit 111-5 on which the reflected ultrasonic signal is incident), the incident The ultrasonic signal does not pass through the rear surface of the piezoelectric part 111 - 5 .
- Ring-down is a phenomenon in which unnecessary signals are elongated along the time axis, and is a factor that adversely affects image generation.
- the rear layer 111-6 may be appropriately manufactured by adjusting at least one of acoustic impedance and thickness in order to reduce the ring-down phenomenon.
- the back layer 111 - 6 is made of a material having a high acoustic impedance, the ring-down phenomenon is reduced, and the reduction of the ring-down phenomenon on the time axis is similar to that the bandwidth is widened in the frequency domain.
- the size of the entire ultrasound signal may also be attenuated by the back layer 111 - 6 during transmission and reception of the ultrasound signal.
- the bandwidth is reduced without significantly reducing the ring-down phenomenon, but the amount of transmission/reception of an ultrasound signal can be increased.
- the back layer 111 - 6 is also made of a transparent non-conductive material, and may be made of, for example, transparent epoxy (eg, Epotek301) or transparent glass.
- the back layer 111-6 is made of Epotek301, when the acoustic impedance is 31Mryls and has a low acoustic impedance, low signal damping is achieved, so that the transparent ultrasonic sensor 111 can obtain a relatively high signal.
- Epotek301 has very high transparency, such as having a transparency of about 95% or more at a wavelength of 380 nm to 2000 nm, and is easily cured at room temperature, so that the rear layer 111-6 is easily manufactured.
- the back layer 111 - 6 is made of glass, transparency and flatness are high, and a separate curing process is unnecessary.
- the pulse length is reduced due to the high signal attenuation action in the back layer 111-6, so that the ring-down effect is reduced, but the bandwidth of the frequency of the transparent ultrasonic sensor 111 is reduced. increasing effect can be exerted.
- the back layer 111 - 6 may be omitted if necessary.
- the first housing 111-7a and the second housing 111-7b are connected to the first electrode layer 111-5b and the second electrode layer 111-5c, respectively, as described above. Accordingly, the first housing 111-7a and the second housing 111-7b may be formed of a transparent conductive material containing a conductive material (eg, copper) through which an electric signal is transmitted.
- a transparent conductive material eg, copper
- the first housing 111-7a receives the corresponding signal through the first signal line L1 and transmits it to the first electrode layer 111-5b, and vice versa, the first electrode layer 111-5b ) may be output to the first signal line L1.
- the second housing 111-7b also receives the corresponding signal through the second signal line L2, which is a signal line separate from the first signal line L1, and transmits it to the second electrode layer 111-5c, and vice versa.
- a signal applied from (111-5c) may be output to the second signal line L2.
- a signal input to the first signal line L1 may be a pulse signal
- a signal flowing into the second signal line L2 may be a ground signal or a shield signal (-)
- the first housing 111-7a may transmit a pulse signal to the first electrode layer 111-5b
- the second housing 111-7b may transmit a ground signal to the second electrode layer 111-5c.
- the first housing 111-7a and the second housing 111-7b have a ring shape as shown in FIG. 4, and the edges of the corresponding electrode layers 111-5b and 111-5c in contact with each other. It may be positioned in contact with the side, that is, the side of the circle.
- first electrode layer 111-5b and the second electrode layer 111-5c may be inserted into the empty space located inside the first housing 111-7a and the second housing 111-7b and mounted. .
- the first housing 111-7a and the second housing 111-7b are positioned so that the transparent ultrasonic sensor 111 is surrounded by the actual active area AR1, so that the first And it is possible to minimize the reduction of the active area AR1 by the second housings 111-7a and 111-7b, and substantially the first housing 111-7a.
- first housing 111-7a and the second housing 111-7b serve to transmit electrical signals to the corresponding electrode layers 111-5b and 111-5c, they may contain a material having good conductivity. .
- the first housing 111-7a is located at the edge (ie, the edge) of the first electrode layer 111-5a located on the entire rear surface of the piezoelectric layer 111-5a through which light is received, and thus is as thin as possible. It is preferable to have the width W11, and may have a thickness as thick as possible in order to minimize a signal loss rate due to wiring resistance or the like.
- the first housing 111-7a Since the second housing 111-7b is coupled to the second electrode layer 111-5c having a larger diameter than the first electrode layer 111-5b as shown in FIGS. 9 and 10, the first housing 111-7a ) has a larger diameter.
- the second housing 111-7b serves to protect the transparent ultrasonic sensor 111 for the exterior than the first housing 111-7a
- the width and thickness of the first housing 111-7a are greater than that of the first housing 111-7a. It can have a large width and thickness.
- the first electrode layer 111-5b and the first housing 111-7a may be positioned in the second housing 111-7b.
- the outer surface of the second housing 111-7b exposed to the outside is covered with the protective layer 111-1, so that the noise signal is transmitted through the second housing 111-7b to the transparent ultrasonic sensor ( 111) to prevent it from entering.
- the size may be increased as necessary.
- a desired optical component may be coupled to the second housing 111-7b by forming a screw wire 111-7b1 or a connector in the second housing 111-7b.
- the second housing 111 - 7b may function as a coupling portion for coupling with other components.
- the insulating part 111-8 is disposed between the first housing 111-7a and the second housing 111-7b for transmitting the corresponding electric signals to the corresponding electrode layers 111-5b and 111-5c.
- 111-7a and 111-7b) to insulate the first housing (111-7a) and the second housing (111-7b) to prevent an electrical short circuit or a short circuit, and the first housing It may serve to fix the positions of the (111-7a) and the second housing (111-7b).
- the insulating part 111 - 8 may be made of a transparent insulating material such as non-conductive epoxy.
- the matching unit 111-3 when a plano-concave type acoustic lens is used, the light and ultrasonic signals reflected from the object and the ultrasonic signal are applied to the acoustic lens of the matching unit 111-3. Although the focus is controlled by , light diffusion may occur after passing through the matching unit 111-3 (refer to FIG. 13A ).
- the corrective lens unit 111-9 having a plano-convex shape opposite to the shape of the acoustic lens used for the matching unit 111-3 is placed in front of the rear layer 111-7, and the light By compensating for the refraction phenomenon, the light diffusion phenomenon can be prevented (refer to FIG. 13b ).
- the curvature of the correction lens unit 111 - 9 may be selectively used depending on where the light is finally positioned.
- the correction lens unit 111-9 affects only the focus of light regardless of the focus of the ultrasonic signal, but the acoustic lens of the matching unit 111-3 affects both the focus of the ultrasonic signal and the focus of the light. can go crazy
- the correction lens unit 111 - 9 may be omitted if necessary, and the focal length of light may be adjusted by changing the correction lens unit 111 - 9 .
- the correction lens unit 111 - 9 may have a confocal function of simultaneously adjusting the focus of the reflected ultrasonic signal and the focus of the light.
- the correction lens unit 111 - 9 when the correction lens unit 111 - 9 has a confocal function, the correction lens unit 111 - 9 must be designed in consideration of the shape of the light before passing through the transparent ultrasonic sensor 111 .
- the correcting lens unit 111-9 includes a single lens, but is not limited thereto, and additionally includes a lens for aberration correction in addition to a single lens such as a plano-convex lens, thereby forming a plurality of lenses.
- All components positioned in the active area AR1 of the transparent ultrasonic sensor 111 having such a structure are made of a transparent material through which light is transmitted.
- the characteristics of the transparent ultrasonic sensor 111 may be as follows.
- the optical impedance is matched, that is, matched by the operation of the matching unit 111-3, the reliability of the signal output from the transparent ultrasonic sensor 111 may be improved.
- the focus of the light reflected by the object and the ultrasonic signal is adjusted, so that the piezoelectric unit 111-5 is positioned exactly at the desired position.
- Light and ultrasonic signals can be focused on Accordingly, the clarity of the ultrasound image obtained by the signal output from the transparent ultrasound sensor 111 is greatly improved, so that not only the existence of the corresponding object but also the precise shape of the detected object can be recognized.
- the components (eg, 11-16, 19) constituting the transparent ultrasonic sensor 111 are made of transparent materials such as transparent glass, transparent epoxy, and transparent silicone, the optical fiber laser The light output from the unit 112 may directly pass through the transparent ultrasonic sensor 111 and be irradiated toward the corresponding object.
- the arrangement of the optical system including the transparent ultrasonic sensor 111 is free and the utilization of the space in which the optical system is installed can be improved.
- correction lens unit 111-9 may be selectively used according to the user's needs, and the focal length of light may be adjusted by changing the correction lens unit 111-9.
- the shape of light spreading by the acoustic lens is generated, but the shape of light spreading by the correction lens unit 111-9 is supplemented and the light is located at a desired point. focus can be adjusted. In this way, the range of selection of the acoustic lens may be widened by the use of the compensating lens.
- the shape of the light is maintained by focusing by the acoustic lens 111-3 and the correction lens unit 111-9, and thereby, a fine focus can be maintained, so that a high-resolution optical image (eg, , an optoacoustic image or an optical coherence tomography image) may be obtained.
- a high-resolution optical image eg, an optoacoustic image or an optical coherence tomography image
- the transparent ultrasonic sensor 111 Since electric signals are applied to the first and second electrodes 111-5b and 111-5c of the , the signal lines L1 and L2 can be easily connected.
- the screw lines 111-7b1 in the second housing 111-7b which is the outer housing, connection or coupling with other optical elements can be facilitated.
- the optical element required for the second housing 111-7b located at a portion completely unrelated to the path of the light emitted from the optical module 100 is combined, the light is normally lost without the transparent ultrasonic sensor 111 Since it is incident on the piezoelectric part 111 - 5 of the and passes through the center of the transparent ultrasonic sensor 111 in the normal direction, alignment of light and ultrasonic signals can be easily achieved.
- vertical may mean that light travels in a direction perpendicular to an incident surface of a transparent ultrasonic sensor (eg, a transparent ultrasonic transducer).
- a transparent ultrasonic sensor eg, a transparent ultrasonic transducer
- the focal positions of the light and the ultrasonic signal may exactly match, and thus the sharpness of an image obtained from the transparent ultrasonic sensor may be further improved.
- the formation of such a matching layer may be performed as follows.
- the piezoelectric layer is LNO (345 Mrayls) or PMN-PT (371 Mrayls)
- acoustic impedance matching is required for maximum transmission/reception efficiency of ultrasound energy.
- more than one matching layer may be needed with materials ranging from 371 Mrayls to 15 Mrayls.
- a second conformal layer can then be created through a coating of parylene (28 Mralls).
- the piezoelectric layer is PVDF or PVDF-TrFE (approximately 4 Mralls)
- a parylene coating can be used to create one matching layer.
- the matching layer formed by the parylene coating may serve not only as a matching layer but also as protection and insulation from the outside.
- the second matching layer eg, 2 to 6 Mralys
- transparent epoxy or silicone eg, PDMS
- a parylene coating may be used.
- the second matching layer eg, 11
- the first matching layer eg, 13
- the desired matching layer can be generated using the simulation waveform resulting from the KLM simulation.
- an engineered lens made of borosilicate is used as the first matching layer, and a second matching layer is formed on the first matching layer through parylene coating, so that acoustic impedance matching and Protection and signal isolation from the outside were implemented.
- this optical lens can perform not only the function of acoustic impedance matching, but also focus, that is, focus the ultrasonic signal generated from the piezoelectric layer.
- the transparent ultrasonic sensor 111 is mainly used for image acquisition, the focus of the ultrasonic signal is a factor that has a great influence on high resolution and high sensitivity.
- FIG 14 and 15 are views showing the photoacoustic image results obtained by the transparent ultrasonic sensor-based optical-ultrasonic fusion catheter device according to an embodiment of the present invention.
- hair was attached to the 4.0 mm hole, and the catheter of the transparent ultrasonic sensor-based optical-ultrasonic fusion catheter device according to an embodiment of the present invention was inserted into the 4.0 mm hole to determine whether photoacoustic image acquisition was possible.
- the 3D data acquired while moving and rotating the catheter forward and backward is expressed as a cross-sectional image, X-Y plane, X-Y plane, etc.
- the lateral resolution measured with hair was found to be 282 um.
- a leaf skeleton phantom is rolled and attached to a 4.5 mm hole, and a transparent ultrasonic sensor-based optical-ultrasonic fusion catheter according to an embodiment of the present invention is inserted into the 4.0 mm hole by inserting the catheter of the optical-acoustic fusion catheter.
- a transparent ultrasonic sensor-based optical-ultrasonic fusion catheter according to an embodiment of the present invention is inserted into the 4.0 mm hole by inserting the catheter of the optical-acoustic fusion catheter.
- the transparent ultrasonic sensor can provide comprehensive information in combination with various general optical imaging equipment.
- endoscopes or catheters many studies have already been conducted to combine ultrasound and optical images (photoacoustic/OCT/fluorescence/NIRS/NIRF images, etc.).
- the imaging equipment must be directly inserted into a tube or blood vessel in the body, its size is very limited.
- the combination of a transparent ultrasonic sensor and optical imaging equipment is optimized to minimize size.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- Animal Behavior & Ethology (AREA)
- Radiology & Medical Imaging (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Optics & Photonics (AREA)
- Gynecology & Obstetrics (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Endoscopes (AREA)
Abstract
Description
Claims (60)
- 광을 방출하는 광 섬유 레이저부;측정하고자 하는 대상물과 상기 광 섬유 레이저부 사이에 배치되어 상기 광 섬유 레이저부에서 방출되는 광을 투과시키며, 상기 광 섬유 레이저부에서 방출되는 광과 동축 정렬되고, 상기 대상물에 초음파를 방사하고 반사된 초음파를 수신하는 투명 초음파 센서; 및상기 투명 초음파 센서를 통해 대상물의 이미지를 획득하는 카메라를 포함하는 투명 초음파 센서 기반 광학-초음파 융합 내시경 프로브.
- 제1항에 있어서,사전에 설정된 물질을 흡입하는 석션부;사전에 설정된 의료 기능을 수행하는 복수의 겸자공; 및워터를 분출하는 워터 노즐중 적어도 하나를 더 포함하는 투명 초음파 센서 기반 광학-초음파 융합 내시경 프로브.
- 제1항에 있어서,상기 광 섬유 레이저부로부터의 광의 경로를 사전에 설정된 각도로 변경시키는 반사판을 더 포함하는 투명 초음파 센서 기반 광학-초음파 융합 내시경 프로브.
- 제1항 또는 제3항에 있어서,상기 광 섬유 레이저부로부터의 광의 특성을 조절하는 광학 렌즈를 더 포함하는 투명 초음파 센서 기반 광학-초음파 융합 내시경 프로브.
- 제4항에 있어서,상기 광학 렌즈는 복수개 구비되는 투명 초음파 센서 기반 광학-초음파 융합 내시경 프로브.
- 제1항에 있어서,상기 투명 초음파 센서는,광학 임피던스 매칭을 실시하고 투명한 재료로 이루어져 있는 정합부;상기 정합부 뒤에 위치하고 투명한 재료로 이루어져 있는 압전층;상기 압전층의 후면과 전면에 각각 위치하여 각각 투명한 도전성 물질로 이루어져 있는 제1 전극층 및 제2 전극층;상기 제1 전극층에 연결되어 있는 제1 하우징; 및상기 제2 전극층에 연결되어 있는 제2 하우징을 포함하는, 투명 초음파 센서 기반 광학-초음파 융합 내시경 프로브.
- 제6항에 있어서,상기 정합부는 음향 렌즈를 구비하는, 투명 초음파 센서 기반 광학-초음파 융합 내시경 프로브.
- 제7항에 있어서상기 음향 렌즈는 오목 렌즈, 볼록 렌즈, 평면 렌즈 중 어느 하나의 형태를 갖는, 투명 초음파 센서 기반 광학-초음파 융합 내시경 프로브.
- 제6항에 있어서,상기 정합부는 투명한 유리류, 투명한 에폭시류 및 투명한 실리콘류 중 적어도 하나를 함유하는, 투명 초음파 센서 기반 광학-초음파 융합 내시경 프로브.
- 제6항에 있어서,상기 투명 초음파 센서의 상기 압전층은 광학적으로 투명한 특성을 지닌 압전 재료인, 투명 초음파 센서 기반 광학-초음파 융합 내시경 프로브.
- 제10항에 있어서,상기 압전층은 LNO, PMN-PT, PVDF 및 PVDF-TrFE 중 적어도 하나를 함유하는,투명 초음파 센서 기반 광학-초음파 융합 내시경 프로브.
- 제6항에 있어서,상기 투명 초음파 센서의 상기 제1 전극층과 상기 제2 전극층은 광학적으로 투명한 특성을 지닌 전극인, 투명 초음파 센서 기반 광학-초음파 융합 내시경 프로브.
- 제12항에 있어서,상기 제1 전극층과 상기 제2 전극층은 각각 AgNW, ITO, 탄소나노튜브 및 그래핀 중 적어도 하나를 함유하는, 투명 초음파 센서 기반 광학-초음파 융합 내시경 프로브.
- 제6항에 있어서,상기 제1 전극층과 상기 제2 전극층의 크기는 서로 상이한, 투명 초음파 센서 기반 광학-초음파 융합 내시경 프로브.
- 제14항에 있어서,상기 제1 하우징과 상기 제2 하우징은 각각 가운데 빈 공간을 갖는 링 형태로 이루어져 있는, 투명 초음파 센서 기반 광학-초음파 융합 내시경 프로브.
- 제15항에 있어서,상기 제1 하우징은 상기 제1 전극층의 가장자리부에 접하게 배치되고, 상기 제2 하우징은 상기 제2 전극층의 가장자리부에 접하게 배치된, 투명 초음파 센서 기반 광학-초음파 융합 내시경 프로브.
- 제16항에 있어서,상기 제2 하우징의 내부 공간 속에 상기 압전층, 상기 제1 전극층 및 상기 제1 하우징이 위치하는, 투명 초음파 센서 기반 광학-초음파 융합 내시경 프로브.
- 제16항에 있어서,상기 제1 하우징과 상기 제2 하우징은 도전성 물질을 함유하는, 투명 초음파 센서 기반 광학-초음파 융합 내시경 프로브.
- 제16항에 있어서,상기 제1 하우징에 연결되어 있는 제1 신호선과 상기 제2 하우징에 연결되어있는 제2 신호선을 더 포함하는, 투명 초음파 센서 기반 광학-초음파 융합 내시경 프로브.
- 제15항에 있어서,상기 제1 전극층에 접하게 위치하고 초음파 신호를 감쇠시키는 후면층을 더 포함하는, 투명 초음파 센서 기반 광학-초음파 융합 내시경 프로브.
- 제20항에 있어서,상기 후면층은 상기 제1 하우징으로 에워싸여져 있는, 투명 초음파 센서 기반 광학-초음파 융합 내시경 프로브.
- 제21항에 있어서,상기 후면층은 투명한 유리류나 투명한 에폭시류를 함유하는, 투명 초음파 센서 기반 광학-초음파 융합 내시경 프로브.
- 제16항에 있어서,상기 제1 하우징과 상기 제1 하우징 사이에 위치하고 투명한 절연 물질로 이루어져 있는 절연부를 더 포함하는, 투명 초음파 센서 기반 광학-초음파 융합 내시경 프로브.
- 제16항에 있어서,상기 정합부 앞에 위치하고 음향 임피던스 정합을 실시하는 보호층을 더 포함하는, 투명 초음파 센서 기반 광학-초음파 융합 내시경 프로브.
- 제24항에 있어서,상기 보호층은 파릴렌을 함유하는, 투명 초음파 센서 기반 광학-초음파 융합 내시경 프로브.
- 제16항에 있어서,상기 정합층 뒤에 위치하고 있고 상기 정합층을 통과한 빛의 초점을 조절하며 투명한 재료로 이루어져 있는 보정 렌즈를 더 포함하는, 투명 초음파 센서 기반 광학-초음파 융합 내시경 프로브.
- 제26항에 있어서,상기 보정 렌즈는 볼록 형태를 갖는, 투명 초음파 센서 기반 광학-초음파 융합 내시경 프로브.
- 사전에 설정된 대상체에 삽입되고, 제1항 내지 제3항 및 제6항 내지 제27항 중 한 항의 프로브; 및상기 프로브에 케이블을 통해 광 출력을 제공하고, 상기 프로브에 의해 획득한 이미지를 신호 처리하는 프런트 엔드부를 포함하는 투명 초음파 센서 기반 광학-초음파 융합 내시경 장치.
- 제28항에 있어서,상기 프로브는상기 광 섬유 레이저부로부터의 광의 특성을 조절하는 광학 렌즈를 더 포함하는 투명 초음파 센서 기반 광학-초음파 융합 내시경 장치.
- 제29항에 있어서,상기 광학 렌즈는 복수개 구비되는 투명 초음파 센서 기반 광학-초음파 융합 내시경 장치.
- 제28항에 있어서,상기 프로브와 상기 케이블로 연결되어 상기 프로브의 움직임을 제어하는 조작부를 더 포함하고,상기 조작부는사용자의 조작에 따라 상기 프로브의 움직임을 제어하는 노브부;상기 프로브에 설치된 석션부의 석션 동작을 제어하는 석션 밸브;상기 프로브에 설치된 워터노즐기기의 동작을 제어하는 에어/워터 밸브; 및상기 프로브에 설치된 겸자공을 통한 의료 기기의 동작을 제어하는 인스트루먼트 포트를 포함하는 투명 초음파 센서 기반 광학-초음파 융합 내시경 장치.
- 제28항에 있어서,상기 프로브와 상기 케이블로 연결되어 상기 프로브의 스캐닝 동작을 제어하는 스캐닝부를 더 포함하고,상기 스캐닝부는상기 프로브를 회전시키는 토크를 제공하는 모터;상기 모터의 토크에 따라 회전되는 상기 프로브에 연결되어 회전하는 상기 광 섬유 레이저부과 상기 프런트 엔드부에 연결되어 고정된 광 섬유 레이저부 간의 동축 정렬을 제공하는 광 섬유 회전 관절부; 및상기 프런트 엔드부에 연결되어 고정된 신호선과 상기 모터에 의해 회전하는 프로브 간에 연결되어 회전하는 신호선 간의 전기적 연결을 제공하는 슬립링을 포함하는 투명 초음파 센서 기반 광학-초음파 융합 내시경 장치.
- 사전에 설정된 대상체에 삽입되는 카테터; 및상기 카테터에 케이블을 통해 광 출력을 제공하고, 상기 카테터에 의해 획득한 이미지를 신호 처리하는 프런트 엔드부를 포함하고,상기 카테터는상기 프런트 엔드부로부터의 광을 방출하는 광 섬유 레이저부; 및측정하고자 하는 대상물과 상기 광 섬유 레이저부 사이에 배치되어 상기 광 섬유 레이저부에서 방출되는 광을 투과시키며, 상기 광 섬유 레이저부에서 방출되는 광과 동축 정렬되고, 상기 대상물에 초음파를 방사하고 반사된 초음파를 수신하여 상기 프런트 엔드부에 전달하는 투명 초음파 센서를 포함하는 투명 초음파 센서 기반 광학-초음파 융합 카테터 장치.
- 제33항에 있어서,상기 카테터는상기 광 섬유 레이저부로부터의 광의 경로를 사전에 설정된 각도로 변경시키는 반사판을 더 포함하는 투명 초음파 센서 기반 광학-초음파 융합 카테터 장치.
- 제33항 또는 제34항에 있어서,상기 카테터는상기 광 섬유 레이저부로부터의 광의 특성을 조절하는 광학 렌즈를 더 포함하는 투명 초음파 센서 기반 광학-초음파 융합 카테터 장치.
- 제35항에 있어서,상기 광학 렌즈는 복수개 구비되는 투명 초음파 센서 기반 광학-초음파 융합 카테터 장치.
- 제33항에 있어서,상기 투명 초음파 센서는,광학 임피던스 매칭을 실시하고 투명한 재료로 이루어져 있는 정합부;상기 정합부 뒤에 위치하고 투명한 재료로 이루어져 있는 압전층;상기 압전층의 후면과 전면에 각각 위치하여 각각 투명한 도전성 물질로 이루어져 있는 제1 전극층 및 제2 전극층;상기 제1 전극층에 연결되어 있는 제1 하우징; 및상기 제2 전극층에 연결되어 있는 제2 하우징을 포함하는, 투명 초음파 센서 기반 광학-초음파 융합 카테터 장치.
- 제37항에 있어서,상기 정합부는 음향 렌즈를 구비하는, 투명 초음파 센서 기반 광학-초음파 융합 카테터 장치.
- 제38항에 있어서상기 음향 렌즈는 오목 렌즈, 볼록 렌즈, 평면 렌즈 중 어느 하나의 형태를 갖는, 투명 초음파 센서 기반 광학-초음파 융합 카테터 장치.
- 제37항에 있어서,상기 정합부는 투명한 유리류, 투명한 에폭시류 및 투명한 실리콘류 중 적어도 하나를 함유하는, 투명 초음파 센서 기반 광학-초음파 융합 카테터 장치.
- 제37항에 있어서,상기 투명 초음파 센서의 상기 압전층은 광학적으로 투명한 특성을 지닌 압전 재료인, 투명 초음파 센서 기반 광학-초음파 융합 카테터 장치.
- 제41항에 있어서,상기 압전층은 LNO, PMN-PT, PVDF 및 PVDF-TrFE 중 적어도 하나를 함유하는,투명 초음파 센서 기반 광학-초음파 융합 카테터 장치.
- 제37항에 있어서,상기 투명 초음파 센서의 상기 제1 전극층과 상기 제2 전극층은 광학적으로 투명한 특성을 지닌 전극인, 투명 초음파 센서 기반 광학-초음파 융합 카테터 장치.
- 제43항에 있어서,상기 제1 전극층과 상기 제2 전극층은 각각 AgNW, ITO, 탄소나노튜브 및 그래핀 중 적어도 하나를 함유하는, 투명 초음파 센서 기반 광학-초음파 융합 카테터 장치.
- 제37항에 있어서,상기 제1 전극층과 상기 제2 전극층의 크기는 서로 상이한, 투명 초음파 센서 기반 광학-초음파 융합 카테터 장치.
- 제45항에 있어서,상기 제1 하우징과 상기 제2 하우징은 각각 가운데 빈 공간을 갖는 링 형태로 이루어져 있는, 투명 초음파 센서 기반 광학-초음파 융합 카테터 장치.
- 제46항에 있어서,상기 제1 하우징은 상기 제1 전극층의 가장자리부에 접하게 배치되고, 상기 제2 하우징은 상기 제2 전극층의 가장자리부에 접하게 배치된, 투명 초음파 센서 기반 광학-초음파 융합 카테터 장치.
- 제47항에 있어서,상기 제2 하우징의 내부 공간 속에 상기 압전층, 상기 제1 전극층 및 상기 제1 하우징이 위치하는, 투명 초음파 센서 기반 광학-초음파 융합 카테터 장치.
- 제47항에 있어서,상기 제1 하우징과 상기 제2 하우징은 도전성 물질을 함유하는, 투명 초음파 센서 기반 광학-초음파 융합 카테터 장치.
- 제47항에 있어서,상기 제1 하우징에 연결되어 있는 제1 신호선과 상기 제2 하우징에 연결되어있는 제2 신호선을 더 포함하는, 투명 초음파 센서 기반 광학-초음파 융합 카테터 장치.
- 제46항에 있어서,상기 제1 전극층에 접하게 위치하고 초음파 신호를 감쇠시키는 후면층을 더 포함하는, 투명 초음파 센서 기반 광학-초음파 융합 카테터 장치.
- 제51항에 있어서,상기 후면층은 상기 제1 하우징으로 에워싸여져 있는, 투명 초음파 센서 기반 광학-초음파 융합 카테터 장치.
- 제52항에 있어서,상기 후면층은 투명한 유리류나 투명한 에폭시류를 함유하는, 투명 초음파 센서 기반 광학-초음파 융합 카테터 장치.
- 제47항에 있어서,상기 제1 하우징과 상기 제1 하우징 사이에 위치하고 투명한 절연 물질로 이루어져 있는 절연부를 더 포함하는, 투명 초음파 센서 기반 광학-초음파 융합 카테터 장치.
- 제47항에 있어서,상기 정합부 앞에 위치하고 음향 임피던스 정합을 실시하는 보호층을 더 포함하는, 투명 초음파 센서 기반 광학-초음파 융합 카테터 장치.
- 제55항에 있어서,상기 보호층은 파릴렌을 함유하는, 투명 초음파 센서 기반 광학-초음파 융합 카테터 장치.
- 제47항에 있어서,상기 정합층 뒤에 위치하고 있고 상기 정합층을 통과한 빛의 초점을 조절하며 투명한 재료로 이루어져 있는 보정 렌즈를 더 포함하는, 투명 초음파 센서 기반 광학-초음파 융합 카테터 장치.
- 제57항에 있어서,상기 보정 렌즈는 볼록 형태를 갖는, 투명 초음파 센서 기반 광학-초음파 융합 카테터 장치.
- 제33항에 있어서,상기 카테터와 상기 케이블로 연결되어 상기 카테터의 움직임을 제어하는 조작부를 더 포함하고,상기 조작부는사용자의 조작에 따라 상기 카테터의 움직임을 제어하는 노브부;상기 카테터에 설치된 석션부의 석션 동작을 제어하는 석션 밸브;상기 카테터에 설치된 워터노즐기기의 동작을 제어하는 에어/워터 밸브; 및상기 카테터에 설치된 겸자공을 통한 의료 기기의 동작을 제어하는 인스트루먼트 포트를 포함하는 투명 초음파 센서 기반 광학-초음파 융합 카테터 장치.
- 제33항에 있어서,상기 카테터와 상기 케이블로 연결되어 상기 카테터의 스캐닝 동작을 제어하는 스캐닝부를 더 포함하고,상기 스캐닝부는상기 카테터를 회전시키는 토크를 제공하는 모터;상기 모터의 토크에 따라 회전되는 상기 카테터에 연결되어 회전하는 광 섬유 레이저부과 상기 프런트 엔드부에 연결되어 고정된 광 섬유 레이저부 간의 동축 정렬을 제공하는 광 섬유 회전 관절부; 및상기 프런트 엔드부에 연결되어 고정된 신호선과 상기 모터에 의해 회전하는 카테터 간에 연결되어 회전하는 신호선 간의 전기적 연결을 제공하는 슬립링을 포함하는 투명 초음파 센서 기반 광학-초음파 융합 카테터 장치.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21937084.8A EP4324401A4 (en) | 2021-04-13 | 2021-10-18 | TRANSPARENT ULTRASOUND SENSOR BASED INTEGRATED OPTICAL ULTRASOUND ENDOSCOPE PROBE, ENDOSCOPE DEVICE AND CATHETER DEVICE |
JP2023559781A JP2024512991A (ja) | 2021-04-13 | 2021-10-18 | 透明超音波センサ基盤の光学-超音波融合内視鏡プローブ、内視鏡装置、及びカテーテル装置 |
CN202180096930.XA CN117157012A (zh) | 2021-04-13 | 2021-10-18 | 基于透明超声波传感器的光学超声波集成内窥镜探头、内窥镜设备和导管设备 |
US18/284,462 US20240164752A1 (en) | 2021-04-13 | 2021-10-18 | Transparent-ultrasonic-sensor-based optical-ultrasonic integrated endoscopic probe, endoscope apparatus, and catheter apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210047702A KR102709881B1 (ko) | 2021-04-13 | 2021-04-13 | 투명 초음파 센서 기반 광학-초음파 융합 내시경 프로브, 내시경 장치 및 카테터 장치 |
KR10-2021-0047702 | 2021-04-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022220350A1 true WO2022220350A1 (ko) | 2022-10-20 |
Family
ID=83640353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2021/014448 WO2022220350A1 (ko) | 2021-04-13 | 2021-10-18 | 투명 초음파 센서 기반 광학-초음파 융합 내시경 프로브, 내시경 장치 및 카테터 장치 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20240164752A1 (ko) |
EP (1) | EP4324401A4 (ko) |
JP (1) | JP2024512991A (ko) |
KR (1) | KR102709881B1 (ko) |
CN (1) | CN117157012A (ko) |
WO (1) | WO2022220350A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115791632A (zh) * | 2022-12-09 | 2023-03-14 | 东北大学秦皇岛分校 | 一种血管内超声成像装置及方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210098653A (ko) * | 2020-02-03 | 2021-08-11 | 삼성메디슨 주식회사 | 초음파 프로브 |
KR20240061954A (ko) * | 2022-11-01 | 2024-05-08 | 포항공과대학교 산학협력단 | 고감도 고대역폭 단일공진 투명 초음파 트랜스듀서 및 그 제조 방법 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030208209A1 (en) * | 2000-03-03 | 2003-11-06 | Gambale Richard A. | Endoscopic tissue apposition device with multiple suction ports |
KR20130045550A (ko) * | 2011-10-26 | 2013-05-06 | 이성용 | 위치 탐지기능을 구비한 내시경 시스템 및 이를 이용한 내시경의 위치탐지 방법 |
US8784321B2 (en) | 2007-01-19 | 2014-07-22 | Sunnybrook Health Sciences Centre | Imaging probe with combined ultrasound and optical means of imaging |
JP2015008995A (ja) * | 2013-06-29 | 2015-01-19 | 並木精密宝石株式会社 | 光イメージング用プローブ |
KR20190031834A (ko) * | 2017-09-18 | 2019-03-27 | 포항공과대학교 산학협력단 | 광음향 이미징 프로브, 광음향 이미징 프로브를 이용한 영상 시스템, 및 광음향 이미징 프로브를 이용한 영상 획득 방법 |
KR20200039208A (ko) | 2018-10-05 | 2020-04-16 | 전남대학교산학협력단 | 콘크리트 내부 박리 탐지용 이동형 능동 열화상 검사장치 |
KR20200110777A (ko) | 2018-01-24 | 2020-09-25 | 러버 나노 프로덕츠(피티와이) 리미티드 | 폴리머 기반 가황 조성물 및 이 조성물의 제조 방법 |
KR20210034466A (ko) * | 2019-09-20 | 2021-03-30 | 포항공과대학교 산학협력단 | 투명 초음파 센서 및 그 제조방법 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4234393B2 (ja) * | 2002-10-31 | 2009-03-04 | 株式会社東芝 | 生体情報計測装置 |
JP4406226B2 (ja) * | 2003-07-02 | 2010-01-27 | 株式会社東芝 | 生体情報映像装置 |
JP4643153B2 (ja) * | 2004-02-06 | 2011-03-02 | 株式会社東芝 | 非侵襲生体情報映像装置 |
US20130109950A1 (en) * | 2011-11-02 | 2013-05-02 | Seno Medical Instruments, Inc. | Handheld optoacoustic probe |
WO2014162367A1 (ja) * | 2013-04-05 | 2014-10-09 | テルモ株式会社 | 画像診断装置及びプログラム |
KR101638730B1 (ko) * | 2015-02-10 | 2016-07-12 | 경북대학교 산학협력단 | 초음파 트랜스듀서, 이를 포함하는 초음파 장치 및 이의 제조 방법 |
KR101526905B1 (ko) * | 2015-02-16 | 2015-06-09 | 삼성전자주식회사 | 광음향 프로브 및 이를 포함하는 광음향 장치 |
KR20170005526A (ko) * | 2015-06-23 | 2017-01-16 | 서강대학교산학협력단 | 빔 집속을 위한 초음파 변환자 조립체 및 그의 제조 방법 |
KR102045470B1 (ko) * | 2017-09-11 | 2019-11-15 | 울산과학기술원 | 래디얼 어레이 트랜듀서 기반 광음향-초음파 내시경 시스템 |
KR101965636B1 (ko) * | 2017-12-14 | 2019-08-13 | 포항공과대학교 산학협력단 | 융합 스캐닝 시스템의 회전 안정화 및 확장성 향상을 위한 장치 및 그 방법 |
CN108703744A (zh) * | 2018-05-25 | 2018-10-26 | 湖南大学 | 透明化超声换能器及应用 |
KR102262755B1 (ko) * | 2019-05-15 | 2021-06-08 | 서강대학교산학협력단 | 초음파 변환기 및 초음파 변환기의 제작방법 |
-
2021
- 2021-04-13 KR KR1020210047702A patent/KR102709881B1/ko active IP Right Grant
- 2021-10-18 US US18/284,462 patent/US20240164752A1/en active Pending
- 2021-10-18 CN CN202180096930.XA patent/CN117157012A/zh active Pending
- 2021-10-18 WO PCT/KR2021/014448 patent/WO2022220350A1/ko active Application Filing
- 2021-10-18 JP JP2023559781A patent/JP2024512991A/ja active Pending
- 2021-10-18 EP EP21937084.8A patent/EP4324401A4/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030208209A1 (en) * | 2000-03-03 | 2003-11-06 | Gambale Richard A. | Endoscopic tissue apposition device with multiple suction ports |
US8784321B2 (en) | 2007-01-19 | 2014-07-22 | Sunnybrook Health Sciences Centre | Imaging probe with combined ultrasound and optical means of imaging |
KR20130045550A (ko) * | 2011-10-26 | 2013-05-06 | 이성용 | 위치 탐지기능을 구비한 내시경 시스템 및 이를 이용한 내시경의 위치탐지 방법 |
JP2015008995A (ja) * | 2013-06-29 | 2015-01-19 | 並木精密宝石株式会社 | 光イメージング用プローブ |
KR20190031834A (ko) * | 2017-09-18 | 2019-03-27 | 포항공과대학교 산학협력단 | 광음향 이미징 프로브, 광음향 이미징 프로브를 이용한 영상 시스템, 및 광음향 이미징 프로브를 이용한 영상 획득 방법 |
KR20200110777A (ko) | 2018-01-24 | 2020-09-25 | 러버 나노 프로덕츠(피티와이) 리미티드 | 폴리머 기반 가황 조성물 및 이 조성물의 제조 방법 |
KR20200039208A (ko) | 2018-10-05 | 2020-04-16 | 전남대학교산학협력단 | 콘크리트 내부 박리 탐지용 이동형 능동 열화상 검사장치 |
KR20210034466A (ko) * | 2019-09-20 | 2021-03-30 | 포항공과대학교 산학협력단 | 투명 초음파 센서 및 그 제조방법 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4324401A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115791632A (zh) * | 2022-12-09 | 2023-03-14 | 东北大学秦皇岛分校 | 一种血管内超声成像装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
EP4324401A1 (en) | 2024-02-21 |
KR102709881B1 (ko) | 2024-09-26 |
CN117157012A (zh) | 2023-12-01 |
US20240164752A1 (en) | 2024-05-23 |
KR20220141507A (ko) | 2022-10-20 |
JP2024512991A (ja) | 2024-03-21 |
EP4324401A4 (en) | 2024-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022220350A1 (ko) | 투명 초음파 센서 기반 광학-초음파 융합 내시경 프로브, 내시경 장치 및 카테터 장치 | |
WO2022050515A1 (ko) | 투명 초음파 센서 기반 초음파 광학 복합 이미징 시스템 | |
US4349032A (en) | Endoscope with an ultrasonic probe | |
US8382673B2 (en) | Ultrasonic endoscope | |
EP1614390B1 (en) | Ultrasonic endoscope | |
US11202620B2 (en) | Ultrasonic endoscope | |
WO2021167274A1 (ko) | 초음파 프로브 및 그 제조 방법 | |
WO2017126805A1 (ko) | Mems 스캐너를 이용한 광음향/초음파 손잡이형 펜타입 프로브, 및 이를 이용한 광음향 영상 획득 시스템 및 방법 | |
US11768288B2 (en) | Transparent ultrasound transducer with light beam shaping and the method for assembling the same | |
US20190117200A1 (en) | Ultrasonic endoscope | |
CN114557728A (zh) | 超声波内窥镜 | |
CN109328037A (zh) | 超声波内窥镜 | |
WO2021054558A1 (ko) | 투명 초음파 센서 및 그 제조방법 | |
JP4262467B2 (ja) | 内視鏡 | |
WO2017195983A1 (ko) | 초음파 프로브 | |
WO2022163944A1 (ko) | 투명 초음파 센서가 결합된 광음향 검출 시스템 | |
WO2024214613A1 (ja) | 内視鏡撮像装置、内視鏡及び超音波内視鏡 | |
US20230277160A1 (en) | Endoscope | |
JP4373690B2 (ja) | 固体撮像素子、電子内視鏡 | |
JP4394361B2 (ja) | 固体撮像素子、電子内視鏡 | |
JP3863788B2 (ja) | 内視鏡 | |
JPH06323838A (ja) | 超音波トランスデューサ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21937084 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18284462 Country of ref document: US Ref document number: 2023559781 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2021937084 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021937084 Country of ref document: EP Effective date: 20231113 |