WO2022220069A1 - Pupil module and inspection device - Google Patents

Pupil module and inspection device Download PDF

Info

Publication number
WO2022220069A1
WO2022220069A1 PCT/JP2022/014392 JP2022014392W WO2022220069A1 WO 2022220069 A1 WO2022220069 A1 WO 2022220069A1 JP 2022014392 W JP2022014392 W JP 2022014392W WO 2022220069 A1 WO2022220069 A1 WO 2022220069A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
peripheral surface
pinhole
pupil
pupil module
Prior art date
Application number
PCT/JP2022/014392
Other languages
French (fr)
Japanese (ja)
Inventor
隆史 小原
敦彦 和食
孝義 小野
大樹 堤
Original Assignee
株式会社インターアクション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社インターアクション filed Critical 株式会社インターアクション
Publication of WO2022220069A1 publication Critical patent/WO2022220069A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures

Definitions

  • the present disclosure relates to a pupil module that passes inspection light from a light source device toward a solid-state imaging device, and an inspection device that includes the pupil module.
  • a pupil module that passes inspection light from a light source device toward a solid-state imaging device is known (for example, Patent Document 1).
  • Such pupil modules serve, for example, for illumination homogenization and/or solid angle adjustment.
  • the pupil module of Patent Document 1 has a cylindrical member (lens barrel) with a pinhole formed on one end face, and has a lens and a diffusion plate inside the cylindrical member. This pupil module is arranged so that the pinhole faces the solid-state imaging device.
  • the pinhole adjusts, for example, the solid angle (diffuse angle from another point of view) of light irradiated to the solid-state imaging device.
  • the lens converges on the pinhole the light that has entered the cylindrical member from the end opposite to the pinhole.
  • the diffuser plate is positioned between the lens and the pinhole to diffuse the light (or, from another point of view, equalize the intensity of the light across the cross section of the optical path).
  • Pupil modules and inspection devices that can improve at least some performance (eg, light transmittance and/or diffusion function) are awaited.
  • a pupil module is a pupil module that passes inspection light from a light source device toward a solid-state imaging device, surrounds an optical axis, and is capable of reflecting light. and a pinhole located on the output side of the peripheral surface in the direction along the optical axis.
  • An inspection apparatus includes the pupil module, a probe card on which the pupil module is mounted, and the light source device.
  • the performance of at least part of the pupil module is improved.
  • FIG. 2 is a schematic cross-sectional view showing the configuration of the essential parts of the inspection apparatus according to the first embodiment;
  • FIG. 2 is a schematic perspective view of a pupil module included in the inspection apparatus of FIG. 1;
  • 3 is a schematic cross-sectional view of the pupil module of FIG. 2;
  • FIG. FIG. 5 is a schematic cross-sectional view showing a light pipe according to a modification;
  • FIG. 5 is a schematic cross-sectional view of a pupil module according to a second embodiment;
  • FIG. 8 is a schematic cross-sectional view of a pupil module according to a third embodiment;
  • FIG. 11 is a schematic cross-sectional view of a pupil module according to a fourth embodiment;
  • Typical sectional drawing which shows the pinhole which concerns on a modification.
  • FIG. 11 is a schematic cross-sectional view of a pupil module according to a fifth embodiment
  • FIG. 11 is a schematic cross-sectional view of a pupil module according to a sixth embodiment
  • 9 is a schematic cross-sectional view showing a pinhole according to a modification different from FIG. 8.
  • the "diameter” may be the diameter or equivalent circle diameter unless otherwise specified.
  • the “reflectance” may be the reflectance for visible light (for example, wavelengths of 380 nm to 780 nm) at an incident angle of 0°.
  • the “angle of diffusion” may be the full-width (FWHM: Full Width at Half Maximum) of the half value of the central illuminance.
  • the term "light pipe” may be interpreted broadly and may be synonymous with "rod integrator”.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of main parts of an inspection apparatus 1 according to the first embodiment. Note that any direction of the inspection apparatus 1 may be upward. However, in the following description, for the sake of convenience, the upper side of FIG. 1 may be expressed assuming that the actual upper side.
  • the inspection apparatus 1 inspects the imaging device 103 by irradiating the imaging device 103 with light.
  • the imaging element 103 is a solid-state imaging element such as a CCD (Charge Coupled Device) image sensor and a CMOS (Complementary Metal Oxide Semiconductor) image sensor.
  • the inspection apparatus 1 inspects the imaging device 103 included in the wafer 101 .
  • the inspection apparatus 1 may inspect individualized imaging elements 103 . In the following description, for the sake of convenience, expressions may be made assuming that the inspection apparatus 1 inspects the wafer 101 .
  • the imaging element 103 may be intended to detect light in a predetermined wavelength range (for example, visible light wavelength range), or ideally to detect light having one wavelength such as laser light. may be intended.
  • the light with which the imaging device 103 is irradiated by the inspection apparatus 1 is, for example, light having power (or relatively high power light) over the entire wavelength range that the imaging device 103 is to detect. ), or light having power within a specific width within the wavelength band.
  • the light that the inspection apparatus 1 irradiates the imaging device 103 has, for example, light having a wavelength that the imaging device 103 is to detect (strictly speaking, it is in a narrow wavelength range including the wavelength). light having power).
  • the type of light intended to be detected by the imaging device 103 is arbitrary.
  • the light to be detected may be visible light (an example of the wavelength range has already been described) or invisible light.
  • invisible light include infrared rays, which have longer wavelengths than visible light, and ultraviolet rays, which have shorter wavelengths than visible light.
  • the detection target may be light in a wavelength range that is more finely classified than visible light, infrared rays, or ultraviolet rays.
  • light over two or more wavelength ranges of visible light, infrared light, and ultraviolet light may be detected. It was previously stated that the “reflectance” may refer to visible light. When possible, the reflectance of that non-visible light may be applied to the following description.
  • the inspection device 1 has, for example, the following components. Table 3 holding wafer 101; A light source device 5 that generates light for inspection. One or more (four in the illustrated example) pupil modules 7 for passing light from the light source device 5 to the image sensor 103 . A probe card 9 electrically connected to the imaging element 103 . A computing unit 11 that controls the table 3 and the light source device 5 and controls and diagnoses the imaging element 103 via the probe card 9 .
  • the configuration of the inspection device 1 may be various configurations, for example, it may be a known configuration (of course, it may be a new configuration).
  • the description of the configuration other than the pupil module 7 will be omitted as appropriate.
  • the configuration other than the pupil module 7 will be briefly described, and then the pupil module 7 will be described.
  • the table 3 has an appropriate type of chuck such as a vacuum chuck or an electrostatic chuck, and holds the wafer 101 on its upper surface.
  • the table 3 can move, for example, along each of the three axes of the orthogonal coordinate system. Thereby, for example, it is possible to position the pupil module 7 and the probe card 9 with respect to the imaging device 103 (relative movement from another point of view).
  • the light source device 5 has at least a light source, although not particularly shown, and may have a lens, diaphragm, filter and/or mirror located on the optical path from the light source, if necessary.
  • the light source device 5 irradiates the pupil module 7 with light, for example, with the vertical direction in FIG. 1 as a direction parallel to the optical axis.
  • the light emitted by the light source device 5 may be, for example, uniform in intensity in the cross section and telecentric.
  • the probe card 9 includes, for example, one or more circuit boards. Since FIG. 1 is a schematic diagram, all of the various members (including one or more circuit boards) constituting the probe card 9 are given the same hatching. In addition, in FIG. 1, not only the body portion of the probe card 9 (the portion mainly composed of the circuit board) but also the portion fixed to the body portion (for example, the portion contributing to the support of the pupil module 7) is the probe card 9. is considered as part of When conceptualized in this way, the overall shape of the probe card 9 does not necessarily have to be card-like.
  • the probe card 9 has, for example, one or more (a plurality in the illustrated example, more specifically four) openings 9h through which the light that has arrived from the light source device 5 via the pupil module 7 passes through to the imaging element 103. have.
  • one aperture 9h is provided for one imaging element 103 .
  • the probe card 9 has pins 9 a that contact pads (not shown) of one or more (four in the illustrated example) imaging elements 103 .
  • the number of pins 9a provided for one imaging device 103 may be set as appropriate.
  • the computing unit 11 is configured including, for example, a computer.
  • the calculation unit 11 controls a driving unit (not shown) of the table 3 to position the imaging device 103 and the probe card 9 . Further, the calculation unit 11 controls the light source of the light source device 5 and the like to irradiate the imaging device 103 with light from the light source device 5 via the pupil module 7 and the opening 9h of the probe card 9 .
  • the computing unit 11 is electrically connected to the imaging element 103 via the probe card 9 , controls the imaging element 103 , and acquires signals from the imaging element 103 . Then, the calculation unit 11 diagnoses whether the imaging element 103 is good or bad based on the acquired signal.
  • FIG. 2 is a perspective view schematically showing four pupil modules 7 shown in FIG.
  • the pupil module 7 has, for example, a substantially cylindrical outer shape, and allows light from the light source device 5 to pass through in its axial direction.
  • the pupil module 7 has a first end 8A and a second end 8B, which are both ends in the axial direction, and causes light incident from the first end 8A to exit from the second end 8B.
  • the pupil module 7 adjusts the light intensity distribution in the cross section of the light (e.g., homogenizes the intensity) and/or adjusts the solid angle and/or the diffusion angle of the light illuminating the image sensor 103 . to adjust.
  • the specific shape of the outer shape of the pupil module 7 is arbitrary.
  • the outer shape of the pupil module 7 may be straight columnar (illustrated example) or oblique columnar. However, in the description of the embodiments, a straight columnar shape is mainly taken as an example, and expressions based on the straight columnar shape may be used.
  • the outer shape of the pupil module 7 may be cylindrical or prismatic. The length of the pupil module in the axial direction (the direction parallel to the optical axis) may be longer than the diameter (example shown) or shorter.
  • the outer shape of the pupil module 7 is a substantially cylindrical shape with a flange 8C provided on the first end 8A side.
  • the pupil module 7 is supported by the probe card 9. Specifically, the pupil module 7 is inserted through a hole (reference numeral omitted; the concept may include the opening 9h) penetrating the probe card 9 vertically, and the flange 8C is attached to the upper surface of the probe card 9. engaged. Furthermore, the flange 8C and the probe card 9 may be fixed with screws (not shown). Unlike the illustrated example, the pupil module 7 may be supported by a member separate from the probe card 9 or may be movably supported by a drive mechanism relative to the probe card 9 .
  • An arbitrary number of pupil modules 7 may be provided for one probe card 9 (the inspection apparatus 1 from another point of view; the same shall apply hereinafter).
  • the number of pupil modules 7 arranged in one probe card 9 may be one, or may be plural (example shown). In the latter case, the number of pupil modules 7 may be the same as the number of imaging elements 103 included in the wafer 101, or may be different (for example, it may be less as in the illustrated example).
  • the pupil modules 7 When the number of pupil modules 7 is plural, their arrangement is also arbitrary.
  • the pupil modules 7 may be arranged in one row (the example shown), or in two or more rows.
  • the number of columns is arbitrary, and the number of columns may be the same or different.
  • the pitch of the pupil modules 7 may be, for example, the same as the pitch of the imaging elements 103 within the wafer 101, or may be an integer multiple.
  • FIG. 3 is a cross-sectional view of pupil module 7 .
  • the pupil module 7 has, for example, a cylindrical member 13 and optical components held by the cylindrical member 13 .
  • the optical components are two dimming filters 15 and a light pipe 17 in the example shown.
  • the cylindrical member 13 contributes, for example, to holding the optical components and to reducing the influence of unintended light from outside the pupil module 7 .
  • the light control filter 15 contributes to, for example, adjustment of the amount of light.
  • the light pipe 17 contributes, for example, to improving the transmittance of the pupil module.
  • optical axis LA is shown in FIG.
  • the illustrated optical axis LA may be regarded as the optical axis of the pupil module 7 or may be regarded as the optical axis of each part of the pupil module 7 such as the light pipe 17 .
  • the optical axis LA is, for example, a virtual ray representative of the luminous flux passing through the pupil module 7 or each part.
  • the tubular member 13 is, as its name suggests, a tubular member.
  • the tubular member 13 has a tubular body 13a around the axis and an end surface portion 13b that closes the second end 8B side of the tubular body 13a.
  • the first end 8A side of the cylinder main body 13a is open, and an opening 19 is formed.
  • a pinhole 21 is opened in the end surface portion 13b. Light from the light source device 5 enters the aperture 19 and exits from the pinhole 21 .
  • FIG. 3 is a schematic diagram, the entire cylindrical member 13 is indicated by one hatching.
  • the actual cylindrical member 13 may be integrally formed as a whole as shown in the drawing, or may be constructed by combining a plurality of members unlike the drawing.
  • the specific shape of the tubular member 13 is arbitrary.
  • the outer shape of the cylindrical member 13 constitutes most of the outer shape of the pupil module 7 , and the above description of the outer shape of the pupil module 7 may be used for the outer shape of the cylindrical member 13 .
  • the shape of the inner surface (in other words, the inner space) of the cylindrical member 13 is, for example, a substantially straight columnar shape similar to the outer shape, and more specifically, a columnar or prismatic shape, for example.
  • the outer shape and inner surface shape of the cylindrical member 13 may be similar (from another point of view, the thickness of the cylindrical member 13 may be substantially constant), or may be completely different shapes. Note that the similarity here is not limited to strict similarity in mathematics.
  • the shape of the opening 19 is arbitrary.
  • the shape of the opening 19 when viewed in the direction of the optical axis LA may be the same shape as most of the inner space of the cylindrical member 13, or may be a different shape. Polygon.
  • the opening 19 has a slightly larger diameter than most of the internal space of the cylindrical member 13 for the placement of the light control filter 15 .
  • such a diameter expansion may not be performed, and conversely, the diameter may be made smaller than most of the inner space of the tubular member 13 .
  • the shape of the pinhole 21 is arbitrary.
  • the shape of the cross section of the pinhole 21 (the cross section perpendicular to the optical axis LA) may be circular or polygonal.
  • the shape of the cross section of the pinhole 21 (diameter in another point of view) may be constant (the example shown in the figure) or may vary in the penetrating direction of the pinhole 21 . As the latter, a part or the whole of the pinhole 21 in the penetrating direction may have a shape that expands or contracts downward.
  • the diameter of the opening 19, the diameter of the pinhole 21, the distance from the opening 19 to the pinhole 21 are required for the size of the image pickup device 103 and inspection of the image pickup device 103. It may be appropriately set according to the illuminance or the like.
  • the diameter of pinhole 21 is smaller than the diameter of opening 19 .
  • the diameter here may be a diameter that substantially contributes to the transmission of light.
  • the diameter of the portion below the enlarged diameter portion is regarded as the diameter of the opening 19, or the diameter of the light beam that can reach the pinhole 21 near the opening 19 is regarded as the diameter of the opening 19. You can
  • the diameter of the pinhole 21 may be 0.1 mm or more and 5 mm or less, or 0.5 mm or more and 2 mm or less.
  • the diameter of the opening 19 is larger than the diameter of the pinhole 21, the diameter may be 1 mm or more and 50 mm or less, or 5 mm or more and 10 mm or less.
  • the diameter of the opening 19 may be 2 to 20 times or 4 to 10 times the diameter of the pinhole 21 .
  • the distance from the aperture 19 (incident side surface) to the pinhole 21 (output side surface) may be 5 mm or more and 60 mm or less, or 10 mm or more and 30 mm or less. Also, the distance may be 5 times or more and 60 times or less, or 10 times or more and 30 times or less, the diameter of the pinhole 21 .
  • the cylindrical member 13 has a light shielding property, and prohibits the entrance and exit of light from portions other than the opening 19 and the pinhole 21 .
  • the cylindrical member 13 may be entirely made of a light-shielding material, or may be mostly made of a non-light-shielding material with a film made of a light-shielding material on the surface (for example, the inner surface). and/or outer surface).
  • the surface of the cylindrical member 13 may have a low or high light reflectance.
  • the reflectance of the cylindrical member 13 may be less than 10%, 10% or more and less than 50%, or 50% or more or 80% or more.
  • Such a reflectance may be realized by the reflectance of the material that constitutes most or all of the cylindrical member 13, or by forming a film that reduces or increases the reflectance on the inner surface of the cylindrical member 13. may be implemented.
  • the inner surface of the lens barrel of an optical device has a low reflectance.
  • the inner surface of the lens barrel is coated with black paint (in other words, a film that reduces reflection is formed).
  • the reflectance of black paint is, for example, 6% or less, and there are some that are 1% or less.
  • the inner surface of the cylindrical member 13 may have a relatively low reflectance as described above by being coated with black paint or the like, like a general lens barrel, or may have a reflectance that is lower than the reflectance described above. may also have high reflectance.
  • any material can be used for the tubular member 13 .
  • the material that constitutes most (for example, other than the surface) or all of the cylindrical member 13 may be resin, metal, or ceramic.
  • a suitable film may be formed on the surface of the cylindrical member 13, and the material of this film is also arbitrary.
  • the film may be made of one material, or may be a laminate of two or more layers made of different materials.
  • Materials for the film include, for example, paint of any color (eg, black).
  • metals (and dielectrics) can also be used as the material of the film.
  • the inside of the tubular member 13 may or may not be sealed.
  • the sealing may be airtight or may be of a level that reduces the intrusion of foreign matter.
  • the inside of the cylinder member 13 may be in a vacuum (strictly speaking, a state in which the pressure is reduced below the atmospheric pressure), or may be in a state in which an appropriate gas is enclosed. good.
  • the light control filter 15 includes, for example, a glass substrate, and adjusts the amount of transmitted light depending on the presence or absence of an AR (anti-reflection) coat. In a mode in which a plurality of pupil modules 7 are provided for one probe card 9, this adjustment of the amount of transmitted light may reduce the difference in the amount of light between the pupil modules 7 .
  • the size and position of the dimmer filter 15 may be set, for example, so that all the light that enters the light pipe 17 is light that has passed through the dimmer filter 15 . In the illustrated example, the light control filter 15 is provided so as to close the opening 19 .
  • the light control filter 15 may not be provided.
  • the dimmer filter 15 also contributes to sealing the inside of the tubular member 13 . If the chromatic filter 15 is not provided, the sealing of the pupil module 7 may be done by a transparent member which has another optical function or merely allows light to pass through.
  • the light pipe 17 is made of, for example, translucent material. Also, the light pipe 17 is, for example, a solid rod-shaped member. In other words, the light pipe has a peripheral surface 17a that is a cylindrical surface that spreads around the optical axis LA, and an entrance surface 17b and an exit surface 17c that are end surfaces that intersect the optical axis LA on both sides of the peripheral surface 17a. and The entrance surface 17b is a surface on the opening 19 side, and the exit surface 17c is a surface on the pinhole 21 side.
  • At least part of the light incident on the entrance surface 17b is reflected once or more by the peripheral surface 17a and guided to the exit surface 17c.
  • the light absorbed by the inner surface of the cylindrical member 13 is reduced, and the transmittance of the pupil module 7 is improved.
  • the light is diffused by reflection on the peripheral surface 17a (from another point of view, the intensity of the light is made uniform).
  • the tapered shape or the like allows light to be collected from the opening 19 to the pinhole 21, to improve the above-described diffusion action, and to adjust the diffusion angle (or the solid angle from another point of view). be.
  • the light pipe 17 may have the function of sealing the inside of the tubular member 13 .
  • the refractive index of the light pipe 17 is higher than that of its surroundings (vacuum or gas).
  • the peripheral surface 17a constitutes an interface between media having different refractive indices. A portion of the light incident on the incident surface 17b and reaching the peripheral surface 17a is reflected by the peripheral surface 17a, and the other portion is transmitted through the peripheral surface 17a. Also, when the incident angle with respect to the peripheral surface 17a becomes smaller than a certain amount, so-called total reflection occurs. Thus, the peripheral surface 17a reflects light. As can be understood from this embodiment, when the peripheral surface 17a can reflect light, the reflectance of the peripheral surface 17a does not necessarily have to be high.
  • the material (refractive index from another point of view) of the light pipe 17 may be set appropriately.
  • the material of the light pipe 17 may be glass or resin.
  • the refractive index (absolute refractive index) of the material of the light pipe 17 may be, for example, 1.4 or more.
  • the specific shape of the light pipe 17 is arbitrary.
  • the shape of the light pipe 17 (in other words, the peripheral surface 17a; hereinafter, the same applies in this paragraph and the next paragraph) is a tapered shape in which the cross section (the cross section perpendicular to the optical axis LA) becomes smaller toward the output side. (In other words, it has a frustum shape).
  • the shape of the light pipe 17 may be a constant columnar shape (for example, a straight columnar shape) regardless of the position of the optical axis LA, or may be a frustum. It may be a combination with a columnar body.
  • a more specific shape of the frustum or column in the light pipe 17 is also arbitrary.
  • the cross-sectional shape of the frustum or cylinder may be circular or polygonal.
  • the shape of the light pipe 17 may be a truncated cone, a truncated pyramid, a cylinder, or a prism.
  • the truncated cone shape may be a rotationally symmetrical shape with the optical axis LA as an axis of symmetry (example shown in the figure), or may not be so.
  • the side surface of the frustum may be straight or curved.
  • the inclination angle ⁇ of the peripheral surface 17a with respect to the optical axis LA when the light pipe 17 is frustum-shaped may be appropriately set.
  • the inclination angle ⁇ (when the peripheral surface 17a is not linear in the longitudinal section, for example, the inclination angle of an approximate straight line) may be greater than 0°, 1° or more, 3° or more, or 5° or more, and less than 45°. , 30° or less, or 15° or less, and the above lower and upper limits may be combined appropriately.
  • the tilt angle ⁇ may be 5° or more and 15° or less.
  • the shapes of the entrance surface 17b and the exit surface 17c are also arbitrary.
  • the shape of the cross section of the light pipe 17 may be used for the planar shape of these surfaces.
  • the incident surface 17b has a curved surface that bulges outward (in other words, a convex curved surface).
  • the exit surface 17c is planar.
  • the incident surface 17b may be planar or concave curved.
  • the output surface 17c may be convex or concave.
  • Combinations of the shapes (curved or flat) of the entrance surface 17b and the exit surface 17c are also arbitrary.
  • the curved surfaces of the entrance surface 17b and/or the exit surface 17c may be spherical or aspherical. Also, the radius of curvature or the focal length may be set appropriately. For example, when the entrance surface 17b is a convex curved surface, its center of curvature and/or focal point may be located within the light pipe 17. It may be located on the incident side of the center.
  • the surface properties of the peripheral surface 17a, the entrance surface 17b, and the exit surface 17c are arbitrary.
  • these surfaces are smooth surfaces.
  • the arithmetic mean roughness Ra of these surfaces may be 100 nm or less, 10 nm or less, or 1 nm or less. However, some or all of these surfaces may be intentionally roughened for the purpose of diffusion. In other words, the arithmetic mean roughness Ra may be larger than the above upper limit.
  • the dimensions of the light pipe 17 are arbitrary.
  • the dimensions exemplified as the dimensions of the cylindrical member 13 in the description of the cylindrical member 13 may be referred to as the dimensions of the frustum-shaped light pipe 17 instead of the dimensions of the cylindrical member 13 .
  • the diameter of the exit surface 17c may be 0.1 mm or more and 5 mm or less, or 0.5 mm or more and 2 mm or less.
  • the diameter of the incident surface 17b may be 1 mm or more and 50 mm or less, or 5 mm or more and 10 mm or less, on the premise that it is larger than the diameter of the exit surface 17c.
  • the diameter of the entrance surface 17b may be two to twenty times or four to ten times the diameter of the exit surface 17c.
  • the length from the entrance surface 17b to the exit surface 17c on the optical axis LA may be 5 mm or more and 60 mm or less, or 10 mm or more and 30 mm or less.
  • the distance may be 5 times or more and 60 times or less, or 10 times or more and 30 times or less, the diameter of the output surface 17c.
  • the peripheral surface 17a is basically separated from the tubular member 13 (for example, the inner surface of the tubular main body 13a) except for a portion on the entrance surface 17b side and a portion on the exit surface 17c side. Further, the incident surface 17b is positioned inside the cylindrical member 13 . The exit surface 17c is located inside the pinhole 21 (more specifically, in the illustrated example, in the middle of the penetrating direction).
  • the peripheral surface 17a may be separated from the tubular member 13 by 1/2 or more or 4/5 or more of the area.
  • the peripheral surface 17a and the inner surface of the cylindrical member 13 may have the same shape and be in contact with each other.
  • a mode in which both have the same shape for example, in the illustrated example, a mode in which the light pipe 17 is deformed into a straight columnar shape, or a mode in which the inner surface of the cylinder main body 13a is deformed into a frustum shape. can be mentioned.
  • the incident surface 17 b may be positioned at the same position as the opening 19 or positioned outside the opening 19 .
  • the exit surface 17c may be positioned above the pinhole 21 or below the pinhole 21. As shown in FIG.
  • the method of fixing the light pipe 17 to the tubular member 13 may be any appropriate method.
  • a portion of the light pipe 17 on the output surface 17c side is fitted into a portion of the pinhole 21 (in contact with the inner surface of the pinhole 21).
  • a portion of the incident surface 17 b side is in contact with the inner surface of the cylindrical member 13 .
  • the light pipe 17 is fixed to the tubular member 13 .
  • An adhesive interposed between the light pipe 17 and the cylindrical member 13 may be provided (or may not be provided) at the portion where the light pipe 17 and the cylindrical member 13 are in contact with each other.
  • a portion may be provided that protrudes from the inner surface of the cylindrical member 13 and abuts on an appropriate position of the peripheral surface 17a.
  • the cylindrical member 13 may be provided with a portion that abuts from above on a portion of the entrance surface 17b on the outer edge side.
  • the cylindrical member 13 may be provided with a portion that abuts from below on a part of the exit surface 17c on the outer edge side.
  • the pupil module 7 that passes the inspection light from the light source device 5 toward the solid-state imaging device (imaging device 103) has the peripheral surface 17a and the pinhole 21.
  • the peripheral surface 17a surrounds the optical axis LA and can reflect light.
  • the pinhole 21 is positioned on the output side of the peripheral surface 17a in the direction along the optical axis LA.
  • the transmittance of the pupil module 7 is improved.
  • part of the light that enters the cylindrical member 13 through the opening 19 is deviated from the optical path toward the pinhole 21 and is absorbed by the inner surface of the cylindrical member 13 . be.
  • at least part of such light can be guided to the pinhole 21 by reflection on the peripheral surface 17a to improve the transmittance.
  • the illuminance in the image sensor 103 can be improved.
  • the power consumption of the light source device 5 can be reduced and/or the size of the light source device 5 can be reduced.
  • part or all of the pinhole 21 may or may not overlap with the exit-side portion of the peripheral surface 17a. For example, if it can be reasonably said that the light passing through the area surrounded by the peripheral surface 17a passes through the pinhole 21, the pinhole 21 is positioned on the exit side of the peripheral surface 17a.
  • the opening surface on the output side of the pinhole 21 is 1/5 of the length of the peripheral surface 17a in the direction parallel to the optical axis LA from the end surface (output surface 17c) on the output side of the peripheral surface 17a to the incident side.
  • the pinhole 21 is located on the exit side of the position separated by a distance of 1/10, it may be understood that the pinhole 21 is located on the exit side of the peripheral surface 17a.
  • the pupil module 7 may have a light shielding cylinder member 13 .
  • the cylindrical member 13 may have an opening 19 into which light is incident at one end and a pinhole 21 having a smaller diameter than the opening 19 at the other end.
  • the peripheral surface 17 a may be positioned inside the tubular member 13 .
  • the probability that unintended light enters the area surrounded by the peripheral surface 17a and/or the pinhole 21 from the outside of the pupil module 7 is reduced. As a result, the light emitted from the pupil module 7 is stabilized.
  • the pupil module 7 may have a solid or hollow (solid in this embodiment) light pipe 17 having a peripheral surface 17a inside the tubular member 13, which is a separate member from the tubular member 13.
  • the pupil module 7 having the peripheral surface 17a can be realized at low cost.
  • the properties of emitted light required of the pupil module 7 differ depending on the type of the image pickup device 103, etc., but it is possible to change the design of only one of the light pipe 17 and the cylindrical member 13 to deal with this. .
  • the outer peripheral surface (surrounding surface 17a) of the light pipe 17 and the inner peripheral surface of the cylindrical member 13 may be separated.
  • the peripheral surface 17a may be locally in contact with the inner peripheral surface of the cylindrical member 13, as understood from the illustrated example.
  • the light pipe 17 and the cylindrical member 13 can be designed separately. Moreover, since the surroundings of the peripheral surface 17a are in a vacuum or a gas, the conditions for causing total reflection are likely to be met. Moreover, the inconvenience that the joint state between the peripheral surface 17a and the cylindrical member 13 affects the reflection on the peripheral surface 17a is reduced.
  • the light pipe 17 may be solid, or may be curved such that the end surface (incident surface 17b) on the side where the light from the light source device 5 is incident bulges outward.
  • the direction in the light pipe 17 of the luminous flux incident on the incident surface 17b can be adjusted. More specifically, for example, when telecentric light is incident on the incident surface 17b, the inclination angle of the light beam with respect to the optical axis LA can be increased to increase the light beam reaching the peripheral surface 17a. As a result, the light diffusion effect of the light pipe 17 is improved.
  • the peripheral surface 17a may have a smaller diameter toward the pinhole 21 side.
  • the light pipe 17 contributes to collecting (condensing) the light incident on the incident surface 17b with a relatively large diameter onto the output surface 17c with a relatively small diameter. This reduces, for example, the need for a condenser lens on the entrance side of the pupil module 7 .
  • a condenser lens By not providing a condenser lens (however, a mode in which a condenser lens is provided is also included in the technology according to the present disclosure), the size and simplification of the pupil module 7 and/or cost reduction can be achieved.
  • the diffusion angle (solid angle from another point of view) of the light beam emitted from the exit surface 17c (exit) is the entrance diameter/output It is multiplied by the aperture ratio. Therefore, the diffusion action of the peripheral surface 17a is improved.
  • the incident surface 17b when the incident surface 17b is not convexly curved, when telecentric light is incident on the incident surface 17b, this light travels in the light pipe 17 parallel to the optical axis AL.
  • the circumferential surface 17a which has a smaller diameter toward the pinhole 21 side, reflects the light beam away from the optical axis AL among the telecentric light. This action also improves the diffusion action of the peripheral surface 17a.
  • the length parallel to the optical axis AL of the peripheral surface 17a may be greater than the diameter.
  • this mode may also be included in the technology according to the present disclosure
  • the diffusion effect of the peripheral surface 17a is improved.
  • FIG. 4 is a cross-sectional view showing a light pipe 23 according to a modification.
  • the light pipe 23 of the embodiment has a solid rod shape
  • the light pipe 23 according to the modified example has a hollow cylindrical shape.
  • the light pipe 23 has a peripheral surface 23a surrounding the optical axis LA, an entrance 23b into which light enters, and an exit 23c from which light exits.
  • a peripheral surface 17 a that reflects the light within the light pipe 17 was formed by the outer peripheral surface of the light pipe 17 .
  • the peripheral surface 23 a that reflects the light inside the light pipe 23 is formed by the inner peripheral surface of the light pipe 23 .
  • the peripheral surface 17a of the light pipe 17 according to the embodiment has translucency.
  • the peripheral surface 23a of the light pipe 23 according to the modification may function as a reflecting surface (for example, a mirror) that reflects light without substantially transmitting the light regardless of the incident angle.
  • the reflectance of the peripheral surface 23a may be appropriately set.
  • the reflectance of the peripheral surface 23a may be 50% or more, 80% or more, or 90% or more.
  • the configuration of the light pipe 23 is arbitrary.
  • the light pipe 23 may have a base that forms most of the light pipe 23 and a reflective film that overlaps the inner peripheral surface of the base and forms a peripheral surface 23a.
  • the substrate may be composed of one or more materials. Each of the one or more materials may be opaque or translucent. Materials for the base include, for example, glass, resin, and metal.
  • the reflective film may be composed of one material, or may be composed of layers of different materials. More specifically, for example, the reflective film may be a metal film, or may be a metal film overlaid with a dielectric layer having translucency.
  • the light pipe 23 may be constructed entirely of a single, relatively highly reflective material (eg, metal).
  • the description of the peripheral surface 17a of the light pipe 17 may be used as appropriate.
  • the thickness of the light pipe 23 is, for example, generally constant throughout the light pipe 23 .
  • the peripheral surface 23a and the outer peripheral surface of the light pipe 23 are similar.
  • the thickness of the light pipe 23 may not be constant.
  • the shape of the peripheral surface 23a may be substantially the same as the peripheral surface 17a of the first embodiment (frustum shape), while the shape of the outer peripheral surface may be a columnar shape that fits into the tubular member 13. .
  • the light pipe 23 according to such a modified example may be used in place of the light pipe 17 in the first embodiment and other embodiments having the light pipe 17 (described later). Even when the light pipe 23 is used instead of the light pipe 17, the same effects as those of the embodiment can be obtained.
  • FIG. 5 is a cross-sectional view showing the configuration of a pupil module 207 according to the second embodiment, and corresponds to FIG. 3 of the first embodiment.
  • a pupil module 207 according to the second embodiment is obtained by adding a diffusion plate 25 to the pupil module 7 according to the first embodiment.
  • the diffuser plate 25 diffuses the light while transmitting the light. Thereby, for example, the light emitted from the pupil module 207 has a more uniform intensity in the cross section. It should be noted that, in the first embodiment, the transmittance of the pupil module is higher than in the second embodiment.
  • the diffusion plate 25 is positioned on the incident side with respect to the light pipe 17 (peripheral surface 17a). More specifically, the diffuser plate 25 is located inside the cylindrical member 13 and, from another point of view, is located between the light control filter 15 (or the opening 19 from another point of view) and the light pipe 17. there is Note that, unlike the illustrated example, the diffusion plate 25 can also be positioned outside the cylindrical member 13 . For example, the diffusion plate 25 may overlap the upper end of the cylindrical member 13 so as to close the opening 19 from the outside, or may be arranged at a position spaced upward from the upper end of the cylindrical member 13 (opening 19). . In the direction parallel to the optical axis LA, the distance between the aperture 19 and the diffusion plate 25 and the distance between the diffusion plate 25 and the light pipe 17 are arbitrary.
  • the shape and size (and position) of the diffuser plate 25 may be set, for example, so that substantially all light entering the light pipe 17 is light that has passed through the diffuser plate 25 .
  • the diffusing plate 25 is disposed inside the cylindrical member 13 and has a width covering the entire cross section of the inner space of the cylindrical member 13, whereby the above light relationship has been realized.
  • the above light relationship is realized by making the area of the diffuser plate 25 sufficiently large with respect to the area of the opening 19.
  • the specific material, shape, dimensions, etc. of the diffusion plate 25 may be set as appropriate.
  • the material of the entire diffuser plate 25 or the base material of the diffuser plate 25 is a translucent material such as glass or resin.
  • the diffuser plate 25 may have a plate shape with a substantially constant thickness. The thickness of the diffuser plate 25 may be appropriately set according to the required action and the like.
  • the shape and dimensions of the diffusion plate 25 in a plan view are, for example, the shape and dimensions of the cross section of the internal space of the cylindrical member 13 . A description of dimensions may be used. Further, in a mode in which the diffusion plate 27 is positioned outside the cylindrical member 13 , the diffusion plate 25 may have an area larger than the internal space of the cylindrical member 13 or the cross section of the entirety.
  • the diffusion plate 25 is wider than the incident surface 17b and includes the incident surface 17b when viewed parallel to the optical axis LA.
  • the diffusion plate 25 may have the same width as the incident surface 17b, or may be narrower than the incident surface 17b. The latter aspect may occur, for example, due to the convenience of the portion of the tubular member 13 that holds the diffuser plate 25 and/or the light pipe 17 .
  • the diffusion plate 25 may have various configurations for diffusing light.
  • the diffusion plate 25 may have unevenness on one surface or both surfaces.
  • the light passing through the diffusion plate 25 is diffused by being refracted by the unevenness of the surface.
  • the surface roughness Ra of the uneven surface may be, for example, 200 nm or more, 1 ⁇ m or more, 10 ⁇ m or more, or 100 ⁇ m or more.
  • the diffusing plate 25 having unevenness on the surface may be regarded as having randomly arranged microlenses having different sizes.
  • the diffuser plate 25 may have fine particles inside instead of or in addition to the irregularities on the surface. Light passing through the diffuser plate 25 may be diffused by being reflected by these minute particles.
  • the transmittance and diffusion angle of the diffusion plate 25 may be set arbitrarily.
  • the light pipe 17 has a diffusion effect. Therefore, the diffusion plate 25 may have a relatively high transmittance and/or a low diffusion effect compared to the diffusion plate of the conventional pupil module.
  • the diffuser plate 25 may have a transmittance of 70% or more, 80% or more, or 90% or more.
  • the diffusion angle of the diffusion plate 25 may be 40° or less, 30° or less, or 20° or less.
  • the method of fixing the diffusion plate 25 to the cylindrical member 13 may be an appropriate method.
  • the inside of the cylindrical member 13 has a larger diameter on the opening 19 side than on the pinhole 21 side. Then, the diffuser plate 25 is inserted from the opening 19 side and engages with the step formed by the diameter expansion. Thereby, the diffusion plate 25 is held by the cylindrical member 13 .
  • An adhesive may be interposed between the diffuser plate 25 and the cylindrical member 13 (it may not be interposed).
  • the diffusing plate 25 can be inserted from the pinhole 21 side or can be inserted into the cylindrical member 13 appropriately in the direction of the optical axis LA. It may be sandwiched between parts.
  • the diffusion plate 25 is provided on the incident side of the peripheral surface 17a.
  • the diffusion effect of the pupil module 207 is improved, as already mentioned.
  • the luminous flux that reaches the peripheral surface 17a of the light pipe 17 and is reflected tends to increase.
  • the diffusion effect of the light pipe 17 is improved.
  • the combination of the diffuser plate 25 on the incident side and the light pipe 17 produces a synergistic effect rather than a mere additive effect.
  • FIG. 6 is a cross-sectional view showing the configuration of a pupil module 307 according to the third embodiment, and corresponds to FIG. 3 of the first embodiment.
  • a pupil module 307 according to the third embodiment is obtained by changing the position of the diffusion plate with respect to the pupil module 207 according to the second embodiment. That is, in the pupil module 207 , the diffuser plate 25 is positioned on the incident side of the light pipe 17 , whereas in the pupil module 307 the diffuser plate 27 is positioned on the exit side of the light pipe 17 .
  • a more detailed position of the diffusion plate 27 may be set as appropriate.
  • the diffusion plate 27 is positioned inside the cylindrical member 13 .
  • the diffuser plate 27 may be positioned outside the tubular member 13 .
  • the diffusion plate 27 may overlap the lower end of the cylindrical member 13 so as to close the pinhole 21 from the outside, or may be arranged at a position spaced downward from the lower end of the cylindrical member 13 (the pinhole 21). good too.
  • the distance between the light pipe 17 and the diffusion plate 27 and the distance between the diffusion plate 27 and the pinhole 21 are arbitrary in the direction parallel to the optical axis LA.
  • the shape and dimensions (and position) of the diffuser plate 27 are, for example, such that substantially all light emitted from the exit surface 17c of the light pipe 17 enters the diffuser plate 27 and/or passes through the pinholes 21. It may be set so that substantially all the light that passes through diffuser plate 27 .
  • the diffuser plate 27 overlaps the entire surface of the exit surface 17c and closes the pinhole 21, thereby realizing the above light relationship.
  • the area of the diffusion plate 27 is made sufficiently large with respect to the area of the pinholes 21 so that the pinholes 21 substantially all light passing through the diffuser plate 27 .
  • the specific material, shape, dimensions, and configuration for diffusing light of the diffuser plate 27 may be set as appropriate.
  • the description of the material, shape, dimensions, and configuration for diffusing light of the diffuser plate 25 may be applied to the diffuser plate 27 as long as there is no contradiction.
  • the diffuser plate 27 is narrower than the cross section of the internal space of the cylindrical member 13 when viewed parallel to the optical axis LA.
  • the diffuser plate 27 may have a width covering the entire cross section of the internal space of the cylindrical member 13 .
  • the diffusion plate 27 may have an area wider than the internal space of the cylindrical member 13 or the cross section of the entirety.
  • the transmittance and diffusion angle of the diffusion plate 27 may be set arbitrarily.
  • the light pipe 17 has a diffusing effect, so that the diffusing plate 25 can have a relatively high transmittance and/or a low diffusing effect. Therefore, for example, the lower limit of the transmittance and the upper limit of the diffusion angle exemplified in the second embodiment may be applied to the present embodiment.
  • the diffuser plate 27 of this embodiment does not have the effect of increasing the light flux that reaches the peripheral surface 17a and is reflected. Therefore, instead of the diffuser plate 25, the diffuser plate 27 may have a lower transmittance or a larger diffusion angle.
  • the diffusion angle of the diffusion plate 27 may be 70° or more and 90° or less.
  • the method of fixing the diffusion plate 27 to the cylindrical member 13 may be an appropriate method.
  • a concave portion (reference numeral omitted) having a diameter larger than that of the pinhole 21 is formed on the inner surface (upper surface) of the end surface portion 13b of the tubular member 13 .
  • the diffuser plate 27 is fitted in the recess.
  • An adhesive may be interposed between the diffuser plate 27 and the cylindrical member 13 (it may not be interposed).
  • a diffusing plate 27 having the same diameter as the inner diameter of the cylindrical member 13 may be fitted to the cylindrical member 13, or the outer surface (lower surface) of the end surface portion 13b may be arranged closer to the pinhole 21 than the pinhole 21.
  • a concave portion having a large diameter is formed and the diffusion plate 27 is fitted in the concave portion, the diffusion plate 27 is adhered to the upper surface or the lower surface of the end face portion 13b without forming a concave portion, or two or more cylindrical members 13 are used.
  • the diffusion plate 27 may be sandwiched between appropriate portions of the cylindrical member 13 in the direction of the optical axis LA.
  • the diffusion plate 27 is provided on the emission side of the peripheral surface 17a.
  • the diffusion effect of the pupil module 307 is improved, as already mentioned. Since the diffusion plate 27 is positioned on the pinhole 21 side, the area can be reduced, for example, compared to the diffusion plate 25 of the second embodiment. As a result, the cost of the pupil module can be reduced, for example, if the diffusers 25 and 27 are expensive.
  • FIG. 7 is a cross-sectional view showing the configuration of a pupil module 407 according to the fourth embodiment, and corresponds to FIG. 3 of the first embodiment.
  • the light pipe 17 is provided as a separate member from the cylindrical member 13.
  • the inner surface of the cylindrical member 413 is configured to be able to reflect light.
  • a condensing lens 29 is provided for condensing light incident from the opening 19 side to the pinhole 21 side.
  • a diffusion plate 27 is provided adjacent to the pinhole 21 .
  • the description in the third embodiment may be used.
  • the cylindrical member 413 can be regarded as a further modified example of the light pipe 23 according to the modified example described with reference to FIG. Therefore, the description of the light pipe 23 may be applied to the tubular member 413 as appropriate.
  • the tubular member 413 has a peripheral surface 413a surrounding the optical axis LA.
  • the peripheral surface 413a may function as a reflecting surface (for example, a mirror) that reflects light without substantially transmitting light regardless of the incident angle.
  • the reflectance exemplified in the description of the peripheral surface 23a may be applied to the peripheral surface 413a.
  • the tubular member 413 may have the base 31 and the reflective film 33 overlapping the inner surface of the base 31, like the light pipe 23 according to the modification.
  • the materials of the base 31 and the reflective film 33 the description of the base and the reflective film (both not shown) of the light pipe 23 may be used.
  • the cylindrical member 413 may be entirely made of a single material with relatively high reflectance (for example, metal).
  • the description of the outer shape of the cylindrical member 13 in the first embodiment may be used.
  • Most of the inner surface of the cylindrical member 413 is constituted by a peripheral surface 413a.
  • the description of the peripheral surface 17a of the light pipe 17 in the first embodiment may be used.
  • the shape of the inner surface of the cylindrical member 413 is composed of a frustum formed by the peripheral surface 413a, a column positioned below the frustum, and two columns positioned above the frustum. have.
  • the lower columnar body is a part where the diffusion plate 27 is arranged (for example, fitted).
  • the upper two pillars are portions where the condenser lens 29 and the light control filter 15 are arranged (for example, fitted). Unlike the illustrated example, the pillars may not be formed. Moreover, as described in the description of the first embodiment, the shape of the peripheral surface 413a may include a columnar body.
  • the side surface of the frustum (from another point of view, the portion between the condenser lens 29 and the diffuser plate 27) is The entire surface is a reflective surface. Moreover, not only the side surfaces of the frustum, but also the side surfaces and end surfaces of the columnar body (from another point of view, the portion where the diffuser plate 27 is arranged) and the inner surface of the pinhole 21 are used as reflecting surfaces.
  • At least one of the side surfaces and end surfaces of the pillar and the inner surface of the pinhole 21 may not be a reflective surface. Moreover, it is not necessary to make all the side surfaces of the frustum a reflecting surface.
  • the length of the reflective surface is the length of the frustum, or the length from the aperture 19 to the pinhole 21 (including the aperture 19 and the pinhole 21). 1/2 or more, 4/5 or more, or 9/10 or more.
  • at least one of the side surfaces and the end surfaces of the upper two pillars may be a reflective surface.
  • the reflective peripheral surface 413a surrounding the optical axis LA is the surface of the portion of the inner peripheral surface of the cylindrical member 13 where the optical components (diffusion plate 27, etc.) are arranged. may be defined within an area excluding the area, or may be defined within an area including the surface of the above portion. In the description of this embodiment, the former is used for convenience.
  • the focal point of the condenser lens 29 may be set at an appropriate position.
  • the focal point may be set within, in front of, or behind the pinhole 21 .
  • telecentric light incident on the aperture 19 is condensed on the pinhole 21 or before and after it.
  • the peripheral surface 413a is more efficient in condensing and diffusing light than in an aspect in which the condensing lens 29 is not provided (as understood from the above-described embodiments, this aspect is also included in the technology according to the present disclosure). , and contributes to the effective use of light that has not been condensed (conventionally, light that has been absorbed by the inner surface of the cylindrical member).
  • the focal point may be located inside the peripheral surface 413a (frustum), similar to the focal point of the incident surface 17b of the light pipe 17 in the first embodiment.
  • the condensing lens 29 contributes to increasing the luminous flux that reaches the peripheral surface 413a and is reflected in the same way as the incident surface 17b. contributes to the improvement of the action of
  • the shape and size (and position) of the condensing lens 29 may be set, for example, so that substantially all the light that enters the peripheral surface 413 a passes through the condensing lens 29 .
  • the condensing lens 29 closes the opening of the peripheral surface 413a on the incident side, thereby realizing the above light relationship.
  • the condenser lens 29 may be a plano-convex lens (example shown), a bi-convex lens, or a convex meniscus lens.
  • the convex side of the plano-convex lens or convex meniscus lens as the condenser lens 29 may face either the opening 19 side or the pinhole 21 side.
  • the condenser lens 29 may be a single lens, or may be a group of lenses.
  • the material of the condenser lens 29 may be glass or resin, for example.
  • the pupil module 407 also has the peripheral surface 413a and the pinhole 21 in this embodiment.
  • the peripheral surface 413a surrounds the optical axis LA and can reflect light.
  • the pinhole 21 is positioned on the output side of the peripheral surface 413a in the direction along the optical axis LA.
  • the reflecting film 33 may overlap the inner surface of the cylindrical member 413 to form the peripheral surface 413a as described above.
  • the entire cylindrical member 413 is made of metal, and the inner surface is not coated with black paint, so that the peripheral surface 413a that reflects light is configured (this aspect is also the technology according to the present disclosure). ), the flexibility of the material of the cylindrical member 413 is improved. Moreover, since the light pipe 17 separate from the tubular member is not required, the configuration is simplified.
  • the reflective film 33 may contain a metal film.
  • the metal film also functions as a light shielding film. Therefore, the metal film also contributes to reducing interference of light from or to the outside of pupil module 407 . From another point of view, the flexibility of the material of the substrate 31 is further improved. As a result, for example, it is possible to use an inexpensive resin with low light shielding properties as the material of the base 31 .
  • the pupil module 407 may further have a condenser lens 29 for condensing light to the pinhole 21 side on the incident side of the peripheral surface 413a.
  • the peripheral surface 413a can be used as a portion for reflecting the leaked light, and the transmittance is improved. do.
  • the light flux that reaches the peripheral surface 413a and is reflected by the condenser lens 29 is increased, and the peripheral surface 413a diffuses and/or condenses light. can be improved.
  • FIG. 8 is a cross-sectional view showing a pinhole 21A according to a modification, and corresponds to an enlarged view of the pinhole 21 and its surroundings in FIG.
  • the shape of the pinhole 21 has been illustrated as a straight column (for example, a cylinder or a square column).
  • a shape having a frustum (incident side portion 21s) whose diameter decreases downward and a straight column (output side portion 21t) continuing below the frustum is shown.
  • the shape of the pinhole 21 shown in various drawings other than FIG. It may be understood as a shape shown in a simplified form.
  • the shape of pinhole 21A may be applied to any embodiment.
  • the specific shape and dimensions of the pinhole 21A according to the modification may be set as appropriate.
  • the description of the pinhole 21 in the embodiment may be applied to the pinhole 21A according to the modified example as long as there is no contradiction.
  • the shape of the cross section of the frustum (the cross section orthogonal to the optical axis LA) and the shape of the cross section of the column may be the same (similar) or different.
  • the inclination angle ⁇ 2 of the side surface of the frustum with respect to the optical axis LA is arbitrary.
  • the inclination angle ⁇ 2 may be 10° or more, 30° or more, or 50° or more, and may be 80° or less or 70° or less, and the above lower limit and upper limit may be appropriately combined.
  • the length in the direction parallel to the optical axis LA either the frustum or the straight pillar may be large. In the illustrated example, the latter is shorter than the former.
  • the pupil module 407 of the fourth embodiment is taken as an example of the pupil module having the pinhole 21A according to the modification.
  • the reflective film 33 in other words, the reflective surface
  • the reflective surface may be formed over part or all of the pinhole 21A (illustrated example), does not have to be formed
  • the pinhole 21A may have a portion (incidence side portion 21s of the frustum) whose diameter becomes smaller toward the exit side.
  • the luminous flux incident on the pinhole 21A can be increased.
  • the outer peripheral side in the illustrated example, the diffusion plate 27
  • the output side downward in the figure.
  • the transmittance of light can be improved.
  • the light transmitted to the output side is inclined at a certain angle with respect to the optical axis LA. the proportion of light that is As a result, the angle of incidence on the image sensor 103 can be increased.
  • the pinhole 21A is also expected to have a function of condensing and/or diffusing light.
  • the above effects are likely to be enhanced as the length of the pinhole 21A parallel to the optical axis LA or the length of the straight columnar portion (incidence side portion 21s in this modified example) parallel to the optical axis LA is shorter. .
  • these lengths are set to a certain extent or more.
  • the above length can be shortened by securing the strength by optical components (for example, a lens 35 to be described later) or the like provided in front of and behind the pinhole 21A. Considering these circumstances, the above length may be set as appropriate.
  • the length of the pinhole 21A parallel to the optical axis LA may be 0.4 mm or more and 0.6 mm or less.
  • the length of the pinhole 21A parallel to the optical axis LA may be 0.2 mm or more and 0.4 mm or less.
  • the length of the straight columnar portion may be, for example, 0.05 mm or more and 0.15 mm or less.
  • FIG. 9 is a cross-sectional view showing the configuration of a pupil module 507 according to the fifth embodiment, and corresponds to FIG. 3 of the first embodiment.
  • a pupil module 507 according to the fifth embodiment differs from the pupil module 407 according to the fourth embodiment in the shape of the cylindrical member (in other words, the peripheral surface).
  • the peripheral surface 413a (inner peripheral surface) of the tubular member 413 according to the fourth embodiment has a frustum shape
  • the peripheral surface 513a (inner peripheral surface) of the tubular member 513 according to the fifth embodiment has a frustum shape.
  • peripheral surface) is straight columnar.
  • the description of the shape of the inner surface of the cylindrical member 13 in the first embodiment may be used.
  • the pupil module 507 has a peripheral surface 513 a and a pinhole 21 .
  • the peripheral surface 513a surrounds the optical axis LA and can reflect light.
  • the pinhole 21 is positioned on the output side of the peripheral surface 513a in the direction along the optical axis LA.
  • FIG. 10 is a cross-sectional view showing the configuration of a pupil module 607 according to the sixth embodiment, and corresponds to FIG. 3 of the first embodiment.
  • a pupil module 607 according to the sixth embodiment is obtained by adding a lens 35 (the term “lens” includes a group of lenses) on the exit side of the pinhole 21 to the pupil module 7 according to the first embodiment. is.
  • a lens 35 the term “lens” includes a group of lenses
  • various incident angles for example, CRA: Chief Ray Angle
  • CRA Chief Ray Angle
  • the illustrated shape, dimensions, etc. of the lens 35 do not reflect the actual one.
  • the material and shape of the lens 35 are arbitrary.
  • the lens 35 may be a single lens or a lens group (example shown).
  • the material of the lens 35 (strictly speaking, one or more lenses included in the lens 35; hereinafter the same) may be glass or resin.
  • Lens 35 may be a spherical lens or an aspherical lens.
  • the lens 35 may be a convex lens, a concave lens, more particularly a bi-convex lens, a plano-convex lens, a convex meniscus lens, a bi-concave lens, a plano-concave lens or a concave meniscus lens, for example.
  • a lens that is asymmetric with respect to a plane perpendicular to the optical axis may be oriented convex or concave on either the entrance side or the exit side.
  • Combinations of shapes of a plurality of lenses constituting lens 35 as a lens group are also arbitrary.
  • the pupil module 507 may have the lens 35 on the output side of the pinhole 21 .
  • a lens 35 is provided for the pupil module 7 of the first embodiment.
  • the lens 35 may be applied not only to the first embodiment but also to any other embodiment.
  • the lens 35 may be provided in the mode in which the reflecting film 33 is provided on the inner surface of the base 31 of the cylindrical member.
  • FIG. 11 is a cross-sectional view showing a pinhole 21B according to a modification, and corresponds to an enlarged view of the pinhole 21 and its periphery in FIG.
  • FIG. 11 is a diagram in which a lens 35 is provided in the fifth embodiment (FIG. 9).
  • the incidence side portion 21s has a frustum shape that expands in diameter toward the incidence side.
  • the incident side portion 21s contrary to the pinhole 21A, has a straight columnar shape and the outgoing side portion 21t has a frustum shape.
  • the output side portion 21t is formed so as to increase in diameter toward the output side.
  • the pinhole 21B may be applied to any embodiment. For example, it may be applied to a mode having the light pipe 17 or to a mode having no lens 35 .
  • the specific shape and dimensions of the pinhole 21B may be set as appropriate.
  • the description of the pinhole 21A may be incorporated into the description of the pinhole 21B by appropriately replacing the terms of incident side and exit side.
  • the inclination angle ⁇ 2 (not shown) of the side surface of the frustum with respect to the optical axis LA is arbitrary, and may be, for example, 10° or more, 30° or more, or 50° or more. ° or less or 70° or less.
  • either the frustum or the straight column may be large in terms of the length in the direction parallel to the optical axis LA.
  • the specific size of the pinhole 21B is arbitrary and may be 0.4 mm or more and 0.6 mm or less.
  • the arrangement range of the reflective film 33 with respect to the pinhole 21B is arbitrary, similarly to the pinhole 21A.
  • the reflective film 33 may be formed over the entire pinhole 21B (example shown), may be formed over only a portion of the pinhole 21B, or may be formed entirely over the pinhole 21B. It doesn't have to be.
  • As a mode in which the reflecting film 33 is formed on a part of the pinhole 21B for example, there is a mode in which the reflecting film is formed only on the incident side portion 21s of the incident side portion 21s and the emitting side portion 21t. can.
  • the pinhole 21B may have a portion (the exit side portion 21t of the frustum) whose diameter becomes smaller toward the entrance side.
  • the same effect as the pinhole 21A can be obtained.
  • light from the outer peripheral side (the outer peripheral edge side of the diffuser plate 27 in the illustrated example) can be easily transmitted through the pinhole 21B, the transmittance is improved, and the incident angle to the image sensor 103 is increased. can be made
  • a configuration in which no diffusion plate is arranged (FIG. 3) or a configuration in which a diffusion plate is arranged only on the incident side (FIG. 5) is applied to embodiments in which a reflecting surface is formed on the inner surface of the cylindrical member (FIGS. 7 and 9).
  • 5 and 6) may be applied to the aspect (FIGS. 7 and 9) in which the reflecting surface is formed on the inner surface of the tubular member.
  • an outer peripheral surface of a solid light pipe (FIG. 3, etc.) as a member separate from the cylindrical member, and a member separate from the cylindrical member.
  • the inner peripheral surface of the hollow light pipe (FIG. 4) and the reflective film (FIG. 7, etc.) overlapping the inner surface of the cylindrical member are shown.
  • the circumferential surface surrounding the optical axis and capable of reflecting light may be realized by forming the entire cylindrical member from a material capable of reflecting light.
  • the inner surface of the cylindrical member does not reflect light at all.
  • the reflectance of the peripheral surface that can reflect light is higher than the reflectance of the conventional black inner surface. shall refer to a high configuration.
  • Such reflectance can include, for example, 50% or more or 80% or more.
  • a reflective film that reflects the light inside the light pipe may be provided on the outer peripheral surface of the solid light pipe.
  • a reflective film may be viewed as a hollow light pipe.
  • a translucent material may be placed inside the hollow light pipe.
  • Diffusion plates, condensing lenses, light control filters, etc., placed on the incident side or the exit side of a peripheral surface that can reflect light can be generalized as optical components.
  • the optical components arranged on the incident side or the exit side of the peripheral surface may be various types other than those exemplified in the embodiments.
  • the condensing lens 29 (in other words, convex lens) is illustrated as an optical component, but a concave lens may be provided instead of the convex lens.
  • the light emitted from the concave lens diverges and the light is more likely to enter the peripheral surface 413a (or the peripheral surface in another embodiment).
  • the effect of diffusing light by the peripheral surface 413a is improved.
  • the specific shape of the concave lens may be made appropriate.
  • the concave lens may be a biconcave lens, a plano-concave lens, or a concave meniscus lens.

Abstract

This pupil module that allows inspection light from a light source device to pass toward a solid-state imaging element comprises a peripheral surface and a pinhole. The peripheral surface surrounds the optical axis so as to follow the same and is capable of reflecting light. The pinhole is positioned on the emission side of the peripheral surface in a direction following the optical axis.

Description

瞳モジュール及び検査装置Pupil module and inspection device
 本開示は、光源装置からの検査用の光を固体撮像素子に向けて通過させる瞳モジュール及び当該瞳モジュールを含む検査装置に関する。 The present disclosure relates to a pupil module that passes inspection light from a light source device toward a solid-state imaging device, and an inspection device that includes the pupil module.
 光源装置からの検査用の光を固体撮像素子に向けて通過させる瞳モジュールが知られている(例えば特許文献1)。このような瞳モジュールは、例えば、照度の均一化及び/又は立体角の調整に寄与する。特許文献1の瞳モジュールは、一端面にピンホールが形成された筒部材(鏡筒)を有しているとともに、筒部材の内部にレンズ及び拡散板を有している。この瞳モジュールは、ピンホールを固体撮像素子に対向させるように配置される。ピンホールは、例えば、固体撮像素子に照射される光の立体角(別の観点では拡散角)を調整する。レンズは、ピンホールとは反対側の端部から筒部材に入射した光をピンホールに集光する。拡散板は、レンズとピンホールとの間に位置して光を拡散する(別の観点では光路の横断面において光の強度を均一化する。)。 A pupil module that passes inspection light from a light source device toward a solid-state imaging device is known (for example, Patent Document 1). Such pupil modules serve, for example, for illumination homogenization and/or solid angle adjustment. The pupil module of Patent Document 1 has a cylindrical member (lens barrel) with a pinhole formed on one end face, and has a lens and a diffusion plate inside the cylindrical member. This pupil module is arranged so that the pinhole faces the solid-state imaging device. The pinhole adjusts, for example, the solid angle (diffuse angle from another point of view) of light irradiated to the solid-state imaging device. The lens converges on the pinhole the light that has entered the cylindrical member from the end opposite to the pinhole. The diffuser plate is positioned between the lens and the pinhole to diffuse the light (or, from another point of view, equalize the intensity of the light across the cross section of the optical path).
特開2004-266250号公報Japanese Patent Application Laid-Open No. 2004-266250
 少なくとも一部の性能(例えば光の透過率及び/又は拡散機能)を向上させることができる瞳モジュール及び検査装置が待たれる。 Pupil modules and inspection devices that can improve at least some performance (eg, light transmittance and/or diffusion function) are awaited.
 本開示の一態様に係る瞳モジュールは、光源装置からの検査用の光を固体撮像素子へ向けて通過させる瞳モジュールであって、光軸を軸回りに囲んでおり、光を反射可能な周面と、前記光軸に沿う方向において前記周面の出射側に位置しているピンホールと、を有している。 A pupil module according to an aspect of the present disclosure is a pupil module that passes inspection light from a light source device toward a solid-state imaging device, surrounds an optical axis, and is capable of reflecting light. and a pinhole located on the output side of the peripheral surface in the direction along the optical axis.
 本開示の一態様に係る検査装置は、上記瞳モジュールと、前記瞳モジュールが搭載されているプローブカードと、前記光源装置と、を有している。 An inspection apparatus according to an aspect of the present disclosure includes the pupil module, a probe card on which the pupil module is mounted, and the light source device.
 上記の構成によれば、瞳モジュールの少なくとも一部の性能が向上する。 According to the above configuration, the performance of at least part of the pupil module is improved.
第1実施形態に係る検査装置の要部の構成を示す模式的な断面図。FIG. 2 is a schematic cross-sectional view showing the configuration of the essential parts of the inspection apparatus according to the first embodiment; 図1の検査装置が有する瞳モジュールの模式的な斜視図。FIG. 2 is a schematic perspective view of a pupil module included in the inspection apparatus of FIG. 1; 図2の瞳モジュールの模式的な断面図。3 is a schematic cross-sectional view of the pupil module of FIG. 2; FIG. 変形例に係るライトパイプを示す模式的な断面図。FIG. 5 is a schematic cross-sectional view showing a light pipe according to a modification; 第2実施形態に係る瞳モジュールの模式的な断面図。FIG. 5 is a schematic cross-sectional view of a pupil module according to a second embodiment; 第3実施形態に係る瞳モジュールの模式的な断面図。FIG. 8 is a schematic cross-sectional view of a pupil module according to a third embodiment; 第4実施形態に係る瞳モジュールの模式的な断面図。FIG. 11 is a schematic cross-sectional view of a pupil module according to a fourth embodiment; 変形例に係るピンホールを示す模式的な断面図。Typical sectional drawing which shows the pinhole which concerns on a modification. 第5実施形態に係る瞳モジュールの模式的な断面図。FIG. 11 is a schematic cross-sectional view of a pupil module according to a fifth embodiment; 第6実施形態に係る瞳モジュールの模式的な断面図。FIG. 11 is a schematic cross-sectional view of a pupil module according to a sixth embodiment; 図8とは異なる変形例に係るピンホールを示す模式的な断面図。9 is a schematic cross-sectional view showing a pinhole according to a modification different from FIG. 8. FIG.
 以下、図面を参照して、本開示に係る複数の態様(実施形態及び変形例)について説明する。なお、第1実施形態以外の態様の説明においては、基本的に、先に説明された態様との相違点についてのみ述べる。特に言及が無い事項については、先に説明された態様と同様とされたり、先に説明された態様から類推されたりしてよい。また、複数の態様において互いに対応する構成については、相違点があっても、便宜上、互いに同一の符号を付すことがある。 A plurality of aspects (embodiments and modifications) according to the present disclosure will be described below with reference to the drawings. Note that, in the description of aspects other than the first embodiment, basically, only points of difference from the previously described aspects will be described. Matters not particularly mentioned may be the same as the previously described aspects, or may be inferred from the previously described aspects. In addition, for the sake of convenience, the same reference numerals may be given to configurations that correspond to each other in a plurality of aspects even if there are differences.
 図面は、模式的なものである。従って、例えば、寸法比率は、必ずしも現実のものとは一致しないし、また、同一の部材を示す図面同士において一致しないことがある。また、例えば、部材の形状の細部が省略されることがある。 The drawings are schematic. Therefore, for example, the dimensional ratios do not necessarily match the actual ones, and they may not match between drawings showing the same members. Also, for example, details of the shape of the member may be omitted.
 実施形態の説明において、「径」は、特に断りがない限り、直径又は円相当径とされてよい。「反射率」は、特に断りがない限り、入射角が0°のときの可視光(例えば波長が380nm以上780nm)に対する反射率とされてよい。「拡散角」は、特に断りがない限り、中心照度の半値を全角表示したもの(FWHM:Full Width at Half Maximum)とされてよい。「ライトパイプ」の用語は広く解釈されてよく、また、「ロッドインテグレータ」と同義であってよい。 In the description of the embodiments, the "diameter" may be the diameter or equivalent circle diameter unless otherwise specified. Unless otherwise specified, the “reflectance” may be the reflectance for visible light (for example, wavelengths of 380 nm to 780 nm) at an incident angle of 0°. Unless otherwise specified, the "angle of diffusion" may be the full-width (FWHM: Full Width at Half Maximum) of the half value of the central illuminance. The term "light pipe" may be interpreted broadly and may be synonymous with "rod integrator".
<第1実施形態>
(検査装置)
 図1は、第1実施形態に係る検査装置1の要部の構成を示す模式的な断面図である。なお、検査装置1は、いずれの方向が上方とされてもよい。ただし、以下の説明では、便宜上、図1の上方が実際の上方であることを前提とした表現をすることがある。
<First embodiment>
(Inspection device)
FIG. 1 is a schematic cross-sectional view showing the configuration of main parts of an inspection apparatus 1 according to the first embodiment. Note that any direction of the inspection apparatus 1 may be upward. However, in the following description, for the sake of convenience, the upper side of FIG. 1 may be expressed assuming that the actual upper side.
 検査装置1は、撮像素子103に光を照射して撮像素子103の検査を行うものである。撮像素子103は、CCD(Charge Coupled Device)イメージセンサ及びCMOS(Complementary Metal Oxide Semiconductor)イメージセンサ等の固体撮像素子である。図示の例では、検査装置1は、ウェハ101に含まれている状態の撮像素子103を検査するものとされている。ただし、検査装置1は、図示の例とは異なり、個片化された撮像素子103の検査を行うものであっても構わない。以下の説明では、便宜上、検査装置1がウェハ101の検査を行うものであることを前提とした表現をすることがある。 The inspection apparatus 1 inspects the imaging device 103 by irradiating the imaging device 103 with light. The imaging element 103 is a solid-state imaging element such as a CCD (Charge Coupled Device) image sensor and a CMOS (Complementary Metal Oxide Semiconductor) image sensor. In the illustrated example, the inspection apparatus 1 inspects the imaging device 103 included in the wafer 101 . However, unlike the illustrated example, the inspection apparatus 1 may inspect individualized imaging elements 103 . In the following description, for the sake of convenience, expressions may be made assuming that the inspection apparatus 1 inspects the wafer 101 .
 撮像素子103は、所定の波長域(例えば可視光の波長域)の光を検出することが意図されていてもよいし、レーザー光のように理想的には1つの波長を有する光を検出することが意図されていてもよい。前者の場合において、検査装置1が撮像素子103に照射する光は、例えば、撮像素子103が検知対象としている波長域全体に亘ってパワーを有する光(又はパワーが相対的に大きい光。以下、同様。)であってもよいし、波長域内の特定の幅内にパワーを有する光であってもよい。また、後者の場合においては、検査装置1が撮像素子103に照射する光は、例えば、撮像素子103が検知対象としている波長を有している光(厳密には当該波長を含む狭い波長域にパワーを有している光)とされてよい。 The imaging element 103 may be intended to detect light in a predetermined wavelength range (for example, visible light wavelength range), or ideally to detect light having one wavelength such as laser light. may be intended. In the former case, the light with which the imaging device 103 is irradiated by the inspection apparatus 1 is, for example, light having power (or relatively high power light) over the entire wavelength range that the imaging device 103 is to detect. ), or light having power within a specific width within the wavelength band. In the latter case, the light that the inspection apparatus 1 irradiates the imaging device 103 has, for example, light having a wavelength that the imaging device 103 is to detect (strictly speaking, it is in a narrow wavelength range including the wavelength). light having power).
 撮像素子103(別の観点では撮像素子103を含む製品)によって検知されることが意図されている光の種類(別の観点では検査装置1によって撮像素子103に照射される光の種類)は任意である。例えば、検知対象の光は、可視光(波長域の例は既述)であってもよいし、不可視光であってもよい。不可視光としては、例えば、可視光よりも波長が長い赤外線、及び可視光よりも波長が短い紫外線を挙げることができる。可視光、赤外線又は紫外線を更に細かく分類した波長域の光が検知対象であってもよい。逆に、可視光、赤外線及び紫外線の2つ以上の波長域に亘る光が検知対象であってもよい。先に「反射率」は可視光に対するものを指してよい旨を述べたが、撮像素子103の検知対象の光(又は検査装置1が撮像素子103に照射する光)が不可視光であると特定できるときは、その不可視光の反射率が以下の説明に適用されてもよい。 The type of light intended to be detected by the imaging device 103 (in another aspect, the product including the imaging device 103) (in another aspect, the type of light irradiated to the imaging device 103 by the inspection apparatus 1) is arbitrary. is. For example, the light to be detected may be visible light (an example of the wavelength range has already been described) or invisible light. Examples of invisible light include infrared rays, which have longer wavelengths than visible light, and ultraviolet rays, which have shorter wavelengths than visible light. The detection target may be light in a wavelength range that is more finely classified than visible light, infrared rays, or ultraviolet rays. Conversely, light over two or more wavelength ranges of visible light, infrared light, and ultraviolet light may be detected. It was previously stated that the “reflectance” may refer to visible light. When possible, the reflectance of that non-visible light may be applied to the following description.
 検査装置1は、例えば、以下の構成要素を有している。ウェハ101を保持するテーブル3。検査用の光を生成する光源装置5。光源装置5からの光を撮像素子103へ通過させる1つ以上(図示の例では4つ)の瞳モジュール7。撮像素子103と電気的に接続されるプローブカード9。テーブル3及び光源装置5の制御を行うとともに、プローブカード9を介して撮像素子103の制御及び診断を行う演算部11。 The inspection device 1 has, for example, the following components. Table 3 holding wafer 101; A light source device 5 that generates light for inspection. One or more (four in the illustrated example) pupil modules 7 for passing light from the light source device 5 to the image sensor 103 . A probe card 9 electrically connected to the imaging element 103 . A computing unit 11 that controls the table 3 and the light source device 5 and controls and diagnoses the imaging element 103 via the probe card 9 .
 検査装置1の構成は、瞳モジュール7の構成を除いて、種々の構成とされてよく、例えば、公知の構成とされても構わない(もちろん、新規な構成であってもよい。)。実施形態の説明では、瞳モジュール7以外の構成については、適宜に説明を省略する。以下では、まず、瞳モジュール7以外の構成について簡単に説明し、次に、瞳モジュール7について説明する。 Except for the configuration of the pupil module 7, the configuration of the inspection device 1 may be various configurations, for example, it may be a known configuration (of course, it may be a new configuration). In the description of the embodiment, the description of the configuration other than the pupil module 7 will be omitted as appropriate. In the following, first, the configuration other than the pupil module 7 will be briefly described, and then the pupil module 7 will be described.
 テーブル3は、真空チャック又は静電チャック等の適宜な形式のチャックを有しており、その上面にウェハ101を保持する。テーブル3は、例えば、直交座標系の3軸それぞれに沿う方向に移動可能となっている。これにより、例えば、瞳モジュール7及びプローブカード9の撮像素子103に対する位置決め(別の観点では相対移動)を行うことが可能となっている。 The table 3 has an appropriate type of chuck such as a vacuum chuck or an electrostatic chuck, and holds the wafer 101 on its upper surface. The table 3 can move, for example, along each of the three axes of the orthogonal coordinate system. Thereby, for example, it is possible to position the pupil module 7 and the probe card 9 with respect to the imaging device 103 (relative movement from another point of view).
 光源装置5は、例えば、特に図示しないが、少なくとも光源を有しており、必要に応じて、光源からの光路上に位置するレンズ、絞り、フィルタ及び/又は鏡を有してよい。光源装置5は、例えば、図1の上下方向を光軸に平行な方向として瞳モジュール7に光を照射する。光源装置5が照射する光は、例えば、横断面において強度が均一で、かつテレセントリックなものとされてよい。 For example, the light source device 5 has at least a light source, although not particularly shown, and may have a lens, diaphragm, filter and/or mirror located on the optical path from the light source, if necessary. The light source device 5 irradiates the pupil module 7 with light, for example, with the vertical direction in FIG. 1 as a direction parallel to the optical axis. The light emitted by the light source device 5 may be, for example, uniform in intensity in the cross section and telecentric.
 プローブカード9は、例えば、1以上の回路基板を含んで構成されている。なお、図1は、模式図であることから、プローブカード9を構成する種々の部材(1以上の回路基板を含む)の全体に対して同一のハッチングを付している。また、図1では、プローブカード9の本体部分(主として回路基板によって構成される部分)だけでなく、当該本体部分に固定される部分(例えば瞳モジュール7の支持に寄与する部分)もプローブカード9の一部として概念されている。このように概念した場合、プローブカード9の全体形状は、必ずしもカード状でなくてよい。 The probe card 9 includes, for example, one or more circuit boards. Since FIG. 1 is a schematic diagram, all of the various members (including one or more circuit boards) constituting the probe card 9 are given the same hatching. In addition, in FIG. 1, not only the body portion of the probe card 9 (the portion mainly composed of the circuit board) but also the portion fixed to the body portion (for example, the portion contributing to the support of the pupil module 7) is the probe card 9. is considered as part of When conceptualized in this way, the overall shape of the probe card 9 does not necessarily have to be card-like.
 プローブカード9は、例えば、光源装置5から瞳モジュール7を経由して届いた光を撮像素子103へ通過させる1つ以上(図示の例では複数であり、より詳細には4つ)の開口9hを有している。開口9hは、例えば、1つの撮像素子103に対して1つ設けられている。ただし、2以上の撮像素子103に対して1つの開口9hを設けることも可能である。また、プローブカード9は、1以上(図示の例では4つ)の撮像素子103のパッド(不図示)に当接されるピン9aを有している。1つの撮像素子103に対して設けられるピン9aの数は適宜に設定されてよい。 The probe card 9 has, for example, one or more (a plurality in the illustrated example, more specifically four) openings 9h through which the light that has arrived from the light source device 5 via the pupil module 7 passes through to the imaging element 103. have. For example, one aperture 9h is provided for one imaging element 103 . However, it is also possible to provide one aperture 9h for two or more imaging elements 103 . Further, the probe card 9 has pins 9 a that contact pads (not shown) of one or more (four in the illustrated example) imaging elements 103 . The number of pins 9a provided for one imaging device 103 may be set as appropriate.
 演算部11は、例えば、コンピュータを含んで構成されている。演算部11は、例えば、テーブル3の不図示の駆動部を制御して撮像素子103とプローブカード9との位置決めを行う。また、演算部11は、光源装置5の光源等を制御して、光源装置5の光を瞳モジュール7及びプローブカード9の開口9hを介して撮像素子103に照射する。演算部11は、プローブカード9を介して撮像素子103と電気的に接続され、撮像素子103の制御を行うとともに、撮像素子103から信号を取得する。そして、演算部11は、取得した信号に基づいて撮像素子103の良否の診断を行う。 The computing unit 11 is configured including, for example, a computer. The calculation unit 11 , for example, controls a driving unit (not shown) of the table 3 to position the imaging device 103 and the probe card 9 . Further, the calculation unit 11 controls the light source of the light source device 5 and the like to irradiate the imaging device 103 with light from the light source device 5 via the pupil module 7 and the opening 9h of the probe card 9 . The computing unit 11 is electrically connected to the imaging element 103 via the probe card 9 , controls the imaging element 103 , and acquires signals from the imaging element 103 . Then, the calculation unit 11 diagnoses whether the imaging element 103 is good or bad based on the acquired signal.
(瞳モジュールの概要)
 図2は、図1に示された4つの瞳モジュール7を模式的に示す斜視図である。
(Outline of pupil module)
FIG. 2 is a perspective view schematically showing four pupil modules 7 shown in FIG.
 図1及び図2に示すように、瞳モジュール7は、例えば、その外形が概ね柱体状とされており、その軸方向に光源装置5からの光を通過させる。換言すれば、瞳モジュール7は、軸方向の両端である第1端8A及び第2端8Bを有しており、第1端8Aから入射した光を第2端8Bから出射させる。その過程において、瞳モジュール7は、光の横断面における光の強度分布を調整したり(例えば強度を均一化したり)、及び/又は撮像素子103に照射される光の立体角及び/又は拡散角を調整する。 As shown in FIGS. 1 and 2, the pupil module 7 has, for example, a substantially cylindrical outer shape, and allows light from the light source device 5 to pass through in its axial direction. In other words, the pupil module 7 has a first end 8A and a second end 8B, which are both ends in the axial direction, and causes light incident from the first end 8A to exit from the second end 8B. In the process, the pupil module 7 adjusts the light intensity distribution in the cross section of the light (e.g., homogenizes the intensity) and/or adjusts the solid angle and/or the diffusion angle of the light illuminating the image sensor 103 . to adjust.
 瞳モジュール7の外形の具体的形状は任意である。例えば、瞳モジュール7の外形は、直柱状(図示の例)であってもよいし、斜柱状であってもよい。ただし、実施形態の説明では、主として直柱状を例に取り、直柱状を前提とした表現をすることがある。また、瞳モジュール7の外形は、円柱状であってもよいし、角柱状であってもよい。瞳モジュールは、軸方向(光軸に平行な方向)の長さが、径よりも長くてもよいし(図示の例)、短くてもよい。図示の例では、瞳モジュール7の外形は、概略円柱形において、第1端8A側にフランジ8Cが設けられた形状とされている。 The specific shape of the outer shape of the pupil module 7 is arbitrary. For example, the outer shape of the pupil module 7 may be straight columnar (illustrated example) or oblique columnar. However, in the description of the embodiments, a straight columnar shape is mainly taken as an example, and expressions based on the straight columnar shape may be used. Further, the outer shape of the pupil module 7 may be cylindrical or prismatic. The length of the pupil module in the axial direction (the direction parallel to the optical axis) may be longer than the diameter (example shown) or shorter. In the illustrated example, the outer shape of the pupil module 7 is a substantially cylindrical shape with a flange 8C provided on the first end 8A side.
 図1の例では、瞳モジュール7は、プローブカード9に支持されている。具体的には、瞳モジュール7は、プローブカード9を上下に貫通する孔(符号省略。開口9hを含んで概念されてもよい。)に挿通されるとともに、フランジ8Cがプローブカード9の上面に係合している。さらに、フランジ8Cとプローブカード9とは不図示のねじによって固定されてよい。図示の例とは異なり、瞳モジュール7は、プローブカード9とは別の部材によって支持されていてもよいし、プローブカード9に対して移動可能に駆動機構によって支持されていてもよい。 In the example of FIG. 1, the pupil module 7 is supported by the probe card 9. Specifically, the pupil module 7 is inserted through a hole (reference numeral omitted; the concept may include the opening 9h) penetrating the probe card 9 vertically, and the flange 8C is attached to the upper surface of the probe card 9. engaged. Furthermore, the flange 8C and the probe card 9 may be fixed with screws (not shown). Unlike the illustrated example, the pupil module 7 may be supported by a member separate from the probe card 9 or may be movably supported by a drive mechanism relative to the probe card 9 .
 瞳モジュール7は、1つのプローブカード9(別の観点では検査装置1。以下、同様。)に対して、任意の数で設けられてよい。例えば、1つのプローブカード9に配置される瞳モジュール7の数は、1つであってもよいし、複数であってもよい(図示の例)。後者の場合において、瞳モジュール7の数は、ウェハ101が含む撮像素子103の数と同数であってもよいし、異なっていてもよい(例えば図示の例のように少なくてもよい。)。 An arbitrary number of pupil modules 7 may be provided for one probe card 9 (the inspection apparatus 1 from another point of view; the same shall apply hereinafter). For example, the number of pupil modules 7 arranged in one probe card 9 may be one, or may be plural (example shown). In the latter case, the number of pupil modules 7 may be the same as the number of imaging elements 103 included in the wafer 101, or may be different (for example, it may be less as in the illustrated example).
 瞳モジュール7の数が複数である場合において、その配置も任意である。例えば、瞳モジュール7は、1列で配列されていてもよいし(図示の例)、2列以上で配列されていてもよい。各列の数は任意であり、また、列同士で数が同一であってもよいし、異なっていてもよい。瞳モジュール7のピッチは、例えば、ウェハ101内の撮像素子103のピッチに対して、同一であってもよいし、整数倍であってもよい。 When the number of pupil modules 7 is plural, their arrangement is also arbitrary. For example, the pupil modules 7 may be arranged in one row (the example shown), or in two or more rows. The number of columns is arbitrary, and the number of columns may be the same or different. The pitch of the pupil modules 7 may be, for example, the same as the pitch of the imaging elements 103 within the wafer 101, or may be an integer multiple.
(瞳モジュールの内部構造)
 図3は、瞳モジュール7の断面図である。
(Internal structure of pupil module)
FIG. 3 is a cross-sectional view of pupil module 7 .
 瞳モジュール7は、例えば、筒部材13と、筒部材13に保持されている光学部品とを有している。光学部品は、図示の例では、2つの調光フィルタ15及びライトパイプ17である。筒部材13は、例えば、光学部品の保持に寄与しているとともに、瞳モジュール7の外部からの、意図されていない光の影響を低減することに寄与している。調光フィルタ15は、例えば、光量の調整等に寄与する。ライトパイプ17は、例えば、瞳モジュールの透過率の向上等に寄与する。 The pupil module 7 has, for example, a cylindrical member 13 and optical components held by the cylindrical member 13 . The optical components are two dimming filters 15 and a light pipe 17 in the example shown. The cylindrical member 13 contributes, for example, to holding the optical components and to reducing the influence of unintended light from outside the pupil module 7 . The light control filter 15 contributes to, for example, adjustment of the amount of light. The light pipe 17 contributes, for example, to improving the transmittance of the pupil module.
 なお、図3では、光軸LAが示されている。図示されている光軸LAは、瞳モジュール7の光軸と捉えられてもよいし、ライトパイプ17等の瞳モジュール7を構成する各部位における光軸と捉えられてもよい。光軸LAは、例えば、瞳モジュール7又は各部位を通過する光束の代表となる仮想的な光線である。 Note that the optical axis LA is shown in FIG. The illustrated optical axis LA may be regarded as the optical axis of the pupil module 7 or may be regarded as the optical axis of each part of the pupil module 7 such as the light pipe 17 . The optical axis LA is, for example, a virtual ray representative of the luminous flux passing through the pupil module 7 or each part.
(筒部材)
 筒部材13は、その名称のとおり、筒状の部材である。筒部材13は、軸回りの筒本体13aと、筒本体13aの第2端8B側を塞ぐ端面部13bとを有している。筒本体13aの第1端8A側は開放されており、開口19が形成されている。端面部13bには、ピンホール21が開口している。光源装置5からの光は、開口19に入射してピンホール21から出射される。
(cylindrical member)
The tubular member 13 is, as its name suggests, a tubular member. The tubular member 13 has a tubular body 13a around the axis and an end surface portion 13b that closes the second end 8B side of the tubular body 13a. The first end 8A side of the cylinder main body 13a is open, and an opening 19 is formed. A pinhole 21 is opened in the end surface portion 13b. Light from the light source device 5 enters the aperture 19 and exits from the pinhole 21 .
 図3は、模式図であることから、筒部材13の全体が1つのハッチングによって示されている。実際の筒部材13は、図のように、その全体が一体的に形成されていてもよいし、図とは異なり、複数の部材が組み合わされて構成されていてもよい。 Since FIG. 3 is a schematic diagram, the entire cylindrical member 13 is indicated by one hatching. The actual cylindrical member 13 may be integrally formed as a whole as shown in the drawing, or may be constructed by combining a plurality of members unlike the drawing.
 筒部材13の具体的な形状は任意である。例えば、筒部材13の外形は、瞳モジュール7の外形の大部分を構成しており、既述の瞳モジュール7の外形の説明は、筒部材13の外形に援用されてよい。筒部材13の内面(換言すれば内部空間)の形状は、例えば、外形と同様に概略直柱体状であり、より詳細には、例えば、円柱状又は角柱状である。筒部材13の外形と内面の形状とは、相似であってもよいし(別の観点では筒部材13の肉厚は概ね一定であってもよいし)、全く異なる形状であってもよい。なお、ここでの相似は、数学でいう厳密な相似に限定されない。 The specific shape of the tubular member 13 is arbitrary. For example, the outer shape of the cylindrical member 13 constitutes most of the outer shape of the pupil module 7 , and the above description of the outer shape of the pupil module 7 may be used for the outer shape of the cylindrical member 13 . The shape of the inner surface (in other words, the inner space) of the cylindrical member 13 is, for example, a substantially straight columnar shape similar to the outer shape, and more specifically, a columnar or prismatic shape, for example. The outer shape and inner surface shape of the cylindrical member 13 may be similar (from another point of view, the thickness of the cylindrical member 13 may be substantially constant), or may be completely different shapes. Note that the similarity here is not limited to strict similarity in mathematics.
 開口19の形状は任意である。例えば、開口19を光軸LA方向に見たときの形状は、筒部材13の内部空間の大部分と同一形状であってもよいし、異なる形状であってもよく、また、例えば、円形又は多角形である。図示の例では、開口19は、調光フィルタ15の配置のために筒部材13の内部空間の大部分よりも若干拡径されている。ただし、そのような拡径はなされていなくてもよいし、逆に、筒部材13の内部空間の大部分よりも径が小さくされていてもよい。 The shape of the opening 19 is arbitrary. For example, the shape of the opening 19 when viewed in the direction of the optical axis LA may be the same shape as most of the inner space of the cylindrical member 13, or may be a different shape. Polygon. In the illustrated example, the opening 19 has a slightly larger diameter than most of the internal space of the cylindrical member 13 for the placement of the light control filter 15 . However, such a diameter expansion may not be performed, and conversely, the diameter may be made smaller than most of the inner space of the tubular member 13 .
 ピンホール21の形状は任意である。例えば、ピンホール21の横断面(光軸LAに直交する断面)の形状は、円形又は多角形とされてよい。ピンホール21の横断面の形状(別の観点では径)は、ピンホール21の貫通方向において、一定であってもよいし(図示の例)、変化してもよい。後者としては、ピンホール21の貫通方向の一部又は全部において、下方ほど拡径又は縮径する形状が挙げられる。 The shape of the pinhole 21 is arbitrary. For example, the shape of the cross section of the pinhole 21 (the cross section perpendicular to the optical axis LA) may be circular or polygonal. The shape of the cross section of the pinhole 21 (diameter in another point of view) may be constant (the example shown in the figure) or may vary in the penetrating direction of the pinhole 21 . As the latter, a part or the whole of the pinhole 21 in the penetrating direction may have a shape that expands or contracts downward.
 筒部材13における各種の寸法(例えば、開口19の径、ピンホール21の径、開口19からピンホール21までの距離)は、撮像素子103の大きさ、及び撮像素子103の検査に要求される照度等に応じて適宜に設定されてよい。ピンホール21の径は、開口19の径よりも小さい。なお、ここでいう径は、光の透過に実質的に寄与する径であってよい。例えば、図示の例において、光源装置5からテレセントリックな光が調光フィルタ15に入射するとき、調光フィルタ15が配置される部分の径を過剰に大きくしても、瞳モジュール7を通過する光量は殆ど増加しない。このような場合は、拡径部分よりも下方側の部分の径を開口19の径として見做したり、ピンホール21へ到達し得る光束の開口19付近における径を開口19の径として見做したりしてよい。 Various dimensions (for example, the diameter of the opening 19, the diameter of the pinhole 21, the distance from the opening 19 to the pinhole 21) in the cylindrical member 13 are required for the size of the image pickup device 103 and inspection of the image pickup device 103. It may be appropriately set according to the illuminance or the like. The diameter of pinhole 21 is smaller than the diameter of opening 19 . Note that the diameter here may be a diameter that substantially contributes to the transmission of light. For example, in the illustrated example, when telecentric light from the light source device 5 is incident on the light control filter 15, the amount of light passing through the pupil module 7 is hardly increases. In such a case, the diameter of the portion below the enlarged diameter portion is regarded as the diameter of the opening 19, or the diameter of the light beam that can reach the pinhole 21 near the opening 19 is regarded as the diameter of the opening 19. You can
 寸法の例を挙げる。ピンホール21の径は、0.1mm以上5mm以下、又は0.5mm以上2mm以下とされてよい。開口19の径は、ピンホール21の径よりも大きいことを前提として、1mm以上50mm以下、又は5mm以上10mm以下とされてよい。開口19の径は、ピンホール21の径に対して、2倍以上20倍以下、又は4倍以上10倍以下とされてよい。開口19(入射側の面)からピンホール21(出射側の面)までの距離は、5mm以上60mm以下、又は10mm以上30mm以下とされてよい。また、当該距離は、ピンホール21の径の5倍以上60倍以下、又は10倍以上30倍以下とされてよい。 Give an example of dimensions. The diameter of the pinhole 21 may be 0.1 mm or more and 5 mm or less, or 0.5 mm or more and 2 mm or less. On the premise that the diameter of the opening 19 is larger than the diameter of the pinhole 21, the diameter may be 1 mm or more and 50 mm or less, or 5 mm or more and 10 mm or less. The diameter of the opening 19 may be 2 to 20 times or 4 to 10 times the diameter of the pinhole 21 . The distance from the aperture 19 (incident side surface) to the pinhole 21 (output side surface) may be 5 mm or more and 60 mm or less, or 10 mm or more and 30 mm or less. Also, the distance may be 5 times or more and 60 times or less, or 10 times or more and 30 times or less, the diameter of the pinhole 21 .
 筒部材13は、遮光性を有しており、開口19及びピンホール21以外の部位からの光の入射及び出射を禁止している。筒部材13は、その全体が遮光性を有する材料から構成されていてもよいし、遮光性を有さない材料によって大部分が構成されつつ、遮光性を有する材料からなる膜が表面(例えば内面及び/又は外面)に形成されていてもよい。 The cylindrical member 13 has a light shielding property, and prohibits the entrance and exit of light from portions other than the opening 19 and the pinhole 21 . The cylindrical member 13 may be entirely made of a light-shielding material, or may be mostly made of a non-light-shielding material with a film made of a light-shielding material on the surface (for example, the inner surface). and/or outer surface).
 筒部材13の表面は、光の反射率が低くてもよいし、高くてもよい。例えば、筒部材13の反射率は、10%未満であってもよいし、10%以上50%未満であってもよいし、50%以上又は80%以上であってもよい。このような反射率は、筒部材13の大部分又は全体を構成する材料の反射率によって実現されてもよいし、筒部材13の内面に反射率を低減又は増加させる膜が形成されることによって実現されてもよい。 The surface of the cylindrical member 13 may have a low or high light reflectance. For example, the reflectance of the cylindrical member 13 may be less than 10%, 10% or more and less than 50%, or 50% or more or 80% or more. Such a reflectance may be realized by the reflectance of the material that constitutes most or all of the cylindrical member 13, or by forming a film that reduces or increases the reflectance on the inner surface of the cylindrical member 13. may be implemented.
 一般に、光学機器の鏡筒の内面は反射率が低くされている。例えば、鏡筒の内面には、黒色の塗料が塗布されている(換言すれば反射を低減する膜が形成されている。)。黒色の塗料の反射率は、例えば、6%以下であり、1%以下のものも存在する。筒部材13の内面は、一般的な鏡筒と同様に、黒色の塗料が塗布されることなどによって上記のような比較的低い反射率を有してもよいし、上記のような反射率よりも高い反射率を有してもよい。 In general, the inner surface of the lens barrel of an optical device has a low reflectance. For example, the inner surface of the lens barrel is coated with black paint (in other words, a film that reduces reflection is formed). The reflectance of black paint is, for example, 6% or less, and there are some that are 1% or less. The inner surface of the cylindrical member 13 may have a relatively low reflectance as described above by being coated with black paint or the like, like a general lens barrel, or may have a reflectance that is lower than the reflectance described above. may also have high reflectance.
 筒部材13の材料は任意である。例えば、筒部材13の大部分(例えば表面以外)又は全部を構成する材料は、樹脂、金属又はセラミックとされてよい。また、既述のように、筒部材13の表面は、適宜な膜が形成されてよく、この膜の材料も任意である。また、膜は、1種の材料からなるものであってもよいし、互いに異なる材料からなる2以上の層が積層されたものであってもよい。膜の材料としては、例えば、任意の色(例えば黒色)の)塗料を挙げることができる。また、後述する実施形態で述べるように、膜の材料として、金属(及び誘電体)を挙げることもできる。 Any material can be used for the tubular member 13 . For example, the material that constitutes most (for example, other than the surface) or all of the cylindrical member 13 may be resin, metal, or ceramic. Further, as described above, a suitable film may be formed on the surface of the cylindrical member 13, and the material of this film is also arbitrary. Also, the film may be made of one material, or may be a laminate of two or more layers made of different materials. Materials for the film include, for example, paint of any color (eg, black). In addition, as described in the embodiments described later, metals (and dielectrics) can also be used as the material of the film.
 筒部材13の内部は、密閉されていてもよいし、密閉されていなくてもよい。密閉は、気密なものであってもよいし、異物の侵入を低減するレベルのものであってもよい。気密に密閉がなされている場合において、筒部材13の内部は、真空(厳密には大気圧よりも減圧された状態)であってもよいし、適宜な気体が封入された状態であってもよい。 The inside of the tubular member 13 may or may not be sealed. The sealing may be airtight or may be of a level that reduces the intrusion of foreign matter. In the case where the cylinder member 13 is airtightly sealed, the inside of the cylinder member 13 may be in a vacuum (strictly speaking, a state in which the pressure is reduced below the atmospheric pressure), or may be in a state in which an appropriate gas is enclosed. good.
(調光フィルタ)
 調光フィルタ15は、例えば、ガラス基板を含んでおり、AR(anti-reflection)コートの有無等によって透過光量を調整する。1つのプローブカード9に対して複数の瞳モジュール7が設けられる態様においては、この透過光量の調整によって、瞳モジュール7同士の光量差が低減されてよい。調光フィルタ15の大きさ及び位置は、例えば、ライトパイプ17に入射する全ての光が調光フィルタ15を通過した光となるように設定されてよい。図示の例では、調光フィルタ15は、開口19を塞ぐように設けられている。
(dimmer filter)
The light control filter 15 includes, for example, a glass substrate, and adjusts the amount of transmitted light depending on the presence or absence of an AR (anti-reflection) coat. In a mode in which a plurality of pupil modules 7 are provided for one probe card 9, this adjustment of the amount of transmitted light may reduce the difference in the amount of light between the pupil modules 7 . The size and position of the dimmer filter 15 may be set, for example, so that all the light that enters the light pipe 17 is light that has passed through the dimmer filter 15 . In the illustrated example, the light control filter 15 is provided so as to close the opening 19 .
 なお、調光フィルタ15は設けられなくてもよい。図示の例では、調光フィルタ15は、筒部材13内を密閉することにも寄与している。調光フィルタ15が設けられない場合、瞳モジュール7の密閉は、他の光学的な機能を有する、又は単に光を透過させるだけの透明部材によってなされてよい。 Note that the light control filter 15 may not be provided. In the illustrated example, the dimmer filter 15 also contributes to sealing the inside of the tubular member 13 . If the chromatic filter 15 is not provided, the sealing of the pupil module 7 may be done by a transparent member which has another optical function or merely allows light to pass through.
(ライトパイプ)
 ライトパイプ17は、例えば、透光性の材料からなる。また、ライトパイプ17は、例えば、中実なロッド状の部材である。換言すれば、ライトパイプは、光軸LAの軸回りに広がる筒状の面である周面17aと、周面17aの両側にて光軸LAに交差する端面である入射面17b及び出射面17cとを有している。入射面17bは、開口19側の面であり、出射面17cは、ピンホール21側の面である。
(light pipe)
The light pipe 17 is made of, for example, translucent material. Also, the light pipe 17 is, for example, a solid rod-shaped member. In other words, the light pipe has a peripheral surface 17a that is a cylindrical surface that spreads around the optical axis LA, and an entrance surface 17b and an exit surface 17c that are end surfaces that intersect the optical axis LA on both sides of the peripheral surface 17a. and The entrance surface 17b is a surface on the opening 19 side, and the exit surface 17c is a surface on the pinhole 21 side.
 入射面17bに入射した光の少なくとも一部は、周面17aによって1回以上反射されて出射面17cに導かれる。これにより、例えば、筒部材13の内面に吸収される光が減じられ、瞳モジュール7の透過率が向上する。また、別の観点では、周面17aにおける反射によって光が拡散される(別の観点では光の強度が均一化される。)。さらに、図示の例のライトパイプ17においては、テーパ形状等によって、開口19からピンホール21への集光、上記の拡散作用の向上、及び拡散角(別の観点では立体角)の調整がなされる。なお、調光フィルタ15が設けられない態様において、ライトパイプ17が筒部材13内を密閉する機能を担ってもよい。 At least part of the light incident on the entrance surface 17b is reflected once or more by the peripheral surface 17a and guided to the exit surface 17c. Thereby, for example, the light absorbed by the inner surface of the cylindrical member 13 is reduced, and the transmittance of the pupil module 7 is improved. From another point of view, the light is diffused by reflection on the peripheral surface 17a (from another point of view, the intensity of the light is made uniform). Further, in the light pipe 17 of the illustrated example, the tapered shape or the like allows light to be collected from the opening 19 to the pinhole 21, to improve the above-described diffusion action, and to adjust the diffusion angle (or the solid angle from another point of view). be. In a mode in which the light control filter 15 is not provided, the light pipe 17 may have the function of sealing the inside of the tubular member 13 .
 ライトパイプ17の屈折率は、その周囲(真空又は気体)の屈折率よりも高い。別の観点では、周面17aは、屈折率が互いに異なる媒質の界面を構成している。そして、入射面17bに入射して周面17aに到達した光は、一部が周面17aによって反射され、他の一部が周面17aを透過する。また、周面17aに対する入射角が、ある程度の大きさよりも小さくなると、いわゆる全反射が生じる。このようにして、周面17aは光を反射する。本実施形態から理解されるように、周面17aが光を反射可能というとき、周面17aにおける反射率は、必ずしも高くなくてよい。 The refractive index of the light pipe 17 is higher than that of its surroundings (vacuum or gas). From another point of view, the peripheral surface 17a constitutes an interface between media having different refractive indices. A portion of the light incident on the incident surface 17b and reaching the peripheral surface 17a is reflected by the peripheral surface 17a, and the other portion is transmitted through the peripheral surface 17a. Also, when the incident angle with respect to the peripheral surface 17a becomes smaller than a certain amount, so-called total reflection occurs. Thus, the peripheral surface 17a reflects light. As can be understood from this embodiment, when the peripheral surface 17a can reflect light, the reflectance of the peripheral surface 17a does not necessarily have to be high.
 ライトパイプ17の材料(別の観点では屈折率)は適宜に設定されてよい。例えば、ライトパイプ17の材料は、ガラス又は樹脂とされてよい。ライトパイプ17の屈折率が大きいほど、周面17aにおいて全反射が生じやすくなるから、ライトパイプ17の材料として、屈折率が高いものが選択されてよい。ライトパイプ17の材料の屈折率(絶対屈折率)は、例えば、1.4以上とされてよい。 The material (refractive index from another point of view) of the light pipe 17 may be set appropriately. For example, the material of the light pipe 17 may be glass or resin. As the refractive index of the light pipe 17 increases, total reflection is more likely to occur on the peripheral surface 17a. The refractive index (absolute refractive index) of the material of the light pipe 17 may be, for example, 1.4 or more.
 ライトパイプ17の具体的な形状は任意である。図示の例では、ライトパイプ17(換言すれは周面17a。以下、本段落及び次段落において同様。)の形状は、横断面(光軸LAに直交する断面)が出射側ほど小さくなるテーパ状(換言すれば錐台状)とされている。図示の例とは異なり、ライトパイプ17の形状は、横断面の形状が光軸LAの位置によらずに一定の柱体状(例えば直柱体状)であってもよいし、錐台と柱体との組み合わせであってもよい。 The specific shape of the light pipe 17 is arbitrary. In the illustrated example, the shape of the light pipe 17 (in other words, the peripheral surface 17a; hereinafter, the same applies in this paragraph and the next paragraph) is a tapered shape in which the cross section (the cross section perpendicular to the optical axis LA) becomes smaller toward the output side. (In other words, it has a frustum shape). Unlike the illustrated example, the shape of the light pipe 17 may be a constant columnar shape (for example, a straight columnar shape) regardless of the position of the optical axis LA, or may be a frustum. It may be a combination with a columnar body.
 ライトパイプ17における錐台又は柱体のより具体的な形状も任意である。例えば、錐台又は柱体の横断面の形状は、円形又は多角形とされてよい。換言すれば、ライトパイプ17の形状は、円錐台、角錐台、円柱又は角柱とされてよい。錐台状は、光軸LAを対称軸とする回転対称の形状であってもよいし(図示の例)、そうでなくてもよい。錐台の縦断面(光軸LAに平行な断面)において、錐台の側面(周面17a)は、直線状であってもよいし、曲線状であってもよい。 A more specific shape of the frustum or column in the light pipe 17 is also arbitrary. For example, the cross-sectional shape of the frustum or cylinder may be circular or polygonal. In other words, the shape of the light pipe 17 may be a truncated cone, a truncated pyramid, a cylinder, or a prism. The truncated cone shape may be a rotationally symmetrical shape with the optical axis LA as an axis of symmetry (example shown in the figure), or may not be so. In the longitudinal section of the frustum (the section parallel to the optical axis LA), the side surface of the frustum (peripheral surface 17a) may be straight or curved.
 ライトパイプ17が錐台状である場合の周面17aの光軸LAに対する傾斜角θは適宜に設定されてよい。例えば、傾斜角θ(縦断面において周面17aが直線状でない場合は例えば近似直線の傾斜角)は、0°超、1°以上、3°以上又は5°以上とされてよく、45°未満、30°以下又は15°以下とされてよく、上記の下限と上限とは適宜に組み合わされてよい。例えば、傾斜角θは、5°以上15°以下とされてよい。 The inclination angle θ of the peripheral surface 17a with respect to the optical axis LA when the light pipe 17 is frustum-shaped may be appropriately set. For example, the inclination angle θ (when the peripheral surface 17a is not linear in the longitudinal section, for example, the inclination angle of an approximate straight line) may be greater than 0°, 1° or more, 3° or more, or 5° or more, and less than 45°. , 30° or less, or 15° or less, and the above lower and upper limits may be combined appropriately. For example, the tilt angle θ may be 5° or more and 15° or less.
 入射面17b及び出射面17cの形状も任意である。なお、これらの面の平面形状については、上記のライトパイプ17(周面17a)の横断面の形状が援用されてよい。図示の例では、入射面17bは、外側に膨らむ曲面状(換言すれば凸曲面状)である。また、出射面17cは平面状である。ただし、図示の例とは異なり、入射面17bは、平面状とされてもよいし、凹状の曲面状とされてもよい。また、出射面17cは、凸曲面状又は凹曲面状とされてもよい。入射面17b及び出射面17cの形状(曲面又は平面)の組み合わせも任意である。 The shapes of the entrance surface 17b and the exit surface 17c are also arbitrary. The shape of the cross section of the light pipe 17 (peripheral surface 17a) may be used for the planar shape of these surfaces. In the illustrated example, the incident surface 17b has a curved surface that bulges outward (in other words, a convex curved surface). Moreover, the exit surface 17c is planar. However, unlike the illustrated example, the incident surface 17b may be planar or concave curved. Further, the output surface 17c may be convex or concave. Combinations of the shapes (curved or flat) of the entrance surface 17b and the exit surface 17c are also arbitrary.
 入射面17b及び/又は出射面17cの曲面は、球面であってもよいし、非球面であってもよい。また、その曲率半径又は焦点距離は適宜に設定されてよい。例えば、入射面17bが凸曲面である場合において、その曲率中心及び/又は焦点は、ライトパイプ17内に位置してよく、より詳細には、例えば、ライトパイプ17の光軸LAにおける長さの中央よりも入射側に位置してよい。 The curved surfaces of the entrance surface 17b and/or the exit surface 17c may be spherical or aspherical. Also, the radius of curvature or the focal length may be set appropriately. For example, when the entrance surface 17b is a convex curved surface, its center of curvature and/or focal point may be located within the light pipe 17. It may be located on the incident side of the center.
 周面17a、入射面17b及び出射面17cの表面性状は任意である。例えば、これらの面は、平滑な面である。例えば、これらの面の算術平均粗さRaは、100nm以下、10nm以下又は1nm以下とされてよい。ただし、これらの面は、一部又は全部に、拡散を目的として意図的に凹凸が形成されていても構わない。換言すれば、算術平均粗さRaは、上記の上限値よりも大きくても構わない。 The surface properties of the peripheral surface 17a, the entrance surface 17b, and the exit surface 17c are arbitrary. For example, these surfaces are smooth surfaces. For example, the arithmetic mean roughness Ra of these surfaces may be 100 nm or less, 10 nm or less, or 1 nm or less. However, some or all of these surfaces may be intentionally roughened for the purpose of diffusion. In other words, the arithmetic mean roughness Ra may be larger than the above upper limit.
 ライトパイプ17の寸法は任意である。例えば、筒部材13の説明において筒部材13の寸法として例示した寸法は、筒部材13の寸法ではなく、錐台状のライトパイプ17の寸法として参照されても構わない。念のために記載すると、出射面17cの径は、0.1mm以上5mm以下、又は0.5mm以上2mm以下とされてよい。入射面17bの径は、出射面17cの径よりも大きいことを前提として、1mm以上50mm以下、又は5mm以上10mm以下とされてよい。入射面17bの径は、出射面17cの径に対して、2倍以上20倍以下、又は4倍以上10倍以下とされてよい。光軸LA上における入射面17bから出射面17cまでの長さは、5mm以上60mm以下、又は10mm以上30mm以下とされてよい。また、当該距離は、出射面17cの径の5倍以上60倍以下、又は10倍以上30倍以下とされてよい。 The dimensions of the light pipe 17 are arbitrary. For example, the dimensions exemplified as the dimensions of the cylindrical member 13 in the description of the cylindrical member 13 may be referred to as the dimensions of the frustum-shaped light pipe 17 instead of the dimensions of the cylindrical member 13 . Just to be sure, the diameter of the exit surface 17c may be 0.1 mm or more and 5 mm or less, or 0.5 mm or more and 2 mm or less. The diameter of the incident surface 17b may be 1 mm or more and 50 mm or less, or 5 mm or more and 10 mm or less, on the premise that it is larger than the diameter of the exit surface 17c. The diameter of the entrance surface 17b may be two to twenty times or four to ten times the diameter of the exit surface 17c. The length from the entrance surface 17b to the exit surface 17c on the optical axis LA may be 5 mm or more and 60 mm or less, or 10 mm or more and 30 mm or less. In addition, the distance may be 5 times or more and 60 times or less, or 10 times or more and 30 times or less, the diameter of the output surface 17c.
 筒部材13に対するライトパイプ17の位置は適宜に設定されてよい。図示の例では、周面17aは、入射面17b側の一部及び出射面17c側の一部を除いて、基本的に筒部材13(例えば筒本体13aの内面)から離れている。また、入射面17bは、筒部材13内に位置している。出射面17cは、ピンホール21内(より詳細には図示の例では貫通方向の中途)に位置している。なお、周面17aが筒部材13から離れているというとき、例えば、周面17aは、その面積の1/2以上又は4/5以上が筒部材13から離れていてよい。 The position of the light pipe 17 with respect to the cylindrical member 13 may be set appropriately. In the illustrated example, the peripheral surface 17a is basically separated from the tubular member 13 (for example, the inner surface of the tubular main body 13a) except for a portion on the entrance surface 17b side and a portion on the exit surface 17c side. Further, the incident surface 17b is positioned inside the cylindrical member 13 . The exit surface 17c is located inside the pinhole 21 (more specifically, in the illustrated example, in the middle of the penetrating direction). When it is said that the peripheral surface 17a is separated from the tubular member 13, for example, the peripheral surface 17a may be separated from the tubular member 13 by 1/2 or more or 4/5 or more of the area.
 図示の例とは異なり、周面17aと筒部材13の内面とは互いに同一の形状を有して互いに当接していてもよい。両者が互いに同一の形状を有している態様としては、例えば、図示の例において、ライトパイプ17が直柱状に変形された態様、又は筒本体13aの内面が錐台状に変形された態様を挙げることができる。また、調光フィルタ15が筒部材13内に設けられない態様において、入射面17bは、開口19と同一位置に位置したり、開口19よりも外側に位置したりしてよい。出射面17cは、ピンホール21よりも上方に位置したり、ピンホール21よりも下方に位置したりしてよい。 Unlike the illustrated example, the peripheral surface 17a and the inner surface of the cylindrical member 13 may have the same shape and be in contact with each other. As a mode in which both have the same shape, for example, in the illustrated example, a mode in which the light pipe 17 is deformed into a straight columnar shape, or a mode in which the inner surface of the cylinder main body 13a is deformed into a frustum shape. can be mentioned. Also, in a mode in which the light control filter 15 is not provided inside the cylindrical member 13 , the incident surface 17 b may be positioned at the same position as the opening 19 or positioned outside the opening 19 . The exit surface 17c may be positioned above the pinhole 21 or below the pinhole 21. As shown in FIG.
 ライトパイプ17の筒部材13に対する固定方法は適宜なものとされてよい。図示の例では、ライトパイプ17は、出射面17c側の一部がピンホール21の一部に嵌合されている(ピンホール21の内面に当接している。)。また、入射面17b側の一部が筒部材13の内面に当接している。これにより、ライトパイプ17は、筒部材13に対して固定されている。ライトパイプ17と筒部材13とが当接しているとした部分において、両者の間に介在する接着剤が設けられてもよい(設けられなくてもよい。)。 The method of fixing the light pipe 17 to the tubular member 13 may be any appropriate method. In the illustrated example, a portion of the light pipe 17 on the output surface 17c side is fitted into a portion of the pinhole 21 (in contact with the inner surface of the pinhole 21). Also, a portion of the incident surface 17 b side is in contact with the inner surface of the cylindrical member 13 . Thereby, the light pipe 17 is fixed to the tubular member 13 . An adhesive interposed between the light pipe 17 and the cylindrical member 13 may be provided (or may not be provided) at the portion where the light pipe 17 and the cylindrical member 13 are in contact with each other.
 図示の例とは異なり、筒部材13の内面から突出して周面17aの適宜な位置に当接する部位が設けられてもよい。入射面17bのうちの外縁側の一部に上方から当接する部位が筒部材13に設けられてもよい。出射面17cのうちの外縁側の一部に下方から当接する部位が筒部材13に設けられてもよい。 Unlike the illustrated example, a portion may be provided that protrudes from the inner surface of the cylindrical member 13 and abuts on an appropriate position of the peripheral surface 17a. The cylindrical member 13 may be provided with a portion that abuts from above on a portion of the entrance surface 17b on the outer edge side. The cylindrical member 13 may be provided with a portion that abuts from below on a part of the exit surface 17c on the outer edge side.
 以上のとおり、光源装置5からの検査用の光を固体撮像素子(撮像素子103)へ向けて通過させる瞳モジュール7は、周面17aと、ピンホール21とを有している。周面17aは、光軸LAを軸回りに囲んでおり、光を反射可能である。ピンホール21は、光軸LAに沿う方向において周面17aの出射側に位置している。 As described above, the pupil module 7 that passes the inspection light from the light source device 5 toward the solid-state imaging device (imaging device 103) has the peripheral surface 17a and the pinhole 21. The peripheral surface 17a surrounds the optical axis LA and can reflect light. The pinhole 21 is positioned on the output side of the peripheral surface 17a in the direction along the optical axis LA.
 従って、例えば、瞳モジュール7の透過率が向上する。具体的には、周面17aが設けられていない態様においては、開口19から筒部材13内に入射した光の一部は、ピンホール21へ向かう光路から外れ、筒部材13の内面に吸収される。本実施形態では、そのような光の少なくとも一部を周面17aにおける反射によってピンホール21へ導き、透過率を向上させることができる。その結果、例えば、撮像素子103における照度を向上させることができる。別の観点では、光源装置5における消費電力の低減及び/又は光源装置5の小型化を図ることができる。 Therefore, for example, the transmittance of the pupil module 7 is improved. Specifically, in a mode in which the peripheral surface 17 a is not provided, part of the light that enters the cylindrical member 13 through the opening 19 is deviated from the optical path toward the pinhole 21 and is absorbed by the inner surface of the cylindrical member 13 . be. In this embodiment, at least part of such light can be guided to the pinhole 21 by reflection on the peripheral surface 17a to improve the transmittance. As a result, for example, the illuminance in the image sensor 103 can be improved. From another point of view, the power consumption of the light source device 5 can be reduced and/or the size of the light source device 5 can be reduced.
 なお、光軸LAに沿う方向においてピンホール21が周面17aの出射側に位置しているという場合、既述の出射面17cのピンホール21に対する説明から理解されるように、光軸LAに沿う方向における位置範囲に関して、ピンホール21の一部又は全部は、周面17aの出射側の部分に対して重複していてもよいし、重複していなくてもよい。例えば、合理的に考えて、周面17aに囲まれた領域を通過した光がピンホール21を通過しているといえる場合は、ピンホール21は、周面17aの出射側に位置していると捉えられてよい。また、例えば、ピンホール21の出射側の開口面が、周面17aの出射側の端面(出射面17c)から入射側へ周面17aの光軸LAに平行な方向の長さの1/5又は1/10の距離で離れた位置よりも出射側に位置しているとき、ピンホール21は、周面17aの出射側に位置していると捉えられてよい。 When the pinhole 21 is located on the output side of the peripheral surface 17a in the direction along the optical axis LA, as understood from the above description of the pinhole 21 on the output surface 17c, With respect to the positional range in the direction along, part or all of the pinhole 21 may or may not overlap with the exit-side portion of the peripheral surface 17a. For example, if it can be reasonably said that the light passing through the area surrounded by the peripheral surface 17a passes through the pinhole 21, the pinhole 21 is positioned on the exit side of the peripheral surface 17a. It can be taken as Further, for example, the opening surface on the output side of the pinhole 21 is 1/5 of the length of the peripheral surface 17a in the direction parallel to the optical axis LA from the end surface (output surface 17c) on the output side of the peripheral surface 17a to the incident side. Alternatively, when the pinhole 21 is located on the exit side of the position separated by a distance of 1/10, it may be understood that the pinhole 21 is located on the exit side of the peripheral surface 17a.
 瞳モジュール7は、遮光性の筒部材13を有してよい。筒部材13は、光が入射する開口19を一端に有してよく、開口19よりも径が小さいピンホール21を他端に有してよい。周面17aは、筒部材13の内側に位置してよい。 The pupil module 7 may have a light shielding cylinder member 13 . The cylindrical member 13 may have an opening 19 into which light is incident at one end and a pinhole 21 having a smaller diameter than the opening 19 at the other end. The peripheral surface 17 a may be positioned inside the tubular member 13 .
 この場合、例えば、意図されていない光が瞳モジュール7の外部から周面17aに囲まれた領域内及び/又はピンホール21に入射する蓋然性が低減される。その結果、瞳モジュール7から出射される光が安定する。 In this case, for example, the probability that unintended light enters the area surrounded by the peripheral surface 17a and/or the pinhole 21 from the outside of the pupil module 7 is reduced. As a result, the light emitted from the pupil module 7 is stabilized.
 瞳モジュール7は、筒部材13の内部に、筒部材13とは別部材の、周面17aを有する、中実又は中空(本実施形態では中実)のライトパイプ17を有してよい。 The pupil module 7 may have a solid or hollow (solid in this embodiment) light pipe 17 having a peripheral surface 17a inside the tubular member 13, which is a separate member from the tubular member 13.
 この場合、例えば、ライトパイプ17に係る理論及び/又はノウハウを利用することができ、設計が容易化される。また、例えば、市販のライトパイプ17を用いることによって、安価に周面17aを有する瞳モジュール7を実現することができる。また、例えば、撮像素子103の種類等に応じて瞳モジュール7に要求される出射光の性質は異なるところ、ライトパイプ17及び筒部材13の一方のみを設計変更して対応することが可能である。 In this case, for example, theory and/or know-how related to the light pipe 17 can be used, which facilitates design. Also, for example, by using a commercially available light pipe 17, the pupil module 7 having the peripheral surface 17a can be realized at low cost. In addition, for example, the properties of emitted light required of the pupil module 7 differ depending on the type of the image pickup device 103, etc., but it is possible to change the design of only one of the light pipe 17 and the cylindrical member 13 to deal with this. .
 ライトパイプ17の外周面(周面17a)と筒部材13の内周面とは離れていてよい。なお、このようにいうとき、図示の例から理解されるように、周面17aは局所的に筒部材13の内周面に当接していても構わない。 The outer peripheral surface (surrounding surface 17a) of the light pipe 17 and the inner peripheral surface of the cylindrical member 13 may be separated. In this case, the peripheral surface 17a may be locally in contact with the inner peripheral surface of the cylindrical member 13, as understood from the illustrated example.
 周面17aと筒部材13とが離れている場合、例えば、ライトパイプ17と筒部材13とは別個に設計可能であるから、上述した設計の容易化等の効果が向上する。また、周面17aの周囲は、真空又は気体であるから、全反射が生じる条件を満たしやすい。また、周面17aと筒部材13との接合状態が周面17aにおける反射に影響を及ぼすというような不都合も低減される。 When the peripheral surface 17a and the cylindrical member 13 are separated from each other, for example, the light pipe 17 and the cylindrical member 13 can be designed separately. Moreover, since the surroundings of the peripheral surface 17a are in a vacuum or a gas, the conditions for causing total reflection are likely to be met. Moreover, the inconvenience that the joint state between the peripheral surface 17a and the cylindrical member 13 affects the reflection on the peripheral surface 17a is reduced.
 ライトパイプ17は、中実であってよく、また、光源装置5からの光が入射する側の端面(入射面17b)が外側に膨らむ曲面状であってよい。 The light pipe 17 may be solid, or may be curved such that the end surface (incident surface 17b) on the side where the light from the light source device 5 is incident bulges outward.
 この場合、例えば、入射面17bに入射した光束のライトパイプ17内の向きを調整できる。より詳細には、例えば、テレセントリックな光が入射面17bに入射する場合において、光軸LAに対する光束の傾斜角を大きくし、周面17aに到達する光束を増加させることができる。その結果、ライトパイプ17による光の拡散の作用が向上する。 In this case, for example, the direction in the light pipe 17 of the luminous flux incident on the incident surface 17b can be adjusted. More specifically, for example, when telecentric light is incident on the incident surface 17b, the inclination angle of the light beam with respect to the optical axis LA can be increased to increase the light beam reaching the peripheral surface 17a. As a result, the light diffusion effect of the light pipe 17 is improved.
 周面17aは、ピンホール21側ほど径が小さくなっていてよい。 The peripheral surface 17a may have a smaller diameter toward the pinhole 21 side.
 この場合、例えば、ライトパイプ17は、相対的に径が大きい入射面17bに入射した光を相対的に径が小さい出射面17cへ集めること(集光)に寄与する。これにより、例えば、瞳モジュール7の入射側に集光レンズを設ける必要性が低減される。そして、集光レンズを設けないことによって(ただし、集光レンズが設けられる態様も本開示に係る技術に含まれる。)、瞳モジュール7の小型化、簡素化及び/又はコスト削減が図られる。 In this case, for example, the light pipe 17 contributes to collecting (condensing) the light incident on the incident surface 17b with a relatively large diameter onto the output surface 17c with a relatively small diameter. This reduces, for example, the need for a condenser lens on the entrance side of the pupil module 7 . By not providing a condenser lens (however, a mode in which a condenser lens is provided is also included in the technology according to the present disclosure), the size and simplification of the pupil module 7 and/or cost reduction can be achieved.
 さらに、ピンホール21側ほど径が小さくなっていることによって、例えば、ライトパイプ17を通過する光は、エテンデュの法則に従って拡散される。具体的には、出射面17c(出口)から出射される光束の拡散角(別の観点では立体角)は、入射面17b(入口)に入射する光束の拡散角に対して、入口径/出口径の比率を乗じたものとなる。従って、周面17aの拡散の作用が向上する。 Furthermore, since the diameter is smaller toward the pinhole 21 side, for example, the light passing through the light pipe 17 is diffused according to the etendue law. Specifically, the diffusion angle (solid angle from another point of view) of the light beam emitted from the exit surface 17c (exit) is the entrance diameter/output It is multiplied by the aperture ratio. Therefore, the diffusion action of the peripheral surface 17a is improved.
 また、本実施形態とは異なり、入射面17bが凸曲面状でない場合、入射面17bにテレセントリックな光が入射すると、この光はライトパイプ17内を光軸ALに平行に進む。このとき、ピンホール21側ほど径が小さい周面17aは、テレセントリックな光のうち光軸ALから離れた光束を反射する。このような作用によっても、周面17aによる拡散の作用が向上する。 Also, unlike the present embodiment, when the incident surface 17b is not convexly curved, when telecentric light is incident on the incident surface 17b, this light travels in the light pipe 17 parallel to the optical axis AL. At this time, the circumferential surface 17a, which has a smaller diameter toward the pinhole 21 side, reflects the light beam away from the optical axis AL among the telecentric light. This action also improves the diffusion action of the peripheral surface 17a.
 周面17aは、光軸ALに平行な長さが径よりも大きくてよい。 The length parallel to the optical axis AL of the peripheral surface 17a may be greater than the diameter.
 この場合、例えば、周面17aの長さが上記よりも短い態様(当該態様も本開示に係る技術に含まれてよい。)に比較して、周面17aによる反射の回数を多くしやすい。その結果、周面17aによる拡散の作用が向上する。 In this case, for example, compared to a mode in which the length of the peripheral surface 17a is shorter than the above (this mode may also be included in the technology according to the present disclosure), it is easier to increase the number of reflections by the peripheral surface 17a. As a result, the diffusion effect of the peripheral surface 17a is improved.
<ライトパイプの変形例>
 図4は、変形例に係るライトパイプ23を示す断面図である。
<Modified example of light pipe>
FIG. 4 is a cross-sectional view showing a light pipe 23 according to a modification.
 実施形態のライトパイプ17が中実なロッド状であったのに対して、変形例に係るライトパイプ23は、中空の筒状である。ライトパイプ23は、光軸LAを囲む周面23aと、光が入射する入射口23bと、光が出射する出射口23cとを有している。ライトパイプ17内の光を反射する周面17aは、ライトパイプ17の外周面によって構成された。これに対して、ライトパイプ23内の光を反射する周面23aは、ライトパイプ23の内周面によって構成されている。 While the light pipe 17 of the embodiment has a solid rod shape, the light pipe 23 according to the modified example has a hollow cylindrical shape. The light pipe 23 has a peripheral surface 23a surrounding the optical axis LA, an entrance 23b into which light enters, and an exit 23c from which light exits. A peripheral surface 17 a that reflects the light within the light pipe 17 was formed by the outer peripheral surface of the light pipe 17 . On the other hand, the peripheral surface 23 a that reflects the light inside the light pipe 23 is formed by the inner peripheral surface of the light pipe 23 .
 実施形態に係るライトパイプ17の周面17aは透光性を有した。これに対して、変形例に係るライトパイプ23の周面23aは、入射角に関わらずに光を実質的に透過させずに光を反射する反射面(例えば鏡)として機能してよい。周面23aの反射率は適宜に設定されてよい。例えば、周面23aの反射率は、50%以上、80%以上又は90%以上とされてよい。 The peripheral surface 17a of the light pipe 17 according to the embodiment has translucency. On the other hand, the peripheral surface 23a of the light pipe 23 according to the modification may function as a reflecting surface (for example, a mirror) that reflects light without substantially transmitting the light regardless of the incident angle. The reflectance of the peripheral surface 23a may be appropriately set. For example, the reflectance of the peripheral surface 23a may be 50% or more, 80% or more, or 90% or more.
 材料の観点において、ライトパイプ23の構成は任意である。例えば、特に図示ないが、ライトパイプ23は、ライトパイプ23の大部分を構成する基体と、基体の内周面に重なって周面23aを構成する反射膜とを有してよい。基体は、1種又は2種以上の材料から構成されてよい。1種以上の材料それぞれは、遮光性又は透光性を有してよい。基体の材料としては、例えば、ガラス、樹脂又は金属を挙げることができる。また、反射膜は、1種の材料から構成されてもよいし、互いに異なる材料が積層されて構成されてもよい。より詳細には、例えば、反射膜は、金属膜であってもよいし、透光性を有する誘電体層を金属膜に重ねたものであってもよい。上記とは異なり、ライトパイプ23は、その全体が、単一の、かつ反射率が比較的高い材料(例えば金属)によって構成されてもよい。 In terms of materials, the configuration of the light pipe 23 is arbitrary. For example, although not shown, the light pipe 23 may have a base that forms most of the light pipe 23 and a reflective film that overlaps the inner peripheral surface of the base and forms a peripheral surface 23a. The substrate may be composed of one or more materials. Each of the one or more materials may be opaque or translucent. Materials for the base include, for example, glass, resin, and metal. Also, the reflective film may be composed of one material, or may be composed of layers of different materials. More specifically, for example, the reflective film may be a metal film, or may be a metal film overlaid with a dielectric layer having translucency. Alternatively, the light pipe 23 may be constructed entirely of a single, relatively highly reflective material (eg, metal).
 ライトパイプ23の周面23a及び/又は外周面の形状及び寸法については、ライトパイプ17の周面17aの説明が適宜に援用されてよい。ライトパイプ23の厚さは、例えば、ライトパイプ23の全体に亘って概ね一定である。換言すれば、周面23aとライトパイプ23の外周面とは相似とされている。ただし、図示の例とは異なり、ライトパイプ23の厚さは一定でなくても構わない。例えば、周面23aの形状は、第1実施形態の周面17aと概ね同様(錐台状)とされつつ、外周面の形状は、筒部材13に嵌合する柱体状とされてもよい。 For the shape and dimensions of the peripheral surface 23a and/or the outer peripheral surface of the light pipe 23, the description of the peripheral surface 17a of the light pipe 17 may be used as appropriate. The thickness of the light pipe 23 is, for example, generally constant throughout the light pipe 23 . In other words, the peripheral surface 23a and the outer peripheral surface of the light pipe 23 are similar. However, unlike the illustrated example, the thickness of the light pipe 23 may not be constant. For example, the shape of the peripheral surface 23a may be substantially the same as the peripheral surface 17a of the first embodiment (frustum shape), while the shape of the outer peripheral surface may be a columnar shape that fits into the tubular member 13. .
 このような変形例に係るライトパイプ23は、第1実施形態、及びライトパイプ17を有する他の実施形態(後述)において、ライトパイプ17に代えて用いられてよい。ライトパイプ23をライトパイプ17に代えて用いた場合においても、実施形態と同様の効果が奏される。 The light pipe 23 according to such a modified example may be used in place of the light pipe 17 in the first embodiment and other embodiments having the light pipe 17 (described later). Even when the light pipe 23 is used instead of the light pipe 17, the same effects as those of the embodiment can be obtained.
<第2実施形態>
 図5は、第2実施形態に係る瞳モジュール207の構成を示す断面図であり、第1実施形態の図3に対応している。
<Second embodiment>
FIG. 5 is a cross-sectional view showing the configuration of a pupil module 207 according to the second embodiment, and corresponds to FIG. 3 of the first embodiment.
 第2実施形態に係る瞳モジュール207は、第1実施形態に係る瞳モジュール7に対して、拡散板25を追加したものである。拡散板25は、光を透過させつつ光を拡散させる。これにより、例えば、瞳モジュール207から出射される光は、横断面における強度がさらに均一化される。なお、第1実施形態は、第2実施形態に比較すると、瞳モジュールの透過率が高い。 A pupil module 207 according to the second embodiment is obtained by adding a diffusion plate 25 to the pupil module 7 according to the first embodiment. The diffuser plate 25 diffuses the light while transmitting the light. Thereby, for example, the light emitted from the pupil module 207 has a more uniform intensity in the cross section. It should be noted that, in the first embodiment, the transmittance of the pupil module is higher than in the second embodiment.
 拡散板25は、ライトパイプ17(周面17a)に対して入射側に位置している。より詳細には、拡散板25は、筒部材13内に位置しており、また、別の観点では、調光フィルタ15(別の観点では開口19)とライトパイプ17との間に位置している。なお、図示の例とは異なり、拡散板25を筒部材13の外部に位置させることも可能である。例えば、拡散板25は、開口19を外側から塞ぐように筒部材13の上端に重なっていてもよいし、筒部材13の上端(開口19)から上方へ離れた位置に配置されていてもよい。光軸LAに平行な方向において、開口19と拡散板25との距離、及び拡散板25とライトパイプ17との距離は任意である。 The diffusion plate 25 is positioned on the incident side with respect to the light pipe 17 (peripheral surface 17a). More specifically, the diffuser plate 25 is located inside the cylindrical member 13 and, from another point of view, is located between the light control filter 15 (or the opening 19 from another point of view) and the light pipe 17. there is Note that, unlike the illustrated example, the diffusion plate 25 can also be positioned outside the cylindrical member 13 . For example, the diffusion plate 25 may overlap the upper end of the cylindrical member 13 so as to close the opening 19 from the outside, or may be arranged at a position spaced upward from the upper end of the cylindrical member 13 (opening 19). . In the direction parallel to the optical axis LA, the distance between the aperture 19 and the diffusion plate 25 and the distance between the diffusion plate 25 and the light pipe 17 are arbitrary.
 拡散板25の形状及び寸法(並びに位置)は、例えば、ライトパイプ17に入射する全ての光が実質的に拡散板25を通過した光となるように設定されてよい。例えば、図示の例では、拡散板25は、筒部材13の内部に配置され、かつ筒部材13の内部空間の横断面全体に亘る広さを有しており、これにより、上記の光の関係が実現されている。図示の例とは異なり、拡散板25が開口19から上方へ離れている態様においては、拡散板25の面積を開口19の面積に対して十分に大きくすることによって、上記の光の関係が実現されてよい。 The shape and size (and position) of the diffuser plate 25 may be set, for example, so that substantially all light entering the light pipe 17 is light that has passed through the diffuser plate 25 . For example, in the illustrated example, the diffusing plate 25 is disposed inside the cylindrical member 13 and has a width covering the entire cross section of the inner space of the cylindrical member 13, whereby the above light relationship has been realized. Unlike the illustrated example, in a mode in which the diffuser plate 25 is spaced upward from the opening 19, the above light relationship is realized by making the area of the diffuser plate 25 sufficiently large with respect to the area of the opening 19. may be
 拡散板25の具体的な材料、形状及び寸法等は、適宜に設定されてよい。例えば、拡散板25の全体の材料、又は拡散板25のベースとなる材料は、透光性を有している材料であり、ガラス又は樹脂とされてよい。拡散板25は、概ね一定の厚さの板状とされてよい。拡散板25の厚さは、要求される作用等に応じて適宜に設定されてよい。 The specific material, shape, dimensions, etc. of the diffusion plate 25 may be set as appropriate. For example, the material of the entire diffuser plate 25 or the base material of the diffuser plate 25 is a translucent material such as glass or resin. The diffuser plate 25 may have a plate shape with a substantially constant thickness. The thickness of the diffuser plate 25 may be appropriately set according to the required action and the like.
 図示の例のように、拡散板27が筒部材13の内部に位置する態様においては、拡散板25の平面視における形状及び寸法については、例えば、筒部材13の内部空間の横断面の形状及び寸法の説明が援用されてよい。また、拡散板27が筒部材13の外部に位置する態様においては、拡散板25は、筒部材13の内部空間又は全体の横断面よりも広い面積を有していてもよい。 In a mode in which the diffusion plate 27 is positioned inside the cylindrical member 13 as in the illustrated example, the shape and dimensions of the diffusion plate 25 in a plan view are, for example, the shape and dimensions of the cross section of the internal space of the cylindrical member 13 . A description of dimensions may be used. Further, in a mode in which the diffusion plate 27 is positioned outside the cylindrical member 13 , the diffusion plate 25 may have an area larger than the internal space of the cylindrical member 13 or the cross section of the entirety.
 図示の例では、拡散板25は、光軸LAに平行に見たときに、入射面17bよりも広くされ、入射面17bを包含していている。ただし、拡散板25は、入射面17bと同一の広さであってもよいし、入射面17bよりも狭くてもよい。後者の態様は、例えば、筒部材13の拡散板25及び/又はライトパイプ17を保持する部分の都合上、生じ得る。 In the illustrated example, the diffusion plate 25 is wider than the incident surface 17b and includes the incident surface 17b when viewed parallel to the optical axis LA. However, the diffusion plate 25 may have the same width as the incident surface 17b, or may be narrower than the incident surface 17b. The latter aspect may occur, for example, due to the convenience of the portion of the tubular member 13 that holds the diffuser plate 25 and/or the light pipe 17 .
 拡散板25において、光を拡散するための構成は、種々のものとされてよい。例えば、拡散板25としては、一方の面又は両面に凹凸を有するものを挙げることができる。拡散板25を透過する光は、この表面の凹凸によって屈折されることなどによって拡散される。凹凸が形成された面の表面粗さRaは、例えば、200nm以上、1μm以上、10μm以上又は100μm以上とされてよい。表面に凹凸を有する拡散板25は、互いに大きさが異なる微小レンズがランダムに配置されていると捉えることができる態様であってもよい。また、拡散板25は、表面の凹凸に代えて、又は加えて、内部に微小な粒子を有してもよい。拡散板25を通過する光は、この微小な粒子によって反射されることによって拡散されてよい。 The diffusion plate 25 may have various configurations for diffusing light. For example, the diffusion plate 25 may have unevenness on one surface or both surfaces. The light passing through the diffusion plate 25 is diffused by being refracted by the unevenness of the surface. The surface roughness Ra of the uneven surface may be, for example, 200 nm or more, 1 μm or more, 10 μm or more, or 100 μm or more. The diffusing plate 25 having unevenness on the surface may be regarded as having randomly arranged microlenses having different sizes. Further, the diffuser plate 25 may have fine particles inside instead of or in addition to the irregularities on the surface. Light passing through the diffuser plate 25 may be diffused by being reflected by these minute particles.
 拡散板25の透過率及び拡散角は任意に設定されてよい。本実施形態では、ライトパイプ17が拡散の作用を奏する。従って、拡散板25として、従来の瞳モジュールが有する拡散板に比較して、透過率が比較的高いもの、及び/又は拡散の作用が低いものが用いられてもよい。例えば、拡散板25の透過率は、70%以上、80%以上又は90%以上であってよい。また、拡散板25の拡散角は、40°以下、30°以下又は20°以下であってよい。 The transmittance and diffusion angle of the diffusion plate 25 may be set arbitrarily. In this embodiment, the light pipe 17 has a diffusion effect. Therefore, the diffusion plate 25 may have a relatively high transmittance and/or a low diffusion effect compared to the diffusion plate of the conventional pupil module. For example, the diffuser plate 25 may have a transmittance of 70% or more, 80% or more, or 90% or more. Also, the diffusion angle of the diffusion plate 25 may be 40° or less, 30° or less, or 20° or less.
 拡散板25の筒部材13に対する固定方法は適宜な方法とされてよい。図示の例では、筒部材13の内部は、開口19側の部分がピンホール21側の部分よりも拡径されている。そして、拡散板25は、開口19側から挿入されて、拡径によって形成された段差に係合する。これにより、拡散板25は、筒部材13に保持される。拡散板25と筒部材13との間には接着剤が介在してもよい(介在しなくてもよい。)。図示の例とは異なり、例えば、筒部材13が2以上の部材から構成されることなどによって、拡散板25は、ピンホール21側から挿入されたり、光軸LA方向において筒部材13の適宜な部位に挟まれたりしてもよい。 The method of fixing the diffusion plate 25 to the cylindrical member 13 may be an appropriate method. In the illustrated example, the inside of the cylindrical member 13 has a larger diameter on the opening 19 side than on the pinhole 21 side. Then, the diffuser plate 25 is inserted from the opening 19 side and engages with the step formed by the diameter expansion. Thereby, the diffusion plate 25 is held by the cylindrical member 13 . An adhesive may be interposed between the diffuser plate 25 and the cylindrical member 13 (it may not be interposed). Unlike the illustrated example, for example, when the cylindrical member 13 is composed of two or more members, the diffusing plate 25 can be inserted from the pinhole 21 side or can be inserted into the cylindrical member 13 appropriately in the direction of the optical axis LA. It may be sandwiched between parts.
 以上のとおり、本実施形態では、周面17aの入射側に拡散板25を有している。この場合、例えば、既述のように、瞳モジュール207による拡散作用が向上する。さらに、拡散板25によって拡散された光がライトパイプ17に入射することから、ライトパイプ17の周面17aに到達して反射される光束が増加しやすい。その結果、ライトパイプ17による拡散効果が向上することになる。すなわち、入射側の拡散板25と、ライトパイプ17との組み合わせは、単なる足し合わせの効果ではなく、相乗効果を奏する。 As described above, in this embodiment, the diffusion plate 25 is provided on the incident side of the peripheral surface 17a. In this case, for example, the diffusion effect of the pupil module 207 is improved, as already mentioned. Furthermore, since the light diffused by the diffusion plate 25 is incident on the light pipe 17, the luminous flux that reaches the peripheral surface 17a of the light pipe 17 and is reflected tends to increase. As a result, the diffusion effect of the light pipe 17 is improved. In other words, the combination of the diffuser plate 25 on the incident side and the light pipe 17 produces a synergistic effect rather than a mere additive effect.
<第3実施形態>
 図6は、第3実施形態に係る瞳モジュール307の構成を示す断面図であり、第1実施形態の図3に対応している。
<Third Embodiment>
FIG. 6 is a cross-sectional view showing the configuration of a pupil module 307 according to the third embodiment, and corresponds to FIG. 3 of the first embodiment.
 第3実施形態に係る瞳モジュール307は、第2実施形態に係る瞳モジュール207に対して、拡散板の位置を変更したものである。すなわち、瞳モジュール207では、拡散板25がライトパイプ17の入射側に位置したのに対して、瞳モジュール307では、拡散板27は、ライトパイプ17の出射側に位置している。 A pupil module 307 according to the third embodiment is obtained by changing the position of the diffusion plate with respect to the pupil module 207 according to the second embodiment. That is, in the pupil module 207 , the diffuser plate 25 is positioned on the incident side of the light pipe 17 , whereas in the pupil module 307 the diffuser plate 27 is positioned on the exit side of the light pipe 17 .
 拡散板27のより詳細な位置は適宜に設定されてよい。例えば、拡散板27は、筒部材13の内部に位置している。ただし、拡散板27は、筒部材13の外部に位置してもよい。例えば、拡散板27は、ピンホール21を外側から塞ぐように筒部材13の下端に重なっていてもよいし、筒部材13の下端(ピンホール21)から下方へ離れた位置に配置されていてもよい。光軸LAに平行な方向において、ライトパイプ17と拡散板27との距離、及び拡散板27とピンホール21との距離は任意である。 A more detailed position of the diffusion plate 27 may be set as appropriate. For example, the diffusion plate 27 is positioned inside the cylindrical member 13 . However, the diffuser plate 27 may be positioned outside the tubular member 13 . For example, the diffusion plate 27 may overlap the lower end of the cylindrical member 13 so as to close the pinhole 21 from the outside, or may be arranged at a position spaced downward from the lower end of the cylindrical member 13 (the pinhole 21). good too. The distance between the light pipe 17 and the diffusion plate 27 and the distance between the diffusion plate 27 and the pinhole 21 are arbitrary in the direction parallel to the optical axis LA.
 拡散板27の形状及び寸法(並びに位置)は、例えば、ライトパイプ17の出射面17cから出射される全ての光が実質的に拡散板27に入射するように、及び/又はピンホール21を通過する全ての光が実質的に拡散板27を通過するように設定されてよい。図示の例では、拡散板27は、出射面17cの全面に重なるとともに、ピンホール21を塞いでおり、これにより、上記の光の関係が実現されている。図示の例とは異なり、例えば、拡散板27がピンホール21から下方へ離れている態様においては、拡散板27の面積をピンホール21の面積に対して十分に大きくすることによって、ピンホール21を通過する全ての光が実質的に拡散板27を通過するようにしてよい。 The shape and dimensions (and position) of the diffuser plate 27 are, for example, such that substantially all light emitted from the exit surface 17c of the light pipe 17 enters the diffuser plate 27 and/or passes through the pinholes 21. It may be set so that substantially all the light that passes through diffuser plate 27 . In the illustrated example, the diffuser plate 27 overlaps the entire surface of the exit surface 17c and closes the pinhole 21, thereby realizing the above light relationship. Unlike the illustrated example, for example, in a mode in which the diffusion plate 27 is spaced downward from the pinholes 21 , the area of the diffusion plate 27 is made sufficiently large with respect to the area of the pinholes 21 so that the pinholes 21 substantially all light passing through the diffuser plate 27 .
 拡散板27の具体的な材料、形状、寸法、及び光を拡散するための構成は適宜に設定されてよい。拡散板25についての材料、形状、寸法、及び光を拡散するための構成についての説明は、矛盾等が生じない限り、拡散板27に援用されてよい。図示の例では、光軸LAに平行に見て、拡散板27は、筒部材13の内部空間の横断面よりも狭くされている。ただし、拡散板27は、筒部材13の内部空間の横断面全体に亘る広さを有していてもよい。また、拡散板27が筒部材13の外部に位置する態様においては、拡散板27は、筒部材13の内部空間又は全体の横断面よりも広い面積を有していてもよい。 The specific material, shape, dimensions, and configuration for diffusing light of the diffuser plate 27 may be set as appropriate. The description of the material, shape, dimensions, and configuration for diffusing light of the diffuser plate 25 may be applied to the diffuser plate 27 as long as there is no contradiction. In the illustrated example, the diffuser plate 27 is narrower than the cross section of the internal space of the cylindrical member 13 when viewed parallel to the optical axis LA. However, the diffuser plate 27 may have a width covering the entire cross section of the internal space of the cylindrical member 13 . Further, in a mode in which the diffusion plate 27 is positioned outside the cylindrical member 13 , the diffusion plate 27 may have an area wider than the internal space of the cylindrical member 13 or the cross section of the entirety.
 拡散板27の透過率及び拡散角は任意に設定されてよい。第2実施形態と同様に、ライトパイプ17が拡散の作用を奏するから、拡散板25として、透過率が比較的高いもの、及び/又は拡散の作用が低いものを用いることができる。従って、例えば、第2実施形態で例示した透過率の下限値、及び拡散角の上限値は、本実施形態に援用されてもよい。ただし、本実施形態の拡散板27は、第2実施形態の拡散板25とは異なり、周面17aに到達して反射される光束を増加させる作用は奏さない。従って、拡散板27は、拡散板25に代えて、透過率が低くされたり、拡散角が大きくされたりしてもよい。例えば、拡散板27の拡散角は、70°以上90°以下であってもよい。 The transmittance and diffusion angle of the diffusion plate 27 may be set arbitrarily. As in the second embodiment, the light pipe 17 has a diffusing effect, so that the diffusing plate 25 can have a relatively high transmittance and/or a low diffusing effect. Therefore, for example, the lower limit of the transmittance and the upper limit of the diffusion angle exemplified in the second embodiment may be applied to the present embodiment. However, unlike the diffuser plate 25 of the second embodiment, the diffuser plate 27 of this embodiment does not have the effect of increasing the light flux that reaches the peripheral surface 17a and is reflected. Therefore, instead of the diffuser plate 25, the diffuser plate 27 may have a lower transmittance or a larger diffusion angle. For example, the diffusion angle of the diffusion plate 27 may be 70° or more and 90° or less.
 拡散板27の筒部材13に対する固定方法は適宜な方法とされてよい。図示の例では、筒部材13の端面部13bの内側面(上面)に、ピンホール21よりも径が大きい凹部(符号省略)が形成されている。そして、拡散板27は、当該凹部に嵌合されている。拡散板27と筒部材13との間には接着剤が介在してもよい(介在しなくてもよい。)。図示の例とは異なり、例えば、筒部材13の内径と同一の大きさの径の拡散板27を筒部材13に嵌合させたり、端面部13bの外側面(下面)にピンホール21よりも径が大きい凹部を形成して当該凹部に拡散板27を嵌合させたり、端面部13bの上面又は下面に対して凹部を形成することなく拡散板27を接着したり、筒部材13が2以上の部材から構成されることなどによって拡散板27が光軸LA方向において筒部材13の適宜な部位に挟まれたりしてもよい。 The method of fixing the diffusion plate 27 to the cylindrical member 13 may be an appropriate method. In the illustrated example, a concave portion (reference numeral omitted) having a diameter larger than that of the pinhole 21 is formed on the inner surface (upper surface) of the end surface portion 13b of the tubular member 13 . The diffuser plate 27 is fitted in the recess. An adhesive may be interposed between the diffuser plate 27 and the cylindrical member 13 (it may not be interposed). Unlike the illustrated example, for example, a diffusing plate 27 having the same diameter as the inner diameter of the cylindrical member 13 may be fitted to the cylindrical member 13, or the outer surface (lower surface) of the end surface portion 13b may be arranged closer to the pinhole 21 than the pinhole 21. A concave portion having a large diameter is formed and the diffusion plate 27 is fitted in the concave portion, the diffusion plate 27 is adhered to the upper surface or the lower surface of the end face portion 13b without forming a concave portion, or two or more cylindrical members 13 are used. The diffusion plate 27 may be sandwiched between appropriate portions of the cylindrical member 13 in the direction of the optical axis LA.
 以上のとおり、本実施形態では、周面17aの出射側に拡散板27を有している。この場合、例えば、既述のように、瞳モジュール307による拡散作用が向上する。拡散板27は、ピンホール21側に位置するものであるから、第2実施形態の拡散板25に比較して、例えば、面積を小さくすることができる。その結果、例えば、拡散板25及び27が高価である場合において、瞳モジュールのコストを削減することができる。 As described above, in this embodiment, the diffusion plate 27 is provided on the emission side of the peripheral surface 17a. In this case, for example, the diffusion effect of the pupil module 307 is improved, as already mentioned. Since the diffusion plate 27 is positioned on the pinhole 21 side, the area can be reduced, for example, compared to the diffusion plate 25 of the second embodiment. As a result, the cost of the pupil module can be reduced, for example, if the diffusers 25 and 27 are expensive.
<第4実施形態>
 図7は、第4実施形態に係る瞳モジュール407の構成を示す断面図であり、第1実施形態の図3に対応している。
<Fourth Embodiment>
FIG. 7 is a cross-sectional view showing the configuration of a pupil module 407 according to the fourth embodiment, and corresponds to FIG. 3 of the first embodiment.
 第1実施形態では、筒部材13とは別個の部材としてライトパイプ17が設けられた。一方、第4実施形態では、筒部材413の内面が光を反射可能な構成とされている。また、第4実施形態では、開口19側から入射した光をピンホール21側に集光する集光レンズ29が設けられている。さらに、第4実施形態では、第3実施形態と同様に、ピンホール21に隣接して拡散板27が設けられている。拡散板27については、第3実施形態における説明が援用されてよい。 In the first embodiment, the light pipe 17 is provided as a separate member from the cylindrical member 13. On the other hand, in the fourth embodiment, the inner surface of the cylindrical member 413 is configured to be able to reflect light. Further, in the fourth embodiment, a condensing lens 29 is provided for condensing light incident from the opening 19 side to the pinhole 21 side. Furthermore, in the fourth embodiment, similarly to the third embodiment, a diffusion plate 27 is provided adjacent to the pinhole 21 . For the diffuser plate 27, the description in the third embodiment may be used.
(筒部材)
 筒部材413は、図4を参照して説明した変形例に係るライトパイプ23の更に変形例として捉えることができる。従って、ライトパイプ23の説明は、適宜に筒部材413に援用されてよい。例えば、筒部材413は、光軸LAを囲む周面413aを有している。この周面413aは、ライトパイプ23の周面23aと同様に、入射角に関わらずに光を実質的に透過させずに光を反射する反射面(例えば鏡)として機能してよい。周面23aの説明で例示した反射率は、周面413aに適用されてよい。
(cylindrical member)
The cylindrical member 413 can be regarded as a further modified example of the light pipe 23 according to the modified example described with reference to FIG. Therefore, the description of the light pipe 23 may be applied to the tubular member 413 as appropriate. For example, the tubular member 413 has a peripheral surface 413a surrounding the optical axis LA. Like the peripheral surface 23a of the light pipe 23, the peripheral surface 413a may function as a reflecting surface (for example, a mirror) that reflects light without substantially transmitting light regardless of the incident angle. The reflectance exemplified in the description of the peripheral surface 23a may be applied to the peripheral surface 413a.
 材料の観点において、筒部材413は、変形例に係るライトパイプ23と同様に、基体31と、基体31の内面に重なる反射膜33とを有してよい。基体31及び反射膜33の材料については、ライトパイプ23の基体及び反射膜(いずれも不図示)の説明が援用されてよい。また、筒部材413は、図示の例とは異なり、その全体が、単一の、かつ反射率が比較的高い材料(例えば金属)によって構成されてもよい。 In terms of materials, the tubular member 413 may have the base 31 and the reflective film 33 overlapping the inner surface of the base 31, like the light pipe 23 according to the modification. As for the materials of the base 31 and the reflective film 33, the description of the base and the reflective film (both not shown) of the light pipe 23 may be used. Also, unlike the illustrated example, the cylindrical member 413 may be entirely made of a single material with relatively high reflectance (for example, metal).
 筒部材413の外形(外面の形状)については、第1実施形態における筒部材13の外形の説明が援用されてよい。筒部材413の内面は、その大部分が周面413aによって構成されている。周面413aの形状については、第1実施形態におけるライトパイプ17の周面17aの説明が援用されてよい。図示の例では、筒部材413の内面の形状は、周面413aによって構成される錐台と、その錐台の下方に位置する柱体と、錐台の上方に位置する2つの柱体とを有している。下方の柱体は、拡散板27が配置(例えば嵌合)される部位となっている。上方の2つの柱体は、集光レンズ29及び調光フィルタ15が配置(例えば嵌合)される部位となっている。図示の例とは異なり、柱体は形成されなくてもよい。また、第1実施形態の説明で述べたように、周面413aの形状は、柱体を含んでいてもよい。 For the outer shape (shape of the outer surface) of the cylindrical member 413, the description of the outer shape of the cylindrical member 13 in the first embodiment may be used. Most of the inner surface of the cylindrical member 413 is constituted by a peripheral surface 413a. For the shape of the peripheral surface 413a, the description of the peripheral surface 17a of the light pipe 17 in the first embodiment may be used. In the illustrated example, the shape of the inner surface of the cylindrical member 413 is composed of a frustum formed by the peripheral surface 413a, a column positioned below the frustum, and two columns positioned above the frustum. have. The lower columnar body is a part where the diffusion plate 27 is arranged (for example, fitted). The upper two pillars are portions where the condenser lens 29 and the light control filter 15 are arranged (for example, fitted). Unlike the illustrated example, the pillars may not be formed. Moreover, as described in the description of the first embodiment, the shape of the peripheral surface 413a may include a columnar body.
 反射膜33の範囲から理解されるように、図示の例では、筒部材413の内面のうち、錐台(別の観点では集光レンズ29から拡散板27までの間の部分)の側面は、その全体が反射面とされている。また、錐台の側面だけでなく、その下方の柱体(別の観点では拡散板27が配置される部分)の側面及び端面、並びにピンホール21の内面も反射面とされている。 As can be understood from the range of the reflective film 33, in the illustrated example, of the inner surface of the cylindrical member 413, the side surface of the frustum (from another point of view, the portion between the condenser lens 29 and the diffuser plate 27) is The entire surface is a reflective surface. Moreover, not only the side surfaces of the frustum, but also the side surfaces and end surfaces of the columnar body (from another point of view, the portion where the diffuser plate 27 is arranged) and the inner surface of the pinhole 21 are used as reflecting surfaces.
 図示の例とは異なり、柱体の側面及び端面、並びにピンホール21の内面の少なくとも1つは、反射面とされなくてもよい。また、錐台の側面の全てが反射面とされる必要は無い。例えば、光軸LAに平行な方向の長さに関して、反射面の長さは、錐台の長さ、又は開口19からピンホール21まで(開口19及びピンホール21を含む)の長さに対して、1/2以上、4/5以上又は9/10以上とされてよい。上記とは逆に、上方の2つの柱体(別の観点では集光レンズ29及び調光フィルタ15が配置される部分)の側面及び端面の少なくとも1つが反射面とされてもよい。 Unlike the illustrated example, at least one of the side surfaces and end surfaces of the pillar and the inner surface of the pinhole 21 may not be a reflective surface. Moreover, it is not necessary to make all the side surfaces of the frustum a reflecting surface. For example, regarding the length in the direction parallel to the optical axis LA, the length of the reflective surface is the length of the frustum, or the length from the aperture 19 to the pinhole 21 (including the aperture 19 and the pinhole 21). 1/2 or more, 4/5 or more, or 9/10 or more. Contrary to the above, at least one of the side surfaces and the end surfaces of the upper two pillars (from another point of view, the portion where the condenser lens 29 and the light control filter 15 are arranged) may be a reflective surface.
 なお、図示の例も含む種々の態様において、光軸LAを囲む反射可能な周面413aは、筒部材13の内周面のうち、光学部品(拡散板27等)が配置される部分の面を除いた領域内で定義されてもよいし、上記部分の面を含んだ領域内で定義されてもよい。本実施形態の説明では、便宜上、前者とする。 In various aspects including the illustrated example, the reflective peripheral surface 413a surrounding the optical axis LA is the surface of the portion of the inner peripheral surface of the cylindrical member 13 where the optical components (diffusion plate 27, etc.) are arranged. may be defined within an area excluding the area, or may be defined within an area including the surface of the above portion. In the description of this embodiment, the former is used for convenience.
(集光レンズ)
 集光レンズ29の焦点は適宜な位置に設定されてよい。例えば、焦点は、ピンホール21内又はその前後に設定されてよい。この場合、例えば、開口19に入射するテレセントリックな光がピンホール21又はその前後に集光される。周面413aは、集光レンズ29が設けられない態様(既述の実施形態からも理解されるように、当該態様も本開示に係る技術に含まれる。)に比較して、集光及び拡散の作用を積極的に奏さず、集光されなかった光(従来は筒部材の内面に吸収された光)の有効利用に寄与する。
(Condenser lens)
The focal point of the condenser lens 29 may be set at an appropriate position. For example, the focal point may be set within, in front of, or behind the pinhole 21 . In this case, for example, telecentric light incident on the aperture 19 is condensed on the pinhole 21 or before and after it. The peripheral surface 413a is more efficient in condensing and diffusing light than in an aspect in which the condensing lens 29 is not provided (as understood from the above-described embodiments, this aspect is also included in the technology according to the present disclosure). , and contributes to the effective use of light that has not been condensed (conventionally, light that has been absorbed by the inner surface of the cylindrical member).
 また、例えば、焦点は、第1実施形態におけるライトパイプ17の入射面17bの焦点と同様に、周面413a(錐台)の内部に位置してよい。この場合は、例えば、集光レンズ29は、入射面17bと同様に、周面413aに到達して反射される光束を増加させることに寄与し、ひいては、周面413aによる集光及び/又は拡散の作用の向上に寄与する。 Also, for example, the focal point may be located inside the peripheral surface 413a (frustum), similar to the focal point of the incident surface 17b of the light pipe 17 in the first embodiment. In this case, for example, the condensing lens 29 contributes to increasing the luminous flux that reaches the peripheral surface 413a and is reflected in the same way as the incident surface 17b. contributes to the improvement of the action of
 集光レンズ29の形状及び寸法(並びに位置)は、例えば、周面413a内に入射する全ての光が実質的に集光レンズ29を通過する光となるように設定されてよい。図示の例では、集光レンズ29は、周面413aの入射側の開口面を塞いでおり、これにより、上記の光の関係が実現されている。 The shape and size (and position) of the condensing lens 29 may be set, for example, so that substantially all the light that enters the peripheral surface 413 a passes through the condensing lens 29 . In the illustrated example, the condensing lens 29 closes the opening of the peripheral surface 413a on the incident side, thereby realizing the above light relationship.
 集光レンズ29(凸レンズ)の具体的な形状及び材料は適宜なものとされてよい。例えば、集光レンズ29は、平凸レンズ(図示の例)、両凸レンズ又は凸メニスカスレンズとされてよい。集光レンズ29としての平凸レンズ又は凸メニスカスレンズは、凸側が開口19側及びピンホール21側のいずれに向けられてもよい。集光レンズ29は、単レンズであってもよいし、複数のレンズ群であってもよい。集光レンズ29の材料は、例えば、ガラス又は樹脂とされてよい。 The specific shape and material of the condenser lens 29 (convex lens) may be appropriate. For example, the condenser lens 29 may be a plano-convex lens (example shown), a bi-convex lens, or a convex meniscus lens. The convex side of the plano-convex lens or convex meniscus lens as the condenser lens 29 may face either the opening 19 side or the pinhole 21 side. The condenser lens 29 may be a single lens, or may be a group of lenses. The material of the condenser lens 29 may be glass or resin, for example.
 以上のとおり、本実施形態においても、瞳モジュール407は、周面413aと、ピンホール21とを有している。周面413aは、光軸LAを軸回りに囲んでおり、光を反射可能である。ピンホール21は、光軸LAに沿う方向において周面413aの出射側に位置している。 As described above, the pupil module 407 also has the peripheral surface 413a and the pinhole 21 in this embodiment. The peripheral surface 413a surrounds the optical axis LA and can reflect light. The pinhole 21 is positioned on the output side of the peripheral surface 413a in the direction along the optical axis LA.
 従って、第1実施形態と同様の作用が奏される。例えば、従来は筒部材の内面に吸収されていた光を有効利用することができる。及び/又は、周面413aの拡散作用によって拡散板を設ける必要性が低減される。これらによって、透過率が向上する。 Therefore, the same effects as in the first embodiment are achieved. For example, it is possible to effectively utilize the light that has conventionally been absorbed by the inner surface of the cylindrical member. and/or the diffusing action of the peripheral surface 413a reduces the need for a diffuser plate. These improve the transmittance.
 本実施形態に示されるように、筒部材413の内面に反射膜33が重なって上記のような周面413aが構成されてよい。 As shown in this embodiment, the reflecting film 33 may overlap the inner surface of the cylindrical member 413 to form the peripheral surface 413a as described above.
 この場合、例えば、筒部材413全体が金属により形成されて、かつ内面に黒塗りの塗料が塗布されないことによって、光を反射する周面413aが構成される態様(当該態様も本開示に係る技術に含まれてよい。)に比較して、筒部材413の材料の自由度が向上する。また、筒部材とは別個のライトパイプ17が不要であることから、構成が簡素化される。 In this case, for example, the entire cylindrical member 413 is made of metal, and the inner surface is not coated with black paint, so that the peripheral surface 413a that reflects light is configured (this aspect is also the technology according to the present disclosure). ), the flexibility of the material of the cylindrical member 413 is improved. Moreover, since the light pipe 17 separate from the tubular member is not required, the configuration is simplified.
 反射膜33は金属膜を含んでよい。 The reflective film 33 may contain a metal film.
 この場合、例えば、周面413aの反射率を高くしやすい。ひいては、周面413aによる集光及び/又は拡散等の作用が向上する。また、金属膜は、遮光膜としても機能する。従って、金属膜は、瞳モジュール407の外部からの、又は外部への光の干渉の低減にも寄与する。別の観点では、基体31の材料の自由度が更に向上する。その結果、例えば、基体31の材料として、遮光性が低い安価な樹脂を用いることも可能である。 In this case, for example, it is easy to increase the reflectance of the peripheral surface 413a. As a result, the action of condensing and/or diffusing light by the peripheral surface 413a is improved. The metal film also functions as a light shielding film. Therefore, the metal film also contributes to reducing interference of light from or to the outside of pupil module 407 . From another point of view, the flexibility of the material of the substrate 31 is further improved. As a result, for example, it is possible to use an inexpensive resin with low light shielding properties as the material of the base 31 .
 本実施形態に示したように、瞳モジュール407は、周面413aの入射側に、光をピンホール21側に集光する集光レンズ29を更に有してよい。 As shown in the present embodiment, the pupil module 407 may further have a condenser lens 29 for condensing light to the pinhole 21 side on the incident side of the peripheral surface 413a.
 この場合、既述のように、例えば、集光レンズ29によってピンホール21に集光することを基本とする態様において、漏れた光を反射する部位として周面413aを利用でき、透過率が向上する。又は、第1実施形態の凸曲面状の入射面17bと同様に、集光レンズ29によって周面413aに到達して反射される光束を増加させ、周面413aによる拡散作用及び/又は集光作用を向上させることができる。 In this case, as described above, for example, in a mode in which light is basically focused on the pinhole 21 by the condenser lens 29, the peripheral surface 413a can be used as a portion for reflecting the leaked light, and the transmittance is improved. do. Alternatively, similarly to the convex curved incident surface 17b of the first embodiment, the light flux that reaches the peripheral surface 413a and is reflected by the condenser lens 29 is increased, and the peripheral surface 413a diffuses and/or condenses light. can be improved.
<ピンホールの第1の変形例>
 図8は、変形例に係るピンホール21Aを示す断面図であり、図7のピンホール21及びその周辺の拡大図に相当する。
<First modification of pinhole>
FIG. 8 is a cross-sectional view showing a pinhole 21A according to a modification, and corresponds to an enlarged view of the pinhole 21 and its surroundings in FIG.
 これまでピンホール21の形状として、直柱(例えば円柱又は角柱)を図示した。図8では、ピンホール21Aの形状として、下方ほど径が小さくなる錐台(入射側部位21s)と、当該錐台の下方に続く直柱(出射側部位21t)とを有する形状が示されている。なお、図8以外の種々の図において示されたピンホール21の形状は、実際のピンホール21の形状として捉えられてもよいし、実際のピンホール21の形状(直柱でない形状)を模式化して示した形状として捉えられてもよい。別の観点では、ピンホール21Aの形状は、任意の実施形態に適用されてよい。 So far, the shape of the pinhole 21 has been illustrated as a straight column (for example, a cylinder or a square column). In FIG. 8, as the shape of the pinhole 21A, a shape having a frustum (incident side portion 21s) whose diameter decreases downward and a straight column (output side portion 21t) continuing below the frustum is shown. there is Note that the shape of the pinhole 21 shown in various drawings other than FIG. It may be understood as a shape shown in a simplified form. In another aspect, the shape of pinhole 21A may be applied to any embodiment.
 変形例に係るピンホール21Aの具体的な形状及び寸法は適宜に設定されてよい。例えば、実施形態におけるピンホール21の説明は、矛盾等が生じない限り、変形例に係るピンホール21Aに援用されてよい。ピンホール21Aにおいて、錐台の横断面(光軸LAに直交する断面)の形状と、柱体の横断面の形状とは、同一(相似)であってもよいし、異なっていてもよい。錐台の側面の光軸LAに対する傾斜角θ2は任意である。例えば、傾斜角θ2は、10°以上、30°以上、50°以上とされてよく、80°以下又は70°以下とされてよく、上記の下限と上限とは適宜に組み合わせされてよい。光軸LAに平行な方向における長さに関して、錐台と直柱とは、いずれが大きくてもよい。図示の例では、後者が前者よりも短くなっている。 The specific shape and dimensions of the pinhole 21A according to the modification may be set as appropriate. For example, the description of the pinhole 21 in the embodiment may be applied to the pinhole 21A according to the modified example as long as there is no contradiction. In the pinhole 21A, the shape of the cross section of the frustum (the cross section orthogonal to the optical axis LA) and the shape of the cross section of the column may be the same (similar) or different. The inclination angle θ2 of the side surface of the frustum with respect to the optical axis LA is arbitrary. For example, the inclination angle θ2 may be 10° or more, 30° or more, or 50° or more, and may be 80° or less or 70° or less, and the above lower limit and upper limit may be appropriately combined. Regarding the length in the direction parallel to the optical axis LA, either the frustum or the straight pillar may be large. In the illustrated example, the latter is shorter than the former.
 図8では、変形例に係るピンホール21Aを有する瞳モジュールとして、第4実施形態(図7)の瞳モジュール407を例に取っている。この場合、第4実施形態の説明で述べたように、反射膜33(換言すれば反射面)は、ピンホール21Aの一部又は全部に亘って形成されてもよいし(図示の例)、形成されなくてもよい In FIG. 8, the pupil module 407 of the fourth embodiment (FIG. 7) is taken as an example of the pupil module having the pinhole 21A according to the modification. In this case, as described in the description of the fourth embodiment, the reflective film 33 (in other words, the reflective surface) may be formed over part or all of the pinhole 21A (illustrated example), does not have to be formed
 以上のとおり、ピンホール21Aは、出射側ほど径が小さくなる部位(錐台の入射側部位21s)を有してよい。 As described above, the pinhole 21A may have a portion (incidence side portion 21s of the frustum) whose diameter becomes smaller toward the exit side.
 この場合、例えば、ピンホール21Aに入射する光束を多くできる。より詳細には、直柱状の出射側部位21tがピンホール21の全体を構成する態様(当該態様も本開示に係る技術に含まれる。)に比較して、外周側(図示の例では拡散板27の外周縁側)からの光を出射側(図の下方)へ透過させやすくなる。これにより、光の透過率を向上させることができる。さらに、上記のように外周側(拡散板27の外周縁側)からの光が出射側へ透過しやすくなることによって、出射側へ透過する光においては、光軸LAに対してある程度の角度で傾斜した光の割合が増加することになる。これにより、撮像素子103への入射角度を拡大させることができる。また、強度の観点から筒部材413の肉厚が厚い場合(ピンホール21Aの貫通方向の長さが長い場合)において、ピンホール21Aが出射光の拡散角に過剰に影響を及ぼす蓋然性が低減される。錐台の側面が反射面とされる態様においては、ピンホール21Aにおいても、集光及び/又は拡散の作用が期待される。 In this case, for example, the luminous flux incident on the pinhole 21A can be increased. More specifically, compared to the aspect (this aspect is also included in the technology according to the present disclosure) in which the straight columnar output side portion 21t constitutes the entire pinhole 21, the outer peripheral side (in the illustrated example, the diffusion plate 27) can be easily transmitted to the output side (downward in the figure). Thereby, the transmittance of light can be improved. Furthermore, since the light from the outer peripheral side (the outer peripheral edge side of the diffusion plate 27) can be easily transmitted to the output side as described above, the light transmitted to the output side is inclined at a certain angle with respect to the optical axis LA. the proportion of light that is As a result, the angle of incidence on the image sensor 103 can be increased. In addition, when the thickness of the cylindrical member 413 is large from the viewpoint of strength (when the length of the pinhole 21A in the penetrating direction is long), the possibility of excessively affecting the diffusion angle of the emitted light from the pinhole 21A is reduced. be. In the aspect in which the side surface of the frustum is a reflecting surface, the pinhole 21A is also expected to have a function of condensing and/or diffusing light.
 上記のような効果は、ピンホール21Aの光軸LAに平行な長さ、又は直柱状の部分(本変形例では入射側部位21s)の光軸LAに平行な長さが短いほど増進されやすい。一方で、筒部材413の強度の観点から、これらの長さは、ある程度以上の大きさとされる。ピンホール21Aの前後に設けられる光学部品(例えば後述するレンズ35)等によって強度が確保されることによって、上記の長さを短くすることも可能である。これらの事情を考慮して、上記の長さは適宜に設定されてよい。例えば、ピンホール21Aの光軸LAに平行な長さは、0.4mm以上0.6mm以下とされてよい。光学部品によって強度を確保できる場合に、ピンホール21Aの光軸LAに平行な長さは、0.2mm以上0.4mm以下とされてよい。直柱状の部分の長さは、例えば、0.05mm以上0.15mm以下とされてよい。 The above effects are likely to be enhanced as the length of the pinhole 21A parallel to the optical axis LA or the length of the straight columnar portion (incidence side portion 21s in this modified example) parallel to the optical axis LA is shorter. . On the other hand, from the viewpoint of the strength of the tubular member 413, these lengths are set to a certain extent or more. The above length can be shortened by securing the strength by optical components (for example, a lens 35 to be described later) or the like provided in front of and behind the pinhole 21A. Considering these circumstances, the above length may be set as appropriate. For example, the length of the pinhole 21A parallel to the optical axis LA may be 0.4 mm or more and 0.6 mm or less. When the strength can be ensured by the optical component, the length of the pinhole 21A parallel to the optical axis LA may be 0.2 mm or more and 0.4 mm or less. The length of the straight columnar portion may be, for example, 0.05 mm or more and 0.15 mm or less.
<第5実施形態>
 図9は、第5実施形態に係る瞳モジュール507の構成を示す断面図であり、第1実施形態の図3に対応している。
<Fifth Embodiment>
FIG. 9 is a cross-sectional view showing the configuration of a pupil module 507 according to the fifth embodiment, and corresponds to FIG. 3 of the first embodiment.
 第5実施形態に係る瞳モジュール507は、第4実施形態に係る瞳モジュール407に比較して、筒部材(換言すれば周面)の形状が相違する。具体的には、第4実施形態に係る筒部材413の周面413a(内周面)は錐台状であったのに対して、第5実施形態に係る筒部材513の周面513a(内周面)は直柱状である。周面513aの形状については、第1実施形態における筒部材13の内面の形状の説明が援用されてよい。 A pupil module 507 according to the fifth embodiment differs from the pupil module 407 according to the fourth embodiment in the shape of the cylindrical member (in other words, the peripheral surface). Specifically, the peripheral surface 413a (inner peripheral surface) of the tubular member 413 according to the fourth embodiment has a frustum shape, whereas the peripheral surface 513a (inner peripheral surface) of the tubular member 513 according to the fifth embodiment has a frustum shape. peripheral surface) is straight columnar. For the shape of the peripheral surface 513a, the description of the shape of the inner surface of the cylindrical member 13 in the first embodiment may be used.
 本実施形態においても、瞳モジュール507は、周面513aと、ピンホール21とを有している。周面513aは、光軸LAを軸回りに囲んでおり、光を反射可能である。ピンホール21は、光軸LAに沿う方向において周面513aの出射側に位置している。 Also in this embodiment, the pupil module 507 has a peripheral surface 513 a and a pinhole 21 . The peripheral surface 513a surrounds the optical axis LA and can reflect light. The pinhole 21 is positioned on the output side of the peripheral surface 513a in the direction along the optical axis LA.
 従って、第1実施形態と同様の作用が奏される。例えば、従来は筒部材の内面に吸収されていた光を有効利用することができる。及び/又は、周面413aの拡散作用によって拡散板を設ける必要性が低減される。これらによって、透過率が向上する。 Therefore, the same effects as in the first embodiment are achieved. For example, it is possible to effectively utilize the light that has conventionally been absorbed by the inner surface of the cylindrical member. and/or the diffusing action of the peripheral surface 413a reduces the need for a diffuser plate. These improve the transmittance.
<第6実施形態>
 図10は、第6実施形態に係る瞳モジュール607の構成を示す断面図であり、第1実施形態の図3に対応している。
<Sixth embodiment>
FIG. 10 is a cross-sectional view showing the configuration of a pupil module 607 according to the sixth embodiment, and corresponds to FIG. 3 of the first embodiment.
 第6実施形態に係る瞳モジュール607は、第1実施形態に係る瞳モジュール7に対して、ピンホール21の射出側にレンズ35(レンズの語は、レンズ群を含むものとする。)を追加したものである。レンズ35が追加されることによって、例えば、瞳モジュール607の大部分(例えばレンズ35以外の全部)の構成を設計変更することなく、撮像素子103に対する種々の入射角度(例えばCRA:Chief Ray Angle)を実現することができる。なお、レンズ35について図示された形状及び寸法等は、現実のものを反映していない。 A pupil module 607 according to the sixth embodiment is obtained by adding a lens 35 (the term "lens" includes a group of lenses) on the exit side of the pinhole 21 to the pupil module 7 according to the first embodiment. is. By adding the lens 35, for example, various incident angles (for example, CRA: Chief Ray Angle) with respect to the image sensor 103 can be obtained without changing the design of most of the pupil module 607 (for example, everything other than the lens 35). can be realized. It should be noted that the illustrated shape, dimensions, etc. of the lens 35 do not reflect the actual one.
 レンズ35の材料及び形状等は任意である。例えば、レンズ35は、単レンズであってもよいし、レンズ群(図示の例)であってもよい。レンズ35(厳密に表現すれば、レンズ35が含む1以上のレンズ。以下、同様。)の材料は、ガラス又は樹脂とされてよい。レンズ35は、球面レンズであってもよいし、非球面レンズであってもよい。レンズ35は、凸レンズであってもよいし、凹レンズであってもよく、より詳細には、例えば、両凸レンズ、平凸レンズ、凸メニスカスレンズ、両凹レンズ、平凹レンズ又は凹メニスカスレンズとされてよい。光軸に直交する面に対して非対称のレンズは、入射側及び出射側のいずれに凸又は凹が向けられてもよい。レング群としてのレンズ35を構成する複数のレンズの形状の組み合わせも任意である。 The material and shape of the lens 35 are arbitrary. For example, the lens 35 may be a single lens or a lens group (example shown). The material of the lens 35 (strictly speaking, one or more lenses included in the lens 35; hereinafter the same) may be glass or resin. Lens 35 may be a spherical lens or an aspherical lens. The lens 35 may be a convex lens, a concave lens, more particularly a bi-convex lens, a plano-convex lens, a convex meniscus lens, a bi-concave lens, a plano-concave lens or a concave meniscus lens, for example. A lens that is asymmetric with respect to a plane perpendicular to the optical axis may be oriented convex or concave on either the entrance side or the exit side. Combinations of shapes of a plurality of lenses constituting lens 35 as a lens group are also arbitrary.
 以上のとおり、瞳モジュール507は、ピンホール21の出射側にレンズ35を有してよい。 As described above, the pupil module 507 may have the lens 35 on the output side of the pinhole 21 .
 この場合、既述のように、レンズ35の設計変更によって、撮像素子103に対する種々の入射角度を実現することができる。ひいては、瞳モジュールを利用する1以上のユーザの種々の仕様に対して安価に対応することができる。 In this case, as described above, by changing the design of the lens 35, it is possible to realize various incident angles with respect to the image sensor 103. As a result, it is possible to inexpensively respond to various specifications of one or more users who use the pupil module.
 ここでは、第1実施形態の瞳モジュール7に対して、レンズ35が設けられた。ただし、レンズ35は、第1実施形態だけでなく、他のいずれの実施形態に適用されてもよい。例えば、第4実施形態(図7)及び第5実施形態(図9)のように、筒部材の基体31の内面に反射膜33が設けられる態様において、レンズ35が設けられても構わない。 Here, a lens 35 is provided for the pupil module 7 of the first embodiment. However, the lens 35 may be applied not only to the first embodiment but also to any other embodiment. For example, as in the fourth embodiment (FIG. 7) and the fifth embodiment (FIG. 9), the lens 35 may be provided in the mode in which the reflecting film 33 is provided on the inner surface of the base 31 of the cylindrical member.
<ピンホールの第2変形例>
 図11は、変形例に係るピンホール21Bを示す断面図であり、図9のピンホール21及びその周辺の拡大図に相当する。
<Second modification of pinhole>
FIG. 11 is a cross-sectional view showing a pinhole 21B according to a modification, and corresponds to an enlarged view of the pinhole 21 and its periphery in FIG.
 なお、既述のように、図10を参照して説明したレンズ35は、いずれの実施形態に適用されてもよい。図11は、第5実施形態(図9)においてレンズ35を設けた図となっている。 Note that, as described above, the lens 35 described with reference to FIG. 10 may be applied to any embodiment. FIG. 11 is a diagram in which a lens 35 is provided in the fifth embodiment (FIG. 9).
 図8を参照して説明した変形例に係るピンホール21Aでは、入射側部位21sは、入射側ほど拡径する錐台状とされた。一方、図11に示す変形例に係るピンホール21Bでは、ピンホール21Aとは逆に、入射側部位21sは直柱状とされており、出射側部位21tが錐台状とされている。出射側部位21tは、出射側ほど拡径するように形成されている。 In the pinhole 21A according to the modified example described with reference to FIG. 8, the incidence side portion 21s has a frustum shape that expands in diameter toward the incidence side. On the other hand, in the pinhole 21B according to the modified example shown in FIG. 11, contrary to the pinhole 21A, the incident side portion 21s has a straight columnar shape and the outgoing side portion 21t has a frustum shape. The output side portion 21t is formed so as to increase in diameter toward the output side.
 なお、ピンホール21Aと同様に、ピンホール21Bは、任意の実施形態に適用されてよい。例えば、ライトパイプ17を有する態様に適用されてもよいし、レンズ35が設けられていない態様に適用されてもよい。 It should be noted that, like the pinhole 21A, the pinhole 21B may be applied to any embodiment. For example, it may be applied to a mode having the light pipe 17 or to a mode having no lens 35 .
 ピンホール21Bの具体的な形状及び寸法は適宜に設定されてよい。例えば、ピンホール21Aの説明は、入射側及び出射側の語を適宜に置換して、ピンホール21Bに援用されてよい。例えば、ピンホール21Aと同様に、錐台の側面の光軸LAに対する傾斜角θ2(図示省略)は、任意であり、例えば、10°以上、30°以上、50°以上とされてよく、80°以下又は70°以下とされてよい。また、例えば、ピンホール21Aと同様に、光軸LAに平行な方向における長さに関して、錐台と直柱とは、いずれが大きくてもよい。また、例えば、ピンホール21Aと同様に、ピンホール21Bの具体的な寸法は、任意であり、0.4mm以上0.6mm以下とされてよい。 The specific shape and dimensions of the pinhole 21B may be set as appropriate. For example, the description of the pinhole 21A may be incorporated into the description of the pinhole 21B by appropriately replacing the terms of incident side and exit side. For example, similarly to the pinhole 21A, the inclination angle θ2 (not shown) of the side surface of the frustum with respect to the optical axis LA is arbitrary, and may be, for example, 10° or more, 30° or more, or 50° or more. ° or less or 70° or less. Also, for example, similarly to the pinhole 21A, either the frustum or the straight column may be large in terms of the length in the direction parallel to the optical axis LA. Further, for example, similar to the pinhole 21A, the specific size of the pinhole 21B is arbitrary and may be 0.4 mm or more and 0.6 mm or less.
 ピンホール21Bが、反射膜33を有する態様に適用される場合、ピンホール21Aと同様に、反射膜33のピンホール21Bに対する配置範囲は任意である。例えば、反射膜33は、ピンホール21Bの全部に亘って形成されてもよいし(図示の例)、ピンホール21Bの一部のみに形成されていてもよいし、ピンホール21Bに全く形成されていなくてもよい。反射膜33がピンホール21Bの一部に形成されている態様としては、例えば、反射膜が入射側部位21s及び出射側部位21tのうち入射側部位21sのみに形成されている態様を挙げることができる。 When the pinhole 21B is applied to the aspect having the reflective film 33, the arrangement range of the reflective film 33 with respect to the pinhole 21B is arbitrary, similarly to the pinhole 21A. For example, the reflective film 33 may be formed over the entire pinhole 21B (example shown), may be formed over only a portion of the pinhole 21B, or may be formed entirely over the pinhole 21B. It doesn't have to be. As a mode in which the reflecting film 33 is formed on a part of the pinhole 21B, for example, there is a mode in which the reflecting film is formed only on the incident side portion 21s of the incident side portion 21s and the emitting side portion 21t. can.
 以上のとおり、ピンホール21Bは、入射側ほど径が小さくなる部位(錐台の出射側部位21t)を有してよい。 As described above, the pinhole 21B may have a portion (the exit side portion 21t of the frustum) whose diameter becomes smaller toward the entrance side.
 この場合、例えば、ピンホール21Aと同様の効果が奏される。具体的には、例えば、外周側(図示の例では拡散板27の外周縁側)からの光がピンホール21Bを透過しやすくなり、透過率が向上するとともに、撮像素子103への入射角度を拡大させることができる。 In this case, for example, the same effect as the pinhole 21A can be obtained. Specifically, for example, light from the outer peripheral side (the outer peripheral edge side of the diffuser plate 27 in the illustrated example) can be easily transmitted through the pinhole 21B, the transmittance is improved, and the incident angle to the image sensor 103 is increased. can be made
 本開示に係る技術は、以上の実施形態及び変形例に限定されず、種々の態様で実施されてよい。 The technology according to the present disclosure is not limited to the above embodiments and modifications, and may be implemented in various ways.
 例えば、上述した種々の実施形態は、適宜に組み合わされてよい。例えば、拡散板が配置されない構成(図3)又は入射側にのみ拡散板を配置する構成(図5)は、筒部材の内面に反射面が構成される態様(図7及び図9)に適用されてもよい。集光レンズ(図7及び図9)は、ライトパイプを有する態様(図3、図5及び図6)に適用されてもよいし、逆に、集光レンズが配置されない構成(図3、図5及び図6)が筒部材の内面に反射面が構成される態様(図7及び図9)に適用されてもよい。このように、入射側の拡散板の有無、出射側の拡散板の有無、集光レンズの有無、ピンホールの出射側のレンズの有無、並びに光軸を囲む周面(反射面)の態様等の組み合わせは任意である。 For example, the various embodiments described above may be combined as appropriate. For example, a configuration in which no diffusion plate is arranged (FIG. 3) or a configuration in which a diffusion plate is arranged only on the incident side (FIG. 5) is applied to embodiments in which a reflecting surface is formed on the inner surface of the cylindrical member (FIGS. 7 and 9). may be Condensing lenses (FIGS. 7 and 9) may be applied in embodiments with light pipes (FIGS. 3, 5 and 6), or conversely in configurations where no condensing lenses are arranged (FIGS. 3 and 5). 5 and 6) may be applied to the aspect (FIGS. 7 and 9) in which the reflecting surface is formed on the inner surface of the tubular member. Thus, presence/absence of a diffusion plate on the incident side, presence/absence of a diffusion plate on the output side, presence/absence of a condenser lens, presence/absence of a lens on the output side of the pinhole, and aspects of the peripheral surface (reflecting surface) surrounding the optical axis, etc. Any combination of
 実施形態では、光軸を軸回りに囲み、光を反射可能な周面として、筒部材とは別部材としての中実なライトパイプの外周面(図3等)、筒部材とは別部材としての中空なライトパイプの内周面(図4)、筒部材の内面に重なる反射膜(図7等)を示した。実施形態の説明でも触れたように、光軸を軸回りに囲み、光を反射可能な周面は、筒部材の全体が光を反射可能な材料によって形成されることによって実現されてもよい。ただし、従来技術においても、厳密に言えば、筒部材の内面は、光を全く反射しないわけではない。そこで、光を反射可能な材料によって筒部材の全体が形成される態様に関しては、光を反射可能な周面という場合、当該周面の反射率は、従来の黒塗りの内面における反射率よりも高い構成を指すものとする。そのような反射率としては、例えば、50%以上又は80%以上を挙げることができる。 In the embodiment, as a peripheral surface that surrounds the optical axis and can reflect light, an outer peripheral surface of a solid light pipe (FIG. 3, etc.) as a member separate from the cylindrical member, and a member separate from the cylindrical member The inner peripheral surface of the hollow light pipe (FIG. 4) and the reflective film (FIG. 7, etc.) overlapping the inner surface of the cylindrical member are shown. As mentioned in the description of the embodiments, the circumferential surface surrounding the optical axis and capable of reflecting light may be realized by forming the entire cylindrical member from a material capable of reflecting light. However, even in the prior art, strictly speaking, the inner surface of the cylindrical member does not reflect light at all. Therefore, regarding the aspect in which the entire cylindrical member is formed of a material that can reflect light, the reflectance of the peripheral surface that can reflect light is higher than the reflectance of the conventional black inner surface. shall refer to a high configuration. Such reflectance can include, for example, 50% or more or 80% or more.
 中実なライトパイプの外周面にはライトパイプ内の光を反射する反射膜が設けられてもよい。反射膜は、中空なライトパイプと捉えられてもよい。別の観点では、中空なライトパイプの内部には透光性の材料が配置されてもよい。 A reflective film that reflects the light inside the light pipe may be provided on the outer peripheral surface of the solid light pipe. A reflective film may be viewed as a hollow light pipe. In another aspect, a translucent material may be placed inside the hollow light pipe.
 光を反射可能な周面(中実なライトパイプの外周面等)の入射側又は出射側に配置された拡散板、集光レンズ及び調光フィルタ等は、光学部品と上位概念化できる。また、周面の入射側又は出射側に配置される光学部品は、実施形態に例示したもの以外の種々のものとされてよい。 Diffusion plates, condensing lenses, light control filters, etc., placed on the incident side or the exit side of a peripheral surface that can reflect light (peripheral surface of a solid light pipe, etc.) can be generalized as optical components. Also, the optical components arranged on the incident side or the exit side of the peripheral surface may be various types other than those exemplified in the embodiments.
 例えば、第4実施形態(図7)では、光学部品として集光レンズ29(換言すれば凸レンズ)を例示したが、凸レンズに代えて凹レンズが設けられてもよい。この場合、例えば、凹レンズから出射される光が発散して周面413a(又は他の実施形態の周面)に光が入射しやすくなる。その結果、周面413aによる光を拡散させる効果が向上する。凹レンズの具体的な形状は適宜なものとされてよい。例えば、凹レンズは、両凹レンズ、平凹レンズ又は凹メニスカスレンズとされてよい。 For example, in the fourth embodiment (FIG. 7), the condensing lens 29 (in other words, convex lens) is illustrated as an optical component, but a concave lens may be provided instead of the convex lens. In this case, for example, the light emitted from the concave lens diverges and the light is more likely to enter the peripheral surface 413a (or the peripheral surface in another embodiment). As a result, the effect of diffusing light by the peripheral surface 413a is improved. The specific shape of the concave lens may be made appropriate. For example, the concave lens may be a biconcave lens, a plano-concave lens, or a concave meniscus lens.
 1…検査装置、7…瞳モジュール、17a…(瞳モジュールの)周面、21…ピンホール、103…撮像素子(固体撮像素子)、LA…光軸。 1... Inspection device, 7... Pupil module, 17a... Peripheral surface (of pupil module), 21... Pinhole, 103... Imaging device (solid-state imaging device), LA... Optical axis.

Claims (18)

  1.  光源装置からの検査用の光を固体撮像素子へ向けて通過させる瞳モジュールであって、
     光軸を軸回りに囲んでおり、光を反射可能な周面と、
     前記光軸に沿う方向において前記周面の出射側に位置しているピンホールと、
     を有している瞳モジュール。
    A pupil module that passes inspection light from a light source device toward a solid-state imaging device,
    a peripheral surface surrounding the optical axis and capable of reflecting light;
    a pinhole located on the output side of the peripheral surface in the direction along the optical axis;
    A pupil module having a
  2.  前記光が入射する開口を一端に有しており、前記開口よりも径が小さい前記ピンホールを他端に有している、遮光性の筒部材を有しており、
     前記周面は、前記筒部材の内側に位置している
     請求項1に記載の瞳モジュール。
    a light-shielding cylindrical member having an opening for the light to enter at one end and the pinhole having a smaller diameter than the opening at the other end;
    The pupil module according to claim 1, wherein the peripheral surface is positioned inside the cylindrical member.
  3.  前記筒部材の内面に反射膜が重なって前記周面が構成されている
     請求項2に記載の瞳モジュール。
    3. The pupil module according to claim 2, wherein a reflecting film overlaps an inner surface of the tubular member to form the peripheral surface.
  4.  前記反射膜は金属膜を含んでいる
     請求項3に記載の瞳モジュール。
    4. Pupil module according to claim 3, wherein the reflective film comprises a metal film.
  5.  前記周面は、直柱状である
     請求項3又は4に記載の瞳モジュール。
    5. A pupil module according to claim 3 or 4, wherein the peripheral surface is straight columnar.
  6.  前記周面は、前記ピンホール側ほど径が小さくなっている
     請求項3又は4に記載の瞳モジュール。
    5. The pupil module according to claim 3, wherein said peripheral surface has a smaller diameter toward said pinhole.
  7.  前記筒部材の内部に、前記筒部材とは別部材の、前記周面を有する、中実又は中空のライトパイプを有している
     請求項2に記載の瞳モジュール。
    3. A pupil module according to claim 2, further comprising a solid or hollow light pipe having said peripheral surface, which is separate from said tubular member and which is inside said tubular member.
  8.  前記ライトパイプの外周面と前記筒部材の内周面とが離れている
     請求項7に記載の瞳モジュール。
    8. The pupil module according to claim 7, wherein the outer peripheral surface of the light pipe and the inner peripheral surface of the tubular member are separated.
  9.  前記ライトパイプは、中実であり、前記光源装置からの光が入射する側の端面が外側に膨らむ曲面状である
     請求項7又は8に記載の瞳モジュール。
    9. The pupil module according to claim 7, wherein the light pipe is solid, and has a curved surface in which the end face on the side on which the light from the light source device is incident bulges outward.
  10.  前記周面は、前記ピンホール側ほど径が小さくなっている
     請求項7~9のいずれか1項に記載の瞳モジュール。
    The pupil module according to any one of claims 7 to 9, wherein the peripheral surface has a smaller diameter toward the pinhole.
  11.  前記周面は、前記光軸に平行な長さが径よりも大きい
     請求項1~10のいずれか1項に記載の瞳モジュール。
    The pupil module according to any one of claims 1 to 10, wherein the peripheral surface has a length parallel to the optical axis greater than a diameter.
  12.  前記周面の出射側に拡散板を有している
     請求項1~11のいずれか1項に記載に瞳モジュール。
    The pupil module according to any one of claims 1 to 11, further comprising a diffusion plate on the output side of the peripheral surface.
  13.  前記周面の入射側に拡散板を有している
     請求項1~12のいずれか1項に記載に瞳モジュール。
    The pupil module according to any one of claims 1 to 12, further comprising a diffusion plate on the entrance side of said peripheral surface.
  14.  前記周面の出射側及び入射側の双方に拡散板が位置していない
     請求項1~11のいずれか1項に記載の瞳モジュール。
    Pupil module according to any one of claims 1 to 11, wherein no diffuser plate is located on both the exit side and the entrance side of the peripheral surface.
  15.  前記周面の入射側に、前記光を前記ピンホール側に集光する集光レンズを更に有している
     請求項1~14のいずれか1項に記載の瞳モジュール。
    The pupil module according to any one of claims 1 to 14, further comprising a condensing lens on the incident side of the peripheral surface for condensing the light to the pinhole side.
  16.  前記ピンホールの出射側にレンズを有している
     請求項1~15のいずれか1項に記載の瞳モジュール。
    Pupil module according to any one of claims 1 to 15, comprising a lens on the output side of the pinhole.
  17.  前記ピンホールは、出射側ほど又は入射側ほど、径が小さくなる部位を有している
     請求項1~16のいずれか1項に記載の瞳モジュール。
    The pupil module according to any one of claims 1 to 16, wherein the pinhole has a portion with a smaller diameter toward the exit side or toward the entrance side.
  18.  請求項1~17のいずれか1項に記載の瞳モジュールと、
     前記瞳モジュールが搭載されているプローブカードと、
     前記光源装置と、
     を有している検査装置。
    a pupil module according to any one of claims 1 to 17;
    a probe card on which the pupil module is mounted;
    the light source device;
    inspection device.
PCT/JP2022/014392 2021-04-15 2022-03-25 Pupil module and inspection device WO2022220069A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021069289A JP7128403B1 (en) 2021-04-15 2021-04-15 Pupil module and inspection device
JP2021-069289 2021-04-15

Publications (1)

Publication Number Publication Date
WO2022220069A1 true WO2022220069A1 (en) 2022-10-20

Family

ID=83112426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014392 WO2022220069A1 (en) 2021-04-15 2022-03-25 Pupil module and inspection device

Country Status (3)

Country Link
JP (2) JP7128403B1 (en)
TW (1) TWI817427B (en)
WO (1) WO2022220069A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571732U (en) * 1992-01-10 1993-09-28 株式会社ニコン Lighting aids
JPH06244396A (en) * 1993-02-17 1994-09-02 Fuji Electric Co Ltd Testing of image sensor
JP2004266250A (en) * 2003-02-12 2004-09-24 Inter Action Corp Testing apparatus for solid-state imaging device, repeater, and optical module
JP2005274279A (en) * 2004-03-24 2005-10-06 Yokogawa Electric Corp Light source for inspection
JP2006145409A (en) * 2004-11-22 2006-06-08 Yokogawa Electric Corp Light source device
JP2007311515A (en) * 2006-05-18 2007-11-29 Aitos Kk Imaging element inspecting apparatus, optical inspecting unit apparatus, and optical inspecting unit
JP2007327878A (en) * 2006-06-08 2007-12-20 Sony Corp Apparatus for measuring optical device, and optical device measurement method
JP2007335651A (en) * 2006-06-15 2007-12-27 Sony Corp Apparatus and tool for measuring optical device
JP2008042257A (en) * 2006-08-01 2008-02-21 Fujifilm Corp Inspection device for solid-state imaging element
JP2009145180A (en) * 2007-12-13 2009-07-02 Fujifilm Corp Device for irradiating inspection light and device for inspecting solid-state image sensor using it
JP2010010672A (en) * 2008-05-30 2010-01-14 Ishizuka Glass Co Ltd Secondary optical system glass member homogenizer for condensing solar power generation, method of manufacturing the same, and condensing solar power generation device
JP2011151276A (en) * 2010-01-23 2011-08-04 Kyocera Corp Photoelectric converter and photoelectric conversion module
JP2012072917A (en) * 2010-09-27 2012-04-12 Denso Corp Light collector, and light collecting device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4754139A (en) * 1986-04-10 1988-06-28 Aerojet-General Corporation Uncooled high resolution infrared imaging plane
US5877500A (en) * 1997-03-13 1999-03-02 Optiscan Biomedical Corporation Multichannel infrared detector with optical concentrators for each channel
AU2003284483A1 (en) * 2002-12-06 2004-06-30 Inter Action Corporation Instrument for testing solid-state imaging device
JP2004273948A (en) 2003-03-11 2004-09-30 Daido Steel Co Ltd Device for evaluating semiconductor light emitting element and method of evaluating the semiconductor light emitting element
JP2005088512A (en) * 2003-09-19 2005-04-07 Minolta Co Ltd Illuminating device
JP4521660B2 (en) * 2004-05-20 2010-08-11 株式会社ニコン LIGHTING ASSISTANCE DEVICE AND INSPECTION DEVICE USING THE LIGHTING ASSISTANCE DEVICE
JP2005345930A (en) * 2004-06-07 2005-12-15 Nikon Corp Lighting system, and nd filter used for the same
JP2006010316A (en) * 2004-06-22 2006-01-12 Yokogawa Electric Corp Light source device for inspection
JP2006202665A (en) * 2005-01-24 2006-08-03 Yokogawa Electric Corp Light source device
JP5261095B2 (en) * 2008-01-23 2013-08-14 株式会社ニコン Illumination optical system for image sensor inspection

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571732U (en) * 1992-01-10 1993-09-28 株式会社ニコン Lighting aids
JPH06244396A (en) * 1993-02-17 1994-09-02 Fuji Electric Co Ltd Testing of image sensor
JP2004266250A (en) * 2003-02-12 2004-09-24 Inter Action Corp Testing apparatus for solid-state imaging device, repeater, and optical module
JP2005274279A (en) * 2004-03-24 2005-10-06 Yokogawa Electric Corp Light source for inspection
JP2006145409A (en) * 2004-11-22 2006-06-08 Yokogawa Electric Corp Light source device
JP2007311515A (en) * 2006-05-18 2007-11-29 Aitos Kk Imaging element inspecting apparatus, optical inspecting unit apparatus, and optical inspecting unit
JP2007327878A (en) * 2006-06-08 2007-12-20 Sony Corp Apparatus for measuring optical device, and optical device measurement method
JP2007335651A (en) * 2006-06-15 2007-12-27 Sony Corp Apparatus and tool for measuring optical device
JP2008042257A (en) * 2006-08-01 2008-02-21 Fujifilm Corp Inspection device for solid-state imaging element
JP2009145180A (en) * 2007-12-13 2009-07-02 Fujifilm Corp Device for irradiating inspection light and device for inspecting solid-state image sensor using it
JP2010010672A (en) * 2008-05-30 2010-01-14 Ishizuka Glass Co Ltd Secondary optical system glass member homogenizer for condensing solar power generation, method of manufacturing the same, and condensing solar power generation device
JP2011151276A (en) * 2010-01-23 2011-08-04 Kyocera Corp Photoelectric converter and photoelectric conversion module
JP2012072917A (en) * 2010-09-27 2012-04-12 Denso Corp Light collector, and light collecting device

Also Published As

Publication number Publication date
TW202246744A (en) 2022-12-01
TWI817427B (en) 2023-10-01
JP2022164665A (en) 2022-10-27
JP2022164061A (en) 2022-10-27
JP7128403B1 (en) 2022-08-31
JP7388766B2 (en) 2023-11-29

Similar Documents

Publication Publication Date Title
TWI428636B (en) Optical element ,light concentrating assembly,illumination unit and assembly,system for optical inspection of an object,and method for producing an optical element
CN107003557B (en) Direct-view display device and light unit for direct-view display device
US8016439B2 (en) Solar simulator
JP4570680B1 (en) Light irradiation device and inspection device
US6697042B1 (en) Backlight assembly for collimated illumination
JPH08234109A (en) Uniform irradiation device of light valve
KR20110000560A (en) Optical inspection system and method
US20160109221A1 (en) Illumination apparatus, pattern irradiation device, and system
JP2008515216A (en) Brightness enhancement of LEDs using selective ray angular reuse
KR200470550Y1 (en) Polarizing beam splitter and projection apparatus
US6024452A (en) Prismatic light beam homogenizer for projection displays
WO2013058360A1 (en) Illumination device for inspections
US20180321477A1 (en) Light-emitting unit with fresnel optical system and light-emitting apparatus and display system using same
JP6444945B2 (en) Optical inspection system
WO2022220069A1 (en) Pupil module and inspection device
JP2005195348A (en) Illumination optical apparatus
TWI500967B (en) Aspectual illumination system
US11016034B2 (en) Optical scattering measurement method and apparatus using micro lens matrix
JP2006202665A (en) Light source device
WO2020095843A1 (en) Coaxial lighting device
JP2582733Y2 (en) Lighting auxiliary equipment
WO2024004729A1 (en) Inspection system
KR101978663B1 (en) Reflecting structure of lighting optics
JP6641316B2 (en) Lighting equipment
JP2008182013A (en) Lighting apparatus and semiconductor inspection device using it

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22787994

Country of ref document: EP

Kind code of ref document: A1