WO2022219758A1 - Device for performing pcr analysis of sample, pcr reactor, pcr system and pcr method - Google Patents

Device for performing pcr analysis of sample, pcr reactor, pcr system and pcr method Download PDF

Info

Publication number
WO2022219758A1
WO2022219758A1 PCT/JP2021/015513 JP2021015513W WO2022219758A1 WO 2022219758 A1 WO2022219758 A1 WO 2022219758A1 JP 2021015513 W JP2021015513 W JP 2021015513W WO 2022219758 A1 WO2022219758 A1 WO 2022219758A1
Authority
WO
WIPO (PCT)
Prior art keywords
pcr
sample
channel
opening
detection
Prior art date
Application number
PCT/JP2021/015513
Other languages
French (fr)
Japanese (ja)
Inventor
友幸 坂井
祐美子 合志
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to PCT/JP2021/015513 priority Critical patent/WO2022219758A1/en
Publication of WO2022219758A1 publication Critical patent/WO2022219758A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids

Definitions

  • the present invention relates to devices, PCR reactors, PCR systems and PCR methods for performing PCR analysis of samples, for example, those capable of temperature regulation and nucleic acid amplification.
  • the PCR (Polymerase Chain Reaction) method is widely used as a method for amplifying nucleic acids.
  • the PCR method is a method of amplifying the DNA of interest by repeating a thermal cycle (temperature cycle), in which one cycle consists of the following three consecutive steps (A) to (C).
  • B Binding of complementary primers to the single-stranded DNA (annealing).
  • C A step of replicating double-stranded DNA by allowing DNA polymerase to synthesize a complementary strand from the primer (elongation).
  • heat denaturation is performed at about 95°C, annealing at about 60-65°C, and extension at about 72°C.
  • a thermal cycler device that automatically controls the reaction temperature and reaction time is widely used in the PCR method.
  • a reaction tube containing a reaction solution is inserted into a well provided in a metal block, and the temperature of the metal block is controlled so as to meet preset conditions.
  • the metal block is designed to accommodate reaction tubes and microplates, and has a volume equal to or greater than that of the microplates to reduce temperature variations. As a result, the heat capacity of the metal block increases, so that it takes time to raise or lower the temperature, and it takes at least 30 minutes, typically 1 to 2 hours, to perform PCR.
  • Patent Document 1 describes a nucleic acid amplification device in which a microchannel chip having a meandering channel is brought into contact with a heat block set to two different temperature zones, and a thermal cycle is performed according to the number of meandering of the channel. ing.
  • a meandering flow path system PCR Such a system is called a meandering flow path system PCR, and it is only necessary to maintain the temperature of each heat block at a predetermined temperature. Therefore, the temperature transition of the reaction liquid is determined by the channel length and the flow rate of the reaction liquid, without depending on the heating and cooling speeds of the heat block.
  • Patent Document 2 a microchannel chip having one channel is brought into contact with a heat block set to two different temperature zones, and the PCR reaction solution in the channel is reciprocated between two different temperature zones.
  • a nucleic acid amplification device is described that performs thermal cycling at .
  • Such a system is called a reciprocating channel system PCR, and it is only necessary to maintain the temperature of each heat block at a preset temperature. Therefore, the temperature transition of the reaction solution is determined by the time the reaction solution is held in the temperature zone, not depending on the heating and cooling speeds of the heat block.
  • Patent Document 3 proposes a technique of an apparatus capable of multiplex nucleic acid measurement, in which a sample introduction inlet, a purification zone, a PCR zone, and a detection zone are provided in a primary flow channel within a cartridge.
  • both the meandering channel system and the reciprocating channel system can achieve high-speed PCR.
  • the contact area of the reaction solution on the channel wall surface is large, so if the initial template gene or the DNA polymerase that causes high costs for the reaction is small, adsorption to the channel wall surface will occur. , there is a possibility that the desired amount of amplification will not be achieved.
  • the reciprocating channel system since the reaction solution reciprocates in the same channel, the contact area of the reaction solution with the wall surface of the channel is smaller than in the meandering channel method, which is advantageous when the initial template gene and DNA polymerase are small. work to Therefore, the reciprocating channel system is considered advantageous for the diagnosis of infectious diseases, which requires low cost and high sensitivity.
  • Patent Document 2 which uses a reciprocating flow path method, employs fluorescence detection as a method for detecting genes amplified by PCR.
  • the number of detection items in multiplex detection depends on the fluorophore species. From the viewpoint of fluorescence wavelength resolution, the number of detection items is limited to about four, and it is difficult to apply detection to a larger number of items.
  • hybridization can be considered as a detection method for increasing the number of detected items.
  • a detection region multiple detection region
  • a DNA probe having a specific sequence is immobilized at a specific position in the region.
  • the probes capture the amplified gene after PCR.
  • the fixed position of the probe is changed depending on the type.
  • the type can be identified by detecting the location where the gene amplified by PCR is captured. Using this method, it is possible to increase the number of item detections.
  • Patent Document 2 when installing the multi-item detection area, a configuration like the device 101 shown in FIG. 1 can be considered.
  • a PCR region 103 capable of gene amplification is arranged between the pressure application section 105 and the pressure application section 106 by reciprocating the sample solution through the channel 102 .
  • a multiple detection region 108 is arranged via the channel 102 for gene detection using the hybridization.
  • a valve 107 is arranged on the channel 102 between the PCR area 103 and the multi-item detection area 108 to turn on/off the flow of liquid and air.
  • the valve 107 is closed, pressure is applied from the pressure application units 105 and 106, and the sample solution introduced from the sample solution introduction unit 104 is sent back and forth in the PCR region 103 to cause gene amplification reaction.
  • the valve 107 is opened, pressure is applied from the pressure applying unit 105, the reaction liquid is sent to the multi-item detection area 108, and the amplified gene is detected.
  • Patent Document 3 introduces a device having a structure in which the primary channel is provided with an inlet, a purification zone, a PCR reaction zone, and a detection zone, and the primary channel is further provided with one or more air vent ports. It is Since a simple opening (port) that can apply pressure is installed on the device, there is no need to install a valve.
  • the PCR reaction zone includes a first temperature control zone and a second temperature control zone, and PCR is performed by reciprocating the sample solution through the two temperature zones.
  • Air vent ports are provided at both ends of the PCR reaction zone, and pressure is applied to the two ports during the reciprocating liquid transfer.
  • an object of the present invention is to suppress an increase in device cost and to accurately transfer a sample solution during PCR in a device, a PCR reaction apparatus, a PCR system, and a PCR method for performing PCR analysis of a sample.
  • An example of a device for performing PCR analysis of a sample comprises: a sample introduction part for introducing a sample; a PCR section for amplifying the samples by transporting the samples a plurality of times to a plurality of temperature zones; a pressure application opening for applying pressure to transport the sample; with The sample introduction section, the PCR section, and the pressure application opening are arranged in this order in one first channel,
  • the first channel has a first branching part that branches into a second channel between the sample introduction part and the PCR part,
  • the second channel comprises a detection unit for independently detecting a plurality of components contained in the sample,
  • the second channel has an openable portion on the opposite side of the first channel with respect to the sensing portion.
  • An example of the PCR reaction device is A PCR reactor configured for use with the device described above, comprising: a temperature adjustment unit that adjusts temperatures in the plurality of temperature zones; a pressure application unit that applies pressure to the pressure application opening; opening means for opening the openable portion; detection means for detecting each component of the sample in the detection unit; Prepare.
  • An example of the PCR system according to the present invention comprises the device described above and the PCR reactor described above.
  • the PCR method according to the present invention is A PCR method using the device described above and the PCR reactor described above, placing the device on the apparatus; introducing a sample through the sample introduction portion of the device; introducing a sample into the first channel of the device by the pressure applying portion of the apparatus; opening the openable portion of the device; transporting the sample to the plurality of temperature zones of the device a plurality of times by the pressure applying unit of the apparatus; conveying a sample to the sensing portion of the device by the pressure applying portion of the apparatus; detecting each component of a sample in the detection portion of the device by the detection means of the apparatus; Prepare.
  • High-speed gene amplification multi-item detection device with configuration modified from conventional technology
  • the top view of the high-speed gene amplification multi-item detection device of Example 1 of the present invention AA sectional view of FIG. 2(a) BB cross-sectional view of FIG. 2(a) Cross-sectional view of the PCR system of Example 1 (corresponding to the AA cross-sectional view in FIG. 2(a)) Cross-sectional view of the PCR system in FIG. 5 (corresponding to the BB cross-sectional view in FIG. 2(a)) Cross-sectional view of a modified example of the PCR system of Example 1 (corresponding to the BB cross-sectional view of FIG.
  • An example of determining a target DNA in a specimen in which multiple types of target DNA may exist is shown. It also includes the case where multiple types of target DNA are present in the sample.
  • FIG. 2(a) is a top view of the device 109, which is a gene amplification multiitem detection device
  • FIG. 2(b) is an enlarged view of the PCR region
  • FIG. 3 is a sectional view of FIG. 2(a) AA.
  • 4 shows a cross-sectional view of FIG. 2(a) BB.
  • the device 109 is a device for performing PCR analysis of samples.
  • the device 109 includes a sample introduction portion 110, a pressure application region 111, a washing solution introduction portion 112, a PCR region 113 (PCR portion), and a multiple detection region 114 (detection portion).
  • Device 109 also includes a groove that connects sample introduction portion 110 , pressure application region 111 , washing solution introduction portion 112 , PCR region 113 , and multi-item detection region 114 .
  • the groove depth is, for example, 0.8 mm.
  • the sample introduction part 110 and the multiple detection area 114 are arranged on the opposite side of the pressure application area 111 with respect to the PCR area 113 .
  • the device 109 is preferably made of a material that is stable against temperature changes. Furthermore, it is preferably made of a material that is optically transparent and has low autofluorescence. Such materials include glass, cycloolefin polymer, acrylic resin, polycarbonate, and the like. Further, when optical measurement is performed from the cover seal side, which will be described later, the material of the device 109 may be an optically opaque material (such as metal).
  • the manufacturing method of the device 109 is not particularly limited, but it is possible using injection molding, 3D printer, cutting, etc., for example.
  • a cover seal 115 is applied to the underside of the device 109 so that the grooves described above form flow channels.
  • the directions of “up” and “down” represent, for example, the vertical upward direction and the vertical downward direction when the device 109 is arranged in use, but the directions can be defined arbitrarily.
  • the cover seal 115 is configured using a film, for example.
  • An adhesive substance may be applied to one side of the cover seal 115, or a material that can be crimped may be used.
  • a material that can be crimped may be used as the material of the cover seal 115.
  • optically transparent resins such as cycloolefin polymer, acrylic resin, and polycarbonate are suitable, but not limited to these.
  • a specific configuration of the device 109 is shown below.
  • the channel 116, the branch part 117 (first branch part), the channel 118, and the PCR area 113 are arranged in this order from the sample introduction part 110 toward the pressure application area 111.
  • first channel including channel 116 and channel 118, sample introduction section 110, PCR region 113, and pressure applying region 111 are arranged in this order.
  • the first flow channel has the above-described branching portion 117 between the sample introduction portion 110 and the PCR region 113, and at this branching portion 117, it branches into another flow channel (flow channel 122, which will be described later).
  • the sample introduction unit 110 is used to introduce a sample into the device 109.
  • the sample introduction part 110 is formed, for example, by providing a through hole in the device 109 and closing one end (lower end in FIG. 3) of the through hole with a cover seal 115 .
  • the PCR region 113 is composed of meandering channels as shown in FIG. 2(b).
  • the device 109 When the device 109 is installed in the apparatus, it is provided in the apparatus main body described later below the two temperature zones of the first temperature zone 119 (denaturation temperature zone) and the second temperature zone 120 (extension/annealing temperature zone). Two heat blocks (heat blocks 201 and 202 in FIG. 5) are arranged. Thus, the device 109 has multiple temperature zones (two in this example).
  • the PCR region 113 is used to amplify the sample by transporting the sample to each of these multiple temperature zones multiple times (details will be described later with reference to FIG. 9 and the like).
  • a pressure application opening 121 which is an opening, is provided on the side of the cover seal 115 of the pressure application region 111.
  • the pressure applying opening 121 is used to apply pressure to transport the sample to the channel.
  • a first channel including channel 116 and channel 118 is connected to multi-item detection area 114 from branch 117 via channel 122 (second channel).
  • One end of the multi-item detection area 114 is connected to the channel 122, and the other end is provided with a multi-item detection area tip 129.
  • a water absorption pad 123 and an opening/closing port 124 are arranged at the multi-item detection area tip portion 129 .
  • channel 122 includes absorbent pad 123 and open/close port 124 on the opposite side of multi-item detection region 114 from the first channel, which includes channel 116 and channel 118 .
  • the water absorbing pad 123 is preferably made of a material that does not decompose by absorbing the solution. Materials for the water absorbent pad 123 include pulp, glass fiber, and cellulose fiber. It is also possible to omit the water absorption pad 123 .
  • the open/close port 124 is formed by providing an opening in the cover seal 115 .
  • the open/close port 124 itself is open, and can be closed by blocking the open/close port 124 from the outside of the device 109 .
  • the open/close port 124 is configured to be openable and closable (that is, openable and closable).
  • a plurality of fixed probes 125 are fixed to the multi-item detection area 114 .
  • Six fixed probes 125 are provided, for example, and each consists of DNA of 30 bases with a different sequence.
  • Each fixed probe is fixed on the bottom surface (upper side in FIG. 4) of the multi-item detection area 114 at intervals of 0.5 mm. Methods for immobilizing DNA probes on resin devices are well known in the art.
  • the multiple detection area 114 is used to independently detect multiple components (eg, target DNA) contained in the sample.
  • the channel 122 includes a branching portion 126 (second branching portion) that branches into a channel 127 (cleaning liquid channel) that is another channel.
  • the channel 122 is connected to the cleaning liquid introduction section 112 via a channel 127 .
  • the channel 127 is a channel for conveying the cleaning liquid.
  • a cleaning liquid port 128 which is an opening, is provided on the side of the cover seal 115 of the cleaning liquid introduction section 112 , and the cleaning liquid can be introduced into the channel of the device 109 from the cleaning liquid port 128 .
  • the width of channel 116, channel 118, channel 122, and channel in PCR region 113 is, for example, 0.8 mm, and the width of channel 127 is a smaller value (eg, 0.2 mm).
  • FIG. 5 shows a cross-sectional view when the device 109 is installed in the PCR reactor. This cross section corresponds to the position AA in FIG. 2(a).
  • a PCR reactor is configured for use with device 109 .
  • the combination of device 109 and PCR reactor is referred to as a PCR system in this example.
  • the apparatus main body 200 that houses the device 109 is preferably made of a material that is highly adiabatic, stable against temperature changes, and resistant to attack by the sample solution used.
  • materials include polyetheretherketone (PEEK) and polycarbonate.
  • Heat blocks 201 and 202 are built into the device main body 200 . These two heat blocks are equipped with heaters and temperature sensors for measuring temperature. The heater and the temperature sensor are connected to a temperature control unit 203, and each heat block is controlled at a constant temperature. Heat blocks 201 and 202 regulate the temperature of first temperature zone 119 and second temperature zone 120, respectively.
  • a pressure channel 204 is formed in the device main body 200 at a position corresponding to the pressure application opening 121 of the device 109 .
  • the pressure channel 204 is connected through a tube 205 to a syringe 206 (pressure applying section).
  • a cylinder within syringe 206 can be driven by actuator 207 . By driving the actuator 207 and pushing/pulling the cylinder, it becomes possible to apply positive pressure or negative pressure to the channel inside the device 109 . Thus, the syringe 206 applies pressure to the pressure applying opening 121 .
  • the syringe 206 and the actuator 207 are used as the pressure applying section, but other means such as a micro fan or diaphragm pump may be used as the pressure applying section. It is preferable that the volume of the channel between the pressure applying opening 121 and the pressure applying part (for example, the syringe 206) is as small as possible. , the tube diameter of the tube 205 is 0.5 mm, and the tube length is 10 mm.
  • the upper part of the device 109 is covered with a device cover 208 made of resin. It is preferable that the device cover 208 is made of a material that has a high thermal insulation property and is resistant to corrosion by the sample solution used. Such materials include PEEK and polycarbonate.
  • the apparatus cover 208 is provided with a cover opening 209 at a portion corresponding to the sample introduction section 110 of the device 109 .
  • the PCR reactor includes a sample inlet cover 210 (sealing member), which can be placed in cover opening 209 .
  • the outer diameter of the sample introduction port cover 210 is smaller than the inner diameter of the cover opening 209 , and the inner diameter of the sample introduction port cover 210 is larger than the opening of the sample introduction part 110 .
  • the sample inlet cover 210 has a cylindrical shape with a bottom, and has a structure in which the sample solution that may adhere to the periphery of the sample introduction part 110 does not adhere to the device cover 208 .
  • the sample introduction port cover 210 is connected to a solenoid 211. By driving the solenoid 211, the sample introduction port cover 210 is driven up and down to seal the sample introduction portion 110 at a predetermined timing.
  • FIG. 6 shows a cross-sectional view of the PCR system of FIG. This cross section corresponds to the position of BB in FIG. 2(a).
  • a detection opening 212 is provided above the device cover 208 at a position corresponding to the multi-item detection area 114 .
  • An irradiation detection unit 213 (detection means) for detecting fluorescence in the multi-item detection region 114 is arranged near the detection aperture 212 . The irradiation detection unit 213 detects each component of the sample in the multi-item detection area 114 .
  • a laser beam oscillated from a laser 214 which is a light source, has its beam width expanded by a beam expander 215, and is reflected by a dichroic mirror 216 that reflects a predetermined wavelength (for example, near the excitation wavelength of a phosphor used for PCR),
  • the light is collected by the objective lens 217 and projected onto the multi-item detection area 114 of the device 109 .
  • Fluorescence excited by laser light in the multi-item detection area 114 and emitted is collected by the objective lens 217, transmitted through the dichroic mirror 216, and cuts below a predetermined wavelength (fluorescence wavelength of the phosphor used for PCR). Background light is removed by the filter 218 and imaged on the CCD camera 220 by the imaging lens 219 .
  • Other light sources such as mercury lamps, xenon lamps, and light emitting diodes may be used as the light source.
  • a heat block 221 containing a heater and a temperature sensor is arranged below the multi-item detection area 114 in the device main body 200. , is set to a predetermined temperature (50° C.).
  • An opening is provided below the opening/closing port 124 in the device main body 200, and an opening/closing cap 222 (sealing member) is arranged in the opening.
  • a cam 224 is arranged below the cap support rod 223 connected to the opening/closing cap 222 .
  • a motor 225 is connected to the cam 224. When the motor 225 rotates, the cam 224 rotates and the cap support rod 223 is driven up and down.
  • the opening/closing port 124 of the device 109 can be opened/closed by the opening/closing cap 222 .
  • the opening/closing cap 222 , the cap support rod 223 , the cam 224 and the motor 225 act as opening means for opening the opening/closing port 124 and sealing means for sealing the opening/closing port 124 .
  • the open/close port 124 is an opening provided in the device 109, and the open/close port 124 is closed or opened by movement of the open/close cap 222.
  • FIG. 7 shows a cross-sectional view of a variant of the openable part. This cross section corresponds to the position of BB in FIG. 2(a).
  • a method of opening the cover seal 115 affixed to the device 109 by a needle 230 is adopted as the opening/closing method of the tip portion 129 of the multi-item detection region.
  • the lower surface of the tip 129 of the multi-item detection area of the device 109 is covered with a cover seal 115 and blocked.
  • a needle 230 is arranged below the tip 129 of the multi-item detection area in the device.
  • a motor 232 with a cam 231 is arranged at the lower end of the needle 230 . Rotation of the motor 232 rotates the cam 231 and drives the needle 230 up and down, allowing it to pierce and open the cover seal 115 under the multi-detection area tip 129 of the device 109 .
  • the openable portion is constructed using a cover seal 115 provided on the device 109 and the opening means for opening this openable portion is a needle 230 which pierces the cover seal 115.
  • the opening means for opening this openable portion is a needle 230 which pierces the cover seal 115.
  • the opening/closing port 124 can be opened and closed, and more flexible control is possible.
  • the device 109 can be manufactured more easily, the initial sealing operation can be omitted, and sealing before opening can be realized more reliably.
  • a cleaning liquid channel 226 is arranged below the cleaning liquid port 128. As shown in FIG.
  • the cleaning liquid flow path 226 is connected to a syringe 228 via a tube 227 .
  • An SSC (Saline Sodium Citrate) buffer for washing is stored in the syringe 228 .
  • a cylinder within the syringe 228 is actuatable by an actuator 229 , and by actuating the actuator 229 and pushing the cylinder, a wash buffer can be introduced into the flow path of the device 109 .
  • Fig. 8 shows a schematic diagram of the primer set used for PCR. Both primers consist of 20-base oligo DNA having a sequence complementary to the target DNA. The 5' end of one primer 300 is modified with a fluorescent substance 301 . A tag sequence 304 is bound to the 5' end of the other primer 302 via a spacer 303 . The tag sequence 304 is composed of 30-base oligo DNA having a sequence complementary to the immobilized probe 125 of the multiple detection region 114 .
  • the spacer 303 has the function of inhibiting the extension reaction by the polymerase.
  • the structure of spacer 303 is not particularly limited as long as it can inhibit the elongation reaction by polymerase, but preferably includes a nucleic acid derivative or a non-nucleic acid derivative. Due to the presence of the spacer 303, the tag sequence portion does not become double-stranded during PCR, and the resulting PCR product can be a single-stranded DNA tag and a fluorescent substance bound together.
  • the primer set is prepared for each target DNA.
  • Each tag sequence of each primer set has a different sequence.
  • Immobilized probes 125 having sequences complementary to each tag sequence are immobilized at different positions of the multiple detection region 114 .
  • a reaction solution is sent to the multi-item detection area 114, hybridization reaction is performed, and the fluorescence measurement position in the multi-item detection area 114 is specified, so that a plurality of components contained in the specimen are detected. (eg, multiple types of target DNA) can be determined.
  • a method including the following steps is performed using device 109 and a PCR reactor.
  • the device 109 is placed in the PCR reactor (for example, in the device main body 200).
  • the temperature controller 203 sets the heat block 201 to the temperature in the denaturation temperature range and the heat block 202 to the temperature in the annealing/extension temperature range.
  • the temperature in the denaturing temperature range is preferably 90 to 100°C, more preferably 95°C.
  • the temperature in the annealing/extension temperature range is preferably 40 to 80°C, more preferably 55 to 65°C.
  • the heat block 221 is set to a temperature (50° C.) suitable for hybridization reaction.
  • the reagent solution contains a mixture of a primer set that specifically reacts with multiple types of target DNA, a thermostable polymerase, and four types of deoxyribonucleoside triphosphates (dATP, dCTP, dGTP, and dTTP).
  • Fig. 9 shows the operation flow from sample reaction liquid introduction to multi-item detection unit liquid transfer.
  • the motor 225 is driven, the cap support rod 223 is shifted upward, and the opening/closing port 124 is closed by the opening/closing cap 222 (a).
  • the syringe 206 is sucked, negative pressure is applied in the channel of the device 109, and the sample reaction liquid is moved to the denaturation temperature zone (for example, the first temperature zone 119) in the channel of the device 109 (c). That is, the sample is introduced into the first channel of device 109 by means of syringe 206 via pressure application region 111 .
  • the denaturation temperature zone for example, the first temperature zone 119
  • the motor 225 is driven to shift the cap support rod 223 downward and open the open/close port 124 (d).
  • the solenoid 211 is driven to close the sample introduction part 110 with the sample introduction port cover 210 (e). After this step, the sample will not flow back to the sample introduction section 110 when the sample is transported.
  • the sample reaction solution is kept in the elongation/annealing temperature range and waits for a predetermined time B (7 seconds in this example) (h).
  • the syringe 206 is sucked, negative pressure is applied in the channel of the device 109, and the sample reaction liquid is moved to the denaturation temperature zone in the channel of the device 109 (i).
  • the sample reaction solution is kept in the denaturing temperature zone and waits for a predetermined time C (3 seconds in this embodiment) (j).
  • the above operations (g) to (j) are repeated a predetermined number of times (40 times in this embodiment). That is, the syringe 206 conveys the sample to the first temperature zone 119 and the second temperature zone 120 of the device 109 multiple times. In this example, the sample is cycled between first temperature zone 119 and second temperature zone 120 multiple times. A predetermined region of the target DNA is thereby amplified.
  • the syringe 206 is pushed to apply positive pressure to the channel of the device 109 to move the sample reaction liquid to the multi-item detection area 114 (k).
  • the syringe 206 delivers the sample to the multi-item detection area 114 of the device.
  • the cross-sectional area of channel 127 is smaller than the cross-sectional area of channel 122, the sample reaction liquid preferentially flows through channel 122, and the sample reaction liquid that flows into channel 127 is lost. quantity is restrained.
  • step (k) above if the syringe 228 is fixed, the sample reaction liquid is less likely to flow into the channel 127 . Loss can be further reduced by making it smaller than the area.
  • the actuator 229 After maintaining the sample reaction liquid in the multi-item detection area 114 for a certain period of time, the actuator 229 is driven to detect the washing liquid filled in the syringe 228 through the washing liquid introduction part 112, the flow path 127, and the flow path 122. Anything other than the PCR product introduced into the region 114 and hybridized to the immobilized probe 125 is washed away toward the absorbent pad 123 .
  • each component of the sample is detected in the multi-item detection area 114 by the irradiation detection unit 213 .
  • the multi-item detection region 114 and the irradiation detection unit 213 perform hybridization as the gene multiple-item detection means, so the number of detection items can be increased.
  • DNA is used as the target, but in the case of RNA such as viruses, reverse transcription reaction may be performed outside the device and cDNA may be introduced as a sample.
  • a reverse transcription reaction region may be provided in the channel of the device 109, a heat block for reverse transcription reaction may be provided in the apparatus, and the reverse transcription reaction may be performed inside the device 109.
  • fluorescence detection is used as the detection method in this embodiment, other detection methods such as light absorption, reflectance, chemiluminescence, electrochemiluminescence, and light scattering may be used.
  • the device 109 (especially the opening/closing port 124) does not have a valve. Therefore, in multi-item detection using reciprocating flow channel type PCR, stable PCR can be provided by suppressing an increase in cost due to installing a valve in the device and appropriately moving the reaction solution. It should be noted that it is possible to arrange valves provided separately from the device 109 outside the device 109 , for example outside the open/close port 124 .
  • Example 2 provides a simple device configuration that does not require a sample inlet cover. Hereinafter, explanations of parts common to the first embodiment may be omitted.
  • Example 2 Device 109 according to Example 1 (FIG. 2) is the same as Example 1 except that the cross-sectional area (e.g., width and depth) of some channels is different and sample inlet cover 210 is not required.
  • the cross-sectional area e.g., width and depth
  • sample inlet cover 210 is not required.
  • Fig. 10 shows a schematic diagram of the gene amplification multiitem detection device of this embodiment.
  • the channel 130 is a portion that connects the sample introduction portion 110 and the branch portion 117 in the first channel. Width of channel 122 (second channel) provided between branching portion 117 and multi-item detection region 114, and width and depth of channel 130 provided between sample introduction portion 110 and branching portion 117 Other than that, it is the same as Example 1.
  • the channel 118 has a width of 0.8 mm and a depth of 0.8 mm
  • the channel 122 has a width of 2.0 mm and a depth of 0.8 mm
  • the channel 130 has a width of 0.2 mm and a depth of 0.2 mm.
  • FIG. 11 shows the operation flow of liquid transfer from the introduction of the sample reaction liquid to the multi-item detection unit after the device 109 is installed in the PCR reactor. Details will be described below with reference to FIGS. 5 and 7.
  • FIG. 11 shows the operation flow of liquid transfer from the introduction of the sample reaction liquid to the multi-item detection unit after the device 109 is installed in the PCR reactor. Details will be described below with reference to FIGS. 5 and 7.
  • FIG. 11 shows the operation flow of liquid transfer from the introduction of the sample reaction liquid to the multi-item detection unit after the device 109 is installed in the PCR reactor. Details will be described below with reference to FIGS. 5 and 7.
  • FIG. 11 shows the operation flow of liquid transfer from the introduction of the sample reaction liquid to the multi-item detection unit after the device 109 is installed in the PCR reactor. Details will be described below with reference to FIGS. 5 and 7.
  • FIG. 11 shows the operation flow of liquid transfer from the introduction of the sample reaction liquid to the multi-item detection unit after the device 109 is installed in
  • the syringe 206 is sucked, negative pressure is applied in the channel of the device 109, and the sample reaction liquid is moved to the denaturing temperature zone in the channel of the device 109 (b).
  • the motor 232 is driven 1/4 turn to lift the needle 230 to open the cover seal 115, and the motor 232 is driven 3/4 turn to lower the needle 230 to move the multi-item detection area tip 129. Open (c).
  • the sample reaction solution is kept in the elongation/annealing temperature zone and waits for a predetermined time B (7 seconds in this example) (f).
  • the syringe 206 is sucked, negative pressure is applied in the channel of the device 109, and the sample reaction liquid is moved to the denaturation temperature zone in the channel of the device 109 (g).
  • the sample reaction solution is kept in the denaturation temperature zone and waits for a predetermined time C (3 seconds in this example) (h).
  • a predetermined region of the target DNA is amplified by repeating the above operations (e) to (h) a predetermined number of times (40 times in this embodiment).
  • the syringe 206 is pushed to apply positive pressure to the channel of the device 109 to move the sample reaction liquid to the multi-item detection area 114 (i).
  • the distribution amount of the sample reaction liquid to the channels 122 and 130 is approximately proportional to the cross-sectional area (for example, the square of the channel diameter), assuming that the channels are simple tubes.
  • the process after liquid transfer to the multi-item detection area 114 is the same as in the first embodiment.
  • Example 2 as in Example 1, in multi-item detection using reciprocating flow path PCR, the cost increase due to installing a valve in the device can be suppressed, and the reaction solution can be moved appropriately. Stable PCR can be provided.
  • DESCRIPTION OF SYMBOLS 109... Device 110 Sample introduction part 111... Pressure application area
  • Tip of multi-item detection area DESCRIPTION OF SYMBOLS 130... Flow path 200... Apparatus main body 201... Heat block (temperature control part) 202 ... Heat block (temperature control unit) 203... Temperature control part 204... Pressure channel 205... Tube 206... Syringe 207... Actuator 208... Apparatus cover 209... Cover opening 210... Sample inlet cover 211... Solenoid 212... Detection opening 213... Irradiation detection part (detection means ) DESCRIPTION OF SYMBOLS 214... Laser 215... Beam expander 216... Dichroic mirror 217... Objective lens 218... Optical filter 219... Imaging lens 220...
  • CCD camera 221 Heat block 222... Opening/closing cap 223... Cap supporting rod 224... Cam 225... Motor 226... Washing liquid flow path 227 Tube 228 Syringe 229 Actuator 230 Needle 231 Cam 232 Motor 300 Primer 301 Phosphor 302 Primer 303 Spacer 304 Tag arrangement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)

Abstract

This device for performing PCR analysis of a sample comprises: a sample introduction part for introducing the sample; a PCR part for transporting the sample multiple times to each of multiple temperature zones and amplifying the sample; and a pressure application opening for applying pressure for transporting the sample. The sample introduction part, the PCR part and the pressure application opening are positioned in this order in a first flow channel. The first flow channel is provided with a first branch section that branches into a second flow channel between the sample introduction part and the PCR part. The second flow channel is provided with a detection part for independently detecting multiple components contained in the sample. The second flow channel is provided with an openable section on the opposite side of the first flow channel with respect to the detection part.

Description

サンプルのPCR解析を実行するためのデバイス、PCR反応装置、PCRシステムおよびPCR方法Device, PCR reactor, PCR system and PCR method for performing PCR analysis of samples
 本発明は、サンプルのPCR解析を実行するためのデバイス、PCR反応装置、PCRシステムおよびPCR方法に関し、たとえば、温度調整及び核酸増幅が可能なものに関する。 The present invention relates to devices, PCR reactors, PCR systems and PCR methods for performing PCR analysis of samples, for example, those capable of temperature regulation and nucleic acid amplification.
 核酸を増幅する方法としてPCR(Polymerase Chain Reaction)法が広く用いられている。PCR法は、以下の(A)~(C)の連続した3つのステップを1サイクルとするサーマルサイクル(温度サイクル)を複数回繰り返して、目的のDNAを増幅する方法である。
 (A)鋳型となる二本鎖DNAを熱変性して一本鎖DNAにするステップ(変性)。
 (B)一本鎖DNAに相補的なプライマを結合するステップ(アニーリング)。
 (C)DNAポリメラーゼを作用させ、プライマから相補鎖合成を行なうことにより二本鎖DNAを複製するステップ(伸長)。
The PCR (Polymerase Chain Reaction) method is widely used as a method for amplifying nucleic acids. The PCR method is a method of amplifying the DNA of interest by repeating a thermal cycle (temperature cycle), in which one cycle consists of the following three consecutive steps (A) to (C).
(A) A step of thermally denaturing double-stranded DNA as a template into single-stranded DNA (denaturation).
(B) Binding of complementary primers to the single-stranded DNA (annealing).
(C) A step of replicating double-stranded DNA by allowing DNA polymerase to synthesize a complementary strand from the primer (elongation).
 典型的には、熱変性は95℃程度、アニーリングは60~65℃程度、伸長は72℃程度で実施される。 Typically, heat denaturation is performed at about 95°C, annealing at about 60-65°C, and extension at about 72°C.
 PCR法には、反応温度及び反応時間を自動で制御するサーマルサイクラ装置が広く用いられている。金属ブロックに設置されたウェルに反応液が導入された反応チューブを挿入し、予め設定した条件となるように金属ブロックの温度が制御される。金属ブロックは、反応チューブやマイクロプレートを設置可能に設計され、温度ばらつきを低減するためにマイクロプレートと同等以上の体積を有している。これにより金属ブロックの熱容量が大きくなるため昇温や降温に時間がかかってしまい、PCRを実施するには少なくとも30分以上、典型的には1~2時間を要する。 A thermal cycler device that automatically controls the reaction temperature and reaction time is widely used in the PCR method. A reaction tube containing a reaction solution is inserted into a well provided in a metal block, and the temperature of the metal block is controlled so as to meet preset conditions. The metal block is designed to accommodate reaction tubes and microplates, and has a volume equal to or greater than that of the microplates to reduce temperature variations. As a result, the heat capacity of the metal block increases, so that it takes time to raise or lower the temperature, and it takes at least 30 minutes, typically 1 to 2 hours, to perform PCR.
 近年、PCRを高速化するために、基板に形成された微細な流路(マイクロ流路チップ)を使ってPCRを行なう方式が提案されている。さらに、変性とアニーリングの2つの温度帯を繰り返すサーマルサイクルでPCRを行なう2ステップPCRと呼ばれる方式も提案されている。アニーリングステップと伸長ステップとを同時に実施するため、時間の短縮ができる。 In recent years, in order to speed up PCR, a method of performing PCR using a fine channel (microchannel chip) formed on a substrate has been proposed. Furthermore, a method called 2-step PCR has been proposed in which PCR is performed in a thermal cycle in which two temperature zones of denaturation and annealing are repeated. Since the annealing step and the elongation step are performed simultaneously, the time can be shortened.
 前記2ステップPCRとマイクロ流路チップを組み合わせた方式がいくつか提案されている。 Several methods have been proposed that combine the two-step PCR and the microfluidic chip.
 特許文献1では、2つの異なる温度帯に設定されたヒートブロック上に蛇行流路を有するマイクロ流路チップを接触させ、流路の蛇行回数に応じたサーマルサイクルを実施する核酸増幅装置が記載されている。このような方式は蛇行流路方式PCRと呼ばれ、各ヒートブロックの温度を予め設定した所定の温度に保持するだけで良い。したがって、反応液の温度遷移がヒートブロックの加熱及び冷却の速度に依存せず、流路長と反応液の流速によって決定される。 Patent Document 1 describes a nucleic acid amplification device in which a microchannel chip having a meandering channel is brought into contact with a heat block set to two different temperature zones, and a thermal cycle is performed according to the number of meandering of the channel. ing. Such a system is called a meandering flow path system PCR, and it is only necessary to maintain the temperature of each heat block at a predetermined temperature. Therefore, the temperature transition of the reaction liquid is determined by the channel length and the flow rate of the reaction liquid, without depending on the heating and cooling speeds of the heat block.
 特許文献2では、2つの異なる温度帯に設定されたヒートブロック上に1本の流路を有するマイクロ流路チップを接触させ、流路内のPCR反応液を2つの異なる温度帯を往復させることでサーマルサイクルを実施する核酸増幅装置が記載されている。このような方式は往復流路方式PCRと呼ばれ、各ヒートブロックの温度を予め設定した所定の温度に保持するだけで良い。したがって、反応液の温度遷移がヒートブロックの加熱及び冷却の速度に依存せず、反応液が温度帯に保持される時間によって決定される。 In Patent Document 2, a microchannel chip having one channel is brought into contact with a heat block set to two different temperature zones, and the PCR reaction solution in the channel is reciprocated between two different temperature zones. A nucleic acid amplification device is described that performs thermal cycling at . Such a system is called a reciprocating channel system PCR, and it is only necessary to maintain the temperature of each heat block at a preset temperature. Therefore, the temperature transition of the reaction solution is determined by the time the reaction solution is held in the temperature zone, not depending on the heating and cooling speeds of the heat block.
 近年、薬剤耐性菌が引き起す敗血症による死者増加、新型コロナによる経済へのダメージなどにより、感染症検査の重要性が増している。感染症検査では、使用者は検査技師や看護師であるため、低コストかつ簡易操作性が要求される。また、検査時間の短縮が治療効果向上や入院などの治療コスト低減に繋がる。さらに、複数種の原因菌が考えられるため、同時に複数種類の原因菌を特定できる多項目(マルチプレックス)検出が重要となる。 In recent years, the importance of infectious disease testing has increased due to the increase in deaths from sepsis caused by drug-resistant bacteria and the economic damage caused by the new coronavirus. In infectious disease testing, users are laboratory technicians and nurses, so low cost and simple operability are required. In addition, shortening the examination time leads to improvement in treatment effect and reduction in treatment costs such as hospitalization. Furthermore, since multiple types of causative bacteria are conceivable, multi-item (multiplex) detection that can identify multiple types of causative bacteria at the same time is important.
 感染症診断に向けて、PCRを含んだアッセイを臨床現場でも使えるカートリッジ内で行うための技術が開発されている。特許文献3では、カートリッジ内にサンプル導入用入口、精製ゾーン、PCRゾーンおよび検出ゾーンを一次流路に備えたマルチプレックス核酸測定を可能とする装置の技術が提案されている。 Aiming at diagnosing infectious diseases, technology is being developed to perform assays including PCR in cartridges that can be used in clinical settings. Patent Document 3 proposes a technique of an apparatus capable of multiplex nucleic acid measurement, in which a sample introduction inlet, a purification zone, a PCR zone, and a detection zone are provided in a primary flow channel within a cartridge.
米国特許出願公開第2010/0167288号明細書U.S. Patent Application Publication No. 2010/0167288 国際公開第2016/006612号パンフレットInternational Publication No. 2016/006612 pamphlet 米国特許出願公開第2012/0178091号明細書U.S. Patent Application Publication No. 2012/0178091
 PCRを使った感染症診断では、時間の短縮が重要となる。蛇行流路方式、往復流路方式ともにPCRの高速化を達成し得る。蛇行流路方式では、反応液の流路壁面の接触面積が多くなるため、初期鋳型遺伝子や反応に用いる高コストの要因となるDNAポリメラーゼが少ない場合には、流路壁面への吸着が発生し、所定の増幅量に至らない可能性が生じる。 In infectious disease diagnosis using PCR, it is important to shorten the time. Both the meandering channel system and the reciprocating channel system can achieve high-speed PCR. In the meandering channel system, the contact area of the reaction solution on the channel wall surface is large, so if the initial template gene or the DNA polymerase that causes high costs for the reaction is small, adsorption to the channel wall surface will occur. , there is a possibility that the desired amount of amplification will not be achieved.
 一方、往復流路方式では、反応液が同じ流路を往復するため、蛇行流路方式に比べ、反応液の流路壁面接触面積が少なくなり、初期鋳型遺伝子やDNAポリメラーゼが少ない場合には有利に働く。そのため、低コスト、高感度が必要な感染症の診断には往復流路方式が有利と考えられる。 On the other hand, in the reciprocating channel method, since the reaction solution reciprocates in the same channel, the contact area of the reaction solution with the wall surface of the channel is smaller than in the meandering channel method, which is advantageous when the initial template gene and DNA polymerase are small. work to Therefore, the reciprocating channel system is considered advantageous for the diagnosis of infectious diseases, which requires low cost and high sensitivity.
 往復流路方式の特許文献2では、PCRで増幅した遺伝子の検出方式として蛍光検出が採用されている。マルチプレックス検出をする際の検出項目数は蛍光体種に依存する。蛍光波長の分解能の観点から、検出項目数は4種類程度が限度であり、より多項目種類の検出に適用することは困難である。 Patent Document 2, which uses a reciprocating flow path method, employs fluorescence detection as a method for detecting genes amplified by PCR. The number of detection items in multiplex detection depends on the fluorophore species. From the viewpoint of fluorescence wavelength resolution, the number of detection items is limited to about four, and it is difficult to apply detection to a larger number of items.
 項目検出数を増大させるための検出方式として、例えばハイブリダイゼーションなどが考えられる。流路の一部に検出領域(多項目検出領域)を設け、その領域の特定の位置に特定配列を持つDNAプローブを固定する。PCR後に増幅した遺伝子を前記プローブで捕捉する。前記プローブは種類によって固定する位置を変える。PCRで増幅した遺伝子がどの位置に捕捉されたかを検出することによって、その種類が特定できる。この方法を使用すれば、項目検出数の増大が可能となる。 For example, hybridization can be considered as a detection method for increasing the number of detected items. A detection region (multiple detection region) is provided in part of the channel, and a DNA probe having a specific sequence is immobilized at a specific position in the region. The probes capture the amplified gene after PCR. The fixed position of the probe is changed depending on the type. The type can be identified by detecting the location where the gene amplified by PCR is captured. Using this method, it is possible to increase the number of item detections.
 特許文献2において、前記多項目検出領域を設置する場合、図1に示すデバイス101のような構成が考えられる。圧力印加部105と圧力印加部106の間に流路102を介してサンプル溶液を往復送液させることにより遺伝子増幅可能なPCR領域103が配置されている。またPCR領域103の片側に流路102を介して前記ハイブリダイゼーションを使った遺伝子検出を行う多項目検出領域108が配置されている。 In Patent Document 2, when installing the multi-item detection area, a configuration like the device 101 shown in FIG. 1 can be considered. A PCR region 103 capable of gene amplification is arranged between the pressure application section 105 and the pressure application section 106 by reciprocating the sample solution through the channel 102 . Also, on one side of the PCR region 103, a multiple detection region 108 is arranged via the channel 102 for gene detection using the hybridization.
 PCR領域103と多項目検出領域108の間の流路102上には液体や空気の流れをオン/オフ可能とするバルブ107が配置されている。バルブ107を閉じ、圧力印加部105および106から圧力を印加させ、PCR領域103にてサンプル溶液導入部104から導入したサンプル溶液を往復送液させることで遺伝子増幅反応させる。 A valve 107 is arranged on the channel 102 between the PCR area 103 and the multi-item detection area 108 to turn on/off the flow of liquid and air. The valve 107 is closed, pressure is applied from the pressure application units 105 and 106, and the sample solution introduced from the sample solution introduction unit 104 is sent back and forth in the PCR region 103 to cause gene amplification reaction.
 PCR後にバルブ107を開放し、圧力印加部105から圧力を印加し、反応液を多項目検出領域108に送液し、増幅された遺伝子の検出を行う。前記操作を行うことにより、サンプル溶液中にあるターゲット遺伝子を高感度かつ多項目で検出することが可能となる。 After the PCR, the valve 107 is opened, pressure is applied from the pressure applying unit 105, the reaction liquid is sent to the multi-item detection area 108, and the amplified gene is detected. By performing the above operation, it becomes possible to detect the target gene in the sample solution with high sensitivity and multiple items.
 しかし、特許文献2の方式では、デバイス上に液体や空気の流れをオン/オフ可能とするバルブ107を設置する必要性があり、デバイスの構造が複雑化し、コストの増大に繋がる。 However, in the method of Patent Document 2, it is necessary to install a valve 107 on the device that can turn on/off the flow of liquid and air, which complicates the structure of the device and leads to an increase in cost.
 特許文献3記載の方法では、一次流路に、入口、精製ゾーン、PCR反応ゾーン、検出ゾーンを備え、更に前記一次流路に一つ以上のエアーベントポートを備えた構造を持ったデバイスが紹介されている。デバイス上に圧力印加可能な簡易な開孔(ポート)を設置する方式を採用しているため、バルブを設置する必要が無い。 The method described in Patent Document 3 introduces a device having a structure in which the primary channel is provided with an inlet, a purification zone, a PCR reaction zone, and a detection zone, and the primary channel is further provided with one or more air vent ports. It is Since a simple opening (port) that can apply pressure is installed on the device, there is no need to install a valve.
 PCR反応ゾーンには、第一の温度制御ゾーンと第二の温度制御ゾーンが含まれ、前記2つの温度ゾーンをサンプル溶液が往復送液されることでPCRを実行する。前記往復送液する際に、PCR反応ゾーン両端にエアーベントポートを用意し、前記2つのポートに圧力を印加して、実行する。 The PCR reaction zone includes a first temperature control zone and a second temperature control zone, and PCR is performed by reciprocating the sample solution through the two temperature zones. Air vent ports are provided at both ends of the PCR reaction zone, and pressure is applied to the two ports during the reciprocating liquid transfer.
 しかしながら、特許文献3の方式では、圧力を印加する際に精製ゾーンや検出ゾーンの空間が空気のダンパーとなり、PCR反応ゾーンに存在するサンプル溶液へ正確に圧力を印加することが難しくなる。そのため、特許文献3ではPCR時のサンプル溶液の往復送液が高精度にできなくなり、増幅効率の低下につながる可能性がある。 However, in the method of Patent Document 3, the spaces in the purification zone and detection zone act as air dampers when pressure is applied, making it difficult to accurately apply pressure to the sample solution present in the PCR reaction zone. Therefore, in Patent Document 3, reciprocating liquid transfer of the sample solution during PCR cannot be performed with high accuracy, which may lead to a decrease in amplification efficiency.
 そこで本発明は、サンプルのPCR解析を実行するためのデバイス、PCR反応装置、PCRシステムおよびPCR方法において、デバイスコストの増大を抑え、PCR時のサンプル溶液の送液を高精度に行う事を目的とする。 Accordingly, an object of the present invention is to suppress an increase in device cost and to accurately transfer a sample solution during PCR in a device, a PCR reaction apparatus, a PCR system, and a PCR method for performing PCR analysis of a sample. and
 本発明に係る、サンプルのPCR解析を実行するためのデバイスの一例は、
 サンプルを導入するためのサンプル導入部と、
 複数の温度帯にそれぞれ複数回サンプルを搬送してサンプルを増幅するためのPCR部と、
 サンプルを搬送する圧力を印加するための圧力印加用開口と、
を備え、
 前記サンプル導入部、前記PCR部、および前記圧力印加用開口は、この順に1本の第一流路に配置され、
 前記第一流路は、前記サンプル導入部と前記PCR部との間において、第二流路へと分岐する第一分岐部を備え、
 前記第二流路は、サンプルに含まれる複数の成分を独立に検出するための検出部を備え、
 前記第二流路は、前記検出部に関して前記第一流路と反対側に、開放可能部を備える。
An example of a device for performing PCR analysis of a sample according to the invention comprises:
a sample introduction part for introducing a sample;
a PCR section for amplifying the samples by transporting the samples a plurality of times to a plurality of temperature zones;
a pressure application opening for applying pressure to transport the sample;
with
The sample introduction section, the PCR section, and the pressure application opening are arranged in this order in one first channel,
The first channel has a first branching part that branches into a second channel between the sample introduction part and the PCR part,
The second channel comprises a detection unit for independently detecting a plurality of components contained in the sample,
The second channel has an openable portion on the opposite side of the first channel with respect to the sensing portion.
 本発明に係るPCR反応装置の一例は、
 上述のデバイスとともに使用されるよう構成される、PCR反応装置であって、
 前記複数の温度帯の温度を調節する温度調節部と、
 前記圧力印加用開口に圧力を印加する圧力印加部と、
 前記開放可能部を開放する開放手段と、
 前記検出部におけるサンプルの各成分を検出する検出手段と、
を備える。
An example of the PCR reaction device according to the present invention is
A PCR reactor configured for use with the device described above, comprising:
a temperature adjustment unit that adjusts temperatures in the plurality of temperature zones;
a pressure application unit that applies pressure to the pressure application opening;
opening means for opening the openable portion;
detection means for detecting each component of the sample in the detection unit;
Prepare.
 本発明に係るPCRシステムの一例は、上述のデバイスと、上述のPCR反応装置とを備える。 An example of the PCR system according to the present invention comprises the device described above and the PCR reactor described above.
 本発明に係るPCR方法は、
 上述のデバイスと、上述のPCR反応装置とを用いる、PCR方法であって、
 前記デバイスを前記装置に配置するステップと、
 前記デバイスの前記サンプル導入部を介してサンプルを導入するステップと、
 前記装置の前記圧力印加部によって、サンプルを前記デバイスの前記第一流路内に導入するステップと、
 前記デバイスの前記開放可能部を開放するステップと、
 前記装置の前記圧力印加部によって、サンプルを前記デバイスの前記複数の温度帯にそれぞれ複数回搬送するステップと、
 前記装置の前記圧力印加部によって、サンプルを前記デバイスの前記検出部に搬送するステップと、
 前記装置の前記検出手段によって、前記デバイスの前記検出部においてサンプルの各成分を検出するステップと、
を備える。
The PCR method according to the present invention is
A PCR method using the device described above and the PCR reactor described above,
placing the device on the apparatus;
introducing a sample through the sample introduction portion of the device;
introducing a sample into the first channel of the device by the pressure applying portion of the apparatus;
opening the openable portion of the device;
transporting the sample to the plurality of temperature zones of the device a plurality of times by the pressure applying unit of the apparatus;
conveying a sample to the sensing portion of the device by the pressure applying portion of the apparatus;
detecting each component of a sample in the detection portion of the device by the detection means of the apparatus;
Prepare.
 本開示に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、本開示の態様は、要素及び多様な要素の組み合わせ及び以降の詳細な記述と添付される特許請求の範囲の様態により達成され実現される。 Further features related to the present disclosure will become apparent from the description of the specification and the accompanying drawings. In addition, the aspects of the present disclosure will be achieved and attained by means of the elements and combinations of various elements and aspects of the detailed description that follows and the claims that follow.
 本明細書の記述は典型的な例示に過ぎず、本開示の特許請求の範囲又は適用例を如何なる意味に於いても限定するものではないことを理解する必要がある。 It should be understood that the descriptions in this specification are merely typical examples and do not limit the scope of claims or application examples of the present disclosure in any way.
 本発明に係る技術によれば、デバイスコストの増大を抑え、PCR時のサンプル溶液の送液を高精度に行うことができる。 According to the technology according to the present invention, it is possible to suppress an increase in device cost and to transfer the sample solution during PCR with high accuracy.
従来技術を変形した構成による高速遺伝子増幅多項目検出デバイスHigh-speed gene amplification multi-item detection device with configuration modified from conventional technology 本発明の実施例1の高速遺伝子増幅多項目検出デバイスの上面図The top view of the high-speed gene amplification multi-item detection device of Example 1 of the present invention 図2(a)のA-A断面図AA sectional view of FIG. 2(a) 図2(a)のB-B断面図BB cross-sectional view of FIG. 2(a) 実施例1のPCRシステムの断面図(図2(a)のA-A断面図に対応)Cross-sectional view of the PCR system of Example 1 (corresponding to the AA cross-sectional view in FIG. 2(a)) 図5のPCRシステムの断面図(図2(a)のB-B断面図に対応)Cross-sectional view of the PCR system in FIG. 5 (corresponding to the BB cross-sectional view in FIG. 2(a)) 実施例1のPCRシステムの変形例の断面図(図2(a)のB-B断面図に対応)Cross-sectional view of a modified example of the PCR system of Example 1 (corresponding to the BB cross-sectional view of FIG. 2(a)) 実施例1のPCR処理に使用するプライマセットの模式図Schematic diagram of primer set used for PCR treatment in Example 1 実施例1のサンプル反応液導入から多項目検出部送液までの操作フローOperation flow from sample reaction liquid introduction to multi-item detection unit liquid transfer in Example 1 実施例2の高速遺伝子増幅多項目検出デバイスの上面図Top view of the high-speed gene amplification multi-item detection device of Example 2 実施例2のサンプル反応液導入から多項目検出部送液までの操作フローOperation flow from sample reaction liquid introduction to multi-item detection unit liquid transfer in Example 2
 以下、図面に従って本発明の実施の形態を説明する。 Embodiments of the present invention will be described below with reference to the drawings.
 以下、本発明に係る多項目遺伝子検査装置の1つの実施例を説明する。 One embodiment of the multi-item genetic testing apparatus according to the present invention will be described below.
 複数種類のターゲットDNAが存在し得る検体内のターゲットDNAを決定する例を示す。検体中に複数種類のターゲットDNAが存在する場合も含まれる。 An example of determining a target DNA in a specimen in which multiple types of target DNA may exist is shown. It also includes the case where multiple types of target DNA are present in the sample.
 図2(a)に遺伝子増幅多項目検出デバイスであるデバイス109の上面図を、図2(b)にPCR領域拡大図を、図3に図2(a)A-Aの断面図を、図4に図2(a)B-Bの断面図を示す。 FIG. 2(a) is a top view of the device 109, which is a gene amplification multiitem detection device, FIG. 2(b) is an enlarged view of the PCR region, and FIG. 3 is a sectional view of FIG. 2(a) AA. 4 shows a cross-sectional view of FIG. 2(a) BB.
 デバイス109は、サンプルのPCR解析を実行するためのデバイスである。デバイス109は、サンプル導入部110、圧力印加領域111、洗浄液導入部112、PCR領域113(PCR部)、および多項目検出領域114(検出部)を備える。また、デバイス109は溝を備え、この溝が、サンプル導入部110、圧力印加領域111、洗浄液導入部112、PCR領域113、および多項目検出領域114を接続する。溝の深さはたとえば0.8mmである。サンプル導入部110と多項目検出領域114は、PCR領域113に関して、圧力印加領域111の反対側に配置されている。 The device 109 is a device for performing PCR analysis of samples. The device 109 includes a sample introduction portion 110, a pressure application region 111, a washing solution introduction portion 112, a PCR region 113 (PCR portion), and a multiple detection region 114 (detection portion). Device 109 also includes a groove that connects sample introduction portion 110 , pressure application region 111 , washing solution introduction portion 112 , PCR region 113 , and multi-item detection region 114 . The groove depth is, for example, 0.8 mm. The sample introduction part 110 and the multiple detection area 114 are arranged on the opposite side of the pressure application area 111 with respect to the PCR area 113 .
 デバイス109は温度変化に対して安定な素材からなることが好ましい。さらに、光学的に透明で、自家蛍光性の低い材質であることが好ましい。このような材質として、ガラス、シクロオレフィンポリマ、アクリル樹脂、ポリカーボネートなどが挙げられる。また、後述するカバーシール側から光計測する場合には、デバイス109の素材は光学的に不透明な素材(金属等)であっても良い。 The device 109 is preferably made of a material that is stable against temperature changes. Furthermore, it is preferably made of a material that is optically transparent and has low autofluorescence. Such materials include glass, cycloolefin polymer, acrylic resin, polycarbonate, and the like. Further, when optical measurement is performed from the cover seal side, which will be described later, the material of the device 109 may be an optically opaque material (such as metal).
 デバイス109の製作方法は特に限定しないが、たとえば射出成型、3Dプリンタ、切削等を用いて可能である。デバイス109の下面にはカバーシール115が貼られており、これによって上述の溝は流路を形成する。なお、本明細書において、「上」および「下」の方向は、たとえばデバイス109が使用される際に配置される状態における鉛直上方向および鉛直下方向を表すが、方向の定義は任意に可能である。カバーシール115はたとえばフィルムを用いて構成される。 The manufacturing method of the device 109 is not particularly limited, but it is possible using injection molding, 3D printer, cutting, etc., for example. A cover seal 115 is applied to the underside of the device 109 so that the grooves described above form flow channels. In this specification, the directions of “up” and “down” represent, for example, the vertical upward direction and the vertical downward direction when the device 109 is arranged in use, but the directions can be defined arbitrarily. is. The cover seal 115 is configured using a film, for example.
 カバーシール115の片面には接着性物質が塗布されていても良いし、圧着可能な材質であっても良い。カバーシール115の材質として、シクロオレフィンポリマ、アクリル樹脂、ポリカーボネートなど光学的に透明な樹脂が適しているが、これらに限定されるものではない。 An adhesive substance may be applied to one side of the cover seal 115, or a material that can be crimped may be used. As the material of the cover seal 115, optically transparent resins such as cycloolefin polymer, acrylic resin, and polycarbonate are suitable, but not limited to these.
 デバイス109の具体的な構成を以下に示す。 A specific configuration of the device 109 is shown below.
 サンプル導入部110と圧力印加領域111の間に、流路116、分岐部117(第一分岐部)、流路118、PCR領域113が、サンプル導入部110から圧力印加領域111に向かってこの順に構成される。とくに、流路116および流路118を含む1本の流路(第一流路)において、サンプル導入部110、PCR領域113、および圧力印加領域111が、この順に配置される。また、第一流路は、サンプル導入部110とPCR領域113との間に上述の分岐部117を備え、この分岐部117において別の流路(後述の流路122)へと分岐する。 Between the sample introduction part 110 and the pressure application area 111, the channel 116, the branch part 117 (first branch part), the channel 118, and the PCR area 113 are arranged in this order from the sample introduction part 110 toward the pressure application area 111. Configured. In particular, in one channel (first channel) including channel 116 and channel 118, sample introduction section 110, PCR region 113, and pressure applying region 111 are arranged in this order. Moreover, the first flow channel has the above-described branching portion 117 between the sample introduction portion 110 and the PCR region 113, and at this branching portion 117, it branches into another flow channel (flow channel 122, which will be described later).
 サンプル導入部110は、デバイス109にサンプルを導入するために用いられる。サンプル導入部110は、たとえば、デバイス109に貫通孔を設け、カバーシール115によって貫通孔の一端(図3では下側端)を塞ぐことにより形成される。 The sample introduction unit 110 is used to introduce a sample into the device 109. The sample introduction part 110 is formed, for example, by providing a through hole in the device 109 and closing one end (lower end in FIG. 3) of the through hole with a cover seal 115 .
 PCR領域113は、図2(b)で示すように蛇行した流路で構成される。デバイス109を装置に設置した際には、第一温度帯119(変性温度帯)と第二温度帯120(伸長・アニーリング温度帯)の2つの温度帯の下部に、後述する装置本体内に具備された2つヒートブロック(図5のヒートブロック201および202)が配置される。このように、デバイス109は複数の温度帯(本実施例では2つ)を備える。また、PCR領域113は、これら複数の温度帯にそれぞれ複数回サンプルを搬送してサンプルを増幅するために用いられる(詳細は図9等に関連して後述する)。 The PCR region 113 is composed of meandering channels as shown in FIG. 2(b). When the device 109 is installed in the apparatus, it is provided in the apparatus main body described later below the two temperature zones of the first temperature zone 119 (denaturation temperature zone) and the second temperature zone 120 (extension/annealing temperature zone). Two heat blocks (heat blocks 201 and 202 in FIG. 5) are arranged. Thus, the device 109 has multiple temperature zones (two in this example). In addition, the PCR region 113 is used to amplify the sample by transporting the sample to each of these multiple temperature zones multiple times (details will be described later with reference to FIG. 9 and the like).
 圧力印加領域111のカバーシール115側には、開口である圧力印加用開口121が設けてあり、圧力印加用開口121を介してデバイス109流路内に圧力を印加することができる。たとえば、圧力印加用開口121は、流路にサンプルを搬送する圧力を印加するために用いられる。 On the side of the cover seal 115 of the pressure application region 111, a pressure application opening 121, which is an opening, is provided. For example, the pressure applying opening 121 is used to apply pressure to transport the sample to the channel.
 流路116および流路118を含む第一流路は、分岐部117から流路122(第二流路)を介して多項目検出領域114に接続される。多項目検出領域114の一端は流路122に接続され、他端には多項目検出領域先端部129が設けられる。 A first channel including channel 116 and channel 118 is connected to multi-item detection area 114 from branch 117 via channel 122 (second channel). One end of the multi-item detection area 114 is connected to the channel 122, and the other end is provided with a multi-item detection area tip 129. FIG.
 多項目検出領域先端部129には、吸水パッド123と開閉ポート124(開放可能部)が配置されている。このように、流路122は、多項目検出領域114に関して、流路116および流路118を含む第一流路とは反対側に、吸水パッド123および開閉ポート124を備える。吸水パッド123は溶液を吸収することで分解しない材質が好ましい。吸水パッド123の材質として、パルプ、ガラス繊維、セルロース繊維などが挙げられる。なお吸水パッド123を省略することも可能である。 A water absorption pad 123 and an opening/closing port 124 (openable portion) are arranged at the multi-item detection area tip portion 129 . Thus, channel 122 includes absorbent pad 123 and open/close port 124 on the opposite side of multi-item detection region 114 from the first channel, which includes channel 116 and channel 118 . The water absorbing pad 123 is preferably made of a material that does not decompose by absorbing the solution. Materials for the water absorbent pad 123 include pulp, glass fiber, and cellulose fiber. It is also possible to omit the water absorption pad 123 .
 図4で示すように、開閉ポート124はカバーシール115に開口を設けることで形成されている。本実施例では、開閉ポート124自体は開放されており、デバイス109の外部から開閉ポート124を塞ぐことにより開閉ポート124を閉鎖することができる。このように、本実施例では開閉ポート124は開放可能かつ閉鎖可能(すなわち開閉可能)に構成される。 As shown in FIG. 4, the open/close port 124 is formed by providing an opening in the cover seal 115 . In this embodiment, the open/close port 124 itself is open, and can be closed by blocking the open/close port 124 from the outside of the device 109 . Thus, in this embodiment, the open/close port 124 is configured to be openable and closable (that is, openable and closable).
 多項目検出領域114には、複数の固定プローブ125が固定されている。固定プローブ125は、たとえば6本設けられ、それぞれ異なる配列の30塩基のDNAで構成される。各固定プローブは0.5mm間隔で多項目検出領域114の底面(図4の上側)に固定されている。デバイスである樹脂へのDNAプローブの固定化方法は当該分野で周知である。このように、多項目検出領域114は、サンプルに含まれる複数の成分(たとえばターゲットDNA)を独立に検出するために用いられる。 A plurality of fixed probes 125 are fixed to the multi-item detection area 114 . Six fixed probes 125 are provided, for example, and each consists of DNA of 30 bases with a different sequence. Each fixed probe is fixed on the bottom surface (upper side in FIG. 4) of the multi-item detection area 114 at intervals of 0.5 mm. Methods for immobilizing DNA probes on resin devices are well known in the art. Thus, the multiple detection area 114 is used to independently detect multiple components (eg, target DNA) contained in the sample.
 流路122は、別の流路である流路127(洗浄液流路)へと分岐する分岐部126(第二分岐部)を備える。流路122は、流路127を介して洗浄液導入部112に接続されている。流路127は、洗浄液を搬送するための流路である。洗浄液導入部112のカバーシール115側には、開口である洗浄液ポート128が設けてあり、洗浄液ポート128からデバイス109流路内に洗浄液を導入することができる。流路116、流路118、流路122、PCR領域113内流路の幅はたとえば0.8mmであり、流路127の幅はこれより小さい値(たとえば0.2mm)となっている。 The channel 122 includes a branching portion 126 (second branching portion) that branches into a channel 127 (cleaning liquid channel) that is another channel. The channel 122 is connected to the cleaning liquid introduction section 112 via a channel 127 . The channel 127 is a channel for conveying the cleaning liquid. A cleaning liquid port 128 , which is an opening, is provided on the side of the cover seal 115 of the cleaning liquid introduction section 112 , and the cleaning liquid can be introduced into the channel of the device 109 from the cleaning liquid port 128 . The width of channel 116, channel 118, channel 122, and channel in PCR region 113 is, for example, 0.8 mm, and the width of channel 127 is a smaller value (eg, 0.2 mm).
 図5に、デバイス109をPCR反応装置に設置した際の断面図を示す。この断面は、図2(a)のA-Aの位置に対応する。PCR反応装置は、デバイス109とともに使用されるように構成される。デバイス109およびPCR反応装置の組み合わせを、本実施例ではPCRシステムと呼ぶ。 FIG. 5 shows a cross-sectional view when the device 109 is installed in the PCR reactor. This cross section corresponds to the position AA in FIG. 2(a). A PCR reactor is configured for use with device 109 . The combination of device 109 and PCR reactor is referred to as a PCR system in this example.
 デバイス109を格納する装置本体200は、断熱性が高く、温度変化に対して安定で、使用されるサンプルの溶液に対して侵されにくい材質から形成されることが好ましい。このような材質としては、ポリエーテルエーテルケトン(PEEK)、ポリカーボネートが挙げられる。 The apparatus main body 200 that houses the device 109 is preferably made of a material that is highly adiabatic, stable against temperature changes, and resistant to attack by the sample solution used. Such materials include polyetheretherketone (PEEK) and polycarbonate.
 装置本体200にはヒートブロック201および202(温度調節部)が内蔵されている。これら2つのヒートブロックにはヒータと温度を計測するための温度センサが具備されている。前記ヒータと温度センサは温度制御部203に接続され、前記各ヒートブロックが一定温度に制御される。ヒートブロック201および202は、それぞれ第一温度帯119および第二温度帯120の温度を調節する。 Heat blocks 201 and 202 (temperature control units) are built into the device main body 200 . These two heat blocks are equipped with heaters and temperature sensors for measuring temperature. The heater and the temperature sensor are connected to a temperature control unit 203, and each heat block is controlled at a constant temperature. Heat blocks 201 and 202 regulate the temperature of first temperature zone 119 and second temperature zone 120, respectively.
 装置本体200において、デバイス109の圧力印加用開口121に対応する位置には、圧力用流路204が形成されている。圧力用流路204はチューブ205を介してシリンジ206(圧力印加部)に接続されている。シリンジ206内のシリンダはアクチュエータ207によって駆動可能である。アクチュエータ207を駆動し、シリンダを押し引きすることにより、デバイス109内流路に正圧または負圧を印加することが可能となる。このように、シリンジ206は、圧力印加用開口121に圧力を印加する。 A pressure channel 204 is formed in the device main body 200 at a position corresponding to the pressure application opening 121 of the device 109 . The pressure channel 204 is connected through a tube 205 to a syringe 206 (pressure applying section). A cylinder within syringe 206 can be driven by actuator 207 . By driving the actuator 207 and pushing/pulling the cylinder, it becomes possible to apply positive pressure or negative pressure to the channel inside the device 109 . Thus, the syringe 206 applies pressure to the pressure applying opening 121 .
 本実施例では圧力印加部としてシリンジ206を用い、さらにアクチュエータ207を使用しているが、圧力印加部としてはマイクロファンやダイアフラムポンプなど、その他の手段を使用しても良い。圧力印加用開口121と圧力印加部(たとえばシリンジ206)との間にある流路の体積は極力小さい方が好ましく、本実施例では圧力用流路204の流路径を1mm、流路長を10mmとし、チューブ205のチューブ径を0.5mm、チューブ長を10mmとしている。 In this embodiment, the syringe 206 and the actuator 207 are used as the pressure applying section, but other means such as a micro fan or diaphragm pump may be used as the pressure applying section. It is preferable that the volume of the channel between the pressure applying opening 121 and the pressure applying part (for example, the syringe 206) is as small as possible. , the tube diameter of the tube 205 is 0.5 mm, and the tube length is 10 mm.
 デバイス109上部は樹脂製の装置カバー208で覆われている。装置カバー208は断熱性が高く、使用されるサンプルの溶液に対して侵されにくい材質から形成されることが好ましい。このような材質としては、PEEK、ポリカーボネートが挙げられる。 The upper part of the device 109 is covered with a device cover 208 made of resin. It is preferable that the device cover 208 is made of a material that has a high thermal insulation property and is resistant to corrosion by the sample solution used. Such materials include PEEK and polycarbonate.
 装置カバー208には、デバイス109のサンプル導入部110に対応する部分にカバー開口209が設けてある。PCR反応装置はサンプル導入口カバー210(封止部材)を備え、サンプル導入口カバー210はカバー開口209に配置することができる。サンプル導入口カバー210の外径はカバー開口209の内径よりも小さく、サンプル導入口カバー210の内径はサンプル導入部110の開口よりも大きい。 The apparatus cover 208 is provided with a cover opening 209 at a portion corresponding to the sample introduction section 110 of the device 109 . The PCR reactor includes a sample inlet cover 210 (sealing member), which can be placed in cover opening 209 . The outer diameter of the sample introduction port cover 210 is smaller than the inner diameter of the cover opening 209 , and the inner diameter of the sample introduction port cover 210 is larger than the opening of the sample introduction part 110 .
 サンプル導入口カバー210は有底円筒面形状をしており、サンプル導入部110周辺に付着する可能性があるサンプル溶液が装置カバー208に付着しない構造としている。サンプル導入口カバー210はソレノイド211に接続されており、ソレノイド211を駆動することにより、サンプル導入口カバー210が上下に駆動し、所定のタイミングでサンプル導入部110を封止する。 The sample inlet cover 210 has a cylindrical shape with a bottom, and has a structure in which the sample solution that may adhere to the periphery of the sample introduction part 110 does not adhere to the device cover 208 . The sample introduction port cover 210 is connected to a solenoid 211. By driving the solenoid 211, the sample introduction port cover 210 is driven up and down to seal the sample introduction portion 110 at a predetermined timing.
 図6に、図5のPCRシステムの断面図を示す。この断面は、図2(a)のB-Bの位置に対応する。装置カバー208の上方、多項目検出領域114に対応する位置には、検出用開口212が設けてある。検出用開口212の近傍には多項目検出領域114における蛍光を検出するための照射検出部213(検出手段)が配置されている。照射検出部213は、多項目検出領域114におけるサンプルの各成分を検出する。 FIG. 6 shows a cross-sectional view of the PCR system of FIG. This cross section corresponds to the position of BB in FIG. 2(a). A detection opening 212 is provided above the device cover 208 at a position corresponding to the multi-item detection area 114 . An irradiation detection unit 213 (detection means) for detecting fluorescence in the multi-item detection region 114 is arranged near the detection aperture 212 . The irradiation detection unit 213 detects each component of the sample in the multi-item detection area 114 .
 照射検出部213の構成を以下に説明する。光源であるレーザ214から発振されたレーザ光は、ビームエキスパンダ215によりビーム幅が拡大され、所定の波長(たとえばPCRに使用する蛍光体の励起波長近傍)を反射するダイクロイックミラー216によって反射され、対物レンズ217によって集光され、デバイス109の多項目検出領域114に照射される。多項目検出領域114でレーザ光により励起され発光した蛍光は、対物レンズ217によって集光され、ダイクロイックミラー216を透過し、所定の波長(PCRに使用する蛍光体の蛍光波長)未満をカットする光学フィルタ218によって背景光が除去され、結像レンズ219によってCCDカメラ220に結像される。光源として、水銀ランプやキセノンランプや発光ダイオードなど、他の光源を用いてもよい。 The configuration of the irradiation detection unit 213 will be described below. A laser beam oscillated from a laser 214, which is a light source, has its beam width expanded by a beam expander 215, and is reflected by a dichroic mirror 216 that reflects a predetermined wavelength (for example, near the excitation wavelength of a phosphor used for PCR), The light is collected by the objective lens 217 and projected onto the multi-item detection area 114 of the device 109 . Fluorescence excited by laser light in the multi-item detection area 114 and emitted is collected by the objective lens 217, transmitted through the dichroic mirror 216, and cuts below a predetermined wavelength (fluorescence wavelength of the phosphor used for PCR). Background light is removed by the filter 218 and imaged on the CCD camera 220 by the imaging lens 219 . Other light sources such as mercury lamps, xenon lamps, and light emitting diodes may be used as the light source.
 多項目検出領域114においてPCRで増幅した遺伝子産物を効率良くハイブリダイゼーションするために、装置本体200において多項目検出領域114の下方にはヒータと温度センサが内蔵されたヒートブロック221が配置されており、所定の温度(50℃)に設定されている。 In order to efficiently hybridize the gene products amplified by PCR in the multi-item detection area 114, a heat block 221 containing a heater and a temperature sensor is arranged below the multi-item detection area 114 in the device main body 200. , is set to a predetermined temperature (50° C.).
 装置本体200において、開閉ポート124の下方には開口が設けてあり、前記開口には開閉キャップ222(封止部材)が配置されている。開閉キャップ222に接続されたキャップ支持棒223の下部にはカム224が配置されている。カム224にはモータ225が接続されており、モータ225が回転することで、カム224が回転し、キャップ支持棒223が上下に駆動する。 An opening is provided below the opening/closing port 124 in the device main body 200, and an opening/closing cap 222 (sealing member) is arranged in the opening. A cam 224 is arranged below the cap support rod 223 connected to the opening/closing cap 222 . A motor 225 is connected to the cam 224. When the motor 225 rotates, the cam 224 rotates and the cap support rod 223 is driven up and down.
 このような動作によって、デバイス109の開閉ポート124を開閉キャップ222によって開閉できる。このように、本実施例では、開閉キャップ222、キャップ支持棒223、カム224およびモータ225が、開閉ポート124を開放する開放手段および開閉ポート124を封止する封止手段として作用する。また、本実施例では、開閉ポート124はデバイス109に設けられた開口部であり、開閉キャップ222が運動することにより開閉ポート124を封止しまたは開放する。 With such an operation, the opening/closing port 124 of the device 109 can be opened/closed by the opening/closing cap 222 . Thus, in this embodiment, the opening/closing cap 222 , the cap support rod 223 , the cam 224 and the motor 225 act as opening means for opening the opening/closing port 124 and sealing means for sealing the opening/closing port 124 . In this embodiment, the open/close port 124 is an opening provided in the device 109, and the open/close port 124 is closed or opened by movement of the open/close cap 222. FIG.
 本実施例では、上述のように開閉ポート124が開放可能部を構成するが、開放可能部の構成はこれに限らない。図7に開放可能部の変形例の断面図を示す。この断面は、図2(a)のB-Bの位置に対応する。 In this embodiment, the opening/closing port 124 constitutes the openable portion as described above, but the configuration of the openable portion is not limited to this. FIG. 7 shows a cross-sectional view of a variant of the openable part. This cross section corresponds to the position of BB in FIG. 2(a).
 図7の変形例では、多項目検出領域先端部129の開閉方式として、デバイス109に貼られたカバーシール115をニードル230によって開口する方式(ニードル開閉方式)を採用する。 In the modification of FIG. 7, a method of opening the cover seal 115 affixed to the device 109 by a needle 230 (needle opening/closing method) is adopted as the opening/closing method of the tip portion 129 of the multi-item detection region.
 デバイス109の多項目検出領域先端部129の下面はカバーシール115で覆われて塞がれている。装置内の多項目検出領域先端部129の下部にはニードル230が配置されている。ニードル230の下端にはカム231付きのモータ232が配置されている。モータ232が回転するとカム231が回転し、ニードル230が上下に駆動し、デバイス109の多項目検出領域先端部129の下部のカバーシール115を穿孔し開口することができる。 The lower surface of the tip 129 of the multi-item detection area of the device 109 is covered with a cover seal 115 and blocked. A needle 230 is arranged below the tip 129 of the multi-item detection area in the device. A motor 232 with a cam 231 is arranged at the lower end of the needle 230 . Rotation of the motor 232 rotates the cam 231 and drives the needle 230 up and down, allowing it to pierce and open the cover seal 115 under the multi-detection area tip 129 of the device 109 .
 このように、図7の変形例では、開放可能部はデバイス109に設けられたカバーシール115を用いて構成され、この開放可能部を開放する開放手段は、カバーシール115を穿孔するニードル230を備える。図7の変形例では、とくにカバーシール115をフィルムとすると穿孔が容易である。 Thus, in the variant of FIG. 7, the openable portion is constructed using a cover seal 115 provided on the device 109 and the opening means for opening this openable portion is a needle 230 which pierces the cover seal 115. Prepare. In the modification of FIG. 7, especially when the cover seal 115 is made of a film, perforation is easy.
 実施例1(図6)の構成では、開閉ポート124の開閉が可能であり、より柔軟な制御が可能である。一方、変形例(図7)の構成では、デバイス109の製造がより容易であり、最初の封止動作を省略することができ、また開放前の封止をより確実に実現することができる。 With the configuration of Embodiment 1 (FIG. 6), the opening/closing port 124 can be opened and closed, and more flexible control is possible. On the other hand, in the configuration of the modified example (FIG. 7), the device 109 can be manufactured more easily, the initial sealing operation can be omitted, and sealing before opening can be realized more reliably.
 装置本体200において、洗浄液ポート128の下方には洗浄液用流路226が配置されている。洗浄液用流路226はチューブ227を介してシリンジ228に接続されている。シリンジ228内には洗浄用のSSC(Saline Sodium Citrate)バッファが保管されている。シリンジ228内のシリンダはアクチュエータ229によって駆動可能であり、アクチュエータ229を駆動し、前記シリンダを押すことで、デバイス109の流路内に洗浄用バッファを導入することができる。 In the apparatus main body 200, a cleaning liquid channel 226 is arranged below the cleaning liquid port 128. As shown in FIG. The cleaning liquid flow path 226 is connected to a syringe 228 via a tube 227 . An SSC (Saline Sodium Citrate) buffer for washing is stored in the syringe 228 . A cylinder within the syringe 228 is actuatable by an actuator 229 , and by actuating the actuator 229 and pushing the cylinder, a wash buffer can be introduced into the flow path of the device 109 .
 図8にPCRに使用するプライマセットの模式図を示す。両プライマ共にターゲットDNAと相補的配列を持つ20塩基のオリゴDNAから構成される。一方のプライマ300の5’末端には蛍光体301が修飾されている。もう一方のプライマ302の5’末端にはスペーサ303を介してタグ配列304が結合されている。タグ配列304は、多項目検出領域114の固定プローブ125と相補的な配列を持つ30塩基のオリゴDNAで構成されている。 Fig. 8 shows a schematic diagram of the primer set used for PCR. Both primers consist of 20-base oligo DNA having a sequence complementary to the target DNA. The 5' end of one primer 300 is modified with a fluorescent substance 301 . A tag sequence 304 is bound to the 5' end of the other primer 302 via a spacer 303 . The tag sequence 304 is composed of 30-base oligo DNA having a sequence complementary to the immobilized probe 125 of the multiple detection region 114 .
 スペーサ303は、ポリメラーゼによる伸長反応を阻害する働きを有する。スペーサ303の構造は、ポリメラーゼによる伸長反応を阻害することができれば特に限定されないが、核酸誘導体や非核酸誘導体を含むことが好ましい。スペーサ303が存在することで、PCR中にタグ配列部が二本鎖にならなず、得られるPCR産物を1本鎖のDNAタグと蛍光体が結合したものとすることができる。 The spacer 303 has the function of inhibiting the extension reaction by the polymerase. The structure of spacer 303 is not particularly limited as long as it can inhibit the elongation reaction by polymerase, but preferably includes a nucleic acid derivative or a non-nucleic acid derivative. Due to the presence of the spacer 303, the tag sequence portion does not become double-stranded during PCR, and the resulting PCR product can be a single-stranded DNA tag and a fluorescent substance bound together.
 前記プライマセットはターゲットDNAごとに用意される。各プライマセットのタグ配列はそれぞれ異なる配列を有する。前記各タグ配列と相補的な配列を有する固定プローブ125は、多項目検出領域114の異なる位置に固定されている。検体をPCR処理した後に多項目検出領域114に反応溶液を送液し、ハイブリダイゼーション反応を行い、多項目検出領域114内の蛍光計測位置を特定することで、検体中に含まれた複数の成分(たとえば複数種類のターゲットDNA)の存在を判定できる。 The primer set is prepared for each target DNA. Each tag sequence of each primer set has a different sequence. Immobilized probes 125 having sequences complementary to each tag sequence are immobilized at different positions of the multiple detection region 114 . After subjecting the specimen to PCR treatment, a reaction solution is sent to the multi-item detection area 114, hybridization reaction is performed, and the fluorescence measurement position in the multi-item detection area 114 is specified, so that a plurality of components contained in the specimen are detected. (eg, multiple types of target DNA) can be determined.
 PCR処理の工程を説明する。以下の工程を含む方法は、デバイス109と、PCR反応装置とを用いて実施される。 Explain the process of PCR processing. A method including the following steps is performed using device 109 and a PCR reactor.
 まず、デバイス109をPCR反応装置に(たとえば装置本体200に)配置する。温度制御部203によりヒートブロック201を変性温度帯の温度に、ヒートブロック202をアニーリング・伸長温度帯の温度に設定する。変性温度帯の温度として90~100℃が望ましく、特に95℃がより好ましい。アニーリング・伸長温度帯の温度として40~80℃が望ましく、特に55~65℃がより好ましい。さらに、ヒートブロック221をハイブリダイゼーション反応に適した温度(50℃)に設定する。 First, the device 109 is placed in the PCR reactor (for example, in the device main body 200). The temperature controller 203 sets the heat block 201 to the temperature in the denaturation temperature range and the heat block 202 to the temperature in the annealing/extension temperature range. The temperature in the denaturing temperature range is preferably 90 to 100°C, more preferably 95°C. The temperature in the annealing/extension temperature range is preferably 40 to 80°C, more preferably 55 to 65°C. Furthermore, the heat block 221 is set to a temperature (50° C.) suitable for hybridization reaction.
 ターゲットDNAが入った検体と試薬溶液を混合し、サンプル反応液を準備する。試薬溶液には複数種類のターゲットDNAに特異的に反応するプライマセット、耐熱性ポリメラーゼおよび4種類のデオキシリボヌクレオシド三リン酸(dATP、dCTP、dGTP、dTTP)が混合されている。 Prepare the sample reaction solution by mixing the sample containing the target DNA and the reagent solution. The reagent solution contains a mixture of a primer set that specifically reacts with multiple types of target DNA, a thermostable polymerase, and four types of deoxyribonucleoside triphosphates (dATP, dCTP, dGTP, and dTTP).
 図9にサンプル反応液導入から多項目検出部送液までの操作フローを示す。 Fig. 9 shows the operation flow from sample reaction liquid introduction to multi-item detection unit liquid transfer.
 モータ225を駆動し、キャップ支持棒223を上方向にシフトさせ、開閉キャップ222により開閉ポート124を閉じる(a)。 The motor 225 is driven, the cap support rod 223 is shifted upward, and the opening/closing port 124 is closed by the opening/closing cap 222 (a).
 サンプル導入部にサンプル反応液を滴下する(b)。すなわち、サンプル導入部110を介してサンプルを導入する。 Drop the sample reaction liquid into the sample introduction part (b). That is, the sample is introduced through the sample introduction section 110 .
 シリンジ206を吸引し、デバイス109の流路内に負圧を印加し、サンプル反応液をデバイス109の流路内の変性温度帯(たとえば第一温度帯119)まで移動させる(c)。すなわち、圧力印加領域111を介して、シリンジ206によって、サンプルをデバイス109の第一流路内に導入する。 The syringe 206 is sucked, negative pressure is applied in the channel of the device 109, and the sample reaction liquid is moved to the denaturation temperature zone (for example, the first temperature zone 119) in the channel of the device 109 (c). That is, the sample is introduced into the first channel of device 109 by means of syringe 206 via pressure application region 111 .
 モータ225を駆動し、キャップ支持棒223を下方向にシフトさせ、開閉ポート124を開放する(d)。 The motor 225 is driven to shift the cap support rod 223 downward and open the open/close port 124 (d).
 ソレノイド211を駆動し、サンプル導入口カバー210によってサンプル導入部110を閉鎖する(e)。このステップにより、これ以降は、サンプルの搬送時にサンプルがサンプル導入部110へと逆流することがなくなる。 The solenoid 211 is driven to close the sample introduction part 110 with the sample introduction port cover 210 (e). After this step, the sample will not flow back to the sample introduction section 110 when the sample is transported.
 サンプル反応液を変性温度帯に維持したまま所定時間A(本実施例では15秒)待機する(f)。 Wait for a predetermined time A (15 seconds in this example) while maintaining the sample reaction solution in the denaturation temperature zone (f).
 シリンジ206を押し、デバイス109の流路内に正圧を印加し、サンプル反応液を流路内の伸長・アニーリング温度帯(たとえば第二温度帯120)まで移動させる(g)。 By pushing the syringe 206, positive pressure is applied in the channel of the device 109, and the sample reaction solution is moved to the elongation/annealing temperature zone (for example, the second temperature zone 120) in the channel (g).
 サンプル反応液を伸長・アニーリング温度帯に維持したまま所定時間B(本実施例では7秒)待機する(h)。 The sample reaction solution is kept in the elongation/annealing temperature range and waits for a predetermined time B (7 seconds in this example) (h).
 シリンジ206を吸引し、デバイス109の流路内に負圧を印加し、サンプル反応液をデバイス109の流路内の変性温度帯まで移動させる(i)。 The syringe 206 is sucked, negative pressure is applied in the channel of the device 109, and the sample reaction liquid is moved to the denaturation temperature zone in the channel of the device 109 (i).
 サンプル反応液を変性温度帯に維持したまま所定時間C(本実施例では3秒)待機する(j)。 The sample reaction solution is kept in the denaturing temperature zone and waits for a predetermined time C (3 seconds in this embodiment) (j).
 前記(g)から(j)の動作を所定回数(本実施例では40回)繰り返す。すなわち、シリンジ206によって、サンプルをデバイス109の第一温度帯119と第二温度帯120にそれぞれ複数回搬送する。本実施例では、サンプルを第一温度帯119と第二温度帯120との間で複数回往復させる。これによって、ターゲットDNAの所定領域を増幅する。 The above operations (g) to (j) are repeated a predetermined number of times (40 times in this embodiment). That is, the syringe 206 conveys the sample to the first temperature zone 119 and the second temperature zone 120 of the device 109 multiple times. In this example, the sample is cycled between first temperature zone 119 and second temperature zone 120 multiple times. A predetermined region of the target DNA is thereby amplified.
 次いで、シリンジ206を押し、デバイス109の流路内に正圧を印加し、サンプル反応液を多項目検出領域114まで移動させる(k)。このように、シリンジ206によって、サンプルをデバイスの多項目検出領域114に搬送する。ここで、流路127の断面積は、流路122の断面積よりも小さいため、サンプル反応液は優先的に流路122に流れることになり、流路127へと流れ損失するサンプル反応液の量は抑制される。 Next, the syringe 206 is pushed to apply positive pressure to the channel of the device 109 to move the sample reaction liquid to the multi-item detection area 114 (k). Thus, the syringe 206 delivers the sample to the multi-item detection area 114 of the device. Here, since the cross-sectional area of channel 127 is smaller than the cross-sectional area of channel 122, the sample reaction liquid preferentially flows through channel 122, and the sample reaction liquid that flows into channel 127 is lost. quantity is restrained.
 なお、上記ステップ(k)において、シリンジ228を固定しておけば、サンプル反応液は流路127には流れにくいが、その場合であっても、流路127の断面積を流路122の断面積より小さくしておくことにより、損失をさらに低減することができる。 In step (k) above, if the syringe 228 is fixed, the sample reaction liquid is less likely to flow into the channel 127 . Loss can be further reduced by making it smaller than the area.
 ニードル開閉方式の場合には、(a)開閉ポート閉鎖の操作が不要となり、(d)開閉ポート開放はモータ232を駆動し、ニードル230を上方向にシフトさせ、多項目検出領域先端部129下部のカバーシール115を開口することにより行われる。 In the case of the needle opening/closing method, (a) the operation of closing the opening/closing port becomes unnecessary, and (d) opening the opening/closing port drives the motor 232 to shift the needle 230 upward, thereby lowering the tip portion 129 of the multi-item detection area. This is done by opening the cover seal 115 of the .
 このような構成によれば、シリンジ206とアクチュエータ207を含む圧力印加システムからデバイス109の流路内のサンプル溶液までに構成される空間の体積が小さいため、空気のダンパー効果が小さくなり、高精度にサンプル反応液を送液することが可能となる。 According to such a configuration, since the volume of the space formed from the pressure application system including the syringe 206 and the actuator 207 to the sample solution in the channel of the device 109 is small, the damper effect of air is reduced, resulting in high accuracy. It is possible to send the sample reaction solution to the
 なお、PCR反応領域内に光学ファイバセンサを配置し、液-空気界面を検知しながら送液制御することで、より高精度なサンプル反応液の送液が可能となる。 By placing an optical fiber sensor in the PCR reaction area and controlling liquid delivery while detecting the liquid-air interface, it is possible to deliver the sample reaction liquid with higher accuracy.
 サンプル反応液を一定時間、多項目検出領域114に維持した後に、アクチュエータ229を駆動させ、シリンジ228に充填されている洗浄液を洗浄液導入部112、流路127、流路122を介して多項目検出領域114内に導入し、固定プローブ125にハイブリダイゼーションしたPCR産物以外のものを吸水パッド123へ向かって洗い流す。 After maintaining the sample reaction liquid in the multi-item detection area 114 for a certain period of time, the actuator 229 is driven to detect the washing liquid filled in the syringe 228 through the washing liquid introduction part 112, the flow path 127, and the flow path 122. Anything other than the PCR product introduced into the region 114 and hybridized to the immobilized probe 125 is washed away toward the absorbent pad 123 .
 その後、照射検出部213によって蛍光検出できた位置を特定し、検体のターゲットDNAを特定する。このようにして、照射検出部213によって、多項目検出領域114においてサンプルの各成分を検出する。 After that, the position where fluorescence detection has been achieved by the irradiation detection unit 213 is specified, and the target DNA of the specimen is specified. In this manner, each component of the sample is detected in the multi-item detection area 114 by the irradiation detection unit 213 .
 本実施例では、遺伝子の多項目検出手段として、多項目検出領域114および照射検出部213がハイブリダイゼーションを行うため、検出項目数を増加させることができる。しかしながら、変形例として、ハイブリダイゼーション以外に核酸クロマト法を使用することも可能である。核酸クロマト法を使用する場合、前記洗浄工程が不要となるため、デバイスと装置の構成が簡易となる。 In the present embodiment, the multi-item detection region 114 and the irradiation detection unit 213 perform hybridization as the gene multiple-item detection means, so the number of detection items can be increased. However, as a variant, it is also possible to use nucleic acid chromatography instead of hybridization. When the nucleic acid chromatography method is used, the washing process is not necessary, so the configuration of the device and apparatus is simplified.
 本実施例ではターゲットとしてDNAとしているが、ウイルスなどのRNAの場合には、デバイス外で逆転写反応を行い、cDNAをサンプルとして導入しても良い。また、デバイス109の流路内に逆転写反応領域を設け、装置にも逆転写反応用のヒートブロックを設置し、デバイス109の内部で逆転写反応を行っても良い。 In this example, DNA is used as the target, but in the case of RNA such as viruses, reverse transcription reaction may be performed outside the device and cDNA may be introduced as a sample. Alternatively, a reverse transcription reaction region may be provided in the channel of the device 109, a heat block for reverse transcription reaction may be provided in the apparatus, and the reverse transcription reaction may be performed inside the device 109.
 本実施例では検出方法として蛍光検出を用いているが、光吸収、反射率、化学ルミネセンス、電気化学ルミネセンス、光散乱など他の検出方式を用いても良い。 Although fluorescence detection is used as the detection method in this embodiment, other detection methods such as light absorption, reflectance, chemiluminescence, electrochemiluminescence, and light scattering may be used.
 以上のように、本実施例によれば、デバイス109(とくに開閉ポート124)はバルブを備えない。このため、往復流路方式PCRを使った多項目検出において、デバイス内にバルブを設置することによるコスト増大を抑え、反応液の移動を適切に行うことによる安定なPCRを提供できる。なお、デバイス109の外部に、たとえば開閉ポート124の外側に、デバイス109とは別体として提供されるバルブを配置することは可能である。 As described above, according to this embodiment, the device 109 (especially the opening/closing port 124) does not have a valve. Therefore, in multi-item detection using reciprocating flow channel type PCR, stable PCR can be provided by suppressing an increase in cost due to installing a valve in the device and appropriately moving the reaction solution. It should be noted that it is possible to arrange valves provided separately from the device 109 outside the device 109 , for example outside the open/close port 124 .
 実施例2では、サンプル導入口カバーを不要とするシンプルな装置構成を提供する。以下、実施例1と共通する部分については説明を省略する場合がある。 Example 2 provides a simple device configuration that does not require a sample inlet cover. Hereinafter, explanations of parts common to the first embodiment may be omitted.
 実施例1に係るデバイス109(図2)において、一部の流路の断面積(たとえば幅および深さ)が異なる点と、サンプル導入口カバー210が不要な点以外は、実施例1と同等とすることができる。以下では、開放可能部にニードル開閉方式を採用する例を示す。 Device 109 according to Example 1 (FIG. 2) is the same as Example 1 except that the cross-sectional area (e.g., width and depth) of some channels is different and sample inlet cover 210 is not required. can be In the following, an example of adopting the needle opening/closing method for the openable part will be shown.
 図10に本実施例の遺伝子増幅多項目検出デバイスの概略図を示す。流路130は、第一流路において、サンプル導入部110と分岐部117を接続する部分である。分岐部117と多項目検出領域114の間に設けられた流路122(第二流路)の幅、ならびに、サンプル導入部110と分岐部117間に設けられた流路130の幅と深さ以外は実施例1と同等である。流路118の幅0.8mm、深さ0.8mmmに対して、流路122の幅2.0mm、深さ0.8mm、流路130の幅0.2mm、深さ0.2mmとなっている。 Fig. 10 shows a schematic diagram of the gene amplification multiitem detection device of this embodiment. The channel 130 is a portion that connects the sample introduction portion 110 and the branch portion 117 in the first channel. Width of channel 122 (second channel) provided between branching portion 117 and multi-item detection region 114, and width and depth of channel 130 provided between sample introduction portion 110 and branching portion 117 Other than that, it is the same as Example 1. The channel 118 has a width of 0.8 mm and a depth of 0.8 mm, the channel 122 has a width of 2.0 mm and a depth of 0.8 mm, and the channel 130 has a width of 0.2 mm and a depth of 0.2 mm. there is
 図11に、デバイス109をPCR反応装置に設置した後の、サンプル反応液導入から多項目検出部までの送液の操作フローを示す。図5ならびに図7を使って以下詳細を説明する。 FIG. 11 shows the operation flow of liquid transfer from the introduction of the sample reaction liquid to the multi-item detection unit after the device 109 is installed in the PCR reactor. Details will be described below with reference to FIGS. 5 and 7. FIG.
 サンプル導入部にサンプル反応液を滴下する(a)。 Drop the sample reaction liquid into the sample introduction part (a).
 シリンジ206を吸引し、デバイス109の流路内に負圧を印加し、サンプル反応液をデバイス109の流路内の変性温度帯まで移動させる(b)。 The syringe 206 is sucked, negative pressure is applied in the channel of the device 109, and the sample reaction liquid is moved to the denaturing temperature zone in the channel of the device 109 (b).
 モータ232を1/4回転駆動し、ニードル230を上昇させカバーシール115を開孔し、さらにモータ232を3/4回転駆動し、ニードル230を下降させることにより、多項目検出領域先端部129を開放する(c)。 The motor 232 is driven 1/4 turn to lift the needle 230 to open the cover seal 115, and the motor 232 is driven 3/4 turn to lower the needle 230 to move the multi-item detection area tip 129. Open (c).
 サンプル反応液を変性温度帯に維持したまま所定時間A(本実施例では15秒)待機する(d)。 Wait for a predetermined time A (15 seconds in this example) while maintaining the sample reaction solution in the denaturation temperature zone (d).
 シリンジ206を押し、デバイス109の流路内に正圧を印加し、サンプル反応液を流路内の伸長・アニーリング温度帯まで移動させる(e)。 By pushing the syringe 206, a positive pressure is applied in the channel of the device 109, and the sample reaction solution is moved to the elongation/annealing temperature zone in the channel (e).
 サンプル反応液を伸長・アニーリング温度帯に維持したまま所定時間B(本実施例では7秒)待機する(f)。 The sample reaction solution is kept in the elongation/annealing temperature zone and waits for a predetermined time B (7 seconds in this example) (f).
 シリンジ206を吸引し、デバイス109の流路内に負圧を印加し、サンプル反応液をデバイス109の流路内の変性温度帯まで移動させる(g)。 The syringe 206 is sucked, negative pressure is applied in the channel of the device 109, and the sample reaction liquid is moved to the denaturation temperature zone in the channel of the device 109 (g).
 サンプル反応液を変性温度帯に維持したまま所定時間C(本実施例では3秒)待機する(h)。 The sample reaction solution is kept in the denaturation temperature zone and waits for a predetermined time C (3 seconds in this example) (h).
 前記(e)から(h)の動作を所定回数(本実施例では40回)繰り返すことによりターゲットDNAの所定領域を増幅する。 A predetermined region of the target DNA is amplified by repeating the above operations (e) to (h) a predetermined number of times (40 times in this embodiment).
 次いで、シリンジ206を押し、デバイス109の流路内に正圧を印加し、サンプル反応液を多項目検出領域114まで移動させる(i)。 Next, the syringe 206 is pushed to apply positive pressure to the channel of the device 109 to move the sample reaction liquid to the multi-item detection area 114 (i).
 この時、流路122と流路130へのサンプル反応液の分配量は、流路を単純な管として仮定すると、おおよそ断面積(たとえば流路径の二乗)に比例する。本実施例では、流路130の断面積は、流路122の断面積よりも小さく、流路の断面積比は、流路122:流路130=40:1となる。 At this time, the distribution amount of the sample reaction liquid to the channels 122 and 130 is approximately proportional to the cross-sectional area (for example, the square of the channel diameter), assuming that the channels are simple tubes. In this embodiment, the cross-sectional area of the channel 130 is smaller than the cross-sectional area of the channel 122, and the cross-sectional area ratio of the channels is channel 122:channel 130=40:1.
 このため、サンプル導入部110を封止していない状態であっても、ほとんどのサンプル反応液が流路122に流れる。このため、サンプル導入部110を封止する工程が不要となる。 Therefore, most of the sample reaction liquid flows through the channel 122 even when the sample introduction part 110 is not sealed. Therefore, the process of sealing the sample introduction part 110 becomes unnecessary.
 多項目検出領域114への送液以降は実施例1と同等である。  The process after liquid transfer to the multi-item detection area 114 is the same as in the first embodiment.
 実施例2によっても、実施例1と同様に、往復流路方式PCRを使った多項目検出において、デバイス内にバルブを設置することによるコスト増大を抑え、反応液の移動を適切に行うことによる安定なPCRを提供できる。 According to Example 2, as in Example 1, in multi-item detection using reciprocating flow path PCR, the cost increase due to installing a valve in the device can be suppressed, and the reaction solution can be moved appropriately. Stable PCR can be provided.
 109…デバイス
 110…サンプル導入部
 111…圧力印加領域
 112…洗浄液導入部
 113…PCR領域(PCR部)
 114…多項目検出領域
 115…カバーシール(フィルム)
 116…流路(第一流路)
 117…分岐部(第一分岐部)
 118…流路(第一流路)
 119…第一温度帯
 120…第二温度帯
 121…圧力印加用開口
 122…流路(第二流路)
 123…吸水パッド
 124…開閉ポート(開放可能部)
 125…固定プローブ
 126…分岐部(第二分岐部)
 127…流路(洗浄液流路)
 128…洗浄液ポート
 129…多項目検出領域先端部(検出部)
 130…流路
 200…装置本体
 201…ヒートブロック(温度調節部)
 202…ヒートブロック(温度調節部)
 203…温度制御部
 204…圧力用流路
 205…チューブ
 206…シリンジ
 207…アクチュエータ
 208…装置カバー
 209…カバー開口
 210…サンプル導入口カバー
 211…ソレノイド
 212…検出用開口
 213…照射検出部(検出手段)
 214…レーザ
 215…ビームエキスパンダ
 216…ダイクロイックミラー
 217…対物レンズ
 218…光学フィルタ
 219…結像レンズ
 220…CCDカメラ
 221…ヒートブロック
 222…開閉キャップ
 223…キャップ支持棒
 224…カム
 225…モータ
 226…洗浄液用流路
 227…チューブ
 228…シリンジ
 229…アクチュエータ
 230…ニードル
 231…カム
 232…モータ
 300…プライマ
 301…蛍光体
 302…プライマ
 303…スペーサ
 304…タグ配列
DESCRIPTION OF SYMBOLS 109... Device 110... Sample introduction part 111... Pressure application area|region 112... Washing liquid introduction part 113... PCR area (PCR part)
114 Multi-item detection area 115 Cover seal (film)
116... Flow path (first flow path)
117 branching portion (first branching portion)
118... Flow path (first flow path)
DESCRIPTION OF SYMBOLS 119... 1st temperature zone 120... 2nd temperature zone 121... Opening for pressure application 122... Flow path (second flow path)
123... Water absorption pad 124... Open/close port (openable part)
125... Fixed probe 126... Branch portion (second branch portion)
127... Channel (cleaning liquid channel)
128... Washing liquid port 129... Tip of multi-item detection area (detection part)
DESCRIPTION OF SYMBOLS 130... Flow path 200... Apparatus main body 201... Heat block (temperature control part)
202 ... Heat block (temperature control unit)
203... Temperature control part 204... Pressure channel 205... Tube 206... Syringe 207... Actuator 208... Apparatus cover 209... Cover opening 210... Sample inlet cover 211... Solenoid 212... Detection opening 213... Irradiation detection part (detection means )
DESCRIPTION OF SYMBOLS 214... Laser 215... Beam expander 216... Dichroic mirror 217... Objective lens 218... Optical filter 219... Imaging lens 220... CCD camera 221... Heat block 222... Opening/closing cap 223... Cap supporting rod 224... Cam 225... Motor 226... Washing liquid flow path 227 Tube 228 Syringe 229 Actuator 230 Needle 231 Cam 232 Motor 300 Primer 301 Phosphor 302 Primer 303 Spacer 304 Tag arrangement

Claims (10)

  1.  サンプルを導入するためのサンプル導入部と、
     複数の温度帯にそれぞれ複数回サンプルを搬送してサンプルを増幅するためのPCR部と、
     サンプルを搬送する圧力を印加するための圧力印加用開口と、
    を備え、
     前記サンプル導入部、前記PCR部、および前記圧力印加用開口は、この順に1本の第一流路に配置され、
     前記第一流路は、前記サンプル導入部と前記PCR部との間において、第二流路へと分岐する第一分岐部を備え、
     前記第二流路は、サンプルに含まれる複数の成分を独立に検出するための検出部を備え、
     前記第二流路は、前記検出部に関して前記第一流路と反対側に、開放可能部を備える
    ことを特徴とする、サンプルのPCR解析を実行するためのデバイス。
    a sample introduction part for introducing a sample;
    a PCR section for amplifying the samples by transporting the samples a plurality of times to a plurality of temperature zones;
    a pressure application opening for applying pressure to transport the sample;
    with
    The sample introduction section, the PCR section, and the pressure application opening are arranged in this order in one first channel,
    The first channel has a first branching part that branches into a second channel between the sample introduction part and the PCR part,
    The second channel comprises a detection unit for independently detecting a plurality of components contained in the sample,
    A device for performing PCR analysis of a sample, wherein the second channel comprises an openable portion on the opposite side of the first channel with respect to the detection portion.
  2.  前記第一流路において、前記サンプル導入部と前記第一分岐部を接続する部分の断面積は、前記第二流路の断面積よりも小さいことを特徴とする、請求項1に記載のデバイス。  The device according to claim 1, wherein the cross-sectional area of the portion connecting the sample introduction part and the first branch part in the first channel is smaller than the cross-sectional area of the second channel.
  3.  前記開放可能部はバルブを備えないことを特徴とする、請求項1に記載のデバイス。 The device according to claim 1, characterized in that said openable part does not comprise a valve.
  4.  前記デバイスは、洗浄液を搬送するための洗浄液流路を備え、
     前記第二流路は、前記洗浄液流路へと分岐する第二分岐部を備え、
     前記洗浄液流路の断面積は、前記第二流路の断面積よりも小さい、
    ことを特徴とする、請求項1に記載のデバイス。
    The device comprises a cleaning fluid channel for conveying a cleaning fluid,
    the second flow path includes a second branching portion branching into the cleaning liquid flow path,
    the cross-sectional area of the cleaning liquid channel is smaller than the cross-sectional area of the second channel;
    A device according to claim 1, characterized in that:
  5.  請求項1に記載のデバイスとともに使用されるよう構成される、PCR反応装置であって、
     前記複数の温度帯の温度を調節する温度調節部と、
     前記圧力印加用開口に圧力を印加する圧力印加部と、
     前記開放可能部を開放する開放手段と、
     前記検出部におけるサンプルの各成分を検出する検出手段と、
    を備えることを特徴とする、PCR反応装置。
    A PCR reactor configured for use with the device of claim 1, comprising:
    a temperature adjustment unit that adjusts temperatures in the plurality of temperature zones;
    a pressure application unit that applies pressure to the pressure application opening;
    opening means for opening the openable portion;
    detection means for detecting each component of the sample in the detection unit;
    A PCR reaction device comprising:
  6.  前記開放可能部は、前記デバイスに設けられた開口部であり、
     前記開放手段は封止部材を備え、前記封止部材が運動することにより前記開口部を封止しまたは開放する、
    ことを特徴とする、請求項5に記載のPCR反応装置。
    the openable portion is an opening provided in the device;
    the opening means comprises a sealing member, and the movement of the sealing member seals or opens the opening;
    The PCR reaction device according to claim 5, characterized in that:
  7.  前記開放可能部は、前記デバイスに設けられたフィルムであり、
     前記開放手段は、前記フィルムを穿孔するニードルを備える、
    ことを特徴とする、請求項5に記載のPCR反応装置。
    the openable portion is a film provided on the device;
    said opening means comprises a needle for perforating said film;
    The PCR reaction device according to claim 5, characterized in that:
  8.  前記検出部および前記検出手段はハイブリダイゼーションを行うことを特徴とする、請求項5に記載のPCR反応装置。 The PCR reaction device according to claim 5, wherein said detection unit and said detection means perform hybridization.
  9.  請求項1に記載のデバイスと、請求項5に記載のPCR反応装置とを備えることを特徴とする、PCRシステム。 A PCR system comprising the device according to claim 1 and the PCR reactor according to claim 5.
  10.  請求項1に記載のデバイスと、請求項5に記載のPCR反応装置とを用いる、PCR方法であって、
     前記デバイスを前記装置に配置するステップと、
     前記デバイスの前記サンプル導入部を介してサンプルを導入するステップと、
     前記装置の前記圧力印加部によって、サンプルを前記デバイスの前記第一流路内に導入するステップと、
     前記デバイスの前記開放可能部を開放するステップと、
     前記装置の前記圧力印加部によって、サンプルを前記デバイスの前記複数の温度帯にそれぞれ複数回搬送するステップと、
     前記装置の前記圧力印加部によって、サンプルを前記デバイスの前記検出部に搬送するステップと、
     前記装置の前記検出手段によって、前記デバイスの前記検出部においてサンプルの各成分を検出するステップと、
    を備えることを特徴とする、PCR方法。
    A PCR method using the device according to claim 1 and the PCR reactor according to claim 5,
    placing the device on the apparatus;
    introducing a sample through the sample introduction portion of the device;
    introducing a sample into the first channel of the device by the pressure applying portion of the apparatus;
    opening the openable portion of the device;
    transporting the sample to the plurality of temperature zones of the device a plurality of times by the pressure applying unit of the apparatus;
    conveying a sample to the sensing portion of the device by the pressure applying portion of the apparatus;
    detecting each component of a sample in the detection portion of the device by the detection means of the apparatus;
    A PCR method, characterized in that it comprises:
PCT/JP2021/015513 2021-04-14 2021-04-14 Device for performing pcr analysis of sample, pcr reactor, pcr system and pcr method WO2022219758A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/015513 WO2022219758A1 (en) 2021-04-14 2021-04-14 Device for performing pcr analysis of sample, pcr reactor, pcr system and pcr method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/015513 WO2022219758A1 (en) 2021-04-14 2021-04-14 Device for performing pcr analysis of sample, pcr reactor, pcr system and pcr method

Publications (1)

Publication Number Publication Date
WO2022219758A1 true WO2022219758A1 (en) 2022-10-20

Family

ID=83640268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015513 WO2022219758A1 (en) 2021-04-14 2021-04-14 Device for performing pcr analysis of sample, pcr reactor, pcr system and pcr method

Country Status (1)

Country Link
WO (1) WO2022219758A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008061129A2 (en) * 2006-11-14 2008-05-22 University Of Utah Research Foundation Methods and compositions related to continuous flow thermal gradient pcr
WO2012094459A2 (en) * 2011-01-06 2012-07-12 Glezer Eli N Assay cartridges and methods of using the same
WO2016006612A1 (en) * 2014-07-08 2016-01-14 国立研究開発法人産業技術総合研究所 Nucleic acid amplification device, nucleic acid amplification method, and chip for nucleic acid amplification

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008061129A2 (en) * 2006-11-14 2008-05-22 University Of Utah Research Foundation Methods and compositions related to continuous flow thermal gradient pcr
WO2012094459A2 (en) * 2011-01-06 2012-07-12 Glezer Eli N Assay cartridges and methods of using the same
WO2016006612A1 (en) * 2014-07-08 2016-01-14 国立研究開発法人産業技術総合研究所 Nucleic acid amplification device, nucleic acid amplification method, and chip for nucleic acid amplification

Similar Documents

Publication Publication Date Title
CN111386465B (en) Diagnostic test system and method
US20210172010A1 (en) Method and device for the detection of molecular interactions
JP6669699B2 (en) Method and apparatus for continuous amplification reaction
JP6419209B2 (en) Microfluidic cartridges for molecular diagnostics, docking stations using such microfluidic cartridges, and processes for analyzing biological samples
JP5202686B2 (en) Apparatus for performing oxygen reactions and / or molecular biology reactions and methods for amplifying nucleic acids and processes for filling
US11142790B2 (en) Microfluidic device
JP5086250B2 (en) Cartridge, system and method for automatic medical diagnosis
CA2565679C (en) Device and method for detecting molecular interactions
CN104023834B (en) The apparatus and method for prepared for integrated sample, react and detect
JP3383310B2 (en) Molecular analyzer and method of use
US11529631B2 (en) Reaction processor
JP4556194B2 (en) Biological sample reaction method
JP2011062119A (en) Chip for quantitatively determining biological sample
JP6584373B2 (en) Reaction processing apparatus and reaction processing method
JP2007315772A (en) Fluorescence detector and biochemical reaction analyzer
WO2022219758A1 (en) Device for performing pcr analysis of sample, pcr reactor, pcr system and pcr method
JP6652677B2 (en) Reaction treatment apparatus and reaction treatment method
JP6652673B1 (en) Reaction processing vessel
JP5505646B2 (en) Biological sample quantification method
JP4711716B2 (en) Reaction vessel processing equipment
WO2020129116A1 (en) Reaction treatment device, reaction treatment vessel, and reaction treatment method
JP2024034639A (en) Nucleic acid detection system and nucleic acid detection method
JP2024518420A (en) Systems, methods, and apparatus for automated, self-contained biological analysis - Patents.com
JP2020058395A (en) Reaction treatment apparatus, reaction treatment method, and dispensation method
JP2022504857A (en) Methods and systems for local heating by illumination of patterned thin films

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936959

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936959

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP