WO2022219970A1 - Printed matter - Google Patents
Printed matter Download PDFInfo
- Publication number
- WO2022219970A1 WO2022219970A1 PCT/JP2022/009806 JP2022009806W WO2022219970A1 WO 2022219970 A1 WO2022219970 A1 WO 2022219970A1 JP 2022009806 W JP2022009806 W JP 2022009806W WO 2022219970 A1 WO2022219970 A1 WO 2022219970A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- coating layer
- ink
- adhesive coating
- polyester
- Prior art date
Links
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 127
- 239000000853 adhesive Substances 0.000 claims abstract description 114
- 239000011247 coating layer Substances 0.000 claims abstract description 114
- 239000010410 layer Substances 0.000 claims abstract description 83
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 73
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 67
- 229920006267 polyester film Polymers 0.000 claims abstract description 60
- 230000001070 adhesive effect Effects 0.000 claims abstract description 42
- 239000000203 mixture Substances 0.000 claims abstract description 26
- 239000000758 substrate Substances 0.000 claims abstract description 26
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 claims abstract description 20
- 238000005259 measurement Methods 0.000 claims abstract description 20
- 238000009826 distribution Methods 0.000 claims abstract description 15
- 238000012546 transfer Methods 0.000 claims abstract description 12
- 229920005749 polyurethane resin Polymers 0.000 claims description 94
- 239000002216 antistatic agent Substances 0.000 claims description 92
- 229920001225 polyester resin Polymers 0.000 claims description 73
- 239000004645 polyester resin Substances 0.000 claims description 70
- 125000002091 cationic group Chemical group 0.000 claims description 59
- 238000006116 polymerization reaction Methods 0.000 claims description 18
- 239000010954 inorganic particle Substances 0.000 claims description 17
- 239000002904 solvent Substances 0.000 claims description 17
- 229920005992 thermoplastic resin Polymers 0.000 claims description 14
- 238000001723 curing Methods 0.000 claims description 3
- 230000003647 oxidation Effects 0.000 claims description 3
- 238000007254 oxidation reaction Methods 0.000 claims description 3
- 238000003848 UV Light-Curing Methods 0.000 claims description 2
- 238000007639 printing Methods 0.000 abstract description 34
- 230000001590 oxidative effect Effects 0.000 abstract description 4
- 230000002349 favourable effect Effects 0.000 abstract 2
- 239000012790 adhesive layer Substances 0.000 abstract 1
- 230000015556 catabolic process Effects 0.000 abstract 1
- 238000006731 degradation reaction Methods 0.000 abstract 1
- 238000010030 laminating Methods 0.000 abstract 1
- 239000000976 ink Substances 0.000 description 83
- 239000007787 solid Substances 0.000 description 72
- 239000000243 solution Substances 0.000 description 61
- 238000000034 method Methods 0.000 description 59
- 229920005989 resin Polymers 0.000 description 47
- 239000011347 resin Substances 0.000 description 47
- 239000002245 particle Substances 0.000 description 45
- -1 Nitrogen ion Chemical class 0.000 description 42
- 239000011248 coating agent Substances 0.000 description 41
- 229920000728 polyester Polymers 0.000 description 35
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 30
- 238000000576 coating method Methods 0.000 description 30
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 29
- 239000000463 material Substances 0.000 description 25
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 24
- 229920005862 polyol Polymers 0.000 description 22
- 239000002585 base Substances 0.000 description 19
- 229920000139 polyethylene terephthalate Polymers 0.000 description 17
- 239000005020 polyethylene terephthalate Substances 0.000 description 17
- 150000001875 compounds Chemical class 0.000 description 16
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 15
- 239000006185 dispersion Substances 0.000 description 15
- 238000010438 heat treatment Methods 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 15
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 14
- 150000003077 polyols Chemical class 0.000 description 14
- 238000001228 spectrum Methods 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 13
- 150000002009 diols Chemical class 0.000 description 13
- 239000004094 surface-active agent Substances 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 12
- 239000012948 isocyanate Substances 0.000 description 12
- 239000012046 mixed solvent Substances 0.000 description 12
- 239000008188 pellet Substances 0.000 description 12
- 229920000642 polymer Polymers 0.000 description 12
- 229920001296 polysiloxane Polymers 0.000 description 12
- 238000002360 preparation method Methods 0.000 description 12
- 150000003839 salts Chemical class 0.000 description 12
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 229920000515 polycarbonate Polymers 0.000 description 11
- 239000004417 polycarbonate Substances 0.000 description 11
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 239000000178 monomer Substances 0.000 description 10
- 238000003786 synthesis reaction Methods 0.000 description 10
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 9
- 150000002513 isocyanates Chemical class 0.000 description 9
- 239000000049 pigment Substances 0.000 description 9
- 239000002994 raw material Substances 0.000 description 9
- 230000003068 static effect Effects 0.000 description 9
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 230000006866 deterioration Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 7
- 125000001931 aliphatic group Chemical group 0.000 description 7
- 125000000217 alkyl group Chemical group 0.000 description 7
- 238000001035 drying Methods 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 239000000155 melt Substances 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 7
- 239000005056 polyisocyanate Substances 0.000 description 7
- 229920001228 polyisocyanate Polymers 0.000 description 7
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 6
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 6
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 6
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 6
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 239000013638 trimer Substances 0.000 description 6
- JOYRKODLDBILNP-UHFFFAOYSA-N urethane group Chemical group NC(=O)OCC JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 6
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 5
- 239000004970 Chain extender Substances 0.000 description 5
- 239000005058 Isophorone diisocyanate Substances 0.000 description 5
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 239000000975 dye Substances 0.000 description 5
- 238000001125 extrusion Methods 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 125000001453 quaternary ammonium group Chemical group 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 229920000298 Cellophane Polymers 0.000 description 4
- 229920001730 Moisture cure polyurethane Polymers 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 4
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 4
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 238000007334 copolymerization reaction Methods 0.000 description 4
- 125000005442 diisocyanate group Chemical group 0.000 description 4
- WOZVHXUHUFLZGK-UHFFFAOYSA-N dimethyl terephthalate Chemical compound COC(=O)C1=CC=C(C(=O)OC)C=C1 WOZVHXUHUFLZGK-UHFFFAOYSA-N 0.000 description 4
- 230000005611 electricity Effects 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 4
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 4
- 239000012299 nitrogen atmosphere Substances 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 238000003892 spreading Methods 0.000 description 4
- 230000007480 spreading Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000011800 void material Substances 0.000 description 4
- FKTHNVSLHLHISI-UHFFFAOYSA-N 1,2-bis(isocyanatomethyl)benzene Chemical compound O=C=NCC1=CC=CC=C1CN=C=O FKTHNVSLHLHISI-UHFFFAOYSA-N 0.000 description 3
- PTBDIHRZYDMNKB-UHFFFAOYSA-N 2,2-Bis(hydroxymethyl)propionic acid Chemical compound OCC(C)(CO)C(O)=O PTBDIHRZYDMNKB-UHFFFAOYSA-N 0.000 description 3
- SXFJDZNJHVPHPH-UHFFFAOYSA-N 3-methylpentane-1,5-diol Chemical compound OCCC(C)CCO SXFJDZNJHVPHPH-UHFFFAOYSA-N 0.000 description 3
- CARJPEPCULYFFP-UHFFFAOYSA-N 5-Sulfo-1,3-benzenedicarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(S(O)(=O)=O)=C1 CARJPEPCULYFFP-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- 239000001361 adipic acid Substances 0.000 description 3
- 235000011037 adipic acid Nutrition 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 239000012752 auxiliary agent Substances 0.000 description 3
- 125000005587 carbonate group Chemical group 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 150000002148 esters Chemical group 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 3
- 238000009775 high-speed stirring Methods 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 239000003999 initiator Substances 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 238000006068 polycondensation reaction Methods 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 241000894007 species Species 0.000 description 3
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- 239000001993 wax Substances 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- RTTZISZSHSCFRH-UHFFFAOYSA-N 1,3-bis(isocyanatomethyl)benzene Chemical class O=C=NCC1=CC=CC(CN=C=O)=C1 RTTZISZSHSCFRH-UHFFFAOYSA-N 0.000 description 2
- ALVZNPYWJMLXKV-UHFFFAOYSA-N 1,9-Nonanediol Chemical compound OCCCCCCCCCO ALVZNPYWJMLXKV-UHFFFAOYSA-N 0.000 description 2
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 2
- DSKYSDCYIODJPC-UHFFFAOYSA-N 2-butyl-2-ethylpropane-1,3-diol Chemical compound CCCCC(CC)(CO)CO DSKYSDCYIODJPC-UHFFFAOYSA-N 0.000 description 2
- JVZZUPJFERSVRN-UHFFFAOYSA-N 2-methyl-2-propylpropane-1,3-diol Chemical compound CCCC(C)(CO)CO JVZZUPJFERSVRN-UHFFFAOYSA-N 0.000 description 2
- SVTBMSDMJJWYQN-UHFFFAOYSA-N 2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 description 2
- GZVHEAJQGPRDLQ-UHFFFAOYSA-N 6-phenyl-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(C=2C=CC=CC=2)=N1 GZVHEAJQGPRDLQ-UHFFFAOYSA-N 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 239000004594 Masterbatch (MB) Substances 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 2
- 235000010724 Wisteria floribunda Nutrition 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000002390 adhesive tape Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 235000012211 aluminium silicate Nutrition 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 229920006317 cationic polymer Polymers 0.000 description 2
- 239000012295 chemical reaction liquid Substances 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 229910052570 clay Inorganic materials 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- VNGOYPQMJFJDLV-UHFFFAOYSA-N dimethyl benzene-1,3-dicarboxylate Chemical compound COC(=O)C1=CC=CC(C(=O)OC)=C1 VNGOYPQMJFJDLV-UHFFFAOYSA-N 0.000 description 2
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- 150000002334 glycols Chemical class 0.000 description 2
- KWLMIXQRALPRBC-UHFFFAOYSA-L hectorite Chemical compound [Li+].[OH-].[OH-].[Na+].[Mg+2].O1[Si]2([O-])O[Si]1([O-])O[Si]([O-])(O1)O[Si]1([O-])O2 KWLMIXQRALPRBC-UHFFFAOYSA-L 0.000 description 2
- 229910000271 hectorite Inorganic materials 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 2
- 238000007759 kiss coating Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000010445 mica Substances 0.000 description 2
- 229910052618 mica group Inorganic materials 0.000 description 2
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 2
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 2
- 150000003018 phosphorus compounds Chemical class 0.000 description 2
- WLJVNTCWHIRURA-UHFFFAOYSA-N pimelic acid Chemical compound OC(=O)CCCCCC(O)=O WLJVNTCWHIRURA-UHFFFAOYSA-N 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 229920002215 polytrimethylene terephthalate Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 239000012798 spherical particle Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 2
- 150000005846 sugar alcohols Polymers 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 238000005809 transesterification reaction Methods 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 150000004072 triols Chemical class 0.000 description 2
- 229910001930 tungsten oxide Inorganic materials 0.000 description 2
- 239000012463 white pigment Substances 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- GFNDFCFPJQPVQL-UHFFFAOYSA-N 1,12-diisocyanatododecane Chemical compound O=C=NCCCCCCCCCCCCN=C=O GFNDFCFPJQPVQL-UHFFFAOYSA-N 0.000 description 1
- ZGDSDWSIFQBAJS-UHFFFAOYSA-N 1,2-diisocyanatopropane Chemical compound O=C=NC(C)CN=C=O ZGDSDWSIFQBAJS-UHFFFAOYSA-N 0.000 description 1
- LMMTVYUCEFJZLC-UHFFFAOYSA-N 1,3,5-pentanetriol Chemical compound OCCC(O)CCO LMMTVYUCEFJZLC-UHFFFAOYSA-N 0.000 description 1
- VGHSXKTVMPXHNG-UHFFFAOYSA-N 1,3-diisocyanatobenzene Chemical compound O=C=NC1=CC=CC(N=C=O)=C1 VGHSXKTVMPXHNG-UHFFFAOYSA-N 0.000 description 1
- UFXYYTWJETZVHG-UHFFFAOYSA-N 1,3-diisocyanatobutane Chemical compound O=C=NC(C)CCN=C=O UFXYYTWJETZVHG-UHFFFAOYSA-N 0.000 description 1
- IKYNWXNXXHWHLL-UHFFFAOYSA-N 1,3-diisocyanatopropane Chemical compound O=C=NCCCN=C=O IKYNWXNXXHWHLL-UHFFFAOYSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- ROHUXHMNZLHBSF-UHFFFAOYSA-N 1,4-bis(isocyanatomethyl)cyclohexane Chemical compound O=C=NCC1CCC(CN=C=O)CC1 ROHUXHMNZLHBSF-UHFFFAOYSA-N 0.000 description 1
- ALQLPWJFHRMHIU-UHFFFAOYSA-N 1,4-diisocyanatobenzene Chemical compound O=C=NC1=CC=C(N=C=O)C=C1 ALQLPWJFHRMHIU-UHFFFAOYSA-N 0.000 description 1
- OVBFMUAFNIIQAL-UHFFFAOYSA-N 1,4-diisocyanatobutane Chemical compound O=C=NCCCCN=C=O OVBFMUAFNIIQAL-UHFFFAOYSA-N 0.000 description 1
- CDMDQYCEEKCBGR-UHFFFAOYSA-N 1,4-diisocyanatocyclohexane Chemical compound O=C=NC1CCC(N=C=O)CC1 CDMDQYCEEKCBGR-UHFFFAOYSA-N 0.000 description 1
- DFPJRUKWEPYFJT-UHFFFAOYSA-N 1,5-diisocyanatopentane Chemical compound O=C=NCCCCCN=C=O DFPJRUKWEPYFJT-UHFFFAOYSA-N 0.000 description 1
- ATOUXIOKEJWULN-UHFFFAOYSA-N 1,6-diisocyanato-2,2,4-trimethylhexane Chemical compound O=C=NCCC(C)CC(C)(C)CN=C=O ATOUXIOKEJWULN-UHFFFAOYSA-N 0.000 description 1
- QGLRLXLDMZCFBP-UHFFFAOYSA-N 1,6-diisocyanato-2,4,4-trimethylhexane Chemical compound O=C=NCC(C)CC(C)(C)CCN=C=O QGLRLXLDMZCFBP-UHFFFAOYSA-N 0.000 description 1
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- JCTXKRPTIMZBJT-UHFFFAOYSA-N 2,2,4-trimethylpentane-1,3-diol Chemical compound CC(C)C(O)C(C)(C)CO JCTXKRPTIMZBJT-UHFFFAOYSA-N 0.000 description 1
- JVYDLYGCSIHCMR-UHFFFAOYSA-N 2,2-bis(hydroxymethyl)butanoic acid Chemical compound CCC(CO)(CO)C(O)=O JVYDLYGCSIHCMR-UHFFFAOYSA-N 0.000 description 1
- OJMJOSRCBAXSAQ-UHFFFAOYSA-N 2,2-dibutylpropane-1,3-diol Chemical compound CCCCC(CO)(CO)CCCC OJMJOSRCBAXSAQ-UHFFFAOYSA-N 0.000 description 1
- LHNAURKRXGPVDW-UHFFFAOYSA-N 2,3-diisocyanatobutane Chemical compound O=C=NC(C)C(C)N=C=O LHNAURKRXGPVDW-UHFFFAOYSA-N 0.000 description 1
- SNCCNKWSGYFVMT-UHFFFAOYSA-N 2,5-dihydroxy-2,5-dimethylhexane-3-sulfonic acid Chemical compound CC(C)(O)CC(C(C)(C)O)S(O)(=O)=O SNCCNKWSGYFVMT-UHFFFAOYSA-N 0.000 description 1
- ZWNMRZQYWRLGMM-UHFFFAOYSA-N 2,5-dimethylhexane-2,5-diol Chemical compound CC(C)(O)CCC(C)(C)O ZWNMRZQYWRLGMM-UHFFFAOYSA-N 0.000 description 1
- LKMJVFRMDSNFRT-UHFFFAOYSA-N 2-(methoxymethyl)oxirane Chemical class COCC1CO1 LKMJVFRMDSNFRT-UHFFFAOYSA-N 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- RWLALWYNXFYRGW-UHFFFAOYSA-N 2-Ethyl-1,3-hexanediol Chemical compound CCCC(O)C(CC)CO RWLALWYNXFYRGW-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- SFJRUJUEMVAZLM-UHFFFAOYSA-N 2-[(2-methylpropan-2-yl)oxymethyl]oxirane Chemical class CC(C)(C)OCC1CO1 SFJRUJUEMVAZLM-UHFFFAOYSA-N 0.000 description 1
- LCZVSXRMYJUNFX-UHFFFAOYSA-N 2-[2-(2-hydroxypropoxy)propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)CO LCZVSXRMYJUNFX-UHFFFAOYSA-N 0.000 description 1
- IAXFZZHBFXRZMT-UHFFFAOYSA-N 2-[3-(2-hydroxyethoxy)phenoxy]ethanol Chemical compound OCCOC1=CC=CC(OCCO)=C1 IAXFZZHBFXRZMT-UHFFFAOYSA-N 0.000 description 1
- TUQYFIFPADMJFJ-UHFFFAOYSA-N 2-butyl-2-hexylpropane-1,3-diol Chemical compound CCCCCCC(CO)(CO)CCCC TUQYFIFPADMJFJ-UHFFFAOYSA-N 0.000 description 1
- QOOXGUCQYVVEFD-UHFFFAOYSA-N 2-butyl-2-methylpropane-1,3-diol Chemical compound CCCCC(C)(CO)CO QOOXGUCQYVVEFD-UHFFFAOYSA-N 0.000 description 1
- FNQJNAWBIIJHCV-UHFFFAOYSA-N 2-butyl-2-propylpropane-1,3-diol Chemical compound CCCCC(CO)(CO)CCC FNQJNAWBIIJHCV-UHFFFAOYSA-N 0.000 description 1
- KEUDFEHZLMMIHD-UHFFFAOYSA-N 2-ethyl-2-hexylpropane-1,3-diol Chemical compound CCCCCCC(CC)(CO)CO KEUDFEHZLMMIHD-UHFFFAOYSA-N 0.000 description 1
- VNAWKNVDKFZFSU-UHFFFAOYSA-N 2-ethyl-2-methylpropane-1,3-diol Chemical compound CCC(C)(CO)CO VNAWKNVDKFZFSU-UHFFFAOYSA-N 0.000 description 1
- WIVDTFSOBMXIMK-UHFFFAOYSA-N 2-hexyl-2-methylpropane-1,3-diol Chemical compound CCCCCCC(C)(CO)CO WIVDTFSOBMXIMK-UHFFFAOYSA-N 0.000 description 1
- 229940044192 2-hydroxyethyl methacrylate Drugs 0.000 description 1
- NJHQOQAEEYIWOB-UHFFFAOYSA-N 2-methyl-2-propan-2-ylpropane-1,3-diol Chemical compound CC(C)C(C)(CO)CO NJHQOQAEEYIWOB-UHFFFAOYSA-N 0.000 description 1
- BKOOMYPCSUNDGP-UHFFFAOYSA-N 2-methylbut-2-ene Chemical group CC=C(C)C BKOOMYPCSUNDGP-UHFFFAOYSA-N 0.000 description 1
- SDQROPCSKIYYAV-UHFFFAOYSA-N 2-methyloctane-1,8-diol Chemical compound OCC(C)CCCCCCO SDQROPCSKIYYAV-UHFFFAOYSA-N 0.000 description 1
- SSONCJTVDRSLNK-UHFFFAOYSA-N 2-methylprop-2-enoic acid;hydrochloride Chemical compound Cl.CC(=C)C(O)=O SSONCJTVDRSLNK-UHFFFAOYSA-N 0.000 description 1
- QWGRWMMWNDWRQN-UHFFFAOYSA-N 2-methylpropane-1,3-diol Chemical compound OCC(C)CO QWGRWMMWNDWRQN-UHFFFAOYSA-N 0.000 description 1
- QZWKEPYTBWZJJA-UHFFFAOYSA-N 3,3'-Dimethoxybenzidine-4,4'-diisocyanate Chemical compound C1=C(N=C=O)C(OC)=CC(C=2C=C(OC)C(N=C=O)=CC=2)=C1 QZWKEPYTBWZJJA-UHFFFAOYSA-N 0.000 description 1
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 1
- HBLRZDACQHNPJT-UHFFFAOYSA-N 4-sulfonaphthalene-2,7-dicarboxylic acid Chemical compound OS(=O)(=O)C1=CC(C(O)=O)=CC2=CC(C(=O)O)=CC=C21 HBLRZDACQHNPJT-UHFFFAOYSA-N 0.000 description 1
- LNJAFCPRJMLMGT-UHFFFAOYSA-N 5-(4-sulfophenoxy)benzene-1,3-dicarboxylic acid Chemical compound OC(=O)C1=CC(C(=O)O)=CC(OC=2C=CC(=CC=2)S(O)(=O)=O)=C1 LNJAFCPRJMLMGT-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- 235000000177 Indigofera tinctoria Nutrition 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 101100489867 Mus musculus Got2 gene Proteins 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-O N-dimethylethanolamine Chemical compound C[NH+](C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-O 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 1
- FQYUMYWMJTYZTK-UHFFFAOYSA-N Phenyl glycidyl ether Chemical class C1OC1COC1=CC=CC=C1 FQYUMYWMJTYZTK-UHFFFAOYSA-N 0.000 description 1
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- GTTSNKDQDACYLV-UHFFFAOYSA-N Trihydroxybutane Chemical compound CCCC(O)(O)O GTTSNKDQDACYLV-UHFFFAOYSA-N 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000012644 addition polymerization Methods 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000002313 adhesive film Substances 0.000 description 1
- 238000007754 air knife coating Methods 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 150000001414 amino alcohols Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 238000007774 anilox coating Methods 0.000 description 1
- 150000001449 anionic compounds Chemical group 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000007611 bar coating method Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 239000007844 bleaching agent Substances 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- OWBTYPJTUOEWEK-UHFFFAOYSA-N butane-2,3-diol Chemical compound CC(O)C(C)O OWBTYPJTUOEWEK-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 239000011231 conductive filler Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- PDXRQENMIVHKPI-UHFFFAOYSA-N cyclohexane-1,1-diol Chemical compound OC1(O)CCCCC1 PDXRQENMIVHKPI-UHFFFAOYSA-N 0.000 description 1
- 229960002887 deanol Drugs 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 1
- KORSJDCBLAPZEQ-UHFFFAOYSA-N dicyclohexylmethane-4,4'-diisocyanate Chemical compound C1CC(N=C=O)CCC1CC1CCC(N=C=O)CC1 KORSJDCBLAPZEQ-UHFFFAOYSA-N 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical class C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- IUNMPGNGSSIWFP-UHFFFAOYSA-N dimethylaminopropylamine Chemical compound CN(C)CCCN IUNMPGNGSSIWFP-UHFFFAOYSA-N 0.000 description 1
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Natural products C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- MSYLJRIXVZCQHW-UHFFFAOYSA-N formaldehyde;6-phenyl-1,3,5-triazine-2,4-diamine Chemical compound O=C.NC1=NC(N)=NC(C=2C=CC=CC=2)=N1 MSYLJRIXVZCQHW-UHFFFAOYSA-N 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 150000002291 germanium compounds Chemical class 0.000 description 1
- 210000004907 gland Anatomy 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- TZMQHOJDDMFGQX-UHFFFAOYSA-N hexane-1,1,1-triol Chemical compound CCCCCC(O)(O)O TZMQHOJDDMFGQX-UHFFFAOYSA-N 0.000 description 1
- XYXCXCJKZRDVPU-UHFFFAOYSA-N hexane-1,2,3-triol Chemical compound CCCC(O)C(O)CO XYXCXCJKZRDVPU-UHFFFAOYSA-N 0.000 description 1
- KJPYHRLBRSHUOV-UHFFFAOYSA-N hexane-1,3,4-triol Chemical compound CCC(O)C(O)CCO KJPYHRLBRSHUOV-UHFFFAOYSA-N 0.000 description 1
- WJSATVJYSKVUGV-UHFFFAOYSA-N hexane-1,3,5-triol Chemical compound CC(O)CC(O)CCO WJSATVJYSKVUGV-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 229940097275 indigo Drugs 0.000 description 1
- COHYTHOBJLSHDF-UHFFFAOYSA-N indigo powder Natural products N1C2=CC=CC=C2C(=O)C1=C1C(=O)C2=CC=CC=C2N1 COHYTHOBJLSHDF-UHFFFAOYSA-N 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- WHIVNJATOVLWBW-UHFFFAOYSA-N n-butan-2-ylidenehydroxylamine Chemical compound CCC(C)=NO WHIVNJATOVLWBW-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- CGNJFUJNEYIYRZ-UHFFFAOYSA-N nonane-1,3-diol Chemical compound CCCCCCC(O)CCO CGNJFUJNEYIYRZ-UHFFFAOYSA-N 0.000 description 1
- WBSRHBNFOLDTGU-UHFFFAOYSA-N nonane-1,8-diol Chemical compound CC(O)CCCCCCCO WBSRHBNFOLDTGU-UHFFFAOYSA-N 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- OEIJHBUUFURJLI-UHFFFAOYSA-N octane-1,8-diol Chemical compound OCCCCCCCCO OEIJHBUUFURJLI-UHFFFAOYSA-N 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 239000011146 organic particle Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- UWJJYHHHVWZFEP-UHFFFAOYSA-N pentane-1,1-diol Chemical compound CCCCC(O)O UWJJYHHHVWZFEP-UHFFFAOYSA-N 0.000 description 1
- AALKGALVYCZETF-UHFFFAOYSA-N pentane-1,2,3-triol Chemical compound CCC(O)C(O)CO AALKGALVYCZETF-UHFFFAOYSA-N 0.000 description 1
- ANUUQAHHEZMTAS-UHFFFAOYSA-N pentane-1,3,4-triol Chemical compound CC(O)C(O)CCO ANUUQAHHEZMTAS-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 229920006287 phenoxy resin Polymers 0.000 description 1
- 239000013034 phenoxy resin Substances 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 229920000909 polytetrahydrofuran Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 229920002717 polyvinylpyridine Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- XRVCFZPJAHWYTB-UHFFFAOYSA-N prenderol Chemical compound CCC(CC)(CO)CO XRVCFZPJAHWYTB-UHFFFAOYSA-N 0.000 description 1
- 229950006800 prenderol Drugs 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000007763 reverse roll coating Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 229920006230 thermoplastic polyester resin Polymers 0.000 description 1
- YODZTKMDCQEPHD-UHFFFAOYSA-N thiodiglycol Chemical compound OCCSCCO YODZTKMDCQEPHD-UHFFFAOYSA-N 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 150000003609 titanium compounds Chemical class 0.000 description 1
- 125000005270 trialkylamine group Chemical group 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- 150000003627 tricarboxylic acid derivatives Chemical class 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- RKBCYCFRFCNLTO-UHFFFAOYSA-N triisopropylamine Chemical compound CC(C)N(C(C)C)C(C)C RKBCYCFRFCNLTO-UHFFFAOYSA-N 0.000 description 1
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
- 239000004246 zinc acetate Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M1/00—Inking and printing with a printer's forme
- B41M1/26—Printing on other surfaces than ordinary paper
- B41M1/30—Printing on other surfaces than ordinary paper on organic plastics, horn or similar materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
Definitions
- the present invention relates to printed matter with excellent adhesion to various ink layers. More specifically, we have developed a biaxially stretched polyester film base material with an easy-adhesion coating layer that is optimal for all types of ink layers, such as ultraviolet (UV) curable ink, solvent-based ink, oxidation polymerization ink, thermal transfer ink ribbon, and LBP toner. Regarding the adhesion with the active energy ray-curable ink layer, especially ultraviolet (UV) curable ink, when stored in a high-temperature and high-humidity environment after printing, the adhesion with the ink layer The present invention relates to a printed material having an easily adhesive coating layer which does not deteriorate in properties.
- UV ultraviolet
- Polyester film has excellent properties such as mechanical properties, electrical properties, and dimensional stability. used as material film. In particular, it is indispensable for various commercial printing applications, labels, etc., in which printing is performed on film.
- polyester films have poor adhesiveness to printing inks, so it is common to provide an anchor coating layer using a resin having easy adhesiveness.
- the constituent resins of the coating layer include, for example, polyester resins, polyurethane resins, acrylic resins, etc., which are used singly or in combination of two or more; and the like.
- both the polyester film surface of the substrate and the surface of the easy-adhesive coating layer provided for improving adhesion are easily charged, and problems related to the passage of the film-forming process and electrostatic interference in the processing process are caused. There are cases where there is a problem (see, for example, Patent Literature 1).
- conductive polymers such as polyaniline and polypyrrole, particulate carbon black, metal powders such as nickel and copper, metal oxides such as tin oxide and zinc oxide, and fibrous brass are used in the coating layer. It is known to impart antistatic properties to the coating layer by incorporating conductive fillers such as metal-coated fibers such as stainless steel and aluminum, graphite flakes, aluminum flakes and copper flakes.
- the present invention is a printed matter having an easy-adhesive coating layer on a polyester film base material, and further comprising an ink layer on the easy-adhesive coating layer, avoiding electrostatic failure in the printing process, and various It has good adhesion to the ink composition, and even when stored in a high temperature and high humidity environment after printing, the adhesion between the ink layer and the easy adhesion layer does not decrease, and good adhesion is maintained.
- the purpose is to provide printed matter that
- the present invention consists of the following configurations. 1. It has an easy-adhesive coating layer on a polyester film substrate, and at least one layer selected from UV-curing ink, solvent-based ink, oxidation polymerization ink, thermal transfer ink ribbon, and LBP toner on the easy-adhesive coating layer.
- the printed matter satisfies the following formulas (i) and (ii), and the contact angle ⁇ H 2 O of the easy-adhesive coating layer surface to water satisfies the following formula (iii).
- the easily adhesive coating layer is obtained by curing a composition containing a cationic antistatic agent, a polyurethane resin and a polyester resin.
- the polyester film substrate is a white polyester film substrate containing inorganic particles and/or a thermoplastic resin incompatible with the polyester resin.
- the present invention it is possible to avoid electrostatic failure in the printing process and to obtain various printed materials having good adhesion between the easily adhesive coating layer and the ink layer, and when stored in a high-temperature and high-humidity environment after printing.
- the adhesion between the substrate and the ink layer does not deteriorate, and good adhesion is maintained.
- polyester film substrate The polyester resin constituting the polyester film substrate in the present invention includes polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, polytrimethylene terephthalate and the like, as well as the diol component or dicarboxylic acid component of the polyester resin as described above.
- copolymerized polyester resin in which a part of is replaced with the following copolymerization components, for example, as copolymerization components, diol components such as diethylene glycol, neopentyl glycol, 1,4-cyclohexanedimethanol, polyalkylene glycol , adipic acid, sebacic acid, phthalic acid, isophthalic acid, 5-sodium isophthalic acid, and dicarboxylic acid components such as 2,6-naphthalenedicarboxylic acid.
- diol components such as diethylene glycol, neopentyl glycol, 1,4-cyclohexanedimethanol, polyalkylene glycol , adipic acid, sebacic acid, phthalic acid, isophthalic acid, 5-sodium isophthalic acid, and dicarboxylic acid components such as 2,6-naphthalenedicarboxylic acid.
- the polyester resin suitably used for the polyester film substrate in the present invention is mainly selected from polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate and polyethylene-2,6-naphthalate.
- polyethylene terephthalate is most preferable from the viewpoint of balance between physical properties and cost.
- the polyester film substrate composed of these polyester resins is preferably a biaxially oriented polyester film, which can improve chemical resistance, heat resistance, mechanical strength, stiffness, and the like.
- the catalyst for polycondensation used in the production of polyester resin is not particularly limited, but antimony trioxide is suitable because it is inexpensive and has excellent catalytic activity. It is also preferable to use a germanium compound or a titanium compound. Further preferred polycondensation catalysts include catalysts containing aluminum and/or compounds thereof and phenolic compounds, catalysts containing aluminum and/or compounds thereof and phosphorus compounds, and catalysts containing aluminum salts of phosphorus compounds.
- the base polyester film used in the present invention may have a single-layer structure or a multi-layer structure, but it is preferable that some or all of the layers are opaque.
- the optical density indicating the opacity of the polyester film is 0.3 or more, preferably 0.3 to 4.0, and particularly preferably 0.5 to 3.0.
- the optical density is 0.3 or more, when printing is applied to the surface of the obtained polyester-based coating film, the printing effect becomes clear, which is preferable. Further, when the optical density is 4.0 or less, a better printing effect can be expected, which is preferable.
- the method for obtaining the optical density within the above range is not particularly limited, it can be preferably achieved by incorporating inorganic particles or a thermoplastic resin incompatible with the polyester resin into the polyester resin.
- the content of these is not particularly limited, but in the case of inorganic particles, it is preferably 5 to 35% by mass, particularly preferably 8 to 25% by mass, based on the polyester produced.
- an incompatible thermoplastic resin is contained, it is preferably 5 to 35% by mass, particularly preferably 8 to 28% by mass, based on the polyester.
- the total amount is 40% by mass or less with respect to the polyester film. It is preferable from the viewpoint of stability.
- the layer structure of the base polyester film in the present invention may be a single layer structure or a laminated structure, but it is a laminated structure of X layer / Y layer / X layer, the X layer contains inorganic particles, and the Y layer contains inorganic particles. is a preferred embodiment to have a laminated structure containing microcavities.
- a layer containing inorganic particles on the X layer which is the surface layer, it is possible to improve the slipperiness, that is, the handling property and the hiding property of the film, and the fine cavities are contained only in the Y layer, which is the inner layer. This makes it possible to ensure the strength of the film surface while exhibiting the cushioning properties of the film.
- the method for forming the laminated structure is not particularly limited, co-extrusion is preferable from the viewpoint of stability during production and processing costs.
- the content of the inorganic particles contained in the X layer is preferably 2.5-70.0% by mass, particularly preferably 4.0-60.0% by mass, relative to the polyester. More preferably, it is 6.0 to 50.0% by mass.
- the content of the incompatible thermoplastic resin contained in the Y layer is preferably 5 to 35% by mass, particularly preferably 8 to 28% by mass, based on the polyester.
- the thickness ratio of each layer in the laminated structure of X layer/Y layer/X layer is preferably in the range of 0.5/9/0.5 to 2/6/2 from the viewpoint of film strength, stiffness, and film forming stability. , 1/8/1 to 1.5/7/1.5.
- inorganic particles to be used are not particularly limited, inorganic particles having an average particle size of 0.1 to 4.0 ⁇ m are preferable, and inorganic particles having an average particle size of 0.3 to 1.5 ⁇ m are particularly preferable.
- white pigments such as titanium oxide, barium sulfate, calcium carbonate, and zinc sulfide are preferred, and these may be mixed.
- inorganic particles commonly contained in films such as silica, alumina, talc, kaolin, clay, calcium phosphate, mica, hectorite, zirconia, tungsten oxide, lithium fluoride, calcium fluoride, calcium sulfate, etc. You can use them together.
- thermoplastic resin incompatible with the polyester resin is not particularly limited. Examples include resins, acrylic resins, phenoxy resins, polyphenylene oxide resins, polycarbonate resins, and the like. Further, these thermoplastic resins may be mixed or modified. Naturally, it can also be used in combination with the inorganic particles. It goes without saying that various whitening agents may be added as necessary.
- the polyester film used in the present invention is preferably a microvoid-containing polyester film having an apparent density of 0.3 to 1.3 g/cm 3 .
- the cavity lamination number density is 0.20/ ⁇ m or more, preferably 0.25/ ⁇ m or more, and more preferably 0.30/ ⁇ m or more, from the viewpoint of achieving both cushioning properties and surface peel strength.
- Certain microvoided polyester-based films are also preferred.
- the resulting polyester-based coating film is excellent in print sharpness and processability during printing.
- the void lamination number density (pieces/ ⁇ m) is defined by the formula: Number of voids in film thickness direction (pieces)/film thickness ( ⁇ m).
- the upper limit of the cavity lamination number density is preferably 0.80/ ⁇ m 2 , more preferably 0.55/ ⁇ m, from the viewpoint of cavity generation efficiency.
- a method to adjust the same density to the above range in addition to adjusting the addition amount, type, viscosity, etc. of the incompatible thermoplastic resin, changing the screw shape of the extruder, and adding a static mixer to the molten resin flow path
- a method such as installation it is not limited to this.
- the microvoids contained in the film cause light scattering at the interface with the polyester matrix, thereby further improving the opacity and reducing the addition of the inorganic particles. , is particularly useful. Furthermore, by containing fine cavities, the weight of the base film itself can be reduced, so that handling is facilitated, and economic effects such as reduction in raw material costs and transportation costs are also large.
- thermoplastic polyester resin as the matrix is kneaded with a thermoplastic resin incompatible with the polyester resin as described above, and the polyester resin is incompatible.
- a known method that has already been disclosed can be used, such as a method of generating cavities around the immiscible resin fine particles by stretching a sheet in which dissolved resin is dispersed in the form of fine particles at least uniaxially.
- the thickness of the obtained polyester film substrate is preferably 5 to 300 ⁇ m.
- the thickness of the polyester film substrate is more preferably 20 to 300 ⁇ m, still more preferably 40 to 250 ⁇ m.
- the preferred whiteness when used in printing materials and the like can be represented by the color b value.
- the color b value corresponds well to visual confirmation, and the color b value is preferably 4.0 or less, more preferably 3.0 or less.
- the b value is 4.0 or less, the degree of whiteness is good, and when used as a label or the like, the clearness at the time of printing is excellent and the commercial value is increased, which is preferable.
- the lower limit of the color tone b value is preferably -5.0. When the b value is -5.0 or more, the bluish tint of the film does not become too strong, and the resolution can be well balanced when used as a printing base material, which is preferable.
- the easily adhesive coating layer in the present invention preferably contains a cationic antistatic agent having a nitrogen element, a polyester resin, or a polyurethane resin. Then, the cationic antistatic agent component and the polyurethane resin component are present in a suitable amount and ratio on the surface of the easily adhesive coating layer, and the contact angle with water is controlled within a suitable range to avoid electrostatic failure in the printing process. In addition, it has good adhesion to various ink compositions. When stored in an environment, good adhesion to the ink layer is maintained without deterioration in adhesion.
- the amounts of the cationic antistatic agent component and the polyurethane resin component present on the surface of the easily adhesive coating layer are the ionized nitrogen element peak and the ionized nitrogen element peak in the N1s spectrum of X-ray photoelectron spectroscopy (ESCA), respectively.
- the peak area of each of the nitrogen element peaks is evaluated.
- ESCA the element species and chemical state corresponding to the peaks are identified from the peak positions of the obtained measured spectra. Further, curve fitting can be performed on the peaks of the elements to calculate the peak area.
- the easily adhesive coating layer in the present invention contains a cationic antistatic agent having a nitrogen element and a polyurethane resin.
- the peaks of the ESCA N1s spectrum are exemplified in FIG.
- a thin solid line in the figure represents the measured data of the N1s spectrum.
- the peak near 402 eV in the curve represented by the dotted line in the figure is the ionized nitrogen element peak, which can be determined to be derived from the cationic antistatic agent in the present invention.
- the peak near 400 eV of the curve represented by the dashed line in the figure is the peak of non-ionized nitrogen element, which can be judged to be derived from the polyurethane resin in the present invention.
- Curve fitting is performed on the peaks of the spectra of all detected elements including the N1s spectrum, and when the total peak area is 100 (at%), the area ratio of (1) is calculated as the area ratio derived from the cationic antistatic agent. It is expressed as nitrogen element ratio A (at %) and used as an indicator of the abundance of the antistatic agent component on the surface of the easily adhesive coating layer. Similarly, the area ratio of (2) is expressed as the polyurethane resin-derived nitrogen element ratio B (at %), and is used as an indicator of the amount of the polyurethane resin component present on the surface of the easy-adhesive coating layer.
- the characteristic values based on the surface element distribution measurement by ESCA satisfy the following relationships (i) and (ii), and the contact angle ⁇ H 2 of the easy-adhesive coating layer surface with respect to water
- O is the following formula (iii)
- it avoids electrostatic failure in the printing process and has good adhesion to various ink compositions, especially active energy such as ultraviolet (UV) curable ink.
- active energy such as ultraviolet (UV) curable ink.
- the adhesion to the line-curable ink layer good adhesion to the ink layer is maintained without deterioration in adhesion to the ink layer when stored in a high-temperature and high-humidity environment after printing.
- the present invention there is provided a printed matter in which good adhesion is maintained without deterioration in adhesion between an ink layer and an easy-adhesion coating layer even when stored in a high-temperature and high-humidity environment after printing. be able to.
- the temperature and humidity exceed the normal temperature and humidity conditions defined in JIS-8703, and when used for labels for industrial electronic components, and in high-humidity environments such as Southeast Asia. Assuming that it will be used as a food label in Japan, the temperature was set at 80°C and the humidity was set at 90% RH for 3 days.
- the remaining area of the printed layer before and after storage under the storage test conditions is 90% or more of the total, respectively, without deterioration of adhesion and adhesion. It is preferably within a range in which good adhesiveness and adhesion are maintained.
- an ionic antistatic agent including a cationic antistatic agent in the present invention is used to exhibit antistatic properties on the substrate surface, it is preferable to form a network of water on the substrate surface, which serves to conduct static electricity.
- the presence of the ionic antistatic agent on the substrate surface has the effect of attracting moisture in the air. Therefore, the larger the amount of the ionic antistatic agent present on the surface of the substrate, the easier it is to attract moisture in the air, and the easier it is to form a network of water, so that the antistatic property is more likely to be exhibited.
- the abundance of the ionic antistatic agent on the base material surface increases, the abundance of the resin relatively decreases. That is, in the present invention, the amount of the polyurethane resin, which is generally considered to be related to the adhesion to the ink, may decrease, resulting in a decrease in the adhesion. Therefore, it is preferable to control the amounts of the ionic antistatic agent and the resin (especially the polyurethane resin) present on the surface of the easy-adhesive coating layer within a suitable range.
- a (at%) preferably exceeds 0.4. By controlling it within the above range, it becomes possible to attract moisture in the air to the surface of the coating film. By controlling the water contact angle of the easy-adhesive coating layer surface, which will be described later, within a suitable range, good antistatic properties can be obtained, and it is possible to avoid electrostatic failure in the printing process.
- a (at%) is more preferably 0.5 at% or more, and still more preferably 0.6 at% or more. However, if A (at %) is too large, it becomes difficult to satisfy the preferred range of B/A below, so it is preferably 5 at % or less, more preferably 3 at % or less, and even more preferably 2 at % or less.
- B/A is preferably 2.0 to 5.0.
- the lower limit of B/A is more preferably 3.0 or more.
- the upper limit of B/A is more preferably 4.0 or less.
- the contact angle of the coating film surface to water is preferably in the range of 50° to 70°.
- the lower limit of the contact angle of the coating film surface to water is more preferably 60° or more.
- the upper limit of the contact angle of the coating film surface to water is more preferably 68° or less.
- the easy-adhesive polyester film in the present invention has both antistatic property and adhesion to ink and toner, and in order to obtain good adhesion to UV curable ink especially during high-speed printing, It is preferable that at least one surface thereof is provided with an easily adhesive coating layer composed of a cationic antistatic agent having a nitrogen element, a polyester resin, or a polyurethane resin.
- the easy-adhesive coating layer may be provided on both sides of the polyester film, or may be provided on only one side of the polyester film and a different resin coating layer may be provided on the other side.
- Cationic antistatic agents include polyethyleneimine, polydimethyldiallylammonium salt, polyalkylenepolyamine dicyanodiamide ammonium condensate, polyvinylpyridium halide, alkyl quaternary ammonium (meth)acrylate, and alkyl quaternary ammonium (meth)acrylamido.
- polystyrene cationic polymer poly(meth)acrylic cationic polymer (methyl methacrylate, ethyl acrylate, 2- hydroxyethyl methacrylate, trimethylaminoethyl chloride methacrylate, etc.), polyvinylpyridine-based polymers, cyclic integral type polymers, linear integral type polymers, aromatic vinyl monomers having two or more pendant quaternary ammonium ion groups
- a polymer, a polymer having a pyrrolidium ring in the main chain, and the like are included.
- polymers may be homopolymers or copolymers.
- Known copolymerizable monomers can be used to produce these polymers.
- the antistatic agent component it is preferably an antistatic agent having a linear alkyl group, and further has a linear alkyl group and a quaternary ammonium base It is preferably an antistatic agent having
- the antistatic agent is preferably present on the surface of the easily adhesive coating layer.
- the number of carbon atoms in the alkyl chain is preferably 10 to 20, more preferably 12 to 19, 14 to 18 are particularly preferred.
- the nitrogen element ratio derived from the cationic antistatic agent having a nitrogen element based on the surface element distribution measurement by ESCA to a suitable range, it is possible to bleed out the antistatic agent on the surface of the easily adhesive coating layer.
- the above range is preferable in view of the interaction between the same molecules and the easiness of bleeding out due to the molecular length.
- At least one amide bond or urethane bond may be included between the linear alkyl chain and the quaternary ammonium base.
- the counter ion of the quaternary ammonium base is not particularly limited as long as it is an anionic compound, but is preferably halogen ion, mono- or polyhalogenated alkyl ion, nitrate ion, sulfate ion. , an alkylsulfate ion, a sulfonate ion, or an alkylsulfonate ion, preferably a chroyl ion, a methasulfonate ion, an ethanesulfonate ion, or a nitrate ion.
- the polyester resin used for forming the easy-adhesive coating layer in the present invention may be a linear one, but more preferably a polyester resin having a dicarboxylic acid and a diol having a branched structure as its constituent components.
- the dicarboxylic acid referred to here is mainly composed of terephthalic acid, isophthalic acid or 2,6-naphthalenedicarboxylic acid, as well as aliphatic dicarboxylic acids such as adipic acid and sebacic acid, terephthalic acid, isophthalic acid, phthalic acid, 2, Aromatic dicarboxylic acids such as 6-naphthalenedicarboxylic acid are included.
- a branched glycol is a diol having a branched alkyl group, such as 2,2-dimethyl-1,3-propanediol, 2-methyl-2-ethyl-1,3-propanediol, 2- Methyl-2-butyl-1,3-propanediol, 2-methyl-2-propyl-1,3-propanediol, 2-methyl-2-isopropyl-1,3-propanediol, 2-methyl-2-n -hexyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 2-ethyl-2-n-butyl-1,3-propanediol, 2-ethyl-2-n-hexyl- 1,3-propanediol, 2,2-di-n-butyl-1,3-propanediol, 2-n-butyl-2-propyl-1,3-propane
- Terephthalic acid or isophthalic acid is preferable as the dicarboxylic acid as a component of the polyester resin.
- 5-sulfoisophthalic acid, 5-sodiumsulfoisophthalic acid and the like can be mentioned.
- a polyester resin containing a dicarboxylic acid having a naphthalene skeleton may be used, but the quantitative ratio thereof should be 5 mol% or less in the total carboxylic acid component in order to suppress deterioration of adhesion to curable ink. It is preferable to have it, and it is not necessary to use it.
- triol or tricarboxylic acid may be included to the extent that the properties of the polyester resin are not impaired.
- the polyester resin may contain polar groups other than carboxyl groups.
- sulfonic acid metal bases phosphoric acid groups, and the like can be mentioned, and one or more of these can be used.
- a metal salt such as 5-sulfoisophthalic acid, 4-sulfonaphthalene-2,7-dicarboxylic acid, 5-[4-sulfophenoxy]isophthalic acid, or 2-sulfo-1
- Dicarboxylic acids or glycols containing sulfonic acid metal bases such as metal salts such as 4-butanediol and 2,5-dimethyl-3-sulfo-2,5-hexanediol are added to 10 of the total polycarboxylic acid component or polyol component.
- a method of using it in the range of mol % or less, preferably 7 mol % or less, more preferably 5 mol % or less is mentioned.
- it is 10 mol % or less, the hydrolysis resistance of the resin itself and the water resistance of the coating film are good, which is preferable.
- the antistatic agent is present on the surface of the easy-adhesive coating layer, the characteristic values based on the surface element distribution measurement by ESCA satisfy a suitable relationship, and the contact angle of the easy-adhesive coating layer surface to water is suitable. range. Therefore, it is preferable to mainly control the polarity of the polyurethane resin.
- Examples of methods for controlling the polarity of polyurethane resins include controlling the structure of the polyol component used in the synthesis and polymerization of polyurethane resins. In general, the polarity of ester skeletons and carbonate skeletons tends to be lower than that of ether skeletons. If the nitrogen element ratio derived from the cationic antistatic agent based on the surface element distribution measurement by ESCA is less than the suitable range, reduce the interaction between the polyurethane resin and the cationic antistatic agent and remove the antistatic agent.
- a polyurethane resin in which the skeleton of the polyol component used in the synthesis and polymerization of the polyurethane resin is an ester skeleton or a carbonate skeleton. It is particularly preferable to use a polyurethane resin having a carbonate skeleton.
- Ether skeleton polyols include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polytetramethylene ether glycol, polyhexamethylene ether glycol, and the like.
- Ester skeleton polyols include polyvalent carboxylic acids (malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, sebacic acid, fumaric acid, maleic acid, terephthalic acid, isophthalic acid, etc.) or their acid anhydrides.
- carboxylic acids malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, sebacic acid, fumaric acid, maleic acid, terephthalic acid, isophthalic acid, etc.
- the carbonate skeleton polyol preferably contains an aliphatic polycarbonate polyol that is excellent in heat resistance and hydrolysis resistance.
- Aliphatic polycarbonate polyols include aliphatic polycarbonate diols and aliphatic polycarbonate triols, and aliphatic polycarbonate diols can be preferably used.
- Aliphatic polycarbonate diols used for synthesizing and polymerizing the polyurethane resin having a polycarbonate structure in the present invention include, for example, ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5 - diols such as pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, 1,8-nonanediol, neopentyl glycol, diethylene glycol and dipropylene glycol; Aliphatic polycarbonate diols obtained by reacting one or more of them with carbonates such as dimethyl carbonate, ethylene carbonate, and phosgene.
- Another method for controlling the polarity of polyurethane resins is, for example, controlling the number average molecular weight of the polyol component used in the synthesis and polymerization of polyurethane resins.
- the number average molecular weight of the polyol component used in the synthesis and polymerization of polyurethane resin is large, the polarity of the polyurethane resin tends to be low. trend.
- the contact angle of water on the surface of the easy-adhesive coating layer is less than the preferred range, it is preferable to increase the number-average molecular weight of the polyol component and decrease the polarity of the polyurethane resin.
- the number average molecular weight of the polyol component when the contact angle of the easily adhesive coating layer surface to water exceeds a suitable range, it is preferable to decrease the number average molecular weight of the polyol component and increase the polarity of the polyurethane resin.
- the number average molecular weight when the polyol used for the synthesis and polymerization of the polyurethane resin is an ester skeleton polyol, the number average molecular weight is preferably 1,000 to 2,400. More preferably 1200-2200, particularly preferably 1400-2200. In the case of a carbonate skeleton polyol, the number average content is preferably 500-1800. More preferably 600-1600, particularly preferably 700-1400.
- a method for controlling the polarity of polyurethane resins is, for example, controlling the amount of urethane groups in the molecule.
- the polarity of the polyurethane resin tends to be high, and the amount of the polyurethane resin component present on the surface of the easy-adhesive coating layer tends to increase.
- the number of urethane groups in the molecule is small, the polarity of the polyurethane resin tends to be low, and the amount of the polyurethane resin component present on the surface of the easy-adhesive coating layer tends to decrease.
- the amount of urethane groups in the molecule by controlling the amount of urethane groups in the molecule, the abundance of the antistatic agent component on the surface of the easy-adhesive coating layer, the abundance of the polyurethane resin component, and the contact angle of water on the surface of the easy-adhesive coating layer can be reduced. change in parallel.
- Examples of the characteristic values based on the surface element distribution measurement by ESCA in the present invention and the contact angle to water on the surface of the easy-adhesive coating layer in a suitable range include the amount of urethane groups in the molecule (synthesis of polyurethane resin, The number average molecular weight of the isocyanate component/the number average molecular weight of the polyurethane resin used for polymerization) is preferably 26-38. More preferably 26-36.
- a known method can be applied as a method for producing a polyurethane resin in the present invention.
- a prepolymer having an isocyanate terminal is synthesized from a polyol and excess polyisocyanate, and then this prepolymer is added with a chain extender or a crosslinker. There is a method of reacting with to increase the molecular weight.
- polyisocyanate used for the synthesis and polymerization of the polyurethane resin in the present invention examples include aromatic-aliphatic diisocyanates such as xylylene diisocyanate, isophorone diisocyanate and 4,4-dicyclohexylmethane diisocyanate, and 1,3-bis(isocyanatomethyl).
- aromatic-aliphatic diisocyanates such as xylylene diisocyanate, isophorone diisocyanate and 4,4-dicyclohexylmethane diisocyanate, and 1,3-bis(isocyanatomethyl).
- Alicyclic diisocyanates such as cyclohexane, hexamethylene diisocyanate, and aliphatic diisocyanates such as 2,2,4-trimethylhexamethylene diisocyanate, or a single or multiple of these compounds previously added with trimethylolpropane or the like Polyisocyanates can be mentioned.
- the coating film is not too hard, the stress due to heat shrinkage of the polyester film substrate can be relieved, and there is no problem such as cohesive failure of the easily adhesive coating layer, which is preferable.
- Examples of the chain extender used for the synthesis and polymerization of the polyurethane resin in the present invention include glycols such as ethylene glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol and 1,6-hexanediol, glycerin, and trimethylol.
- glycols such as ethylene glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol and 1,6-hexanediol, glycerin, and trimethylol.
- Polyhydric alcohols such as propane and pentaerythritol, diamines such as ethylenediamine, hexamethylenediamine, and piperazine, amino alcohols such as monoethanolamine and diethanolamine, thiodiglycols such as thiodiethylene glycol, or water. mentioned.
- the easily adhesive coating layer in the present invention is preferably provided by an in-line coating method, which will be described later, using a water-based coating liquid. Therefore, it is desirable that the polyurethane resin in the present invention has water solubility or water dispersibility.
- water-soluble or water-dispersible means dispersing in water or an aqueous solution containing less than 50% by mass of a water-soluble organic solvent.
- a sulfonic acid (salt) group or a carboxylic acid (salt) group can be introduced (copolymerized) into the urethane molecular skeleton.
- the polyurethane resin into which a nonionic group such as a polyoxyalkylene group is introduced is particularly preferable because it can minimize the interaction between the polyurethane resin and the cationic antistatic agent.
- the method of introducing the nonionic group can be appropriately selected from known methods. For example, a method of replacing part of the polymer polyol with a diol containing a polyoxyethylene group, or A method of reacting part of the isocyanate groups in the nurate form of diisocyanate with methoxypolyethylene glycol in advance and then reacting it with a high-molecular-weight polyol can be mentioned.
- a polyol compound having a carboxylic acid group such as dimethylolpropanoic acid or dimethylolbutanoic acid is introduced as a copolymerization component.
- a salt-forming agent include ammonia, trialkylamines such as trimethylamine, triethylamine, triisopropylamine, tri-n-propylamine and tri-n-butylamine; -N-dialkylalkanolamines such as alkylmorpholines, N-dimethylethanolamine and N-diethylethanolamine. These can be used alone or in combination of two or more.
- the composition molar ratio of the polyol compound having a carboxylic acid (salt) group in the polyurethane resin is
- the total polyisocyanate component of is 100 mol%, it is preferably 3 to 25 mol%, more preferably 3 to 18 mol%, and particularly preferably in the range of 3 to 15 mol%. .
- the polyurethane resin in the present invention may be a self-crosslinking polyurethane resin with blocked isocyanate bound to the end to improve toughness.
- the polyurethane resin in the present invention may have a branched structure.
- the polycarbonate polyol component, polyisocyanate, and chain extender are allowed to react at an appropriate temperature and time, and then tri- or more functional hydroxyl groups or isocyanate groups are added.
- a method of adding a compound having a compound and further advancing the reaction can be preferably employed.
- compounds having a trifunctional or higher hydroxyl group include caprolactone triol, glycerol, trimethylolpropane, butanetriol, hexanetriol, 1,2,3-hexanetriol, 1,2,3-pentanetriol, 1,3 ,4-hexanetriol, 1,3,4-pentanetriol, 1,3,5-hexanetriol, 1,3,5-pentanetriol and polyethertriol.
- the polyether triols include, for example, glycerin, alcohols such as trimethylolpropane, diethylenetriamine, and the like, using one or more compounds having three active hydrogens as initiators, ethylene oxide, propylene oxide, and butylene.
- a specific example of the compound having a trifunctional or higher isocyanate group is a polyisocyanate compound having at least three or more isocyanate (NCO) groups in one molecule.
- trifunctional or higher isocyanate compounds are aromatic diisocyanates, aliphatic diisocyanates, araliphatic diisocyanates, alicyclic diisocyanates having two isocyanate groups. and adducts.
- Aromatic diisocyanates include, for example, 1,3-phenylene diisocyanate, 4,4′-diphenyl diisocyanate, 1,4-phenylene diisocyanate, 4,4′-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate isocyanate, 4,4'-toluidine diisocyanate, dianisidine diisocyanate, 4,4'-diphenyl ether diisocyanate, and the like.
- Aliphatic diisocyanates are, for example, trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, pentamethylene diisocyanate, 1,2-propylene diisocyanate, 2,3-butylene diisocyanate, 1,3-butylene diisocyanate, dodecamethylene diisocyanate, and 2, 4,4-trimethylhexamethylene diisocyanate and the like.
- araliphatic diisocyanates include xylylene diisocyanate, ⁇ , ⁇ '-diisocyanate-1,4-diethylbenzene, 1,4-tetramethylxylylene diisocyanate, and 1,3-tetramethylxylylene diisocyanate.
- Alicyclic diisocyanates include, for example, 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (also known as IPDI, isophorone diisocyanate), 1,3-cyclopentane diisocyanate, 1,3-cyclohexane diisocyanate, 1,4-cyclohexane diisocyanate, methyl-2,4-cyclohexanediisocyanate, methyl-2,6-cyclohexanediisocyanate, 4,4'-methylenebis(cyclohexylisocyanate), 1,4-bis(isocyanatomethyl)cyclohexane, and the like.
- IPDI isophorone diisocyanate
- 1,3-cyclopentane diisocyanate 1,3-cyclohexane diisocyanate
- 1,4-cyclohexane diisocyanate 1,4-cyclohexane diisocyanate
- the burette body is a self-condensed product having a burette bond formed by self-condensation of an isocyanate monomer, and examples thereof include a burette body of hexamethylene diisocyanate.
- a nurate compound is a trimer of an isocyanate monomer, and examples thereof include a trimer of hexamethylene diisocyanate, a trimer of isophorone diisocyanate, a trimer of tolylene diisocyanate, and the like.
- the adduct refers to a tri- or higher functional isocyanate compound obtained by reacting the above isocyanate monomer with a tri- or higher-functional low-molecular-weight active hydrogen-containing compound, for example, a compound obtained by reacting trimethylolpropane and hexamethylene diisocyanate. , a compound obtained by reacting trimethylolpropane and tolylene diisocyanate, a compound obtained by reacting trimethylolpropane and xylylene diisocyanate, a compound obtained by reacting trimethylolpropane and isophorone diisocyanate, and the like.
- chain extenders having a number of functional groups of 3 or more include trimethylolpropane and alcohols having a hydroxy group of 3 or more functional groups, such as pentaerythritol, which are described in the above description of chain extenders.
- the antistatic agent is present on the surface of the easy-adhesive coating layer, the characteristic values based on the surface element distribution measurement by ESCA satisfy a suitable relationship, and the contact angle of the easy-adhesive coating layer surface to water is suitable. range. Therefore, after mainly controlling the polarity of the polyurethane resin, the solid content ratio of each component with respect to the total solid content of the cationic antistatic agent, polyester resin, and polyurethane resin is adjusted to provide an easy-adhesive coating layer. It is preferable to control the polarity as
- the content (% by mass) of the cationic antistatic agent is 3.5 to 7.0. is preferred, and 4.0 to 5.5 is more preferred.
- the nitrogen element ratio derived from the cationic antistatic agent having a nitrogen element based on the surface element distribution measurement by ESCA, and the nitrogen element ratio derived from the polyurethane resin / the nitrogen element ratio derived from the cationic antistatic agent It can be controlled within a suitable range.
- the polyester resin content (% by mass) is preferably 25 to 80, preferably 30 to 80. is more preferable. Furthermore, 35 to 80 is particularly preferred.
- the adhesiveness between the easily adhesive coating layer and the polyester film substrate is ensured, and the polar groups in the polyester resin that can interact with the coexisting cationic antistatic agent component, such as carboxyl group and sulfone.
- the amount of acid metal base and phosphate group is controlled, and the nitrogen element ratio derived from the cationic antistatic agent having nitrogen element based on surface element distribution measurement by ESCA can be controlled within a suitable range.
- the polyurethane resin content (% by mass) is preferably 15 to 65, more preferably 20 to 55. is more preferable.
- the content of polyurethane resin is low, the ratio of polyester resin is relatively high, and the amount of polar groups such as carboxyl groups, sulfonic acid metal groups, and phosphoric acid groups in the polyester resin in the easy-adhesion coating layer increases. It will be. If the content of the polyurethane resin is high, the polarity of the easy-adhesive coating layer will be low.
- the amount of the cationic antistatic agent component on the surface of the easy-adhesive coating layer also increases.
- the nitrogen element ratio derived from the cationic antistatic agent having nitrogen element based on the surface element distribution measurement by ESCA can be controlled within a suitable range.
- additives such as surfactants, antioxidants, heat stabilizers, weather stabilizers, ultraviolet absorbers, and organic facilitators may be added to the easily adhesive coating layer in the present invention as long as they do not impair the effects of the present invention.
- Lubricants, pigments, dyes, organic or inorganic particles, nucleating agents, etc. may be added.
- Inert particles may be contained in the easily adhesive coating layer in order to reduce the glossiness of the easily adhesive coating layer surface.
- inert particles examples include titanium oxide, barium sulfate, calcium carbonate, calcium sulfate, silica, alumina, talc, kaolin, clay, calcium phosphate, mica, hectorite, zirconia, tungsten oxide, lithium fluoride, and fluoride.
- inorganic particles such as calcium, and organic polymer particles such as polystyrene, polyacrylic, melamine, benzoguanamine, and silicone resins. These may be used alone or in combination of two or more.
- the average particle diameter of the inert particles is preferably 0.1-2.4 ⁇ m, more preferably 0.3-2.0 ⁇ m.
- the average particle size of the inert particles is 0.1 ⁇ m or more, the glossiness of the film surface does not become too high, which is preferable.
- the particle size is 2.4 ⁇ m or less, the particles are less likely to fall off from the easily adhesive coating layer, and powder fall-off can be prevented, which is preferable.
- the content of the inert particles can be added within a range that does not impair the effects of the present invention.
- the content of the solid content of the particles is preferably 0 to 70.0% by mass, preferably 0 to 60.0% by mass, more preferably 0 to 60.0% by mass, based on the total solid content of the easy-adhesive coating layer. It is preferably ⁇ 55.0% by mass.
- the shape of the particles is not particularly limited as long as it satisfies the object of the present invention, and spherical particles and irregularly shaped non-spherical particles can be used.
- the particle diameter of amorphous particles can be calculated as the equivalent circle diameter.
- polyester film manufacturing method The method for producing the polyester film in the present invention is arbitrary and not particularly limited, but it can be produced, for example, as follows.
- the film raw material After sufficiently vacuum-drying the film raw material, it is melted in an extruder and extruded into a sheet form from a T-die while applying static electricity to a rotating cooling metal roll to obtain an unstretched film.
- the white pigment and other additives are not powdered and kneaded in the extruder, but a masterbatch polymer is prepared by separately containing the white pigment and the like in the polyester resin at a high concentration in advance. is preferably blended and diluted with a polyester resin from the viewpoint of uniform mixing. It is preferable to use a twin-screw extruder in order to sufficiently and uniformly mix the various film raw materials. Further, it is preferable to add an alkaline earth metal salt and/or an alkali metal salt and phosphoric acid or a salt thereof when polymerizing the polyester in order to improve the electrostatic adhesion. Addition of phosphoric acid or a salt thereof also has the effect of improving color tone (particularly b value).
- the base polyester film may have a single-layer structure or a laminated structure.
- the laminate structure has the advantage that the compositions of the surface layer and the central layer can be designed in various ways according to the required functions.
- the polyester film of the base material has a laminated structure, after supplying the resins of the X layer and the Y layer to separate extruders, for example, a two-layer structure of the X layer / Y layer in a molten state, the X layer It is most preferable to adopt a co-extrusion method in which a three-layer structure such as /Y layer/X layer is laminated and extruded from the same die.
- the unstretched film obtained in this way is further stretched between rolls with a speed difference (roll stretching), stretched by gripping and spreading with clips (tenter stretching), or stretched by spreading with air pressure (inflation stretching). ) or the like.
- the conditions for stretching and orienting an unstretched film are closely related to the physical properties of the film.
- the stretching and orientation conditions will be described below by taking as an example the most common sequential biaxial stretching method, particularly a method in which an unstretched sheet is stretched in the longitudinal direction and then in the width direction.
- the film is stretched between two or multiple rolls with different peripheral speeds.
- a heating means at this time a method using a heating roll or a method using a non-contact heating method may be used, or both of them may be used.
- the uniaxially stretched film is introduced into a tenter and stretched 2.5 to 5 times in the width direction at a temperature not higher than the melting point Tm-10° C. of the polyester.
- the biaxially stretched film thus obtained is subjected to heat treatment as necessary.
- the heat treatment is preferably carried out in a tenter, and the heat treatment temperature is preferably in the range from the melting point (Tm) of polyester -50 (°C) to Tm (°C).
- the polyester film substrate in the present invention may be obtained by dispersing a thermoplastic resin incompatible with the polyester resin in the polyester resin in the process of melting and extruding the film raw material.
- the polyester film substrate in the present invention is also preferably a white polyester film substrate.
- the polyester resin and the thermoplastic resin incompatible with the polyester resin were supplied in the form of pellets, but the present invention is not limited to this.
- the raw materials to be fed into the extruder for melt molding into a film are prepared by mixing these resin pellets according to the desired composition.
- a suitable method for preventing the segregation of the polyester film substrate in the present invention there is a method in which part or all of the raw material resins are previously combined, kneaded and pelletized to form a masterbatch pellet. Although this method was used in the experimental examples of the present invention, it is not particularly limited as long as it does not interfere with the effects of the present invention.
- thermoplastic resin that is incompatible with the polyester once dispersed in the form of fine particles in the polyester resin tends to reaggregate with time under a low-shear molten state, so extrusion
- a fundamental solution is to reduce the residence time in the melt line from the machine to the die.
- the residence time in the melt line is preferably 30 minutes or less, more preferably 15 minutes or less.
- the conditions for stretching and orienting the unstretched film obtained as described above are closely related to the physical properties of the film.
- the stretching and orientation conditions will be described by taking as an example the most common sequential biaxial stretching method, particularly a method in which an unstretched film is stretched in the longitudinal direction and then in the width direction.
- the film is stretched 2.5 to 5.0 times in the longitudinal direction with rolls heated to 80 to 120°C to obtain a uniaxially stretched film.
- a heating means a method using a heating roll or a method using a non-contact heating method may be used, or they may be used in combination.
- the uniaxially stretched film is introduced into a tenter and stretched 2.5 to 5 times in the width direction at a temperature of (Tm-10°C) or less.
- Tm means the melting point of polyester.
- the above biaxially stretched film is subjected to heat treatment as necessary.
- the heat treatment is preferably carried out in a tenter, preferably in the range of (Tm-60°C) to Tm.
- the polyester-based resin in the present invention may contain a polyester-based resin recycled from PET bottles. Crystallinity is controlled for the polyester used in PET bottles in order to improve bottle moldability and appearance. In some cases, those containing 10.0 mol % or less of an isophthalic acid component and an ester constitutional unit derived from an arbitrary diol component represented by ethylene glycol or diethylene glycol are used. In some cases, a polyester obtained by further performing solid-phase polymerization after liquid-phase polymerization to increase the intrinsic viscosity is used. Polyester-based resin pellets recycled from PET bottles are usually made by washing, pulverizing, heating and melting the PET bottles and re-pelletizing them. I don't mind.
- the intrinsic viscosity of the polyester resin recycled from PET bottles is preferably in the range of 0.60 to 0.75 dl/g.
- the intrinsic viscosity is 0.60 dl/g or more, the resulting film is less likely to break, and film production can be stably operated, which is preferable.
- the intrinsic viscosity is 0.75 dl/g or less, the filtration pressure of the molten fluid does not increase too much, and the film production can be stably operated, which is preferable.
- the amount of oligomers contained in the resin, especially the PET cyclic trimer, which is the most abundant, is smaller than that in a liquid phase polymerized product.
- the upper limit of the cyclic trimer oligomer contained in the recycled polyester resin made from PET bottles is preferably 0.7% by mass, more preferably 0.5% by mass, and more preferably 0.4% by mass. is.
- the lower limit of the content of polyester resin recycled from PET bottles to the void-containing polyester film is preferably 25% by mass, more preferably 30% by mass, and even more preferably 50% by mass. When it is 25% by mass or more, the amount of oligomer contained in the void-containing polyester-based film is reduced, and precipitation of the oligomer can be suppressed, which is preferable. Furthermore, in terms of utilization of recycled resin, a high content is preferable from the viewpoint of contributing to reduction of environmental load.
- the upper limit of the content of polyester resin recycled from PET bottles is preferably 90% by mass, more preferably 85% by mass.
- the easily adhesive coating layer can be provided after the film is manufactured or during the manufacturing process.
- any known method can be used to apply this coating liquid to the PET film.
- reverse roll coating method gravure coating method, kiss coating method, die coater method, roll brush method, spray coating method, air knife coating method, wire bar coating method, pipe doctor method, impregnation coating method, curtain coating method, etc. be done. These methods can be applied singly or in combination.
- the cationic antistatic agent component bleeds out on the surface of the easily adhesive coating layer, and the characteristic values based on the surface element distribution measurement by ESCA satisfy a suitable relationship.
- a range of 100° C. to 130° C. is particularly preferred.
- the thickness of the easily adhesive coating layer is preferably in the range of 50-900 nm, more preferably in the range of 70-800 nm, still more preferably in the range of 100-600 nm, and particularly preferably in the range of 200-500 nm.
- the amount of the cationic antistatic agent component present per volume of the easy-adhesion coating layer increases. In other words, when they bleed out to the surface of the easy-adhesion coating layer, a large amount of the cationic antistatic agent component is present on the surface of the easy-adhesion coating layer.
- the thickness of the easily adhesive coating layer is reduced, the amount of the intervening cationic antistatic agent component per volume of the easily adhesive coating layer is reduced. In other words, the cationic antistatic agent component present on the surface of the easy-adhesive coating layer is reduced. Therefore, by controlling the thickness of the easy-adhesive coating layer within the above range, the nitrogen element ratio derived from the cationic antistatic agent and the nitrogen element ratio derived from the polyurethane resin / derived from the cationic antistatic agent can be obtained by measuring the surface element distribution by ESCA can be controlled within a suitable range.
- the UV curable ink in the present invention is a general term for inks that are cured by ultraviolet light.
- the composition of the ink includes pigments (dyes), oligomers and monomers, photopolymerization initiators and accelerators, auxiliary agents, and the like. Oligomers and monomers act as fluid components in this component, and after being spread on a printing material, are cured by radicals generated from a photopolymerization initiator by an ultraviolet lamp.
- the content ratio of oligomers and monomer species varies depending on the printing method described later. Basically, it does not contain a solvent except for the purpose of adjusting the viscosity, and even if it contains a solvent, it is preferably about 10% by mass at most.
- the solvent-based ink in the present invention is a general term for inks that are cured by evaporation drying.
- the composition of the ink is a pigment (dye), a resin component, a diluting solvent, an auxiliary agent, and the like. After printing, the solvent evaporates quickly, leaving resin and pigment on the surface to be printed, and the ink dries very quickly, making it suitable for high-speed, high-volume printing.
- the oxidative polymerization type ink in the present invention is mainly composed of a drying oil that is polymerized and hardened by oxygen in the air, and also contains a pigment (dye), a polymerization accelerator, an auxiliary agent, and the like.
- the drying oil acts as a fluid component, and the viscosity is adjusted according to the printing method.
- a composite type containing both an ultraviolet curing component and a drying oil. Chill, ethyl acetate, ketones such as acetone, MEK, and the like, which may be used alone or in mixtures thereof and mixtures with alcohols.
- Organic solvents do not contain polymerizable/curable monomers, oligomers, or oils. Printing methods using these include flexographic printing, screen printing, and offset printing. The viscosity of the ink is set higher for the latter.
- the thermal transfer ink in the present invention is a hot-melt pigment ink, and is used in a thermal transfer method in which ink applied to an ink ribbon is melted by heat and transferred to paper for printing.
- the ink contains coloring agents such as pigments and dyes, binders such as waxes and thermoplastic resins, and various additives such as softeners and dispersants.
- Resin type or wax type ink is used for the thermal transfer method. Among them, the resin type is preferably used because of its excellent weather resistance. It is used for monochrome document output of word processors, tape writers, bar code printers, etc. It is also used in some color printers and video printers by using color ribbons.
- LBP toner The LBP toner in the present invention is a powder for coloring used in laser printers and copiers, and is a mixture of charged fine particles (polymer resin), wax, pigment, and the like. For color printing, four colors of blue-green, red-purple, yellow, and black are used. LBP is a page printer that charges a drum with laser light and uses static electricity to adhere toner.
- N N + isoionized nitrogen element
- N Non-ionized nitrogen element such as CN
- ⁇ Measurement conditions Excitation X-rays: Monochrome Al K ⁇ rays X-ray output: 12 kV, 6 mA Photoelectron escape angle: 90 ° Spot size: 400 ⁇ m ⁇ Pass energy: 50eV Step : 0.1eV
- FIG. 1 is a graph showing analysis results of the N1s spectrum of the surface region of the substrate having the easily adhesive coating layer of Experimental Example 1.
- FIG. The thin solid line represents the measured data of the N1s spectrum.
- the peaks of the obtained measured spectrum were separated into a plurality of peaks, and the binding species corresponding to each peak were identified from the position and shape of each peak. Further, curve fitting was performed on the peaks derived from each binding species to calculate the peak area.
- the peak area of N (N + equiionized nitrogen element) was defined as A (at%)
- the peak area of N (nonionized nitrogen element such as CN) was defined as B (at%).
- the remaining area of the printed layer is 99% or more of the total 4: The remaining area of the printed layer is 90% or more and less than 99% of the total 3: The remaining area of the printed layer is 80% or more and less than 90% of the total 2: Printing The remaining area of the layer is 70% or more and less than 80% of the total 1: The remaining area of the printed layer is 60% or more and less than 70% of the total
- the remaining area of the printed layer is 99% or more of the total 4: The remaining area of the printed layer is 90% or more and less than 99% of the total 3: The remaining area of the printed layer is 80% or more and less than 90% of the total 2: Printing The remaining area of the layer is 70% or more and less than 80% of the total 1: The remaining area of the printed layer is 60% or more and less than 70% of the total
- Resin Solid Content Thickness of Adhesive Coating Layer The resin solid content thickness was calculated from the coating amount of the coating material and the total resin solid content mass contained in the coating material.
- polyester resin B-1 194.2 parts by weight of dimethyl terephthalate, 184.5 parts by weight of dimethyl isophthalate, 14.8 parts by weight of dimethyl-5-sodium sulfoisophthalate were added to a stainless steel autoclave equipped with an agitator, thermometer, and partial reflux condenser. , 233.5 parts by mass of diethylene glycol, 136.6 parts by mass of ethylene glycol, and 0.2 parts by mass of tetra-n-butyl titanate were charged, and transesterification was carried out at a temperature of 160° C. to 220° C. over 4 hours.
- polyester aqueous dispersion Bw-1 25 parts by mass of polyester resin (B-1) and 10 parts by mass of ethylene glycol n-butyl ether were placed in a reactor equipped with a stirrer, a thermometer and a reflux device, and the mixture was heated at 110° C. and stirred to dissolve the resin. After the resin was completely dissolved, 65 parts by mass of water was slowly added to the polyester solution with stirring. After the addition, the liquid was cooled to room temperature while stirring to prepare a milky white polyester aqueous dispersion (Bw-1) having a solid content of 30.0% by mass.
- polyester resin solution Bw-2 97 parts by mass of dimethyl terephthalate, 93 parts by mass of dimethyl isophthalate, 68 parts by mass of ethylene glycol, 116 parts by mass of diethylene glycol, 0.1 part by mass of zinc acetate and 0.1 part by mass of antimony trioxide were charged into a reaction vessel and heated at 180°C for 3 hours. The transesterification reaction was carried out over a period of time. Next, 7.1 parts by mass of 5-sodium sulfoisophthalic acid was added and an esterification reaction was carried out at 240°C over 1 hour, followed by 2 hours at 250°C under reduced pressure (1.33 to 0.027 kPa).
- a polycondensation reaction was carried out to obtain a polyester resin having a molecular weight of 22,000. 300 parts by mass of this polyester resin and 140 parts by mass of butyl cellosolve were stirred at 160° C. for 3 hours to obtain a viscous melt, and water was gradually added to the melt. % by weight polyester resin solution (Bw-2) was prepared.
- Example 1 Preparation of coating solution Mix the following coating agent with a mixed solvent of water and isopropanol, and the solid content mass ratio of the cationic antistatic agent containing nitrogen element/polyester resin/polyurethane resin solution is 5.0. /57.0/38.0. In the manufacturing process of the white easily adhesive film, which will be described later, the coating was applied so that the thickness of the resin solid content was 450 nm.
- Nitrogen-containing cationic antistatic agent solution (A-1) 2.52 parts by mass (solid content concentration 17.50% by mass)
- Polyester water dispersion (Bw-1) 17.00 parts by mass
- Polyurethane resin solution (C-1) 9.60 parts by mass Particles 25.15 parts by mass (silica particles with an average particle size of 0.45 ⁇ m, solid content concentration 40.00 mass%)
- Surfactant 0.15 parts by mass (silicone type, solid content concentration 10% by mass)
- This molten resin was co-extruded in a sheet form from a T-die onto a cooling roll whose temperature was adjusted to 25°C, and adhered and solidified by an electrostatic application method to produce an unstretched film with a thickness of 510 ⁇ m.
- the discharge rate of each extruder was adjusted so that the thickness ratio of each layer was 1:8:1.
- the molten resin stayed in the melt line for about 12 minutes, and the shear rate received from the T-die was about 150/sec.
- the film After coating, the film is led to a tenter, heated to 150°C while being dried, transversely stretched to 3.7 times, fixed in width, subjected to heat treatment at 220°C for 5 seconds, and further relaxed 4% in the width direction at 200°C.
- a 50 ⁇ m-thick white easily adhesive polyester film was obtained.
- the b value of this film was 1.6.
- a UV curable ink (Printed Matter Having UV Curable Ink Layer) On the easy-adhesive coating layer of the easy-adhesive polyester film, a UV curable ink [T&K TOKA Co., Ltd., trade name “BEST CURE UV161 Indigo S”] is used to print with a central impression type printer. did. After weighing the ink with an anilox roll with a cell volume of 11 cm 3 /m 2 , it was transferred to a solid plate and then to a film. The ink transferred on the film was cured with a 160 W/cm metal halide UV lamp to obtain a printed matter. The time from ink transfer to film to UV light irradiation was 1.88 seconds.
- Example 2 The following coating agent was mixed with a mixed solvent of water and isopropanol, and the solid content mass ratio of the cationic antistatic agent containing nitrogen element/polyester resin/polyurethane resin solution was 5.0/76.0/19.
- a white easy-adhesive polyester film and a printed matter were obtained in the same manner as in Experimental Example 1, except that the value was changed to 0.
- Cationic antistatic agent solution containing nitrogen element (A-1) 2.52 parts by mass (solid content concentration 17.50% by mass)
- Polyester water dispersion (Bw-1) 22.67 parts by mass
- Polyurethane resin solution (C-1) 4.80 parts by mass Particles 25.15 parts by mass (silica particles with an average particle size of 0.45 ⁇ m, solid content concentration 40.00 mass%)
- Surfactant 0.15 parts by mass (silicone type, solid content concentration 10% by mass)
- Example 3 The following coating agent was mixed with a mixed solvent of water and isopropanol, and the solid content mass ratio of the cationic antistatic agent containing nitrogen element/polyester resin/polyurethane resin solution was 5.0/57.0/38.
- a white easy-adhesive polyester film and a printed matter were obtained in the same manner as in Experimental Example 1, except that the value was changed to 0.
- Nitrogen-containing cationic antistatic agent solution (A-1) 2.52 parts by mass (solid content concentration 17.50% by mass)
- Polyester water dispersion (Bw-1) 17.00 parts by mass
- Polyurethane resin solution (C-2) 9.71 parts by mass Particles 25.15 parts by mass (silica particles with an average particle diameter of 0.45 ⁇ m, solid content concentration 40.00 mass%)
- Surfactant 0.15 parts by mass (silicone type, solid content concentration 10% by mass)
- Example 4 The following coating agent was mixed with a mixed solvent of water and isopropanol, and the solid content mass ratio of the cationic antistatic agent containing nitrogen element/polyester resin/polyurethane resin solution was 5.0/57.0/38.
- a white easy-adhesive polyester film was obtained in the same manner as in Experimental Example 1, except that it was changed to 0.
- Cationic antistatic agent solution (A-2) containing nitrogen element 2.52 parts by mass (solid content concentration 17.50% by mass)
- Polyurethane resin solution (C-1) 9.60 parts by mass Particles 25.15 parts by mass (silica particles with an average particle diameter of 0.45 ⁇ m, solid content concentration 40.00 mass%)
- Surfactant 0.15 parts by mass (silicone type, solid content concentration 10% by mass)
- Example 5 The following coating agent was mixed with a mixed solvent of water and isopropanol, and the solid content mass ratio of the cationic antistatic agent containing nitrogen element/polyester resin/polyurethane resin solution was 5.0/57.0/38.
- a white easy-adhesive polyester film was obtained in the same manner as in Experimental Example 1, except that it was changed to 0.
- Nitrogen-containing cationic antistatic agent solution (A-1) 2.52 parts by mass (solid content concentration 17.50% by mass)
- Polyester resin solution (Bw-2) 20.40 parts by mass
- Polyurethane resin solution (C-1) 9.60 parts by mass Particles 25.15 parts by mass (silica particles with an average particle size of 0.45 ⁇ m, solid content concentration 40.00 mass %)
- Surfactant 0.15 parts by mass (silicone type, solid content concentration 10% by mass)
- Example 6 The following coating agent was mixed with a mixed solvent of water and isopropanol, and the solid content mass ratio of the cationic antistatic agent containing nitrogen element/polyester resin/polyurethane resin solution was 5.0/57.0/38.
- a white easy-adhesive polyester film and a printed material were obtained in the same manner as in Experimental Example 1, except that the resin solid content thickness was changed to 0 and the coating was performed so that the thickness of the resin solid content was 650 nm.
- Cationic antistatic agent solution containing nitrogen element (A-1) 3.30 parts by mass (solid content concentration 19.20% by mass)
- Polyester water dispersion (Bw-1) 30.00 parts by mass
- Polyurethane resin solution (C-1) 16.95 parts by mass Particles 31.91 parts by mass (benzoguanamine formaldehyde condensate particles having an average particle size of 2 ⁇ m, Solid content concentration 40.00% by mass)
- Surfactant 0.40 parts by mass (silicone type, solid content concentration 10% by mass)
- Example 7 The following coating agent was mixed with a mixed solvent of water and isopropanol, and the solid content mass ratio of the cationic antistatic agent containing nitrogen element/polyester resin/polyurethane resin solution was 6.5/60.7/32.
- a white easy-adhesive polyester film and a printed material were obtained in the same manner as in Experimental Example 1, except that the resin solid content thickness was changed to 8 and the coating was performed so that the resin solid content thickness was 50 nm.
- Cationic antistatic agent solution containing nitrogen element (A-1) 2.45 parts by mass (solid content concentration 15.8% by mass)
- Polyester water dispersion (Bw-1) 12.35 parts by mass
- Polyurethane resin solution (C-1) 6.27 parts by mass
- Surfactant 0.25 parts by mass (silicone type, solid content concentration 10% by mass)
- Example 8 The following coating agent was mixed with a mixed solvent of water and isopropanol, and the solid content mass ratio of the cationic antistatic agent containing nitrogen element/polyester resin/polyurethane resin solution was 5.0/85.5/9.
- a white easy-adhesive polyester film and a printed matter were obtained in the same manner as in Experimental Example 1, except that it was changed to 5.
- Nitrogen-containing cationic antistatic agent solution (A) 2.52 parts by mass (solid content concentration 17.50% by mass) Polyester water dispersion (Bw-1) 25.50 parts by mass Polyurethane resin solution (C-1) 2.40 parts by mass Particles 25.15 parts by mass (silica particles with an average particle size of 0.45 ⁇ m, solid content concentration 40.00 mass%) Surfactant 0.15 parts by mass (silicone type, solid content concentration 10% by mass)
- Example 9 The following coating agent was mixed with a mixed solvent of water and isopropanol, and the solid content mass ratio of the cationic antistatic agent containing nitrogen element/polyester resin/polyurethane resin solution was 5.0/28.5/67.
- a white easy-adhesive polyester film and a printed matter were obtained in the same manner as in Experimental Example 1, except that the value was changed to 0.
- Nitrogen-containing cationic antistatic agent solution (A) 2.52 parts by mass (solid content concentration 17.50% by mass) Polyester water dispersion (Bw-1) 8.50 parts by mass Polyurethane resin solution (C-1) 16.81 parts by mass Particles 25.15 parts by mass (silica particles with an average particle size of 0.45 ⁇ m, solid content concentration 40.00 mass%) Surfactant 0.15 parts by mass (silicone type, solid content concentration 10% by mass)
- Example 10 The following coating agent was mixed with a mixed solvent of water and isopropanol, and the solid content mass ratio of the cationic antistatic agent containing nitrogen element/polyester resin/polyurethane resin solution was 5.0/57.0/38.
- a white easy-adhesive polyester film and a printed matter were obtained in the same manner as in Experimental Example 1, except that the value was changed to 0.
- Nitrogen-containing cationic antistatic agent solution (A) 2.52 parts by mass (solid content concentration 17.50% by mass) Polyester water dispersion (Bw-1) 17.00 parts by mass Polyurethane resin solution (C-3) 11.33 parts by mass Particles 25.15 parts by mass (silica particles with an average particle size of 0.45 ⁇ m, solid content concentration 40.00 mass%) Surfactant 0.15 parts by mass (silicone type, solid content concentration 10% by mass)
- Example 11 The following coating agent was mixed with a mixed solvent of water and isopropanol, and the solid content mass ratio of the cationic antistatic agent containing nitrogen element/polyester resin/polyurethane resin solution was 5.8/33.0/61.
- a white easy-adhesive polyester film and a printed matter were obtained in the same manner as in Experimental Example 1, except that it was changed to 2.
- Nitrogen-containing cationic antistatic agent solution (A) 2.83 parts by mass (solid content concentration 17.50% by mass) Polyester water dispersion (Bw-1) 9.33 parts by mass Polyurethane resin solution (C-4) 26.00 parts by mass Particles (a) 16.31 parts by mass (silica particles with an average particle size of 0.45 ⁇ m, solid content concentration 40.00% by mass) Particles (b) 5.44 parts by mass (silica particles with an average particle size of 1.00 ⁇ m, solid content concentration of 40.00% by mass) Surfactant 0.15 parts by mass (silicone type, solid content concentration 10% by mass)
- Example 12 The following coating agent was mixed with a mixed solvent of water and isopropanol, and the solid content mass ratio of the cationic antistatic agent containing nitrogen element/polyester resin/polyurethane resin solution was 5.8/33.0/61.
- a white easily adhesive polyester film and a printed material were obtained in the same manner as in Experimental Example 1, except that the resin solid content thickness was changed to 2 and the coating was performed so that the resin solid content thickness was 650 nm.
- Nitrogen-containing cationic antistatic agent solution (A) 2.91 parts by mass (solid content concentration 19.20% by mass) Polyester water dispersion (Bw-1) 11.67 parts by mass Polyurethane resin solution (C-4) 32.50 parts by mass Particles 21.27 parts by mass (benzoguanamine particles with an average particle size of 2.00 ⁇ m, solid content concentration 40.00 mass%) Surfactant 0.45 parts by mass (silicone type, solid content concentration 10% by mass)
- the printed matter obtained in Experimental Examples 1 to 7 has excellent adhesion to various inks and toners, and in particular, the adhesion to an active energy ray-curable ink layer such as ultraviolet (UV) curable ink is excellent at high temperature and high humidity. It can be seen that the adhesion to the ink layer does not deteriorate even when stored in an environment. On the other hand, in Experimental Examples 8 to 12, any of the A value, the B/A value, and the contact angle to water of the base material having an easy-adhesive coating layer was inappropriate. When stored in a humid environment, the adhesion to various ink layers was not necessarily satisfactory.
- an active energy ray-curable ink layer such as ultraviolet (UV) curable ink
- the present invention it has become possible to provide a printed material that is excellent in adhesion to various ink compositions and does not lose adhesion to the ink layer even when stored in a high-temperature and high-humidity environment.
- Thin solid line Measured data of the N1s spectrum of the surface of the easy-adhesive coating layer Dotted line: Curve showing the ionized nitrogen element peak separated from the N1s spectrum Broken line: Curve showing the non-ionized nitrogen element peak separated from the N1s spectrum (1): ionized nitrogen element peak (2): non-ionized nitrogen element peak
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Laminated Bodies (AREA)
- Thermal Transfer Or Thermal Recording In General (AREA)
Abstract
[Problem] To provide printed matter which has favorable adhesiveness to various ink compositions while avoiding electrostatic damage in a printing step, and which maintains favorable adhesiveness without causing degradation of the adhesiveness between an ink layer and an easily adhesive layer even when printed, and then stored in a high-temperature and high-humidity environment. [Solution] This printed matter has an easily adhesive coating layer provided on a polyester film substrate, and is formed by laminating, on the easily adhesive coating layer, at least one ink layer selected from among UV-curable ink, solvent-type ink, oxidative polymerization-type ink, thermal transfer ink ribbon, and LBP toner, wherein the nitrogen ion concentration A (at%) and the nitrogen element ratio B (at%), as obtained on the basis of the surface element distribution measurement of the surface of the easily adhesive coating layer by X-ray photoelectron spectroscopy, satisfy a specific relationship, and the contact angle θ H2O of the surface of the easily adhesive coating layer to water is within a specific range.
Description
本発明は、種々のインキ層との密着性に優れた印刷物に関する。更に詳しくは、紫外線(UV)硬化型インキ、溶剤型インキ、酸化重合型インキ、熱転写インキリボン、LBPトナーなどあらゆる種類のインキ層に最適な易接着性の塗布層を二軸延伸ポリエステルフィルム基材上に有し、特に紫外線(UV)硬化型インキのような活性エネルギー線硬化型インキ層との密着性については、印刷後、高温高湿環境下に保管した場合において、前記インキ層との密着性が低下することのない易接着性塗布層を有する印刷物に関する。
The present invention relates to printed matter with excellent adhesion to various ink layers. More specifically, we have developed a biaxially stretched polyester film base material with an easy-adhesion coating layer that is optimal for all types of ink layers, such as ultraviolet (UV) curable ink, solvent-based ink, oxidation polymerization ink, thermal transfer ink ribbon, and LBP toner. Regarding the adhesion with the active energy ray-curable ink layer, especially ultraviolet (UV) curable ink, when stored in a high-temperature and high-humidity environment after printing, the adhesion with the ink layer The present invention relates to a printed material having an easily adhesive coating layer which does not deteriorate in properties.
ポリエステルフィルムは、機械的性質、電気的性質、寸法安定性等の優れた特性を有することから、磁気記録材料、包装材料、電気絶縁材料、感光材料、製図材料、写真材料等多くの分野の基材フィルムとして使用されている。特にフィルム上に印刷を施す各種商業印刷用途、ラベルなどでは不可欠な存在となっている。しかしながら、ポリエステルフィルムは印刷インキとの接着性が悪いため、易接着性を有する樹脂を用いたアンカー塗布層を設けることが一般的である。前記塗布層の構成樹脂としては、例えば、ポリエステル系樹脂、ポリウレタン系樹脂、及びアクリル系樹脂等を、単一あるいは2種以上混合したもの、また前記樹脂と特定の架橋剤(メラミン、イソシアネート等)とを混合したものなどが挙げられる。しかしながら、一般に、基材のポリエステルフィルム表面、及び密着性改良のために設けた易接着性塗布層表面は、いずれも帯電しやすく、製膜工程の通過性に関する課題や、加工工程における静電気障害の課題を有する場合がある(例えば、特許文献1参照)。
Polyester film has excellent properties such as mechanical properties, electrical properties, and dimensional stability. used as material film. In particular, it is indispensable for various commercial printing applications, labels, etc., in which printing is performed on film. However, polyester films have poor adhesiveness to printing inks, so it is common to provide an anchor coating layer using a resin having easy adhesiveness. Examples of the constituent resins of the coating layer include, for example, polyester resins, polyurethane resins, acrylic resins, etc., which are used singly or in combination of two or more; and the like. However, in general, both the polyester film surface of the substrate and the surface of the easy-adhesive coating layer provided for improving adhesion are easily charged, and problems related to the passage of the film-forming process and electrostatic interference in the processing process are caused. There are cases where there is a problem (see, for example, Patent Literature 1).
静電気による問題を改善する方法として、塗布層にポリアニリン、ポリピロールなどの導電性ポリマーや粒子状のカーボンブラック、ニッケル、銅などの金属紛、酸化スズ、酸化亜鉛などの金属酸化物、繊維状の黄銅、ステンレス、アルミニウム等の金属コートファイバー、鱗片上黒鉛、アルミニウムフレーク、銅フレーク等の導電性フィラーを含有させ、前記塗布層に帯電防止性を付与することが知られている。
As a method to improve problems caused by static electricity, conductive polymers such as polyaniline and polypyrrole, particulate carbon black, metal powders such as nickel and copper, metal oxides such as tin oxide and zinc oxide, and fibrous brass are used in the coating layer. It is known to impart antistatic properties to the coating layer by incorporating conductive fillers such as metal-coated fibers such as stainless steel and aluminum, graphite flakes, aluminum flakes and copper flakes.
または、スルホン酸塩基または燐酸塩基を分子内に少なくとも1種有する高分子系帯電防止剤を塗剤中に配合して、基材フィルムに塗布することも知られている(例えば、特許文献2参照)。
Alternatively, it is also known to incorporate a polymeric antistatic agent having at least one sulfonate group or phosphate group in the molecule into a coating agent and apply it to a substrate film (see, for example, Patent Document 2). ).
近年、多岐にわたる分野でラベルとしての印刷物が普及している。世界的に食品市場は拡大傾向にあり、先進国にはもちろん、発展途上国にも食品用ラベルは普及している。また、工業用電子部材に用いられるコーションラベルについても、工業製品の需要増に伴い、需要が高まっている。前記印刷物は、場合により高温環境下や多湿環境下で使用されることも少なくない。しかし、前記環境下に印刷物を保管した場合、インキ層と基材の易接着性塗布層との密着性が低下し、印刷部の剥離が生じるため、ラベル本来の役割を消失することがある。
In recent years, printed matter as labels has become popular in a wide variety of fields. The global food market is on the rise, and food labels are spreading not only in developed countries but also in developing countries. In addition, the demand for caution labels used for industrial electronic members is increasing along with the increase in demand for industrial products. The printed matter is often used in high-temperature or high-humidity environments. However, when the printed material is stored under the above environment, the adhesion between the ink layer and the easy-adhesive coating layer of the base material decreases, and the printed part peels off, so the original role of the label may be lost.
本発明は、ポリエステルフィルム基材上に易接着性塗布層を有し、前記易接着性塗布層上に更にインキ層を備えた印刷物であって、印刷工程における静電気障害を回避するとともに、多様なインキ組成物に対して良好な密着性を有し、印刷後、高温高湿環境下に保管した場合でも、インキ層と易接着層の密着性低下が生じることなく、良好な密着性が保持される印刷物を提供することを目的とする。
The present invention is a printed matter having an easy-adhesive coating layer on a polyester film base material, and further comprising an ink layer on the easy-adhesive coating layer, avoiding electrostatic failure in the printing process, and various It has good adhesion to the ink composition, and even when stored in a high temperature and high humidity environment after printing, the adhesion between the ink layer and the easy adhesion layer does not decrease, and good adhesion is maintained. The purpose is to provide printed matter that
本発明者は、上記課題を解決すべく、上記問題の原因等について検討し、本発明の完成に至ったものである。即ち、本発明は、以下の構成よりなる。
1. ポリエステルフィルム基材上に易接着性塗布層を有し、前記易接着性塗布層上にUV硬化型インキ、溶剤型インキ、酸化重合型インキ、熱転写インキリボン、LBPトナーから選択される少なくとも1層のインキ層を積層してなる印刷物であって、前記易接着性塗布層表面のX線光電子分光法による表面元素分布測定に基づく窒素イオン濃度A(at%)と窒素元素比率B(at%)とが、下記式(i)(ii)を満たし、かつ易接着性塗布層表面の水に対する接触角θ H2Oが下記式(iii)を満たす印刷物。
(i)A(at%) > 0.4
(ii)2.0 ≦ B/A ≦ 5.0
(iii)50°≦θ H2O≦70°
2. 前記易接着性塗布層が、カチオン性帯電防止剤、ポリウレタン樹脂及びポリエステル樹脂を含む組成物が硬化されてなる上記第1に記載の印刷物。
3. 前記ポリエステルフィルム基材が、無機粒子及び/又はポリエステル樹脂に非相溶な熱可塑性樹脂を含有する白色ポリエステルフィルム基材である上記第1又は第2に記載の印刷物。 In order to solve the above problems, the inventors have investigated the causes of the above problems and have completed the present invention. That is, the present invention consists of the following configurations.
1. It has an easy-adhesive coating layer on a polyester film substrate, and at least one layer selected from UV-curing ink, solvent-based ink, oxidation polymerization ink, thermal transfer ink ribbon, and LBP toner on the easy-adhesive coating layer. Nitrogen ion concentration A (at%) and nitrogen element ratio B (at%) based on surface element distribution measurement by X-ray photoelectron spectroscopy on the surface of the easy-adhesive coating layer The printed matter satisfies the following formulas (i) and (ii), and the contact angle θ H 2 O of the easy-adhesive coating layer surface to water satisfies the following formula (iii).
(i) A (at%) > 0.4
(ii) 2.0 ≤ B/A ≤ 5.0
(iii) 50° ≤θH2O≤70 °
2. 1. The printed matter according to 1 above, wherein the easily adhesive coating layer is obtained by curing a composition containing a cationic antistatic agent, a polyurethane resin and a polyester resin.
3. 3. The printed matter according to 1 or 2 above, wherein the polyester film substrate is a white polyester film substrate containing inorganic particles and/or a thermoplastic resin incompatible with the polyester resin.
1. ポリエステルフィルム基材上に易接着性塗布層を有し、前記易接着性塗布層上にUV硬化型インキ、溶剤型インキ、酸化重合型インキ、熱転写インキリボン、LBPトナーから選択される少なくとも1層のインキ層を積層してなる印刷物であって、前記易接着性塗布層表面のX線光電子分光法による表面元素分布測定に基づく窒素イオン濃度A(at%)と窒素元素比率B(at%)とが、下記式(i)(ii)を満たし、かつ易接着性塗布層表面の水に対する接触角θ H2Oが下記式(iii)を満たす印刷物。
(i)A(at%) > 0.4
(ii)2.0 ≦ B/A ≦ 5.0
(iii)50°≦θ H2O≦70°
2. 前記易接着性塗布層が、カチオン性帯電防止剤、ポリウレタン樹脂及びポリエステル樹脂を含む組成物が硬化されてなる上記第1に記載の印刷物。
3. 前記ポリエステルフィルム基材が、無機粒子及び/又はポリエステル樹脂に非相溶な熱可塑性樹脂を含有する白色ポリエステルフィルム基材である上記第1又は第2に記載の印刷物。 In order to solve the above problems, the inventors have investigated the causes of the above problems and have completed the present invention. That is, the present invention consists of the following configurations.
1. It has an easy-adhesive coating layer on a polyester film substrate, and at least one layer selected from UV-curing ink, solvent-based ink, oxidation polymerization ink, thermal transfer ink ribbon, and LBP toner on the easy-adhesive coating layer. Nitrogen ion concentration A (at%) and nitrogen element ratio B (at%) based on surface element distribution measurement by X-ray photoelectron spectroscopy on the surface of the easy-adhesive coating layer The printed matter satisfies the following formulas (i) and (ii), and the contact angle θ H 2 O of the easy-adhesive coating layer surface to water satisfies the following formula (iii).
(i) A (at%) > 0.4
(ii) 2.0 ≤ B/A ≤ 5.0
(iii) 50° ≤θH2O≤70 °
2. 1. The printed matter according to 1 above, wherein the easily adhesive coating layer is obtained by curing a composition containing a cationic antistatic agent, a polyurethane resin and a polyester resin.
3. 3. The printed matter according to 1 or 2 above, wherein the polyester film substrate is a white polyester film substrate containing inorganic particles and/or a thermoplastic resin incompatible with the polyester resin.
本発明により、印刷工程における静電気障害を回避するとともに、易接着性塗布層とインキ層との密着性が良好な様々な印刷物を得ることができ、印刷後、高温高湿環境下に保管した場合でも、基材と前記インキ層の密着性が低下することなく、良好な密着性が保持される。
According to the present invention, it is possible to avoid electrostatic failure in the printing process and to obtain various printed materials having good adhesion between the easily adhesive coating layer and the ink layer, and when stored in a high-temperature and high-humidity environment after printing. However, the adhesion between the substrate and the ink layer does not deteriorate, and good adhesion is maintained.
(ポリエステルフィルム基材)
本発明においてポリエステルフィルム基材を構成するポリエステル樹脂は、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリトリメチレンテレフタレートなどのほか、前記のようなポリエステル樹脂のジオール成分又はジカルボン酸成分の一部を以下のような共重合成分に置き換えた共重合ポリエステル樹脂であり、例えば、共重合成分として、ジエチレングリコール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、ポリアルキレングリコールなどのジオール成分や、アジピン酸、セバチン酸、フタル酸、イソフタル酸、5-ナトリウムイソフタル酸、2,6-ナフタレンジカルボン酸などのジカルボン酸成分などを挙げることができる。 (Polyester film substrate)
The polyester resin constituting the polyester film substrate in the present invention includes polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, polytrimethylene terephthalate and the like, as well as the diol component or dicarboxylic acid component of the polyester resin as described above. is a copolymerized polyester resin in which a part of is replaced with the following copolymerization components, for example, as copolymerization components, diol components such as diethylene glycol, neopentyl glycol, 1,4-cyclohexanedimethanol, polyalkylene glycol , adipic acid, sebacic acid, phthalic acid, isophthalic acid, 5-sodium isophthalic acid, and dicarboxylic acid components such as 2,6-naphthalenedicarboxylic acid.
本発明においてポリエステルフィルム基材を構成するポリエステル樹脂は、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリトリメチレンテレフタレートなどのほか、前記のようなポリエステル樹脂のジオール成分又はジカルボン酸成分の一部を以下のような共重合成分に置き換えた共重合ポリエステル樹脂であり、例えば、共重合成分として、ジエチレングリコール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、ポリアルキレングリコールなどのジオール成分や、アジピン酸、セバチン酸、フタル酸、イソフタル酸、5-ナトリウムイソフタル酸、2,6-ナフタレンジカルボン酸などのジカルボン酸成分などを挙げることができる。 (Polyester film substrate)
The polyester resin constituting the polyester film substrate in the present invention includes polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, polytrimethylene terephthalate and the like, as well as the diol component or dicarboxylic acid component of the polyester resin as described above. is a copolymerized polyester resin in which a part of is replaced with the following copolymerization components, for example, as copolymerization components, diol components such as diethylene glycol, neopentyl glycol, 1,4-cyclohexanedimethanol, polyalkylene glycol , adipic acid, sebacic acid, phthalic acid, isophthalic acid, 5-sodium isophthalic acid, and dicarboxylic acid components such as 2,6-naphthalenedicarboxylic acid.
本発明においてポリエステルフィルム基材のために好適に用いられるポリエステル樹脂は、主に、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレートから選ばれるものである。これらのポリエステル樹脂の中でも、物性とコストのバランスからポリエチレンテレフタレートが最も好ましい。また、これらのポリエステル樹脂から構成されたポリエステルフィルム基材は二軸延伸ポリエステルフィルムであることが好ましく、耐薬品性、耐熱性、機械的強度、腰などを向上させることができる。
The polyester resin suitably used for the polyester film substrate in the present invention is mainly selected from polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate and polyethylene-2,6-naphthalate. Among these polyester resins, polyethylene terephthalate is most preferable from the viewpoint of balance between physical properties and cost. Moreover, the polyester film substrate composed of these polyester resins is preferably a biaxially oriented polyester film, which can improve chemical resistance, heat resistance, mechanical strength, stiffness, and the like.
ポリエステル樹脂の製造の際に用いられる重縮合のための触媒としては特に限定されないが、三酸化アンチモンが安価で、かつ優れた触媒活性をもつ触媒であるため好適である。また、ゲルマニウム化合物、又はチタン化合物を用いることも好ましい。さらに好ましい重縮合触媒としては、アルミニウム及び/又はその化合物とフェノール系化合物を含有する触媒、アルミニウム及び/又はその化合物とリン化合物を含有する触媒、リン化合物のアルミニウム塩を含有する触媒が挙げられる。
The catalyst for polycondensation used in the production of polyester resin is not particularly limited, but antimony trioxide is suitable because it is inexpensive and has excellent catalytic activity. It is also preferable to use a germanium compound or a titanium compound. Further preferred polycondensation catalysts include catalysts containing aluminum and/or compounds thereof and phenolic compounds, catalysts containing aluminum and/or compounds thereof and phosphorus compounds, and catalysts containing aluminum salts of phosphorus compounds.
本発明において使用される基材ポリエステルフィルムは、単層構造でもよいし、複層構造でもよいが、その一部の層もしくは全部の層が不透明であることが好ましい。ポリエステル系フィルムの不透明度を示す光学濃度は、0.3以上であり、好ましくは0.3~4.0であり、特に好ましくは、0.5~3.0である。光学濃度が0.3以上であると、得られるポリエステル系被覆フィルムの表面に印刷を施した場合に印刷効果が鮮明となり好ましい。また、光学濃度が4.0 以下であると、より優れた印刷効果が期待できて好ましい。
The base polyester film used in the present invention may have a single-layer structure or a multi-layer structure, but it is preferable that some or all of the layers are opaque. The optical density indicating the opacity of the polyester film is 0.3 or more, preferably 0.3 to 4.0, and particularly preferably 0.5 to 3.0. When the optical density is 0.3 or more, when printing is applied to the surface of the obtained polyester-based coating film, the printing effect becomes clear, which is preferable. Further, when the optical density is 4.0 or less, a better printing effect can be expected, which is preferable.
上記範囲内の光学濃度を得る方法は特に限定されないが、ポリエステル樹脂中に無機粒子、あるいは当該ポリエステル樹脂と非相溶の熱可塑性樹脂を含有させることにより好ましく達成することが出来る。これらの含有量は特に限定されないが、無機粒子の場合は生成ポリエステルに対し、5~35質量%が好ましく、特に好ましくは8~25質量%である。一方、非相溶性の熱可塑性樹脂を含有させる場合は、ポリエステルに対し、5~35質量%が好ましく、特に好ましくは8~28質量%である。また、無機粒子と、ポリエステル樹脂に非相溶な熱可塑性樹脂を併用する場合には、ポリエステル系フィルムに対して、その合計量が40質量%以下とすることが、フィルム強度、腰、製膜安定性の点から好ましい。
Although the method for obtaining the optical density within the above range is not particularly limited, it can be preferably achieved by incorporating inorganic particles or a thermoplastic resin incompatible with the polyester resin into the polyester resin. The content of these is not particularly limited, but in the case of inorganic particles, it is preferably 5 to 35% by mass, particularly preferably 8 to 25% by mass, based on the polyester produced. On the other hand, when an incompatible thermoplastic resin is contained, it is preferably 5 to 35% by mass, particularly preferably 8 to 28% by mass, based on the polyester. In addition, when inorganic particles and a thermoplastic resin incompatible with a polyester resin are used in combination, the total amount is 40% by mass or less with respect to the polyester film. It is preferable from the viewpoint of stability.
本発明における基材ポリエステルフィルムの層構成は単層構成でもよいし、積層構成でもよいが、X層/Y層/X層の積層構造であり、X層に無機粒子を含有し、Y層には微細空洞を含有する積層構成とすることが好ましい実施形態である。表面層であるX層に無機粒子を含有する層を配置することによって、フィルムの滑り性すなわちハンドリング性や隠蔽性を改善することが可能であり、微細空洞を内層であるY層だけに含有させることによって、フィルムのクッション性発現しつつフィルム表面の強度も確保することが可能になる。ここで積層構成を形成する方法は特に限定されないが、共押出しによって行なうことが製造時の安定性や加工コストの観点から好ましい。
The layer structure of the base polyester film in the present invention may be a single layer structure or a laminated structure, but it is a laminated structure of X layer / Y layer / X layer, the X layer contains inorganic particles, and the Y layer contains inorganic particles. is a preferred embodiment to have a laminated structure containing microcavities. By arranging a layer containing inorganic particles on the X layer, which is the surface layer, it is possible to improve the slipperiness, that is, the handling property and the hiding property of the film, and the fine cavities are contained only in the Y layer, which is the inner layer. This makes it possible to ensure the strength of the film surface while exhibiting the cushioning properties of the film. Although the method for forming the laminated structure is not particularly limited, co-extrusion is preferable from the viewpoint of stability during production and processing costs.
X層に含有する無機粒子の含有量は、ポリエステルに対し2.5~70.0質量% が好ましく、特に好ましくは4.0~60.0質量% である。さらに好ましくは6.0~50.0質量% である。Y層に含有する非相溶性の熱可塑性樹脂の含有量は、ポリエステルに対し5~35質量%が好ましく、特に好ましくは8~28質量%である。
The content of the inorganic particles contained in the X layer is preferably 2.5-70.0% by mass, particularly preferably 4.0-60.0% by mass, relative to the polyester. More preferably, it is 6.0 to 50.0% by mass. The content of the incompatible thermoplastic resin contained in the Y layer is preferably 5 to 35% by mass, particularly preferably 8 to 28% by mass, based on the polyester.
X層/Y層/X層の積層構造における各層の厚み比は、フィルム強度、腰、製膜安定性の点から、0.5/9/0.5~2/6/2の範囲が好ましく、1/8/1~1.5/7/1.5の範囲がより好ましい。
The thickness ratio of each layer in the laminated structure of X layer/Y layer/X layer is preferably in the range of 0.5/9/0.5 to 2/6/2 from the viewpoint of film strength, stiffness, and film forming stability. , 1/8/1 to 1.5/7/1.5.
使用する無機粒子は特に限定されないが、平均粒径が0.1~4.0μmの無機粒子が好ましく、特に好ましくは0.3~1.5μmの無機粒子である。具体的には、酸化チタン、硫酸バリウム、炭酸カルシウム、硫化亜鉛などの白色顔料が好ましく、これらを混合しても良い。さらに、フィルム中に一般的に含有されている無機粒子、例えばシリカ、アルミナ、タルク、カオリン、クレー、リン酸カルシウム、雲母、ヘクトライト、ジルコニア、酸化タングステン、フッ化リチウム、フッ化カルシウム、硫酸カルシウムなどを併用しても良い。
Although the inorganic particles to be used are not particularly limited, inorganic particles having an average particle size of 0.1 to 4.0 μm are preferable, and inorganic particles having an average particle size of 0.3 to 1.5 μm are particularly preferable. Specifically, white pigments such as titanium oxide, barium sulfate, calcium carbonate, and zinc sulfide are preferred, and these may be mixed. In addition, inorganic particles commonly contained in films such as silica, alumina, talc, kaolin, clay, calcium phosphate, mica, hectorite, zirconia, tungsten oxide, lithium fluoride, calcium fluoride, calcium sulfate, etc. You can use them together.
また、ポリエステル樹脂と非相溶の熱可塑性樹脂としては特に限定されないが、例えば、ポリエチレンテレフタレート樹脂と混合する場合、ポリスチレン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリメチルペンテン樹脂などのポリオレフィン系樹脂、環状ポリオレフィン樹脂、アクリル樹脂、フェノキシ樹脂、ポリフェニレンオキサイド樹脂、ポリカーボネート樹脂などを挙げることができる。また、それらの熱可塑性樹脂は混合しても良く、変性したものでも良い。当然のことながら、上記無機粒子と併用することもできる。また必要に応じて、種々の増白剤を添加してもよいことは言うまでもない。
The thermoplastic resin incompatible with the polyester resin is not particularly limited. Examples include resins, acrylic resins, phenoxy resins, polyphenylene oxide resins, polycarbonate resins, and the like. Further, these thermoplastic resins may be mixed or modified. Naturally, it can also be used in combination with the inorganic particles. It goes without saying that various whitening agents may be added as necessary.
さらに、本発明において使用されるポリエステル系フィルムは、その見掛け密度が0.3~ 1.3g/cm3である微細空洞含有ポリエステル系フィルムであることが好ましい。また、その空洞積層数密度が、クッション性と表面剥離強度の両立の点で、0.20個/μm以上、好ましくは0.25個/μm以上、より好ましくは0.30個/μm以上である微細空洞含有ポリエステル系フィルムも好ましい。その結果、得られるポリエステル系被覆フィルムは、印刷鮮明性や印刷時の加工特性に優れる。ここで、空洞積層数密度(個/μm)は、式:フィルム厚み方向の空洞数(個)/フィルム厚み(μm)で定義される。当該空洞積層数密度の上限は、空洞発現効率の点から0.80個/μm が好ましく、0.55個/μmがより好ましい。同密度を上記の範囲に調節する方法としては、非相溶の熱可塑性樹脂の添加量や種類、粘度などを調節するほか、押出機のスクリュー形状の変更や、溶融樹脂流路へのスタティックミキサー設置などの方法が用いられるが、この限りではない。
Furthermore, the polyester film used in the present invention is preferably a microvoid-containing polyester film having an apparent density of 0.3 to 1.3 g/cm 3 . In addition, the cavity lamination number density is 0.20/μm or more, preferably 0.25/μm or more, and more preferably 0.30/μm or more, from the viewpoint of achieving both cushioning properties and surface peel strength. Certain microvoided polyester-based films are also preferred. As a result, the resulting polyester-based coating film is excellent in print sharpness and processability during printing. Here, the void lamination number density (pieces/μm) is defined by the formula: Number of voids in film thickness direction (pieces)/film thickness (μm). The upper limit of the cavity lamination number density is preferably 0.80/μm 2 , more preferably 0.55/μm, from the viewpoint of cavity generation efficiency. As a method to adjust the same density to the above range, in addition to adjusting the addition amount, type, viscosity, etc. of the incompatible thermoplastic resin, changing the screw shape of the extruder, and adding a static mixer to the molten resin flow path Although a method such as installation is used, it is not limited to this.
これらの微細空洞含有ポリエステル系フィルムは、フィルム中に含有する微細空洞がマトリックスであるポリエステルとの界面において光散乱を起こすことにより不透明度が一段と向上し、前記無機粒子の添加を減らすことができるので、特に有用である。さらに、微細空洞を含有せしめることにより、基材フィルム自体を軽量化できるため、取扱いが容易になるとともに、原料コストダウンや輸送コストダウンなど経済的効果も大きなものとなる。
In these microvoid-containing polyester films, the microvoids contained in the film cause light scattering at the interface with the polyester matrix, thereby further improving the opacity and reducing the addition of the inorganic particles. , is particularly useful. Furthermore, by containing fine cavities, the weight of the base film itself can be reduced, so that handling is facilitated, and economic effects such as reduction in raw material costs and transportation costs are also large.
この様な、微細空洞含有ポリエステル系フィルムを得る方法としては、マトリックスである熱可塑性ポリエステル樹脂に対し、前述の如きポリエステル樹脂に非相溶な熱可塑性樹脂を混練りし、ポリエステル樹脂中に非相溶樹脂を微粒子状に分散させたシートを少なくとも一軸方向に延伸することにより、前記非相溶樹脂微粒子の周囲に空洞を発生させる方法など、既に開示されている公知の方法を用いることができる。
As a method for obtaining such a polyester film containing microvoids, the thermoplastic polyester resin as the matrix is kneaded with a thermoplastic resin incompatible with the polyester resin as described above, and the polyester resin is incompatible. A known method that has already been disclosed can be used, such as a method of generating cavities around the immiscible resin fine particles by stretching a sheet in which dissolved resin is dispersed in the form of fine particles at least uniaxially.
また、得られたポリエステルフィルム基材の厚みは、5~300μmであることが好ましい。ポリエステルフィルム基材の厚みは、20~300μmがより好ましく、さらに好ましくは40~250μmである。
The thickness of the obtained polyester film substrate is preferably 5 to 300 μm. The thickness of the polyester film substrate is more preferably 20 to 300 μm, still more preferably 40 to 250 μm.
印刷材料等に用いた場合に好まれる白色性とは、カラーb値で表すことができる。カラーb値は数値が高いと黄色味が強く、数値が低いと青味が強くなる。カラーb値は、目視確認とよく対応しており、カラーb値が4.0以下であることが好ましく、更に好ましくは3.0以下である。b値が4.0以下である場合、白色度が良好であり、ラベルなどにした場合、印刷時の鮮明性に優れ、商品価値が高まって好ましい。色調b値の下限は-5.0であることが好ましい。b値が-5.0以上である場合、フィルムの青味が強くなり過ぎず、印刷基材として用いた際に解像性をバランスよく満たせるので好ましい。
The preferred whiteness when used in printing materials and the like can be represented by the color b value. The higher the color b value, the stronger the yellowish color, and the lower the color b value, the stronger the bluish color. The color b value corresponds well to visual confirmation, and the color b value is preferably 4.0 or less, more preferably 3.0 or less. When the b value is 4.0 or less, the degree of whiteness is good, and when used as a label or the like, the clearness at the time of printing is excellent and the commercial value is increased, which is preferable. The lower limit of the color tone b value is preferably -5.0. When the b value is -5.0 or more, the bluish tint of the film does not become too strong, and the resolution can be well balanced when used as a printing base material, which is preferable.
(本発明における特性値の説明)
本発明における易接着性塗布層は、窒素元素を有するカチオン系帯電防止剤、ポリエステル樹脂、ポリウレタン樹脂を含有することが好ましい。そして、易接着性塗布層表面にカチオン系帯電防止剤成分とポリウレタン樹脂成分を好適な量及び割合で存在させ、水に対する接触角を好適な範囲で制御することで、印刷工程における静電気障害を回避するとともに、多様なインキ組成物に対して良好な密着性を有し、特に紫外線(UV)硬化型インキのような活性エネルギー線硬化型インキ層との密着性については、印刷後、高温高湿環境下に保管した場合において、前記インキ層との密着性が低下することなく、良好な密着性が保持される。 (Description of characteristic values in the present invention)
The easily adhesive coating layer in the present invention preferably contains a cationic antistatic agent having a nitrogen element, a polyester resin, or a polyurethane resin. Then, the cationic antistatic agent component and the polyurethane resin component are present in a suitable amount and ratio on the surface of the easily adhesive coating layer, and the contact angle with water is controlled within a suitable range to avoid electrostatic failure in the printing process. In addition, it has good adhesion to various ink compositions. When stored in an environment, good adhesion to the ink layer is maintained without deterioration in adhesion.
本発明における易接着性塗布層は、窒素元素を有するカチオン系帯電防止剤、ポリエステル樹脂、ポリウレタン樹脂を含有することが好ましい。そして、易接着性塗布層表面にカチオン系帯電防止剤成分とポリウレタン樹脂成分を好適な量及び割合で存在させ、水に対する接触角を好適な範囲で制御することで、印刷工程における静電気障害を回避するとともに、多様なインキ組成物に対して良好な密着性を有し、特に紫外線(UV)硬化型インキのような活性エネルギー線硬化型インキ層との密着性については、印刷後、高温高湿環境下に保管した場合において、前記インキ層との密着性が低下することなく、良好な密着性が保持される。 (Description of characteristic values in the present invention)
The easily adhesive coating layer in the present invention preferably contains a cationic antistatic agent having a nitrogen element, a polyester resin, or a polyurethane resin. Then, the cationic antistatic agent component and the polyurethane resin component are present in a suitable amount and ratio on the surface of the easily adhesive coating layer, and the contact angle with water is controlled within a suitable range to avoid electrostatic failure in the printing process. In addition, it has good adhesion to various ink compositions. When stored in an environment, good adhesion to the ink layer is maintained without deterioration in adhesion.
ここで上記易接着性塗布層表面のカチオン系帯電防止剤成分とポリウレタン樹脂成分の存在量は、それぞれX線光電子分光法(以下、ESCA)のN1sスペクトルのイオン化された窒素元素ピーク及びイオン化されていない窒素元素ピークの各々のピーク面積にて評価する。ESCAでは、得られた実測スペクトルのピーク位置からピークに対応する元素種及び、化学状態を同定する。さらに元素のピークでカーブフィッティングを実施し、ピーク面積を算出することができる。本発明における易接着性塗布層は窒素元素を有するカチオン系帯電防止剤とポリウレタン樹脂を含有している。かかる易接着性塗布層の場合、ESCAのN1sスペクトルのピークは図1の様に例示される。図中の細い実線はN1sスペクトルの実測データを表している。2つのピークのうち(1)図中において点線で表される曲線の402eV付近のピークはイオン化された窒素元素ピークであり、本発明においてはカチオン系帯電防止剤由来と判断することができる。さらに(2)図中において破線で表される曲線の400eV付近のピークはイオン化されていない窒素元素ピークであり、本発明においてはポリウレタン樹脂由来と判断することができる。N1sスペクトルを含む検出された全元素のスペクトルのピークに対してカーブフィッティングを実施し、ピーク面積全体を100(at%)とした時、(1)の面積比率を、カチオン系帯電防止剤由来の窒素元素比率A(at%)と表し、易接着性塗布層表面の前記帯電防止剤成分の存在量の指標とする。同じく(2)の面積比率を、ポリウレタン樹脂由来の窒素元素比率B(at%)と表し、易接着性塗布層表面の前記ポリウレタン樹脂成分の存在量の指標とする。
Here, the amounts of the cationic antistatic agent component and the polyurethane resin component present on the surface of the easily adhesive coating layer are the ionized nitrogen element peak and the ionized nitrogen element peak in the N1s spectrum of X-ray photoelectron spectroscopy (ESCA), respectively. The peak area of each of the nitrogen element peaks is evaluated. In ESCA, the element species and chemical state corresponding to the peaks are identified from the peak positions of the obtained measured spectra. Further, curve fitting can be performed on the peaks of the elements to calculate the peak area. The easily adhesive coating layer in the present invention contains a cationic antistatic agent having a nitrogen element and a polyurethane resin. In the case of such an easily adhesive coating layer, the peaks of the ESCA N1s spectrum are exemplified in FIG. A thin solid line in the figure represents the measured data of the N1s spectrum. Of the two peaks, (1) the peak near 402 eV in the curve represented by the dotted line in the figure is the ionized nitrogen element peak, which can be determined to be derived from the cationic antistatic agent in the present invention. Furthermore, (2) the peak near 400 eV of the curve represented by the dashed line in the figure is the peak of non-ionized nitrogen element, which can be judged to be derived from the polyurethane resin in the present invention. Curve fitting is performed on the peaks of the spectra of all detected elements including the N1s spectrum, and when the total peak area is 100 (at%), the area ratio of (1) is calculated as the area ratio derived from the cationic antistatic agent. It is expressed as nitrogen element ratio A (at %) and used as an indicator of the abundance of the antistatic agent component on the surface of the easily adhesive coating layer. Similarly, the area ratio of (2) is expressed as the polyurethane resin-derived nitrogen element ratio B (at %), and is used as an indicator of the amount of the polyurethane resin component present on the surface of the easy-adhesive coating layer.
そして、本発明における易接着性塗布層について、ESCAによる表面元素分布測定に基づく特性値が以下の関係(i)(ii)にあり、かつ易接着性塗布層表面の水に対する接触角θ H2Oが下記式(iii)であるとき、印刷工程における静電気障害を回避するとともに、多様なインキ組成物に対して良好な密着性を有し、特に紫外線(UV)硬化型インキのような活性エネルギー線硬化型インキ層との密着性については、印刷後、高温高湿環境下に保管した場合において、前記インキ層との密着性が低下することなく、良好な密着性が保持される。
(i)A(at%) > 0.4
(ii)2.0 ≦ B/A ≦ 5.0
(iii)50°≦θ H2O≦70° Then, for the easy-adhesive coating layer in the present invention, the characteristic values based on the surface element distribution measurement by ESCA satisfy the following relationships (i) and (ii), and the contact angle θ H 2 of the easy-adhesive coating layer surface with respect to water When O is the following formula (iii), it avoids electrostatic failure in the printing process and has good adhesion to various ink compositions, especially active energy such as ultraviolet (UV) curable ink. As for the adhesion to the line-curable ink layer, good adhesion to the ink layer is maintained without deterioration in adhesion to the ink layer when stored in a high-temperature and high-humidity environment after printing.
(i) A (at%) > 0.4
(ii) 2.0 ≤ B/A ≤ 5.0
(iii) 50° ≤θH2O≤70 °
(i)A(at%) > 0.4
(ii)2.0 ≦ B/A ≦ 5.0
(iii)50°≦θ H2O≦70° Then, for the easy-adhesive coating layer in the present invention, the characteristic values based on the surface element distribution measurement by ESCA satisfy the following relationships (i) and (ii), and the contact angle θ H 2 of the easy-adhesive coating layer surface with respect to water When O is the following formula (iii), it avoids electrostatic failure in the printing process and has good adhesion to various ink compositions, especially active energy such as ultraviolet (UV) curable ink. As for the adhesion to the line-curable ink layer, good adhesion to the ink layer is maintained without deterioration in adhesion to the ink layer when stored in a high-temperature and high-humidity environment after printing.
(i) A (at%) > 0.4
(ii) 2.0 ≤ B/A ≤ 5.0
(iii) 50° ≤θH2O≤70 °
本発明によれば、印刷後、高温高湿環境下に保管した場合でも、インキ層と易接着性塗布層との接着性低下が生じることなく、良好な接着性が保持される印刷物を提供することができる。本発明における高温高湿環境下の保管試験条件として、JIS-8703に定義される常温常湿条件を超える温湿度であり、かつ工業用電子部材用ラベルに使用される場合や、東南アジアなど多湿環境で食品用ラベルと使用されることを想定し、温度:80℃、湿度:90%RHにおいて3日間と設定した。そして、後述の密着性評価において、前記保管試験条件に保管する前後での印刷層の残存面積が、それぞれ全体の90%以上となることが好ましく、接着性低下、密着性低下が生じることなく、良好な接着性、密着性が保持される範囲であり好ましい。
ADVANTAGE OF THE INVENTION According to the present invention, there is provided a printed matter in which good adhesion is maintained without deterioration in adhesion between an ink layer and an easy-adhesion coating layer even when stored in a high-temperature and high-humidity environment after printing. be able to. As storage test conditions in a high-temperature and high-humidity environment in the present invention, the temperature and humidity exceed the normal temperature and humidity conditions defined in JIS-8703, and when used for labels for industrial electronic components, and in high-humidity environments such as Southeast Asia. Assuming that it will be used as a food label in Japan, the temperature was set at 80°C and the humidity was set at 90% RH for 3 days. In the adhesion evaluation described later, it is preferable that the remaining area of the printed layer before and after storage under the storage test conditions is 90% or more of the total, respectively, without deterioration of adhesion and adhesion. It is preferably within a range in which good adhesiveness and adhesion are maintained.
本発明におけるカチオン系帯電防止剤を含む、イオン系帯電防止剤を用いた場合での帯電防止性能の発現原理およびインキに対しての密着性との相関関係について説明する。イオン系帯電防止剤を用い、基材表面に帯電防止性を発現させる場合、基材表面には静電気を流す役割となる水のネットワークを形成させることが好ましい。イオン系帯電防止剤は基材表面に存在することで、空気中の水分を引き寄せる効果を持つ。そのため、基材表面のイオン系帯電防止剤の存在量が多いほど、空気中の水分を引き寄せやすく、また水のネットワークの形成も容易となるため、帯電防止性は発現しやすくなる。しかし、一方で基材表面のイオン系帯電防止剤の存在量が多くなることで、相対的に樹脂の存在量が低下する。すなわち、本発明において、一般的にインキとの密着性に関係すると考えられるポリウレタン樹脂の存在量が低下し、密着性が低下するおそれがある。したがって、易接着性塗布層表面におけるイオン系帯電防止剤と樹脂(特にポリウレタン樹脂)の存在量を好適な範囲に制御することが好ましい。易接着性塗布層表面のイオン系帯電防止剤存在量が少ない状態でも、水のネットワークを形成するためには、易接着性塗布層表面の水に対する接触角を制御することが好ましい。易接着性塗布層表面の接触角を好適な範囲に制御することで、易接着性塗布層表面の帯電防止剤により引き寄せられた水分は、帯電防止剤が存在しない領域にも濡れ広がることが可能となる。つまり、易接着性塗布層表面の接触角を制御することで、水のネットワーク形成をアシストすることが可能となる。そのため、より少ない帯電防止剤量でも良好な帯電防止性が得られる。水のネットワーク形成のアシスト効果が得られることで、過剰の水の濡れ広がりが抑制することにより、インキと易接着性塗布層表面のポリウレタン樹脂成分との接触状態が好適な状態となる。加えて、易接着性塗布層表面の接触角を好適な範囲に制御することで、印刷物として、各種インキとの親和性が高まり、インキとの接着性や濡れ広がりが向上するとともに、高温高湿環境下に保管した場合に、インキ層を透過してきた水分による易接着性塗布層の劣化を抑制することが可能となり、密着性を保持することが可能となる。
A description will be given of the principle of antistatic performance when using an ionic antistatic agent including a cationic antistatic agent in the present invention and the correlation with adhesion to ink. When an ionic antistatic agent is used to exhibit antistatic properties on the substrate surface, it is preferable to form a network of water on the substrate surface, which serves to conduct static electricity. The presence of the ionic antistatic agent on the substrate surface has the effect of attracting moisture in the air. Therefore, the larger the amount of the ionic antistatic agent present on the surface of the substrate, the easier it is to attract moisture in the air, and the easier it is to form a network of water, so that the antistatic property is more likely to be exhibited. On the other hand, however, as the abundance of the ionic antistatic agent on the base material surface increases, the abundance of the resin relatively decreases. That is, in the present invention, the amount of the polyurethane resin, which is generally considered to be related to the adhesion to the ink, may decrease, resulting in a decrease in the adhesion. Therefore, it is preferable to control the amounts of the ionic antistatic agent and the resin (especially the polyurethane resin) present on the surface of the easy-adhesive coating layer within a suitable range. In order to form a network of water even when the amount of the ionic antistatic agent present on the surface of the easy-adhesive coating layer is small, it is preferable to control the contact angle of the easy-adhesive coating layer surface to water. By controlling the contact angle of the easy-adhesion coating layer surface to a suitable range, moisture attracted by the antistatic agent on the surface of the easy-adhesion coating layer can wet and spread even in areas where the antistatic agent does not exist. becomes. In other words, by controlling the contact angle on the surface of the easy-adhesive coating layer, it is possible to assist the water network formation. Therefore, good antistatic properties can be obtained even with a smaller amount of antistatic agent. By obtaining the effect of assisting the formation of a network of water, excessive wetting and spreading of water is suppressed, so that the contact state between the ink and the polyurethane resin component on the surface of the easy-adhesive coating layer is in a suitable state. In addition, by controlling the contact angle of the surface of the easy-adhesive coating layer to a suitable range, the affinity with various inks as a printed matter is enhanced, the adhesion with the ink and the wet spreadability are improved, and the high-temperature and high-humidity When stored in an environment, it is possible to suppress deterioration of the easily adhesive coating layer due to moisture permeating the ink layer, and it is possible to maintain the adhesion.
A(at%)は、0.4を超えることが好ましい。前記範囲に制御することで、空気中の水分を塗膜表面に引き寄せることが可能となる。後述の易接着性塗布層表面の水に対する接触角を好適な範囲に制御することで、良好な帯電防止性が得られ、印刷工程における静電気障害を回避することが可能となる。 A(at%)は、より好ましくは0.5at%以上であり、更に好ましくは0.6at%以上である。しかし、A(at%)が大きすぎると以下のB/Aの好ましい範囲を満足しにくくなるため、5at%以下が好ましく、3at%以下がより好ましく、2at%以下が更に好ましい。
A (at%) preferably exceeds 0.4. By controlling it within the above range, it becomes possible to attract moisture in the air to the surface of the coating film. By controlling the water contact angle of the easy-adhesive coating layer surface, which will be described later, within a suitable range, good antistatic properties can be obtained, and it is possible to avoid electrostatic failure in the printing process. A (at%) is more preferably 0.5 at% or more, and still more preferably 0.6 at% or more. However, if A (at %) is too large, it becomes difficult to satisfy the preferred range of B/A below, so it is preferably 5 at % or less, more preferably 3 at % or less, and even more preferably 2 at % or less.
B/Aは2.0~5.0であることが好ましい。B/Aを前記範囲に制御し、かつ後述の塗膜表面の水に対する接触角を好適な範囲に制御することで、帯電防止性とインキに対しての密着性とが両立する。加えて、印刷物として、高温高湿環境下に保管された場合にも、塗膜劣化を抑制して良好な密着性を保持することが可能となる。B/Aの下限は、より好ましくは3.0以上である。一方、B/Aの上限は、より好ましくは4.0以下である。
B/A is preferably 2.0 to 5.0. By controlling B/A within the above range and controlling the contact angle of the coating film surface to water, which will be described later, within a suitable range, both antistatic properties and adhesion to ink can be achieved. In addition, even when the printed matter is stored in a high-temperature and high-humidity environment, deterioration of the coating film can be suppressed and good adhesion can be maintained. The lower limit of B/A is more preferably 3.0 or more. On the other hand, the upper limit of B/A is more preferably 4.0 or less.
塗膜表面の水に対する接触角は50°~70°の範囲が好ましい。塗膜表面の水に対する接触角の下限は、より好ましくは、60°以上である。一方、塗膜表面の水に対する接触角の上限は、より好ましくは、68°以下である。50°~70°の範囲に制御することで、塗膜表面における水のネットワーク形成に対して良好なアシスト効果が得られる。また印刷物として、各種インキとの親和性が高まり、インキとの接着性や濡れ広がりが向上するとともに、高温高湿環境下に保管した場合に、インキ層を透過してきた水分による易接着性塗布層の劣化を抑制することが可能となり、密着性を保持することが可能となる。
The contact angle of the coating film surface to water is preferably in the range of 50° to 70°. The lower limit of the contact angle of the coating film surface to water is more preferably 60° or more. On the other hand, the upper limit of the contact angle of the coating film surface to water is more preferably 68° or less. By controlling the angle in the range of 50° to 70°, a good assisting effect can be obtained for network formation of water on the surface of the coating film. In addition, as a printed matter, the affinity with various inks is increased, the adhesion with ink and the wet spread are improved, and when stored in a high-temperature and high-humidity environment, the coating layer is easily adhered by moisture permeating the ink layer. deterioration can be suppressed, and adhesion can be maintained.
(易接着性塗布層)
本発明における易接着性ポリエステルフィルムは、帯電防止性とインキやトナーに対しての密着性とが両立し、特に高速印刷時においてUV硬化型インキに対しての良好な密着性を得るために、その少なくとも片面に、窒素元素を有するカチオン系帯電防止剤、ポリエステル樹脂、ポリウレタン樹脂からなる易接着性塗布層が設けられていることが好ましい。易接着性塗布層は、ポリエステルフィルムの両面に設けてもよく、ポリエステルフィルムの片面のみに設け、他方の面には異種の樹脂被覆層を設けてもよい。 (Easy-adhesive coating layer)
The easy-adhesive polyester film in the present invention has both antistatic property and adhesion to ink and toner, and in order to obtain good adhesion to UV curable ink especially during high-speed printing, It is preferable that at least one surface thereof is provided with an easily adhesive coating layer composed of a cationic antistatic agent having a nitrogen element, a polyester resin, or a polyurethane resin. The easy-adhesive coating layer may be provided on both sides of the polyester film, or may be provided on only one side of the polyester film and a different resin coating layer may be provided on the other side.
本発明における易接着性ポリエステルフィルムは、帯電防止性とインキやトナーに対しての密着性とが両立し、特に高速印刷時においてUV硬化型インキに対しての良好な密着性を得るために、その少なくとも片面に、窒素元素を有するカチオン系帯電防止剤、ポリエステル樹脂、ポリウレタン樹脂からなる易接着性塗布層が設けられていることが好ましい。易接着性塗布層は、ポリエステルフィルムの両面に設けてもよく、ポリエステルフィルムの片面のみに設け、他方の面には異種の樹脂被覆層を設けてもよい。 (Easy-adhesive coating layer)
The easy-adhesive polyester film in the present invention has both antistatic property and adhesion to ink and toner, and in order to obtain good adhesion to UV curable ink especially during high-speed printing, It is preferable that at least one surface thereof is provided with an easily adhesive coating layer composed of a cationic antistatic agent having a nitrogen element, a polyester resin, or a polyurethane resin. The easy-adhesive coating layer may be provided on both sides of the polyester film, or may be provided on only one side of the polyester film and a different resin coating layer may be provided on the other side.
以下、易接着性塗布層の各組成について詳説する。
(カチオン系帯電防止剤)
カチオン系帯電防止剤としては、ポリエチレンイミン、ポリジメチルジアリルアンモニウム塩、ポリアルキレンポリアミンジシアノジアミドアンモニウム縮合物、ポリビニルピリジウムハライド、(メタ)アクリル酸アルキル4級アンモニウム塩、(メタ)アクリルアミドアルキル4級アンモニウム塩、ω-クロロ-ポリ(オキシエチレン-ポリメチレン-アルキル4級アンモニウム塩)、ポリビニルベンジルトリメチルアンモニウム塩、ポリスチレン系カチオン性ポリマー、ポリ(メタ)アクリル系カチオン性ポリマー(メチルメタクリレート、エチルアクリレート、2-ヒドロキシエチルメタクリレート、塩化トリメチルアミノエチルメタクリレートなど)、ポリビニルピリジン系ポリマー、環状インテグラル型ポリマー、直線状インテグラル型ポリマー、ペンダント型に4級アンモニウムイオン基を2個以上有する芳香族ビニル単量体の重合体、主鎖にピロリジウム環を有するポリマーなどが挙げられる。これらのポリマーはホモポリマーであっても共重合体であっても構わない。これらのポリマーを製造するには、共重合可能な公知の単量体を使用し得る。易接着性塗布層表面の帯電防止剤成分の存在量を制御する上で、直鎖アルキル基を有する帯電防止剤であることが好ましく、さらに、直鎖アルキル基を有し、かつ4級アンモニウム塩基を有する帯電防止剤であることが好ましい。 Each composition of the easily adhesive coating layer will be described in detail below.
(Cationic antistatic agent)
Cationic antistatic agents include polyethyleneimine, polydimethyldiallylammonium salt, polyalkylenepolyamine dicyanodiamide ammonium condensate, polyvinylpyridium halide, alkyl quaternary ammonium (meth)acrylate, and alkyl quaternary ammonium (meth)acrylamido. salt, ω-chloro-poly(oxyethylene-polymethylene-alkyl quaternary ammonium salt), polyvinylbenzyltrimethylammonium salt, polystyrene cationic polymer, poly(meth)acrylic cationic polymer (methyl methacrylate, ethyl acrylate, 2- hydroxyethyl methacrylate, trimethylaminoethyl chloride methacrylate, etc.), polyvinylpyridine-based polymers, cyclic integral type polymers, linear integral type polymers, aromatic vinyl monomers having two or more pendant quaternary ammonium ion groups A polymer, a polymer having a pyrrolidium ring in the main chain, and the like are included. These polymers may be homopolymers or copolymers. Known copolymerizable monomers can be used to produce these polymers. In order to control the amount of the antistatic agent component present on the surface of the easily adhesive coating layer, it is preferably an antistatic agent having a linear alkyl group, and further has a linear alkyl group and a quaternary ammonium base It is preferably an antistatic agent having
(カチオン系帯電防止剤)
カチオン系帯電防止剤としては、ポリエチレンイミン、ポリジメチルジアリルアンモニウム塩、ポリアルキレンポリアミンジシアノジアミドアンモニウム縮合物、ポリビニルピリジウムハライド、(メタ)アクリル酸アルキル4級アンモニウム塩、(メタ)アクリルアミドアルキル4級アンモニウム塩、ω-クロロ-ポリ(オキシエチレン-ポリメチレン-アルキル4級アンモニウム塩)、ポリビニルベンジルトリメチルアンモニウム塩、ポリスチレン系カチオン性ポリマー、ポリ(メタ)アクリル系カチオン性ポリマー(メチルメタクリレート、エチルアクリレート、2-ヒドロキシエチルメタクリレート、塩化トリメチルアミノエチルメタクリレートなど)、ポリビニルピリジン系ポリマー、環状インテグラル型ポリマー、直線状インテグラル型ポリマー、ペンダント型に4級アンモニウムイオン基を2個以上有する芳香族ビニル単量体の重合体、主鎖にピロリジウム環を有するポリマーなどが挙げられる。これらのポリマーはホモポリマーであっても共重合体であっても構わない。これらのポリマーを製造するには、共重合可能な公知の単量体を使用し得る。易接着性塗布層表面の帯電防止剤成分の存在量を制御する上で、直鎖アルキル基を有する帯電防止剤であることが好ましく、さらに、直鎖アルキル基を有し、かつ4級アンモニウム塩基を有する帯電防止剤であることが好ましい。 Each composition of the easily adhesive coating layer will be described in detail below.
(Cationic antistatic agent)
Cationic antistatic agents include polyethyleneimine, polydimethyldiallylammonium salt, polyalkylenepolyamine dicyanodiamide ammonium condensate, polyvinylpyridium halide, alkyl quaternary ammonium (meth)acrylate, and alkyl quaternary ammonium (meth)acrylamido. salt, ω-chloro-poly(oxyethylene-polymethylene-alkyl quaternary ammonium salt), polyvinylbenzyltrimethylammonium salt, polystyrene cationic polymer, poly(meth)acrylic cationic polymer (methyl methacrylate, ethyl acrylate, 2- hydroxyethyl methacrylate, trimethylaminoethyl chloride methacrylate, etc.), polyvinylpyridine-based polymers, cyclic integral type polymers, linear integral type polymers, aromatic vinyl monomers having two or more pendant quaternary ammonium ion groups A polymer, a polymer having a pyrrolidium ring in the main chain, and the like are included. These polymers may be homopolymers or copolymers. Known copolymerizable monomers can be used to produce these polymers. In order to control the amount of the antistatic agent component present on the surface of the easily adhesive coating layer, it is preferably an antistatic agent having a linear alkyl group, and further has a linear alkyl group and a quaternary ammonium base It is preferably an antistatic agent having
本発明において、帯電防止剤は易接着性塗布層表面に存在することが好ましい。
In the present invention, the antistatic agent is preferably present on the surface of the easily adhesive coating layer.
そのため、直鎖アルキル基を有し、かつ4級アンモニウム塩基を有する帯電防止剤において、アルキル鎖の炭素数は、10~20個であることが好ましく、12~19個があることがより好ましく、14~18個であることが特に好ましい。ESCAによる表面元素分布測定に基づく窒素元素を有するカチオン系帯電防止剤由来の窒素元素比率を好適な範囲に制御するためには、易接着性塗布層表面に前記帯電防止剤をブリードアウトさせることが好ましく、同分子間の相互作用や、分子長によるブリードアウトのしやすさを鑑みた場合、前記範囲にすることが好ましい。
Therefore, in the antistatic agent having a linear alkyl group and a quaternary ammonium base, the number of carbon atoms in the alkyl chain is preferably 10 to 20, more preferably 12 to 19, 14 to 18 are particularly preferred. In order to control the nitrogen element ratio derived from the cationic antistatic agent having a nitrogen element based on the surface element distribution measurement by ESCA to a suitable range, it is possible to bleed out the antistatic agent on the surface of the easily adhesive coating layer. The above range is preferable in view of the interaction between the same molecules and the easiness of bleeding out due to the molecular length.
また、窒素元素を有するカチオン系帯電防止剤の分子構造において、直鎖アルキル鎖と4級アンモニウム塩基の間には、少なくとも1個程度のアミド結合やウレタン結合などを含んでいても構わない。
In addition, in the molecular structure of the cationic antistatic agent having a nitrogen element, at least one amide bond or urethane bond may be included between the linear alkyl chain and the quaternary ammonium base.
上記帯電防止剤において、4級アンモニウム塩基の対イオンとしては、アニオン性化合物であれば特に限定されるものではないが、好ましくはハロゲンイオン、モノもしくはポリハロゲン化アルキルイオン、ナイトレートイオン、サルフェートイオン、アルキルサルフェートイオン、スルホネートイオンまたはアルキルスルホネートイオンから適宜選択できるが、好ましくは、クロイルイオン、メタスルホン酸イオン、エタンスルホン酸イオン、ナイトレートイオンが選択される。
In the above antistatic agent, the counter ion of the quaternary ammonium base is not particularly limited as long as it is an anionic compound, but is preferably halogen ion, mono- or polyhalogenated alkyl ion, nitrate ion, sulfate ion. , an alkylsulfate ion, a sulfonate ion, or an alkylsulfonate ion, preferably a chroyl ion, a methasulfonate ion, an ethanesulfonate ion, or a nitrate ion.
(ポリエステル樹脂)
本発明における易接着性塗布層の形成に用いるポリエステル樹脂は、直鎖上のものであってもよいが、より好ましくは、ジカルボン酸と、分岐構造を有するジオールとを構成成分とするポリエステル樹脂であることが好ましい。ここで言うジカルボン酸は、その主成分がテレフタル酸、イソフタル酸又は2,6-ナフタレンジカルボン酸である他アジピン酸、セバシン酸等の脂肪族ジカルボン酸、テレフタル酸、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸等の芳香族ジカルボン酸が、挙げられる。また、分岐したグリコールとは枝分かれしたアルキル基を有するジオールであって、例えば、2,2-ジメチル-1,3-プロパンジオール、2-メチル-2-エチル-1,3-プロパンジオール、2-メチル-2-ブチル-1,3-プロパンジオール、2-メチル-2-プロピル-1,3-プロパンジオール、2-メチル-2-イソプロピル-1,3-プロパンジオール、2-メチル-2-n-ヘキシル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、2-エチル-2-n-ブチル-1,3-プロパンジオール、2-エチル-2-n-ヘキシル-1,3-プロパンジオール、2,2-ジ-n-ブチル-1,3-プロパンジオール、2-n-ブチル-2-プロピル-1,3-プロパンジオール、及び2,2-ジ-n-ヘキシル-1,3-プロパンジオールなどが挙げられる。 (polyester resin)
The polyester resin used for forming the easy-adhesive coating layer in the present invention may be a linear one, but more preferably a polyester resin having a dicarboxylic acid and a diol having a branched structure as its constituent components. Preferably. The dicarboxylic acid referred to here is mainly composed of terephthalic acid, isophthalic acid or 2,6-naphthalenedicarboxylic acid, as well as aliphatic dicarboxylic acids such as adipic acid and sebacic acid, terephthalic acid, isophthalic acid, phthalic acid, 2, Aromatic dicarboxylic acids such as 6-naphthalenedicarboxylic acid are included. A branched glycol is a diol having a branched alkyl group, such as 2,2-dimethyl-1,3-propanediol, 2-methyl-2-ethyl-1,3-propanediol, 2- Methyl-2-butyl-1,3-propanediol, 2-methyl-2-propyl-1,3-propanediol, 2-methyl-2-isopropyl-1,3-propanediol, 2-methyl-2-n -hexyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 2-ethyl-2-n-butyl-1,3-propanediol, 2-ethyl-2-n-hexyl- 1,3-propanediol, 2,2-di-n-butyl-1,3-propanediol, 2-n-butyl-2-propyl-1,3-propanediol, and 2,2-di-n- and hexyl-1,3-propanediol.
本発明における易接着性塗布層の形成に用いるポリエステル樹脂は、直鎖上のものであってもよいが、より好ましくは、ジカルボン酸と、分岐構造を有するジオールとを構成成分とするポリエステル樹脂であることが好ましい。ここで言うジカルボン酸は、その主成分がテレフタル酸、イソフタル酸又は2,6-ナフタレンジカルボン酸である他アジピン酸、セバシン酸等の脂肪族ジカルボン酸、テレフタル酸、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸等の芳香族ジカルボン酸が、挙げられる。また、分岐したグリコールとは枝分かれしたアルキル基を有するジオールであって、例えば、2,2-ジメチル-1,3-プロパンジオール、2-メチル-2-エチル-1,3-プロパンジオール、2-メチル-2-ブチル-1,3-プロパンジオール、2-メチル-2-プロピル-1,3-プロパンジオール、2-メチル-2-イソプロピル-1,3-プロパンジオール、2-メチル-2-n-ヘキシル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、2-エチル-2-n-ブチル-1,3-プロパンジオール、2-エチル-2-n-ヘキシル-1,3-プロパンジオール、2,2-ジ-n-ブチル-1,3-プロパンジオール、2-n-ブチル-2-プロピル-1,3-プロパンジオール、及び2,2-ジ-n-ヘキシル-1,3-プロパンジオールなどが挙げられる。 (polyester resin)
The polyester resin used for forming the easy-adhesive coating layer in the present invention may be a linear one, but more preferably a polyester resin having a dicarboxylic acid and a diol having a branched structure as its constituent components. Preferably. The dicarboxylic acid referred to here is mainly composed of terephthalic acid, isophthalic acid or 2,6-naphthalenedicarboxylic acid, as well as aliphatic dicarboxylic acids such as adipic acid and sebacic acid, terephthalic acid, isophthalic acid, phthalic acid, 2, Aromatic dicarboxylic acids such as 6-naphthalenedicarboxylic acid are included. A branched glycol is a diol having a branched alkyl group, such as 2,2-dimethyl-1,3-propanediol, 2-methyl-2-ethyl-1,3-propanediol, 2- Methyl-2-butyl-1,3-propanediol, 2-methyl-2-propyl-1,3-propanediol, 2-methyl-2-isopropyl-1,3-propanediol, 2-methyl-2-n -hexyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 2-ethyl-2-n-butyl-1,3-propanediol, 2-ethyl-2-n-hexyl- 1,3-propanediol, 2,2-di-n-butyl-1,3-propanediol, 2-n-butyl-2-propyl-1,3-propanediol, and 2,2-di-n- and hexyl-1,3-propanediol.
上記ポリエステル樹脂の構成成分としてのジカルボン酸としては、テレフタル酸又はイソフタル酸であるのが好ましい。上記ジカルボン酸の他に、共重合ポリエステル系樹脂に水分散性を付与させるため、5-スルホイソフタル酸等を1~10モル%の値囲で共重合させるのが好ましく、例えば、スルホテレフタル酸、5-スルホイソフタル酸、5-ナトリウムスルホイソフタル酸等を挙げることができる。ナフタレン骨格を有するジカルボン酸を含有するポリエステル樹脂を使用してもよいが、硬化型インキへの密着性の低下を抑制するために、その量的割合は全カルボン酸成分中で5モル%以下であることが好ましく、使用しなくともよい。
Terephthalic acid or isophthalic acid is preferable as the dicarboxylic acid as a component of the polyester resin. In addition to the above dicarboxylic acid, it is preferable to copolymerize 5-sulfoisophthalic acid or the like in the range of 1 to 10 mol% in order to impart water dispersibility to the copolymerized polyester resin. 5-sulfoisophthalic acid, 5-sodiumsulfoisophthalic acid and the like can be mentioned. A polyester resin containing a dicarboxylic acid having a naphthalene skeleton may be used, but the quantitative ratio thereof should be 5 mol% or less in the total carboxylic acid component in order to suppress deterioration of adhesion to curable ink. It is preferable to have it, and it is not necessary to use it.
上記ポリエステル樹脂の構成成分として、ポリエステル樹脂としての特性が損なわれない程度にトリオールやトリカルボン酸が含まれても構わない。
As a constituent component of the polyester resin, triol or tricarboxylic acid may be included to the extent that the properties of the polyester resin are not impaired.
上記ポリエステル樹脂は、カルボキシル基以外の極性基を含有してもよい。例えば、スルホン酸金属塩基、リン酸基等が挙げられるが、これらは1種又は2種以上有することができる。スルホン酸金属塩基を導入する方法としては、5-スルホイソフタル酸、4-スルホナフタレン-2,7-ジカルボン酸、5-〔4-スルホフェノキシ〕イソフタル酸等の金属塩又は2-スルホ-1,4-ブタンジオール、2,5-ジメチル-3-スルホ-2,5-ヘキサンジオール等の金属塩等のスルホン酸金属塩基を含有するジカルボン酸又はグリコールをポリカルボン酸成分またはポリオール成分の合計の10モル%以下、好ましくは7モル%以下、更に好ましくは5モル%以下の範囲で使用する方法が挙げられる。10モル%以下であると樹脂自体の耐加水分解性、塗膜の耐水性が良好であり好ましい。
The polyester resin may contain polar groups other than carboxyl groups. For example, sulfonic acid metal bases, phosphoric acid groups, and the like can be mentioned, and one or more of these can be used. As a method for introducing a sulfonic acid metal base, a metal salt such as 5-sulfoisophthalic acid, 4-sulfonaphthalene-2,7-dicarboxylic acid, 5-[4-sulfophenoxy]isophthalic acid, or 2-sulfo-1, Dicarboxylic acids or glycols containing sulfonic acid metal bases such as metal salts such as 4-butanediol and 2,5-dimethyl-3-sulfo-2,5-hexanediol are added to 10 of the total polycarboxylic acid component or polyol component. A method of using it in the range of mol % or less, preferably 7 mol % or less, more preferably 5 mol % or less is mentioned. When it is 10 mol % or less, the hydrolysis resistance of the resin itself and the water resistance of the coating film are good, which is preferable.
(ポリウレタン樹脂)
本発明においては、帯電防止剤を易接着性塗布層表面に存在させ、ESCAによる表面元素分布測定に基づく特性値が好適な関係を満たし、かつ易接着性塗布層表面の水に対する接触角が好適な範囲を満たすことが好ましい。そのため、主にポリウレタン樹脂の極性を制御することが好ましい。 (polyurethane resin)
In the present invention, the antistatic agent is present on the surface of the easy-adhesive coating layer, the characteristic values based on the surface element distribution measurement by ESCA satisfy a suitable relationship, and the contact angle of the easy-adhesive coating layer surface to water is suitable. range. Therefore, it is preferable to mainly control the polarity of the polyurethane resin.
本発明においては、帯電防止剤を易接着性塗布層表面に存在させ、ESCAによる表面元素分布測定に基づく特性値が好適な関係を満たし、かつ易接着性塗布層表面の水に対する接触角が好適な範囲を満たすことが好ましい。そのため、主にポリウレタン樹脂の極性を制御することが好ましい。 (polyurethane resin)
In the present invention, the antistatic agent is present on the surface of the easy-adhesive coating layer, the characteristic values based on the surface element distribution measurement by ESCA satisfy a suitable relationship, and the contact angle of the easy-adhesive coating layer surface to water is suitable. range. Therefore, it is preferable to mainly control the polarity of the polyurethane resin.
ポリウレタン樹脂の極性を制御する方法として、例えば、ポリウレタン樹脂の合成、重合に用いるポリオール成分の構造を制御することが挙げられる。一般的にエステル骨格やカーボネート骨格の極性はエーテル骨格よりも低くなる傾向である。ESCAによる表面元素分布測定に基づくカチオン系帯電防止剤由来の窒素元素比率が好適な範囲に満たない場合などには、ポリウレタン樹脂と、カチオン系帯電防止剤との相互作用を低減させ、帯電防止剤を易接着性塗布層表面に存在させることを目的に、ポリウレタン樹脂の合成、重合に用いるポリオール成分の骨格がエステル骨格やカーボネート骨格であるポリウレタン樹脂を用いることが好ましい。カーボネート骨格であるポリウレタン樹脂を用いることが特に好ましい。
Examples of methods for controlling the polarity of polyurethane resins include controlling the structure of the polyol component used in the synthesis and polymerization of polyurethane resins. In general, the polarity of ester skeletons and carbonate skeletons tends to be lower than that of ether skeletons. If the nitrogen element ratio derived from the cationic antistatic agent based on the surface element distribution measurement by ESCA is less than the suitable range, reduce the interaction between the polyurethane resin and the cationic antistatic agent and remove the antistatic agent. is present on the surface of the easily adhesive coating layer, it is preferable to use a polyurethane resin in which the skeleton of the polyol component used in the synthesis and polymerization of the polyurethane resin is an ester skeleton or a carbonate skeleton. It is particularly preferable to use a polyurethane resin having a carbonate skeleton.
エーテル骨格ポリオールとしては、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリテトラメチレンエーテルグリコール、ポリヘキサメチレンエーテルグリコール等が挙げられる。
Ether skeleton polyols include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polytetramethylene ether glycol, polyhexamethylene ether glycol, and the like.
エステル骨格ポリオールとしては、多価カルボン酸(マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、セバシン酸、フマル酸、マレイン酸、テレフタル酸、イソフタル酸等)またはそれらの酸無水物と多価アルコール(エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、2-メチル-1,3-プロパンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2-メチル-2-プロピル-1,3-プロパンジオール、1,8-オクタンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2,5-ジメチル-2,5-ヘキサンジオール、1,9-ノナンジオール、2-メチル-1,8-オクタンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、2-ブチル-2-ヘキシル-1,3-プロパンジオール、シクロヘキサンジオール、ビスヒドロキシメチルシクロヘキサン、ジメタノールベンゼン、ビスヒドロキシエトキシベンゼン、アルキルジアルカノールアミン、ラクトンジオール等)などが挙げられる。
Ester skeleton polyols include polyvalent carboxylic acids (malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, sebacic acid, fumaric acid, maleic acid, terephthalic acid, isophthalic acid, etc.) or their acid anhydrides. substances and polyhydric alcohols (ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 2-methyl-1,3-propanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 2-methyl-2,4-pentanediol , 2-methyl-2-propyl-1,3-propanediol, 1,8-octanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-ethyl-1,3-hexanediol, 2 ,5-dimethyl-2,5-hexanediol, 1,9-nonanediol, 2-methyl-1,8-octanediol, 2-butyl-2-ethyl-1,3-propanediol, 2-butyl-2 -hexyl-1,3-propanediol, cyclohexanediol, bishydroxymethylcyclohexane, dimethanolbenzene, bishydroxyethoxybenzene, alkyldialkanolamine, lactonediol, etc.).
カーボネート骨格ポリオールとしては、耐熱、耐加水分解性に優れる脂肪族系ポリカーボネートポリオールを含有することが好ましい。脂肪族系ポリカーボネートポリオールとしては、脂肪族系ポリカーボネートジオール、脂肪族系ポリカーボネートトリオールなどが挙げられるが、好適には脂肪族系ポリカーボネートジオールを用いることができる。本発明におけるポリカーボネート構造を有するポリウレタン樹脂を合成、重合するために用いる脂肪族系ポリカーボネートジオールとしては、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、1,8-ノナンジオール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコールなどのジオール類の1種または2種以上と、例えば、ジメチルカーボネート、エチレンカーボネート、ホスゲンなどのカーボネート類を反応させることにより得られる脂肪族系ポリカーボネートジオールなどが挙げられる。
The carbonate skeleton polyol preferably contains an aliphatic polycarbonate polyol that is excellent in heat resistance and hydrolysis resistance. Aliphatic polycarbonate polyols include aliphatic polycarbonate diols and aliphatic polycarbonate triols, and aliphatic polycarbonate diols can be preferably used. Aliphatic polycarbonate diols used for synthesizing and polymerizing the polyurethane resin having a polycarbonate structure in the present invention include, for example, ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5 - diols such as pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, 1,8-nonanediol, neopentyl glycol, diethylene glycol and dipropylene glycol; Aliphatic polycarbonate diols obtained by reacting one or more of them with carbonates such as dimethyl carbonate, ethylene carbonate, and phosgene.
ポリウレタン樹脂の極性を制御する他の方法として、例えば、ポリウレタン樹脂の合成、重合に用いるポリオール成分の数平均分子量を制御することが挙げられる。一般的にポリウレタン樹脂の合成、重合に用いるポリオール成分の数平均分子量が大きいと、ポリウレタン樹脂の極性は低くなる傾向であり、一方でポリオール成分の数平均分子量が小さいと、ポリウレタン樹脂の極性は高くなる傾向である。易接着性塗布層表面の水に対する接触角が好適な範囲に満たない場合などには、ポリオール成分の数平均分子量を大きくし、ポリウレタン樹脂の極性を低くすることが好ましい。また、易接着性塗布層表面の水に対する接触角が好適な範囲に超える場合などには、ポリオール成分の数平均分子量を小さくし、ポリウレタン樹脂の極性を高くすることが好ましい。数平均分子量の例として、ポリウレタン樹脂の合成、重合に用いるポリオールがエステル骨格ポリオールの場合では、数平均分量としては、好ましくは、1000~2400である。より好ましくは、1200~2200、特に好ましくは1400~2200である。また、カーボネート骨格ポリオールの場合では、数平均分量としては、好ましくは、500~1800である。より好ましくは、600~1600、特に好ましくは700~1400である。
Another method for controlling the polarity of polyurethane resins is, for example, controlling the number average molecular weight of the polyol component used in the synthesis and polymerization of polyurethane resins. In general, when the number average molecular weight of the polyol component used in the synthesis and polymerization of polyurethane resin is large, the polarity of the polyurethane resin tends to be low. trend. When the contact angle of water on the surface of the easy-adhesive coating layer is less than the preferred range, it is preferable to increase the number-average molecular weight of the polyol component and decrease the polarity of the polyurethane resin. Further, when the contact angle of the easily adhesive coating layer surface to water exceeds a suitable range, it is preferable to decrease the number average molecular weight of the polyol component and increase the polarity of the polyurethane resin. As an example of the number average molecular weight, when the polyol used for the synthesis and polymerization of the polyurethane resin is an ester skeleton polyol, the number average molecular weight is preferably 1,000 to 2,400. More preferably 1200-2200, particularly preferably 1400-2200. In the case of a carbonate skeleton polyol, the number average content is preferably 500-1800. More preferably 600-1600, particularly preferably 700-1400.
ポリウレタン樹脂の極性を制御する方法として、例えば、分子中のウレタン基量を制御することが挙げられる。一般的に分子中のウレタン基が多いと、ポリウレタン樹脂の極性は高くなり、また易接着性塗布層表面のポリウレタン樹脂成分の存在量は増加する傾向である。一方で分子中のウレタン基が少ないと、ポリウレタン樹脂の極性は低くなり、また易接着性塗布層表面のポリウレタン樹脂成分の存在量は減少する傾向である。そのため、分子中のウレタン基量を制御することでは、易接着性塗布層表面の帯電防止剤成分の存在量、ポリウレタン樹脂成分の存在量、さらには易接着性塗布層表面の水に対する接触角が平行して変化する。本発明におけるESCAによる表面元素分布測定に基づく特性値、また易接着性塗布層表面の水に対する接触角を好適な範囲にするための例としては、分子中のウレタン基量(ポリウレタン樹脂の合成、重合に用いるイソシアネート成分の数平均分子量/ポリウレタン樹脂の数平均分子量)としては、好ましくは26~38である。より好ましくは26~36である。
A method for controlling the polarity of polyurethane resins is, for example, controlling the amount of urethane groups in the molecule. In general, when there are many urethane groups in the molecule, the polarity of the polyurethane resin tends to be high, and the amount of the polyurethane resin component present on the surface of the easy-adhesive coating layer tends to increase. On the other hand, when the number of urethane groups in the molecule is small, the polarity of the polyurethane resin tends to be low, and the amount of the polyurethane resin component present on the surface of the easy-adhesive coating layer tends to decrease. Therefore, by controlling the amount of urethane groups in the molecule, the abundance of the antistatic agent component on the surface of the easy-adhesive coating layer, the abundance of the polyurethane resin component, and the contact angle of water on the surface of the easy-adhesive coating layer can be reduced. change in parallel. Examples of the characteristic values based on the surface element distribution measurement by ESCA in the present invention and the contact angle to water on the surface of the easy-adhesive coating layer in a suitable range include the amount of urethane groups in the molecule (synthesis of polyurethane resin, The number average molecular weight of the isocyanate component/the number average molecular weight of the polyurethane resin used for polymerization) is preferably 26-38. More preferably 26-36.
本発明におけるポリウレタン樹脂の製造法としては公知の方法が適用でき、例えば、ポリオールと過剰のポリイソシアネートから、末端がイソシアネートであるプレポリマーを合成し、次いでこのプレポリマーを、鎖延長剤若しくは架橋剤と反応させて高分子量化させる方法などがある。
A known method can be applied as a method for producing a polyurethane resin in the present invention. For example, a prepolymer having an isocyanate terminal is synthesized from a polyol and excess polyisocyanate, and then this prepolymer is added with a chain extender or a crosslinker. There is a method of reacting with to increase the molecular weight.
本発明におけるポリウレタン樹脂の合成、重合に用いるポリイソシアネートとしては、例えば、キシリレンジイソシアネート等の芳香族脂肪族ジイソシアネート類、イソホロンジイソシアネート及び4,4-ジシクロヘキシルメタンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン等の脂環式ジイソシアネート類、ヘキサメチレンジイソシアネート、および2,2,4-トリメチルヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート類、あるいはこれらの化合物を単一あるいは複数でトリメチロールプロパン等とあらかじめ付加させたポリイソシアネート類が挙げられる。前記の芳香族脂肪族ジイソシアネート類、脂環式ジイソシアネート類、または、脂肪族ジイソシアネート類等を使用した場合、黄変の問題がなく好ましい。また、強硬な塗膜になり過ぎず、ポリエステルフィルム基材の熱収縮による応力を緩和でき、易接着性塗布層の凝集破壊などの問題がなく好ましい。
Examples of the polyisocyanate used for the synthesis and polymerization of the polyurethane resin in the present invention include aromatic-aliphatic diisocyanates such as xylylene diisocyanate, isophorone diisocyanate and 4,4-dicyclohexylmethane diisocyanate, and 1,3-bis(isocyanatomethyl). Alicyclic diisocyanates such as cyclohexane, hexamethylene diisocyanate, and aliphatic diisocyanates such as 2,2,4-trimethylhexamethylene diisocyanate, or a single or multiple of these compounds previously added with trimethylolpropane or the like Polyisocyanates can be mentioned. When the above aromatic-aliphatic diisocyanates, alicyclic diisocyanates, or aliphatic diisocyanates are used, there is no problem of yellowing, which is preferable. In addition, the coating film is not too hard, the stress due to heat shrinkage of the polyester film substrate can be relieved, and there is no problem such as cohesive failure of the easily adhesive coating layer, which is preferable.
本発明におけるポリウレタン樹脂の合成、重合に用いる鎖延長剤としては、例えば、エチレングリコール、ジエチレングリコール、1,4-ブタンジオール、ネオペンチルグリコール及び1,6-ヘキサンジオール等のグリコール類、グリセリン、トリメチロールプロパン、およびペンタエリスリトール等の多価アルコール類、エチレンジアミン、ヘキサメチレンジアミン、およびピペラジン等のジアミン類、モノエタノールアミンおよびジエタノールアミン等のアミノアルコール類、チオジエチレングルコール等のチオジグリコール類、あるいは水が挙げられる。
Examples of the chain extender used for the synthesis and polymerization of the polyurethane resin in the present invention include glycols such as ethylene glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol and 1,6-hexanediol, glycerin, and trimethylol. Polyhydric alcohols such as propane and pentaerythritol, diamines such as ethylenediamine, hexamethylenediamine, and piperazine, amino alcohols such as monoethanolamine and diethanolamine, thiodiglycols such as thiodiethylene glycol, or water. mentioned.
本発明における易接着性塗布層は、水系の塗布液を用い後述のインラインコート法により設けることが好ましい。そのため、本発明におけるポリウレタン樹脂は水溶性又は水分散性を持つことが望ましい。なお、前記の「水溶性又は水分散性」とは、水、または水溶性の有機溶剤を50質量%未満含む水溶液に対して分散することを意味する。
The easily adhesive coating layer in the present invention is preferably provided by an in-line coating method, which will be described later, using a water-based coating liquid. Therefore, it is desirable that the polyurethane resin in the present invention has water solubility or water dispersibility. The term "water-soluble or water-dispersible" means dispersing in water or an aqueous solution containing less than 50% by mass of a water-soluble organic solvent.
ポリウレタン樹脂に水分散性を付与させるためには、ウレタン分子骨格中にスルホン酸(塩)基又はカルボン酸(塩)基を導入(共重合)することができる。ポリオキシアルキレン基などのノニオン性基を導入した前記ポリウレタン樹脂は、ポリウレタン樹脂とカチオン性帯電防止剤との相互作用を極力低減させることができ、特に好ましい。
In order to impart water dispersibility to the polyurethane resin, a sulfonic acid (salt) group or a carboxylic acid (salt) group can be introduced (copolymerized) into the urethane molecular skeleton. The polyurethane resin into which a nonionic group such as a polyoxyalkylene group is introduced is particularly preferable because it can minimize the interaction between the polyurethane resin and the cationic antistatic agent.
上記ノニオン性基を導入する方法は公知の方法の中から適宜選択することができるが、例えば、高分子ポリオールの一部を、ポリオキシエチレン基を含有するジオールに置き換えて製造する方法、或いは、ジイソシアネートのヌレート体における一部のイソシアネート基とメトキシポリエチレングリコールとを予め反応させておき、次いで高分子ポリオールと反応させる方法があげられる。
The method of introducing the nonionic group can be appropriately selected from known methods. For example, a method of replacing part of the polymer polyol with a diol containing a polyoxyethylene group, or A method of reacting part of the isocyanate groups in the nurate form of diisocyanate with methoxypolyethylene glycol in advance and then reacting it with a high-molecular-weight polyol can be mentioned.
本発明におけるポリウレタン樹脂にカルボン酸(塩)基を導入するためには、例えば、ポリオール成分として、ジメチロールプロパン酸、ジメチロールブタン酸などのカルボン酸基を有するポリオール化合物を共重合成分として導入し、塩形成剤により中和する。塩形成剤の具体例としては、アンモニア、トリメチルアミン、トリエチルアミン、トリイソプロピルアミン、トリ-n-プロピルアミン、トリ-n-ブチルアミンなどのトリアルキルアミン類、N-メチルモルホリン、N-エチルモルホリンなどのN-アルキルモルホリン類、N-ジメチルエタノールアミン、N-ジエチルエタノールアミンなどのN-ジアルキルアルカノールアミン類が挙げられる。これらは単独で使用できるし、2種以上併用することもできる。
In order to introduce a carboxylic acid (salt) group into the polyurethane resin of the present invention, for example, a polyol compound having a carboxylic acid group such as dimethylolpropanoic acid or dimethylolbutanoic acid is introduced as a copolymerization component. , neutralized with a salt-forming agent. Specific examples of salt-forming agents include ammonia, trialkylamines such as trimethylamine, triethylamine, triisopropylamine, tri-n-propylamine and tri-n-butylamine; -N-dialkylalkanolamines such as alkylmorpholines, N-dimethylethanolamine and N-diethylethanolamine. These can be used alone or in combination of two or more.
水分散性を付与するために、カルボン酸(塩)基を有するポリオール化合物を共重合成分として用いる場合は、ポリウレタン樹脂中のカルボン酸(塩)基を有するポリオール化合物の組成モル比は、ポリウレタン樹脂の全ポリイソシアネート成分を100モル%としたときに、3~25モル%であることが好ましく、さらに3~18モル%であることが好ましく、特に3~15モル%の範囲であることが好ましい。前記範囲に制御することで、水分散性を担保しつつ、また併存するカチオン系帯電防止剤成分との相互作用が抑えられ、前記帯電防止剤が易接着性塗布層表面に存在することが可能となる。
When a polyol compound having a carboxylic acid (salt) group is used as a copolymerization component in order to impart water dispersibility, the composition molar ratio of the polyol compound having a carboxylic acid (salt) group in the polyurethane resin is When the total polyisocyanate component of is 100 mol%, it is preferably 3 to 25 mol%, more preferably 3 to 18 mol%, and particularly preferably in the range of 3 to 15 mol%. . By controlling it within the above range, interaction with the coexisting cationic antistatic agent component is suppressed while ensuring water dispersibility, and the antistatic agent can be present on the surface of the easily adhesive coating layer. becomes.
本発明におけるポリウレタン樹脂は、強硬性向上のため末端にブロックイソシアネートを結合させた、自己架橋性ポリポリウレタン樹脂でもよい。
The polyurethane resin in the present invention may be a self-crosslinking polyurethane resin with blocked isocyanate bound to the end to improve toughness.
本発明におけるポリウレタン樹脂は、分岐構造を有してもよい。
The polyurethane resin in the present invention may have a branched structure.
ポリウレタン樹脂中に分岐構造を形成させるためには、例えば、前記のポリカーボネートポリオール成分、ポリイソシアネート、鎖延長剤を適切な温度、時間を設けて反応させたのち、3官能以上の水酸基あるいはイソシアネート基を有する化合物を添加し、さらに反応を進行させる方法が好ましく採用され得る。
In order to form a branched structure in the polyurethane resin, for example, the polycarbonate polyol component, polyisocyanate, and chain extender are allowed to react at an appropriate temperature and time, and then tri- or more functional hydroxyl groups or isocyanate groups are added. A method of adding a compound having a compound and further advancing the reaction can be preferably employed.
3官能以上の水酸基を有する化合物の具体例としては、カプロラクトントリオール、グリセロール、トリメチロールプロパン、ブタントリオール、ヘキサントリオール、1,2,3-ヘキサントリオール、1,2,3-ペンタントリオール、1,3,4-ヘキサントリオール、1,3,4-ペンタントリオール、1,3,5-ヘキサントリオール、1,3,5-ペンタントリオール、ポリエーテルトリオールなどが挙げられる。前記のポリエーテルトリオールとしては、例えば、グリセリン、トリメチロールプロパン等のアルコール、ジエチレントリアミン等のような、活性水素を3個有する化合物の1種又は2種以上を開始剤として、エチレンオキシド、プロピレンオキシド、ブチレンオキシド、アミレンオキシド、グリシジルエーテル、メチルグリシジルエーテル、t-ブチルグリシジルエーテル、フェニルグリシジルエーテル等のモノマーの1種又は2種以上を付加重合することによって得られる化合物が挙げられる。
Specific examples of compounds having a trifunctional or higher hydroxyl group include caprolactone triol, glycerol, trimethylolpropane, butanetriol, hexanetriol, 1,2,3-hexanetriol, 1,2,3-pentanetriol, 1,3 ,4-hexanetriol, 1,3,4-pentanetriol, 1,3,5-hexanetriol, 1,3,5-pentanetriol and polyethertriol. Examples of the polyether triols include, for example, glycerin, alcohols such as trimethylolpropane, diethylenetriamine, and the like, using one or more compounds having three active hydrogens as initiators, ethylene oxide, propylene oxide, and butylene. Compounds obtained by addition polymerization of one or more of monomers such as oxides, amylene oxides, glycidyl ethers, methyl glycidyl ethers, t-butyl glycidyl ethers, and phenyl glycidyl ethers can be mentioned.
3官能以上のイソシアネート基を有する化合物の具体例としては、1分子中に少なくとも3個以上のイソシアネート(NCO)基を有するポリイソシアネート化合物であればよい。本発明において3官能以上のイソシアネート化合物は、2個のイソシアネート基を有する、芳香族ジイソシアネート、脂肪族ジイソシアネート、芳香脂肪族ジイソシアネート、脂環族ジイソシアネート等のイソシアネートモノマーを変性したビュレット体、ヌレート体、およびアダクト体等が挙げられる。芳香族ジイソシアネートは、例えば1,3-フェニレンジイソシアネート、4,4’-ジフェニルジイソシアネート、1,4-フェニレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-トルイジンジイソシアネート、ジアニシジンジイソシアネート、および4,4’-ジフェニルエーテルジイソシアネート等が挙げられる。脂肪族ジイソシアネートは、例えばトリメチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ペンタメチレンジイソシアネート、1,2-プロピレンジイソシアネート、2,3-ブチレンジイソシアネート、1,3-ブチレンジイソシアネート、ドデカメチレンジイソシアネート、および2,4,4-トリメチルヘキサメチレンジイソシアネート等が挙げられる。芳香脂肪族ジイソシアネートは、例えばキシリレンジイソシアネート、ω,ω’-ジイソシアネート-1,4-ジエチルベンゼン、1,4-テトラメチルキシリレンジイソシアネート、および1,3-テトラメチルキシリレンジイソシアネート等が挙げられる。脂環族ジイソシアネートは、例えば3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(別名:IPDI、イソホロンジイソシアネート)、1,3-シクロペンタンジイソシアネート、1,3-シクロヘキサンジイソシアネート、1,4-シクロヘキサンジイソシアネート、メチル-2,4-シクロヘキサンジイソシアネート、メチル-2,6-シクロヘキサンジイソシアネート、4,4’-メチレンビス(シクロヘキシルイソシアネート)、および1,4-ビス(イソシアネートメチル)シクロヘキサン等が挙げられる。ビュレット体とは、イソシアネートモノマーが自己縮合して形成したビュレット結合を有する自己縮合物であり、例えば、ヘキサメチレンジイソシアネートのビュレット体などが挙げられる。ヌレート体とは、イソシアネートモノマーの3量体であり、例えば、ヘキサメチレンジイソシアネートの3量体、イソホロンジイソシアネートの3量体、トリレンジイソシアネートの3量体などが挙げられる。アダクト体とは、上記イソシアネートモノマーと3官能以上の低分子活性水素含有化合物とを反応させてなる、3官能以上のイソシアネート化合物をいい、例えば、トリメチロールプロパンとヘキサメチレンジイソシアネートとを反応させた化合物、トリメチロールプロパンとトリレンジイソシアネートとを反応させた化合物、トリメチロールプロパンとキシリレンジイソシアネートとを反応させた化合物、トリメチロールプロパンとイソホロンジイソシアネートとを反応させた化合物、などが挙げられる。
A specific example of the compound having a trifunctional or higher isocyanate group is a polyisocyanate compound having at least three or more isocyanate (NCO) groups in one molecule. In the present invention, trifunctional or higher isocyanate compounds are aromatic diisocyanates, aliphatic diisocyanates, araliphatic diisocyanates, alicyclic diisocyanates having two isocyanate groups. and adducts. Aromatic diisocyanates include, for example, 1,3-phenylene diisocyanate, 4,4′-diphenyl diisocyanate, 1,4-phenylene diisocyanate, 4,4′-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate isocyanate, 4,4'-toluidine diisocyanate, dianisidine diisocyanate, 4,4'-diphenyl ether diisocyanate, and the like. Aliphatic diisocyanates are, for example, trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, pentamethylene diisocyanate, 1,2-propylene diisocyanate, 2,3-butylene diisocyanate, 1,3-butylene diisocyanate, dodecamethylene diisocyanate, and 2, 4,4-trimethylhexamethylene diisocyanate and the like. Examples of araliphatic diisocyanates include xylylene diisocyanate, ω,ω'-diisocyanate-1,4-diethylbenzene, 1,4-tetramethylxylylene diisocyanate, and 1,3-tetramethylxylylene diisocyanate. Alicyclic diisocyanates include, for example, 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (also known as IPDI, isophorone diisocyanate), 1,3-cyclopentane diisocyanate, 1,3-cyclohexane diisocyanate, 1,4-cyclohexane diisocyanate, methyl-2,4-cyclohexanediisocyanate, methyl-2,6-cyclohexanediisocyanate, 4,4'-methylenebis(cyclohexylisocyanate), 1,4-bis(isocyanatomethyl)cyclohexane, and the like. The burette body is a self-condensed product having a burette bond formed by self-condensation of an isocyanate monomer, and examples thereof include a burette body of hexamethylene diisocyanate. A nurate compound is a trimer of an isocyanate monomer, and examples thereof include a trimer of hexamethylene diisocyanate, a trimer of isophorone diisocyanate, a trimer of tolylene diisocyanate, and the like. The adduct refers to a tri- or higher functional isocyanate compound obtained by reacting the above isocyanate monomer with a tri- or higher-functional low-molecular-weight active hydrogen-containing compound, for example, a compound obtained by reacting trimethylolpropane and hexamethylene diisocyanate. , a compound obtained by reacting trimethylolpropane and tolylene diisocyanate, a compound obtained by reacting trimethylolpropane and xylylene diisocyanate, a compound obtained by reacting trimethylolpropane and isophorone diisocyanate, and the like.
3官能以上の官能基数を有する鎖延長剤としては、上記鎖延長剤の説明中のトリメチロールプロパン、およびペンタエリスリトール等の3官能以上の水酸基を有するアルコール類などが該当する。
Examples of chain extenders having a number of functional groups of 3 or more include trimethylolpropane and alcohols having a hydroxy group of 3 or more functional groups, such as pentaerythritol, which are described in the above description of chain extenders.
(比率)
本発明においては、帯電防止剤を易接着性塗布層表面に存在させ、ESCAによる表面元素分布測定に基づく特性値が好適な関係を満たし、かつ易接着性塗布層表面の水に対する接触角が好適な範囲を満たすことが好ましい。そのため、主にポリポリウレタン樹脂の極性を制御したうえで、さらに、カチオン性帯電防止剤、ポリエステル樹脂、ポリウレタン樹脂の固形分の総和に対する個々の成分の固形分比率を調整し、易接着性塗布層としての極性を制御することが好ましい。 (ratio)
In the present invention, the antistatic agent is present on the surface of the easy-adhesive coating layer, the characteristic values based on the surface element distribution measurement by ESCA satisfy a suitable relationship, and the contact angle of the easy-adhesive coating layer surface to water is suitable. range. Therefore, after mainly controlling the polarity of the polyurethane resin, the solid content ratio of each component with respect to the total solid content of the cationic antistatic agent, polyester resin, and polyurethane resin is adjusted to provide an easy-adhesive coating layer. It is preferable to control the polarity as
本発明においては、帯電防止剤を易接着性塗布層表面に存在させ、ESCAによる表面元素分布測定に基づく特性値が好適な関係を満たし、かつ易接着性塗布層表面の水に対する接触角が好適な範囲を満たすことが好ましい。そのため、主にポリポリウレタン樹脂の極性を制御したうえで、さらに、カチオン性帯電防止剤、ポリエステル樹脂、ポリウレタン樹脂の固形分の総和に対する個々の成分の固形分比率を調整し、易接着性塗布層としての極性を制御することが好ましい。 (ratio)
In the present invention, the antistatic agent is present on the surface of the easy-adhesive coating layer, the characteristic values based on the surface element distribution measurement by ESCA satisfy a suitable relationship, and the contact angle of the easy-adhesive coating layer surface to water is suitable. range. Therefore, after mainly controlling the polarity of the polyurethane resin, the solid content ratio of each component with respect to the total solid content of the cationic antistatic agent, polyester resin, and polyurethane resin is adjusted to provide an easy-adhesive coating layer. It is preferable to control the polarity as
塗布液中のカチオン性帯電防止剤、ポリエステル樹脂、ポリウレタン樹脂の固形分の総和を100質量%とするとき、カチオン性帯電防止剤の含有率(質量%)は3.5~7.0であることが好ましく、4.0~5.5であることがより好ましい。前記範囲にすることで、ESCAによる表面元素分布測定に基づく窒素元素を有するカチオン系帯電防止剤由来の窒素元素比率、またポリウレタン樹脂由来の窒素元素比率/カチオン系帯電防止剤由来の窒素元素比率を好適な範囲に制御することができる。
When the total solid content of the cationic antistatic agent, polyester resin, and polyurethane resin in the coating liquid is 100% by mass, the content (% by mass) of the cationic antistatic agent is 3.5 to 7.0. is preferred, and 4.0 to 5.5 is more preferred. By setting the above range, the nitrogen element ratio derived from the cationic antistatic agent having a nitrogen element based on the surface element distribution measurement by ESCA, and the nitrogen element ratio derived from the polyurethane resin / the nitrogen element ratio derived from the cationic antistatic agent It can be controlled within a suitable range.
塗布液中のカチオン性帯電防止剤、ポリエステル樹脂、ポリウレタン樹脂の固形分の総和を100質量%とするとき、ポリエステル樹脂の含有率(質量%)は25~80であることが好ましく、30~80であることがより好ましい。さらに35~80であることが特に好ましい。前記範囲にすることで、易接着性塗布層とポリエステルフィルム基材の密着性を担保し、また併存するカチオン系帯電防止剤成分と相互作用しうるポリエステル樹脂中の極性基であるカルボキシル基やスルホン酸金属塩基、またリン酸基の量が制御され、ESCAによる表面元素分布測定に基づく窒素元素を有するカチオン系帯電防止剤由来の窒素元素比率を好適な範囲に制御することができる。
When the total solid content of the cationic antistatic agent, polyester resin, and polyurethane resin in the coating liquid is 100% by mass, the polyester resin content (% by mass) is preferably 25 to 80, preferably 30 to 80. is more preferable. Furthermore, 35 to 80 is particularly preferred. By adjusting the above range, the adhesiveness between the easily adhesive coating layer and the polyester film substrate is ensured, and the polar groups in the polyester resin that can interact with the coexisting cationic antistatic agent component, such as carboxyl group and sulfone. The amount of acid metal base and phosphate group is controlled, and the nitrogen element ratio derived from the cationic antistatic agent having nitrogen element based on surface element distribution measurement by ESCA can be controlled within a suitable range.
塗布液中のカチオン性帯電防止剤、ポリエステル樹脂、ポリウレタン樹脂の固形分の総和を100質量%とするとき、ポリウレタン樹脂の含有率(質量%)は15~65であることが好ましく、20~55であることがより好ましい。ポリウレタン樹脂の含有率が低いと、相対的にポリエステル樹脂の比率が高くなり、易接着性塗布層におけるポリエステル樹脂中の極性基であるカルボキシル基やスルホン酸金属塩基、またリン酸基の量が増えることになる。ポリウレタン樹脂の含有率が高いと易接着性塗布層として極性が低くなる。易接着性塗布層表面のポリウレタン成分が増える一方で、易接着性塗布層としての極性が低いため、カチオン系帯電防止剤は易接着性塗布層表面に存在しやすい状況となる。つまり易接着性塗布層表面のカチオン系帯電防止剤成分も増える。それらを鑑みて、ポリウレタン樹脂の含有率(質量%)を前記範囲にすることで、ESCAによる表面元素分布測定に基づく窒素元素を有するカチオン系帯電防止剤由来の窒素元素比率、またポリウレタン樹脂由来の窒素元素比率/カチオン系帯電防止剤由来の窒素元素比率を好適な範囲に制御することができる。
When the total solid content of the cationic antistatic agent, polyester resin, and polyurethane resin in the coating liquid is 100% by mass, the polyurethane resin content (% by mass) is preferably 15 to 65, more preferably 20 to 55. is more preferable. When the content of polyurethane resin is low, the ratio of polyester resin is relatively high, and the amount of polar groups such as carboxyl groups, sulfonic acid metal groups, and phosphoric acid groups in the polyester resin in the easy-adhesion coating layer increases. It will be. If the content of the polyurethane resin is high, the polarity of the easy-adhesive coating layer will be low. While the polyurethane component on the surface of the easy-adhesion coating layer increases, the polarity of the easy-adhesion coating layer is low, so the cationic antistatic agent tends to exist on the surface of the easy-adhesion coating layer. In other words, the amount of the cationic antistatic agent component on the surface of the easy-adhesive coating layer also increases. In view of them, by setting the content rate (% by mass) of the polyurethane resin in the above range, the nitrogen element ratio derived from the cationic antistatic agent having nitrogen element based on the surface element distribution measurement by ESCA, and the polyurethane resin-derived nitrogen element ratio The nitrogen element ratio/the nitrogen element ratio derived from the cationic antistatic agent can be controlled within a suitable range.
(添加剤)
本発明における易接着性塗布層中には、本発明の効果を阻害しない範囲において公知の添加剤、例えば界面活性剤、酸化防止剤、耐熱安定剤、耐候安定剤、紫外線吸収剤、有機の易滑剤、顔料、染料、有機または無機の粒子、核剤等を添加しても良い。 (Additive)
Known additives such as surfactants, antioxidants, heat stabilizers, weather stabilizers, ultraviolet absorbers, and organic facilitators may be added to the easily adhesive coating layer in the present invention as long as they do not impair the effects of the present invention. Lubricants, pigments, dyes, organic or inorganic particles, nucleating agents, etc. may be added.
本発明における易接着性塗布層中には、本発明の効果を阻害しない範囲において公知の添加剤、例えば界面活性剤、酸化防止剤、耐熱安定剤、耐候安定剤、紫外線吸収剤、有機の易滑剤、顔料、染料、有機または無機の粒子、核剤等を添加しても良い。 (Additive)
Known additives such as surfactants, antioxidants, heat stabilizers, weather stabilizers, ultraviolet absorbers, and organic facilitators may be added to the easily adhesive coating layer in the present invention as long as they do not impair the effects of the present invention. Lubricants, pigments, dyes, organic or inorganic particles, nucleating agents, etc. may be added.
易接着性塗布層面の光沢度を低下させるために、易接着性塗布層中に不活性粒子を含有させてもよい。
Inert particles may be contained in the easily adhesive coating layer in order to reduce the glossiness of the easily adhesive coating layer surface.
前記の不活性粒子としては、例えば、酸化チタン、硫酸バリウム、炭酸カルシウム、硫酸カルシウム、シリカ、アルミナ、タルク、カオリン、クレー、リン酸カルシウム、雲母、ヘクトライト、ジルコニア、酸化タングステン、フッ化リチウム、フッ化カルシウムなどの無機粒子や、ポリスチレン系、ポリアクリル系、メラミン系、ベンゾグアナミン系、シリコーン樹脂などの有機ポリマー系粒子等が挙げられる。これらは1種でも良いが、2種以上併用しても良い。
Examples of the inert particles include titanium oxide, barium sulfate, calcium carbonate, calcium sulfate, silica, alumina, talc, kaolin, clay, calcium phosphate, mica, hectorite, zirconia, tungsten oxide, lithium fluoride, and fluoride. Examples include inorganic particles such as calcium, and organic polymer particles such as polystyrene, polyacrylic, melamine, benzoguanamine, and silicone resins. These may be used alone or in combination of two or more.
前記の不活性粒子の平均粒径は、0.1~2.4μmが好ましく、さらに好ましくは0.3~2.0μmである。不活性粒子の平均粒径が0.1μm以上であると、フィルム表面の光沢度が高くなり過ぎず好ましい。逆に、2.4μm以下であると、粒子が易接着性塗布層から脱落しづらく、粉落ちを防ぐことができて好ましい。
The average particle diameter of the inert particles is preferably 0.1-2.4 μm, more preferably 0.3-2.0 μm. When the average particle size of the inert particles is 0.1 μm or more, the glossiness of the film surface does not become too high, which is preferable. Conversely, if the particle size is 2.4 μm or less, the particles are less likely to fall off from the easily adhesive coating layer, and powder fall-off can be prevented, which is preferable.
前記の不活性粒子の含有量は、本発明の効果を阻害しない範囲において添加することが可能であるが、粒子が易接着性塗布層から脱落し、粉落ちを起こさないようにするため、粒子の含有量は、易接着性塗布層固形分全体に対して、粒子の固形分が0~70.0質量%であることが好ましく、0~60.0質量%であることが好ましく、さらに0~55.0質量%であることが好ましい。
The content of the inert particles can be added within a range that does not impair the effects of the present invention. The content of the solid content of the particles is preferably 0 to 70.0% by mass, preferably 0 to 60.0% by mass, more preferably 0 to 60.0% by mass, based on the total solid content of the easy-adhesive coating layer. It is preferably ~55.0% by mass.
本発明の目的を満たすものであれば、粒子の形状は特に限定されるものでなく、球状粒子、不定形の球状でない粒子を使用できる。不定形の粒子の粒径は円相当径として計算することができる。
The shape of the particles is not particularly limited as long as it satisfies the object of the present invention, and spherical particles and irregularly shaped non-spherical particles can be used. The particle diameter of amorphous particles can be calculated as the equivalent circle diameter.
易接着性塗布層面の光沢度を上昇させるためには、易接着性塗布層中に粒子を含有させない方が良い。
In order to increase the glossiness of the easy-adhesion coating layer, it is better not to include particles in the easy-adhesion coating layer.
(ポリエステルフィルム製造方法)
本発明におけるポリエステルフィルムの製造方法は任意であり、特に制限されるものではないが、例えば以下のようにして製造することが出来る。 (Polyester film manufacturing method)
The method for producing the polyester film in the present invention is arbitrary and not particularly limited, but it can be produced, for example, as follows.
本発明におけるポリエステルフィルムの製造方法は任意であり、特に制限されるものではないが、例えば以下のようにして製造することが出来る。 (Polyester film manufacturing method)
The method for producing the polyester film in the present invention is arbitrary and not particularly limited, but it can be produced, for example, as follows.
フィルム原料を十分に真空乾燥した後、押出し機で溶融し、T-ダイより回転冷却金属ロールに静電気を印加しながらシート状に押出し、未延伸フィルムを得る。
After sufficiently vacuum-drying the film raw material, it is melted in an extruder and extruded into a sheet form from a T-die while applying static electricity to a rotating cooling metal roll to obtain an unstretched film.
この際、白色顔料やその他添加剤は押出し機に粉末添加して混練りするのではなく、予めポリエステル樹脂中に白色顔料などをそれぞれ別々に高濃度で含有させたマスターバッチポリマーを作成し、それらをポリエステル樹脂でブレンド希釈する方法が均一混合の点から好ましい。押出し機は各種フィルム原料をさらに十分に均一混合するために、二軸押出し機を用いることが好ましい。また、静電密着性改良のためにポリエステルを重合する際に、アルカリ土類金属塩及び/またはアルカリ金属塩とリン酸またはその塩を添加しておくことが好ましい。また、リン酸またはその塩の添加は色調改善(特に、b値)できるという効果もある。
At this time, the white pigment and other additives are not powdered and kneaded in the extruder, but a masterbatch polymer is prepared by separately containing the white pigment and the like in the polyester resin at a high concentration in advance. is preferably blended and diluted with a polyester resin from the viewpoint of uniform mixing. It is preferable to use a twin-screw extruder in order to sufficiently and uniformly mix the various film raw materials. Further, it is preferable to add an alkaline earth metal salt and/or an alkali metal salt and phosphoric acid or a salt thereof when polymerizing the polyester in order to improve the electrostatic adhesion. Addition of phosphoric acid or a salt thereof also has the effect of improving color tone (particularly b value).
本発明において、基材のポリエステルフィルムは単層構造でも、積層構造でも構わない。積層構造の場合、表面層と中心層の組成を要求される機能に応じて多様に設計することができるという利点がある。基材のポリエステルフィルムを積層構造とする場合には、X層とY層の樹脂を別々の押出し機に供給した後、例えば、溶融状態でX層/Y層の2層構造とする、X層/Y層/X層の3層構成などに積層して、同一のダイから押出す共押出し法を採用することが最も好ましい。
In the present invention, the base polyester film may have a single-layer structure or a laminated structure. The laminate structure has the advantage that the compositions of the surface layer and the central layer can be designed in various ways according to the required functions. When the polyester film of the base material has a laminated structure, after supplying the resins of the X layer and the Y layer to separate extruders, for example, a two-layer structure of the X layer / Y layer in a molten state, the X layer It is most preferable to adopt a co-extrusion method in which a three-layer structure such as /Y layer/X layer is laminated and extruded from the same die.
こうして得られた未延伸フィルムは、更に速度差をもったロール間での延伸(ロール延伸)やクリップに把持して拡げていくことによる延伸(テンター延伸)や空気圧によって拡げることによる延伸(インフレーション延伸)などによって2軸配向処理される。
The unstretched film obtained in this way is further stretched between rolls with a speed difference (roll stretching), stretched by gripping and spreading with clips (tenter stretching), or stretched by spreading with air pressure (inflation stretching). ) or the like.
未延伸フィルムを延伸・配向処理する条件は、フィルムの物性と密接に関係する。以下では、最も一般的な逐次二軸延伸方法、特に未延伸シートを長手方向次いで幅方向に延伸する方法を例にとり、延伸・配向条件を説明する。
The conditions for stretching and orienting an unstretched film are closely related to the physical properties of the film. The stretching and orientation conditions will be described below by taking as an example the most common sequential biaxial stretching method, particularly a method in which an unstretched sheet is stretched in the longitudinal direction and then in the width direction.
まず、第一段の縦延伸工程では、周速が異なる2本あるいは多数本のロール間で延伸する。このときの加熱手段としては、加熱ロールを用いる方法でも非接触の加熱方法を用いる方法でもよく、それらを併用してもよい。次いで一軸延伸フィルムをテンターに導入し、幅方向にポリエステルの融点Tm-10℃以下の温度で2.5~5倍に延伸する。
First, in the first longitudinal stretching step, the film is stretched between two or multiple rolls with different peripheral speeds. As a heating means at this time, a method using a heating roll or a method using a non-contact heating method may be used, or both of them may be used. Then, the uniaxially stretched film is introduced into a tenter and stretched 2.5 to 5 times in the width direction at a temperature not higher than the melting point Tm-10° C. of the polyester.
このようにして得られた二軸延伸フィルムに対し、必要に応じて熱処理を施す。熱処理はテンター中で行うのが好ましく、熱処理温度はポリエステルの融点(Tm)-50(℃)からTm(℃)の範囲で行うのが好ましい。
The biaxially stretched film thus obtained is subjected to heat treatment as necessary. The heat treatment is preferably carried out in a tenter, and the heat treatment temperature is preferably in the range from the melting point (Tm) of polyester -50 (°C) to Tm (°C).
(空洞含有PET製造方法)
本発明におけるポリエステルフィルム基材は、フィルム原料を溶融、押出し成形する工程で、ポリエステル樹脂中にポリエステル樹脂と非相溶な熱可塑性樹脂を分散させてもよい。本発明におけるポリエステルフィルム基材は、白色ポリエステルフィルム基材であることも好ましい。本発明における実験例では、ポリエステル樹脂およびポリエステル樹脂と非相溶な熱可塑性樹脂はペレット形状で供給されているものを用いたが、これに限定されるものではない。 (Cavity-containing PET manufacturing method)
The polyester film substrate in the present invention may be obtained by dispersing a thermoplastic resin incompatible with the polyester resin in the polyester resin in the process of melting and extruding the film raw material. The polyester film substrate in the present invention is also preferably a white polyester film substrate. In the experimental examples of the present invention, the polyester resin and the thermoplastic resin incompatible with the polyester resin were supplied in the form of pellets, but the present invention is not limited to this.
本発明におけるポリエステルフィルム基材は、フィルム原料を溶融、押出し成形する工程で、ポリエステル樹脂中にポリエステル樹脂と非相溶な熱可塑性樹脂を分散させてもよい。本発明におけるポリエステルフィルム基材は、白色ポリエステルフィルム基材であることも好ましい。本発明における実験例では、ポリエステル樹脂およびポリエステル樹脂と非相溶な熱可塑性樹脂はペレット形状で供給されているものを用いたが、これに限定されるものではない。 (Cavity-containing PET manufacturing method)
The polyester film substrate in the present invention may be obtained by dispersing a thermoplastic resin incompatible with the polyester resin in the polyester resin in the process of melting and extruding the film raw material. The polyester film substrate in the present invention is also preferably a white polyester film substrate. In the experimental examples of the present invention, the polyester resin and the thermoplastic resin incompatible with the polyester resin were supplied in the form of pellets, but the present invention is not limited to this.
フィルム状に溶融成形するため押出機に投入する原料は、目的の組成に応じてこれらの樹脂をペレット混合して準備する。本発明におけるポリエステルフィルム基材は、偏析を防ぐための好適な方法として、事前に原料樹脂の一部または全部を組み合わせて混練りペレタイズし、マスターバッチペレットとする方法が挙げられる。本発明における実験例ではこの方法を用いたが、本発明の効果を妨げない限り特に限定されるものではない。
The raw materials to be fed into the extruder for melt molding into a film are prepared by mixing these resin pellets according to the desired composition. As a suitable method for preventing the segregation of the polyester film substrate in the present invention, there is a method in which part or all of the raw material resins are previously combined, kneaded and pelletized to form a masterbatch pellet. Although this method was used in the experimental examples of the present invention, it is not particularly limited as long as it does not interfere with the effects of the present invention.
また、これらの非相溶な樹脂の混合系の押出しにおいては、溶融状態で混合して微分散させた後も、樹脂の界面エネルギーを減少させようという働きから再凝集する性質がある。これは未延伸フィルムを押出成形する際に空洞発現剤を粗分散化させ、求める物性発現の妨げとなる現象である。
In addition, in the extrusion of a mixed system of these incompatible resins, even after mixing and finely dispersing them in a molten state, they have the property of reaggregating due to the action of reducing the interfacial energy of the resin. This is a phenomenon in which the void forming agent is coarsely dispersed during the extrusion molding of the unstretched film and hinders the development of desired physical properties.
これを防ぐため、本発明においてフィルムを成形する際には、より混合効果の高い二軸押出機を用いて、空洞発現剤をあらかじめ微分散させておくことが好ましい。また、これが困難な場合には、補助的な手段として、押出機から静的混合器を介して、原料樹脂をフィードブロックまたはダイスに供給することも好ましい。ここで用いる静的混合器としては、スタティックミキサーやオリフィス等を用いることができる。ただし、これらの方法を採用した場合には、メルトライン中で熱劣化した樹脂を滞留させないようにすることが好ましい。
In order to prevent this, when forming the film in the present invention, it is preferable to finely disperse the cavity forming agent in advance using a twin-screw extruder with a higher mixing effect. Moreover, when this is difficult, as an auxiliary means, it is also preferable to feed the starting resin from the extruder through a static mixer to a feed block or a die. As the static mixer used here, a static mixer, an orifice, or the like can be used. However, when these methods are employed, it is preferable not to allow the heat-degraded resin to stagnate in the melt line.
なお、ポリエステル樹脂中で一旦微粒子状に分散したポリエステルに非相溶な熱可塑性樹脂は、低せん断の溶融状態下で、非相溶な樹脂の再凝集が時間とともに進行する傾向があるので、押出機からダイスに至るメルトライン中の滞留時間を減少させることが根本的な解決方法である。本発明において、メルトライン中での滞留時間を30分以下とすることが好ましく、15分以下とすることがより好ましい。
In addition, the thermoplastic resin that is incompatible with the polyester once dispersed in the form of fine particles in the polyester resin tends to reaggregate with time under a low-shear molten state, so extrusion A fundamental solution is to reduce the residence time in the melt line from the machine to the die. In the present invention, the residence time in the melt line is preferably 30 minutes or less, more preferably 15 minutes or less.
上記の様にして得た未延伸フィルムを延伸、配向処理する条件は、フィルムの物性と密接に関係する。以下では、最も一般的な逐次二軸延伸方法、特に未延伸フィルムを長手方向次いで幅方向に延伸する方法を例にとり、延伸、配向条件を説明する。
The conditions for stretching and orienting the unstretched film obtained as described above are closely related to the physical properties of the film. Hereinafter, the stretching and orientation conditions will be described by taking as an example the most common sequential biaxial stretching method, particularly a method in which an unstretched film is stretched in the longitudinal direction and then in the width direction.
縦延伸工程では、80~120℃に加熱したロールで長手方向に2.5~5.0倍に延伸して、一軸延伸フィルムを得る。熱手段としては、加熱ロールを用いる方法でも非接触の加熱方法を用いる方法でもよく、それらを併用してもよい。次いで一軸延伸フィルムをテンターに導入し、幅方向に(Tm-10℃)以下の温度で2.5~5倍に延伸する。但し、Tmはポリエステルの融点を意味する。
In the longitudinal stretching step, the film is stretched 2.5 to 5.0 times in the longitudinal direction with rolls heated to 80 to 120°C to obtain a uniaxially stretched film. As a heating means, a method using a heating roll or a method using a non-contact heating method may be used, or they may be used in combination. Then, the uniaxially stretched film is introduced into a tenter and stretched 2.5 to 5 times in the width direction at a temperature of (Tm-10°C) or less. However, Tm means the melting point of polyester.
また、上記の二軸延伸フィルムに対し、必要に応じて熱処理を施す。熱処理はテンター中で行うのが好ましく、(Tm-60℃)~Tmの範囲で行うのが好ましい。
In addition, the above biaxially stretched film is subjected to heat treatment as necessary. The heat treatment is preferably carried out in a tenter, preferably in the range of (Tm-60°C) to Tm.
(リサイクルポリエステル原料を使用する場合の準備)
本発明におけるポリエステル系樹脂には、ペットボトルからリサイクルされたポリエステル系樹脂が含まれていてもよい。ペットボトルに使用されているポリエステルにはボトル成型性や外観を良好にするため、結晶性の制御が行われており、その結果、ポリエステル樹脂中の全エステル構成単位に対して0.5モル%以上10.0モル%以下のイソフタル酸成分とエチレングリコールやジエチレングリコールに代表される任意のジオール成分に由来するエステル構成単位を含有しているものが使用されることがある。また、液相重合の後、さらに固相重合を行い、極限粘度を上げたポリエステルが用いられていることがある。ペットボトルからリサイクルされたポリエステル系樹脂ペレットは、通常はペットボトルを洗浄、粉砕し、加熱溶融して再ペレット化したものであるが、さらに固相重合して極限粘度を高めたものを使用しても構わない。ペットボトルからリサイクルされたポリエステル系樹脂の極限粘度は、0.60~0.75dl/gの範囲が好ましい。極限粘度が0.60dl/g以上であると、得られたフィルムが破断し難くなり、フィルム製造を安定的に操業しやすく好ましい。一方、極限粘度が0.75dl/g以下であると、溶融流体の濾圧上昇が大きくなり過ぎることなく、フィルム製造を安定的に操業し易く好ましい。一般的にポリエチレンテレフタレート樹脂を固相重合すると樹脂中に含まれるオリゴマー量、中でも含有量が最も多いPET環状3量体は、液相重合したものに比べて少ないものになる。ペットボトルからなるリサイクルされたポリエステル系樹脂に含まれる環状3量体オリゴマーの上限は好ましくは0.7質量%であり、より好ましくは0.5質量%であり、より好ましくは0.4質量%である。 (Preparation when using recycled polyester raw materials)
The polyester-based resin in the present invention may contain a polyester-based resin recycled from PET bottles. Crystallinity is controlled for the polyester used in PET bottles in order to improve bottle moldability and appearance. In some cases, those containing 10.0 mol % or less of an isophthalic acid component and an ester constitutional unit derived from an arbitrary diol component represented by ethylene glycol or diethylene glycol are used. In some cases, a polyester obtained by further performing solid-phase polymerization after liquid-phase polymerization to increase the intrinsic viscosity is used. Polyester-based resin pellets recycled from PET bottles are usually made by washing, pulverizing, heating and melting the PET bottles and re-pelletizing them. I don't mind. The intrinsic viscosity of the polyester resin recycled from PET bottles is preferably in the range of 0.60 to 0.75 dl/g. When the intrinsic viscosity is 0.60 dl/g or more, the resulting film is less likely to break, and film production can be stably operated, which is preferable. On the other hand, when the intrinsic viscosity is 0.75 dl/g or less, the filtration pressure of the molten fluid does not increase too much, and the film production can be stably operated, which is preferable. In general, when a polyethylene terephthalate resin is polymerized in a solid phase, the amount of oligomers contained in the resin, especially the PET cyclic trimer, which is the most abundant, is smaller than that in a liquid phase polymerized product. The upper limit of the cyclic trimer oligomer contained in the recycled polyester resin made from PET bottles is preferably 0.7% by mass, more preferably 0.5% by mass, and more preferably 0.4% by mass. is.
本発明におけるポリエステル系樹脂には、ペットボトルからリサイクルされたポリエステル系樹脂が含まれていてもよい。ペットボトルに使用されているポリエステルにはボトル成型性や外観を良好にするため、結晶性の制御が行われており、その結果、ポリエステル樹脂中の全エステル構成単位に対して0.5モル%以上10.0モル%以下のイソフタル酸成分とエチレングリコールやジエチレングリコールに代表される任意のジオール成分に由来するエステル構成単位を含有しているものが使用されることがある。また、液相重合の後、さらに固相重合を行い、極限粘度を上げたポリエステルが用いられていることがある。ペットボトルからリサイクルされたポリエステル系樹脂ペレットは、通常はペットボトルを洗浄、粉砕し、加熱溶融して再ペレット化したものであるが、さらに固相重合して極限粘度を高めたものを使用しても構わない。ペットボトルからリサイクルされたポリエステル系樹脂の極限粘度は、0.60~0.75dl/gの範囲が好ましい。極限粘度が0.60dl/g以上であると、得られたフィルムが破断し難くなり、フィルム製造を安定的に操業しやすく好ましい。一方、極限粘度が0.75dl/g以下であると、溶融流体の濾圧上昇が大きくなり過ぎることなく、フィルム製造を安定的に操業し易く好ましい。一般的にポリエチレンテレフタレート樹脂を固相重合すると樹脂中に含まれるオリゴマー量、中でも含有量が最も多いPET環状3量体は、液相重合したものに比べて少ないものになる。ペットボトルからなるリサイクルされたポリエステル系樹脂に含まれる環状3量体オリゴマーの上限は好ましくは0.7質量%であり、より好ましくは0.5質量%であり、より好ましくは0.4質量%である。 (Preparation when using recycled polyester raw materials)
The polyester-based resin in the present invention may contain a polyester-based resin recycled from PET bottles. Crystallinity is controlled for the polyester used in PET bottles in order to improve bottle moldability and appearance. In some cases, those containing 10.0 mol % or less of an isophthalic acid component and an ester constitutional unit derived from an arbitrary diol component represented by ethylene glycol or diethylene glycol are used. In some cases, a polyester obtained by further performing solid-phase polymerization after liquid-phase polymerization to increase the intrinsic viscosity is used. Polyester-based resin pellets recycled from PET bottles are usually made by washing, pulverizing, heating and melting the PET bottles and re-pelletizing them. I don't mind. The intrinsic viscosity of the polyester resin recycled from PET bottles is preferably in the range of 0.60 to 0.75 dl/g. When the intrinsic viscosity is 0.60 dl/g or more, the resulting film is less likely to break, and film production can be stably operated, which is preferable. On the other hand, when the intrinsic viscosity is 0.75 dl/g or less, the filtration pressure of the molten fluid does not increase too much, and the film production can be stably operated, which is preferable. In general, when a polyethylene terephthalate resin is polymerized in a solid phase, the amount of oligomers contained in the resin, especially the PET cyclic trimer, which is the most abundant, is smaller than that in a liquid phase polymerized product. The upper limit of the cyclic trimer oligomer contained in the recycled polyester resin made from PET bottles is preferably 0.7% by mass, more preferably 0.5% by mass, and more preferably 0.4% by mass. is.
空洞含有ポリエステル系フィルムに対するペットボトルからリサイクルされたポリエステル樹脂の含有率の下限は好ましくは25質量%であり、より好ましくは30質量%であり、さらに好ましくは50質量%である。25質量%以上であると、空洞含有ポリエステル系フィルムに含まれるオリゴマーが少なくなり、オリゴマーの析出を抑制することができるので好ましい。さらにリサイクル樹脂の活用の面においては、含有率が多いことは、環境負荷低減への貢献の点で好ましい。ペットボトルからリサイクルされたポリエステル樹脂の含有率の上限は好ましくは90質量%であり、より好ましくは85質量%である。
The lower limit of the content of polyester resin recycled from PET bottles to the void-containing polyester film is preferably 25% by mass, more preferably 30% by mass, and even more preferably 50% by mass. When it is 25% by mass or more, the amount of oligomer contained in the void-containing polyester-based film is reduced, and precipitation of the oligomer can be suppressed, which is preferable. Furthermore, in terms of utilization of recycled resin, a high content is preferable from the viewpoint of contributing to reduction of environmental load. The upper limit of the content of polyester resin recycled from PET bottles is preferably 90% by mass, more preferably 85% by mass.
易接着性塗布層はフィルムの製造後、もしくは製造工程において設けることができる。特に、生産性の点からフィルム製造工程の任意の段階、すなわち未延伸あるいは一軸延伸後のPETフィルムの少なくとも片面に、塗布液を塗布し、易接着性塗布層を形成することが好ましい。
The easily adhesive coating layer can be provided after the film is manufactured or during the manufacturing process. In particular, from the viewpoint of productivity, it is preferable to apply a coating liquid to at least one side of an unstretched or uniaxially stretched PET film to form an easily adhesive coating layer at any stage of the film manufacturing process.
この塗布液をPETフィルムに塗布するための方法は、公知の任意の方法を用いることができる。例えば、リバースロールコート法、グラビアコート法、キスコート法、ダイコーター法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、ワイヤーバーコート法、パイプドクター法、含浸コート法、カーテンコート法、などが挙げられる。これらの方法を単独で、あるいは組み合わせて塗工することができる。
Any known method can be used to apply this coating liquid to the PET film. For example, reverse roll coating method, gravure coating method, kiss coating method, die coater method, roll brush method, spray coating method, air knife coating method, wire bar coating method, pipe doctor method, impregnation coating method, curtain coating method, etc. be done. These methods can be applied singly or in combination.
塗布後の乾燥条件はついては、易接着性塗布層表面にカチオン系帯電防止剤成分をブリードアウトさせ、かつESCAによる表面元素分布測定に基づく特性値が好適な関係を満たすためには、80℃~150℃、さらに好ましくは90℃~140℃である。特に好ましくは100℃~130℃の範囲が好ましい。ただし、乾燥時間を長くすることにより、比較的低い温度でも、易接着性塗布層表面にカチオン系帯電防止剤成分をブリードアウトさせることが可能であり、かつESCAによる表面元素分布測定に基づく特性値が好適な関係を満たす場合があるため、上記の条件に限らない。
As for the drying conditions after coating, the cationic antistatic agent component bleeds out on the surface of the easily adhesive coating layer, and the characteristic values based on the surface element distribution measurement by ESCA satisfy a suitable relationship. 150°C, more preferably 90°C to 140°C. A range of 100° C. to 130° C. is particularly preferred. However, by lengthening the drying time, it is possible to bleed out the cationic antistatic agent component to the surface of the easy-adhesive coating layer even at relatively low temperatures. satisfies a suitable relationship, so the above conditions are not limited.
本発明において易接着性塗布層の厚みは、50~900nmの範囲が好ましく、70~800の範囲がより好ましく、100~600nmの範囲がさらに好ましく、200~500nmの範囲が特に好ましい。易接着性塗布層の厚みが厚くなることで、易接着性塗布層体積あたりに介在するカチオン性帯電防止剤成分の量が増える。つまり、それらが易接着性塗布層表面にブリードアウトすることで易接着性塗布層表面には多くのカチオン性帯電防止剤成分が存在することになる。一方で、易接着性塗布層の厚みが薄くなることで、易接着性塗布層体積あたりに介在するカチオン性帯電防止剤成分の量が減少する。つまり、易接着性塗布層表面には存在するカチオン性帯電防止剤成分も少なくなる。そのため、前記範囲に易接着性塗布層の厚みを制御することで、ESCAによる表面元素分布測定にカチオン系帯電防止剤由来の窒素元素比率やポリウレタン樹脂由来の窒素元素比率/カチオン系帯電防止剤由来の窒素元素比率を好適な範囲に制御することができる。
In the present invention, the thickness of the easily adhesive coating layer is preferably in the range of 50-900 nm, more preferably in the range of 70-800 nm, still more preferably in the range of 100-600 nm, and particularly preferably in the range of 200-500 nm. As the thickness of the easy-adhesion coating layer increases, the amount of the cationic antistatic agent component present per volume of the easy-adhesion coating layer increases. In other words, when they bleed out to the surface of the easy-adhesion coating layer, a large amount of the cationic antistatic agent component is present on the surface of the easy-adhesion coating layer. On the other hand, since the thickness of the easily adhesive coating layer is reduced, the amount of the intervening cationic antistatic agent component per volume of the easily adhesive coating layer is reduced. In other words, the cationic antistatic agent component present on the surface of the easy-adhesive coating layer is reduced. Therefore, by controlling the thickness of the easy-adhesive coating layer within the above range, the nitrogen element ratio derived from the cationic antistatic agent and the nitrogen element ratio derived from the polyurethane resin / derived from the cationic antistatic agent can be obtained by measuring the surface element distribution by ESCA can be controlled within a suitable range.
(UV硬化型インキ)
本発明におけるUV硬化型インキとは、紫外線光で硬化するインキの総称である。組成としては顔料( 染料) 、オリゴマーおよびモノマー、光重合開始剤および促進剤、補助剤等を含んでなるインキである。オリゴマーおよびモノマーは本成分中で流動成分として働き、被印刷体に展着された後、紫外線ランプで光重合開始剤から発生するラジカルにより、硬化するものである。オリゴマーおよびモノマー種の含有する割合については、後述する印刷方式によって異なる。基本的には、粘度の調整目的以外で溶剤を含まないし、含んだとしても多くて10質量%程度であることが好ましい。 (UV curable ink)
The UV curable ink in the present invention is a general term for inks that are cured by ultraviolet light. The composition of the ink includes pigments (dyes), oligomers and monomers, photopolymerization initiators and accelerators, auxiliary agents, and the like. Oligomers and monomers act as fluid components in this component, and after being spread on a printing material, are cured by radicals generated from a photopolymerization initiator by an ultraviolet lamp. The content ratio of oligomers and monomer species varies depending on the printing method described later. Basically, it does not contain a solvent except for the purpose of adjusting the viscosity, and even if it contains a solvent, it is preferably about 10% by mass at most.
本発明におけるUV硬化型インキとは、紫外線光で硬化するインキの総称である。組成としては顔料( 染料) 、オリゴマーおよびモノマー、光重合開始剤および促進剤、補助剤等を含んでなるインキである。オリゴマーおよびモノマーは本成分中で流動成分として働き、被印刷体に展着された後、紫外線ランプで光重合開始剤から発生するラジカルにより、硬化するものである。オリゴマーおよびモノマー種の含有する割合については、後述する印刷方式によって異なる。基本的には、粘度の調整目的以外で溶剤を含まないし、含んだとしても多くて10質量%程度であることが好ましい。 (UV curable ink)
The UV curable ink in the present invention is a general term for inks that are cured by ultraviolet light. The composition of the ink includes pigments (dyes), oligomers and monomers, photopolymerization initiators and accelerators, auxiliary agents, and the like. Oligomers and monomers act as fluid components in this component, and after being spread on a printing material, are cured by radicals generated from a photopolymerization initiator by an ultraviolet lamp. The content ratio of oligomers and monomer species varies depending on the printing method described later. Basically, it does not contain a solvent except for the purpose of adjusting the viscosity, and even if it contains a solvent, it is preferably about 10% by mass at most.
(溶剤型インキ)
本発明における溶剤型インキとは、蒸発乾燥で硬化するインキの総称である。組成としては顔料( 染料) 、樹脂分、希釈溶剤、補助剤等を含んでなるインキである。印刷後に溶剤が急速に蒸発することによって,被印刷面に樹脂分や顔料分が残って固着するインキであり、乾燥速度はきわめて速いため,高速・多量印刷に適している。 (Solvent ink)
The solvent-based ink in the present invention is a general term for inks that are cured by evaporation drying. The composition of the ink is a pigment (dye), a resin component, a diluting solvent, an auxiliary agent, and the like. After printing, the solvent evaporates quickly, leaving resin and pigment on the surface to be printed, and the ink dries very quickly, making it suitable for high-speed, high-volume printing.
本発明における溶剤型インキとは、蒸発乾燥で硬化するインキの総称である。組成としては顔料( 染料) 、樹脂分、希釈溶剤、補助剤等を含んでなるインキである。印刷後に溶剤が急速に蒸発することによって,被印刷面に樹脂分や顔料分が残って固着するインキであり、乾燥速度はきわめて速いため,高速・多量印刷に適している。 (Solvent ink)
The solvent-based ink in the present invention is a general term for inks that are cured by evaporation drying. The composition of the ink is a pigment (dye), a resin component, a diluting solvent, an auxiliary agent, and the like. After printing, the solvent evaporates quickly, leaving resin and pigment on the surface to be printed, and the ink dries very quickly, making it suitable for high-speed, high-volume printing.
(酸化重合型インキ)
本発明における酸化重合型インキとは、空気中の酸素によって重合・硬化性のある乾性油を主成分とするもので、他に顔料(染料) 、重合促進剤、補助剤等を含んでなる。乾性油が流動成分として働き、印刷方式に応じて、粘度の調整がなされる。最近は、紫外線硬化成分と乾性油の両方を含む複合タイプもあるなお、上記に記載する溶剤とは、主に有機溶剤のことを示し、炭化水素類であるヘキサン、ヘプタン、エステル類である酢酸チル、酢酸エチル、ケトン類であるアセトン、MEK 等があり、これら単独もしくはこれらの混合物、アルコール類との混合物が挙げられる。重合・硬化性のあるモノマーやオリゴマー、油分は有機溶剤に含まれない。これらを用いる印刷方法としては、フレキソ印刷、スクリーン印刷、オフセット印刷がある。後者ほどインキの粘度は高く設定される。 (Oxidative polymerization type ink)
The oxidative polymerization type ink in the present invention is mainly composed of a drying oil that is polymerized and hardened by oxygen in the air, and also contains a pigment (dye), a polymerization accelerator, an auxiliary agent, and the like. The drying oil acts as a fluid component, and the viscosity is adjusted according to the printing method. Recently, there is also a composite type containing both an ultraviolet curing component and a drying oil. Chill, ethyl acetate, ketones such as acetone, MEK, and the like, which may be used alone or in mixtures thereof and mixtures with alcohols. Organic solvents do not contain polymerizable/curable monomers, oligomers, or oils. Printing methods using these include flexographic printing, screen printing, and offset printing. The viscosity of the ink is set higher for the latter.
本発明における酸化重合型インキとは、空気中の酸素によって重合・硬化性のある乾性油を主成分とするもので、他に顔料(染料) 、重合促進剤、補助剤等を含んでなる。乾性油が流動成分として働き、印刷方式に応じて、粘度の調整がなされる。最近は、紫外線硬化成分と乾性油の両方を含む複合タイプもあるなお、上記に記載する溶剤とは、主に有機溶剤のことを示し、炭化水素類であるヘキサン、ヘプタン、エステル類である酢酸チル、酢酸エチル、ケトン類であるアセトン、MEK 等があり、これら単独もしくはこれらの混合物、アルコール類との混合物が挙げられる。重合・硬化性のあるモノマーやオリゴマー、油分は有機溶剤に含まれない。これらを用いる印刷方法としては、フレキソ印刷、スクリーン印刷、オフセット印刷がある。後者ほどインキの粘度は高く設定される。 (Oxidative polymerization type ink)
The oxidative polymerization type ink in the present invention is mainly composed of a drying oil that is polymerized and hardened by oxygen in the air, and also contains a pigment (dye), a polymerization accelerator, an auxiliary agent, and the like. The drying oil acts as a fluid component, and the viscosity is adjusted according to the printing method. Recently, there is also a composite type containing both an ultraviolet curing component and a drying oil. Chill, ethyl acetate, ketones such as acetone, MEK, and the like, which may be used alone or in mixtures thereof and mixtures with alcohols. Organic solvents do not contain polymerizable/curable monomers, oligomers, or oils. Printing methods using these include flexographic printing, screen printing, and offset printing. The viscosity of the ink is set higher for the latter.
(熱転写インキ)
本発明における熱転写インキとは、熱溶融性顔料インキであり、インキリボンに塗布されたインキを熱で溶かして用紙に転写して印刷する熱転写方式に用いられる。組成としては顔料・染料などの着色剤,ワックス・熱可塑性樹脂のバインダ,柔軟剤・分散剤などの各種添加剤等を含んでなるインキである。熱転写方式に用いられるインキとしては、レジンタイプやワックスタイプが用いられる。中でもレジンタイプは耐候性に優れることから好適に用いられる。用途はワードプロセッサのモノクロ文書出力用,テープライタ,バーコードプリンタなどにつかわれている。また,カラーリボンを使用することによりカラープリンタ,ビデオプリンタにも一部使用されている。 (thermal transfer ink)
The thermal transfer ink in the present invention is a hot-melt pigment ink, and is used in a thermal transfer method in which ink applied to an ink ribbon is melted by heat and transferred to paper for printing. As for the composition, the ink contains coloring agents such as pigments and dyes, binders such as waxes and thermoplastic resins, and various additives such as softeners and dispersants. Resin type or wax type ink is used for the thermal transfer method. Among them, the resin type is preferably used because of its excellent weather resistance. It is used for monochrome document output of word processors, tape writers, bar code printers, etc. It is also used in some color printers and video printers by using color ribbons.
本発明における熱転写インキとは、熱溶融性顔料インキであり、インキリボンに塗布されたインキを熱で溶かして用紙に転写して印刷する熱転写方式に用いられる。組成としては顔料・染料などの着色剤,ワックス・熱可塑性樹脂のバインダ,柔軟剤・分散剤などの各種添加剤等を含んでなるインキである。熱転写方式に用いられるインキとしては、レジンタイプやワックスタイプが用いられる。中でもレジンタイプは耐候性に優れることから好適に用いられる。用途はワードプロセッサのモノクロ文書出力用,テープライタ,バーコードプリンタなどにつかわれている。また,カラーリボンを使用することによりカラープリンタ,ビデオプリンタにも一部使用されている。 (thermal transfer ink)
The thermal transfer ink in the present invention is a hot-melt pigment ink, and is used in a thermal transfer method in which ink applied to an ink ribbon is melted by heat and transferred to paper for printing. As for the composition, the ink contains coloring agents such as pigments and dyes, binders such as waxes and thermoplastic resins, and various additives such as softeners and dispersants. Resin type or wax type ink is used for the thermal transfer method. Among them, the resin type is preferably used because of its excellent weather resistance. It is used for monochrome document output of word processors, tape writers, bar code printers, etc. It is also used in some color printers and video printers by using color ribbons.
(LBPトナー)
本発明におけるLBPトナーとはレーザープリンターやコピー機で使われる着色のための粉体であり、帯電性を持つ微粒子(高分子樹脂)、ワックス、顔料等を配合したものである。カラー印刷の場合、青緑・赤紫・黄・黒の4色を用いる。LBPとはレーザー光でドラムを帯電させ、静電気でトナーを付着させる方式のページプリンタのことである。 (LBP toner)
The LBP toner in the present invention is a powder for coloring used in laser printers and copiers, and is a mixture of charged fine particles (polymer resin), wax, pigment, and the like. For color printing, four colors of blue-green, red-purple, yellow, and black are used. LBP is a page printer that charges a drum with laser light and uses static electricity to adhere toner.
本発明におけるLBPトナーとはレーザープリンターやコピー機で使われる着色のための粉体であり、帯電性を持つ微粒子(高分子樹脂)、ワックス、顔料等を配合したものである。カラー印刷の場合、青緑・赤紫・黄・黒の4色を用いる。LBPとはレーザー光でドラムを帯電させ、静電気でトナーを付着させる方式のページプリンタのことである。 (LBP toner)
The LBP toner in the present invention is a powder for coloring used in laser printers and copiers, and is a mixture of charged fine particles (polymer resin), wax, pigment, and the like. For color printing, four colors of blue-green, red-purple, yellow, and black are used. LBP is a page printer that charges a drum with laser light and uses static electricity to adhere toner.
以下に本発明で用いた評価方法について説明する。
(1)表面領域の窒素元素(N及びN+)比率の測定
表面組成はESCAにて測定した。装置にはK-Alpha+ (Thermo Fisher Scientific社製)を用いた。測定条件の詳細は以下に示した。なお、解析の際、バックグラウンドの除去はshirley法にて行った。また、表面組成比は3箇所以上の測定結果の平均値とし、N(N+等イオン化された窒素元素)、N(C-N等イオン化されていない窒素元素)はN1sスペクトルをピーク分離することにより算出した。ここでN(N+等イオン化された窒素元素)はN1sスペクトルにおける402eV付近のピーク、N(C-N等イオン化されていない窒素元素)は400eV付近のピークのことである。
・測定条件
励起X線 : モノクロ化Al Kα線
X線出力: 12 kV、6mA
光電子脱出角度 : 90 °
スポットサイズ:400μmφ
パスエネルギー:50eV
ステップ : 0.1eV
図1は、実験例1の易接着性塗布層を有した基材における表面領域のN1sスペクトルの解析結果を示すグラフである。細い実線はN1sスペクトルの実測データを表している。得られた実測スペクトルのピークを複数のピークに分離し、各ピーク位置及び形状から各ピークに対応する結合種を同定した。さらに各結合種由来のピークでカーブフィッティングを実施し、ピーク面積を算出した。N(N+等イオン化された窒素元素)のピーク面積をA(at%)とし、N(C-N等イオン化されていない窒素元素)のピーク面積をB(at%)とした。 Evaluation methods used in the present invention are described below.
(1) Measurement of Nitrogen Element (N and N + ) Ratio in Surface Region The surface composition was measured by ESCA. K-Alpha + (manufactured by Thermo Fisher Scientific) was used as an apparatus. Details of the measurement conditions are shown below. In the analysis, the background was removed by the Shirley method. In addition, the surface composition ratio is the average value of the measurement results of 3 or more locations, and N (N + isoionized nitrogen element) and N (non-ionized nitrogen element such as CN) are calculated by peak separation of the N1s spectrum. did. Here, N (N + isoionized nitrogen element) is the peak around 402 eV in the N1s spectrum, and N (Non-ionized nitrogen element such as CN) is the peak around 400 eV.
・Measurement conditions Excitation X-rays: Monochrome Al Kα rays X-ray output: 12 kV, 6 mA
Photoelectron escape angle: 90 °
Spot size: 400μmφ
Pass energy: 50eV
Step : 0.1eV
FIG. 1 is a graph showing analysis results of the N1s spectrum of the surface region of the substrate having the easily adhesive coating layer of Experimental Example 1. FIG. The thin solid line represents the measured data of the N1s spectrum. The peaks of the obtained measured spectrum were separated into a plurality of peaks, and the binding species corresponding to each peak were identified from the position and shape of each peak. Further, curve fitting was performed on the peaks derived from each binding species to calculate the peak area. The peak area of N (N + equiionized nitrogen element) was defined as A (at%), and the peak area of N (nonionized nitrogen element such as CN) was defined as B (at%).
(1)表面領域の窒素元素(N及びN+)比率の測定
表面組成はESCAにて測定した。装置にはK-Alpha+ (Thermo Fisher Scientific社製)を用いた。測定条件の詳細は以下に示した。なお、解析の際、バックグラウンドの除去はshirley法にて行った。また、表面組成比は3箇所以上の測定結果の平均値とし、N(N+等イオン化された窒素元素)、N(C-N等イオン化されていない窒素元素)はN1sスペクトルをピーク分離することにより算出した。ここでN(N+等イオン化された窒素元素)はN1sスペクトルにおける402eV付近のピーク、N(C-N等イオン化されていない窒素元素)は400eV付近のピークのことである。
・測定条件
励起X線 : モノクロ化Al Kα線
X線出力: 12 kV、6mA
光電子脱出角度 : 90 °
スポットサイズ:400μmφ
パスエネルギー:50eV
ステップ : 0.1eV
図1は、実験例1の易接着性塗布層を有した基材における表面領域のN1sスペクトルの解析結果を示すグラフである。細い実線はN1sスペクトルの実測データを表している。得られた実測スペクトルのピークを複数のピークに分離し、各ピーク位置及び形状から各ピークに対応する結合種を同定した。さらに各結合種由来のピークでカーブフィッティングを実施し、ピーク面積を算出した。N(N+等イオン化された窒素元素)のピーク面積をA(at%)とし、N(C-N等イオン化されていない窒素元素)のピーク面積をB(at%)とした。 Evaluation methods used in the present invention are described below.
(1) Measurement of Nitrogen Element (N and N + ) Ratio in Surface Region The surface composition was measured by ESCA. K-Alpha + (manufactured by Thermo Fisher Scientific) was used as an apparatus. Details of the measurement conditions are shown below. In the analysis, the background was removed by the Shirley method. In addition, the surface composition ratio is the average value of the measurement results of 3 or more locations, and N (N + isoionized nitrogen element) and N (non-ionized nitrogen element such as CN) are calculated by peak separation of the N1s spectrum. did. Here, N (N + isoionized nitrogen element) is the peak around 402 eV in the N1s spectrum, and N (Non-ionized nitrogen element such as CN) is the peak around 400 eV.
・Measurement conditions Excitation X-rays: Monochrome Al Kα rays X-ray output: 12 kV, 6 mA
Photoelectron escape angle: 90 °
Spot size: 400μmφ
Pass energy: 50eV
Step : 0.1eV
FIG. 1 is a graph showing analysis results of the N1s spectrum of the surface region of the substrate having the easily adhesive coating layer of Experimental Example 1. FIG. The thin solid line represents the measured data of the N1s spectrum. The peaks of the obtained measured spectrum were separated into a plurality of peaks, and the binding species corresponding to each peak were identified from the position and shape of each peak. Further, curve fitting was performed on the peaks derived from each binding species to calculate the peak area. The peak area of N (N + equiionized nitrogen element) was defined as A (at%), and the peak area of N (nonionized nitrogen element such as CN) was defined as B (at%).
(2)水に対する接触角測定
易接着性塗布層を有した基材を23℃、65%RHの雰囲気下で24時間放置後、その雰囲気下で接触角計(協和界面科学社製、CA-X)を用い、同様の条件下に保管しておいた蒸留水を用いて、サンプルの被覆層表面と水との接触角を測定した。測定は10点行い、それらの平均値を接触角のデータとした。 (2) Measurement of contact angle with water After leaving the base material having an easy-adhesive coating layer in an atmosphere of 23 ° C. and 65% RH for 24 hours, a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd., CA- X), using distilled water stored under the same conditions, the contact angle between the coating layer surface of the sample and water was measured. The measurement was performed at 10 points, and the average value thereof was used as contact angle data.
易接着性塗布層を有した基材を23℃、65%RHの雰囲気下で24時間放置後、その雰囲気下で接触角計(協和界面科学社製、CA-X)を用い、同様の条件下に保管しておいた蒸留水を用いて、サンプルの被覆層表面と水との接触角を測定した。測定は10点行い、それらの平均値を接触角のデータとした。 (2) Measurement of contact angle with water After leaving the base material having an easy-adhesive coating layer in an atmosphere of 23 ° C. and 65% RH for 24 hours, a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd., CA- X), using distilled water stored under the same conditions, the contact angle between the coating layer surface of the sample and water was measured. The measurement was performed at 10 points, and the average value thereof was used as contact angle data.
(3)易接着性塗布層の表面固有抵抗値
易接着性塗布層を有した基材を23 ℃ 、65% R H の雰囲気下で24時間放置後、その雰囲気下で表面抵抗値測定装置(三菱油化株式会社製、ハイレスタ-IP) を用い、印加電圧500V にてフィルム表面(被覆層が設けられている場合は、被覆層表面)の表面固有抵抗値(Ω/□) を測定した。
1×1012Ω/□ 未満の場合を特に良好:◎
1×1012Ω/□以上~1×1013Ω/□ 未満の場合を良好:○、
1×1013Ω/□ 以上の場合:×とした。 (3) Surface specific resistance value of easy-adhesive coating layer After leaving the substrate having the easy-adhesive coating layer in an atmosphere of 23 ° C. and 65% RH for 24 hours, a surface resistance value measuring device ( The surface resistivity (Ω/□) of the film surface (the surface of the coating layer, if provided) was measured at an applied voltage of 500 V using Hiresta-IP manufactured by Mitsubishi Yuka Co., Ltd.
Especially good when less than 1×10 12 Ω/□: ◎
1×10 12 Ω/□ or more to less than 1×10 13 Ω/□ is good: ○,
1×10 13 Ω/□ or more: x.
易接着性塗布層を有した基材を23 ℃ 、65% R H の雰囲気下で24時間放置後、その雰囲気下で表面抵抗値測定装置(三菱油化株式会社製、ハイレスタ-IP) を用い、印加電圧500V にてフィルム表面(被覆層が設けられている場合は、被覆層表面)の表面固有抵抗値(Ω/□) を測定した。
1×1012Ω/□ 未満の場合を特に良好:◎
1×1012Ω/□以上~1×1013Ω/□ 未満の場合を良好:○、
1×1013Ω/□ 以上の場合:×とした。 (3) Surface specific resistance value of easy-adhesive coating layer After leaving the substrate having the easy-adhesive coating layer in an atmosphere of 23 ° C. and 65% RH for 24 hours, a surface resistance value measuring device ( The surface resistivity (Ω/□) of the film surface (the surface of the coating layer, if provided) was measured at an applied voltage of 500 V using Hiresta-IP manufactured by Mitsubishi Yuka Co., Ltd.
Especially good when less than 1×10 12 Ω/□: ◎
1×10 12 Ω/□ or more to less than 1×10 13 Ω/□ is good: ○,
1×10 13 Ω/□ or more: x.
(4)初期密着性
後述の実験例に記載した印刷物の製造後、ニチバン製セロハン粘着テープ(CT405AP-24)を用い、幅24mm、長さ50mmに切り出し、印刷物のインキ層と前記テープの間に空気が混入しないようハンディゴムローラーで完全に付着させた。その後、垂直にセロハン粘着テープを引き剥がして、24mm×50mmの領域において、印刷層の残存した面積を観察し、下記の基準で判断した。本発明においては、4以上を合格とした。
5:印刷層の残存面積が全体の99%以上
4:印刷層の残存面積が全体の90%以上、99%未満
3:印刷層の残存面積が全体の80%以上、90%未満
2:印刷層の残存面積が全体の70%以上、80%未満
1:印刷層の残存面積が全体の60%以上、70%未満 (4) Initial adhesion After producing the printed matter described in the experimental example described later, using Nichiban's cellophane adhesive tape (CT405AP-24), cut it into a width of 24 mm and a length of 50 mm, and between the ink layer of the printed matter and the tape. It was completely adhered with a handy rubber roller so as not to mix air. Thereafter, the adhesive cellophane tape was peeled off vertically, and the remaining area of the printed layer was observed in an area of 24 mm×50 mm, and judged according to the following criteria. In the present invention, 4 or more was regarded as passing.
5: The remaining area of the printed layer is 99% or more of the total 4: The remaining area of the printed layer is 90% or more and less than 99% of the total 3: The remaining area of the printed layer is 80% or more and less than 90% of the total 2: Printing The remaining area of the layer is 70% or more and less than 80% of the total 1: The remaining area of the printed layer is 60% or more and less than 70% of the total
後述の実験例に記載した印刷物の製造後、ニチバン製セロハン粘着テープ(CT405AP-24)を用い、幅24mm、長さ50mmに切り出し、印刷物のインキ層と前記テープの間に空気が混入しないようハンディゴムローラーで完全に付着させた。その後、垂直にセロハン粘着テープを引き剥がして、24mm×50mmの領域において、印刷層の残存した面積を観察し、下記の基準で判断した。本発明においては、4以上を合格とした。
5:印刷層の残存面積が全体の99%以上
4:印刷層の残存面積が全体の90%以上、99%未満
3:印刷層の残存面積が全体の80%以上、90%未満
2:印刷層の残存面積が全体の70%以上、80%未満
1:印刷層の残存面積が全体の60%以上、70%未満 (4) Initial adhesion After producing the printed matter described in the experimental example described later, using Nichiban's cellophane adhesive tape (CT405AP-24), cut it into a width of 24 mm and a length of 50 mm, and between the ink layer of the printed matter and the tape. It was completely adhered with a handy rubber roller so as not to mix air. Thereafter, the adhesive cellophane tape was peeled off vertically, and the remaining area of the printed layer was observed in an area of 24 mm×50 mm, and judged according to the following criteria. In the present invention, 4 or more was regarded as passing.
5: The remaining area of the printed layer is 99% or more of the total 4: The remaining area of the printed layer is 90% or more and less than 99% of the total 3: The remaining area of the printed layer is 80% or more and less than 90% of the total 2: Printing The remaining area of the layer is 70% or more and less than 80% of the total 1: The remaining area of the printed layer is 60% or more and less than 70% of the total
(5)高温高環境保管後の密着性
後述の実験例に記載した印刷物の製造後、温湿度試験槽[NAGANO SCIENCE(株)製「型式:LH44-12P」]の槽内を温度80℃、湿度90%に設定し、前記温湿度条件下に、印刷物を3日間保管した。保管後、印刷物を取出し、常温になるまで静置させた。静置後、ニチバン製セロハン粘着テープ(CT405AP-24)を用い、幅24mm、長さ50mmに切り出し、印刷物のインキ層と前記テープの間に空気が混入しないようハンディゴムローラーで完全に付着させた。その後、垂直にセロハン粘着テープを引き剥がして、24mm×50mmの領域において、印刷層の残存した面積を観察し、下記の基準で判断した。本発明においては、4以上を合格とした。
5:印刷層の残存面積が全体の99%以上
4:印刷層の残存面積が全体の90%以上、99%未満
3:印刷層の残存面積が全体の80%以上、90%未満
2:印刷層の残存面積が全体の70%以上、80%未満
1:印刷層の残存面積が全体の60%以上、70%未満 (5) Adhesion after storage in a high-temperature high-environment The humidity was set to 90%, and the printed material was stored for 3 days under the above temperature and humidity conditions. After storage, the printed material was taken out and allowed to stand until normal temperature was reached. After allowing to stand still, using Nichiban's cellophane adhesive tape (CT405AP-24), it was cut into a width of 24 mm and a length of 50 mm. . Thereafter, the adhesive cellophane tape was peeled off vertically, and the remaining area of the printed layer was observed in an area of 24 mm×50 mm, and judged according to the following criteria. In the present invention, 4 or more was regarded as passing.
5: The remaining area of the printed layer is 99% or more of the total 4: The remaining area of the printed layer is 90% or more and less than 99% of the total 3: The remaining area of the printed layer is 80% or more and less than 90% of the total 2: Printing The remaining area of the layer is 70% or more and less than 80% of the total 1: The remaining area of the printed layer is 60% or more and less than 70% of the total
後述の実験例に記載した印刷物の製造後、温湿度試験槽[NAGANO SCIENCE(株)製「型式:LH44-12P」]の槽内を温度80℃、湿度90%に設定し、前記温湿度条件下に、印刷物を3日間保管した。保管後、印刷物を取出し、常温になるまで静置させた。静置後、ニチバン製セロハン粘着テープ(CT405AP-24)を用い、幅24mm、長さ50mmに切り出し、印刷物のインキ層と前記テープの間に空気が混入しないようハンディゴムローラーで完全に付着させた。その後、垂直にセロハン粘着テープを引き剥がして、24mm×50mmの領域において、印刷層の残存した面積を観察し、下記の基準で判断した。本発明においては、4以上を合格とした。
5:印刷層の残存面積が全体の99%以上
4:印刷層の残存面積が全体の90%以上、99%未満
3:印刷層の残存面積が全体の80%以上、90%未満
2:印刷層の残存面積が全体の70%以上、80%未満
1:印刷層の残存面積が全体の60%以上、70%未満 (5) Adhesion after storage in a high-temperature high-environment The humidity was set to 90%, and the printed material was stored for 3 days under the above temperature and humidity conditions. After storage, the printed material was taken out and allowed to stand until normal temperature was reached. After allowing to stand still, using Nichiban's cellophane adhesive tape (CT405AP-24), it was cut into a width of 24 mm and a length of 50 mm. . Thereafter, the adhesive cellophane tape was peeled off vertically, and the remaining area of the printed layer was observed in an area of 24 mm×50 mm, and judged according to the following criteria. In the present invention, 4 or more was regarded as passing.
5: The remaining area of the printed layer is 99% or more of the total 4: The remaining area of the printed layer is 90% or more and less than 99% of the total 3: The remaining area of the printed layer is 80% or more and less than 90% of the total 2: Printing The remaining area of the layer is 70% or more and less than 80% of the total 1: The remaining area of the printed layer is 60% or more and less than 70% of the total
(7)見かけ密度
フィルムを5.00cm四方の正方形に4枚切り出して試料とした。これを4枚重ねにして、その厚みマイクロメーターを用いて有効数字4桁で10点測定し、重ね厚みの平均値を求めた。この平均値を4で除し、小数第4位の桁を四捨五入し、一枚あたりの平均のフィルム厚み(t:μm)を小数第3位の桁で求めた。また、同試料4枚の質量(w:g)を自動上皿天秤により有効数字4桁まで測定し、下記式により見かけ密度を求めた。なお、見かけ密度は有効数字3桁に丸めた。
見かけ密度(g/cm3)=w×104/(5.00×5.00×t×4) (7) Apparent Density Four 5.00 cm square films were cut out from the film and used as samples. Four sheets of this were stacked, and the thickness was measured using a thickness micrometer at 10 points with four significant digits to determine the average value of the stacked thickness. This average value was divided by 4, rounded off to the fourth decimal place, and the average film thickness per sheet (t: μm) was obtained to the third decimal place. Further, the mass (w:g) of four sheets of the same sample was measured by an automatic top pan balance to four significant digits, and the apparent density was determined by the following formula. Apparent densities were rounded to three significant digits.
Apparent density (g/cm 3 )=w×10 4 /(5.00×5.00×t×4)
フィルムを5.00cm四方の正方形に4枚切り出して試料とした。これを4枚重ねにして、その厚みマイクロメーターを用いて有効数字4桁で10点測定し、重ね厚みの平均値を求めた。この平均値を4で除し、小数第4位の桁を四捨五入し、一枚あたりの平均のフィルム厚み(t:μm)を小数第3位の桁で求めた。また、同試料4枚の質量(w:g)を自動上皿天秤により有効数字4桁まで測定し、下記式により見かけ密度を求めた。なお、見かけ密度は有効数字3桁に丸めた。
見かけ密度(g/cm3)=w×104/(5.00×5.00×t×4) (7) Apparent Density Four 5.00 cm square films were cut out from the film and used as samples. Four sheets of this were stacked, and the thickness was measured using a thickness micrometer at 10 points with four significant digits to determine the average value of the stacked thickness. This average value was divided by 4, rounded off to the fourth decimal place, and the average film thickness per sheet (t: μm) was obtained to the third decimal place. Further, the mass (w:g) of four sheets of the same sample was measured by an automatic top pan balance to four significant digits, and the apparent density was determined by the following formula. Apparent densities were rounded to three significant digits.
Apparent density (g/cm 3 )=w×10 4 /(5.00×5.00×t×4)
(8)易接着性塗布層の樹脂固形分厚み
塗剤の塗布量や塗剤に含まれる全樹脂固形分質量から樹脂固形分厚みを算出した。 (8) Resin Solid Content Thickness of Adhesive Coating Layer The resin solid content thickness was calculated from the coating amount of the coating material and the total resin solid content mass contained in the coating material.
塗剤の塗布量や塗剤に含まれる全樹脂固形分質量から樹脂固形分厚みを算出した。 (8) Resin Solid Content Thickness of Adhesive Coating Layer The resin solid content thickness was calculated from the coating amount of the coating material and the total resin solid content mass contained in the coating material.
(9)b値
JIS-8722に準拠し、色差計(日本電色工業社製、ZE6000)を用いて、反射のカラーb値を測定した。 (9) b value In accordance with JIS-8722, the color b value of reflection was measured using a color difference meter (ZE6000, manufactured by Nippon Denshoku Industries Co., Ltd.).
JIS-8722に準拠し、色差計(日本電色工業社製、ZE6000)を用いて、反射のカラーb値を測定した。 (9) b value In accordance with JIS-8722, the color b value of reflection was measured using a color difference meter (ZE6000, manufactured by Nippon Denshoku Industries Co., Ltd.).
次に、実験例を用いて本発明を詳細に説明するが、本発明は以下の実験例に限定されるものではない。
Next, the present invention will be described in detail using experimental examples, but the present invention is not limited to the following experimental examples.
(窒素元素を有するカチオン系帯電防止剤の合成:A-1)
ジメチルアミノエタノール89 gと炭素数18のステアリン酸285 gを用いて100℃ 、窒素雰囲気下で1 0時間エステル化反応を行い、4級化溶媒としてテトラヒドロフランを加え、対象アミンにジメチル硫酸を規定量投入し、70℃、10時間程度反応させた。反応後、減圧で溶媒を留去した後、イソプロパノールを加えて、所望の固形分濃度に調節して、4級アンモニウム塩を有するカチオン系帯電防止剤のイソプロパノール溶液A-1を得た。 (Synthesis of cationic antistatic agent having nitrogen element: A-1)
Using 89 g of dimethylaminoethanol and 285 g of stearic acid having 18 carbon atoms, an esterification reaction was carried out at 100°C under a nitrogen atmosphere for 10 hours. It was put in and reacted at 70° C. for about 10 hours. After the reaction, the solvent was distilled off under reduced pressure, and isopropanol was added to adjust the solid content to a desired concentration, thereby obtaining an isopropanol solution A-1 of a cationic antistatic agent having a quaternary ammonium salt.
ジメチルアミノエタノール89 gと炭素数18のステアリン酸285 gを用いて100℃ 、窒素雰囲気下で1 0時間エステル化反応を行い、4級化溶媒としてテトラヒドロフランを加え、対象アミンにジメチル硫酸を規定量投入し、70℃、10時間程度反応させた。反応後、減圧で溶媒を留去した後、イソプロパノールを加えて、所望の固形分濃度に調節して、4級アンモニウム塩を有するカチオン系帯電防止剤のイソプロパノール溶液A-1を得た。 (Synthesis of cationic antistatic agent having nitrogen element: A-1)
Using 89 g of dimethylaminoethanol and 285 g of stearic acid having 18 carbon atoms, an esterification reaction was carried out at 100°C under a nitrogen atmosphere for 10 hours. It was put in and reacted at 70° C. for about 10 hours. After the reaction, the solvent was distilled off under reduced pressure, and isopropanol was added to adjust the solid content to a desired concentration, thereby obtaining an isopropanol solution A-1 of a cationic antistatic agent having a quaternary ammonium salt.
(窒素元素を有するカチオン系帯電防止剤の合成A-2)
N,Nジメチル-1,3-プロパンジアミン116 gとステアリン酸285 gを用いて、そのたA-1と同様の処理を行い、4級アンモニウム塩を有するカチオン系帯電防止剤のイソプロパノール溶液A-2を得た。 (Synthesis of cationic antistatic agent having nitrogen element A-2)
Using 116 g of N,N dimethyl-1,3-propanediamine and 285 g of stearic acid, the same treatment as in A-1 was carried out to obtain an isopropanol solution A- of a cationic antistatic agent having a quaternary ammonium salt. got 2.
N,Nジメチル-1,3-プロパンジアミン116 gとステアリン酸285 gを用いて、そのたA-1と同様の処理を行い、4級アンモニウム塩を有するカチオン系帯電防止剤のイソプロパノール溶液A-2を得た。 (Synthesis of cationic antistatic agent having nitrogen element A-2)
Using 116 g of N,N dimethyl-1,3-propanediamine and 285 g of stearic acid, the same treatment as in A-1 was carried out to obtain an isopropanol solution A- of a cationic antistatic agent having a quaternary ammonium salt. got 2.
(ポリエステル樹脂の重合 B―1)
攪拌機、温度計、および部分還流式冷却器を具備するステンレススチール製オートクレーブに、ジメチルテレフタレート194.2質量部、ジメチルイソフタレート184.5質量部、ジメチル-5-ナトリウムスルホイソフタレート14.8質量部、ジエチレングリコール233.5質量部、エチレングリコール136.6質量部、およびテトラ-n-ブチルチタネート0.2質量部を仕込み、160℃から220℃の温度で4時間かけてエステル交換反応を行なった。次いで255℃まで昇温し、反応系を徐々に減圧した後、30Paの減圧下で1時間30分反応させ、共重合ポリエステル樹脂(B-1)を得た。得られた共重合ポリエステル樹脂(B-1)は、淡黄色透明であった。共重合ポリエステル樹脂(B-1)の還元粘度を測定したところ,0.70dl/gであった。DSCによるガラス転移温度は40℃であった。 (Polymerization of polyester resin B-1)
194.2 parts by weight of dimethyl terephthalate, 184.5 parts by weight of dimethyl isophthalate, 14.8 parts by weight of dimethyl-5-sodium sulfoisophthalate were added to a stainless steel autoclave equipped with an agitator, thermometer, and partial reflux condenser. , 233.5 parts by mass of diethylene glycol, 136.6 parts by mass of ethylene glycol, and 0.2 parts by mass of tetra-n-butyl titanate were charged, and transesterification was carried out at a temperature of 160° C. to 220° C. over 4 hours. Then, the temperature was raised to 255° C., the pressure of the reaction system was gradually reduced, and the reaction was allowed to proceed under a reduced pressure of 30 Pa for 1 hour and 30 minutes to obtain a copolymer polyester resin (B-1). The obtained copolymer polyester resin (B-1) was pale yellow and transparent. The reduced viscosity of the copolymer polyester resin (B-1) was measured and found to be 0.70 dl/g. The glass transition temperature by DSC was 40°C.
攪拌機、温度計、および部分還流式冷却器を具備するステンレススチール製オートクレーブに、ジメチルテレフタレート194.2質量部、ジメチルイソフタレート184.5質量部、ジメチル-5-ナトリウムスルホイソフタレート14.8質量部、ジエチレングリコール233.5質量部、エチレングリコール136.6質量部、およびテトラ-n-ブチルチタネート0.2質量部を仕込み、160℃から220℃の温度で4時間かけてエステル交換反応を行なった。次いで255℃まで昇温し、反応系を徐々に減圧した後、30Paの減圧下で1時間30分反応させ、共重合ポリエステル樹脂(B-1)を得た。得られた共重合ポリエステル樹脂(B-1)は、淡黄色透明であった。共重合ポリエステル樹脂(B-1)の還元粘度を測定したところ,0.70dl/gであった。DSCによるガラス転移温度は40℃であった。 (Polymerization of polyester resin B-1)
194.2 parts by weight of dimethyl terephthalate, 184.5 parts by weight of dimethyl isophthalate, 14.8 parts by weight of dimethyl-5-sodium sulfoisophthalate were added to a stainless steel autoclave equipped with an agitator, thermometer, and partial reflux condenser. , 233.5 parts by mass of diethylene glycol, 136.6 parts by mass of ethylene glycol, and 0.2 parts by mass of tetra-n-butyl titanate were charged, and transesterification was carried out at a temperature of 160° C. to 220° C. over 4 hours. Then, the temperature was raised to 255° C., the pressure of the reaction system was gradually reduced, and the reaction was allowed to proceed under a reduced pressure of 30 Pa for 1 hour and 30 minutes to obtain a copolymer polyester resin (B-1). The obtained copolymer polyester resin (B-1) was pale yellow and transparent. The reduced viscosity of the copolymer polyester resin (B-1) was measured and found to be 0.70 dl/g. The glass transition temperature by DSC was 40°C.
(ポリエステル水分散体の調製 Bw-1)
攪拌機、温度計と還流装置を備えた反応器に、ポリエステル樹脂(B―1)25質量部、エチレングリコールn-ブチルエーテル10質量部を入れ、110℃で加熱、攪拌し樹脂を溶解した。樹脂が完全に溶解した後、水65質量部をポリエステル溶液に攪拌しつつ徐々に添加した。添加後、液を攪拌しつつ室温まで冷却して、固形分30.0質量%の乳白色のポリエステル水分散体(Bw-1)を作製した。 (Preparation of polyester aqueous dispersion Bw-1)
25 parts by mass of polyester resin (B-1) and 10 parts by mass of ethylene glycol n-butyl ether were placed in a reactor equipped with a stirrer, a thermometer and a reflux device, and the mixture was heated at 110° C. and stirred to dissolve the resin. After the resin was completely dissolved, 65 parts by mass of water was slowly added to the polyester solution with stirring. After the addition, the liquid was cooled to room temperature while stirring to prepare a milky white polyester aqueous dispersion (Bw-1) having a solid content of 30.0% by mass.
攪拌機、温度計と還流装置を備えた反応器に、ポリエステル樹脂(B―1)25質量部、エチレングリコールn-ブチルエーテル10質量部を入れ、110℃で加熱、攪拌し樹脂を溶解した。樹脂が完全に溶解した後、水65質量部をポリエステル溶液に攪拌しつつ徐々に添加した。添加後、液を攪拌しつつ室温まで冷却して、固形分30.0質量%の乳白色のポリエステル水分散体(Bw-1)を作製した。 (Preparation of polyester aqueous dispersion Bw-1)
25 parts by mass of polyester resin (B-1) and 10 parts by mass of ethylene glycol n-butyl ether were placed in a reactor equipped with a stirrer, a thermometer and a reflux device, and the mixture was heated at 110° C. and stirred to dissolve the resin. After the resin was completely dissolved, 65 parts by mass of water was slowly added to the polyester solution with stirring. After the addition, the liquid was cooled to room temperature while stirring to prepare a milky white polyester aqueous dispersion (Bw-1) having a solid content of 30.0% by mass.
(ポリエステル樹脂溶液の調製 Bw-2)
ジメチルテレフタレート97質量部、ジメチルイソフタレート93質量部、エチレングリコール68質量部、ジエチレングリコール116質量部、酢酸亜鉛0.1質量部および三酸化アンチモン0.1質量部を反応容器に仕込み、180℃で3時間かけてエステル交換反応を行った。次に、5-ナトリウムスルホイソフタル酸7.1質量部を添加し、240℃で1時間かけてエステル化反応を行った後、250℃で減圧下(1.33~0.027kPa)にて2時間かけて重縮合反応を行い、分子量22000のポリエステル樹脂を得た。このポリエステル樹脂300質量部とブチルセロソルブ140 質量部を160 ℃ で3 時間撹拌し粘稠な溶融液を得、この溶融液に水を徐々に添加し1 時間後に均一な淡白色の固形分25.0質量% のポリエステル樹脂溶液(Bw-2)を調製した。 (Preparation of polyester resin solution Bw-2)
97 parts by mass of dimethyl terephthalate, 93 parts by mass of dimethyl isophthalate, 68 parts by mass of ethylene glycol, 116 parts by mass of diethylene glycol, 0.1 part by mass of zinc acetate and 0.1 part by mass of antimony trioxide were charged into a reaction vessel and heated at 180°C for 3 hours. The transesterification reaction was carried out over a period of time. Next, 7.1 parts by mass of 5-sodium sulfoisophthalic acid was added and an esterification reaction was carried out at 240°C over 1 hour, followed by 2 hours at 250°C under reduced pressure (1.33 to 0.027 kPa). A polycondensation reaction was carried out to obtain a polyester resin having a molecular weight of 22,000. 300 parts by mass of this polyester resin and 140 parts by mass of butyl cellosolve were stirred at 160° C. for 3 hours to obtain a viscous melt, and water was gradually added to the melt. % by weight polyester resin solution (Bw-2) was prepared.
ジメチルテレフタレート97質量部、ジメチルイソフタレート93質量部、エチレングリコール68質量部、ジエチレングリコール116質量部、酢酸亜鉛0.1質量部および三酸化アンチモン0.1質量部を反応容器に仕込み、180℃で3時間かけてエステル交換反応を行った。次に、5-ナトリウムスルホイソフタル酸7.1質量部を添加し、240℃で1時間かけてエステル化反応を行った後、250℃で減圧下(1.33~0.027kPa)にて2時間かけて重縮合反応を行い、分子量22000のポリエステル樹脂を得た。このポリエステル樹脂300質量部とブチルセロソルブ140 質量部を160 ℃ で3 時間撹拌し粘稠な溶融液を得、この溶融液に水を徐々に添加し1 時間後に均一な淡白色の固形分25.0質量% のポリエステル樹脂溶液(Bw-2)を調製した。 (Preparation of polyester resin solution Bw-2)
97 parts by mass of dimethyl terephthalate, 93 parts by mass of dimethyl isophthalate, 68 parts by mass of ethylene glycol, 116 parts by mass of diethylene glycol, 0.1 part by mass of zinc acetate and 0.1 part by mass of antimony trioxide were charged into a reaction vessel and heated at 180°C for 3 hours. The transesterification reaction was carried out over a period of time. Next, 7.1 parts by mass of 5-sodium sulfoisophthalic acid was added and an esterification reaction was carried out at 240°C over 1 hour, followed by 2 hours at 250°C under reduced pressure (1.33 to 0.027 kPa). A polycondensation reaction was carried out to obtain a polyester resin having a molecular weight of 22,000. 300 parts by mass of this polyester resin and 140 parts by mass of butyl cellosolve were stirred at 160° C. for 3 hours to obtain a viscous melt, and water was gradually added to the melt. % by weight polyester resin solution (Bw-2) was prepared.
(ポリカーボネート構造を有するポリウレタン樹脂溶液C-1の調製)
撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、4,4-ジシクロヘキシルメタンジイソシアネート22質量部、数平均分子量700のポリエチレングリコールモノメチルエーテル20質量部、数平均分子量2100のポリヘキサメチレンカーボネートジオール53質量部、ネオペンチルグリコール5質量部、及び溶剤としてアセトン84.00質量部を投入し、窒素雰囲気下、75℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。その後、反応液温度を50℃に下げ、メチルエチルケトオキシム3質量部を滴下した。この反応液を40℃にまで降温した後、ポリウレタンプレポリマー溶液を得た。次に、高速攪拌可能なホモディスパーを備えた反応容器に、水450gを添加して、25℃に調製して、2000min-1で攪拌混合しながら、ポリウレタンプレポリマー溶液を添加して水分散した。その後、減圧下で、アセトンおよび水の一部を除去することにより、固形分35.4質量%の水分散性ポリウレタン樹脂溶液(C-1)を調製した。 (Preparation of Polyurethane Resin Solution C-1 Having a Polycarbonate Structure)
22 parts by weight of 4,4-dicyclohexylmethane diisocyanate and 20 parts by weight of polyethylene glycol monomethyl ether having a number average molecular weight of 700 were added to a four-necked flask equipped with a stirrer, a Dimroth condenser, a nitrogen inlet tube, a silica gel drying tube, and a thermometer. , 53 parts by weight of polyhexamethylene carbonate diol having a number average molecular weight of 2,100, 5 parts by weight of neopentyl glycol, and 84.00 parts by weight of acetone as a solvent were added and stirred at 75° C. for 3 hours under a nitrogen atmosphere to form a reaction solution. It was confirmed that the predetermined amine equivalent weight was reached. After that, the temperature of the reaction liquid was lowered to 50° C., and 3 parts by mass of methyl ethyl ketoxime was added dropwise. After cooling the reaction solution to 40° C., a polyurethane prepolymer solution was obtained. Next, 450 g of water was added to a reaction vessel equipped with a homodisper capable of high-speed stirring, the temperature was adjusted to 25° C., and the polyurethane prepolymer solution was added and dispersed in water while stirring and mixing at 2000 min −1 . . Thereafter, acetone and part of the water were removed under reduced pressure to prepare a water-dispersible polyurethane resin solution (C-1) having a solid content of 35.4% by mass.
撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、4,4-ジシクロヘキシルメタンジイソシアネート22質量部、数平均分子量700のポリエチレングリコールモノメチルエーテル20質量部、数平均分子量2100のポリヘキサメチレンカーボネートジオール53質量部、ネオペンチルグリコール5質量部、及び溶剤としてアセトン84.00質量部を投入し、窒素雰囲気下、75℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。その後、反応液温度を50℃に下げ、メチルエチルケトオキシム3質量部を滴下した。この反応液を40℃にまで降温した後、ポリウレタンプレポリマー溶液を得た。次に、高速攪拌可能なホモディスパーを備えた反応容器に、水450gを添加して、25℃に調製して、2000min-1で攪拌混合しながら、ポリウレタンプレポリマー溶液を添加して水分散した。その後、減圧下で、アセトンおよび水の一部を除去することにより、固形分35.4質量%の水分散性ポリウレタン樹脂溶液(C-1)を調製した。 (Preparation of Polyurethane Resin Solution C-1 Having a Polycarbonate Structure)
22 parts by weight of 4,4-dicyclohexylmethane diisocyanate and 20 parts by weight of polyethylene glycol monomethyl ether having a number average molecular weight of 700 were added to a four-necked flask equipped with a stirrer, a Dimroth condenser, a nitrogen inlet tube, a silica gel drying tube, and a thermometer. , 53 parts by weight of polyhexamethylene carbonate diol having a number average molecular weight of 2,100, 5 parts by weight of neopentyl glycol, and 84.00 parts by weight of acetone as a solvent were added and stirred at 75° C. for 3 hours under a nitrogen atmosphere to form a reaction solution. It was confirmed that the predetermined amine equivalent weight was reached. After that, the temperature of the reaction liquid was lowered to 50° C., and 3 parts by mass of methyl ethyl ketoxime was added dropwise. After cooling the reaction solution to 40° C., a polyurethane prepolymer solution was obtained. Next, 450 g of water was added to a reaction vessel equipped with a homodisper capable of high-speed stirring, the temperature was adjusted to 25° C., and the polyurethane prepolymer solution was added and dispersed in water while stirring and mixing at 2000 min −1 . . Thereafter, acetone and part of the water were removed under reduced pressure to prepare a water-dispersible polyurethane resin solution (C-1) having a solid content of 35.4% by mass.
(ポリカーボネート構造を有するポリウレタン樹脂溶液C-2の調製)
撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、水添m-キシリレンジイソシアネート31.0質量部、ジメチロールプロパン酸7.0質量部、数平均分子量1800のポリヘキサメチレンカーボネートジオール60質量部、ネオペンチルグリコール6質量部、及び溶剤としてアセトン84.00質量部を投入し、窒素雰囲気下、75℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。この反応液を40℃にまで降温した後、トリエチルアミン6.65質量部を添加し、ポリウレタンプレポリマー溶液を得た。次に、次に、高速攪拌可能なホモディスパーを備えた反応容器に、水450gを添加して、25℃に調整して、2000min-1で攪拌混合しながら、ポリウレタンプレポリマー溶液を添加して水分散した。その後、減圧下で、アセトンおよび水の一部を除去することにより、固形分35.0質量%の水分散性ポリウレタン樹脂溶液(C-2)を調製した。 (Preparation of Polyurethane Resin Solution C-2 Having a Polycarbonate Structure)
31.0 parts by mass of hydrogenated m-xylylenediisocyanate, 7.0 parts by mass of dimethylolpropanoic acid, 60 parts by mass of polyhexamethylene carbonate diol having a number average molecular weight of 1800, 6 parts by mass of neopentyl glycol, and 84.00 parts by mass of acetone as a solvent were added, and the mixture was stirred at 75° C. for 3 hours under a nitrogen atmosphere until the reaction mixture reached a predetermined level. was confirmed to have reached the amine equivalent weight of After cooling the reaction solution to 40° C., 6.65 parts by mass of triethylamine was added to obtain a polyurethane prepolymer solution. Next, 450 g of water was added to a reaction vessel equipped with a homodisper capable of high-speed stirring, the temperature was adjusted to 25° C., and the polyurethane prepolymer solution was added while stirring and mixing at 2000 min −1 . Water dispersed. Thereafter, acetone and part of the water were removed under reduced pressure to prepare a water-dispersible polyurethane resin solution (C-2) having a solid content of 35.0% by mass.
撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、水添m-キシリレンジイソシアネート31.0質量部、ジメチロールプロパン酸7.0質量部、数平均分子量1800のポリヘキサメチレンカーボネートジオール60質量部、ネオペンチルグリコール6質量部、及び溶剤としてアセトン84.00質量部を投入し、窒素雰囲気下、75℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。この反応液を40℃にまで降温した後、トリエチルアミン6.65質量部を添加し、ポリウレタンプレポリマー溶液を得た。次に、次に、高速攪拌可能なホモディスパーを備えた反応容器に、水450gを添加して、25℃に調整して、2000min-1で攪拌混合しながら、ポリウレタンプレポリマー溶液を添加して水分散した。その後、減圧下で、アセトンおよび水の一部を除去することにより、固形分35.0質量%の水分散性ポリウレタン樹脂溶液(C-2)を調製した。 (Preparation of Polyurethane Resin Solution C-2 Having a Polycarbonate Structure)
31.0 parts by mass of hydrogenated m-xylylenediisocyanate, 7.0 parts by mass of dimethylolpropanoic acid, 60 parts by mass of polyhexamethylene carbonate diol having a number average molecular weight of 1800, 6 parts by mass of neopentyl glycol, and 84.00 parts by mass of acetone as a solvent were added, and the mixture was stirred at 75° C. for 3 hours under a nitrogen atmosphere until the reaction mixture reached a predetermined level. was confirmed to have reached the amine equivalent weight of After cooling the reaction solution to 40° C., 6.65 parts by mass of triethylamine was added to obtain a polyurethane prepolymer solution. Next, 450 g of water was added to a reaction vessel equipped with a homodisper capable of high-speed stirring, the temperature was adjusted to 25° C., and the polyurethane prepolymer solution was added while stirring and mixing at 2000 min −1 . Water dispersed. Thereafter, acetone and part of the water were removed under reduced pressure to prepare a water-dispersible polyurethane resin solution (C-2) having a solid content of 35.0% by mass.
(ポリエステル構造を有するポリウレタン樹脂溶液C-3の調製)
撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、水添m-キシリレンジイソシアネート82.8質量部、ジメチロールプロパン酸25.0質量部、3-メチル-1,5-ペンタンジオール2質量部テレフタル酸/イソフタル酸//エチレングリコール/ジエチレングリコール=50/50//40/60(モル比)からなるポリエステルジオール150.0質量部、及び溶剤として、アセトン110質量部を投入し、窒素雰囲気下、75℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。次に、この反応液を40℃にまで降温した後、トリエチルアミン19.8質量部を添加し、ポリウレタンポリマー溶液を得た。次に、高速攪拌可能なホモディスパーを備えた反応容器に、水880gを添加して、25℃に調整して、2000min-1で攪拌混合しながら、ポリウレタンポリマー溶液を添加して水分散した。その後、減圧下で、溶剤であるアセトンを除去した。水で濃度調整することにより、固形30.0質量%のポリウレタン樹脂溶液(C-3)を調製した。 (Preparation of Polyurethane Resin Solution C-3 Having a Polyester Structure)
82.8 parts by mass of hydrogenated m-xylylenediisocyanate, 25.0 parts by mass of dimethylolpropanoic acid, 2 parts by mass of 3-methyl-1,5-pentanediol 150.0 parts by mass of polyester diol consisting of terephthalic acid/isophthalic acid//ethylene glycol/diethylene glycol = 50/50//40/60 (molar ratio), and as a solvent , 110 parts by mass of acetone was added, and the mixture was stirred at 75°C for 3 hours under a nitrogen atmosphere, and it was confirmed that the reaction solution reached a predetermined amine equivalent weight. Next, after the temperature of this reaction liquid was lowered to 40° C., 19.8 parts by mass of triethylamine was added to obtain a polyurethane polymer solution. Next, 880 g of water was added to a reactor equipped with a homodisper capable of high-speed stirring, adjusted to 25° C., and the polyurethane polymer solution was added and dispersed in water while stirring and mixing at 2000 min −1 . After that, the solvent, acetone, was removed under reduced pressure. A polyurethane resin solution (C-3) having a solid content of 30.0% by mass was prepared by adjusting the concentration with water.
撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、水添m-キシリレンジイソシアネート82.8質量部、ジメチロールプロパン酸25.0質量部、3-メチル-1,5-ペンタンジオール2質量部テレフタル酸/イソフタル酸//エチレングリコール/ジエチレングリコール=50/50//40/60(モル比)からなるポリエステルジオール150.0質量部、及び溶剤として、アセトン110質量部を投入し、窒素雰囲気下、75℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。次に、この反応液を40℃にまで降温した後、トリエチルアミン19.8質量部を添加し、ポリウレタンポリマー溶液を得た。次に、高速攪拌可能なホモディスパーを備えた反応容器に、水880gを添加して、25℃に調整して、2000min-1で攪拌混合しながら、ポリウレタンポリマー溶液を添加して水分散した。その後、減圧下で、溶剤であるアセトンを除去した。水で濃度調整することにより、固形30.0質量%のポリウレタン樹脂溶液(C-3)を調製した。 (Preparation of Polyurethane Resin Solution C-3 Having a Polyester Structure)
82.8 parts by mass of hydrogenated m-xylylenediisocyanate, 25.0 parts by mass of dimethylolpropanoic acid, 2 parts by mass of 3-methyl-1,5-pentanediol 150.0 parts by mass of polyester diol consisting of terephthalic acid/isophthalic acid//ethylene glycol/diethylene glycol = 50/50//40/60 (molar ratio), and as a solvent , 110 parts by mass of acetone was added, and the mixture was stirred at 75°C for 3 hours under a nitrogen atmosphere, and it was confirmed that the reaction solution reached a predetermined amine equivalent weight. Next, after the temperature of this reaction liquid was lowered to 40° C., 19.8 parts by mass of triethylamine was added to obtain a polyurethane polymer solution. Next, 880 g of water was added to a reactor equipped with a homodisper capable of high-speed stirring, adjusted to 25° C., and the polyurethane polymer solution was added and dispersed in water while stirring and mixing at 2000 min −1 . After that, the solvent, acetone, was removed under reduced pressure. A polyurethane resin solution (C-3) having a solid content of 30.0% by mass was prepared by adjusting the concentration with water.
(ポリエステル構造を有するポリウレタンブロックイソシアネート水分散液(C-4)の調製)
ビスフェノールAのエチレンオキサイド2モル付加物とマレイン酸とのポリエステル(分子量2000)200質量部に、ヘキサメチレンジイソシアネート33.6質量部を添加し、100℃で2時間反応を行った。次いで系の温度を一旦50℃まで下げ、30%重亜硫酸ナトリウム水溶液73質量部を添加し、45℃で60分間攪拌を行った後、水718質量部で希釈し、固形分20.0質量%のブロックポリイソシアネート水分散液(C-4)を得た。当該ブロックイソシアネート架橋剤の官能基数は2、NCO当量は1300である。 (Preparation of polyurethane-blocked isocyanate aqueous dispersion (C-4) having a polyester structure)
33.6 parts by mass of hexamethylene diisocyanate was added to 200 parts by mass of a polyester (molecular weight: 2000) of an adduct of 2 mol of ethylene oxide of bisphenol A and maleic acid, and the reaction was carried out at 100° C. for 2 hours. Then, the temperature of the system is once lowered to 50° C., 73 parts by mass of a 30% sodium bisulfite aqueous solution is added, and after stirring at 45° C. for 60 minutes, the mixture is diluted with 718 parts by mass of water to obtain a solid content of 20.0% by mass. to obtain a blocked polyisocyanate aqueous dispersion (C-4). The number of functional groups of the blocked isocyanate crosslinking agent is 2, and the NCO equivalent is 1,300.
ビスフェノールAのエチレンオキサイド2モル付加物とマレイン酸とのポリエステル(分子量2000)200質量部に、ヘキサメチレンジイソシアネート33.6質量部を添加し、100℃で2時間反応を行った。次いで系の温度を一旦50℃まで下げ、30%重亜硫酸ナトリウム水溶液73質量部を添加し、45℃で60分間攪拌を行った後、水718質量部で希釈し、固形分20.0質量%のブロックポリイソシアネート水分散液(C-4)を得た。当該ブロックイソシアネート架橋剤の官能基数は2、NCO当量は1300である。 (Preparation of polyurethane-blocked isocyanate aqueous dispersion (C-4) having a polyester structure)
33.6 parts by mass of hexamethylene diisocyanate was added to 200 parts by mass of a polyester (molecular weight: 2000) of an adduct of 2 mol of ethylene oxide of bisphenol A and maleic acid, and the reaction was carried out at 100° C. for 2 hours. Then, the temperature of the system is once lowered to 50° C., 73 parts by mass of a 30% sodium bisulfite aqueous solution is added, and after stirring at 45° C. for 60 minutes, the mixture is diluted with 718 parts by mass of water to obtain a solid content of 20.0% by mass. to obtain a blocked polyisocyanate aqueous dispersion (C-4). The number of functional groups of the blocked isocyanate crosslinking agent is 2, and the NCO equivalent is 1,300.
(実験例1)
(1)塗布液の調製
水とイソプロパノールの混合溶媒に、下記の塗剤を混合し、窒素元素を含有するカチオン系帯帯電防止剤/ポリエステル樹脂/ポリウレタン樹脂溶液の固形分質量比が5.0/57.0/38.0になるになるように調整した。後述の白色易接着性フィルム製造過程で、樹脂固形分厚みが450nmとなる様に塗布した。
窒素元素を有するカチオン系帯電防止剤溶液(A-1) 2.52質量部
(固形分濃度17.50質量%)
ポリエステル水分散体(Bw-1) 17.00質量部
ポリウレタン樹脂溶液(C-1) 9.60質量部
粒子 25.15質量部
(平均粒径0.45μmのシリカ粒子、 固形分濃度40.00質量%)
界面活性剤 0.15質量部
(シリコーン系、固形分濃度10質量%) (Experimental example 1)
(1) Preparation of coating solution Mix the following coating agent with a mixed solvent of water and isopropanol, and the solid content mass ratio of the cationic antistatic agent containing nitrogen element/polyester resin/polyurethane resin solution is 5.0. /57.0/38.0. In the manufacturing process of the white easily adhesive film, which will be described later, the coating was applied so that the thickness of the resin solid content was 450 nm.
Nitrogen-containing cationic antistatic agent solution (A-1) 2.52 parts by mass (solid content concentration 17.50% by mass)
Polyester water dispersion (Bw-1) 17.00 parts by mass Polyurethane resin solution (C-1) 9.60 parts by mass Particles 25.15 parts by mass (silica particles with an average particle size of 0.45 μm, solid content concentration 40.00 mass%)
Surfactant 0.15 parts by mass (silicone type, solid content concentration 10% by mass)
(1)塗布液の調製
水とイソプロパノールの混合溶媒に、下記の塗剤を混合し、窒素元素を含有するカチオン系帯帯電防止剤/ポリエステル樹脂/ポリウレタン樹脂溶液の固形分質量比が5.0/57.0/38.0になるになるように調整した。後述の白色易接着性フィルム製造過程で、樹脂固形分厚みが450nmとなる様に塗布した。
窒素元素を有するカチオン系帯電防止剤溶液(A-1) 2.52質量部
(固形分濃度17.50質量%)
ポリエステル水分散体(Bw-1) 17.00質量部
ポリウレタン樹脂溶液(C-1) 9.60質量部
粒子 25.15質量部
(平均粒径0.45μmのシリカ粒子、 固形分濃度40.00質量%)
界面活性剤 0.15質量部
(シリコーン系、固形分濃度10質量%) (Experimental example 1)
(1) Preparation of coating solution Mix the following coating agent with a mixed solvent of water and isopropanol, and the solid content mass ratio of the cationic antistatic agent containing nitrogen element/polyester resin/polyurethane resin solution is 5.0. /57.0/38.0. In the manufacturing process of the white easily adhesive film, which will be described later, the coating was applied so that the thickness of the resin solid content was 450 nm.
Nitrogen-containing cationic antistatic agent solution (A-1) 2.52 parts by mass (solid content concentration 17.50% by mass)
Polyester water dispersion (Bw-1) 17.00 parts by mass Polyurethane resin solution (C-1) 9.60 parts by mass Particles 25.15 parts by mass (silica particles with an average particle size of 0.45 μm, solid content concentration 40.00 mass%)
Surfactant 0.15 parts by mass (silicone type, solid content concentration 10% by mass)
(2)マスターペレットM1の調製
溶融粘度(ηO)が1,300ポイズのポリメチルペンテン樹脂(三井化学社製、DX820)60質量%、溶融粘度(ηS)が3,900ポイズのポリスチレン樹脂(日本ポリスチ社製、G797N)20質量%、および溶融粘度が2,000ポイズのポリプロピレン樹脂(グランドポリマー社製、J104WC)20質量%をペレット混合したものを285℃に温調したベント式二軸押出機に供給し、予備混練りした。この溶融樹脂を連続的にベント式単軸混練機に供給、混練りして押出し、得られたストランドを冷却、切断して空洞発現剤マスターペレット(M1)を調製した。 (2) Preparation of master pellet M1 60% by mass of polymethylpentene resin (DX820, manufactured by Mitsui Chemicals, Inc.) with a melt viscosity (η) of 1,300 poise, and a polystyrene resin (Japan A vented twin-screw extruder in which 20% by mass of Polystyrene G797N) and 20% by mass of a polypropylene resin having a melt viscosity of 2,000 poise (Gland Polymer Co., Ltd. J104WC) are temperature-controlled at 285°C. and pre-kneaded. This molten resin was continuously supplied to a vent-type single-screw kneader, kneaded and extruded, and the resulting strand was cooled and cut to prepare cavity-generating agent master pellets (M1).
溶融粘度(ηO)が1,300ポイズのポリメチルペンテン樹脂(三井化学社製、DX820)60質量%、溶融粘度(ηS)が3,900ポイズのポリスチレン樹脂(日本ポリスチ社製、G797N)20質量%、および溶融粘度が2,000ポイズのポリプロピレン樹脂(グランドポリマー社製、J104WC)20質量%をペレット混合したものを285℃に温調したベント式二軸押出機に供給し、予備混練りした。この溶融樹脂を連続的にベント式単軸混練機に供給、混練りして押出し、得られたストランドを冷却、切断して空洞発現剤マスターペレット(M1)を調製した。 (2) Preparation of master pellet M1 60% by mass of polymethylpentene resin (DX820, manufactured by Mitsui Chemicals, Inc.) with a melt viscosity (η) of 1,300 poise, and a polystyrene resin (Japan A vented twin-screw extruder in which 20% by mass of Polystyrene G797N) and 20% by mass of a polypropylene resin having a melt viscosity of 2,000 poise (Gland Polymer Co., Ltd. J104WC) are temperature-controlled at 285°C. and pre-kneaded. This molten resin was continuously supplied to a vent-type single-screw kneader, kneaded and extruded, and the resulting strand was cooled and cut to prepare cavity-generating agent master pellets (M1).
(3) マスターペレットM2の調製
また、公知の方法で製造したアンチモン触媒による固有粘度0.62dl/gのポリエチレンテレフタレート樹脂50質量%に平均粒径0.3μmのアナターゼ型二酸化チタン粒子(富士チタン社製、TA-300)50質量%を混合したものをベント式2軸押出し機に供給して予備混練りした。この溶融樹脂を連続的にベント式単軸混練り機に供給し、混練して押出した。得られたストランドを冷却し、切断して二酸化チタン含有マスターペレット(M2)を調製した。 (3) Preparation of master pellets M2 In addition, anatase type titanium dioxide particles with an average particle size of 0.3 μm (Fuji Titanium Co., Ltd. A mixture of 50% by mass of TA-300) was supplied to a vented twin-screw extruder and preliminarily kneaded. This molten resin was continuously supplied to a vented single-screw kneader, kneaded and extruded. The resulting strand was cooled and cut to prepare titanium dioxide-containing master pellets (M2).
また、公知の方法で製造したアンチモン触媒による固有粘度0.62dl/gのポリエチレンテレフタレート樹脂50質量%に平均粒径0.3μmのアナターゼ型二酸化チタン粒子(富士チタン社製、TA-300)50質量%を混合したものをベント式2軸押出し機に供給して予備混練りした。この溶融樹脂を連続的にベント式単軸混練り機に供給し、混練して押出した。得られたストランドを冷却し、切断して二酸化チタン含有マスターペレット(M2)を調製した。 (3) Preparation of master pellets M2 In addition, anatase type titanium dioxide particles with an average particle size of 0.3 μm (Fuji Titanium Co., Ltd. A mixture of 50% by mass of TA-300) was supplied to a vented twin-screw extruder and preliminarily kneaded. This molten resin was continuously supplied to a vented single-screw kneader, kneaded and extruded. The resulting strand was cooled and cut to prepare titanium dioxide-containing master pellets (M2).
(4)白色易接着性ポリエステルフィルムの製造
(4) Production of white easy-adhesive polyester film
(フィルム原料D1の調製)
140℃で8時間の真空乾燥を施した固有粘度0.62dl/gの前記ポリエチレンテレフタレート樹脂81質量%と90℃で4時間の真空乾燥を施した上記マスターペレット(M1)9質量%、及び上記マスターペレット(M2)10質量%をペレット混合して、フィルム原料(D1)とした。 (Preparation of film raw material D1)
81% by mass of the polyethylene terephthalate resin having an intrinsic viscosity of 0.62 dl / g vacuum dried at 140 ° C. for 8 hours and 9% by mass of the master pellet (M1) vacuum dried at 90 ° C. for 4 hours, and the above 10% by mass of the master pellets (M2) were pellet-mixed to obtain a film raw material (D1).
140℃で8時間の真空乾燥を施した固有粘度0.62dl/gの前記ポリエチレンテレフタレート樹脂81質量%と90℃で4時間の真空乾燥を施した上記マスターペレット(M1)9質量%、及び上記マスターペレット(M2)10質量%をペレット混合して、フィルム原料(D1)とした。 (Preparation of film raw material D1)
81% by mass of the polyethylene terephthalate resin having an intrinsic viscosity of 0.62 dl / g vacuum dried at 140 ° C. for 8 hours and 9% by mass of the master pellet (M1) vacuum dried at 90 ° C. for 4 hours, and the above 10% by mass of the master pellets (M2) were pellet-mixed to obtain a film raw material (D1).
(未延伸フィルムの作製)
前記のフィルム原料(D1)を285℃に温調したY層用押出機に、フィルム原料(D1)の調製に用いたものと同じポリエチレンテレフタレート樹脂70質量%および上記マスターペレット(M2)30質量%を混合したものを、290℃に温調したX層用押出機にそれぞれ別に供給した。Y層用押出機より吐出される溶融樹脂はオリフィスを介し、またA層用押出機より吐出される樹脂はスタティックミキサーを介してフィードブックに導き、フィルム原料(D1)からなる層(Y層)とポリエチレンテレフタレート樹脂とマスターペレット(M2)からなる層(X層)をX層/Y層/X層の順に積層した。 (Production of unstretched film)
70% by mass of the same polyethylene terephthalate resin as used in the preparation of the film material (D1) and 30% by mass of the master pellets (M2) were added to the extruder for the Y layer in which the temperature of the film material (D1) was controlled at 285 ° C. were separately supplied to an X-layer extruder whose temperature was controlled at 290°C. The molten resin extruded from the extruder for the Y layer is led through an orifice, and the resin extruded from the extruder for the A layer is led to a feed book through a static mixer to form a layer (Y layer) composed of the film material (D1). and polyethylene terephthalate resin and master pellets (M2) (X layer) were laminated in the order of X layer/Y layer/X layer.
前記のフィルム原料(D1)を285℃に温調したY層用押出機に、フィルム原料(D1)の調製に用いたものと同じポリエチレンテレフタレート樹脂70質量%および上記マスターペレット(M2)30質量%を混合したものを、290℃に温調したX層用押出機にそれぞれ別に供給した。Y層用押出機より吐出される溶融樹脂はオリフィスを介し、またA層用押出機より吐出される樹脂はスタティックミキサーを介してフィードブックに導き、フィルム原料(D1)からなる層(Y層)とポリエチレンテレフタレート樹脂とマスターペレット(M2)からなる層(X層)をX層/Y層/X層の順に積層した。 (Production of unstretched film)
70% by mass of the same polyethylene terephthalate resin as used in the preparation of the film material (D1) and 30% by mass of the master pellets (M2) were added to the extruder for the Y layer in which the temperature of the film material (D1) was controlled at 285 ° C. were separately supplied to an X-layer extruder whose temperature was controlled at 290°C. The molten resin extruded from the extruder for the Y layer is led through an orifice, and the resin extruded from the extruder for the A layer is led to a feed book through a static mixer to form a layer (Y layer) composed of the film material (D1). and polyethylene terephthalate resin and master pellets (M2) (X layer) were laminated in the order of X layer/Y layer/X layer.
この溶融樹脂を、25℃に調温した冷却ロール上にTダイよりシート状に共押出し、静電印加法にて密着固化させ、厚み510μmの未延伸フィルムを作製した。なお、各押出機の吐出量は、各層の厚み比が1対8対1になるよう調製した。このとき溶融樹脂がメルトラインに滞留する時間はおよそ12分、Tダイより受けるせん断速度は約150/秒であった。
This molten resin was co-extruded in a sheet form from a T-die onto a cooling roll whose temperature was adjusted to 25°C, and adhered and solidified by an electrostatic application method to produce an unstretched film with a thickness of 510 µm. The discharge rate of each extruder was adjusted so that the thickness ratio of each layer was 1:8:1. At this time, the molten resin stayed in the melt line for about 12 minutes, and the shear rate received from the T-die was about 150/sec.
(二軸延伸フィルムの作製)
得られた未延伸フィルムを、加熱ロールを用いて65℃に均一加熱し、周速が異なる二対のニップロール(低速ロール:2m/分、高速ロール:6.8m/分)間で3.4倍に縦延伸した。このとき、フィルムの補助加熱装置として、ニップロール中間部に金反射膜を備えた赤外線加熱ヒータ(定格出力:20W/cm)をフィルムの両面に対向してフィルム面から1cmの位置に設置し加熱した。このようにして得られた一軸延伸フィルムの片面に、前記の塗布液をリバースキスコート法により塗布した。塗布後テンターに導き、乾燥しつつ150℃に加熱して3.7倍に横延伸し、幅固定して220℃で5秒間の熱処理を施し、更に200℃で幅方向に4%緩和させることにより、厚さ50μmの白色の易接着性ポリエステルフィルムを得た。本フィルムのb値は1.6であった。 (Production of biaxially stretched film)
The resulting unstretched film was uniformly heated to 65°C using a heating roll, and was passed between two pairs of nip rolls with different peripheral speeds (low speed roll: 2 m/min, high speed roll: 6.8 m/min) at 3.4 It was longitudinally stretched twice. At this time, as an auxiliary heating device for the film, an infrared heater (rated output: 20 W / cm) equipped with a gold reflective film in the middle of the nip roll was placed on both sides of the film at aposition 1 cm from the film surface and heated. . One side of the uniaxially stretched film thus obtained was coated with the above-mentioned coating solution by a reverse kiss coating method. After coating, the film is led to a tenter, heated to 150°C while being dried, transversely stretched to 3.7 times, fixed in width, subjected to heat treatment at 220°C for 5 seconds, and further relaxed 4% in the width direction at 200°C. Thus, a 50 μm-thick white easily adhesive polyester film was obtained. The b value of this film was 1.6.
得られた未延伸フィルムを、加熱ロールを用いて65℃に均一加熱し、周速が異なる二対のニップロール(低速ロール:2m/分、高速ロール:6.8m/分)間で3.4倍に縦延伸した。このとき、フィルムの補助加熱装置として、ニップロール中間部に金反射膜を備えた赤外線加熱ヒータ(定格出力:20W/cm)をフィルムの両面に対向してフィルム面から1cmの位置に設置し加熱した。このようにして得られた一軸延伸フィルムの片面に、前記の塗布液をリバースキスコート法により塗布した。塗布後テンターに導き、乾燥しつつ150℃に加熱して3.7倍に横延伸し、幅固定して220℃で5秒間の熱処理を施し、更に200℃で幅方向に4%緩和させることにより、厚さ50μmの白色の易接着性ポリエステルフィルムを得た。本フィルムのb値は1.6であった。 (Production of biaxially stretched film)
The resulting unstretched film was uniformly heated to 65°C using a heating roll, and was passed between two pairs of nip rolls with different peripheral speeds (low speed roll: 2 m/min, high speed roll: 6.8 m/min) at 3.4 It was longitudinally stretched twice. At this time, as an auxiliary heating device for the film, an infrared heater (rated output: 20 W / cm) equipped with a gold reflective film in the middle of the nip roll was placed on both sides of the film at a
(5)印刷物の製造
(溶剤型インキ層を有する印刷物)
易接着性ポリエステルフィルムの易接着性塗布層上に、「十条ケミカル株式会社製スクリーンインキ」「商品名 テトロンインキ900-1シリーズ 990黒」を「十条ケミカル株式会社製希釈溶剤」「商品名 テトロン標準溶剤」を用い、テトロンインキ:テトロン標準溶剤=4:1になるように希釈し、250メッシュスクリーンを用い、スクイージーを使用し塗布した。インキ塗布後、ヤマト科学株式会社製ドライオーブンDVS602を使用し、90℃、5分乾燥硬化させ、印刷物を得た。 (5) Production of printed matter (printed matter having a solvent-based ink layer)
On the easy-adhesive coating layer of the easy-adhesive polyester film, "screen ink manufactured by Jujo Chemical Co., Ltd."Solvent" was used to dilute Tetoron ink: Tetoron standard solvent = 4:1, and applied using a 250 mesh screen and a squeegee. After applying the ink, using a dry oven DVS602 manufactured by Yamato Scientific Co., Ltd., the ink was dried and cured at 90° C. for 5 minutes to obtain a printed matter.
(溶剤型インキ層を有する印刷物)
易接着性ポリエステルフィルムの易接着性塗布層上に、「十条ケミカル株式会社製スクリーンインキ」「商品名 テトロンインキ900-1シリーズ 990黒」を「十条ケミカル株式会社製希釈溶剤」「商品名 テトロン標準溶剤」を用い、テトロンインキ:テトロン標準溶剤=4:1になるように希釈し、250メッシュスクリーンを用い、スクイージーを使用し塗布した。インキ塗布後、ヤマト科学株式会社製ドライオーブンDVS602を使用し、90℃、5分乾燥硬化させ、印刷物を得た。 (5) Production of printed matter (printed matter having a solvent-based ink layer)
On the easy-adhesive coating layer of the easy-adhesive polyester film, "screen ink manufactured by Jujo Chemical Co., Ltd."Solvent" was used to dilute Tetoron ink: Tetoron standard solvent = 4:1, and applied using a 250 mesh screen and a squeegee. After applying the ink, using a dry oven DVS602 manufactured by Yamato Scientific Co., Ltd., the ink was dried and cured at 90° C. for 5 minutes to obtain a printed matter.
(酸化重合型インキ層を有する印刷物)
易接着性ポリエステルフィルムの易接着性塗布層上に、酸化重合型オフセットインキ[東洋インキ製造株式会社製、商品名「TSP400 G墨」]を用いて、印刷機[(株)明製作所製、商品名「RIテスター」]にて印刷し、印刷物を得た。 (Printed Matter Having Oxidatively Polymerized Ink Layer)
On the easy-adhesive coating layer of the easy-adhesive polyester film, using an oxidative polymerization type offset ink [manufactured by Toyo Ink Mfg. Co., Ltd., product name "TSP400 G ink"], a printing machine [manufactured by Aki Seisakusho Co., Ltd., product name "RI Tester"] to obtain a printed matter.
易接着性ポリエステルフィルムの易接着性塗布層上に、酸化重合型オフセットインキ[東洋インキ製造株式会社製、商品名「TSP400 G墨」]を用いて、印刷機[(株)明製作所製、商品名「RIテスター」]にて印刷し、印刷物を得た。 (Printed Matter Having Oxidatively Polymerized Ink Layer)
On the easy-adhesive coating layer of the easy-adhesive polyester film, using an oxidative polymerization type offset ink [manufactured by Toyo Ink Mfg. Co., Ltd., product name "TSP400 G ink"], a printing machine [manufactured by Aki Seisakusho Co., Ltd., product name "RI Tester"] to obtain a printed matter.
(溶融型熱転写インキ層を有する印刷物)
易接着性ポリエステルフィルムの易接着性塗布層上に、サトー製熱転プリンタースキャントロニクスCL4NX-Jを用い、リコー製熱転写リボンB110Cインキを6インチ/秒の印字速度で任意のJANコードによる1次元バーコードを印字し、印刷物を得た。 (Printed matter having a melt-type thermal transfer ink layer)
On the easy-adhesive coating layer of easy-adhesive polyester film, using Sato's thermal transfer printer Scantronics CL4NX-J, Ricoh's thermal transfer ribbon B110C ink is printed at 6 inches / sec. 1-dimensional bar by arbitrary JAN code A code was printed to obtain a printed matter.
易接着性ポリエステルフィルムの易接着性塗布層上に、サトー製熱転プリンタースキャントロニクスCL4NX-Jを用い、リコー製熱転写リボンB110Cインキを6インチ/秒の印字速度で任意のJANコードによる1次元バーコードを印字し、印刷物を得た。 (Printed matter having a melt-type thermal transfer ink layer)
On the easy-adhesive coating layer of easy-adhesive polyester film, using Sato's thermal transfer printer Scantronics CL4NX-J, Ricoh's thermal transfer ribbon B110C ink is printed at 6 inches / sec. 1-dimensional bar by arbitrary JAN code A code was printed to obtain a printed matter.
(LBPトナー層を有する印刷物)
易接着性ポリエステルフィルムの易接着性塗布層上に、FUJI XEROX株式会社ApeosPort-V C3376を用い、易接着性ポリエステルフィルムの易接着性塗布層上に任意に作成した図柄を印刷し、印刷物を得た。 (Printed Matter Having LBP Toner Layer)
Using FUJI XEROX Co., Ltd. ApeosPort-V C3376 on the easy-adhesive coating layer of the easy-adhesive polyester film, a pattern arbitrarily created on the easy-adhesive coating layer of the easy-adhesive polyester film is printed to obtain a printed matter. rice field.
易接着性ポリエステルフィルムの易接着性塗布層上に、FUJI XEROX株式会社ApeosPort-V C3376を用い、易接着性ポリエステルフィルムの易接着性塗布層上に任意に作成した図柄を印刷し、印刷物を得た。 (Printed Matter Having LBP Toner Layer)
Using FUJI XEROX Co., Ltd. ApeosPort-V C3376 on the easy-adhesive coating layer of the easy-adhesive polyester film, a pattern arbitrarily created on the easy-adhesive coating layer of the easy-adhesive polyester film is printed to obtain a printed matter. rice field.
(UV硬化型インキ層を有する印刷物)
易接着性ポリエステルフィルムの易接着性塗布層上に、UV硬化型インキ[T&K TOKA(株)製、商品名「BEST CURE UV161藍S」]を用いて、セントラルインプレッション型印刷機にて印刷を施した。セル容積が11cm3/m2であるアニロックスロールでインキを計量した後、ベタ版へ転写させ、さらにフィルムへと転写させた。フィルム上の転写させたインキは160W/cmメタルハライドUVランプにて硬化させ、印刷物を得た。フィルムへのインキ転写からUV光照射までの時間は1.88秒で実施した。 (Printed Matter Having UV Curable Ink Layer)
On the easy-adhesive coating layer of the easy-adhesive polyester film, a UV curable ink [T&K TOKA Co., Ltd., trade name “BEST CURE UV161 Indigo S”] is used to print with a central impression type printer. did. After weighing the ink with an anilox roll with a cell volume of 11 cm 3 /m 2 , it was transferred to a solid plate and then to a film. The ink transferred on the film was cured with a 160 W/cm metal halide UV lamp to obtain a printed matter. The time from ink transfer to film to UV light irradiation was 1.88 seconds.
易接着性ポリエステルフィルムの易接着性塗布層上に、UV硬化型インキ[T&K TOKA(株)製、商品名「BEST CURE UV161藍S」]を用いて、セントラルインプレッション型印刷機にて印刷を施した。セル容積が11cm3/m2であるアニロックスロールでインキを計量した後、ベタ版へ転写させ、さらにフィルムへと転写させた。フィルム上の転写させたインキは160W/cmメタルハライドUVランプにて硬化させ、印刷物を得た。フィルムへのインキ転写からUV光照射までの時間は1.88秒で実施した。 (Printed Matter Having UV Curable Ink Layer)
On the easy-adhesive coating layer of the easy-adhesive polyester film, a UV curable ink [T&K TOKA Co., Ltd., trade name “BEST CURE UV161 Indigo S”] is used to print with a central impression type printer. did. After weighing the ink with an anilox roll with a cell volume of 11 cm 3 /m 2 , it was transferred to a solid plate and then to a film. The ink transferred on the film was cured with a 160 W/cm metal halide UV lamp to obtain a printed matter. The time from ink transfer to film to UV light irradiation was 1.88 seconds.
(実験例2)
水とイソプロパノールの混合溶媒に、下記の塗剤を混合し、窒素元素を含有するカチオン系帯帯電防止剤/ポリエステル樹脂/ポリウレタン樹脂溶液の固形分質量比が5.0/76.0/19.0になるになるように変更した以外は、実験例1と同様にして、白色易接着性ポリエステルフィルムおよび印刷物を得た。
窒素元素を含有するカチオン系帯電防止剤溶液(A-1) 2.52質量部
(固形分濃度17.50質量%)
ポリエステル水分散体(Bw-1) 22.67質量部
ポリウレタン樹脂溶液(C-1) 4.80質量部
粒子 25.15質量部
(平均粒径0.45μmのシリカ粒子、 固形分濃度40.00質量%)
界面活性剤 0.15質量部
(シリコーン系、固形分濃度10質量%) (Experimental example 2)
The following coating agent was mixed with a mixed solvent of water and isopropanol, and the solid content mass ratio of the cationic antistatic agent containing nitrogen element/polyester resin/polyurethane resin solution was 5.0/76.0/19. A white easy-adhesive polyester film and a printed matter were obtained in the same manner as in Experimental Example 1, except that the value was changed to 0.
Cationic antistatic agent solution containing nitrogen element (A-1) 2.52 parts by mass (solid content concentration 17.50% by mass)
Polyester water dispersion (Bw-1) 22.67 parts by mass Polyurethane resin solution (C-1) 4.80 parts by mass Particles 25.15 parts by mass (silica particles with an average particle size of 0.45 μm, solid content concentration 40.00 mass%)
Surfactant 0.15 parts by mass (silicone type, solid content concentration 10% by mass)
水とイソプロパノールの混合溶媒に、下記の塗剤を混合し、窒素元素を含有するカチオン系帯帯電防止剤/ポリエステル樹脂/ポリウレタン樹脂溶液の固形分質量比が5.0/76.0/19.0になるになるように変更した以外は、実験例1と同様にして、白色易接着性ポリエステルフィルムおよび印刷物を得た。
窒素元素を含有するカチオン系帯電防止剤溶液(A-1) 2.52質量部
(固形分濃度17.50質量%)
ポリエステル水分散体(Bw-1) 22.67質量部
ポリウレタン樹脂溶液(C-1) 4.80質量部
粒子 25.15質量部
(平均粒径0.45μmのシリカ粒子、 固形分濃度40.00質量%)
界面活性剤 0.15質量部
(シリコーン系、固形分濃度10質量%) (Experimental example 2)
The following coating agent was mixed with a mixed solvent of water and isopropanol, and the solid content mass ratio of the cationic antistatic agent containing nitrogen element/polyester resin/polyurethane resin solution was 5.0/76.0/19. A white easy-adhesive polyester film and a printed matter were obtained in the same manner as in Experimental Example 1, except that the value was changed to 0.
Cationic antistatic agent solution containing nitrogen element (A-1) 2.52 parts by mass (solid content concentration 17.50% by mass)
Polyester water dispersion (Bw-1) 22.67 parts by mass Polyurethane resin solution (C-1) 4.80 parts by mass Particles 25.15 parts by mass (silica particles with an average particle size of 0.45 μm, solid content concentration 40.00 mass%)
Surfactant 0.15 parts by mass (silicone type, solid content concentration 10% by mass)
(実験例3)
水とイソプロパノールの混合溶媒に、下記の塗剤を混合し、窒素元素を含有するカチオン系帯帯電防止剤/ポリエステル樹脂/ポリウレタン樹脂溶液の固形分質量比が5.0/57.0/38.0になるになるように変更した以外は、実験例1と同様にして、白色易接着性ポリエステルフィルムおよび印刷物を得た。
窒素元素を有するカチオン系帯電防止剤溶液(A-1) 2.52質量部
(固形分濃度17.50質量%)
ポリエステル水分散体(Bw-1) 17.00質量部
ポリウレタン樹脂溶液(C-2) 9.71質量部
粒子 25.15質量部
(平均粒径0.45μmのシリカ粒子、 固形分濃度40.00質量%)
界面活性剤 0.15質量部
(シリコーン系、固形分濃度10質量%) (Experimental example 3)
The following coating agent was mixed with a mixed solvent of water and isopropanol, and the solid content mass ratio of the cationic antistatic agent containing nitrogen element/polyester resin/polyurethane resin solution was 5.0/57.0/38. A white easy-adhesive polyester film and a printed matter were obtained in the same manner as in Experimental Example 1, except that the value was changed to 0.
Nitrogen-containing cationic antistatic agent solution (A-1) 2.52 parts by mass (solid content concentration 17.50% by mass)
Polyester water dispersion (Bw-1) 17.00 parts by mass Polyurethane resin solution (C-2) 9.71 parts by mass Particles 25.15 parts by mass (silica particles with an average particle diameter of 0.45 μm, solid content concentration 40.00 mass%)
Surfactant 0.15 parts by mass (silicone type, solid content concentration 10% by mass)
水とイソプロパノールの混合溶媒に、下記の塗剤を混合し、窒素元素を含有するカチオン系帯帯電防止剤/ポリエステル樹脂/ポリウレタン樹脂溶液の固形分質量比が5.0/57.0/38.0になるになるように変更した以外は、実験例1と同様にして、白色易接着性ポリエステルフィルムおよび印刷物を得た。
窒素元素を有するカチオン系帯電防止剤溶液(A-1) 2.52質量部
(固形分濃度17.50質量%)
ポリエステル水分散体(Bw-1) 17.00質量部
ポリウレタン樹脂溶液(C-2) 9.71質量部
粒子 25.15質量部
(平均粒径0.45μmのシリカ粒子、 固形分濃度40.00質量%)
界面活性剤 0.15質量部
(シリコーン系、固形分濃度10質量%) (Experimental example 3)
The following coating agent was mixed with a mixed solvent of water and isopropanol, and the solid content mass ratio of the cationic antistatic agent containing nitrogen element/polyester resin/polyurethane resin solution was 5.0/57.0/38. A white easy-adhesive polyester film and a printed matter were obtained in the same manner as in Experimental Example 1, except that the value was changed to 0.
Nitrogen-containing cationic antistatic agent solution (A-1) 2.52 parts by mass (solid content concentration 17.50% by mass)
Polyester water dispersion (Bw-1) 17.00 parts by mass Polyurethane resin solution (C-2) 9.71 parts by mass Particles 25.15 parts by mass (silica particles with an average particle diameter of 0.45 μm, solid content concentration 40.00 mass%)
Surfactant 0.15 parts by mass (silicone type, solid content concentration 10% by mass)
(実験例4)
水とイソプロパノールの混合溶媒に、下記の塗剤を混合し、窒素元素を含有するカチオン系帯帯電防止剤/ポリエステル樹脂/ポリウレタン樹脂溶液の固形分質量比が5.0/57.0/38.0になるになるように変更した以外は、実験例1と同様にして、白色易接着性ポリエステルフィルムを得た。
窒素元素を有するカチオン系帯電防止剤溶液(A-2) 2.52質量部
(固形分濃度17.50質量%)
ポリエステル水分散体(Bw-1) 17.00質量部
ポリウレタン樹脂溶液(C-1) 9.60質量部
粒子 25.15質量部
(平均粒径0.45μmのシリカ粒子、固形分濃度40.00質量%)
界面活性剤 0.15質量部
(シリコーン系、固形分濃度10質量%) (Experimental example 4)
The following coating agent was mixed with a mixed solvent of water and isopropanol, and the solid content mass ratio of the cationic antistatic agent containing nitrogen element/polyester resin/polyurethane resin solution was 5.0/57.0/38. A white easy-adhesive polyester film was obtained in the same manner as in Experimental Example 1, except that it was changed to 0.
Cationic antistatic agent solution (A-2) containing nitrogen element 2.52 parts by mass (solid content concentration 17.50% by mass)
Polyester water dispersion (Bw-1) 17.00 parts by mass Polyurethane resin solution (C-1) 9.60 parts by mass Particles 25.15 parts by mass (silica particles with an average particle diameter of 0.45 μm, solid content concentration 40.00 mass%)
Surfactant 0.15 parts by mass (silicone type, solid content concentration 10% by mass)
水とイソプロパノールの混合溶媒に、下記の塗剤を混合し、窒素元素を含有するカチオン系帯帯電防止剤/ポリエステル樹脂/ポリウレタン樹脂溶液の固形分質量比が5.0/57.0/38.0になるになるように変更した以外は、実験例1と同様にして、白色易接着性ポリエステルフィルムを得た。
窒素元素を有するカチオン系帯電防止剤溶液(A-2) 2.52質量部
(固形分濃度17.50質量%)
ポリエステル水分散体(Bw-1) 17.00質量部
ポリウレタン樹脂溶液(C-1) 9.60質量部
粒子 25.15質量部
(平均粒径0.45μmのシリカ粒子、固形分濃度40.00質量%)
界面活性剤 0.15質量部
(シリコーン系、固形分濃度10質量%) (Experimental example 4)
The following coating agent was mixed with a mixed solvent of water and isopropanol, and the solid content mass ratio of the cationic antistatic agent containing nitrogen element/polyester resin/polyurethane resin solution was 5.0/57.0/38. A white easy-adhesive polyester film was obtained in the same manner as in Experimental Example 1, except that it was changed to 0.
Cationic antistatic agent solution (A-2) containing nitrogen element 2.52 parts by mass (solid content concentration 17.50% by mass)
Polyester water dispersion (Bw-1) 17.00 parts by mass Polyurethane resin solution (C-1) 9.60 parts by mass Particles 25.15 parts by mass (silica particles with an average particle diameter of 0.45 μm, solid content concentration 40.00 mass%)
Surfactant 0.15 parts by mass (silicone type, solid content concentration 10% by mass)
(実験例5)
水とイソプロパノールの混合溶媒に、下記の塗剤を混合し、窒素元素を含有するカチオン系帯帯電防止剤/ポリエステル樹脂/ポリウレタン樹脂溶液の固形分質量比が5.0/57.0/38.0になるになるように変更した以外は、実験例1と同様にして、白色易接着性ポリエステルフィルムを得た。
窒素元素を有するカチオン系帯電防止剤溶液(A-1) 2.52質量部
(固形分濃度17.50質量%)
ポリエステル樹脂溶液(Bw-2) 20.40質量部
ポリウレタン樹脂溶液(C-1) 9.60質量部
粒子 25.15質量部
(平均粒径0.45μmのシリカ粒子、 固形分濃度40.00質量%)
界面活性剤 0.15質量部
(シリコーン系、固形分濃度10質量%) (Experimental example 5)
The following coating agent was mixed with a mixed solvent of water and isopropanol, and the solid content mass ratio of the cationic antistatic agent containing nitrogen element/polyester resin/polyurethane resin solution was 5.0/57.0/38. A white easy-adhesive polyester film was obtained in the same manner as in Experimental Example 1, except that it was changed to 0.
Nitrogen-containing cationic antistatic agent solution (A-1) 2.52 parts by mass (solid content concentration 17.50% by mass)
Polyester resin solution (Bw-2) 20.40 parts by mass Polyurethane resin solution (C-1) 9.60 parts by mass Particles 25.15 parts by mass (silica particles with an average particle size of 0.45 μm, solid content concentration 40.00 mass %)
Surfactant 0.15 parts by mass (silicone type, solid content concentration 10% by mass)
水とイソプロパノールの混合溶媒に、下記の塗剤を混合し、窒素元素を含有するカチオン系帯帯電防止剤/ポリエステル樹脂/ポリウレタン樹脂溶液の固形分質量比が5.0/57.0/38.0になるになるように変更した以外は、実験例1と同様にして、白色易接着性ポリエステルフィルムを得た。
窒素元素を有するカチオン系帯電防止剤溶液(A-1) 2.52質量部
(固形分濃度17.50質量%)
ポリエステル樹脂溶液(Bw-2) 20.40質量部
ポリウレタン樹脂溶液(C-1) 9.60質量部
粒子 25.15質量部
(平均粒径0.45μmのシリカ粒子、 固形分濃度40.00質量%)
界面活性剤 0.15質量部
(シリコーン系、固形分濃度10質量%) (Experimental example 5)
The following coating agent was mixed with a mixed solvent of water and isopropanol, and the solid content mass ratio of the cationic antistatic agent containing nitrogen element/polyester resin/polyurethane resin solution was 5.0/57.0/38. A white easy-adhesive polyester film was obtained in the same manner as in Experimental Example 1, except that it was changed to 0.
Nitrogen-containing cationic antistatic agent solution (A-1) 2.52 parts by mass (solid content concentration 17.50% by mass)
Polyester resin solution (Bw-2) 20.40 parts by mass Polyurethane resin solution (C-1) 9.60 parts by mass Particles 25.15 parts by mass (silica particles with an average particle size of 0.45 μm, solid content concentration 40.00 mass %)
Surfactant 0.15 parts by mass (silicone type, solid content concentration 10% by mass)
(実験例6)
水とイソプロパノールの混合溶媒に、下記の塗剤を混合し、窒素元素を含有するカチオン系帯帯電防止剤/ポリエステル樹脂/ポリウレタン樹脂溶液の固形分質量比が5.0/57.0/38.0になるになるように変更し、樹脂固形分厚みが650nmとなる様に塗布した以外は、実験例1と同様にして、白色易接着性ポリエステルフィルムおよび印刷物を得た。
窒素元素を含有するカチオン系帯電防止剤溶液(A-1) 3.30質量部
(固形分濃度19.20質量%)
ポリエステル水分散体(Bw-1) 30.00質量部
ポリウレタン樹脂溶液(C-1) 16.95質量部
粒子 31.91質量部
(平均粒径2μmのベンゾグアナミンホルムアルデヒド縮合物粒子、
固形分濃度40.00質量%)
界面活性剤 0.40質量部
(シリコーン系、固形分濃度10質量%) (Experimental example 6)
The following coating agent was mixed with a mixed solvent of water and isopropanol, and the solid content mass ratio of the cationic antistatic agent containing nitrogen element/polyester resin/polyurethane resin solution was 5.0/57.0/38. A white easy-adhesive polyester film and a printed material were obtained in the same manner as in Experimental Example 1, except that the resin solid content thickness was changed to 0 and the coating was performed so that the thickness of the resin solid content was 650 nm.
Cationic antistatic agent solution containing nitrogen element (A-1) 3.30 parts by mass (solid content concentration 19.20% by mass)
Polyester water dispersion (Bw-1) 30.00 parts by mass Polyurethane resin solution (C-1) 16.95 parts by mass Particles 31.91 parts by mass (benzoguanamine formaldehyde condensate particles having an average particle size of 2 μm,
Solid content concentration 40.00% by mass)
Surfactant 0.40 parts by mass (silicone type, solid content concentration 10% by mass)
水とイソプロパノールの混合溶媒に、下記の塗剤を混合し、窒素元素を含有するカチオン系帯帯電防止剤/ポリエステル樹脂/ポリウレタン樹脂溶液の固形分質量比が5.0/57.0/38.0になるになるように変更し、樹脂固形分厚みが650nmとなる様に塗布した以外は、実験例1と同様にして、白色易接着性ポリエステルフィルムおよび印刷物を得た。
窒素元素を含有するカチオン系帯電防止剤溶液(A-1) 3.30質量部
(固形分濃度19.20質量%)
ポリエステル水分散体(Bw-1) 30.00質量部
ポリウレタン樹脂溶液(C-1) 16.95質量部
粒子 31.91質量部
(平均粒径2μmのベンゾグアナミンホルムアルデヒド縮合物粒子、
固形分濃度40.00質量%)
界面活性剤 0.40質量部
(シリコーン系、固形分濃度10質量%) (Experimental example 6)
The following coating agent was mixed with a mixed solvent of water and isopropanol, and the solid content mass ratio of the cationic antistatic agent containing nitrogen element/polyester resin/polyurethane resin solution was 5.0/57.0/38. A white easy-adhesive polyester film and a printed material were obtained in the same manner as in Experimental Example 1, except that the resin solid content thickness was changed to 0 and the coating was performed so that the thickness of the resin solid content was 650 nm.
Cationic antistatic agent solution containing nitrogen element (A-1) 3.30 parts by mass (solid content concentration 19.20% by mass)
Polyester water dispersion (Bw-1) 30.00 parts by mass Polyurethane resin solution (C-1) 16.95 parts by mass Particles 31.91 parts by mass (benzoguanamine formaldehyde condensate particles having an average particle size of 2 μm,
Solid content concentration 40.00% by mass)
Surfactant 0.40 parts by mass (silicone type, solid content concentration 10% by mass)
(実験例7)
水とイソプロパノールの混合溶媒に、下記の塗剤を混合し、窒素元素を含有するカチオン系帯帯電防止剤/ポリエステル樹脂/ポリウレタン樹脂溶液の固形分質量比が6.5/60.7/32.8になるになるように変更し、樹脂固形分厚みが50nmとなる様に塗布した以外は、実験例1と同様にして、白色易接着性ポリエステルフィルムおよび印刷物を得た。
窒素元素を含有するカチオン系帯電防止剤溶液(A-1) 2.45質量部
(固形分濃度15.8質量%)
ポリエステル水分散体(Bw-1) 12.35質量部
ポリウレタン樹脂溶液(C-1) 6.27質量部
界面活性剤 0.25質量部
(シリコーン系、固形分濃度10質量%) (Experimental example 7)
The following coating agent was mixed with a mixed solvent of water and isopropanol, and the solid content mass ratio of the cationic antistatic agent containing nitrogen element/polyester resin/polyurethane resin solution was 6.5/60.7/32. A white easy-adhesive polyester film and a printed material were obtained in the same manner as in Experimental Example 1, except that the resin solid content thickness was changed to 8 and the coating was performed so that the resin solid content thickness was 50 nm.
Cationic antistatic agent solution containing nitrogen element (A-1) 2.45 parts by mass (solid content concentration 15.8% by mass)
Polyester water dispersion (Bw-1) 12.35 parts by mass Polyurethane resin solution (C-1) 6.27 parts by mass Surfactant 0.25 parts by mass (silicone type, solid content concentration 10% by mass)
水とイソプロパノールの混合溶媒に、下記の塗剤を混合し、窒素元素を含有するカチオン系帯帯電防止剤/ポリエステル樹脂/ポリウレタン樹脂溶液の固形分質量比が6.5/60.7/32.8になるになるように変更し、樹脂固形分厚みが50nmとなる様に塗布した以外は、実験例1と同様にして、白色易接着性ポリエステルフィルムおよび印刷物を得た。
窒素元素を含有するカチオン系帯電防止剤溶液(A-1) 2.45質量部
(固形分濃度15.8質量%)
ポリエステル水分散体(Bw-1) 12.35質量部
ポリウレタン樹脂溶液(C-1) 6.27質量部
界面活性剤 0.25質量部
(シリコーン系、固形分濃度10質量%) (Experimental example 7)
The following coating agent was mixed with a mixed solvent of water and isopropanol, and the solid content mass ratio of the cationic antistatic agent containing nitrogen element/polyester resin/polyurethane resin solution was 6.5/60.7/32. A white easy-adhesive polyester film and a printed material were obtained in the same manner as in Experimental Example 1, except that the resin solid content thickness was changed to 8 and the coating was performed so that the resin solid content thickness was 50 nm.
Cationic antistatic agent solution containing nitrogen element (A-1) 2.45 parts by mass (solid content concentration 15.8% by mass)
Polyester water dispersion (Bw-1) 12.35 parts by mass Polyurethane resin solution (C-1) 6.27 parts by mass Surfactant 0.25 parts by mass (silicone type, solid content concentration 10% by mass)
(実験例8)
水とイソプロパノールの混合溶媒に、下記の塗剤を混合し、窒素元素を含有するカチオン系帯帯電防止剤/ポリエステル樹脂/ポリウレタン樹脂溶液の固形分質量比が5.0/85.5/9.5になるになるように変更した以外は、実験例1と同様にして、白色易接着性ポリエステルフィルムおよび印刷物を得た。
窒素元素を含有するカチオン系帯電防止剤溶液(A) 2.52質量部
(固形分濃度17.50質量%)
ポリエステル水分散体(Bw-1) 25.50質量部
ポリウレタン樹脂溶液 (C-1) 2.40質量部
粒子 25.15質量部
(平均粒径0.45μmのシリカ粒子、 固形分濃度40.00質量%)
界面活性剤 0.15質量部
(シリコーン系、固形分濃度10質量%) (Experimental example 8)
The following coating agent was mixed with a mixed solvent of water and isopropanol, and the solid content mass ratio of the cationic antistatic agent containing nitrogen element/polyester resin/polyurethane resin solution was 5.0/85.5/9. A white easy-adhesive polyester film and a printed matter were obtained in the same manner as in Experimental Example 1, except that it was changed to 5.
Nitrogen-containing cationic antistatic agent solution (A) 2.52 parts by mass (solid content concentration 17.50% by mass)
Polyester water dispersion (Bw-1) 25.50 parts by mass Polyurethane resin solution (C-1) 2.40 parts by mass Particles 25.15 parts by mass (silica particles with an average particle size of 0.45 μm, solid content concentration 40.00 mass%)
Surfactant 0.15 parts by mass (silicone type, solid content concentration 10% by mass)
水とイソプロパノールの混合溶媒に、下記の塗剤を混合し、窒素元素を含有するカチオン系帯帯電防止剤/ポリエステル樹脂/ポリウレタン樹脂溶液の固形分質量比が5.0/85.5/9.5になるになるように変更した以外は、実験例1と同様にして、白色易接着性ポリエステルフィルムおよび印刷物を得た。
窒素元素を含有するカチオン系帯電防止剤溶液(A) 2.52質量部
(固形分濃度17.50質量%)
ポリエステル水分散体(Bw-1) 25.50質量部
ポリウレタン樹脂溶液 (C-1) 2.40質量部
粒子 25.15質量部
(平均粒径0.45μmのシリカ粒子、 固形分濃度40.00質量%)
界面活性剤 0.15質量部
(シリコーン系、固形分濃度10質量%) (Experimental example 8)
The following coating agent was mixed with a mixed solvent of water and isopropanol, and the solid content mass ratio of the cationic antistatic agent containing nitrogen element/polyester resin/polyurethane resin solution was 5.0/85.5/9. A white easy-adhesive polyester film and a printed matter were obtained in the same manner as in Experimental Example 1, except that it was changed to 5.
Nitrogen-containing cationic antistatic agent solution (A) 2.52 parts by mass (solid content concentration 17.50% by mass)
Polyester water dispersion (Bw-1) 25.50 parts by mass Polyurethane resin solution (C-1) 2.40 parts by mass Particles 25.15 parts by mass (silica particles with an average particle size of 0.45 μm, solid content concentration 40.00 mass%)
Surfactant 0.15 parts by mass (silicone type, solid content concentration 10% by mass)
(実験例9)
水とイソプロパノールの混合溶媒に、下記の塗剤を混合し、窒素元素を含有するカチオン系帯帯電防止剤/ポリエステル樹脂/ポリウレタン樹脂溶液の固形分質量比が5.0/28.5/67.0になるになるように変更した以外は、実験例1と同様にして、白色易接着性ポリエステルフィルムおよび印刷物を得た。
窒素元素を含有するカチオン系帯電防止剤溶液(A) 2.52質量部
(固形分濃度17.50質量%)
ポリエステル水分散体(Bw-1) 8.50質量部
ポリウレタン樹脂溶液(C-1) 16.81質量部
粒子 25.15質量部
(平均粒径0.45μmのシリカ粒子、 固形分濃度40.00質量%)
界面活性剤 0.15質量部
(シリコーン系、固形分濃度10質量%) (Experimental example 9)
The following coating agent was mixed with a mixed solvent of water and isopropanol, and the solid content mass ratio of the cationic antistatic agent containing nitrogen element/polyester resin/polyurethane resin solution was 5.0/28.5/67. A white easy-adhesive polyester film and a printed matter were obtained in the same manner as in Experimental Example 1, except that the value was changed to 0.
Nitrogen-containing cationic antistatic agent solution (A) 2.52 parts by mass (solid content concentration 17.50% by mass)
Polyester water dispersion (Bw-1) 8.50 parts by mass Polyurethane resin solution (C-1) 16.81 parts by mass Particles 25.15 parts by mass (silica particles with an average particle size of 0.45 μm, solid content concentration 40.00 mass%)
Surfactant 0.15 parts by mass (silicone type, solid content concentration 10% by mass)
水とイソプロパノールの混合溶媒に、下記の塗剤を混合し、窒素元素を含有するカチオン系帯帯電防止剤/ポリエステル樹脂/ポリウレタン樹脂溶液の固形分質量比が5.0/28.5/67.0になるになるように変更した以外は、実験例1と同様にして、白色易接着性ポリエステルフィルムおよび印刷物を得た。
窒素元素を含有するカチオン系帯電防止剤溶液(A) 2.52質量部
(固形分濃度17.50質量%)
ポリエステル水分散体(Bw-1) 8.50質量部
ポリウレタン樹脂溶液(C-1) 16.81質量部
粒子 25.15質量部
(平均粒径0.45μmのシリカ粒子、 固形分濃度40.00質量%)
界面活性剤 0.15質量部
(シリコーン系、固形分濃度10質量%) (Experimental example 9)
The following coating agent was mixed with a mixed solvent of water and isopropanol, and the solid content mass ratio of the cationic antistatic agent containing nitrogen element/polyester resin/polyurethane resin solution was 5.0/28.5/67. A white easy-adhesive polyester film and a printed matter were obtained in the same manner as in Experimental Example 1, except that the value was changed to 0.
Nitrogen-containing cationic antistatic agent solution (A) 2.52 parts by mass (solid content concentration 17.50% by mass)
Polyester water dispersion (Bw-1) 8.50 parts by mass Polyurethane resin solution (C-1) 16.81 parts by mass Particles 25.15 parts by mass (silica particles with an average particle size of 0.45 μm, solid content concentration 40.00 mass%)
Surfactant 0.15 parts by mass (silicone type, solid content concentration 10% by mass)
(実験例10)
水とイソプロパノールの混合溶媒に、下記の塗剤を混合し、窒素元素を含有するカチオン系帯帯電防止剤/ポリエステル樹脂/ポリウレタン樹脂溶液の固形分質量比が5.0/57.0/38.0になるになるように変更した以外は、実験例1と同様にして、白色易接着性ポリエステルフィルムおよび印刷物を得た。
窒素元素を含有するカチオン系帯電防止剤溶液(A) 2.52質量部
(固形分濃度17.50質量%)
ポリエステル水分散体(Bw-1) 17.00質量部
ポリウレタン樹脂溶液(C-3) 11.33質量部
粒子 25.15質量部
(平均粒径0.45μmのシリカ粒子、 固形分濃度40.00質量%)
界面活性剤 0.15質量部
(シリコーン系、固形分濃度10質量%) (Experimental example 10)
The following coating agent was mixed with a mixed solvent of water and isopropanol, and the solid content mass ratio of the cationic antistatic agent containing nitrogen element/polyester resin/polyurethane resin solution was 5.0/57.0/38. A white easy-adhesive polyester film and a printed matter were obtained in the same manner as in Experimental Example 1, except that the value was changed to 0.
Nitrogen-containing cationic antistatic agent solution (A) 2.52 parts by mass (solid content concentration 17.50% by mass)
Polyester water dispersion (Bw-1) 17.00 parts by mass Polyurethane resin solution (C-3) 11.33 parts by mass Particles 25.15 parts by mass (silica particles with an average particle size of 0.45 μm, solid content concentration 40.00 mass%)
Surfactant 0.15 parts by mass (silicone type, solid content concentration 10% by mass)
水とイソプロパノールの混合溶媒に、下記の塗剤を混合し、窒素元素を含有するカチオン系帯帯電防止剤/ポリエステル樹脂/ポリウレタン樹脂溶液の固形分質量比が5.0/57.0/38.0になるになるように変更した以外は、実験例1と同様にして、白色易接着性ポリエステルフィルムおよび印刷物を得た。
窒素元素を含有するカチオン系帯電防止剤溶液(A) 2.52質量部
(固形分濃度17.50質量%)
ポリエステル水分散体(Bw-1) 17.00質量部
ポリウレタン樹脂溶液(C-3) 11.33質量部
粒子 25.15質量部
(平均粒径0.45μmのシリカ粒子、 固形分濃度40.00質量%)
界面活性剤 0.15質量部
(シリコーン系、固形分濃度10質量%) (Experimental example 10)
The following coating agent was mixed with a mixed solvent of water and isopropanol, and the solid content mass ratio of the cationic antistatic agent containing nitrogen element/polyester resin/polyurethane resin solution was 5.0/57.0/38. A white easy-adhesive polyester film and a printed matter were obtained in the same manner as in Experimental Example 1, except that the value was changed to 0.
Nitrogen-containing cationic antistatic agent solution (A) 2.52 parts by mass (solid content concentration 17.50% by mass)
Polyester water dispersion (Bw-1) 17.00 parts by mass Polyurethane resin solution (C-3) 11.33 parts by mass Particles 25.15 parts by mass (silica particles with an average particle size of 0.45 μm, solid content concentration 40.00 mass%)
Surfactant 0.15 parts by mass (silicone type, solid content concentration 10% by mass)
(実験例11)
水とイソプロパノールの混合溶媒に、下記の塗剤を混合し、窒素元素を含有するカチオン系帯帯電防止剤/ポリエステル樹脂/ポリウレタン樹脂溶液の固形分質量比が5.8/33.0/61.2になるになるように変更した以外は、実験例1と同様にして、白色易接着性ポリエステルフィルムおよび印刷物を得た。
窒素元素を含有するカチオン系帯電防止剤溶液(A) 2.83質量部
(固形分濃度17.50質量%)
ポリエステル水分散体(Bw-1) 9.33質量部
ポリウレタン樹脂溶液(C-4) 26.00質量部
粒子(イ) 16.31質量部
(平均粒径0.45μmのシリカ粒子、 固形分濃度40.00質量%)
粒子(ロ) 5.44質量部
(平均粒径1.00μmのシリカ粒子、 固形分濃度40.00質量%)
界面活性剤 0.15質量部
(シリコーン系、固形分濃度10質量%) (Experimental example 11)
The following coating agent was mixed with a mixed solvent of water and isopropanol, and the solid content mass ratio of the cationic antistatic agent containing nitrogen element/polyester resin/polyurethane resin solution was 5.8/33.0/61. A white easy-adhesive polyester film and a printed matter were obtained in the same manner as in Experimental Example 1, except that it was changed to 2.
Nitrogen-containing cationic antistatic agent solution (A) 2.83 parts by mass (solid content concentration 17.50% by mass)
Polyester water dispersion (Bw-1) 9.33 parts by mass Polyurethane resin solution (C-4) 26.00 parts by mass Particles (a) 16.31 parts by mass (silica particles with an average particle size of 0.45 μm, solid content concentration 40.00% by mass)
Particles (b) 5.44 parts by mass (silica particles with an average particle size of 1.00 μm, solid content concentration of 40.00% by mass)
Surfactant 0.15 parts by mass (silicone type, solid content concentration 10% by mass)
水とイソプロパノールの混合溶媒に、下記の塗剤を混合し、窒素元素を含有するカチオン系帯帯電防止剤/ポリエステル樹脂/ポリウレタン樹脂溶液の固形分質量比が5.8/33.0/61.2になるになるように変更した以外は、実験例1と同様にして、白色易接着性ポリエステルフィルムおよび印刷物を得た。
窒素元素を含有するカチオン系帯電防止剤溶液(A) 2.83質量部
(固形分濃度17.50質量%)
ポリエステル水分散体(Bw-1) 9.33質量部
ポリウレタン樹脂溶液(C-4) 26.00質量部
粒子(イ) 16.31質量部
(平均粒径0.45μmのシリカ粒子、 固形分濃度40.00質量%)
粒子(ロ) 5.44質量部
(平均粒径1.00μmのシリカ粒子、 固形分濃度40.00質量%)
界面活性剤 0.15質量部
(シリコーン系、固形分濃度10質量%) (Experimental example 11)
The following coating agent was mixed with a mixed solvent of water and isopropanol, and the solid content mass ratio of the cationic antistatic agent containing nitrogen element/polyester resin/polyurethane resin solution was 5.8/33.0/61. A white easy-adhesive polyester film and a printed matter were obtained in the same manner as in Experimental Example 1, except that it was changed to 2.
Nitrogen-containing cationic antistatic agent solution (A) 2.83 parts by mass (solid content concentration 17.50% by mass)
Polyester water dispersion (Bw-1) 9.33 parts by mass Polyurethane resin solution (C-4) 26.00 parts by mass Particles (a) 16.31 parts by mass (silica particles with an average particle size of 0.45 μm, solid content concentration 40.00% by mass)
Particles (b) 5.44 parts by mass (silica particles with an average particle size of 1.00 μm, solid content concentration of 40.00% by mass)
Surfactant 0.15 parts by mass (silicone type, solid content concentration 10% by mass)
(実験例12)
水とイソプロパノールの混合溶媒に、下記の塗剤を混合し、窒素元素を含有するカチオン系帯帯電防止剤/ポリエステル樹脂/ポリウレタン樹脂溶液の固形分質量比が5.8/33.0/61.2になるになるように変更し、樹脂固形分厚みが650nmとなる様に塗布した以外は、実験例1と同様にして、白色易接着性ポリエステルフィルムおよび印刷物を得た。
窒素元素を含有するカチオン系帯電防止剤溶液(A) 2.91質量部
(固形分濃度19.20質量%)
ポリエステル水分散体(Bw-1) 11.67質量部
ポリウレタン樹脂溶液(C-4) 32.50質量部
粒子 21.27質量部
(平均粒径2.00μmのベンゾグアナミン粒子、固形分濃度40.00質量%)
界面活性剤 0.45質量部
(シリコーン系、固形分濃度10質量%) (Experimental example 12)
The following coating agent was mixed with a mixed solvent of water and isopropanol, and the solid content mass ratio of the cationic antistatic agent containing nitrogen element/polyester resin/polyurethane resin solution was 5.8/33.0/61. A white easily adhesive polyester film and a printed material were obtained in the same manner as in Experimental Example 1, except that the resin solid content thickness was changed to 2 and the coating was performed so that the resin solid content thickness was 650 nm.
Nitrogen-containing cationic antistatic agent solution (A) 2.91 parts by mass (solid content concentration 19.20% by mass)
Polyester water dispersion (Bw-1) 11.67 parts by mass Polyurethane resin solution (C-4) 32.50 parts by mass Particles 21.27 parts by mass (benzoguanamine particles with an average particle size of 2.00 μm, solid content concentration 40.00 mass%)
Surfactant 0.45 parts by mass (silicone type, solid content concentration 10% by mass)
水とイソプロパノールの混合溶媒に、下記の塗剤を混合し、窒素元素を含有するカチオン系帯帯電防止剤/ポリエステル樹脂/ポリウレタン樹脂溶液の固形分質量比が5.8/33.0/61.2になるになるように変更し、樹脂固形分厚みが650nmとなる様に塗布した以外は、実験例1と同様にして、白色易接着性ポリエステルフィルムおよび印刷物を得た。
窒素元素を含有するカチオン系帯電防止剤溶液(A) 2.91質量部
(固形分濃度19.20質量%)
ポリエステル水分散体(Bw-1) 11.67質量部
ポリウレタン樹脂溶液(C-4) 32.50質量部
粒子 21.27質量部
(平均粒径2.00μmのベンゾグアナミン粒子、固形分濃度40.00質量%)
界面活性剤 0.45質量部
(シリコーン系、固形分濃度10質量%) (Experimental example 12)
The following coating agent was mixed with a mixed solvent of water and isopropanol, and the solid content mass ratio of the cationic antistatic agent containing nitrogen element/polyester resin/polyurethane resin solution was 5.8/33.0/61. A white easily adhesive polyester film and a printed material were obtained in the same manner as in Experimental Example 1, except that the resin solid content thickness was changed to 2 and the coating was performed so that the resin solid content thickness was 650 nm.
Nitrogen-containing cationic antistatic agent solution (A) 2.91 parts by mass (solid content concentration 19.20% by mass)
Polyester water dispersion (Bw-1) 11.67 parts by mass Polyurethane resin solution (C-4) 32.50 parts by mass Particles 21.27 parts by mass (benzoguanamine particles with an average particle size of 2.00 μm, solid content concentration 40.00 mass%)
Surfactant 0.45 parts by mass (silicone type, solid content concentration 10% by mass)
表1、表2に各実験例の評価結果を整理する。
Tables 1 and 2 summarize the evaluation results of each experimental example.
実験例1~7により得られた印刷物は、各種インキやトナーに対する密着性に優れ、特に紫外線(UV)硬化型インキのような活性エネルギー線硬化型インキ層との密着性については、高温高湿環境下に保管した場合においても、前記インキ層との密着性が低下することがないことがわかる。一方、実験例8~12は、易接着性塗布層を有する基材のA値、B/A値、水に対する接触角のいずれかが不適切である結果、帯電防止性や印刷後、高温高湿環境下に保管した場合において、各種インキ層との密着性において必ずしも満足できるものではなかった。
The printed matter obtained in Experimental Examples 1 to 7 has excellent adhesion to various inks and toners, and in particular, the adhesion to an active energy ray-curable ink layer such as ultraviolet (UV) curable ink is excellent at high temperature and high humidity. It can be seen that the adhesion to the ink layer does not deteriorate even when stored in an environment. On the other hand, in Experimental Examples 8 to 12, any of the A value, the B/A value, and the contact angle to water of the base material having an easy-adhesive coating layer was inappropriate. When stored in a humid environment, the adhesion to various ink layers was not necessarily satisfactory.
本発明によれば、多様なインキ組成物との密着に優れ、高温高湿環境下に保管した場合においても、インキ層との密着性が低下することがない印刷物の提供が可能となった。
According to the present invention, it has become possible to provide a printed material that is excellent in adhesion to various ink compositions and does not lose adhesion to the ink layer even when stored in a high-temperature and high-humidity environment.
細い実線 : 易接着性塗布層表面のN1sスペクトルの実測データ
点線 : N1sスペクトルをピーク分離したイオン化された窒素元素ピークを示す曲線
破線 : N1sスペクトルをピーク分離したイオン化されていな窒素元素ピークを示す曲線
(1) : イオン化された窒素元素ピーク
(2) : イオン化されていな窒素元素ピーク
Thin solid line: Measured data of the N1s spectrum of the surface of the easy-adhesive coating layer Dotted line: Curve showing the ionized nitrogen element peak separated from the N1s spectrum Broken line: Curve showing the non-ionized nitrogen element peak separated from the N1s spectrum (1): ionized nitrogen element peak (2): non-ionized nitrogen element peak
点線 : N1sスペクトルをピーク分離したイオン化された窒素元素ピークを示す曲線
破線 : N1sスペクトルをピーク分離したイオン化されていな窒素元素ピークを示す曲線
(1) : イオン化された窒素元素ピーク
(2) : イオン化されていな窒素元素ピーク
Thin solid line: Measured data of the N1s spectrum of the surface of the easy-adhesive coating layer Dotted line: Curve showing the ionized nitrogen element peak separated from the N1s spectrum Broken line: Curve showing the non-ionized nitrogen element peak separated from the N1s spectrum (1): ionized nitrogen element peak (2): non-ionized nitrogen element peak
Claims (3)
- ポリエステルフィルム基材上に易接着性塗布層を有し、前記易接着性塗布層上にUV硬化型インキ、溶剤型インキ、酸化重合型インキ、熱転写インキリボン、LBPトナーから選択される少なくとも1層のインキ層を積層してなる印刷物であって、前記易接着性塗布層表面のX線光電子分光法による表面元素分布測定に基づく窒素イオン濃度A(at%)と窒素元素比率B(at%)とが、下記式(i)(ii)を満たし、かつ易接着性塗布層表面の水に対する接触角θ H2Oが下記式(iii)を満たす印刷物。
(i)A(at%) > 0.4
(ii)2.0 ≦ B/A ≦ 5.0
(iii)50°≦θ H2O≦70° It has an easy-adhesive coating layer on a polyester film substrate, and at least one layer selected from UV-curing ink, solvent-based ink, oxidation polymerization ink, thermal transfer ink ribbon, and LBP toner on the easy-adhesive coating layer. Nitrogen ion concentration A (at%) and nitrogen element ratio B (at%) based on surface element distribution measurement by X-ray photoelectron spectroscopy on the surface of the easy-adhesive coating layer The printed matter satisfies the following formulas (i) and (ii), and the contact angle θ H 2 O of the easy-adhesive coating layer surface to water satisfies the following formula (iii).
(i) A (at%) > 0.4
(ii) 2.0 ≤ B/A ≤ 5.0
(iii) 50° ≤θH2O≤70 ° - 前記易接着性塗布層が、カチオン性帯電防止剤、ポリウレタン樹脂及びポリエステル樹脂を含む組成物が硬化されてなる請求項1に記載の印刷物。 The printed matter according to claim 1, wherein the easily adhesive coating layer is formed by curing a composition containing a cationic antistatic agent, a polyurethane resin and a polyester resin.
- 前記ポリエステルフィルム基材が、無機粒子及び/又はポリエステル樹脂に非相溶な熱可塑性樹脂を含有する白色ポリエステルフィルム基材である請求項1又は2に記載の印刷物。
3. The printed matter according to claim 1, wherein the polyester film base is a white polyester film base containing inorganic particles and/or a thermoplastic resin incompatible with the polyester resin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023514516A JPWO2022219970A1 (en) | 2021-04-12 | 2022-03-07 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-067144 | 2021-04-12 | ||
JP2021067144 | 2021-04-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022219970A1 true WO2022219970A1 (en) | 2022-10-20 |
Family
ID=83640291
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/009806 WO2022219970A1 (en) | 2021-04-12 | 2022-03-07 | Printed matter |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2022219970A1 (en) |
TW (1) | TW202248376A (en) |
WO (1) | WO2022219970A1 (en) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11105221A (en) * | 1997-10-08 | 1999-04-20 | Toyobo Co Ltd | Base material for magnetic recording card |
US20030003302A1 (en) * | 2001-05-16 | 2003-01-02 | Fahey Timothy Edward | Electrostatic dissipating polymeric multi-layer article or laminate |
WO2003055937A1 (en) * | 2001-12-27 | 2003-07-10 | Toyo Boseki Kabushiki Kaisha | Thermoplastic resin film and process for producing the same |
JP2008031345A (en) * | 2006-07-31 | 2008-02-14 | Toyobo Co Ltd | Heat shrinkable polyester-based film |
WO2010104626A1 (en) * | 2009-03-13 | 2010-09-16 | Exxonmobil Oil Corporation | Coated polymer films |
JP2012218309A (en) * | 2011-04-11 | 2012-11-12 | Mitsubishi Plastics Inc | Multilayered polyester film |
JP2014065869A (en) * | 2012-09-27 | 2014-04-17 | Nicca Chemical Co Ltd | Antistatic agent, antistatic laminate using the same, and method for manufacturing biaxially stretched antistatic film |
WO2018163941A1 (en) * | 2017-03-07 | 2018-09-13 | 東レ株式会社 | Method for producing printed material and printing machine |
WO2020166297A1 (en) * | 2019-02-13 | 2020-08-20 | 東洋紡株式会社 | Laminated polyester film |
WO2021024701A1 (en) * | 2019-08-02 | 2021-02-11 | 東洋紡株式会社 | White laminated polyester film |
WO2021182150A1 (en) * | 2020-03-09 | 2021-09-16 | 東洋紡株式会社 | White easy-adhesive polyester film |
-
2022
- 2022-03-07 JP JP2023514516A patent/JPWO2022219970A1/ja active Pending
- 2022-03-07 WO PCT/JP2022/009806 patent/WO2022219970A1/en active Application Filing
- 2022-04-08 TW TW111113385A patent/TW202248376A/en unknown
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11105221A (en) * | 1997-10-08 | 1999-04-20 | Toyobo Co Ltd | Base material for magnetic recording card |
US20030003302A1 (en) * | 2001-05-16 | 2003-01-02 | Fahey Timothy Edward | Electrostatic dissipating polymeric multi-layer article or laminate |
WO2003055937A1 (en) * | 2001-12-27 | 2003-07-10 | Toyo Boseki Kabushiki Kaisha | Thermoplastic resin film and process for producing the same |
JP2008031345A (en) * | 2006-07-31 | 2008-02-14 | Toyobo Co Ltd | Heat shrinkable polyester-based film |
WO2010104626A1 (en) * | 2009-03-13 | 2010-09-16 | Exxonmobil Oil Corporation | Coated polymer films |
JP2012218309A (en) * | 2011-04-11 | 2012-11-12 | Mitsubishi Plastics Inc | Multilayered polyester film |
JP2014065869A (en) * | 2012-09-27 | 2014-04-17 | Nicca Chemical Co Ltd | Antistatic agent, antistatic laminate using the same, and method for manufacturing biaxially stretched antistatic film |
WO2018163941A1 (en) * | 2017-03-07 | 2018-09-13 | 東レ株式会社 | Method for producing printed material and printing machine |
WO2020166297A1 (en) * | 2019-02-13 | 2020-08-20 | 東洋紡株式会社 | Laminated polyester film |
WO2021024701A1 (en) * | 2019-08-02 | 2021-02-11 | 東洋紡株式会社 | White laminated polyester film |
WO2021182150A1 (en) * | 2020-03-09 | 2021-09-16 | 東洋紡株式会社 | White easy-adhesive polyester film |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022219970A1 (en) | 2022-10-20 |
TW202248376A (en) | 2022-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7164046B2 (en) | White easy-adhesive polyester film | |
TWI406762B (en) | Laminated film | |
WO2021024701A1 (en) | White laminated polyester film | |
CN100404595C (en) | Biaxially oriented polyester film and release film | |
TWI664081B (en) | Laminated polyester film with voids | |
JP5331274B2 (en) | Release film | |
WO2022219970A1 (en) | Printed matter | |
JP4161251B2 (en) | White coated polyester film | |
WO2022176744A1 (en) | Void-containing polyester-based film | |
EP4234233A1 (en) | Highly adhesive polyester film | |
JP5155906B2 (en) | Release film | |
JP2022135888A (en) | Aqueous flexographic ink easily adhesive polyester film | |
JP2022142712A (en) | Easy adhesive polyester film for in-mold label | |
WO2022004263A1 (en) | Printed object | |
JP2022070213A (en) | Easy-adhesive polyester film | |
WO2023048028A1 (en) | White laminated polyester film | |
WO2024042879A1 (en) | Void-containing polyester-based easy adhesion film | |
JP2002273834A (en) | Laminated film | |
JPH1160766A (en) | Fine foam-containing polyester film and release paper for seal print |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22787898 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023514516 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22787898 Country of ref document: EP Kind code of ref document: A1 |