WO2022220061A1 - Ultrasonic motor - Google Patents

Ultrasonic motor Download PDF

Info

Publication number
WO2022220061A1
WO2022220061A1 PCT/JP2022/014304 JP2022014304W WO2022220061A1 WO 2022220061 A1 WO2022220061 A1 WO 2022220061A1 JP 2022014304 W JP2022014304 W JP 2022014304W WO 2022220061 A1 WO2022220061 A1 WO 2022220061A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibrating body
main surface
ultrasonic motor
piezoelectric element
groove portion
Prior art date
Application number
PCT/JP2022/014304
Other languages
French (fr)
Japanese (ja)
Inventor
光城 寺沢
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2022220061A1 publication Critical patent/WO2022220061A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/12Constructional details
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/14Drive circuits; Control arrangements or methods
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves

Definitions

  • the present invention relates to ultrasonic motors.
  • Patent Document 1 discloses an example of an ultrasonic motor in which a plurality of piezoelectric vibrators are arranged on a vibrating body in a stator.
  • the plurality of piezoelectric vibrators vibrate the vibrator in B(1, n) mode (n is a natural number).
  • B(1, n) mode (n is a natural number).
  • a rotor is in contact with the stator. The traveling wave rotates the rotor.
  • An object of the present invention is to provide an ultrasonic motor that can improve rotational efficiency.
  • An ultrasonic motor includes a plate-like vibrating body including first and second main surfaces facing each other, and a piezoelectric element provided on the first main surface of the vibrating body. and a rotor in contact with the second main surface of the vibrating body, the vibrating body vibrating in a B (1, N) mode and the first main surface of the vibrating body and a groove is provided in at least one of the second main surface, and in a plan view of the first main surface, the groove has a circular shape and is more likely to vibrate than the piezoelectric element. Close to the center of gravity of the body.
  • the ultrasonic motor according to the present invention it is possible to increase the rotation efficiency.
  • FIG. 1 is a front cross-sectional view of an ultrasonic motor according to a first embodiment of the invention.
  • FIG. 2 is a bottom view of the stator in the first embodiment of the invention.
  • FIG. 3 is a schematic diagram for explaining each vibration mode.
  • FIG. 4 is a diagram showing the relationship between the distance from the center of the vibrating body and the Z component of displacement in a comparative example.
  • FIG. 5 is a diagram showing the relationship between the distance from the center of the vibrating body and the Z component of displacement in the ultrasonic motor according to the first embodiment of the present invention.
  • FIG. 6 is a front sectional view of the first piezoelectric element in the first embodiment of the invention.
  • FIG. 7(a) to 7(c) are schematic bottom views of the stator for explaining traveling waves excited in the first embodiment of the present invention.
  • FIG. 8 is a bottom view of a stator in a modification of the first embodiment of the invention.
  • FIG. 9 is a plan view of a stator according to a second embodiment of the invention.
  • FIG. 10 is a front sectional view of a stator according to a third embodiment of the invention.
  • FIG. 11 is a schematic control circuit diagram of an ultrasonic motor system according to a fourth embodiment of the invention.
  • FIG. 1 is a front cross-sectional view of an ultrasonic motor according to the first embodiment of the present invention.
  • the ultrasonic motor 1 has a stator 2 and a rotor 4.
  • the stator 2 and rotor 4 are in contact.
  • a traveling wave generated in the stator 2 causes the rotor 4 to rotate.
  • a specific configuration of the ultrasonic motor 1 will be described below.
  • the stator 2 has a vibrating body 3.
  • the vibrating body 3 is disc-shaped.
  • the vibrating body 3 has a first main surface 3a and a second main surface 3b.
  • the first main surface 3a and the second main surface 3b face each other.
  • the axial direction Z is a direction connecting the first main surface 3a and the second main surface 3b and along the rotation center axis.
  • the shape of the vibrating body 3 is not limited to a disk shape.
  • the shape of the vibrating body 3 viewed from the axial direction Z may be, for example, a regular polygon such as a regular hexagon, regular octagon, or regular decagon.
  • the vibrating body 3 is made of an appropriate metal. However, the vibrating body 3 does not necessarily have to be made of metal.
  • the vibrating body 3 may be composed of other elastic bodies such as ceramics, silicon material, or synthetic resin, for example.
  • the direction viewed from the axial direction Z may be referred to as plan view or bottom view.
  • the plan view is the direction viewed from above in FIG. 1, and the bottom view is the direction viewed from below.
  • the direction seen from the second main surface 3b side of the vibrating body 3 to the first main surface 3a side is the plan view
  • the direction seen from the first main surface side 3a to the second main surface 3b side is the bottom surface. It is sight.
  • FIG. 2 is a bottom view of the stator in the first embodiment.
  • a plurality of piezoelectric elements are provided on the first main surface 3 a of the vibrating body 3 . More specifically, the plurality of piezoelectric elements are a first piezoelectric element 13A, a second piezoelectric element 13B, a third piezoelectric element 13C and a fourth piezoelectric element 13D.
  • the plurality of piezoelectric elements are distributed along the circulating direction of the traveling wave so as to generate a traveling wave circulating around an axis parallel to the axial direction Z. As shown in FIG. When viewed from the axial direction Z, the first piezoelectric element 13A and the third piezoelectric element 13C face each other across the axis.
  • the second piezoelectric element 13B and the fourth piezoelectric element 13D face each other across the axis.
  • the stator 2 may have one piezoelectric element divided into a plurality of regions.
  • each region of the piezoelectric element may be polarized in different directions. Therefore, in this specification, one piezoelectric element and a plurality of piezoelectric elements having different polarization directions for each region may be referred to as a plurality of polarized piezoelectric elements.
  • a groove 5 is provided on the first main surface 3a of the vibrating body 3.
  • the groove portion 5 has a circular shape.
  • the groove portion 5 does not necessarily have to be a perfect circle, and may contain an error that does not affect the performance of the ultrasonic motor 1 .
  • the groove portion 5 is provided inside the plurally polarized piezoelectric element. In other words, the groove portion 5 is closer to the center of gravity G of the vibrating body 3 than the piezoelectric element polarized in plural.
  • the center of gravity G of the vibrating body 3 is positioned at the center of the vibrating body 3 .
  • the groove part 5 should just be provided in at least one of the 1st main surface 3a and the 2nd main surface 3b.
  • the plurally polarized piezoelectric elements vibrate the vibrating body 3 in vibration modes including nodal lines extending in the circumferential direction and the radial direction.
  • FIG. 3 is a schematic diagram for explaining each vibration mode. Specifically, FIG. 3 shows the phase of vibration in each region of the vibrating body 3 when viewed from above. Regions marked with a + sign and regions marked with a - sign indicate that the vibration phases are opposite to each other.
  • the vibration mode can be expressed as a B (M, N) mode.
  • the B(1,N) mode is used. That is, the number M of nodal lines extending in the circumferential direction should be 1, and the number N of nodal lines extending in the radial direction should be 0 or any natural number.
  • the rotor 4 is in contact with the second main surface 3b of the vibrating body 3.
  • the rotor 4 has a rotor body 4a and a rotating shaft 4b.
  • the rotor body 4a is disc-shaped.
  • One end of the rotating shaft 4b is connected to the rotor body 4a.
  • the rotor body 4a is in contact with the second main surface 3b of the vibrating body 3.
  • the shape of the rotor main body 4a is not limited to a disc shape.
  • the shape of the rotor main body 4a in plan view may be, for example, a regular polygon such as a regular hexagon, a regular octagon, or a regular decagon.
  • a feature of this embodiment is that the vibrating body 3 has the groove portion 5 described above.
  • the vibration energy can be increased by concentrating the vibration energy on the outside of the groove portion 5 .
  • the coupling coefficient of the plurally polarized piezoelectric elements in the ultrasonic motor 1 can be increased, and the amplitude of the vibrating body 3 can be increased. Therefore, the rotor 4 can be efficiently rotated, and the rotation efficiency of the ultrasonic motor 1 can be improved.
  • the details will be shown below by comparing the present embodiment and a comparative example. Note that the comparative example differs from the present embodiment in that the vibrating body is not provided with grooves.
  • the relationship between the position of the vibrating body and the Z component of the displacement was obtained by simulation.
  • the Z component of displacement is the axial Z component of the displacement.
  • the position on the vibrating body is shown as the distance from the center of the vibrating body.
  • FIG. 5 shows the results when the width of the groove 5 is 0.5 mm and the depth is 1.2 mm in the ultrasonic motor 1 having the configuration of the first embodiment. Note that the vibrating body in the first embodiment and the comparative example has a radius of 19 mm and a thickness of 1.4 mm.
  • FIG. 4 is a diagram showing the relationship between the distance from the center of the vibrating body and the Z component of displacement in a comparative example.
  • FIG. 5 is a diagram showing the relationship between the distance from the center of the vibrating body and the Z component of displacement in the ultrasonic motor according to the first embodiment.
  • the 0 mm position on the horizontal axis is the center of the vibrator. The larger the Z component of the displacement of the vibrating body shown on the vertical axis, the larger the amplitude of the vibrating body.
  • the Z component of the displacement reaches its maximum value near the distance of 11.1 mm from the center of the vibrating body.
  • the maximum value is 211.9 nm.
  • r be the radial dimension of the portion of the vibrating body where the Z component of the displacement is 210 nm or more. In the comparative example, the dimension r is approximately 0.5 mm.
  • the Z component of the displacement reaches its maximum value near the distance of 10.3 mm from the center of the vibrating body.
  • the maximum value is 223.6 nm. It can be seen that the amplitude can be made larger in the first embodiment than in the comparative example. Furthermore, the dimension r is widened to about 3.4 mm. In this way, the amplitude can be increased over a wide range of the vibrating body 3 .
  • a plurality of piezoelectric elements vibrate the entire vibrating body.
  • the vibrating body 3 is provided with the groove portion 5 .
  • the vibration is less likely to be transmitted to the inner side of the groove portion 5, and the outer side of the groove portion 5 is more likely to vibrate. That is, the vibration energy generated by the plurality of piezoelectric elements is concentrated on the outside of the groove portion 5 . Therefore, in the stator 2, the coupling coefficient of the plurality of piezoelectric elements can be increased, and the amplitude of the vibrating body 3 can be increased.
  • the stator 2 is in contact with the rotor 4 and causes the rotor 4 to rotate by traveling waves. Since the amplitude of the traveling wave in the stator 2 can be increased, the rotor 4 can be efficiently rotated. Therefore, the rotational efficiency of the ultrasonic motor 1 can be enhanced.
  • the first embodiment it is possible to widen the area of the portion of the vibrating body 3 where the amplitude is large. Thereby, the area of the portion where the stator 2 propagates the traveling wave to the rotor 4 can be widened. Therefore, it is possible to suppress the occurrence of local friction between the stator 2 and the rotor 4 due to the propagation of the traveling wave, and the wear of the stator 2 and the rotor 4 can be suppressed. Therefore, fluctuations in torque can be suppressed, and driving of the ultrasonic motor 1 can be stabilized. Furthermore, the life of the ultrasonic motor 1 can be extended.
  • the ultrasonic motor 1 can be miniaturized.
  • the width of the groove portion 5 is Wg and the radius of the vibrating body 3 is Rs
  • the ratio of the width Wg to the radius Rs is in the range of 0.05% ⁇ (Wg/Rs) ⁇ 100 ⁇ 15.78%. preferably within As a result, the area of the large-amplitude portion can be further increased.
  • the width Wg corresponding to the above range is 0.01 mm or more and 3 mm or less, and the radius Rs is 19 mm.
  • the range of width Wg and radius Rs are not limited to the above. It is sufficient that the groove portion 5 is provided at a position that does not include the center of vibration.
  • the ratio of the depth Dg to the thickness Ts is within the range of 14.28% ⁇ (Dg/Ts) ⁇ 100 ⁇ 85.71%. is preferred. As a result, the area of the large-amplitude portion can be further increased.
  • the range of depth Dg corresponding to the above range is 0.1 mm or more and 1.2 mm or less, and the thickness Ts is 1.4 mm.
  • the range of depth Dg and thickness Ts are not limited to the above.
  • the groove portion 5 has an outer peripheral edge 5a.
  • the ratio of the distance Lg to the radius Rs of the vibrating body 3 is 30.63% ⁇ (Lg/Rs) ⁇ 100 ⁇ 43. It is preferably in the range of 0.79%.
  • the plurally polarized piezoelectric elements can be more reliably arranged at positions where the vibrating body 3 can be suitably vibrated. Therefore, the amplitude can be increased more reliably.
  • the distance between each piezoelectric element and the groove portion 5 in plan view should be 0 mm or more.
  • the rotor 4 is in direct contact with the second main surface 3b of the vibrating body 3 of the stator 2.
  • a friction material may be fixed to the surface of the rotor 4 on the stator 2 side.
  • the rotor 4 is in indirect contact with the second main surface 3b via the friction material. Thereby, the frictional force applied between the oscillator 3 of the stator 2 and the rotor 4 can be stabilized. Thereby, the rotor 4 can be rotated more efficiently.
  • FIG. 6 is a front sectional view of the first piezoelectric element in the first embodiment.
  • the first piezoelectric element 13A has a piezoelectric body 14.
  • the piezoelectric body 14 has a third principal surface 14a and a fourth principal surface 14b.
  • the third main surface 14a and the fourth main surface 14b face each other.
  • the first piezoelectric element 13A has a first electrode 15A and a second electrode 15B.
  • a first electrode 15A is provided on the third main surface 14a of the piezoelectric body 14, and a second electrode 15B is provided on the fourth main surface 14b.
  • the second piezoelectric element 13B, the third piezoelectric element 13C, and the fourth piezoelectric element 13D are configured similarly to the first piezoelectric element 13A.
  • Each piezoelectric element has a rectangular shape in plan view. Note that the shape of each piezoelectric element in a plan view is not limited to the above, and may be, for example, an elliptical shape.
  • the first electrode 15A is attached to the first main surface 3a of the vibrating body 3 with an adhesive.
  • the thickness of this adhesive is very thin. Therefore, the first electrode 15A is electrically connected to the vibrating body 3. As shown in FIG.
  • the stator 2 should have at least the first piezoelectric element 13A and the second piezoelectric element 13B. Alternatively, it may have one piezoelectric element divided into a plurality of regions. In this case, for example, each region of the piezoelectric element may be polarized in different directions.
  • Patent Document 1 International Publication No. 2010/061508
  • Patent Document 1 International Publication No. 2010/061508
  • the structure which generates this traveling wave suppose that not only the following description but the structure of international publication 2010/061508 is used for this specification, and detailed description is abbreviate
  • FIGS. 7(a) to 7(c) are schematic bottom views of the stator for explaining traveling waves excited in the first embodiment.
  • FIGS. 7(a) to 7(c) in the gray scale, the closer to black, the greater the stress in one direction, and the closer to white, the greater the stress in the other direction.
  • Fig. 7(a) shows a three-wave standing wave X
  • Fig. 7(b) shows a three-wave standing wave Y.
  • the first to fourth piezoelectric elements 13A to 13D are arranged with a central angle of 90°.
  • the central angle is determined by multiplying the angle of one wave of 120° by 3/4 to determine the angle of 90°.
  • the first piezoelectric element 13A is arranged at a predetermined place where the amplitude of the three-wave standing wave X is large, and the second to fourth piezoelectric elements 13B to 13D are arranged at intervals of 90° of the central angle.
  • three standing waves X and Y having vibration phases different by 90° are excited, and the two are combined to generate the traveling wave shown in FIG. 7(c).
  • FIGS. 7(a) to 7(c) indicate the polarization directions of the piezoelectric body 14.
  • FIG. + means that it is polarized from the third main surface 14a toward the fourth main surface 14b in the thickness direction.
  • - indicates that it is polarized in the opposite direction.
  • A indicates the first piezoelectric element 13A and the third piezoelectric element 13C
  • B indicates the second piezoelectric element 13B and the fourth piezoelectric element 13D.
  • the configuration for generating traveling waves is not limited to the configurations shown in FIGS. 7A to 7C, and various conventionally known configurations for generating traveling waves can be used.
  • the rotor 4 has a rotor body 4a and a rotating shaft 4b.
  • a shaft member that is separate from the rotor 4 may be provided.
  • the rotor 4 may be a member corresponding to the rotor main body 4a.
  • the vibrator of the stator and the rotor may each be provided with a through hole.
  • a shaft member may be inserted through each of the through holes.
  • each of the through-holes should be located in a region including the center in the axial direction.
  • FIG. 8 is a bottom view of the stator in the modified example of the first embodiment.
  • a first groove portion 25 and a second groove portion 26 are provided on the first principal surface 3a of the vibrating body 23 .
  • the first groove portion 25 is the groove portion 5 in the first embodiment. Therefore, the first groove portion 25 is provided inside the piezoelectric element that is polarized in a plurality of ways in plan view.
  • the second groove portion 26 is provided outside the plurally polarized piezoelectric element in plan view.
  • the second groove portion 26 has a circular shape in plan view. Also in this case, as in the first embodiment, it is possible to increase the coupling coefficient of the plurally polarized piezoelectric elements and increase the amplitude of the vibrating body 23 . Therefore, the rotation efficiency of the ultrasonic motor can be enhanced.
  • the main surface on which the grooves 5 are provided is the same as the main surface on which the plurally polarized piezoelectric elements are provided.
  • the main surface on which the grooves 5 are provided may be different from the main surface on which the plurally polarized piezoelectric elements are provided. An example of this is illustrated by the second embodiment below.
  • FIG. 9 is a plan view of the stator in the second embodiment.
  • This embodiment differs from the first embodiment in that the groove 5 is provided on the second main surface 3b of the vibrating body 33 and the groove 5 is not provided on the first main surface 3a. Except for the above points, the ultrasonic motor of this embodiment has the same configuration as the ultrasonic motor 1 of the first embodiment.
  • the vibration energy generated by the piezoelectric element polarized in plural can be concentrated on the outside of the groove portion 5 . Therefore, the coupling coefficient of the plurally polarized piezoelectric elements can be increased, and the amplitude of the vibrating body 33 can be increased. Therefore, the rotational efficiency of the ultrasonic motor can be enhanced. Furthermore, the area of the portion of the vibrating body 33 where the amplitude is large can be widened.
  • a ratio of the width Wg to the radius Rs of the vibrating body 33 is preferably within the range of 10.52% ⁇ (Wg/Rs) ⁇ 100 ⁇ 15.78%. As a result, the area of the large-amplitude portion can be further increased.
  • the ratio of the depth Dg to the stator thickness Ts is preferably within the range of 7.14% ⁇ (Dg/Ts) ⁇ 100 ⁇ 85.71%. Also in this case, the area of the portion with large amplitude can be further increased.
  • the ratio of the distance Lg between the outer peripheral edge 5a of the groove 5 and the center of the vibrating body 33 to the radius Rs of the vibrating body 33 is in the range of 30.63% ⁇ (Lg/Rs) ⁇ 100 ⁇ 43.79%. preferably within As a result, the plurally polarized piezoelectric elements can be more reliably arranged at positions where the vibrating body 33 can be vibrated appropriately. Therefore, the amplitude can be increased more reliably.
  • the distance between each piezoelectric element and the groove portion 5 in plan view should be 0 mm or more.
  • the plurally polarized piezoelectric elements and the grooves 5 are provided on different main surfaces.
  • the distance between the piezoelectric element and the groove portion 5 in plan view is the distance between the groove portion 5 and the projection of the piezoelectric element on the main surface on which the groove portion 5 is provided in plan view. is.
  • first groove portion 25 and the second groove portion 26 shown in FIG. 8 may be provided on the second main surface 3b of the vibrating body 33 shown in FIG.
  • first groove portion 25 and the second groove portion 26 may be provided on different main surfaces.
  • FIG. 10 is a front sectional view of the stator in the third embodiment.
  • This embodiment differs from the first embodiment in that grooves are provided on both the first main surface 3a and the second main surface 3b of the vibrating body 43.
  • FIG. Except for the above points, the ultrasonic motor of this embodiment has the same configuration as the ultrasonic motor 1 of the first embodiment.
  • the groove provided on the first main surface 3 a is the first groove 25
  • the groove provided on the second main surface 3 b is the third groove 47 .
  • the first groove portion 25 corresponds to the groove portion 5 in the first embodiment
  • the third groove portion 47 corresponds to the groove portion 5 in the second embodiment.
  • first groove portion 25 and the third groove portion 47 overlap in plan view.
  • first groove portion 25 and the third groove portion 47 do not have to overlap.
  • both the first groove portion 25 and the third groove portion 47 need only be arranged inside the piezoelectric element that is polarized in plurality.
  • the vibrating body 43 is provided with the first groove portion 25 and the third groove portion 47, the energy of the vibration generated by the piezoelectric element polarized in multiple ways is transferred to the first groove portion 25 as in the first embodiment. and outside the third groove 47 . Therefore, the coupling coefficient of the plurally polarized piezoelectric elements can be increased, and the amplitude of the vibrating body 43 can be increased. Therefore, the rotational efficiency of the ultrasonic motor can be enhanced. Furthermore, the area of the portion of the vibrating body 43 where the amplitude is large can be widened.
  • FIG. 11 is a schematic control circuit diagram of the ultrasonic motor system according to the fourth embodiment.
  • the ultrasonic motor system 50 has an ultrasonic motor 51 and a drive control device 52 .
  • the ultrasonic motor 51 differs from the first embodiment in that it has a speed detection terminal 53A and a capacitance detection terminal 53B. Except for the above points, the ultrasonic motor 51 of this embodiment has the same configuration as the ultrasonic motor 1 of the first embodiment.
  • the speed detection terminal 53A and the capacitance detection terminal 53B are provided on the piezoelectric body 14 of the first piezoelectric element 13A shown in FIG.
  • the drive control device 52 has a filter section 54A, a speed detection section 55, a control section 56, a drive circuit section 57, a capacitance detection section 58, a filter section 54B, and a temperature calculation section 59.
  • a speed detection terminal 53A of the ultrasonic motor 51 is connected to a speed detection section 55 via a filter section 54A.
  • the speed detector 55 is connected to the controller 56 .
  • a capacity detection terminal 53B of the ultrasonic motor 51 is connected to the capacity detection section 58 .
  • the capacitance detection section 58 is connected to the temperature calculation section 59 via the filter section 54B.
  • the temperature calculator 59 is connected to the controller 56 .
  • the control section 56 is connected to the drive circuit section 57 . Furthermore, the drive circuit section 57 is connected to each piezoelectric element of the ultrasonic motor 51 .
  • the speed detection terminal 53A of the ultrasonic motor 51 outputs a signal corresponding to the driving speed of the ultrasonic motor 51 to the speed detection section 55.
  • the filter section 54A filters the signal output from the speed detection terminal 53A to the speed detection section 55.
  • FIG. The speed detector 55 detects the driving speed of the ultrasonic motor 51 .
  • the capacitance detection terminal 53B of the ultrasonic motor 51 outputs a signal corresponding to the capacitance of the first piezoelectric element 13A in the ultrasonic motor 51 to the capacitance detection section 58.
  • the capacitance detector 58 detects the capacitance of the first piezoelectric element 13A.
  • Capacitance detector 58 outputs a signal corresponding to the detected capacitance to temperature calculator 59 .
  • the filter section 54B filters the signal output from the capacitance detection section 58 to the temperature calculation section 59 .
  • the control unit 56 sets driving conditions for the ultrasonic motor 51 .
  • the drive circuit section 57 applies a drive voltage to each piezoelectric element of the ultrasonic motor 51 based on the drive conditions set by the control section 56 .
  • the stator of the ultrasonic motor 51 is constructed in the same manner as in the first embodiment. Therefore, in the ultrasonic motor 51 as well, grooves are provided inside the piezoelectric elements that are polarized in a plurality of ways in a plan view. Therefore, similarly to the first embodiment, it is possible to increase the coupling coefficient of the plurally polarized piezoelectric elements and increase the amplitude of the vibrating body. Therefore, the rotation efficiency of the ultrasonic motor can be enhanced. Furthermore, the area of the portion of the vibrating body where the amplitude is large can be widened.
  • the ultrasonic motor system 50 has the ultrasonic motor 51 according to the present invention, it is possible to increase the area of the portion of the vibrating body of the stator where the amplitude is large, thereby suppressing the wear of the stator and rotor. can. Therefore, torque fluctuations can be suppressed, and driving of the ultrasonic motor 51 in the ultrasonic motor system 50 can be stabilized. Furthermore, the life of the ultrasonic motor system 50 can be extended.
  • the ultrasonic motor 51 has a speed detection terminal 53A and a capacitance detection terminal 53B. Therefore, an angular velocity sensor and a temperature sensor are unnecessary. Therefore, the number of parts can be reduced.
  • the ultrasonic motor system 50 is an example, and the configuration is not limited to the above. Ultrasonic motor system 50 may have an angular velocity sensor or a temperature sensor. The ultrasonic motor system 50 is not limited to the ultrasonic motor 51 as long as it has an ultrasonic motor according to the present invention.

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

Provided is an ultrasonic motor with which rotational efficiency can be increased. An ultrasonic motor according to the present invention is provided with: a stator 2 comprising a plate-shaped vibrating body 3 including a first main surface 3a and a second main surface 3b that oppose one another, and first to fourth piezoelectric elements 13A to 13D provided on the first main surface 3a of the vibrating body 3; and a rotor which is in contact with the second main surface 3b of the vibrating body 3. The vibrating body 3 vibrates in B (1, N) modes. A groove portion 5 is provided in at least one of the first main surface 3a and the second main surface 3b of the vibrating body 3. In a plan view of the first main surface 3a, the groove portion 5 has a circular shape, and is closer to a center of gravity G of the vibrating body 3 than the first to fourth piezoelectric elements 13A to 13D.

Description

超音波モータultrasonic motor
 本発明は、超音波モータに関する。 The present invention relates to ultrasonic motors.
 従来、圧電素子によりステータを振動させる超音波モータが種々提案されている。下記の特許文献1には、ステータにおいて、振動体上に複数の圧電振動子が配置された超音波モータの一例が開示されている。この超音波モータにおいては、複数の圧電振動子は、B(1,n)モード(nは自然数)により振動体を振動させる。これにより、ステータに進行波が生じる。ステータにはロータが接触している。上記進行波によってロータを回転させる。 Conventionally, various ultrasonic motors have been proposed that vibrate the stator using a piezoelectric element. Patent Document 1 below discloses an example of an ultrasonic motor in which a plurality of piezoelectric vibrators are arranged on a vibrating body in a stator. In this ultrasonic motor, the plurality of piezoelectric vibrators vibrate the vibrator in B(1, n) mode (n is a natural number). This produces a traveling wave in the stator. A rotor is in contact with the stator. The traveling wave rotates the rotor.
国際公開第2010/061508号WO2010/061508
 近年、超音波モータの回転効率のさらなる向上が求められている。しかしながら、特許文献1の超音波モータでは、回転効率を十分に高めることは困難であった。 In recent years, there has been a demand for further improvements in the rotational efficiency of ultrasonic motors. However, in the ultrasonic motor of Patent Document 1, it was difficult to sufficiently improve the rotational efficiency.
 本発明の目的は、回転効率を高めることができる、超音波モータを提供することにある。 An object of the present invention is to provide an ultrasonic motor that can improve rotational efficiency.
 本発明に係る超音波モータは、対向し合う第1の主面及び第2の主面を含む板状の振動体と、前記振動体の前記第1の主面に設けられている圧電素子とを有するステータと、前記振動体の前記第2の主面に接触しているロータとを備え、前記振動体がB(1,N)モードにより振動し、前記振動体の前記第1の主面及び前記第2の主面のうち少なくとも一方に溝部が設けられており、前記第1の主面の平面視において、前記溝部が、円状の形状を有し、かつ前記圧電素子よりも前記振動体の重心に近接する。 An ultrasonic motor according to the present invention includes a plate-like vibrating body including first and second main surfaces facing each other, and a piezoelectric element provided on the first main surface of the vibrating body. and a rotor in contact with the second main surface of the vibrating body, the vibrating body vibrating in a B (1, N) mode and the first main surface of the vibrating body and a groove is provided in at least one of the second main surface, and in a plan view of the first main surface, the groove has a circular shape and is more likely to vibrate than the piezoelectric element. Close to the center of gravity of the body.
 本発明に係る超音波モータによれば、回転効率を高めることができる。 According to the ultrasonic motor according to the present invention, it is possible to increase the rotation efficiency.
図1は、本発明の第1の実施形態に係る超音波モータの正面断面図である。FIG. 1 is a front cross-sectional view of an ultrasonic motor according to a first embodiment of the invention. 図2は、本発明の第1の実施形態におけるステータの底面図である。FIG. 2 is a bottom view of the stator in the first embodiment of the invention. 図3は、各振動モードを説明するための模式図である。FIG. 3 is a schematic diagram for explaining each vibration mode. 図4は、比較例においての、振動体の中心からの距離と、変位のZ成分との関係を示す図である。FIG. 4 is a diagram showing the relationship between the distance from the center of the vibrating body and the Z component of displacement in a comparative example. 図5は、本発明の第1の実施形態に係る超音波モータにおいての、振動体の中心からの距離と、変位のZ成分との関係を示す図である。FIG. 5 is a diagram showing the relationship between the distance from the center of the vibrating body and the Z component of displacement in the ultrasonic motor according to the first embodiment of the present invention. 図6は、本発明の第1の実施形態における第1の圧電素子の正面断面図である。FIG. 6 is a front sectional view of the first piezoelectric element in the first embodiment of the invention. 図7(a)~図7(c)は、本発明の第1の実施形態において励振される進行波を説明するための、ステータの模式的底面図である。7(a) to 7(c) are schematic bottom views of the stator for explaining traveling waves excited in the first embodiment of the present invention. 図8は、本発明の第1の実施形態の変形例におけるステータの底面図である。FIG. 8 is a bottom view of a stator in a modification of the first embodiment of the invention. 図9は、本発明の第2の実施形態におけるステータの平面図である。FIG. 9 is a plan view of a stator according to a second embodiment of the invention. 図10は、本発明の第3の実施形態におけるステータの正面断面図である。FIG. 10 is a front sectional view of a stator according to a third embodiment of the invention. 図11は、本発明の第4の実施形態に係る超音波モータシステムの模式的制御回路図である。FIG. 11 is a schematic control circuit diagram of an ultrasonic motor system according to a fourth embodiment of the invention.
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。 Hereinafter, the present invention will be clarified by describing specific embodiments of the present invention with reference to the drawings.
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。 It should be noted that each embodiment described in this specification is an example, and partial replacement or combination of configurations is possible between different embodiments.
 図1は、本発明の第1の実施形態に係る超音波モータの正面断面図である。 FIG. 1 is a front cross-sectional view of an ultrasonic motor according to the first embodiment of the present invention.
 超音波モータ1は、ステータ2と、ロータ4とを有する。ステータ2とロータ4とは接触している。ステータ2において生じた進行波により、ロータ4が回転する。以下において、超音波モータ1の具体的な構成を説明する。 The ultrasonic motor 1 has a stator 2 and a rotor 4. The stator 2 and rotor 4 are in contact. A traveling wave generated in the stator 2 causes the rotor 4 to rotate. A specific configuration of the ultrasonic motor 1 will be described below.
 ステータ2は振動体3を有する。振動体3は円板状である。振動体3は第1の主面3a及び第2の主面3bを有する。第1の主面3a及び第2の主面3bは互いに対向している。本明細書において、軸方向Zとは、第1の主面3a及び第2の主面3bを結ぶ方向であって、回転中心軸に沿う方向をいう。なお、振動体3の形状は円板状には限定されない。軸方向Zから見た振動体3の形状は、例えば、正六角形、正八角形または正十角形などの正多角形であってもよい。振動体3は適宜の金属からなる。もっとも、振動体3は必ずしも金属からなっていなくともよい。振動体3は、例えば、セラミックス、シリコン材料または合成樹脂などの他の弾性体により構成されていてもよい。 The stator 2 has a vibrating body 3. The vibrating body 3 is disc-shaped. The vibrating body 3 has a first main surface 3a and a second main surface 3b. The first main surface 3a and the second main surface 3b face each other. In this specification, the axial direction Z is a direction connecting the first main surface 3a and the second main surface 3b and along the rotation center axis. Note that the shape of the vibrating body 3 is not limited to a disk shape. The shape of the vibrating body 3 viewed from the axial direction Z may be, for example, a regular polygon such as a regular hexagon, regular octagon, or regular decagon. The vibrating body 3 is made of an appropriate metal. However, the vibrating body 3 does not necessarily have to be made of metal. The vibrating body 3 may be composed of other elastic bodies such as ceramics, silicon material, or synthetic resin, for example.
 本明細書においては、軸方向Zから見る方向を、平面視または底面視と記載することがある。なお、平面視は、図1における上方から見る方向であり、底面視は、下方から見る方向である。例えば、振動体3の第2の主面3b側から第1の主面3a側に見る方向が平面視であり、第1の主面側3aから第2の主面3b側に見る方向が底面視である。 In this specification, the direction viewed from the axial direction Z may be referred to as plan view or bottom view. Note that the plan view is the direction viewed from above in FIG. 1, and the bottom view is the direction viewed from below. For example, the direction seen from the second main surface 3b side of the vibrating body 3 to the first main surface 3a side is the plan view, and the direction seen from the first main surface side 3a to the second main surface 3b side is the bottom surface. It is sight.
 図2は、第1の実施形態におけるステータの底面図である。 FIG. 2 is a bottom view of the stator in the first embodiment.
 振動体3の第1の主面3aには、複数の圧電素子が設けられている。より具体的には、複数の圧電素子は、第1の圧電素子13A、第2の圧電素子13B、第3の圧電素子13C及び第4の圧電素子13Dである。複数の圧電素子は、軸方向Zに平行な軸を中心として周回する進行波を発生させるように、該進行波の周回方向に沿って分散配置されている。軸方向Zから見たときに、第1の圧電素子13A及び第3の圧電素子13Cは軸を挟んで互いに対向している。第2の圧電素子13B及び第4の圧電素子13Dは軸を挟んで互いに対向している。 A plurality of piezoelectric elements are provided on the first main surface 3 a of the vibrating body 3 . More specifically, the plurality of piezoelectric elements are a first piezoelectric element 13A, a second piezoelectric element 13B, a third piezoelectric element 13C and a fourth piezoelectric element 13D. The plurality of piezoelectric elements are distributed along the circulating direction of the traveling wave so as to generate a traveling wave circulating around an axis parallel to the axial direction Z. As shown in FIG. When viewed from the axial direction Z, the first piezoelectric element 13A and the third piezoelectric element 13C face each other across the axis. The second piezoelectric element 13B and the fourth piezoelectric element 13D face each other across the axis.
 なお、ステータ2は、複数の領域に分割された、1個の圧電素子を有していてもよい。この場合には、例えば、圧電素子の各領域が互いに異なる方向に分極されていてもよい。よって、本明細書では、領域毎に異なる分極方向を有する1個の圧電素子、及び複数の圧電素子を、複数に分極された圧電素子と記載する場合がある。 Note that the stator 2 may have one piezoelectric element divided into a plurality of regions. In this case, for example, each region of the piezoelectric element may be polarized in different directions. Therefore, in this specification, one piezoelectric element and a plurality of piezoelectric elements having different polarization directions for each region may be referred to as a plurality of polarized piezoelectric elements.
 振動体3の第1の主面3aには溝部5が設けられている。平面視において、溝部5は円状の形状を有する。もっとも、溝部5は必ずしも真円ではなくともよく、超音波モータ1の性能に影響しない程度の誤差を含んでいてもよい。さらに、平面視において、溝部5は、複数に分極された圧電素子の内側に設けられている。言い換えれば、溝部5は、複数に分極された圧電素子よりも振動体3の重心Gに近接する。本実施形態では、振動体3の重心Gは、振動体3の中心に位置する。なお、溝部5は、第1の主面3a及び第2の主面3bのうち少なくとも一方に設けられていればよい。ここで、複数に分極された圧電素子は、振動体3を、周回方向及び径方向に延びる節線を含む振動モードにより振動させる。 A groove 5 is provided on the first main surface 3a of the vibrating body 3. In plan view, the groove portion 5 has a circular shape. However, the groove portion 5 does not necessarily have to be a perfect circle, and may contain an error that does not affect the performance of the ultrasonic motor 1 . Furthermore, in a plan view, the groove portion 5 is provided inside the plurally polarized piezoelectric element. In other words, the groove portion 5 is closer to the center of gravity G of the vibrating body 3 than the piezoelectric element polarized in plural. In this embodiment, the center of gravity G of the vibrating body 3 is positioned at the center of the vibrating body 3 . In addition, the groove part 5 should just be provided in at least one of the 1st main surface 3a and the 2nd main surface 3b. Here, the plurally polarized piezoelectric elements vibrate the vibrating body 3 in vibration modes including nodal lines extending in the circumferential direction and the radial direction.
 図3は、各振動モードを説明するための模式図である。具体的には図3は、平面視したときの振動体3における各領域の振動の位相を示す。+の符号が付されている領域と、-の符号が付されている領域とは、振動の位相が互いに逆であることを示す。 FIG. 3 is a schematic diagram for explaining each vibration mode. Specifically, FIG. 3 shows the phase of vibration in each region of the vibrating body 3 when viewed from above. Regions marked with a + sign and regions marked with a - sign indicate that the vibration phases are opposite to each other.
 周回方向に延びる節線の本数をMとし、径方向に延びる節線の本数をNとしたときに、振動モードはB(M,N)モードで表すことができる。本実施形態においては、B(1,N)モードを利用する。すなわち、周回方向に延びる節線の本数Mが1であり、径方向に延びる節線の本数Nが0または任意の自然数であればよい。 When the number of nodal lines extending in the circumferential direction is M and the number of nodal lines extending in the radial direction is N, the vibration mode can be expressed as a B (M, N) mode. In this embodiment, the B(1,N) mode is used. That is, the number M of nodal lines extending in the circumferential direction should be 1, and the number N of nodal lines extending in the radial direction should be 0 or any natural number.
 図1に示すように、振動体3の第2の主面3bにロータ4が接触している。ロータ4は、ロータ本体4aと、回転軸4bとを有する。ロータ本体4aは円板状である。回転軸4bの一端がロータ本体4aに連ねられている。ロータ本体4aが振動体3の第2の主面3bに接触している。なお、ロータ本体4aの形状は円板状には限定されない。平面視におけるロータ本体4aの形状は、例えば、正六角形、正八角形または正十角形などの正多角形であってもよい。 As shown in FIG. 1, the rotor 4 is in contact with the second main surface 3b of the vibrating body 3. The rotor 4 has a rotor body 4a and a rotating shaft 4b. The rotor body 4a is disc-shaped. One end of the rotating shaft 4b is connected to the rotor body 4a. The rotor body 4a is in contact with the second main surface 3b of the vibrating body 3. As shown in FIG. In addition, the shape of the rotor main body 4a is not limited to a disc shape. The shape of the rotor main body 4a in plan view may be, for example, a regular polygon such as a regular hexagon, a regular octagon, or a regular decagon.
 本実施形態の特徴は、振動体3が上記溝部5を有することにある。このように、ステータ2内に溝部5を設けることで、振動エネルギーを溝部5の外側に集中させることにより、振動エネルギーを増大させることを可能とする。それによって、超音波モータ1における複数に分極された圧電素子の結合係数を高めることができ、振動体3の振幅を大きくすることができる。よって、ロータ4を効率的に回転させることができ、超音波モータ1の回転効率を高めることができる。この詳細を、本実施形態と比較例とを比較することにより、以下において示す。なお、比較例は、振動体に溝部が設けられていない点において本実施形態と異なる。 A feature of this embodiment is that the vibrating body 3 has the groove portion 5 described above. By providing the groove portion 5 in the stator 2 in this way, the vibration energy can be increased by concentrating the vibration energy on the outside of the groove portion 5 . As a result, the coupling coefficient of the plurally polarized piezoelectric elements in the ultrasonic motor 1 can be increased, and the amplitude of the vibrating body 3 can be increased. Therefore, the rotor 4 can be efficiently rotated, and the rotation efficiency of the ultrasonic motor 1 can be improved. The details will be shown below by comparing the present embodiment and a comparative example. Note that the comparative example differs from the present embodiment in that the vibrating body is not provided with grooves.
 第1の実施形態の構成を有する超音波モータ1及び比較例の超音波モータにおいて、シミュレーションにより、振動体における位置と変位のZ成分との関係を求めた。変位のZ成分は、変位における軸方向Zの成分である。なお、以下においては、振動体における位置を、振動体の中心からの距離として示す。図5においては、第1の実施形態の構成を有する超音波モータ1において、溝部5の幅を0.5mmとし、深さを1.2mmとした場合の結果を示す。なお、第1の実施形態及び比較例における振動体の半径は19mmであり、厚みは1.4mmである。 In the ultrasonic motor 1 having the configuration of the first embodiment and the ultrasonic motor of the comparative example, the relationship between the position of the vibrating body and the Z component of the displacement was obtained by simulation. The Z component of displacement is the axial Z component of the displacement. In the following description, the position on the vibrating body is shown as the distance from the center of the vibrating body. FIG. 5 shows the results when the width of the groove 5 is 0.5 mm and the depth is 1.2 mm in the ultrasonic motor 1 having the configuration of the first embodiment. Note that the vibrating body in the first embodiment and the comparative example has a radius of 19 mm and a thickness of 1.4 mm.
 図4は、比較例においての、振動体の中心からの距離と、変位のZ成分との関係を示す図である。図5は、第1の実施形態に係る超音波モータにおいての、振動体の中心からの距離と、変位のZ成分との関係を示す図である。図4及び図5において、横軸における0mmの位置は振動体の中央である。縦軸に示す、振動体の変位のZ成分が大きいほど、振動体の振幅が大きい。 FIG. 4 is a diagram showing the relationship between the distance from the center of the vibrating body and the Z component of displacement in a comparative example. FIG. 5 is a diagram showing the relationship between the distance from the center of the vibrating body and the Z component of displacement in the ultrasonic motor according to the first embodiment. In FIGS. 4 and 5, the 0 mm position on the horizontal axis is the center of the vibrator. The larger the Z component of the displacement of the vibrating body shown on the vertical axis, the larger the amplitude of the vibrating body.
 図4に示すように、比較例では、振動体の中心からの距離11.1mm付近において、変位のZ成分が最大値となっている。該最大値は211.9nmとなっている。ここで、振動体における変位のZ成分が210nm以上である部分の、径方向に沿う寸法をrとする。比較例において、寸法rは約0.5mmである。 As shown in FIG. 4, in the comparative example, the Z component of the displacement reaches its maximum value near the distance of 11.1 mm from the center of the vibrating body. The maximum value is 211.9 nm. Let r be the radial dimension of the portion of the vibrating body where the Z component of the displacement is 210 nm or more. In the comparative example, the dimension r is approximately 0.5 mm.
 これに対して図5に示すように、第1の実施形態では、振動体の中心からの距離10.3mm付近において、変位のZ成分が最大値となっている。該最大値は223.6nmとなっている。第1の実施形態においては、比較例よりも振幅を大きくできることがわかる。さらに、寸法rは約3.4mmと広くなっている。このように、振動体3における広い範囲において振幅を大きくすることができる。 On the other hand, as shown in FIG. 5, in the first embodiment, the Z component of the displacement reaches its maximum value near the distance of 10.3 mm from the center of the vibrating body. The maximum value is 223.6 nm. It can be seen that the amplitude can be made larger in the first embodiment than in the comparative example. Furthermore, the dimension r is widened to about 3.4 mm. In this way, the amplitude can be increased over a wide range of the vibrating body 3 .
 比較例においては、複数の圧電素子は振動体の全体を振動させている。これに対して、第1の実施形態においては、振動体3に溝部5が設けられている。これにより、振動は溝部5の内側には伝わり難く、溝部5の外側がより一層振動し易くなる。すなわち、複数の圧電素子による振動のエネルギーが、溝部5の外側に集中することとなる。よって、ステータ2において、複数の圧電素子の結合係数を大きくすることができ、振動体3の振幅を大きくすることができる。上記のように、ステータ2はロータ4と接触しており、進行波によりロータ4を回転させる。ステータ2における進行波の振幅を大きくすることができるため、ロータ4を効率的に回転させることができる。従って、超音波モータ1の回転効率を高めることができる。 In the comparative example, a plurality of piezoelectric elements vibrate the entire vibrating body. On the other hand, in the first embodiment, the vibrating body 3 is provided with the groove portion 5 . As a result, the vibration is less likely to be transmitted to the inner side of the groove portion 5, and the outer side of the groove portion 5 is more likely to vibrate. That is, the vibration energy generated by the plurality of piezoelectric elements is concentrated on the outside of the groove portion 5 . Therefore, in the stator 2, the coupling coefficient of the plurality of piezoelectric elements can be increased, and the amplitude of the vibrating body 3 can be increased. As described above, the stator 2 is in contact with the rotor 4 and causes the rotor 4 to rotate by traveling waves. Since the amplitude of the traveling wave in the stator 2 can be increased, the rotor 4 can be efficiently rotated. Therefore, the rotational efficiency of the ultrasonic motor 1 can be enhanced.
 加えて、第1の実施形態では、振動体3における振幅が大きくなる部分の面積を広くすることができる。これにより、ステータ2がロータ4に進行波を伝搬させる部分の面積を広くすることができる。よって、進行波の伝搬に伴い、ステータ2及びロータ4の局所的な摩擦が生じることを抑制でき、ステータ2及びロータ4の摩耗を抑制することができる。従って、トルクの変動を抑制することができ、超音波モータ1の駆動を安定化することができる。さらに、超音波モータ1を長寿命化することができる。 In addition, in the first embodiment, it is possible to widen the area of the portion of the vibrating body 3 where the amplitude is large. Thereby, the area of the portion where the stator 2 propagates the traveling wave to the rotor 4 can be widened. Therefore, it is possible to suppress the occurrence of local friction between the stator 2 and the rotor 4 due to the propagation of the traveling wave, and the wear of the stator 2 and the rotor 4 can be suppressed. Therefore, fluctuations in torque can be suppressed, and driving of the ultrasonic motor 1 can be stabilized. Furthermore, the life of the ultrasonic motor 1 can be extended.
 そして、振動体3における振幅が大きくなる部分の面積を広くすることができるため、ステータ2が小型であっても、超音波モータ1の回転効率を十分に高めることができる。よって、超音波モータ1を小型にすることができる。 In addition, since the area of the portion of the vibrating body 3 where the amplitude is large can be increased, the rotational efficiency of the ultrasonic motor 1 can be sufficiently increased even if the stator 2 is small. Therefore, the ultrasonic motor 1 can be miniaturized.
 ここで、溝部5の幅をWg、振動体3の半径をRsとしたときに、幅Wgの半径Rsに対する比率は、0.05%≦(Wg/Rs)×100≦15.78%の範囲内であることが好ましい。それによって、振幅が大きい部分の面積をより一層広くすることができる。なお、第1の実施形態では、上記範囲に相当する幅Wgの範囲は0.01mm以上、3mm以下であり、半径Rsは19mmである。もっとも、幅Wgの範囲及び半径Rsは上記に限定されない。溝部5が振動の中心を含まない位置に設けられていればよい。 Here, when the width of the groove portion 5 is Wg and the radius of the vibrating body 3 is Rs, the ratio of the width Wg to the radius Rs is in the range of 0.05%≦(Wg/Rs)×100≦15.78%. preferably within As a result, the area of the large-amplitude portion can be further increased. In the first embodiment, the width Wg corresponding to the above range is 0.01 mm or more and 3 mm or less, and the radius Rs is 19 mm. However, the range of width Wg and radius Rs are not limited to the above. It is sufficient that the groove portion 5 is provided at a position that does not include the center of vibration.
 溝部5の深さをDg、ステータの厚みをTsとしたときに、深さDgの厚みTsに対する比率は、14.28%≦(Dg/Ts)×100≦85.71%の範囲内であることが好ましい。それによって、振幅が大きい部分の面積をより一層広くすることができる。なお、第1の実施形態では、上記範囲に相当する深さDgの範囲は0.1mm以上、1.2mm以下であり、厚みTsは1.4mmである。もっとも、深さDgの範囲及び厚みTsは上記に限定されない。 When the depth of the groove 5 is Dg and the thickness of the stator is Ts, the ratio of the depth Dg to the thickness Ts is within the range of 14.28%≦(Dg/Ts)×100≦85.71%. is preferred. As a result, the area of the large-amplitude portion can be further increased. In the first embodiment, the range of depth Dg corresponding to the above range is 0.1 mm or more and 1.2 mm or less, and the thickness Ts is 1.4 mm. However, the range of depth Dg and thickness Ts are not limited to the above.
 ところで、図1に示すように、溝部5は外周縁5aを有する。外周縁5aと、振動体3の中心との間の距離をLgとしたときに、距離Lgの、振動体3の半径Rsに対する比率は、30.63%≦(Lg/Rs)×100≦43.79%の範囲内であることが好ましい。これにより、複数に分極された圧電素子を、振動体3を好適に振動させられる位置に、より確実に配置することができる。よって、振幅をより確実に大きくすることができる。なお、平面視における各圧電素子と溝部5との間の距離は、0mm以上であればよい。 By the way, as shown in FIG. 1, the groove portion 5 has an outer peripheral edge 5a. When the distance between the outer peripheral edge 5a and the center of the vibrating body 3 is Lg, the ratio of the distance Lg to the radius Rs of the vibrating body 3 is 30.63%≦(Lg/Rs)×100≦43. It is preferably in the range of 0.79%. As a result, the plurally polarized piezoelectric elements can be more reliably arranged at positions where the vibrating body 3 can be suitably vibrated. Therefore, the amplitude can be increased more reliably. The distance between each piezoelectric element and the groove portion 5 in plan view should be 0 mm or more.
 本実施形態では、ステータ2における振動体3の第2の主面3bに、ロータ4は直接的に接触している。なお、ロータ4におけるステータ2側の面には、摩擦材が固定されていてもよい。この場合には、ロータ4は第2の主面3bに、摩擦材を介して間接的に接触している。それによって、ステータ2の振動体3とロータ4との間に加わる摩擦力を安定化させることができる。それによって、ロータ4をより一層効率的に回転させることができる。 In this embodiment, the rotor 4 is in direct contact with the second main surface 3b of the vibrating body 3 of the stator 2. A friction material may be fixed to the surface of the rotor 4 on the stator 2 side. In this case, the rotor 4 is in indirect contact with the second main surface 3b via the friction material. Thereby, the frictional force applied between the oscillator 3 of the stator 2 and the rotor 4 can be stabilized. Thereby, the rotor 4 can be rotated more efficiently.
 以下において、第1の実施形態における圧電素子の具体的な構成及び進行波について説明する。 The specific configuration and traveling wave of the piezoelectric element in the first embodiment will be described below.
 図6は、第1の実施形態における第1の圧電素子の正面断面図である。 FIG. 6 is a front sectional view of the first piezoelectric element in the first embodiment.
 第1の圧電素子13Aは圧電体14を有する。圧電体14は第3の主面14a及び第4の主面14bを有する。第3の主面14a及び第4の主面14bは互いに対向している。第1の圧電素子13Aは、第1の電極15A及び第2の電極15Bを有する。圧電体14の第3の主面14a上に第1の電極15Aが設けられており、第4の主面14b上に第2の電極15Bが設けられている。第2の圧電素子13B、第3の圧電素子13C及び第4の圧電素子13Dも、第1の圧電素子13Aと同様に構成されている。上記各圧電素子の平面視における形状は矩形である。なお、各圧電素子の平面視における形状は上記に限定されず、例えば楕円形などであってもよい。 The first piezoelectric element 13A has a piezoelectric body 14. The piezoelectric body 14 has a third principal surface 14a and a fourth principal surface 14b. The third main surface 14a and the fourth main surface 14b face each other. The first piezoelectric element 13A has a first electrode 15A and a second electrode 15B. A first electrode 15A is provided on the third main surface 14a of the piezoelectric body 14, and a second electrode 15B is provided on the fourth main surface 14b. The second piezoelectric element 13B, the third piezoelectric element 13C, and the fourth piezoelectric element 13D are configured similarly to the first piezoelectric element 13A. Each piezoelectric element has a rectangular shape in plan view. Note that the shape of each piezoelectric element in a plan view is not limited to the above, and may be, for example, an elliptical shape.
 ここで、第1の電極15Aは、振動体3の第1の主面3aに接着剤により貼り付けられている。この接着剤の厚みは非常に薄い。従って、第1の電極15Aは振動体3に電気的に接続される。 Here, the first electrode 15A is attached to the first main surface 3a of the vibrating body 3 with an adhesive. The thickness of this adhesive is very thin. Therefore, the first electrode 15A is electrically connected to the vibrating body 3. As shown in FIG.
 なお、進行波を発生させるためには、ステータ2は、少なくとも第1の圧電素子13A及び第2の圧電素子13Bを有していればよい。あるいは、複数の領域に分割された、1個の圧電素子を有していてもよい。この場合には、例えば、圧電素子の各領域が互いに異なる方向に分極されていてもよい。 In order to generate a traveling wave, the stator 2 should have at least the first piezoelectric element 13A and the second piezoelectric element 13B. Alternatively, it may have one piezoelectric element divided into a plurality of regions. In this case, for example, each region of the piezoelectric element may be polarized in different directions.
 ステータ2において、複数の圧電素子を周回方向に分散配置し、駆動することにより進行波を発生させる構造については、例えば、特許文献1(国際公開第2010/061508号)に開示されている。なお、この進行波を発生させる構造については、以下の説明だけでなく、国際公開第2010/061508号に記載の構成を本明細書に援用することにより、詳細な説明は省略することとする。 A structure in which a plurality of piezoelectric elements are distributed in the circumferential direction in the stator 2 and driven to generate a traveling wave is disclosed, for example, in Patent Document 1 (International Publication No. 2010/061508). In addition, about the structure which generates this traveling wave, suppose that not only the following description but the structure of international publication 2010/061508 is used for this specification, and detailed description is abbreviate|omitted.
 図7(a)~図7(c)は、第1の実施形態において励振される進行波を説明するための、ステータの模式的底面図である。なお、図7(a)~図7(c)では、グレースケールにおいて、黒色に近いほど一方の方向の応力が大きく、白色に近いほど他方の方向の応力が大きいことを示す。 FIGS. 7(a) to 7(c) are schematic bottom views of the stator for explaining traveling waves excited in the first embodiment. In FIGS. 7(a) to 7(c), in the gray scale, the closer to black, the greater the stress in one direction, and the closer to white, the greater the stress in the other direction.
 図7(a)には、三波の定在波Xが示されており、図7(b)には、三波の定在波Yが示されている。第1~第4の圧電素子13A~13Dが、中心角90°の角度を隔てて配置されているとする。この場合、三波の定在波X,Yが励振されるため、進行波の波長に対する中心角は120°となる。中心角は、一波の角度120°に3/4を掛けた角度90°で決定する。三波の定在波Xの振幅が大きい所定の場所に第1の圧電素子13Aを配置し、中心角90°間隔で第2~第4の圧電素子13B~13Dを配置する。この場合、振動の位相が90°異なる三波の定在波X,Yが励振され、両者が合成されて、図7(c)に示す進行波が生じる。 Fig. 7(a) shows a three-wave standing wave X, and Fig. 7(b) shows a three-wave standing wave Y. Assume that the first to fourth piezoelectric elements 13A to 13D are arranged with a central angle of 90°. In this case, since three standing waves X and Y are excited, the central angle with respect to the wavelength of the traveling wave is 120°. The central angle is determined by multiplying the angle of one wave of 120° by 3/4 to determine the angle of 90°. The first piezoelectric element 13A is arranged at a predetermined place where the amplitude of the three-wave standing wave X is large, and the second to fourth piezoelectric elements 13B to 13D are arranged at intervals of 90° of the central angle. In this case, three standing waves X and Y having vibration phases different by 90° are excited, and the two are combined to generate the traveling wave shown in FIG. 7(c).
 なお、図7(a)~図7(c)における、A+、A-、B+、B-は、圧電体14の分極方向を示す。+は、厚み方向において、第3の主面14aから第4の主面14bに向けて分極されていることを意味する。-は、逆方向に分極されていることを示す。Aは、第1の圧電素子13A及び第3の圧電素子13Cであることを示し、Bは、第2の圧電素子13B及び第4の圧電素子13Dであることを示す。 Note that A+, A−, B+, and B− in FIGS. 7(a) to 7(c) indicate the polarization directions of the piezoelectric body 14. FIG. + means that it is polarized from the third main surface 14a toward the fourth main surface 14b in the thickness direction. - indicates that it is polarized in the opposite direction. A indicates the first piezoelectric element 13A and the third piezoelectric element 13C, and B indicates the second piezoelectric element 13B and the fourth piezoelectric element 13D.
 なお、三波の例を示したが、これに限定されず六波、九波、十二波などの場合も同様に位相が90°異なる2つの定在波が励振され、両者の合成により進行波が生じる。本発明において、進行波を発生させる構成は、図7(a)~図7(c)に示した構成に限らず、従来より公知の様々な進行波を発生させる構成を用いることができる。 Although an example of three waves has been shown, it is not limited to this, and in the case of six waves, nine waves, twelve waves, etc., two standing waves having phases different by 90° are similarly excited, and a traveling wave is synthesized by combining the two standing waves. occurs. In the present invention, the configuration for generating traveling waves is not limited to the configurations shown in FIGS. 7A to 7C, and various conventionally known configurations for generating traveling waves can be used.
 ところで、図1に示す第1の実施形態においては、ロータ4はロータ本体4a及び回転軸4bを有する。もっとも、ロータ4とは別体である軸部材が設けられていてもよい。この場合、ロータ4はロータ本体4aに相当する部材であればよい。軸部材が設けられている場合には、ステータの振動体及びロータに、それぞれ貫通孔が設けられていてもよい。それぞれの上記貫通孔に軸部材が挿通されていてもよい。この場合、それぞれの上記貫通孔は、軸方向中心を含む領域に位置していればよい。 By the way, in the first embodiment shown in FIG. 1, the rotor 4 has a rotor body 4a and a rotating shaft 4b. However, a shaft member that is separate from the rotor 4 may be provided. In this case, the rotor 4 may be a member corresponding to the rotor main body 4a. When the shaft member is provided, the vibrator of the stator and the rotor may each be provided with a through hole. A shaft member may be inserted through each of the through holes. In this case, each of the through-holes should be located in a region including the center in the axial direction.
 図8は、第1の実施形態の変形例におけるステータの底面図である。 FIG. 8 is a bottom view of the stator in the modified example of the first embodiment.
 本変形例においては、振動体23の第1の主面3aに第1の溝部25及び第2の溝部26が設けられている。第1の溝部25は、第1の実施形態における溝部5である。よって、第1の溝部25は、平面視において、複数に分極された圧電素子の内側に設けられている。他方、第2の溝部26は、平面視において、複数に分極された圧電素子の外側に設けられている。第2の溝部26は、平面視において、円状の形状を有する。この場合においても、第1の実施形態と同様に、複数に分極された圧電素子の結合係数を高めることができ、振動体23の振幅を大きくすることができる。よって、超音波モータの回転効率を高めることができる。 In this modified example, a first groove portion 25 and a second groove portion 26 are provided on the first principal surface 3a of the vibrating body 23 . The first groove portion 25 is the groove portion 5 in the first embodiment. Therefore, the first groove portion 25 is provided inside the piezoelectric element that is polarized in a plurality of ways in plan view. On the other hand, the second groove portion 26 is provided outside the plurally polarized piezoelectric element in plan view. The second groove portion 26 has a circular shape in plan view. Also in this case, as in the first embodiment, it is possible to increase the coupling coefficient of the plurally polarized piezoelectric elements and increase the amplitude of the vibrating body 23 . Therefore, the rotation efficiency of the ultrasonic motor can be enhanced.
 図1に示すように、第1の実施形態では、溝部5が設けられている主面と、複数に分極された圧電素子が設けられている主面とは同じである。もっとも、溝部5が設けられている主面と、複数に分極された圧電素子が設けられている主面とは異なっていてもよい。この例を以下の第2の実施形態により示す。 As shown in FIG. 1, in the first embodiment, the main surface on which the grooves 5 are provided is the same as the main surface on which the plurally polarized piezoelectric elements are provided. However, the main surface on which the grooves 5 are provided may be different from the main surface on which the plurally polarized piezoelectric elements are provided. An example of this is illustrated by the second embodiment below.
 図9は、第2の実施形態におけるステータの平面図である。 FIG. 9 is a plan view of the stator in the second embodiment.
 本実施形態は、振動体33の第2の主面3bに溝部5が設けられており、第1の主面3aに溝部5が設けられていない点において第1の実施形態と異なる。上記の点以外においては、本実施形態の超音波モータは第1の実施形態の超音波モータ1と同様の構成を有する。 This embodiment differs from the first embodiment in that the groove 5 is provided on the second main surface 3b of the vibrating body 33 and the groove 5 is not provided on the first main surface 3a. Except for the above points, the ultrasonic motor of this embodiment has the same configuration as the ultrasonic motor 1 of the first embodiment.
 本実施形態においても、第1の実施形態と同様に、複数に分極された圧電素子による振動のエネルギーを溝部5の外側に集中させることができる。よって、複数に分極された圧電素子の結合係数を大きくすることができ、振動体33の振幅を大きくすることができる。従って、超音波モータの回転効率を高めることができる。さらに、振動体33における振幅が大きくなる部分の面積を広くすることができる。 Also in the present embodiment, as in the first embodiment, the vibration energy generated by the piezoelectric element polarized in plural can be concentrated on the outside of the groove portion 5 . Therefore, the coupling coefficient of the plurally polarized piezoelectric elements can be increased, and the amplitude of the vibrating body 33 can be increased. Therefore, the rotational efficiency of the ultrasonic motor can be enhanced. Furthermore, the area of the portion of the vibrating body 33 where the amplitude is large can be widened.
 第1の実施形態と同様に、溝部5の幅Wg及び深さDgを変化させてシミュレーションを行い、振幅が大きい部分の面積をより一層広くすることができる範囲を求めた。幅Wgの、振動体33の半径Rsに対する比率は、10.52%≦(Wg/Rs)×100≦15.78%の範囲内であることが好ましい。それによって、振幅が大きい部分の面積をより一層広くすることができる。一方で、深さDgのステータの厚みTsに対する比率は、7.14%≦(Dg/Ts)×100≦85.71%の範囲内であることが好ましい。この場合においても、振幅が大きい部分の面積をより一層広くすることができる。 As in the first embodiment, a simulation was performed by changing the width Wg and depth Dg of the groove portion 5, and the range in which the area of the large amplitude portion can be further increased was obtained. A ratio of the width Wg to the radius Rs of the vibrating body 33 is preferably within the range of 10.52%≦(Wg/Rs)×100≦15.78%. As a result, the area of the large-amplitude portion can be further increased. On the other hand, the ratio of the depth Dg to the stator thickness Ts is preferably within the range of 7.14%≦(Dg/Ts)×100≦85.71%. Also in this case, the area of the portion with large amplitude can be further increased.
 溝部5の外周縁5aと、振動体33の中心との間の距離Lgの、振動体33の半径Rsに対する比率は、30.63%≦(Lg/Rs)×100≦43.79%の範囲内であることが好ましい。これにより、複数に分極された圧電素子を、振動体33を好適に振動させられる位置に、より確実に配置することができる。よって、振幅をより確実に大きくすることができる。平面視における各圧電素子と溝部5との間の距離は、0mm以上であればよい。 The ratio of the distance Lg between the outer peripheral edge 5a of the groove 5 and the center of the vibrating body 33 to the radius Rs of the vibrating body 33 is in the range of 30.63%≦(Lg/Rs)×100≦43.79%. preferably within As a result, the plurally polarized piezoelectric elements can be more reliably arranged at positions where the vibrating body 33 can be vibrated appropriately. Therefore, the amplitude can be increased more reliably. The distance between each piezoelectric element and the groove portion 5 in plan view should be 0 mm or more.
 なお、本実施形態では、複数に分極された圧電素子及び溝部5は異なる主面に設けられている。この場合の、平面視における圧電素子と溝部5との間の距離とは、平面視において、溝部5が設けられている主面に圧電素子を投影させたものと、溝部5との間の距離である。 It should be noted that, in the present embodiment, the plurally polarized piezoelectric elements and the grooves 5 are provided on different main surfaces. In this case, the distance between the piezoelectric element and the groove portion 5 in plan view is the distance between the groove portion 5 and the projection of the piezoelectric element on the main surface on which the groove portion 5 is provided in plan view. is.
 図8に示す第1の実施形態の変形例では、振動体23の第1の主面3aに第1の溝部25及び第2の溝部26が設けられている。もっとも、図9に示す振動体33の第2の主面3bに、図8に示した第1の溝部25及び第2の溝部26が設けられていてもよい。あるいは、第1の溝部25及び第2の溝部26は異なる主面に設けられていてもよい。これらの場合においても、第2の実施形態と同様に、複数に分極された圧電素子の結合係数を高めることができ、振動体の振幅を大きくすることができる。よって、超音波モータの回転効率を高めることができる。  In the modification of the first embodiment shown in FIG. However, the first groove portion 25 and the second groove portion 26 shown in FIG. 8 may be provided on the second main surface 3b of the vibrating body 33 shown in FIG. Alternatively, the first groove portion 25 and the second groove portion 26 may be provided on different main surfaces. In these cases, similarly to the second embodiment, it is possible to increase the coupling coefficient of the plurally polarized piezoelectric elements and increase the amplitude of the vibrator. Therefore, the rotation efficiency of the ultrasonic motor can be enhanced.
 図10は、第3の実施形態におけるステータの正面断面図である。 FIG. 10 is a front sectional view of the stator in the third embodiment.
 本実施形態は、振動体43の第1の主面3a及び第2の主面3bの双方に溝部が設けられている点において、第1の実施形態と異なる。上記の点以外においては、本実施形態の超音波モータは第1の実施形態の超音波モータ1と同様の構成を有する。なお、第1の主面3aに設けられている溝部は第1の溝部25であり、第2の主面3bに設けられている溝部は第3の溝部47である。第1の溝部25は第1の実施形態における溝部5に相当し、第3の溝部47は第2の実施形態における溝部5に相当する。 This embodiment differs from the first embodiment in that grooves are provided on both the first main surface 3a and the second main surface 3b of the vibrating body 43. FIG. Except for the above points, the ultrasonic motor of this embodiment has the same configuration as the ultrasonic motor 1 of the first embodiment. The groove provided on the first main surface 3 a is the first groove 25 , and the groove provided on the second main surface 3 b is the third groove 47 . The first groove portion 25 corresponds to the groove portion 5 in the first embodiment, and the third groove portion 47 corresponds to the groove portion 5 in the second embodiment.
 本実施形態では、平面視において、第1の溝部25及び第3の溝部47は重なっている。もっとも、平面視において、第1の溝部25及び第3の溝部47は重なっていなくともよい。平面視において、第1の溝部25及び第3の溝部47の双方が、複数に分極された圧電素子よりも内側に配置されていればよい。 In this embodiment, the first groove portion 25 and the third groove portion 47 overlap in plan view. However, in plan view, the first groove portion 25 and the third groove portion 47 do not have to overlap. In plan view, both the first groove portion 25 and the third groove portion 47 need only be arranged inside the piezoelectric element that is polarized in plurality.
 振動体43に第1の溝部25及び第3の溝部47が設けられている場合においても、第1の実施形態と同様に、複数に分極された圧電素子による振動のエネルギーを第1の溝部25及び第3の溝部47の外側に集中させることができる。よって、複数に分極された圧電素子の結合係数を大きくすることができ、振動体43の振幅を大きくすることができる。従って、超音波モータの回転効率を高めることができる。さらに、振動体43における振幅が大きくなる部分の面積を広くすることができる。 Even in the case where the vibrating body 43 is provided with the first groove portion 25 and the third groove portion 47, the energy of the vibration generated by the piezoelectric element polarized in multiple ways is transferred to the first groove portion 25 as in the first embodiment. and outside the third groove 47 . Therefore, the coupling coefficient of the plurally polarized piezoelectric elements can be increased, and the amplitude of the vibrating body 43 can be increased. Therefore, the rotational efficiency of the ultrasonic motor can be enhanced. Furthermore, the area of the portion of the vibrating body 43 where the amplitude is large can be widened.
 ここで、本発明に係る超音波モータを用いた超音波モータシステムの一例を以下において示す。 Here, an example of an ultrasonic motor system using the ultrasonic motor according to the present invention is shown below.
 図11は、第4の実施形態に係る超音波モータシステムの模式的制御回路図である。 FIG. 11 is a schematic control circuit diagram of the ultrasonic motor system according to the fourth embodiment.
 超音波モータシステム50は、超音波モータ51と、駆動制御装置52とを有する。なお、超音波モータ51は、速度検出端子53A及び容量検出端子53Bを有する点において、第1の実施形態と異なる。上記の点以外においては、本実施形態の超音波モータ51は第1の実施形態の超音波モータ1と同様の構成を有する。速度検出端子53A及び容量検出端子53Bは、図6に示す第1の圧電素子13Aの圧電体14上に設けられている。 The ultrasonic motor system 50 has an ultrasonic motor 51 and a drive control device 52 . The ultrasonic motor 51 differs from the first embodiment in that it has a speed detection terminal 53A and a capacitance detection terminal 53B. Except for the above points, the ultrasonic motor 51 of this embodiment has the same configuration as the ultrasonic motor 1 of the first embodiment. The speed detection terminal 53A and the capacitance detection terminal 53B are provided on the piezoelectric body 14 of the first piezoelectric element 13A shown in FIG.
 駆動制御装置52は、フィルタ部54Aと、速度検出部55と、制御部56と、駆動回路部57と、容量検出部58と、フィルタ部54Bと、温度演算部59とを有する。超音波モータ51の速度検出端子53Aは、フィルタ部54Aを介して、速度検出部55に接続されている。速度検出部55は制御部56に接続されている。超音波モータ51の容量検出端子53Bは、容量検出部58に接続されている。容量検出部58は、フィルタ部54Bを介して、温度演算部59に接続されている。温度演算部59は制御部56に接続されている。制御部56は駆動回路部57に接続されている。さらに、駆動回路部57は超音波モータ51の各圧電素子に接続されている。 The drive control device 52 has a filter section 54A, a speed detection section 55, a control section 56, a drive circuit section 57, a capacitance detection section 58, a filter section 54B, and a temperature calculation section 59. A speed detection terminal 53A of the ultrasonic motor 51 is connected to a speed detection section 55 via a filter section 54A. The speed detector 55 is connected to the controller 56 . A capacity detection terminal 53B of the ultrasonic motor 51 is connected to the capacity detection section 58 . The capacitance detection section 58 is connected to the temperature calculation section 59 via the filter section 54B. The temperature calculator 59 is connected to the controller 56 . The control section 56 is connected to the drive circuit section 57 . Furthermore, the drive circuit section 57 is connected to each piezoelectric element of the ultrasonic motor 51 .
 超音波モータ51の速度検出端子53Aは、超音波モータ51の駆動速度に応じた信号を速度検出部55に出力する。フィルタ部54Aは、速度検出端子53Aから速度検出部55に出力される信号をフィルタリングする。速度検出部55において、超音波モータ51の駆動速度が検出される。 The speed detection terminal 53A of the ultrasonic motor 51 outputs a signal corresponding to the driving speed of the ultrasonic motor 51 to the speed detection section 55. The filter section 54A filters the signal output from the speed detection terminal 53A to the speed detection section 55. FIG. The speed detector 55 detects the driving speed of the ultrasonic motor 51 .
 超音波モータ51の容量検出端子53Bは、超音波モータ51における第1の圧電素子13Aの容量に応じた信号を、容量検出部58に出力する。容量検出部58において、第1の圧電素子13Aの容量が検出される。容量検出部58は、検出した容量に応じた信号を、温度演算部59に出力する。フィルタ部54Bは、容量検出部58から温度演算部59に出力される信号をフィルタリングする。 The capacitance detection terminal 53B of the ultrasonic motor 51 outputs a signal corresponding to the capacitance of the first piezoelectric element 13A in the ultrasonic motor 51 to the capacitance detection section 58. The capacitance detector 58 detects the capacitance of the first piezoelectric element 13A. Capacitance detector 58 outputs a signal corresponding to the detected capacitance to temperature calculator 59 . The filter section 54B filters the signal output from the capacitance detection section 58 to the temperature calculation section 59 .
 制御部56は、超音波モータ51の駆動条件を設定する。駆動回路部57は、制御部56により設定された駆動条件に基づいて、超音波モータ51の各圧電素子に駆動電圧を印加する。 The control unit 56 sets driving conditions for the ultrasonic motor 51 . The drive circuit section 57 applies a drive voltage to each piezoelectric element of the ultrasonic motor 51 based on the drive conditions set by the control section 56 .
 超音波モータ51のステータは、第1の実施形態と同様に構成されている。よって、超音波モータ51においても、平面視において、複数に分極された圧電素子の内側に、溝部が設けられている。よって、第1の実施形態と同様に、複数に分極された圧電素子の結合係数を大きくすることができ、振動体の振幅を大きくすることができる。よって、超音波モータの回転効率を高めることができる。さらに、振動体における振幅が大きくなる部分の面積を広くすることができる。 The stator of the ultrasonic motor 51 is constructed in the same manner as in the first embodiment. Therefore, in the ultrasonic motor 51 as well, grooves are provided inside the piezoelectric elements that are polarized in a plurality of ways in a plan view. Therefore, similarly to the first embodiment, it is possible to increase the coupling coefficient of the plurally polarized piezoelectric elements and increase the amplitude of the vibrating body. Therefore, the rotation efficiency of the ultrasonic motor can be enhanced. Furthermore, the area of the portion of the vibrating body where the amplitude is large can be widened.
 そして、超音波モータシステム50は、本発明に係る超音波モータ51を有するため、ステータの振動体における振幅が大きくなる部分の面積を広くすることができ、ステータ及びロータの摩耗を抑制することができる。従って、トルクの変動を抑制することができ、超音波モータシステム50における超音波モータ51の駆動を安定化することができる。さらに、超音波モータシステム50を長寿命化することができる。 Since the ultrasonic motor system 50 has the ultrasonic motor 51 according to the present invention, it is possible to increase the area of the portion of the vibrating body of the stator where the amplitude is large, thereby suppressing the wear of the stator and rotor. can. Therefore, torque fluctuations can be suppressed, and driving of the ultrasonic motor 51 in the ultrasonic motor system 50 can be stabilized. Furthermore, the life of the ultrasonic motor system 50 can be extended.
 本実施形態では、超音波モータ51が速度検出端子53A及び容量検出端子53Bを有する。そのため、角速度センサ及び温度センサは不要である。よって、部品の点数を削減することができる。もっとも、超音波モータシステム50は一例であって、構成は上記に限定されるものではない。超音波モータシステム50は、角速度センサまたは温度センサを有していてもよい。超音波モータシステム50は、超音波モータ51に限らず、本発明に係る超音波モータを有していればよい。 In this embodiment, the ultrasonic motor 51 has a speed detection terminal 53A and a capacitance detection terminal 53B. Therefore, an angular velocity sensor and a temperature sensor are unnecessary. Therefore, the number of parts can be reduced. However, the ultrasonic motor system 50 is an example, and the configuration is not limited to the above. Ultrasonic motor system 50 may have an angular velocity sensor or a temperature sensor. The ultrasonic motor system 50 is not limited to the ultrasonic motor 51 as long as it has an ultrasonic motor according to the present invention.
 1…超音波モータ
 2…ステータ
 3…振動体
 3a,3b…第1,第2の主面
 4…ロータ
 4a…ロータ本体
 4b…回転軸
 5…溝部
 5a…外周縁
 13A~13D…第1~第4の圧電素子
 14…圧電体
 14a,14b…第3,第4の主面
 15A,15B…第1,第2の電極
 23…振動体
 25,26…第1,第2の溝部
 32…ステータ
 33,43…振動体
 47…第3の溝部
 50…超音波モータシステム
 51…超音波モータ
 52…駆動制御装置
 53A…速度検出端子
 53B…容量検出端子
 54A,54B…フィルタ部
 55…速度検出部
 56…制御部
 57…駆動回路部
 58…容量検出部
 59…温度演算部
 G…重心
DESCRIPTION OF SYMBOLS 1... Ultrasonic motor 2... Stator 3... Vibrating body 3a, 3b... First and second main surfaces 4... Rotor 4a... Rotor main body 4b... Rotating shaft 5... Groove part 5a... Outer peripheral edge 13A to 13D... First to first Piezoelectric elements of 4 14 Piezoelectric bodies 14a, 14b Third and fourth main surfaces 15A, 15B First and second electrodes 23 Vibrating bodies 25 and 26 First and second grooves 32 Stator 33 , 43... Vibrating body 47... Third groove 50... Ultrasonic motor system 51... Ultrasonic motor 52... Drive control device 53A... Speed detection terminal 53B... Capacitance detection terminal 54A, 54B... Filter section 55... Speed detection section 56... Control section 57 Drive circuit section 58 Capacitance detection section 59 Temperature calculation section G Center of gravity

Claims (3)

  1.  対向し合う第1の主面及び第2の主面を含む板状の振動体と、前記振動体の前記第1の主面に設けられている圧電素子と、を有するステータと、
     前記振動体の前記第2の主面に接触しているロータと、
    を備え、
     前記振動体がB(1,N)モードにより振動し、
     前記振動体の前記第1の主面及び前記第2の主面のうち少なくとも一方に溝部が設けられており、前記第1の主面の平面視において、前記溝部が、円状の形状を有し、かつ前記圧電素子よりも前記振動体の重心に近接する、超音波モータ。
    a stator having a plate-like vibrating body including first and second main surfaces facing each other; and a piezoelectric element provided on the first main surface of the vibrating body;
    a rotor in contact with the second main surface of the vibrating body;
    with
    The vibrating body vibrates in B (1, N) mode,
    A groove is provided in at least one of the first main surface and the second main surface of the vibrating body, and the groove has a circular shape in plan view of the first main surface. and located closer to the center of gravity of the vibrator than the piezoelectric element.
  2.  前記溝部が第1の溝部であり、
     前記振動体の前記第1の主面及び前記第2の主面のうち少なくとも一方に第2の溝部が設けられており、平面視において、前記第2の溝部が、円状の形状を有し、かつ前記圧電素子の外側に位置する、請求項1に記載の超音波モータ。
    the groove is a first groove,
    A second groove is provided in at least one of the first main surface and the second main surface of the vibrating body, and the second groove has a circular shape in plan view. , and located outside the piezoelectric element.
  3.  前記溝部が、前記第1の主面及び前記第2の主面の双方に設けられている、請求項1または2に記載の超音波モータ。 The ultrasonic motor according to claim 1 or 2, wherein the grooves are provided on both the first main surface and the second main surface.
PCT/JP2022/014304 2021-04-13 2022-03-25 Ultrasonic motor WO2022220061A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-067813 2021-04-13
JP2021067813 2021-04-13

Publications (1)

Publication Number Publication Date
WO2022220061A1 true WO2022220061A1 (en) 2022-10-20

Family

ID=83640607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014304 WO2022220061A1 (en) 2021-04-13 2022-03-25 Ultrasonic motor

Country Status (1)

Country Link
WO (1) WO2022220061A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05168262A (en) * 1991-12-18 1993-07-02 Asmo Co Ltd Stator of ultrasonic motor
JPH08214569A (en) * 1994-11-24 1996-08-20 Asmo Co Ltd Stator of ultrasonic motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05168262A (en) * 1991-12-18 1993-07-02 Asmo Co Ltd Stator of ultrasonic motor
JPH08214569A (en) * 1994-11-24 1996-08-20 Asmo Co Ltd Stator of ultrasonic motor

Similar Documents

Publication Publication Date Title
JP5110170B2 (en) Piezoelectric vibrator and ultrasonic motor
JP5185716B2 (en) Ultrasonic motor
WO2022220061A1 (en) Ultrasonic motor
JP5545821B2 (en) Ultrasonic motor
JP4261894B2 (en) Vibration type driving device
JP7392874B2 (en) ultrasonic motor
JPS60207469A (en) Supersonic motor
WO2022220059A1 (en) Ultrasonic motor
JP2007135267A (en) Ultrasonic motor
JP3001956B2 (en) Disk type ultrasonic motor
JP3297211B2 (en) Ultrasonic motor
WO2021095637A1 (en) Ultrasonic motor
JP4731737B2 (en) Vibration wave motor
JPS60183981A (en) Supersonic wave motor
JP3113481B2 (en) Piezo motor
JP2007135268A (en) Stator of ultrasonic motor
JPH0636674B2 (en) Ultrasonic motor
JPH0681523B2 (en) Vibration wave motor
JP2021197850A (en) Ultrasonic motor
JP2003169486A (en) Ultrasonic motor
JP3089324B2 (en) Ultrasonic motor
JPH10263477A (en) Vibration-type drive device and device with vibration-type drive device as drive source
JP2669013B2 (en) Electrode structure of ultrasonic motor
JPH041599B2 (en)
JP2523634B2 (en) Ultrasonic motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787986

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22787986

Country of ref document: EP

Kind code of ref document: A1