WO2020129116A1 - Reaction treatment device, reaction treatment vessel, and reaction treatment method - Google Patents

Reaction treatment device, reaction treatment vessel, and reaction treatment method Download PDF

Info

Publication number
WO2020129116A1
WO2020129116A1 PCT/JP2018/046291 JP2018046291W WO2020129116A1 WO 2020129116 A1 WO2020129116 A1 WO 2020129116A1 JP 2018046291 W JP2018046291 W JP 2018046291W WO 2020129116 A1 WO2020129116 A1 WO 2020129116A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
sample
temperature region
temperature
reaction
Prior art date
Application number
PCT/JP2018/046291
Other languages
French (fr)
Japanese (ja)
Inventor
福澤 隆
磨 川口
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Priority to PCT/JP2018/046291 priority Critical patent/WO2020129116A1/en
Priority to ARP190103659A priority patent/AR117328A1/en
Publication of WO2020129116A1 publication Critical patent/WO2020129116A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology

Definitions

  • the present invention relates to a reaction processing device, a reaction processing container, and a reaction processing method used in a polymerase chain reaction (PCR).
  • PCR polymerase chain reaction
  • Genetic tests are widely used for tests in various medical fields, identification of crops and pathogenic microorganisms, food safety evaluation, and inspection for pathogenic viruses and various infectious diseases.
  • a method of amplifying a part of DNA and analyzing the obtained product is known.
  • the method using PCR is a technique of interest that selectively amplifies a portion containing a very small amount of DNA collected from a living body or the like.
  • PCR a predetermined thermal cycle is applied to a sample in which a biological sample containing DNA and a PCR reagent composed of a primer, an enzyme, etc. are subjected to repeated denaturation, annealing and extension reactions to cause a specific portion of DNA to be bound. It selectively amplifies.
  • a target sample is generally put in a predetermined amount in a reaction treatment container such as a PCR tube or a microplate (microwell) having a plurality of holes formed therein, but recently, it was formed on a substrate. It has been put into practical use to carry out the reaction using a reaction processing container (also called a chip) having a fine channel (for example, Patent Document 1).
  • a reaction processing container also called a chip
  • PCR using a reciprocating flow channel type reaction container in order to give a thermal cycle to a sample, a plurality of temperature regions maintained at different temperatures are set in the flow channel, and a plurality of temperature regions are set in the flow channel. Move back and forth. In order to properly subject the sample to thermal cycling, it is necessary for the sample to stop exactly in each temperature range. If the stop position varies, the reaction may not occur, the progress of the reaction may vary depending on the sample location, or the reaction such as DNA amplification may become inaccurate, which may lead to misjudgment by workers or workers. is there.
  • the present invention has been made in view of such circumstances, and an object thereof is to perform a reaction in which a sample can be subjected to a thermal cycle by reciprocally moving the sample within channels in which different temperature regions are set. It is an object of the present invention to provide a technique capable of accurately stopping a sample at a predetermined position in a temperature region in a processing device or a reaction processing container.
  • a reaction treatment apparatus is a channel in which a sample moves, a first filter disposed at one end of the channel, and a first filter disposed at the other end of the channel. 2 filter, a first temperature region provided on one end side of the flow channel, and a second temperature region provided on the other end side of the flow channel, and a first temperature region of the reaction treatment container A temperature control system that maintains the second temperature region of the reaction treatment container at a second temperature lower than the first temperature while maintaining the temperature at one temperature, and a liquid feeding system that moves the sample in the channel.
  • the first filter and the second filter have air permeability and water repellency.
  • the sample When moving the sample from the first temperature region to the second temperature region by the liquid feeding system, the sample is stopped by the second filter, so that the sample stops at the second temperature region, and the liquid feeding system causes the second temperature region.
  • the sample When the sample is moved from the first temperature range to the first temperature range, the sample is stopped by the first filter, so that the sample stops in the first temperature range.
  • the first filter and the second filter may contain a fluororesin.
  • the first filter and the second filter may contain at least one fluororesin selected from polytetrafluoroethylene, perfluoroalkoxyalkane, perfluoroethylenepropene copolymer, and ethylenetetrafluoroethylene copolymer.
  • the first filter and the second filter may be made of polytetrafluoroethylene.
  • the first temperature may be set to a temperature for denaturing the sample
  • the second temperature may be set to a temperature for annealing and extending the sample.
  • the reaction processing device may further include a fluorescence detector arranged to detect fluorescence from the sample located in a part of the second temperature region.
  • the reaction processing container may be provided with an annular packing to close the gap between the first filter and the flow passage and the gap between the second filter and the flow passage.
  • Another aspect of the present invention is to provide a flow path through which a sample moves, a first filter arranged at one end of the flow path, a second filter arranged at the other end of the flow path, and one end side of the flow path. And a second temperature region provided on the other end side of the flow path.
  • the first filter and the second filter have air permeability and water repellency.
  • Yet another aspect of the present invention is a flow path through which a sample moves, a first filter arranged at one end of the flow path, a second filter arranged at the other end of the flow path, and at one end side of the flow path.
  • a reaction treatment container including a first temperature region provided and a second temperature region provided on the other end side of the flow path, and the reaction treatment container while maintaining the first temperature region of the reaction treatment container at the first temperature.
  • a reaction processing method in a reaction processing apparatus which includes a temperature control system for maintaining the second temperature region of the second temperature at a second temperature lower than the first temperature, and a liquid feeding system for moving the sample in the channel.
  • the first filter and the second filter have air permeability and water repellency, and when the sample is moved from the first temperature region to the second temperature region by the liquid delivery system, The sample is stopped in the second temperature region by being blocked, and when the sample is moved by the liquid feeding system from the second temperature region to the first temperature region, the sample is blocked by the first filter, so that the sample Stop in the first temperature range.
  • the reaction processing method may be a real-time PCR method.
  • the reaction treatment method may be an intercalator method.
  • the reaction treatment method may further include a melting analysis step.
  • the melting analysis curve may be obtained by changing the temperature within the second temperature region.
  • a reaction processing apparatus or reaction processing container capable of giving a thermal cycle to a sample by moving the sample in a reciprocating manner within channels in which different temperature regions are set, Can be accurately stopped at a predetermined position.
  • the reaction processing container includes a substrate, a sealing film attached to the substrate, and a filter.
  • FIG. 1 is a plan view of a substrate included in the reaction processing container.
  • FIG. 2 is a conceptual diagram for explaining the configuration of the reaction processing container.
  • FIG. 3 is a diagram for explaining the cross-sectional structure of the reaction processing container. It should be noted that FIG. 3 is a diagram for explaining the positional relationship between the flow path formed on the substrate, the film, and the filter, and is different from the cross-sectional view of the reaction processing container of the embodiment.
  • the reaction processing container 10 includes a resinous substrate 14 having a groove-shaped channel 12 formed on an upper surface 14a, a channel sealing film 16 attached on the upper surface 14a of the substrate 14, a first sealing film 18, and The second sealing film 19, the third sealing film 20, the fourth sealing film 21, and the fifth sealing film 22 attached on the lower surface 14b of the substrate 14, and the first filter arranged in the substrate 14. 28 and the second filter 30.
  • an annular packing such as an O (O) ring 23 is provided between the first filter 28 and the third sealing film 20 and between the second filter 30 and the fourth sealing film 21.
  • the O-ring 23 may be arranged so as not to move easily by pressing the filter against the substrate, and it is also possible to close the gap between the filter and the flow path.
  • the annular packing has a shape corresponding to the shape of the filter or flow path to be used or the portion where the filter is installed, and may be a polygonal shape such as a substantially circular shape or a square shape.
  • the substrate 14 is preferably formed of a material that is stable against temperature changes and is not easily attacked by the sample solution used. Furthermore, the substrate 14 is preferably formed of a material having good moldability, good transparency and barrier properties, and low autofluorescence. As such a material, inorganic materials such as glass and silicon (Si), as well as resins such as acrylic, polypropylene, and silicone, among which cycloolefin polymer resin (COP) is preferable.
  • Si glass and silicon
  • resins such as acrylic, polypropylene, and silicone, among which cycloolefin polymer resin (COP) is preferable.
  • a groove-shaped channel 12 is formed on the upper surface 14a of the substrate 14.
  • most of the flow path 12 is formed in a groove shape exposed on the upper surface 14 a of the substrate 14. This is because it can be easily molded by injection molding using a mold or the like.
  • a flow path sealing film 16 is attached on the upper surface 14a of the substrate 14.
  • the cross-sectional shape of the groove is not particularly limited and may be rectangular or U-shaped (round). Further, in order to improve the releasability at the time of molding, the shape may be tapered from the upper surface 14a in the depth direction, and may be trapezoidal, for example.
  • An example of the dimensions of the flow channel 12 is 0.7 mm in width and 0.7 mm in depth.
  • One main surface of the flow channel sealing film 16 may have adhesiveness, or a functional layer exhibiting adhesiveness or adhesiveness by pressing, irradiation with energy such as ultraviolet rays, heating, or the like is provided on one main surface. It may be formed, and has a function of easily adhering to and integrating with the upper surface 14a of the substrate 14.
  • the flow channel sealing film 16 is preferably formed of a material having low autofluorescence including an adhesive.
  • a transparent film made of a resin such as cycloolefin polymer, polyester, polypropylene, polyethylene or acryl is suitable, but not limited thereto.
  • the flow path sealing film 16 may be formed of plate-shaped glass or resin. In this case, since the rigid property can be expected, it is useful for preventing the reaction processing container 10 from being warped or deformed.
  • a first filter 28 is provided at one end 12 a of the flow path 12.
  • a second filter 30 is provided at the other end 12b of the flow path 12.
  • the pair of the first filter 28 and the second filter 30 provided at both ends of the flow channel 12 do not interfere with the amplification and detection of the target DNA by PCR or prevent the quality of the target DNA from deteriorating. Prevent contamination.
  • the dimensions of the first filter 28 and the second filter 30 are formed so that they can fit in the filter installation space formed on the substrate 14 without any gap.
  • the substrate 14 is formed with a first air communication port 24 that communicates with the one end 12 a of the flow path 12 via the first filter 28. Similarly, the substrate 14 is formed with a second air communication port 26 that communicates with the other end 12b of the flow path 12 via the second filter 30. The pair of first air communication port 24 and second air communication port 26 are formed so as to be exposed on the upper surface 14 a of the substrate 14.
  • first filter 28 and the second filter 30 those having good low impurity characteristics and having air permeability and water repellency or oil repellency are used.
  • a fluorine-containing resin is preferable, but not limited to these, PTFE (polytetrafluoroethylene), PFA (perfluoroalkoxyalkane), FEP (perfluoroethylenepropene copolymer), Examples thereof include ETFE (ethylene tetrafluoroethylene copolymer).
  • PF060 and PF100 both manufactured by Advantech Group
  • PF060 has a thickness of 0.50 mm, a porosity of 75%, a retained particle size of 6 ⁇ m, a pressure loss of 0.069 kPa, and a water repellency of more than 3.9 kPa.
  • the PF100 has a thickness of 1.0 mm, a porosity of 77%, a retained particle size of 10 ⁇ m, a pressure loss of 0.059 kPa, and a water repellency of more than 3.9 kPa.
  • the first filter 28 and the second filter 30 those having a surface coated with a fluorine-containing resin and a water-repellent treatment can be used as the first filter 28 and the second filter 30, those having a surface coated with a fluorine-containing resin and a water-repellent treatment can be used.
  • the flow path 12 is provided with a reaction region between a pair of the first filter 28 and the second filter 30 in which a plurality of levels of temperature can be controlled by a reaction processing device described later.
  • a thermal cycle can be applied to the sample by moving the sample so as to continuously reciprocate in the reaction region in which the temperature of a plurality of levels is maintained.
  • the reaction region includes a high temperature region 36 provided on the one end 12a side of the flow channel 12 and a medium temperature region 38 provided on the other end 12b side of the flow channel 12.
  • the high temperature region 36 is maintained at a relatively high temperature (for example, about 95° C.), and the medium temperature region 38 is lower than the high temperature region 36 (for example, about 62° C.). ) Is maintained.
  • the high temperature region 36 is located on the right side of the flow path 12 in the drawing, one end of which communicates with the first air communication port 24 through the first filter 28 and the connection flow path 29, and the other end of which connects with the connection flow path 40. It communicates with the intermediate temperature region 38 via the.
  • the middle temperature region 38 is located on the left side of the flow path 12 in the drawing, one end thereof communicates with the high temperature region 36 via the connection flow path 40, and the other end thereof via the second filter 30 and the connection flow path 31. 2 It communicates with the air communication port 26.
  • Each of the high temperature region 36 and the medium temperature region 38 includes a meandering flow path in which a curved portion and a straight portion are combined and which are continuously folded back.
  • a meandering flow path it is possible to effectively use a limited effective area such as a heater that constitutes the temperature control system described later, and it is easy to reduce the temperature variation in the reaction region.
  • the substantial size of the reaction processing container can be reduced, which contributes to downsizing of the reaction processing apparatus.
  • the connection flow passage 40 between the high temperature region 36 and the intermediate temperature region 38 may be a linear flow passage.
  • a branch point 40a is provided in the middle of the connection flow channel 40 between the high temperature region 36 and the medium temperature region 38, and a branch flow channel 42 branches from the branch point 40a.
  • a sample introduction port 44 is formed at the tip of the branch channel 42 so as to be exposed on the lower surface 14 b of the substrate 14.
  • the first sealing film 18 is attached to the upper surface 14a of the substrate 14 so as to seal the first air communication port 24.
  • the second sealing film 19 is attached to the upper surface 14a of the substrate 14 so as to seal the second air communication port 26.
  • the third sealing film 20 is attached to the lower surface 14b of the substrate 14 so as to seal the connection channel 29 and the first filter 28.
  • the fourth sealing film 21 is attached to the lower surface 14b of the substrate 14 so as to seal the connection channel 31 and the second filter 30.
  • the fifth sealing film 22 is attached to the lower surface 14b of the substrate 14 so as to seal the sample introduction port 44.
  • a transparent film having a resin such as cycloolefin polymer, polyester, polypropylene, polyethylene or acrylic as a base material can be used. In the state where all the sealing films including the channel sealing film 16 are attached, all the channels are closed spaces.
  • the first sealing film 18 and the second sealing film 19 which seal the first air communication port 24 and the second air communication port 26 are used. Peeling off and connecting the tube provided in the liquid feeding system to the first air communication port 24 and the second air communication port 26.
  • the first sealing film 18 and the second sealing film 19 may be perforated with a hollow needle (a sharp-pointed injection needle) provided in the liquid delivery system.
  • the first sealing film 18 and the second sealing film 19 are preferably films made of a material and a thickness that facilitates perforation with a needle.
  • the sample is introduced into the flow channel 12 through the sample introduction port 44 by once peeling off the fifth sealing film 22 from the substrate 14, and after introducing a predetermined amount of the sample, the fifth sealing film 22 is again removed from the substrate 14. It is attached back to the lower surface 14b. Therefore, as the fifth sealing film 22, it is desirable to use a film having an adhesive property such that it can withstand attachment/detachment for several cycles. Further, the fifth sealing film 22 may have a mode in which a new film is attached after the sample is introduced, and in this case, the importance of the characteristics regarding repeated attachment/detachment can be eased.
  • the method of introducing the sample into the sample introduction port 44 is not particularly limited, but an appropriate amount of sample may be directly introduced from the sample introduction port 44 with a pipette, a dropper, a syringe, or the like. Alternatively, the introduction method may be performed while preventing contamination through a cone-shaped needle tip having a built-in filter made of porous PTFE or polyethylene. Many types of such needle tips are generally sold and easily available, and can be attached to the tip of a pipette, a dropper, a syringe or the like for use. Further, after the sample is discharged and introduced by a pipette, a dropper, a syringe or the like, the sample may be moved to a predetermined position in the channel 12 by further pressing and pushing.
  • the sample examples include, for example, a mixture containing one or two or more kinds of DNA, to which a thermostable enzyme and four kinds of deoxyribonucleoside triphosphates (dATP, dCTP, dGTP, dTTP) were added as PCR reagents.
  • a primer that specifically reacts with the DNA to be subjected to the reaction treatment and in some cases, a fluorescent probe such as TaqMan (TaqMan is a registered trademark of Roche Diagnostic Geselle Shaft Mitt Beschlenktel Kunststoff) for TaqMan or SYBR Green (SYBR is a molecular probe). S. Inc.'s registered trademark).
  • a commercially available real-time PCR reagent kit or the like can also be used.
  • FIG. 4 is a schematic diagram for explaining the reaction processing device 100 according to the embodiment of the present invention.
  • the reaction processing device 100 includes a reaction processing container mounting portion (not shown) on which the reaction processing container 10 is mounted, a temperature control system 50, and a CPU 52.
  • the temperature control system 50 has a high temperature region in the flow path 12 of the reaction treatment container 10 of about 95° C. (high temperature region) and a middle temperature region of about 62 with respect to the reaction treatment container 10 placed on the reaction treatment container placement portion. It is constructed so that it can be accurately maintained and controlled at °C.
  • the temperature control system 50 maintains the temperature of each temperature region of the reaction region, and specifically, the high temperature heater 54 for heating the high temperature region 36 of the flow passage 12, and the medium temperature of the flow passage 12.
  • a low temperature heater 56 for heating the region 38 a temperature sensor (not shown) such as a thermocouple for measuring the actual temperature of each temperature region, and a high temperature heater driver for controlling the temperature of the high temperature heater 54. 58 and a low temperature heater driver 60 that controls the temperature of the low temperature heater 56.
  • the actual temperature information measured by the temperature sensor is sent to the CPU 52.
  • the CPU 52 controls each heater driver so that the temperature of each heater becomes a predetermined temperature based on the actual temperature information of each temperature region.
  • Each heater may be, for example, a resistance heating element or a Peltier element.
  • the temperature control system 50 may further include other components for improving temperature controllability in each temperature range.
  • the reaction processing apparatus 100 further includes a liquid delivery system 62 for moving the sample S introduced into the channel 12 of the reaction processing container 10 in the channel 12.
  • the liquid delivery system 62 includes a first pump 64, a second pump 66, a first pump driver 68 for driving the first pump 64, a second pump driver 70 for driving the second pump 66, A first tube 72 and a second tube 74 are provided.
  • One end of the first tube 72 is connected to the first air communication port 24 of the reaction processing container 10.
  • a packing 76 or a seal for ensuring airtightness is preferably arranged at a connection portion between the first air communication port 24 and one end of the first tube 72.
  • the other end of the first tube 72 is connected to the output of the first pump 64.
  • one end of the second tube 74 is connected to the second air communication port 26 of the reaction processing container 10.
  • a packing 77 or a seal for ensuring airtightness is preferably arranged at a connection portion between the second air communication port 26 and one end of the second tube 74.
  • the other end of the second tube 74 is connected to the output of the second pump 66.
  • the first pump 64 and the second pump 66 may be, for example, a blower pump including a diaphragm pump, a micro blower pump, or a blower.
  • blower pumps, micro blower pumps, and blowers can increase the pressure on the secondary side from the primary side during operation, but the characteristics are such that the pressure on the primary side becomes equal to the pressure on the secondary side at the moment of stopping or at the time of stopping. Is preferably provided. This is because, for example, when the sample obtains a propulsive force due to its blowing air or pressure, the propulsive force can be eliminated at the moment the pump stops, and the sample stop control becomes easy. ..
  • the CPU 52 controls air blow and pressurization from the first pump 64 and the second pump 66 via the first pump driver 68 and the second pump driver 70.
  • the air blow and pressurization from the first pump 64 and the second pump 66 act on the sample S in the flow path 12 through the first air communication port 24 and the second air communication port 26, and become a propulsive force to the sample S.
  • the sample S By alternately operating the first pump 64 and the second pump 66, the sample S can be reciprocally moved in the flow path and passed through each temperature region of the flow path 12 of the reaction processing container 10, As a result, it becomes possible to apply a thermal cycle to the sample S. More specifically, by repeatedly applying the steps of denaturation in the high temperature region 36 and annealing/extension in the intermediate temperature region 38, the target DNA in the sample S is selectively amplified.
  • the high temperature region 36 can be regarded as the denaturing temperature region
  • the medium temperature region 38 can be regarded as the annealing/extension temperature region.
  • the residence time in each temperature region can be appropriately set by changing the time when the sample S stops at a predetermined position in each temperature region.
  • the reaction processing device 100 further includes a fluorescence detector 78.
  • a fluorescence detector 78 Generally, in real-time PCR, a reagent that emits fluorescence is added to a sample. Since the intensity of the fluorescence signal emitted from the sample increases as the amplification of DNA progresses, the intensity value of the fluorescence signal can be used as an index as a judgment material for the progress of PCR and the end of the reaction.
  • an optical fiber type fluorescence detection manufactured by Nippon Sheet Glass Co., Ltd. which is a very compact optical system, can perform rapid measurement, and can detect fluorescence regardless of whether it is a bright place or a dark place.
  • the vessel FLE-510 can be used.
  • This optical fiber type fluorescence detector can be tuned so that the wavelength characteristic of the excitation light/fluorescence is suitable for the fluorescence characteristic emitted by the sample, and provides an optimum optical detection system for the sample having various characteristics. It is also possible to detect fluorescence from a sample existing in a small or narrow area such as a channel with a small noise because of the small diameter of the light beam provided by the optical fiber type fluorescence detector. ..
  • the optical fiber type fluorescence detector 78 includes an optical head 80, a fluorescence detector driver 82, and an optical fiber 84 connecting the optical head 80 and the fluorescence detector driver 82.
  • the fluorescence detector driver 82 includes an excitation light source (LED, laser, or other light source adjusted to emit a specific wavelength), an optical fiber type multiplexer/demultiplexer, and a photoelectric conversion element (PD, APD, Photomal, etc.).
  • a photodetector (neither of which is shown) and the like are included, and a driver and the like for controlling these are included.
  • the optical head 80 is composed of an optical system such as a lens, and has a function of directionally irradiating the sample S with excitation light and a function of condensing fluorescence emitted from the sample.
  • the collected fluorescence is separated from the excitation light by the optical fiber type multiplexer/demultiplexer in the fluorescence detector driver 82 through the optical fiber 84, and is converted into an electric signal by the photoelectric conversion element.
  • the fluorescence detector is not limited to the optical fiber type fluorescence detector as long as it has a function of detecting the fluorescence from the sample S.
  • the position of the fluorescence detection region is in any of the regions along the channel. May be.
  • the optical head 80 may be arranged so that fluorescence can be detected from the sample S located in a partial area 86 (referred to as “fluorescence detection area 86”) in the intermediate temperature area 38.
  • fluorescence detection area 86 a partial area 86
  • the reaction of the sample S progresses as the sample S is repeatedly moved back and forth in the channel, and a predetermined DNA contained in the sample S is amplified. Therefore, the progress of the amplification of the DNA is monitored by monitoring the fluctuation of the detected fluorescence amount. You can know in real time.
  • the reaction processing container 10 is filled with the sample S, and the reaction processing container 10 is set in the reaction processing apparatus 100. Further, before setting the reaction processing container 10 in the reaction processing apparatus 100, the first pump 64 and the second pump 66 are operated to operate the air such as the packings 76 and 77 in addition to the first tube 72 and the second tube 74. The path passing through may be blown with air. By doing so, aerosols and the like that may remain in the path can be eliminated, which helps prevent carryover. (1) Either one of the first sealing film 18 that seals the first air communication port 24 and the second sealing film 19 that seals the second air communication port 26 is peeled off. (2) The fifth sealing film 22 that seals the sample introduction port 44 is peeled off.
  • the sample S is introduced from the sample introduction port 44 with a pipette or the like, and the sample S is pushed to the tip of the branch point 40a.
  • the fifth sealing film 22 is attached back.
  • the other of the first sealing film 18 and the second sealing film 19 is peeled off.
  • the reaction processing container 10 is arranged in the reaction processing container mounting portion of the reaction processing apparatus 100, and the first tube 72 and the second tube of the liquid delivery system 62 are connected to the first air communication port 24 and the second air communication port 26. 74 is connected.
  • FIG. 5 shows a state in which the sample S is sent to the medium temperature region 38 of the flow channel 12.
  • the pressure of the flow path 12 communicating with the first air communication port 24 is set higher than the pressure of the flow path 12 communicating with the second air communication port 26.
  • air is sent in through the first air communication port 24.
  • the sample S is sent to the intermediate temperature region 38 of the flow path 12.
  • the sample S sent to the intermediate temperature region 38 is blocked by the second filter 30 as shown in FIG. This is because the second filter 30 has air permeability and water repellency.
  • FIG. 6 shows a state in which the sample S is sent to the high temperature region 36 of the flow channel 12. After the intermediate temperature region 38 and the high temperature region 36 reach a predetermined temperature, the reaction processing apparatus 100 is operated to send the sample S into the high temperature region 36 of the flow path 12.
  • the pressure of the flow path 12 communicating with the second air communication port 26 is set higher than the pressure of the flow path 12 communicating with the first air communication port 24.
  • air is sent in through the second air communication port 26.
  • the sample S is sent to the high temperature region 36 of the flow channel 12.
  • the sample S sent to the high temperature region 36 is blocked by the first filter 28 as shown in FIG. This is because the first filter 28 has air permeability and water repellency. (10) After the predetermined reaction time in the high temperature region 36 has elapsed, the sample S is sent into the intermediate temperature region 38 again.
  • the thermal cycle can be applied to the sample S and PCR can be performed.
  • the fluorescence from the sample S located in the fluorescence detection region 86 is detected, and the fluorescence intensity is monitored to measure the progress of PCR along with the thermal cycle. can do.
  • a filter having air permeability and water repellency is used as the filter of the reaction processing container 10, and the flow path 12 of the reaction processing container 10 is used by the liquid delivery system 62.
  • the sample S was moved inside, the sample S was stopped in each temperature region by blocking the sample S with a filter. Since the stop position of the sample S is determined by the filter, the sample S can be accurately stopped at a predetermined position in each temperature region.
  • the stop position of the sample S is detected by the filter rather than the configuration and processing such that the position of the sample S is detected by the fluorescence detector and the liquid delivery system 62 is controlled based on the detection result. Since it is mechanically determined, the apparatus configuration can be simplified and the cost of the reaction processing apparatus 100 can be reduced.
  • the reason why the first filter 28 and the second filter 30 are required to have water repellency or oil repellency is that when the samples come in contact with the respective filters and are dammed, the liquid sample infiltrates into the filter medium or a part of the sample is removed. This is to prevent the filter from passing through.
  • the reaction processing apparatus 100 When variations occur in the stop position of the sample S, it is necessary to widen each temperature region to absorb the variations, and as a result, the reaction processing apparatus 100 may become large. However, in the reaction processing apparatus 100 according to the present embodiment, since the sample S always stops at the filter position, it is not necessary to make each temperature region wider than necessary as compared with the case where the stop position has variations. Further, the size of the heater for heating each temperature region can be reduced. Therefore, according to the present embodiment, the reaction processing device 100 can be downsized. Further, the downsizing of the heater can reduce power consumption.
  • the real-time PCR method is roughly divided into a probe method and an intercalator method.
  • the probe method requires a primer specific to the target DNA sequence and a (fluorescent) probe for amplification, and the fluorescence signal increases with amplification as the probe decomposes.
  • a fluorescent dye eg, SYBR Green
  • SYBR Green a fluorescent dye that is incorporated into a DNA double strand to generate fluorescence
  • the number of unique ones in the DNA sequence of interest, such as in the probe method decreases, so that nonspecific reaction may increase, and it is necessary to confirm whether or not this nonspecific reaction occurs.
  • "melting analysis” is usually performed to confirm the presence or absence of such nonspecific reaction.
  • melting analysis the relationship between temperature and fluorescence intensity is acquired for the sample after PCR and graphed. Since the DNA double strand is decomposed at a predetermined temperature (depending on the length of DNA, etc.) as the temperature is raised, the fluorescence intensity rapidly changes at this temperature. In other words, if there is only one peak in the differential curve (called “melting analysis curve”) of this graph, it can be seen that there was no nonspecific reaction.
  • the reaction processing apparatus 100 can apply both the probe method and the intercalator method.
  • the intercalator method when DNA contained in a sample undergoes thermal denaturation in a high temperature region, the sample does not emit fluorescence. Therefore, when the fluorescence detection region is provided only at the location corresponding to the connection flow path between the high temperature region and the medium temperature region, the fluorescence emitted from the sample cannot be properly detected. Therefore, when controlling the position and speed of the sample based only on the fluorescence signal from the fluorescence detector corresponding to the fluorescence detection region, there is a possibility that it may interfere with proper reciprocal movement and stop of the sample. ..
  • the sample is configured to stop at the position of the filter, and the fluorescence detection region is in any of the regions along the flow path, Unless the position and speed of the sample are controlled based only on the fluorescence signal from the fluorescence detector, there is little probability that it will hinder the proper reciprocal movement and stop of the sample.
  • the fluorescence detection region 86 when the fluorescence detection region 86 is provided in the intermediate temperature region 38, DNA is amplified by detecting fluorescence from the sample in the process of reciprocating movement of the sample.
  • the fluorescence intensity can be measured by changing the temperature of the flow path in this region with the sample stopped in the intermediate temperature region 38 after the predetermined number of reciprocating movements and the end of the thermal cycle. Can be measured. This can be utilized, for example, when performing melting analysis. Further, since it is not necessary to add a separate configuration for that purpose, the melting analysis after amplification necessary for PCR by the intercalator method can be easily performed.
  • the intercalator method involving melting analysis when the intercalator method involving melting analysis is performed in addition to the probe method, it is desirable that the fluorescence detection region be provided in the intermediate temperature region 38. Since the melting analysis includes the step of measuring the intensity of the fluorescence signal as the temperature rises, it is preferable to perform it in the middle temperature region 38 where the temperature is relatively low from the beginning.
  • a fluorescence detection region may be provided at a location corresponding to the connection flow path between the high temperature region 36 and the intermediate temperature region 38.
  • fluorescence is emitted from the sample even in the connection flow channel, so by detecting this fluorescence signal, the position and speed of the sample can be identified based on the fluorescence signal from the fluorescence detector. Can contribute to.
  • a fluorescence detection region may be provided in the high temperature region 36.
  • fluorescence is emitted from the sample even in the high temperature region. Therefore, by detecting this fluorescence signal, it can be understood that the sample exists in the high temperature region. This makes it possible to detect the state where the sample has entered each temperature region, which suggests that it contributes to more appropriate reciprocating movement of the sample, including highly accurate control of the stop position.
  • FIG. 7 shows the result of PCR amplification in this example.
  • the horizontal axis represents the number of cycles and the vertical axis represents the fluorescence intensity [arbitrary unit].
  • the intensity of the fluorescence signal increases with the number of PCR cycles.
  • the intensity of the fluorescence signal increased around the number of cycles exceeding 18 and remarkable amplification started, and a plateau state was reached around the number of cycles exceeding 28.
  • Such an amplification curve of the fluorescence signal shows that the sample in the sample is amplified, and it can be seen that good PCR can be performed using the reaction processing device 100 according to the present embodiment.
  • FIG. 8 and 9 are diagrams showing melting analysis results in this example. After the real-time PCR was performed, the sample was moved to the intermediate temperature region 38, and the fluorescence signal of the sample located in the fluorescence detection region 86 was continuously measured while increasing the temperature in the intermediate temperature region 38.
  • FIG. 8 shows the relationship between the fluorescence signal intensity and the temperature in the intermediate temperature region 38.
  • FIG. 9 is a so-called melting analysis curve, which is obtained by differentiating the curve shown in FIG. 8 once.
  • the melting analysis curve has only one peak at 88.4°C. It can be seen that the PCR amplification product in this example does not include a relatively short amplification product such as Primer Dimer.
  • FIG. 10 is a conceptual diagram of the reaction processing container 110 corresponding to the three-level temperature regions. Although the reaction processing container 10 having two-level reaction regions of high temperature and medium temperature has been described above, the reaction processing container 110 shown in FIG. 10 has three-level reaction regions of high temperature, medium temperature and low temperature.
  • the reaction processing container 110 includes a first flow channel 112a, a second flow channel 112b, and a third flow channel 112c that extend in three directions from a branch portion 112d.
  • the first filter 128 is arranged at one end of the first flow passage 112a
  • the second filter 130 is arranged at one end of the second flow passage 112b
  • the third filter 131 is arranged at one end of the third flow passage 112c.
  • the first filter 128 is in communication with the first air communication port 124
  • the second filter 130 is in communication with the second air communication port 126
  • the third filter 131 is in communication with the third air communication port 127. ing.
  • the first flow passage 112a is provided with a high temperature region 136
  • the second flow passage 112b is provided with a medium temperature region 138
  • the third flow passage 112c is provided with a low temperature region 139.
  • a branch point 142a is provided in the middle of the third flow path 112c, and the branch flow path 142 branches from the branch point 142a.
  • a sample introduction port 144 is provided at the tip of the branch channel 142.
  • the sample when the sample is moved to each temperature region by the liquid feeding system of the reaction processing device, the sample is stopped in each temperature region by blocking the sample with the filter. .. That is, when the sample moves to the high temperature region 136, the first filter 128 blocks the sample. When the sample moves to the intermediate temperature region 138, the second filter 130 blocks the sample. When the sample moves to the low temperature region 139, the sample is blocked by the third filter 131. Since the stop position of the sample is determined by the filter, the sample can be accurately stopped at a predetermined position in each temperature region.
  • a fluorescence detection region 186 is provided in the medium temperature region 138. Thereby, not only the probe method but also the intercalator method can be suitably applied.
  • a valve is added between the pump and the air communication port. For example, when the liquid is fed from the medium temperature region 138 to the high temperature region 136, the valve on the low temperature region 139 side is closed to allow the liquid to be fed from the medium temperature region 138 to the high temperature region 136 while preventing the sample from flowing into the low temperature region 139.
  • FIG. 11 is a conceptual diagram of a reaction processing container 210 provided for simultaneous reaction with respect to a plurality of samples.
  • FIG. 11 shows, as an example, a reaction processing container 210 capable of simultaneously performing PCR on two samples, but an arbitrary number of samples can be handled by changing the number of channels.
  • the reaction processing container 210 includes a first flow path 212a and a second flow path 212b arranged in parallel.
  • the first filter 228 is arranged at one end of the first flow path 212a, and the second filter 230 is arranged at the other end.
  • the third filter 229 is arranged at one end of the second flow path 212b, and the fourth filter 231 is arranged at the other end.
  • a common first air communication port 224 communicates with the first filter 228 and the third filter 229.
  • a common second air communication port 226 communicates with the second filter 230 and the fourth filter 231.
  • a common high temperature region 236 is provided on one end side of the first flow path 212a and the second flow path 212b.
  • a common intermediate temperature region 238 is provided on the other end sides of the first flow path 212a and the second flow path 212b.
  • a first branch point 242a is provided in the middle of the first channel 212a, and the first branch channel 242 branches from the first branch point 242a.
  • a first sample introduction port 244 is provided at the tip of the first branch flow channel 242.
  • a second branch point 243a is provided in the middle of the second flow path 212b, and the second branch flow path 243 branches from the second branch point 243a.
  • a second sample introduction port 245 is provided at the tip of the second branch flow channel 243.
  • the sample when the sample is moved to each temperature region by the liquid feeding system of the reaction processing device, the sample is stopped by the filter by blocking the sample with each filter. .. That is, when the first sample in the first channel 212a and the second sample in the second channel 212b move to the high temperature region 236, they are blocked by the first filter 228 and the third filter 229, respectively. Further, when the first sample in the first flow path 212a and the second sample in the second flow path 212b move to the intermediate temperature region 238, they are blocked by the second filter 230 and the fourth filter 231 respectively. Since the stop position of the sample is determined by the filter, the sample can be accurately stopped at a predetermined position in each temperature region.
  • reaction processing container 210 With the reaction processing container 210, PCR can be simultaneously performed on two samples. Since only one liquid sending system is required for the two flow paths, it is possible to reduce the size and cost of the reaction processing apparatus that uses the reaction processing container 210.
  • the first fluorescence detection region 286 is provided in the middle temperature region 238 of the first flow path 212a, and the second fluorescence detection region 287 is provided in the middle temperature region 238 of the second flow path 212b.
  • reaction processing container 12 channels, 14 substrates, 16 channels sealing film, 18 first sealing film, 19 second sealing film, 20 third sealing film, 21 fourth sealing film , 22, 5th sealing film, 23 O-ring, 24, 124, 224 1st air communication port, 26, 126, 226 2nd air communication port, 28, 128, 228 1st filter, 29, 31, 40 connection flow Road, 30, 130, 230 second filter, 36, 136, 236 high temperature area, 38, 138, 238 medium temperature area, 42, 142 branch flow path, 44, 144 sample introduction port, 50 temperature control system, 52 CPU, 54 High temperature heater, 56 low temperature heater, 58 high temperature heater driver, 60 low temperature heater driver, 62 liquid transfer system, 64 first pump, 66 second pump, 68 first pump driver, 70 second pump driver, 72 second pump driver 1 tube, 74 second tube, 76, 77 packing, 78 fluorescence detector, 80 optical head, 82 fluorescence detector driver, 84 optical fiber, 86,186 fluorescence detection area, 100 reaction processing device
  • the present invention can be used for polymerase chain reaction (PCR).
  • PCR polymerase chain reaction
  • Sequence number 1 Forward PCR primer Sequence number 2: Reverse PCR primer

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

This reaction treatment device comprises: a reaction treatment vessel 10 comprising a flow path 12 through which a sample moves, a first filter 28 disposed on one end of the flow path 12, a second filter 30 disposed on another end of the flow path 12, a high-temperature region 36 provided on the one end side of the flow path 12, and a low-temperature region 38 provided on the another end side of the flow path 12; a temperature control system for keeping the high-temperature region 36 at a high temperature and keeping the medium-temperature region 38 at a medium temperature; and a fluid delivery system for moving the sample within the flow path 12. The first filter 28 and the second filter 30 are air permeable and water repellent. When the sample is moved from the high-temperature region 36 to the medium-temperature region 38, the sample is blocked by the second filter 30, whereby the sample is stopped in the medium-temperature region 38. When the sample is moved from the medium-temperature region 38 to the high-temperature region 36, the sample is blocked by the first filter 28, whereby the sample is stopped in the high-temperature region 36.

Description

反応処理装置、反応処理容器および反応処理方法Reaction processing apparatus, reaction processing container, and reaction processing method
 本発明は、ポリメラーゼ連鎖反応(PCR:Polymerase Chain Reaction)に使用される反応処理装置、反応処理容器および反応処理方法に関する。 The present invention relates to a reaction processing device, a reaction processing container, and a reaction processing method used in a polymerase chain reaction (PCR).
 遺伝子検査は、各種医学分野における検査、農作物や病原性微生物の同定、食品の安全性評価、さらには病原性ウィルスや各種感染症の検査にも広く活用されている。微小量のDNAを高感度に検出するために、DNAの一部を増幅して得られたものを分析する方法が知られている。中でもPCRを用いた方法は、生体等から採取されたごく微量のDNAのある部分を選択的に増幅する注目の技術である。 Genetic tests are widely used for tests in various medical fields, identification of crops and pathogenic microorganisms, food safety evaluation, and inspection for pathogenic viruses and various infectious diseases. In order to detect a minute amount of DNA with high sensitivity, a method of amplifying a part of DNA and analyzing the obtained product is known. Among them, the method using PCR is a technique of interest that selectively amplifies a portion containing a very small amount of DNA collected from a living body or the like.
 PCRは、DNAを含む生体サンプルと、プライマーや酵素などからなるPCR試薬とを混合した試料に、所定のサーマルサイクルを与え、変性、アニーリングおよび伸長反応を繰り返し起こさせて、DNAの特定の部分を選択的に増幅させるものである。 In PCR, a predetermined thermal cycle is applied to a sample in which a biological sample containing DNA and a PCR reagent composed of a primer, an enzyme, etc. are subjected to repeated denaturation, annealing and extension reactions to cause a specific portion of DNA to be bound. It selectively amplifies.
 PCRにおいては、対象の試料をPCRチューブまたは複数の穴が形成されたマイクロプレート(マイクロウェル)などの反応処理容器に所定量入れて行うことが一般的であるが、近年、基板に形成された微細な流路を備える反応処理容器(チップとも呼ばれる)を用いて行うことが実用化されてきている(例えば特許文献1)。 In PCR, a target sample is generally put in a predetermined amount in a reaction treatment container such as a PCR tube or a microplate (microwell) having a plurality of holes formed therein, but recently, it was formed on a substrate. It has been put into practical use to carry out the reaction using a reaction processing container (also called a chip) having a fine channel (for example, Patent Document 1).
特開2009-232700号公報JP, 2009-232700, A
 往復式流路タイプの反応容器によるPCRでは、試料にサーマルサイクルを与えるために、流路上にそれぞれ異なる温度に維持された複数の温度領域が設定され、その流路中で複数の温度領域間を往復式に移動させる。試料に適切にサーマルサイクルを与えるためには、試料がそれぞれの温度領域に正確に停止する必要がある。停止位置がばらつくと、反応が起こらなかったり、反応の進度が試料の場所でばらついたり、DNAの増幅等の反応が不正確になり、ひいては作業者や業務従事者の判断ミスを招来するおそれがある。 In PCR using a reciprocating flow channel type reaction container, in order to give a thermal cycle to a sample, a plurality of temperature regions maintained at different temperatures are set in the flow channel, and a plurality of temperature regions are set in the flow channel. Move back and forth. In order to properly subject the sample to thermal cycling, it is necessary for the sample to stop exactly in each temperature range. If the stop position varies, the reaction may not occur, the progress of the reaction may vary depending on the sample location, or the reaction such as DNA amplification may become inaccurate, which may lead to misjudgment by workers or workers. is there.
 本発明はこうした状況に鑑みてなされたものであり、その目的は、異なる温度領域が設定されている流路内で試料を往復式に移動させることにより、試料にサーマルサイクルを与えることができる反応処理装置または反応処理容器において、試料を温度領域の所定の位置に正確に停止させることのできる技術を提供することにある。 The present invention has been made in view of such circumstances, and an object thereof is to perform a reaction in which a sample can be subjected to a thermal cycle by reciprocally moving the sample within channels in which different temperature regions are set. It is an object of the present invention to provide a technique capable of accurately stopping a sample at a predetermined position in a temperature region in a processing device or a reaction processing container.
 上記課題を解決するために、本発明のある態様の反応処理装置は、試料が移動する流路と、流路の一端に配置された第1フィルタと、流路の他端に配置された第2フィルタと、流路の一端側に設けられる第1温度領域と、流路の他端側に設けられる第2温度領域と、を備える反応処理容器と、反応処理容器の第1温度領域を第1温度に維持するとともに、反応処理容器の第2温度領域を第1温度よりも低い第2温度に維持する温度制御システムと、試料を流路内で移動させる送液システムと、を備える。第1フィルタおよび第2フィルタは、通気性を有するとともに撥水性を有する。送液システムによって第1温度領域から第2温度領域に試料を移動させるとき、第2フィルタで試料が堰き止められることにより、試料が第2温度領域で停止し、送液システムによって第2温度領域から第1温度領域に試料を移動させるとき、第1フィルタで試料が堰き止められることにより、試料が第1温度領域で停止する。 In order to solve the above-mentioned problems, a reaction treatment apparatus according to an aspect of the present invention is a channel in which a sample moves, a first filter disposed at one end of the channel, and a first filter disposed at the other end of the channel. 2 filter, a first temperature region provided on one end side of the flow channel, and a second temperature region provided on the other end side of the flow channel, and a first temperature region of the reaction treatment container A temperature control system that maintains the second temperature region of the reaction treatment container at a second temperature lower than the first temperature while maintaining the temperature at one temperature, and a liquid feeding system that moves the sample in the channel. The first filter and the second filter have air permeability and water repellency. When moving the sample from the first temperature region to the second temperature region by the liquid feeding system, the sample is stopped by the second filter, so that the sample stops at the second temperature region, and the liquid feeding system causes the second temperature region. When the sample is moved from the first temperature range to the first temperature range, the sample is stopped by the first filter, so that the sample stops in the first temperature range.
 第1フィルタおよび第2フィルタは、フッ素樹脂を含有してもよい。第1フィルタおよび第2フィルタは、ポリテトラフルオロエチレン、パーフルオロアルコキシアルカン、パーフルオロエチレンプロペンコポリマー、エチレンテトラフルオロエチレンコポリマーから選ばれる少なくとも一つのフッ素樹脂を含有してもよい。 The first filter and the second filter may contain a fluororesin. The first filter and the second filter may contain at least one fluororesin selected from polytetrafluoroethylene, perfluoroalkoxyalkane, perfluoroethylenepropene copolymer, and ethylenetetrafluoroethylene copolymer.
 第1フィルタおよび第2フィルタは、ポリテトラフルオロエチレン製であってもよい。 The first filter and the second filter may be made of polytetrafluoroethylene.
 第1温度は試料を変性させる温度に設定され、第2温度は試料をアニーリングおよび伸長させる温度に設定されてもよい。反応処理装置は、第2温度領域内の一部の領域に位置する試料からの蛍光を検出するように配置された蛍光検出器をさらに備えてもよい。 The first temperature may be set to a temperature for denaturing the sample, and the second temperature may be set to a temperature for annealing and extending the sample. The reaction processing device may further include a fluorescence detector arranged to detect fluorescence from the sample located in a part of the second temperature region.
 反応処理容器は、第1フィルタと流路との間の隙間、第2フィルタと流路との間の隙間を塞ぐために環状のパッキンを備えてもよい。 The reaction processing container may be provided with an annular packing to close the gap between the first filter and the flow passage and the gap between the second filter and the flow passage.
 本発明の別の態様は、試料が移動する流路と、流路の一端に配置された第1フィルタと、流路の他端に配置された第2フィルタと、流路の一端側に設けられる第1温度領域と、流路の他端側に設けられる第2温度領域と、を備える反応処理容器である。第1フィルタおよび第2フィルタは、通気性を有するとともに撥水性を有する。第1温度領域から第2温度領域に試料が移動されるとき、第2フィルタで試料が堰き止められることにより、試料が前記第2温度領域で停止し、第2温度領域から第1温度領域に試料が移動されるとき、第1フィルタで試料が堰き止められることにより、試料が第1温度領域で停止する。 Another aspect of the present invention is to provide a flow path through which a sample moves, a first filter arranged at one end of the flow path, a second filter arranged at the other end of the flow path, and one end side of the flow path. And a second temperature region provided on the other end side of the flow path. The first filter and the second filter have air permeability and water repellency. When the sample is moved from the first temperature region to the second temperature region, the sample is stopped by the second filter, so that the sample stops in the second temperature region and changes from the second temperature region to the first temperature region. When the sample is moved, the sample is stopped by the first filter, so that the sample stops in the first temperature region.
 本発明のさらに別の態様は、試料が移動する流路と、流路の一端に配置された第1フィルタと、流路の他端に配置された第2フィルタと、流路の一端側に設けられる第1温度領域と、流路の他端側に設けられる第2温度領域と、を備える反応処理容器と、反応処理容器の第1温度領域を第1温度に維持するとともに、反応処理容器の第2温度領域を第1温度よりも低い第2温度に維持する温度制御システムと、試料を流路内で移動させる送液システムと、を備える反応処理装置における反応処理方法である。この方法において、第1フィルタおよび第2フィルタは、通気性を有するとともに撥水性を有し、送液システムによって第1温度領域から第2温度領域に試料を移動させるとき、第2フィルタで試料が堰き止められることにより、試料が第2温度領域で停止し、送液システムによって第2温度領域から第1温度領域に試料を移動させるとき、第1フィルタで試料が堰き止められることにより、試料が第1温度領域で停止する。 Yet another aspect of the present invention is a flow path through which a sample moves, a first filter arranged at one end of the flow path, a second filter arranged at the other end of the flow path, and at one end side of the flow path. A reaction treatment container including a first temperature region provided and a second temperature region provided on the other end side of the flow path, and the reaction treatment container while maintaining the first temperature region of the reaction treatment container at the first temperature. Is a reaction processing method in a reaction processing apparatus, which includes a temperature control system for maintaining the second temperature region of the second temperature at a second temperature lower than the first temperature, and a liquid feeding system for moving the sample in the channel. In this method, the first filter and the second filter have air permeability and water repellency, and when the sample is moved from the first temperature region to the second temperature region by the liquid delivery system, The sample is stopped in the second temperature region by being blocked, and when the sample is moved by the liquid feeding system from the second temperature region to the first temperature region, the sample is blocked by the first filter, so that the sample Stop in the first temperature range.
 反応処理方法はリアルタイムPCR法であってもよい。反応処理方法はインターカレーター法であってもよい。 The reaction processing method may be a real-time PCR method. The reaction treatment method may be an intercalator method.
 反応処理方法は、さらに、融解分析工程を備えてもよい。融解分析工程は、第2温度領域内の温度を変化させることにより融解分析曲線を得てもよい。 The reaction treatment method may further include a melting analysis step. In the melting analysis step, the melting analysis curve may be obtained by changing the temperature within the second temperature region.
 本発明によれば、異なる温度領域が設定されている流路内で試料を往復式に移動させることにより、試料にサーマルサイクルを与えることができる反応処理装置または反応処理容器において、試料を温度領域の所定の位置に正確に停止させることができる。 According to the present invention, in a reaction processing apparatus or reaction processing container capable of giving a thermal cycle to a sample by moving the sample in a reciprocating manner within channels in which different temperature regions are set, Can be accurately stopped at a predetermined position.
反応処理容器が備える基板の平面図である。It is a top view of the substrate with which a reaction processing container is provided. 反応処理容器の構成を説明するための概念図である。It is a conceptual diagram for demonstrating the structure of a reaction processing container. 反応処理容器の断面構造を説明するための図である。It is a figure for demonstrating the cross-section of a reaction processing container. 本発明の実施形態に係る反応処理装置を説明するための模式図である。It is a schematic diagram for explaining the reaction processing apparatus concerning the embodiment of the present invention. 試料が流路の中温領域に送り込まれた状態を示す図である。It is a figure which shows the state in which the sample was sent into the intermediate temperature region of the flow path. 試料が流路の高温領域に送り込まれた状態を示す図である。It is a figure showing the state where the sample was sent into the high temperature field of a channel. 本実施例におけるPCRの増幅結果を示す図である。It is a figure which shows the amplification result of PCR in a present Example. 本実施例における融解分析結果を示す図である。It is a figure which shows the melting analysis result in a present Example. 本実施例における融解分析結果を示す図である。It is a figure which shows the melting analysis result in a present Example. 三水準の温度領域に対応する反応処理容器の概念図である。It is a conceptual diagram of the reaction processing container corresponding to the temperature range of three levels. 複数の試料に対する同時反応に供される反応処理容器の概念図である。It is a conceptual diagram of the reaction processing container used for the simultaneous reaction with respect to several samples.
 以下、本発明の実施形態に係る反応処理装置について説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。 The reaction processing device according to the embodiment of the present invention will be described below. The same or equivalent constituent elements, members, and processes shown in each drawing are denoted by the same reference numerals, and duplicated description will be omitted as appropriate. Further, the embodiments are merely examples and do not limit the invention, and all the features and combinations thereof described in the embodiments are not necessarily essential to the invention.
 まず、本発明の実施形態に係る反応処理装置で使用可能な反応処理容器について説明する。この反応処理容器は、基板と、該基板に貼り付けられた封止フィルムと、フィルタと、から成る。図1は、反応処理容器が備える基板の平面図である。図2は、反応処理容器の構成を説明するための概念図である。図3は、反応処理容器の断面構造を説明するための図である。図3は、基板に形成される流路、フィルムおよびフィルタとの位置関係を説明するための図であり、実施の反応処理容器の断面図とは異なる点に留意されたい。 First, a reaction processing container usable in the reaction processing apparatus according to the embodiment of the present invention will be described. The reaction processing container includes a substrate, a sealing film attached to the substrate, and a filter. FIG. 1 is a plan view of a substrate included in the reaction processing container. FIG. 2 is a conceptual diagram for explaining the configuration of the reaction processing container. FIG. 3 is a diagram for explaining the cross-sectional structure of the reaction processing container. It should be noted that FIG. 3 is a diagram for explaining the positional relationship between the flow path formed on the substrate, the film, and the filter, and is different from the cross-sectional view of the reaction processing container of the embodiment.
 反応処理容器10は、上面14aに溝状の流路12が形成された樹脂性の基板14と、基板14の上面14a上に貼られた流路封止フィルム16、第1封止フィルム18および第2封止フィルム19と、基板14の下面14b上に貼られた第3封止フィルム20、第4封止フィルム21および第5封止フィルム22と、基板14内に配置された第1フィルタ28および第2フィルタ30と、を備える。また、第1フィルタ28と第3封止フィルム20との間、第2フィルタ30と第4封止フィルム21との間に、O(オー)リング23のような環状のパッキンを備える。Oリング23は、フィルタを基板に押しつけて、容易に動かないように配置してもよく、フィルタと流路との間の隙間を塞ぐことも可能である。環状のパッキンは、使用するフィルタや流路、またはフィルタの設置される部分の形状に応じた形状とし、略円形や四角形などの多角形状であってもよい。 The reaction processing container 10 includes a resinous substrate 14 having a groove-shaped channel 12 formed on an upper surface 14a, a channel sealing film 16 attached on the upper surface 14a of the substrate 14, a first sealing film 18, and The second sealing film 19, the third sealing film 20, the fourth sealing film 21, and the fifth sealing film 22 attached on the lower surface 14b of the substrate 14, and the first filter arranged in the substrate 14. 28 and the second filter 30. Further, an annular packing such as an O (O) ring 23 is provided between the first filter 28 and the third sealing film 20 and between the second filter 30 and the fourth sealing film 21. The O-ring 23 may be arranged so as not to move easily by pressing the filter against the substrate, and it is also possible to close the gap between the filter and the flow path. The annular packing has a shape corresponding to the shape of the filter or flow path to be used or the portion where the filter is installed, and may be a polygonal shape such as a substantially circular shape or a square shape.
 基板14は、温度変化に対して安定で、使用される試料溶液に対して侵されにくい材質から形成されることが好ましい。さらに、基板14は、成形性がよく、透明性やバリア性が良好で、且つ、低い自家蛍光性を有する材質から形成されることが好ましい。このような材質としては、ガラス、シリコン(Si)等の無機材料をはじめ、アクリル、ポリプロピレン、シリコーンなどの樹脂、中でもシクロオレフィンポリマー樹脂(COP)が好適である。 The substrate 14 is preferably formed of a material that is stable against temperature changes and is not easily attacked by the sample solution used. Furthermore, the substrate 14 is preferably formed of a material having good moldability, good transparency and barrier properties, and low autofluorescence. As such a material, inorganic materials such as glass and silicon (Si), as well as resins such as acrylic, polypropylene, and silicone, among which cycloolefin polymer resin (COP) is preferable.
 基板14の上面14aには溝状の流路12が形成されている。反応処理容器10において、流路12の大部分は基板14の上面14aに露出した溝状に形成されている。金型等を用いた射出成形により容易に成形できるようにするためである。この溝を封止して流路として活用するために、基板14の上面14a上に流路封止フィルム16が貼られる。溝の断面形状は特に限定されるものではなく矩形状やU字形状(丸形状)でもよい。また、成形の際の離型性をよくするために上面14aから深さ方向にテーパー状に狭まる形状を備えていてもよく、例えば台形状であってもよい。流路12の寸法の一例は、幅0.7mm、深さ0.7mmである。 A groove-shaped channel 12 is formed on the upper surface 14a of the substrate 14. In the reaction processing container 10, most of the flow path 12 is formed in a groove shape exposed on the upper surface 14 a of the substrate 14. This is because it can be easily molded by injection molding using a mold or the like. In order to seal this groove and utilize it as a flow path, a flow path sealing film 16 is attached on the upper surface 14a of the substrate 14. The cross-sectional shape of the groove is not particularly limited and may be rectangular or U-shaped (round). Further, in order to improve the releasability at the time of molding, the shape may be tapered from the upper surface 14a in the depth direction, and may be trapezoidal, for example. An example of the dimensions of the flow channel 12 is 0.7 mm in width and 0.7 mm in depth.
 流路封止フィルム16は、一方の主面が粘着性を備えていてもよいし、押圧や紫外線などのエネルギー照射、加熱等により粘着性や接着性を発揮する機能層が一方の主面に形成されていてもよく、容易に基板14の上面14aと密着して一体化できる機能を備える。流路封止フィルム16は、粘着剤も含めて低い自家蛍光性を有する材質から形成されることが望ましい。この点でシクロオレフィンポリマー、ポリエステル、ポリプロピレン、ポリエチレンまたはアクリルなどの樹脂からなる透明フィルムが適しているが、これらに限定されない。また、流路封止フィルム16は、板状のガラスや樹脂から形成されてもよい。この場合はリジッド性が期待できることから、反応処理容器10の反りや変形防止に役立つ。 One main surface of the flow channel sealing film 16 may have adhesiveness, or a functional layer exhibiting adhesiveness or adhesiveness by pressing, irradiation with energy such as ultraviolet rays, heating, or the like is provided on one main surface. It may be formed, and has a function of easily adhering to and integrating with the upper surface 14a of the substrate 14. The flow channel sealing film 16 is preferably formed of a material having low autofluorescence including an adhesive. In this respect, a transparent film made of a resin such as cycloolefin polymer, polyester, polypropylene, polyethylene or acryl is suitable, but not limited thereto. Further, the flow path sealing film 16 may be formed of plate-shaped glass or resin. In this case, since the rigid property can be expected, it is useful for preventing the reaction processing container 10 from being warped or deformed.
 流路12の一端12aには、第1フィルタ28が設けられている。流路12の他端12bには、第2フィルタ30が設けられている。流路12の両端に設けられた一対の第1フィルタ28および第2フィルタ30は、PCRによって目的のDNAの増幅やその検出を妨げないように、または目的のDNAの品質が劣化しないように、コンタミネーションを防止する。第1フィルタ28および第2フィルタ30の寸法は、基板14に形成されたフィルタ設置スペースに隙間なく収まるような寸法に形成される。 A first filter 28 is provided at one end 12 a of the flow path 12. A second filter 30 is provided at the other end 12b of the flow path 12. The pair of the first filter 28 and the second filter 30 provided at both ends of the flow channel 12 do not interfere with the amplification and detection of the target DNA by PCR or prevent the quality of the target DNA from deteriorating. Prevent contamination. The dimensions of the first filter 28 and the second filter 30 are formed so that they can fit in the filter installation space formed on the substrate 14 without any gap.
 基板14には、第1フィルタ28を介して流路12の一端12aに通じる第1空気連通口24が形成されている。同様に基板14には、第2フィルタ30を介して流路12の他端12bに通じる第2空気連通口26が形成されている。一対の第1空気連通口24および第2空気連通口26は、基板14の上面14aに露出するように形成されている。 The substrate 14 is formed with a first air communication port 24 that communicates with the one end 12 a of the flow path 12 via the first filter 28. Similarly, the substrate 14 is formed with a second air communication port 26 that communicates with the other end 12b of the flow path 12 via the second filter 30. The pair of first air communication port 24 and second air communication port 26 are formed so as to be exposed on the upper surface 14 a of the substrate 14.
 本実施形態においては、第1フィルタ28および第2フィルタ30として、低不純物特性が良好であり、且つ通気性および撥水性もしくは撥油性を有するものが用いられる。第1フィルタ28および第2フィルタ30としては、フッ素含有樹脂が好ましく、これらに限られないが、PTFE(ポリテトラフルオロエチレン)、PFA(パーフルオロアルコキシアルカン)、FEP(パーフルオロエチレンプロペンコポリマー)、ETFE(エチレンテトラフルオロエチレンコポリマー)などが例示できる。さらにPTFE(ポリテトラフルオロエチレン)製フィルタとしては、これらに限られないが、PF060やPF100(いずれもアドバンテックグループ社製)を用いることができる。PF060は、厚みが0.50mmであり、空隙率が75%であり、保留粒子径が6μmであり、圧力損失が0.069kPaであり、はっ水度が3.9kPa超である。PF100は、厚みが1.0mmであり、空隙率が77%であり、保留粒子径が10μmであり、圧力損失が0.059kPaであり、はっ水度が3.9kPa超である。さらに、第1フィルタ28および第2フィルタ30としては、フッ素含有樹脂でコーティングして表面を撥水処理したものも使用することができる。 In the present embodiment, as the first filter 28 and the second filter 30, those having good low impurity characteristics and having air permeability and water repellency or oil repellency are used. As the first filter 28 and the second filter 30, a fluorine-containing resin is preferable, but not limited to these, PTFE (polytetrafluoroethylene), PFA (perfluoroalkoxyalkane), FEP (perfluoroethylenepropene copolymer), Examples thereof include ETFE (ethylene tetrafluoroethylene copolymer). Further, as the PTFE (polytetrafluoroethylene) filter, PF060 and PF100 (both manufactured by Advantech Group) can be used, although not limited thereto. PF060 has a thickness of 0.50 mm, a porosity of 75%, a retained particle size of 6 μm, a pressure loss of 0.069 kPa, and a water repellency of more than 3.9 kPa. The PF100 has a thickness of 1.0 mm, a porosity of 77%, a retained particle size of 10 μm, a pressure loss of 0.059 kPa, and a water repellency of more than 3.9 kPa. Further, as the first filter 28 and the second filter 30, those having a surface coated with a fluorine-containing resin and a water-repellent treatment can be used.
 流路12は、一対の第1フィルタ28および第2フィルタ30の間に、後述する反応処理装置により複数水準の温度の制御が可能な反応領域を備える。複数水準の温度が維持された反応領域を連続的に往復するように試料を移動させることにより、試料にサーマルサイクルを与えることができる。 The flow path 12 is provided with a reaction region between a pair of the first filter 28 and the second filter 30 in which a plurality of levels of temperature can be controlled by a reaction processing device described later. A thermal cycle can be applied to the sample by moving the sample so as to continuously reciprocate in the reaction region in which the temperature of a plurality of levels is maintained.
 本実施形態において、反応領域は、流路12の一端12a側に設けられる高温領域36と、流路12の他端12b側に設けられる中温領域38とを含む。後述の反応処理装置に反応処理容器10が搭載された際に、高温領域36は比較的高温(例えば約95℃)に維持され、中温領域38は、高温領域36よりも低温(例えば約62℃)に維持される。高温領域36は、流路12における紙面右側に位置しており、その一端は第1フィルタ28および接続流路29を介して第1空気連通口24に連通し、他端は接続流路40を介して中温領域38に連通している。中温領域38は、流路12における紙面左側に位置しており、その一端は接続流路40を介して高温領域36に連通し、他端は第2フィルタ30および接続流路31を介して第2空気連通口26に連通している。 In the present embodiment, the reaction region includes a high temperature region 36 provided on the one end 12a side of the flow channel 12 and a medium temperature region 38 provided on the other end 12b side of the flow channel 12. When the reaction processing container 10 is mounted on the reaction processing apparatus described later, the high temperature region 36 is maintained at a relatively high temperature (for example, about 95° C.), and the medium temperature region 38 is lower than the high temperature region 36 (for example, about 62° C.). ) Is maintained. The high temperature region 36 is located on the right side of the flow path 12 in the drawing, one end of which communicates with the first air communication port 24 through the first filter 28 and the connection flow path 29, and the other end of which connects with the connection flow path 40. It communicates with the intermediate temperature region 38 via the. The middle temperature region 38 is located on the left side of the flow path 12 in the drawing, one end thereof communicates with the high temperature region 36 via the connection flow path 40, and the other end thereof via the second filter 30 and the connection flow path 31. 2 It communicates with the air communication port 26.
 高温領域36および中温領域38はそれぞれ、曲線部と直線部とを組み合わせた連続的に折り返す蛇行状の流路を含んでいる。このように蛇行状の流路とした場合、後述の温度制御システムを構成するヒータ等の限られた実効面積を有効に使うことができ、反応領域内での温度のばらつきを低減することが容易であるとともに、反応処理容器の実体的な大きさを小さくでき、反応処理装置の小型化に貢献できるという利点がある。一方、高温領域36と中温領域38の間の接続流路40は、直線状の流路であってよい。 Each of the high temperature region 36 and the medium temperature region 38 includes a meandering flow path in which a curved portion and a straight portion are combined and which are continuously folded back. With such a meandering flow path, it is possible to effectively use a limited effective area such as a heater that constitutes the temperature control system described later, and it is easy to reduce the temperature variation in the reaction region. In addition, there is an advantage that the substantial size of the reaction processing container can be reduced, which contributes to downsizing of the reaction processing apparatus. On the other hand, the connection flow passage 40 between the high temperature region 36 and the intermediate temperature region 38 may be a linear flow passage.
 高温領域36と中温領域38の間の接続流路40の中間には分岐点40aが設けられており、該分岐点40aから分岐流路42が分岐している。分岐流路42の先端には、基板14の下面14bに露出するように試料導入口44が形成されている。 A branch point 40a is provided in the middle of the connection flow channel 40 between the high temperature region 36 and the medium temperature region 38, and a branch flow channel 42 branches from the branch point 40a. A sample introduction port 44 is formed at the tip of the branch channel 42 so as to be exposed on the lower surface 14 b of the substrate 14.
 第1封止フィルム18は、第1空気連通口24を封止するように基板14の上面14aに貼り付けられる。第2封止フィルム19は、第2空気連通口26を封止するように基板14の上面14aに貼り付けられる。第3封止フィルム20は、接続流路29および第1フィルタ28を封止するように基板14の下面14bに貼り付けられる。第4封止フィルム21は、接続流路31および第2フィルタ30を封止するように基板14の下面14bに貼り付けられる。第5封止フィルム22は、試料導入口44を封止するように基板14の下面14bに貼り付けられる。これらの封止フィルムとしては、シクロオレフィンポリマー、ポリエステル、ポリプロピレン、ポリエチレンまたはアクリルなどの樹脂を基材とする透明フィルムを用いることができる。流路封止フィルム16を含む全ての封止フィルムを貼った状態では、全流路は閉空間となっている。 The first sealing film 18 is attached to the upper surface 14a of the substrate 14 so as to seal the first air communication port 24. The second sealing film 19 is attached to the upper surface 14a of the substrate 14 so as to seal the second air communication port 26. The third sealing film 20 is attached to the lower surface 14b of the substrate 14 so as to seal the connection channel 29 and the first filter 28. The fourth sealing film 21 is attached to the lower surface 14b of the substrate 14 so as to seal the connection channel 31 and the second filter 30. The fifth sealing film 22 is attached to the lower surface 14b of the substrate 14 so as to seal the sample introduction port 44. As these sealing films, a transparent film having a resin such as cycloolefin polymer, polyester, polypropylene, polyethylene or acrylic as a base material can be used. In the state where all the sealing films including the channel sealing film 16 are attached, all the channels are closed spaces.
 反応処理容器10に後述する送液システムを接続する際には、第1空気連通口24、第2空気連通口26を封止している第1封止フィルム18、第2封止フィルム19を剥がし、送液システムに備わったチューブを第1空気連通口24、第2空気連通口26に接続する。あるいは、送液システムに備わった中空のニードル(先端がとがった注射針)で第1封止フィルム18、第2封止フィルム19に穿孔することにより行ってもよい。この場合、第1封止フィルム18、第2封止フィルム19は、ニードルによる穿孔が容易な材質や厚みから成るフィルムが好ましい。 When connecting the liquid supply system described later to the reaction treatment container 10, the first sealing film 18 and the second sealing film 19 which seal the first air communication port 24 and the second air communication port 26 are used. Peeling off and connecting the tube provided in the liquid feeding system to the first air communication port 24 and the second air communication port 26. Alternatively, the first sealing film 18 and the second sealing film 19 may be perforated with a hollow needle (a sharp-pointed injection needle) provided in the liquid delivery system. In this case, the first sealing film 18 and the second sealing film 19 are preferably films made of a material and a thickness that facilitates perforation with a needle.
 試料導入口44を通じての試料の流路12内への導入は、第5封止フィルム22を一旦、基板14から剥がして行い、所定量の試料の導入後に第5封止フィルム22を再び基板14の下面14bに戻し貼り付ける。そのため、第5封止フィルム22としては、数サイクルの貼り付け/剥がしに耐久するような粘着性を備えるフィルムが望ましい。また第5封止フィルム22は、試料導入後に新しいフィルムを貼り付ける態様であってもよく、この場合は繰り返しの貼り付け/剥がしに関する特性の重要性は緩和されうる。 The sample is introduced into the flow channel 12 through the sample introduction port 44 by once peeling off the fifth sealing film 22 from the substrate 14, and after introducing a predetermined amount of the sample, the fifth sealing film 22 is again removed from the substrate 14. It is attached back to the lower surface 14b. Therefore, as the fifth sealing film 22, it is desirable to use a film having an adhesive property such that it can withstand attachment/detachment for several cycles. Further, the fifth sealing film 22 may have a mode in which a new film is attached after the sample is introduced, and in this case, the importance of the characteristics regarding repeated attachment/detachment can be eased.
 試料導入口44への試料の導入の方法は特に限定されないが、例えばピペットやスポイト、シリンジ等で試料導入口44から適量の試料を直接導入してもよい。あるいは、多孔質のPTFEやポリエチレンからなるフィルタが内蔵してあるコーン形状のニードルチップを介してコンタミネーションを防止しながらの導入方法であってもよい。このようなニードルチップは一般的に数多くの種類のものが販売され容易に入手でき、ピペットやスポイト、シリンジ等の先端に取り付けて使用することが可能である。さらにピペットやスポイト、シリンジ等による試料の吐出、導入後、さらに加圧して推すことにより流路12の所定の場所まで試料を移動させてもよい。 The method of introducing the sample into the sample introduction port 44 is not particularly limited, but an appropriate amount of sample may be directly introduced from the sample introduction port 44 with a pipette, a dropper, a syringe, or the like. Alternatively, the introduction method may be performed while preventing contamination through a cone-shaped needle tip having a built-in filter made of porous PTFE or polyethylene. Many types of such needle tips are generally sold and easily available, and can be attached to the tip of a pipette, a dropper, a syringe or the like for use. Further, after the sample is discharged and introduced by a pipette, a dropper, a syringe or the like, the sample may be moved to a predetermined position in the channel 12 by further pressing and pushing.
 試料としては、例えば、一または二以上の種類のDNAを含む混合物に、PCR試薬として、耐熱性酵素および4種類のデオキシリボヌクレオシド三リン酸(dATP、dCTP、dGTP、dTTP)を添加したものがあげられる。さらに反応処理対象のDNAに特異的に反応するプライマー、さらに、場合によってはTaqMan等の蛍光プローブ(TaqMan/タックマンはロシュ ダイアグノスティックスゲゼルシャフト ミット ベシュレンクテル ハフツングの登録商標)もしくはSYBR Green(SYBRはモレキュラープローブス インコーポレイテッドの登録商標)を混合する。市販されているリアルタイムPCR用試薬キット等も使用することができる。 Examples of the sample include, for example, a mixture containing one or two or more kinds of DNA, to which a thermostable enzyme and four kinds of deoxyribonucleoside triphosphates (dATP, dCTP, dGTP, dTTP) were added as PCR reagents. To be Further, a primer that specifically reacts with the DNA to be subjected to the reaction treatment, and in some cases, a fluorescent probe such as TaqMan (TaqMan is a registered trademark of Roche Diagnostic Geselle Shaft Mitt Beschlenktel Haftung) for TaqMan or SYBR Green (SYBR is a molecular probe). S. Inc.'s registered trademark). A commercially available real-time PCR reagent kit or the like can also be used.
 図4は、本発明の実施形態に係る反応処理装置100を説明するための模式図である。 FIG. 4 is a schematic diagram for explaining the reaction processing device 100 according to the embodiment of the present invention.
 本実施形態に係る反応処理装置100は、反応処理容器10が載置される反応処理容器載置部(図示せず)と、温度制御システム50と、CPU52とを備える。温度制御システム50は、反応処理容器載置部に載置される反応処理容器10に対して、反応処理容器10の流路12における高温領域を約95℃(高温領域)、中温領域を約62℃に精度よく維持、制御できるように構成されている。 The reaction processing device 100 according to the present embodiment includes a reaction processing container mounting portion (not shown) on which the reaction processing container 10 is mounted, a temperature control system 50, and a CPU 52. The temperature control system 50 has a high temperature region in the flow path 12 of the reaction treatment container 10 of about 95° C. (high temperature region) and a middle temperature region of about 62 with respect to the reaction treatment container 10 placed on the reaction treatment container placement portion. It is constructed so that it can be accurately maintained and controlled at ℃.
 温度制御システム50は、反応領域の各温度領域の温度を維持するものであって、具体的には、流路12の高温領域36を加熱するための高温用ヒータ54と、流路12の中温領域38を加熱するための低温用ヒータ56と、各温度領域の実温度を計測するための例えば熱電対等の温度センサ(図示せず)と、高温用ヒータ54の温度を制御する高温用ヒータドライバ58と、低温用ヒータ56の温度を制御する低温用ヒータドライバ60とを備える。温度センサによって計測された実温度情報は、CPU52に送られる。CPU52は、各温度領域の実温度情報に基づいて、各ヒータの温度が所定の温度となるよう各ヒータドライバを制御する。各ヒータは例えば抵抗加熱素子やペルチェ素子等であってよい。温度制御システム50はさらに、各温度領域の温度制御性を向上させるための他の要素部品を備えてもよい。 The temperature control system 50 maintains the temperature of each temperature region of the reaction region, and specifically, the high temperature heater 54 for heating the high temperature region 36 of the flow passage 12, and the medium temperature of the flow passage 12. A low temperature heater 56 for heating the region 38, a temperature sensor (not shown) such as a thermocouple for measuring the actual temperature of each temperature region, and a high temperature heater driver for controlling the temperature of the high temperature heater 54. 58 and a low temperature heater driver 60 that controls the temperature of the low temperature heater 56. The actual temperature information measured by the temperature sensor is sent to the CPU 52. The CPU 52 controls each heater driver so that the temperature of each heater becomes a predetermined temperature based on the actual temperature information of each temperature region. Each heater may be, for example, a resistance heating element or a Peltier element. The temperature control system 50 may further include other components for improving temperature controllability in each temperature range.
 本実施形態に係る反応処理装置100は、さらに、反応処理容器10の流路12内に導入された試料Sを流路12内で移動させるための送液システム62を備える。送液システム62は、第1ポンプ64と、第2ポンプ66と、第1ポンプ64を駆動するための第1ポンプドライバ68と、第2ポンプ66を駆動するための第2ポンプドライバ70と、第1チューブ72と、第2チューブ74とを備える。 The reaction processing apparatus 100 according to the present embodiment further includes a liquid delivery system 62 for moving the sample S introduced into the channel 12 of the reaction processing container 10 in the channel 12. The liquid delivery system 62 includes a first pump 64, a second pump 66, a first pump driver 68 for driving the first pump 64, a second pump driver 70 for driving the second pump 66, A first tube 72 and a second tube 74 are provided.
 反応処理容器10の第1空気連通口24には、第1チューブ72の一端が接続される。第1空気連通口24と第1チューブ72の一端の接続部には、気密性を確保するためのパッキン76やシールが配置されることが好ましい。第1チューブ72の他端は、第1ポンプ64の出力に接続される。同様に、反応処理容器10の第2空気連通口26には、第2チューブ74の一端が接続される。第2空気連通口26と第2チューブ74の一端の接続部には、気密性を確保するためのパッキン77やシールが配置されることが好ましい。第2チューブ74の他端は、第2ポンプ66の出力に接続される。 One end of the first tube 72 is connected to the first air communication port 24 of the reaction processing container 10. A packing 76 or a seal for ensuring airtightness is preferably arranged at a connection portion between the first air communication port 24 and one end of the first tube 72. The other end of the first tube 72 is connected to the output of the first pump 64. Similarly, one end of the second tube 74 is connected to the second air communication port 26 of the reaction processing container 10. A packing 77 or a seal for ensuring airtightness is preferably arranged at a connection portion between the second air communication port 26 and one end of the second tube 74. The other end of the second tube 74 is connected to the output of the second pump 66.
 第1ポンプ64、第2ポンプ66は、例えばダイアフラムポンプからなるブロアポンプやマイクロブロアポンプ、送風機であってよい。このようなブロアポンプや、マイクロブロアポンプ、送風機は、動作時に一次側より二次側の圧力を高めることができるが、停止した瞬間または停止時には一次側と二次側の圧力が等しくなるような特性を備えることが好ましい。例えば、試料がその送風や圧力に起因して推進力を得ている場合には、ポンプの停止した瞬間にその推進力をなくすることが可能となり、試料の停止制御が容易になるからである。 The first pump 64 and the second pump 66 may be, for example, a blower pump including a diaphragm pump, a micro blower pump, or a blower. Such blower pumps, micro blower pumps, and blowers can increase the pressure on the secondary side from the primary side during operation, but the characteristics are such that the pressure on the primary side becomes equal to the pressure on the secondary side at the moment of stopping or at the time of stopping. Is preferably provided. This is because, for example, when the sample obtains a propulsive force due to its blowing air or pressure, the propulsive force can be eliminated at the moment the pump stops, and the sample stop control becomes easy. ..
 CPU52は、第1ポンプドライバ68、第2ポンプドライバ70を介して、第1ポンプ64、第2ポンプ66からの送風や加圧を制御する。第1ポンプ64、第2ポンプ66からの送風や加圧は、第1空気連通口24、第2空気連通口26を通じて流路12内の試料Sに作用し、推進力となって試料Sを移動させる。より詳細には、第1ポンプ64、第2ポンプ66を交互に動作させることにより、試料Sのいずれかの端面にかかる圧力が他端にかかる圧力より大きくなるため、試料Sの移動に係る推進力が得られる。第1ポンプ64、第2ポンプ66を交互に動作させることによって、試料Sを流路内で往復式に移動させて、反応処理容器10の流路12の各温度領域を通過させることができ、その結果、試料Sにサーマルサイクルを与えることが可能となる。より具体的には、高温領域36において変性、中温領域38においてアニーリング・伸長の各工程を繰り返し与えることにより、試料S中の目的のDNAを選択的に増幅させる。言い換えれば高温領域36は変性温度域、中温領域38はアニーリング・伸長温度域とみなすことができる。また各温度領域に滞留する時間は、試料Sが各温度領域の所定の位置で停止する時間を変えることによって適宜設定することができる。 The CPU 52 controls air blow and pressurization from the first pump 64 and the second pump 66 via the first pump driver 68 and the second pump driver 70. The air blow and pressurization from the first pump 64 and the second pump 66 act on the sample S in the flow path 12 through the first air communication port 24 and the second air communication port 26, and become a propulsive force to the sample S. To move. More specifically, by alternately operating the first pump 64 and the second pump 66, the pressure applied to one of the end faces of the sample S becomes larger than the pressure applied to the other end thereof, so that the propulsion related to the movement of the sample S is promoted. Power is gained. By alternately operating the first pump 64 and the second pump 66, the sample S can be reciprocally moved in the flow path and passed through each temperature region of the flow path 12 of the reaction processing container 10, As a result, it becomes possible to apply a thermal cycle to the sample S. More specifically, by repeatedly applying the steps of denaturation in the high temperature region 36 and annealing/extension in the intermediate temperature region 38, the target DNA in the sample S is selectively amplified. In other words, the high temperature region 36 can be regarded as the denaturing temperature region, and the medium temperature region 38 can be regarded as the annealing/extension temperature region. Further, the residence time in each temperature region can be appropriately set by changing the time when the sample S stops at a predetermined position in each temperature region.
 本実施形態に係る反応処理装置100は、さらに、蛍光検出器78を備える。一般的にリアルタイムPCRでは、試料に蛍光を発生する試薬が添加される。DNAの増幅が進むにつれ試料から発せられる蛍光信号の強度が増加するので、その蛍光信号の強度値をPCRの進捗や反応の終端の判定材料としての指標とすることができる。 The reaction processing device 100 according to the present embodiment further includes a fluorescence detector 78. Generally, in real-time PCR, a reagent that emits fluorescence is added to a sample. Since the intensity of the fluorescence signal emitted from the sample increases as the amplification of DNA progresses, the intensity value of the fluorescence signal can be used as an index as a judgment material for the progress of PCR and the end of the reaction.
 蛍光検出器78としては、非常にコンパクトな光学系で、迅速に測定でき、かつ明るい場所か暗い場所かにもかかわらず、蛍光を検出することができる日本板硝子株式会社製の光ファイバ型蛍光検出器FLE-510を使用することができる。この光ファイバ型蛍光検出器は、その励起光/蛍光の波長特性を試料の発する蛍光特性に適するようにチューニングしておくことができ、様々な特性を有する試料について最適な光学検出系を提供することが可能であり、さらに光ファイバ型蛍光検出器によってもたらされる光線の径の小ささから、流路などの小さいまたは細い領域に存在する試料からの蛍光を小さいノイズで検出するのに適している。 As the fluorescence detector 78, an optical fiber type fluorescence detection manufactured by Nippon Sheet Glass Co., Ltd., which is a very compact optical system, can perform rapid measurement, and can detect fluorescence regardless of whether it is a bright place or a dark place. The vessel FLE-510 can be used. This optical fiber type fluorescence detector can be tuned so that the wavelength characteristic of the excitation light/fluorescence is suitable for the fluorescence characteristic emitted by the sample, and provides an optimum optical detection system for the sample having various characteristics. It is also possible to detect fluorescence from a sample existing in a small or narrow area such as a channel with a small noise because of the small diameter of the light beam provided by the optical fiber type fluorescence detector. ..
 光ファイバ型の蛍光検出器78は、光学ヘッド80と、蛍光検出器ドライバ82と、光学ヘッド80と蛍光検出器ドライバ82とを接続する光ファイバ84とを備える。蛍光検出器ドライバ82には励起光用光源(LED、レーザその他特定の波長を出射するように調整された光源)、光ファイバ型合分波器及び光電変換素子(PD,APD又はフォトマル等の光検出器)(いずれも図示せず)等が含まれており、これらを制御するためのドライバ等からなる。光学ヘッド80はレンズ等の光学系からなり、励起光の試料Sへの指向性照射と試料から発せられる蛍光の集光の機能を担う。集光された蛍光は光ファイバ84を通じて蛍光検出器ドライバ82内の光ファイバ型合分波器により励起光と分けられ、光電変換素子によって電気信号に変換される。蛍光検出器は、試料Sからの蛍光を検出する機能を発揮するものであれば光ファイバ型蛍光検出器に限定されない。 The optical fiber type fluorescence detector 78 includes an optical head 80, a fluorescence detector driver 82, and an optical fiber 84 connecting the optical head 80 and the fluorescence detector driver 82. The fluorescence detector driver 82 includes an excitation light source (LED, laser, or other light source adjusted to emit a specific wavelength), an optical fiber type multiplexer/demultiplexer, and a photoelectric conversion element (PD, APD, Photomal, etc.). A photodetector) (neither of which is shown) and the like are included, and a driver and the like for controlling these are included. The optical head 80 is composed of an optical system such as a lens, and has a function of directionally irradiating the sample S with excitation light and a function of condensing fluorescence emitted from the sample. The collected fluorescence is separated from the excitation light by the optical fiber type multiplexer/demultiplexer in the fluorescence detector driver 82 through the optical fiber 84, and is converted into an electric signal by the photoelectric conversion element. The fluorescence detector is not limited to the optical fiber type fluorescence detector as long as it has a function of detecting the fluorescence from the sample S.
 本実施形態に係る反応処理装置100においては、流路中の試料に含まれるDNAの増幅の進度を知ることができる限りにおいて、蛍光検出領域の位置は流路に沿った領域のうちいずれにあってもよい。例えば、中温領域38内の一部の領域86(「蛍光検出領域86」と称する)に位置する試料Sから蛍光を検出することができるように光学ヘッド80が配置されてもよい。試料Sは流路内を繰り返し往復移動することで反応が進み、試料Sに含まれる所定のDNAが増幅するので、検出された蛍光の量の変動をモニタリングすることで、DNAの増幅の進度をリアルタイムで知ることができる。 In the reaction processing apparatus 100 according to the present embodiment, as long as the progress of amplification of DNA contained in the sample in the channel can be known, the position of the fluorescence detection region is in any of the regions along the channel. May be. For example, the optical head 80 may be arranged so that fluorescence can be detected from the sample S located in a partial area 86 (referred to as “fluorescence detection area 86”) in the intermediate temperature area 38. The reaction of the sample S progresses as the sample S is repeatedly moved back and forth in the channel, and a predetermined DNA contained in the sample S is amplified. Therefore, the progress of the amplification of the DNA is monitored by monitoring the fluctuation of the detected fluorescence amount. You can know in real time.
 次に、反応処理装置100により試料Sにサーマルサイクルを与える動作について説明する。 Next, the operation of applying a thermal cycle to the sample S by the reaction processing device 100 will be described.
 まず、以下の手順(1)~(6)に従って、反応処理容器10に試料Sを充填し、反応処理容器10を反応処理装置100にセットする。また、反応処理容器10を反応処理装置100にセットする前に、第1ポンプ64および第2ポンプ66を動作させて、第1チューブ72、第2チューブ74のほか、パッキン76、77等の空気の通過するパスを、エアで吹くようにしてもよい。こうすることによりパス内に残存している可能性のあるエアロゾル等を排除することができ、キャリーオーバーを防止することに役立つ。
(1)第1空気連通口24を封止する第1封止フィルム18および第2空気連通口26を封止する第2封止フィルム19のいずれか一方を剥がす。
(2)試料導入口44を封止する第5封止フィルム22を剥がす。
(3)試料導入口44よりピペッター等で試料Sを導入し、分岐点40aの先まで試料Sを押し込む。
(4)第5封止フィルム22を貼り戻す
(5)第1封止フィルム18および第2封止フィルム19の他方を剥がす。
(6)反応処理容器10を反応処理装置100の反応処理容器載置部に配置し、第1空気連通口24、第2空気連通口26に送液システム62の第1チューブ72、第2チューブ74を接続する。
First, according to the following procedures (1) to (6), the reaction processing container 10 is filled with the sample S, and the reaction processing container 10 is set in the reaction processing apparatus 100. Further, before setting the reaction processing container 10 in the reaction processing apparatus 100, the first pump 64 and the second pump 66 are operated to operate the air such as the packings 76 and 77 in addition to the first tube 72 and the second tube 74. The path passing through may be blown with air. By doing so, aerosols and the like that may remain in the path can be eliminated, which helps prevent carryover.
(1) Either one of the first sealing film 18 that seals the first air communication port 24 and the second sealing film 19 that seals the second air communication port 26 is peeled off.
(2) The fifth sealing film 22 that seals the sample introduction port 44 is peeled off.
(3) The sample S is introduced from the sample introduction port 44 with a pipette or the like, and the sample S is pushed to the tip of the branch point 40a.
(4) The fifth sealing film 22 is attached back. (5) The other of the first sealing film 18 and the second sealing film 19 is peeled off.
(6) The reaction processing container 10 is arranged in the reaction processing container mounting portion of the reaction processing apparatus 100, and the first tube 72 and the second tube of the liquid delivery system 62 are connected to the first air communication port 24 and the second air communication port 26. 74 is connected.
 次に、以下の手順(7)~(11)に従って、反応処理装置100を動作させる。
(7)図5は、試料Sが流路12の中温領域38に送り込まれた状態を示す。例えば、第1空気連通口24に連通した流路12の圧力を、第2空気連通口26に連通した流路12の圧力より高くする。または、第1空気連通口24から空気を送り込む。これにより、試料Sが流路12の中温領域38に送り込まれる。中温領域38に送り込まれた試料Sは図5に示すように、第2フィルタ30により堰き止められる。第2フィルタ30は通気性があり、且つ撥水性を備えるからである。
(8)試料Sが流路12の中温領域38で停止した状態で、流路12の中温領域38および高温領域36が所定の温度になるのを待つ。例えば、中温領域38は試料Sをアニーリングおよび伸長させる温度(例えば約62℃)とされ、高温領域36は試料Sを変性させる温度(例えば約95℃)とされる。
(9)図6は、試料Sが流路12の高温領域36に送り込まれた状態を示す。中温領域38および高温領域36が所定の温度になった後、反応処理装置100を操作し、試料Sを流路12の高温領域36に送り込む。例えば、第2空気連通口26に連通した流路12の圧力を、第1空気連通口24に連通した流路12の圧力より高くする。または、第2空気連通口26から空気を送り込む。これにより、試料Sが流路12の高温領域36に送り込まれる。高温領域36に送り込まれた試料Sは図6に示すように、第1フィルタ28により堰き止められる。第1フィルタ28は通気性があり、且つ撥水性を備えるからである。
(10)高温領域36における所定の反応時間が経過した後、試料Sを再び中温領域38に送り込む。
(11)この高温領域36と中温領域38との間の往復移動を所定回数繰り返すことにより、試料Sにサーマルサイクルを与え、PCRを実施することができる。試料Sが中温領域38にあるときに、蛍光検出領域86に位置する試料Sからの蛍光を検出し、その蛍光強度をモニタ等することにより、サーマルサイクルとともにPCRの進度を計る、リアルタイムPCRを実施することができる。
Next, the reaction processing apparatus 100 is operated according to the following procedures (7) to (11).
(7) FIG. 5 shows a state in which the sample S is sent to the medium temperature region 38 of the flow channel 12. For example, the pressure of the flow path 12 communicating with the first air communication port 24 is set higher than the pressure of the flow path 12 communicating with the second air communication port 26. Alternatively, air is sent in through the first air communication port 24. As a result, the sample S is sent to the intermediate temperature region 38 of the flow path 12. The sample S sent to the intermediate temperature region 38 is blocked by the second filter 30 as shown in FIG. This is because the second filter 30 has air permeability and water repellency.
(8) With the sample S stopped in the medium temperature region 38 of the flow channel 12, wait until the medium temperature region 38 and the high temperature region 36 of the flow channel 12 reach a predetermined temperature. For example, the medium temperature region 38 has a temperature (for example, about 62° C.) at which the sample S is annealed and extended, and the high temperature region 36 has a temperature (for example, about 95° C.) at which the sample S is denatured.
(9) FIG. 6 shows a state in which the sample S is sent to the high temperature region 36 of the flow channel 12. After the intermediate temperature region 38 and the high temperature region 36 reach a predetermined temperature, the reaction processing apparatus 100 is operated to send the sample S into the high temperature region 36 of the flow path 12. For example, the pressure of the flow path 12 communicating with the second air communication port 26 is set higher than the pressure of the flow path 12 communicating with the first air communication port 24. Alternatively, air is sent in through the second air communication port 26. As a result, the sample S is sent to the high temperature region 36 of the flow channel 12. The sample S sent to the high temperature region 36 is blocked by the first filter 28 as shown in FIG. This is because the first filter 28 has air permeability and water repellency.
(10) After the predetermined reaction time in the high temperature region 36 has elapsed, the sample S is sent into the intermediate temperature region 38 again.
(11) By repeating the reciprocating movement between the high temperature region 36 and the intermediate temperature region 38 a predetermined number of times, the thermal cycle can be applied to the sample S and PCR can be performed. When the sample S is in the intermediate temperature region 38, the fluorescence from the sample S located in the fluorescence detection region 86 is detected, and the fluorescence intensity is monitored to measure the progress of PCR along with the thermal cycle. can do.
 以上説明したように、本実施形態に係る反応処理装置100においては、反応処理容器10のフィルタとして通気性および撥水性を有するものを使用し、送液システム62によって反応処理容器10の流路12内で試料Sを移動させる際に、フィルタで試料Sを堰き止めることにより、試料を各温度領域で停止させることとした。試料Sの停止位置がフィルタによって決まるので、試料Sを各温度領域の所定の位置に正確に停止させることができる。 As described above, in the reaction processing apparatus 100 according to this embodiment, a filter having air permeability and water repellency is used as the filter of the reaction processing container 10, and the flow path 12 of the reaction processing container 10 is used by the liquid delivery system 62. When the sample S was moved inside, the sample S was stopped in each temperature region by blocking the sample S with a filter. Since the stop position of the sample S is determined by the filter, the sample S can be accurately stopped at a predetermined position in each temperature region.
 本実施形態によれば、例えば試料Sの位置を蛍光検出器で検出し、該検出結果に基づいて送液システム62を制御するといった構成および処理をするよりも、フィルタにより試料Sの停止位置が機械的に定まるので、装置構成が簡素化され、反応処理装置100の低コスト化を図ることができる。第1フィルタ28および第2フィルタ30に撥水性もしくは撥油性が求められる理由は、試料がそれぞれのフィルタに接して堰き止められるときに、液状の試料が濾材に浸潤したり、一部の試料がフィルタを透過したりするのを防止するためである。 According to the present embodiment, for example, the stop position of the sample S is detected by the filter rather than the configuration and processing such that the position of the sample S is detected by the fluorescence detector and the liquid delivery system 62 is controlled based on the detection result. Since it is mechanically determined, the apparatus configuration can be simplified and the cost of the reaction processing apparatus 100 can be reduced. The reason why the first filter 28 and the second filter 30 are required to have water repellency or oil repellency is that when the samples come in contact with the respective filters and are dammed, the liquid sample infiltrates into the filter medium or a part of the sample is removed. This is to prevent the filter from passing through.
 試料Sの停止位置にバラツキが発生する場合、それを吸収するために各温度領域を広くとる必要があり、その結果、反応処理装置100が大型化する可能性がある。しかしながら、本実施形態に係る反応処理装置100では、常にフィルタの位置で試料Sが停止するので、停止位置にバラツキがある場合と比べて、各温度領域を必要以上に広くとる必要がない。また、各温度領域を加熱するためのヒータのサイズも小型化できる。したがって、本実施形態によれば、反応処理装置100の小型化を図ることができる。さらに、ヒータの小型化により、消費電力を低減できる。 When variations occur in the stop position of the sample S, it is necessary to widen each temperature region to absorb the variations, and as a result, the reaction processing apparatus 100 may become large. However, in the reaction processing apparatus 100 according to the present embodiment, since the sample S always stops at the filter position, it is not necessary to make each temperature region wider than necessary as compared with the case where the stop position has variations. Further, the size of the heater for heating each temperature region can be reduced. Therefore, according to the present embodiment, the reaction processing device 100 can be downsized. Further, the downsizing of the heater can reduce power consumption.
 一般的に、リアルタイムPCR法には大きく分けてプローブ法とインターカレーター法がある。プローブ法は、増幅のためにその対象DNA配列に特有のプライマーと(蛍光)プローブが必要であり、プローブが分解していくことで増幅と共に蛍光信号が増える。一方インターカレーター法は、プローブを使用せず、DNA二本鎖に取り込まれて蛍光を発生する蛍光色素(例えばSYBR Green)を混ぜておき、増幅と共にDNA二本鎖が増え、比例して蛍光信号が増える。ただし、インターカレーター法では、プローブ法のような対象DNA配列に特有のものが少なくなるので非特異反応が増える可能性があり、この非特異反応が無いかを確かめる必要がある。インターカレーター法では、通常、このような非特異反応の有無を確認するために「融解分析」が行われる。 Generally, the real-time PCR method is roughly divided into a probe method and an intercalator method. The probe method requires a primer specific to the target DNA sequence and a (fluorescent) probe for amplification, and the fluorescence signal increases with amplification as the probe decomposes. On the other hand, in the intercalator method, a fluorescent dye (eg, SYBR Green) that is incorporated into a DNA double strand to generate fluorescence is mixed without using a probe, and the DNA double strand increases with amplification, and a fluorescent signal is proportionally generated. Will increase. However, in the intercalator method, the number of unique ones in the DNA sequence of interest, such as in the probe method, decreases, so that nonspecific reaction may increase, and it is necessary to confirm whether or not this nonspecific reaction occurs. In the intercalator method, "melting analysis" is usually performed to confirm the presence or absence of such nonspecific reaction.
 融解分析では、PCR後の試料に対して、温度と蛍光強度の関係を取得し、グラフ化する。DNA二本鎖は温度を上げていくと所定の温度(DNAの長さ等に依存)で分解するために、この温度を境に急激に蛍光強度が変化する。つまりこのグラフの微分曲線(「融解分析曲線」と呼ばれる)におけるピークが一つであれば非特異反応は無かったと分かる。 In melting analysis, the relationship between temperature and fluorescence intensity is acquired for the sample after PCR and graphed. Since the DNA double strand is decomposed at a predetermined temperature (depending on the length of DNA, etc.) as the temperature is raised, the fluorescence intensity rapidly changes at this temperature. In other words, if there is only one peak in the differential curve (called "melting analysis curve") of this graph, it can be seen that there was no nonspecific reaction.
 本実施形態に係る反応処理装置100は、プローブ法とインターカレーター法の両方を適用することができる。インターカレーター法では、試料に含まれるDNAが高温領域で熱変性を受けると、その試料から蛍光を発しない。そのため、高温領域と中温領域の間の接続流路に対応する場所のみに蛍光検出領域を設けた場合は、試料から発する蛍光を適切に検出することができない。そのため、その蛍光検出領域に対応した蛍光検出器からの蛍光信号のみに基づいて試料の位置や速度の制御をしているときは、試料の適正な往復移動や停止などに支障をきたすおそれがある。
 本実施形態に係る反応処理装置100においては、上述したように、試料はフィルタの位置で停止するように構成されており、蛍光検出領域が流路に沿った領域のいずれにあったとしても、その蛍光検出器からの蛍光信号のみに基づいて、試料の位置や速度の制御をすることがない限り、試料の適正な往復移動や停止などに支障をきたす蓋然性は小さい。
The reaction processing apparatus 100 according to this embodiment can apply both the probe method and the intercalator method. In the intercalator method, when DNA contained in a sample undergoes thermal denaturation in a high temperature region, the sample does not emit fluorescence. Therefore, when the fluorescence detection region is provided only at the location corresponding to the connection flow path between the high temperature region and the medium temperature region, the fluorescence emitted from the sample cannot be properly detected. Therefore, when controlling the position and speed of the sample based only on the fluorescence signal from the fluorescence detector corresponding to the fluorescence detection region, there is a possibility that it may interfere with proper reciprocal movement and stop of the sample. ..
In the reaction processing device 100 according to the present embodiment, as described above, the sample is configured to stop at the position of the filter, and the fluorescence detection region is in any of the regions along the flow path, Unless the position and speed of the sample are controlled based only on the fluorescence signal from the fluorescence detector, there is little probability that it will hinder the proper reciprocal movement and stop of the sample.
 さらに、本実施形態に係る反応処理装置100においては、中温領域38内に蛍光検出領域86が設けられている場合、試料の往復移動の過程で、試料からの蛍光を検出することによりDNAの増幅の進度をリアルタイムで知ることができるほか、所定回数の往復移動とサーマルサイクルの終了後に、中温領域38に試料を停止させた状態で、この領域内の流路の温度を変化させながら蛍光強度を測定できる。このことは、例えば融解分析を行う場合にも利用できる。また、そのために別途構成を追加する必要等がないので、インターカレーター法によるPCRに必要な増幅後の融解分析を簡便に行うことができる。従って、プローブ法のほか融解分析を伴うインターカレーター法の実施をする場合は、蛍光検出領域は中温領域38内に設けられていることが望ましい。融解分析が温度の上昇とともに蛍光信号の強度を計測する工程を含むため、当初から比較的温度の低い中温領域38で行うことが好ましい。 Further, in the reaction processing apparatus 100 according to the present embodiment, when the fluorescence detection region 86 is provided in the intermediate temperature region 38, DNA is amplified by detecting fluorescence from the sample in the process of reciprocating movement of the sample. In addition to being able to know the progress of the sample in real time, the fluorescence intensity can be measured by changing the temperature of the flow path in this region with the sample stopped in the intermediate temperature region 38 after the predetermined number of reciprocating movements and the end of the thermal cycle. Can be measured. This can be utilized, for example, when performing melting analysis. Further, since it is not necessary to add a separate configuration for that purpose, the melting analysis after amplification necessary for PCR by the intercalator method can be easily performed. Therefore, when the intercalator method involving melting analysis is performed in addition to the probe method, it is desirable that the fluorescence detection region be provided in the intermediate temperature region 38. Since the melting analysis includes the step of measuring the intensity of the fluorescence signal as the temperature rises, it is preferable to perform it in the middle temperature region 38 where the temperature is relatively low from the beginning.
 また、本実施形態に係る反応処理装置100は、高温領域36と中温領域38の間の接続流路に対応する場所に、蛍光検出領域が設けられていてもよい。プローブ法によるPCRを実施した場合には、接続流路においても試料から蛍光が発せられるため、この蛍光信号を検出することにより、蛍光検出器からの蛍光信号に基づいて試料の位置や速度の同定に寄与できる。 Further, in the reaction processing device 100 according to the present embodiment, a fluorescence detection region may be provided at a location corresponding to the connection flow path between the high temperature region 36 and the intermediate temperature region 38. When PCR is performed by the probe method, fluorescence is emitted from the sample even in the connection flow channel, so by detecting this fluorescence signal, the position and speed of the sample can be identified based on the fluorescence signal from the fluorescence detector. Can contribute to.
 さらに、本実施形態に係る反応処理装置100は、高温領域36内に蛍光検出領域が設けられていてもよい。プローブ法によるPCRを実施した場合には、高温領域においても試料から蛍光が発せられるため、この蛍光信号を検出することにより、高温領域に試料が存在するということを把握することができる。これによって、各温度領域に試料が侵入した状態を検出することができるため、高精度な停止位置の制御をはじめ、試料のより適正な往復移動に寄与することが示唆される。 Further, in the reaction processing device 100 according to this embodiment, a fluorescence detection region may be provided in the high temperature region 36. When PCR is performed by the probe method, fluorescence is emitted from the sample even in the high temperature region. Therefore, by detecting this fluorescence signal, it can be understood that the sample exists in the high temperature region. This makes it possible to detect the state where the sample has entered each temperature region, which suggests that it contributes to more appropriate reciprocating movement of the sample, including highly accurate control of the stop position.
 次に、本発明の実施例を説明する。中温領域38内に蛍光検出領域86を備える上述の反応処理装置100を用いて、表1に示す試料15μLに対し1μLの鋳型1×10Copies/μLを1μLを添加し、さらにタカラバイオ社のSYBR Greenの1000倍希釈液を添加したものを用いて、リアルタイムPCRを実施した。
Figure JPOXMLDOC01-appb-T000001
Next, examples of the present invention will be described. Using the above-described reaction processing apparatus 100 having the fluorescence detection region 86 in the medium temperature region 38, 1 μL of 1 μL template 1×10 5 Copies/μL was added to 15 μL of the sample shown in Table 1, and further, Takara Bio's Real-time PCR was carried out by using a 1000-fold diluted solution of SYBR Green.
Figure JPOXMLDOC01-appb-T000001
 図7は、本実施例におけるPCRの増幅結果を示す。図7において、横軸はサイクル数であり、縦軸は蛍光強度[任意単位]である。図7に示すように、PCRのサイクル数とともに蛍光信号の強度が増大する。サイクル数18を超えたあたりから蛍光信号の強度が上昇して顕著な増幅が開始され、サイクル数が28前後を超えたあたりからプラトーな状態となった。このような蛍光信号の増幅曲線は、試料中の検体が増幅していることを示しており、本実施形態に係る反応処理装置100を用いて良好なPCRを行うことができることが分かる。 FIG. 7 shows the result of PCR amplification in this example. In FIG. 7, the horizontal axis represents the number of cycles and the vertical axis represents the fluorescence intensity [arbitrary unit]. As shown in FIG. 7, the intensity of the fluorescence signal increases with the number of PCR cycles. The intensity of the fluorescence signal increased around the number of cycles exceeding 18 and remarkable amplification started, and a plateau state was reached around the number of cycles exceeding 28. Such an amplification curve of the fluorescence signal shows that the sample in the sample is amplified, and it can be seen that good PCR can be performed using the reaction processing device 100 according to the present embodiment.
 図8および図9は、本実施例における融解分析結果を示す図である。リアルタイムPCRの実施後、試料を中温領域38に移動させ、中温領域38内の温度を上昇させながら蛍光検出領域86に位置する試料の蛍光信号を引き続き計測した。図8は、中温領域38内の温度に対する蛍光信号強度の関係を示す。図9は、いわゆる融解分析曲線であり、図8に示す曲線を1回微分したものである。 8 and 9 are diagrams showing melting analysis results in this example. After the real-time PCR was performed, the sample was moved to the intermediate temperature region 38, and the fluorescence signal of the sample located in the fluorescence detection region 86 was continuously measured while increasing the temperature in the intermediate temperature region 38. FIG. 8 shows the relationship between the fluorescence signal intensity and the temperature in the intermediate temperature region 38. FIG. 9 is a so-called melting analysis curve, which is obtained by differentiating the curve shown in FIG. 8 once.
 図8から、温度の上昇とともに蛍光強度が低下し、87℃を超えたあたりからさらに急峻に低下し、熱変性による影響が増すことが分かる。また図8から、約93℃を超えたあたりから蛍光強度が下げ止まりの傾向を示すことが分かる。 From FIG. 8, it can be seen that the fluorescence intensity decreases as the temperature rises, and decreases more sharply after exceeding 87° C., and the influence of heat denaturation increases. Further, it can be seen from FIG. 8 that the fluorescence intensity tends to decrease and stop around around 93° C.
 図9から、融解分析曲線が88.4℃において唯一のピークを有していることは明らかである。本実施例におけるPCRの増幅産物は、Primer Dimerのような比較的短い増幅産物を含んでいないことが分かる。 From FIG. 9, it is clear that the melting analysis curve has only one peak at 88.4°C. It can be seen that the PCR amplification product in this example does not include a relatively short amplification product such as Primer Dimer.
 以下、反応処理容器の変形例について説明する。 A modification of the reaction processing container will be described below.
 図10は、三水準の温度領域に対応する反応処理容器110の概念図である。上記では、高温および中温の二水準の反応領域を備える反応処理容器10について述べたが、図10に示す反応処理容器110は、高温、中温及び低温の三水準の反応領域を備える。 FIG. 10 is a conceptual diagram of the reaction processing container 110 corresponding to the three-level temperature regions. Although the reaction processing container 10 having two-level reaction regions of high temperature and medium temperature has been described above, the reaction processing container 110 shown in FIG. 10 has three-level reaction regions of high temperature, medium temperature and low temperature.
 反応処理容器110は、分岐部112dから三方に延びる第1流路112a、第2流路112b、第3流路112cを備える。第1流路112aの一端には第1フィルタ128が配置され、第2流路112bの一端には第2フィルタ130が配置され、第3流路112cの一端には第3フィルタ131が配置されている。第1フィルタ128には、第1空気連通口124が連通され、第2フィルタ130には、第2空気連通口126が連通され、第3フィルタ131には、第3空気連通口127が連通されている。第1流路112aには高温領域136が設けられ、第2流路112bには中温領域138が設けられ、第3流路112cには低温領域139が設けられている。第3流路112cの中途には分岐点142aが設けられており、該分岐点142aから分岐流路142が分岐している。分岐流路142の先端には、試料導入口144が設けられている。 The reaction processing container 110 includes a first flow channel 112a, a second flow channel 112b, and a third flow channel 112c that extend in three directions from a branch portion 112d. The first filter 128 is arranged at one end of the first flow passage 112a, the second filter 130 is arranged at one end of the second flow passage 112b, and the third filter 131 is arranged at one end of the third flow passage 112c. ing. The first filter 128 is in communication with the first air communication port 124, the second filter 130 is in communication with the second air communication port 126, and the third filter 131 is in communication with the third air communication port 127. ing. The first flow passage 112a is provided with a high temperature region 136, the second flow passage 112b is provided with a medium temperature region 138, and the third flow passage 112c is provided with a low temperature region 139. A branch point 142a is provided in the middle of the third flow path 112c, and the branch flow path 142 branches from the branch point 142a. A sample introduction port 144 is provided at the tip of the branch channel 142.
 このように構成された反応処理容器110においても、反応処理装置の送液システムによって各温度領域に試料を移動させる際に、フィルタで試料を堰き止めることにより、各温度領域で試料が停止される。すなわち、高温領域136に試料が移動する際には、第1フィルタ128で試料が堰き止められる。中温領域138に試料が移動する際には、第2フィルタ130で試料が堰き止められる。低温領域139に試料が移動する際には、第3フィルタ131で試料が堰き止められる。試料の停止位置がフィルタによって決まるので、試料を各温度領域の所定の位置に正確に停止させることができる。 Also in the reaction processing container 110 configured as described above, when the sample is moved to each temperature region by the liquid feeding system of the reaction processing device, the sample is stopped in each temperature region by blocking the sample with the filter. .. That is, when the sample moves to the high temperature region 136, the first filter 128 blocks the sample. When the sample moves to the intermediate temperature region 138, the second filter 130 blocks the sample. When the sample moves to the low temperature region 139, the sample is blocked by the third filter 131. Since the stop position of the sample is determined by the filter, the sample can be accurately stopped at a predetermined position in each temperature region.
 また、反応処理容器110においても、中温領域138に蛍光検出領域186が設けられている。これにより、プローブ法だけでなく、インターカレーター法を好適に適用できる。 Also, in the reaction processing container 110, a fluorescence detection region 186 is provided in the medium temperature region 138. Thereby, not only the probe method but also the intercalator method can be suitably applied.
 反応処理容器110を使用する反応処理装置においては、ポンプと空気連通口との間にバルブを追加する。例えば中温領域138から高温領域136に送液するときには、低温領域139側のバルブを閉めることにより、低温領域139への試料流入を防ぎながら中温領域138から高温領域136に送液が可能である。 In a reaction processing device that uses the reaction processing container 110, a valve is added between the pump and the air communication port. For example, when the liquid is fed from the medium temperature region 138 to the high temperature region 136, the valve on the low temperature region 139 side is closed to allow the liquid to be fed from the medium temperature region 138 to the high temperature region 136 while preventing the sample from flowing into the low temperature region 139.
 図11は、複数の試料に対する同時反応に供される反応処理容器210の概念図である。図11には、一例として、2つの試料に対して同時にPCRを実施できる反応処理容器210を示すが、流路の数を変えることにより、任意の数の試料に対応することができる。 FIG. 11 is a conceptual diagram of a reaction processing container 210 provided for simultaneous reaction with respect to a plurality of samples. FIG. 11 shows, as an example, a reaction processing container 210 capable of simultaneously performing PCR on two samples, but an arbitrary number of samples can be handled by changing the number of channels.
 反応処理容器210は、並列に配置された第1流路212aおよび第2流路212bを備える。第1流路212aの一端には第1フィルタ228が配置され、他端には第2フィルタ230が配置されている。第2流路212bの一端には第3フィルタ229が配置され、他端には第4フィルタ231が配置されている。第1フィルタ228および第3フィルタ229には、共通の第1空気連通口224が連通されている。第2フィルタ230および第4フィルタ231には、共通の第2空気連通口226が連通されている。第1流路212aおよび第2流路212bの一端側には共通の高温領域236が設けられている。第1流路212aおよび第2流路212bの他端側には共通の中温領域238が設けられている。第1流路212aの中間には第1分岐点242aが設けられており、該第1分岐点242aから第1分岐流路242が分岐している。第1分岐流路242の先端には、第1試料導入口244が設けられている。同様に、第2流路212bの中間には第2分岐点243aが設けられており、該第2分岐点243aから第2分岐流路243が分岐している。第2分岐流路243の先端には、第2試料導入口245が設けられている。 The reaction processing container 210 includes a first flow path 212a and a second flow path 212b arranged in parallel. The first filter 228 is arranged at one end of the first flow path 212a, and the second filter 230 is arranged at the other end. The third filter 229 is arranged at one end of the second flow path 212b, and the fourth filter 231 is arranged at the other end. A common first air communication port 224 communicates with the first filter 228 and the third filter 229. A common second air communication port 226 communicates with the second filter 230 and the fourth filter 231. A common high temperature region 236 is provided on one end side of the first flow path 212a and the second flow path 212b. A common intermediate temperature region 238 is provided on the other end sides of the first flow path 212a and the second flow path 212b. A first branch point 242a is provided in the middle of the first channel 212a, and the first branch channel 242 branches from the first branch point 242a. A first sample introduction port 244 is provided at the tip of the first branch flow channel 242. Similarly, a second branch point 243a is provided in the middle of the second flow path 212b, and the second branch flow path 243 branches from the second branch point 243a. A second sample introduction port 245 is provided at the tip of the second branch flow channel 243.
 このように構成された反応処理容器210においても、反応処理装置の送液システムによって各温度領域に試料を移動させる際に、フィルタで試料を堰き止めることにより、各温度領域で試料が停止される。すなわち、第1流路212a内の第1試料、第2流路212b内の第2試料が高温領域236に移動する際には、それぞれ第1フィルタ228、第3フィルタ229で堰き止められる。また、第1流路212a内の第1試料、第2流路212b内の第2試料が中温領域238に移動する際には、それぞれ第2フィルタ230、第4フィルタ231で堰き止められる。試料の停止位置がフィルタによって決まるので、試料を各温度領域の所定の位置に正確に停止させることができる。 Also in the reaction processing container 210 configured as described above, when the sample is moved to each temperature region by the liquid feeding system of the reaction processing device, the sample is stopped by the filter by blocking the sample with each filter. .. That is, when the first sample in the first channel 212a and the second sample in the second channel 212b move to the high temperature region 236, they are blocked by the first filter 228 and the third filter 229, respectively. Further, when the first sample in the first flow path 212a and the second sample in the second flow path 212b move to the intermediate temperature region 238, they are blocked by the second filter 230 and the fourth filter 231 respectively. Since the stop position of the sample is determined by the filter, the sample can be accurately stopped at a predetermined position in each temperature region.
 反応処理容器210によれば、2つの試料に対して同時にPCRを実施することができる。2つの流路に対して1つの送液システムがあればよいので、反応処理容器210を使用する反応処理装置の小型化および低コスト化を図ることができる。 With the reaction processing container 210, PCR can be simultaneously performed on two samples. Since only one liquid sending system is required for the two flow paths, it is possible to reduce the size and cost of the reaction processing apparatus that uses the reaction processing container 210.
 反応処理容器210においても、第1流路212aの中温領域238に第1蛍光検出領域286が設けられ、第2流路212bの中温領域238に第2蛍光検出領域287が設けられている。これにより、プローブ法だけでなく、インターカレーター法を好適に適用できる。 Also in the reaction processing container 210, the first fluorescence detection region 286 is provided in the middle temperature region 238 of the first flow path 212a, and the second fluorescence detection region 287 is provided in the middle temperature region 238 of the second flow path 212b. Thereby, not only the probe method but also the intercalator method can be suitably applied.
 以上、本発明を実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 Above, the present invention has been described based on the embodiments. This embodiment is an example, and it is understood by those skilled in the art that various modifications can be made to the combinations of the respective constituent elements and the respective processing processes, and such modifications are also within the scope of the present invention. is there.
 10,110,210 反応処理容器、 12 流路、 14 基板、 16 流路封止フィルム、 18 第1封止フィルム、 19 第2封止フィルム、 20 第3封止フィルム、 21 第4封止フィルム、 22 第5封止フィルム、 23 Oリング、 24,124,224 第1空気連通口、 26,126,226 第2空気連通口、 28,128,228 第1フィルタ、 29,31,40 接続流路、 30,130,230 第2フィルタ、 36,136,236 高温領域、 38,138,238 中温領域、 42,142 分岐流路、 44,144 試料導入口、 50 温度制御システム、 52 CPU、 54 高温用ヒータ、 56 低温用ヒータ、 58 高温用ヒータドライバ、 60 低温用ヒータドライバ、 62 送液システム、 64 第1ポンプ、 66 第2ポンプ、 68 第1ポンプドライバ、 70 第2ポンプドライバ、 72 第1チューブ、 74 第2チューブ、 76,77 パッキン、 78 蛍光検出器、 80 光学ヘッド、 82 蛍光検出器ドライバ、 84 光ファイバ、 86,186 蛍光検出領域、 100 反応処理装置、 127 第3空気連通口、 131 第3フィルタ、 139 低温領域、 229 第3フィルタ、 231 第4フィルタ、 242 第1分岐流路、 243 第2分岐流路、 244 第1試料導入口、 245 第2試料導入口、 286 第1蛍光検出領域、 287 第2蛍光検出領域。 10, 110, 210 reaction processing container, 12 channels, 14 substrates, 16 channels sealing film, 18 first sealing film, 19 second sealing film, 20 third sealing film, 21 fourth sealing film , 22, 5th sealing film, 23 O-ring, 24, 124, 224 1st air communication port, 26, 126, 226 2nd air communication port, 28, 128, 228 1st filter, 29, 31, 40 connection flow Road, 30, 130, 230 second filter, 36, 136, 236 high temperature area, 38, 138, 238 medium temperature area, 42, 142 branch flow path, 44, 144 sample introduction port, 50 temperature control system, 52 CPU, 54 High temperature heater, 56 low temperature heater, 58 high temperature heater driver, 60 low temperature heater driver, 62 liquid transfer system, 64 first pump, 66 second pump, 68 first pump driver, 70 second pump driver, 72 second pump driver 1 tube, 74 second tube, 76, 77 packing, 78 fluorescence detector, 80 optical head, 82 fluorescence detector driver, 84 optical fiber, 86,186 fluorescence detection area, 100 reaction processing device, 127 third air communication port , 131 third filter, 139 low temperature region, 229 third filter, 231 fourth filter, 242 first branch flow channel, 243 second branch flow channel, 244 first sample introduction port, 245 second sample introduction port, 286 second number 1 fluorescence detection area, 287 2nd fluorescence detection area.
 本発明は、ポリメラーゼ連鎖反応(PCR)に利用できる。 The present invention can be used for polymerase chain reaction (PCR).
配列番号1:フォワードPCRプライマー
配列番号2:リバースPCRプライマー
Sequence number 1: Forward PCR primer Sequence number 2: Reverse PCR primer

Claims (19)

  1.  試料が移動する流路と、前記流路の一端に配置された第1フィルタと、前記流路の他端に配置された第2フィルタと、前記流路の前記一端側に設けられる第1温度領域と、前記流路の前記他端側に設けられる第2温度領域と、を備える反応処理容器と、
     前記反応処理容器の前記第1温度領域を第1温度に維持するとともに、前記反応処理容器の前記第2温度領域を前記第1温度よりも低い第2温度に維持する温度制御システムと、
     前記試料を前記流路内で移動させる送液システムと、
     を備え、
     前記第1フィルタおよび前記第2フィルタは、通気性を有するとともに撥水性を有し、
     前記送液システムによって前記第1温度領域から前記第2温度領域に前記試料を移動させるとき、前記第2フィルタで前記試料が堰き止められることにより、前記試料が前記第2温度領域で停止し、
     前記送液システムによって前記第2温度領域から前記第1温度領域に前記試料を移動させるとき、前記第1フィルタで試料が堰き止められることにより、前記試料が前記第1温度領域で停止することを特徴とする反応処理装置。
    A channel through which a sample moves, a first filter arranged at one end of the channel, a second filter arranged at the other end of the channel, and a first temperature provided at the one end side of the channel A reaction processing container including a region and a second temperature region provided on the other end side of the flow path,
    A temperature control system for maintaining the first temperature region of the reaction treatment container at a first temperature and maintaining the second temperature region of the reaction treatment container at a second temperature lower than the first temperature;
    A liquid transfer system for moving the sample in the channel,
    Equipped with
    The first filter and the second filter have air permeability and water repellency,
    When the sample is moved from the first temperature region to the second temperature region by the liquid sending system, the sample is stopped by the second filter, so that the sample stops in the second temperature region,
    When the sample is moved from the second temperature region to the first temperature region by the liquid delivery system, the sample is stopped by the first filter, so that the sample stops in the first temperature region. Characteristic reaction processing device.
  2.  前記第1フィルタおよび前記第2フィルタは、フッ素樹脂を含有することを特徴とする請求項1に記載の反応処理装置。 The reaction processing apparatus according to claim 1, wherein the first filter and the second filter contain a fluororesin.
  3.  前記第1フィルタおよび前記第2フィルタは、ポリテトラフルオロエチレン、パーフルオロアルコキシアルカン、パーフルオロエチレンプロペンコポリマー、エチレンテトラフルオロエチレンコポリマーから選ばれる少なくとも一つのフッ素樹脂を含有することを特徴とする請求項2に記載の反応処理装置。 The first filter and the second filter contain at least one fluororesin selected from polytetrafluoroethylene, perfluoroalkoxyalkane, perfluoroethylenepropene copolymer, and ethylenetetrafluoroethylene copolymer. 2. The reaction processing apparatus according to item 2.
  4.  前記第1フィルタおよび前記第2フィルタは、ポリテトラフルオロエチレン製であることを特徴とする請求項3に記載の反応処理装置。 The reaction processing apparatus according to claim 3, wherein the first filter and the second filter are made of polytetrafluoroethylene.
  5.  前記第1温度は試料を変性させる温度に設定され、前記第2温度は試料をアニーリングおよび伸長させる温度に設定され、
     前記第2温度領域内の一部の領域に位置する前記試料からの蛍光を検出するように配置された蛍光検出器をさらに備えることを特徴とする請求項1から4のいずれかに記載の反応処理装置。
    The first temperature is set to a temperature for denaturing a sample, the second temperature is set to a temperature for annealing and extending the sample,
    5. The reaction according to claim 1, further comprising a fluorescence detector arranged so as to detect fluorescence from the sample located in a part of the second temperature region. Processing equipment.
  6.  前記反応処理容器は、前記第1フィルタと前記流路との間の隙間、前記第2フィルタと前記流路との間の隙間を塞ぐために環状のパッキンを備えることを特徴とする請求項1から5のいずれかに記載の反応処理装置。 The reaction treatment container comprises an annular packing for closing a gap between the first filter and the flow passage and a gap between the second filter and the flow passage. 5. The reaction processing device according to any one of 5.
  7.  試料が移動する流路と、前記流路の一端に配置された第1フィルタと、前記流路の他端に配置された第2フィルタと、前記流路の前記一端側に設けられる第1温度領域と、前記流路の前記他端側に設けられる第2温度領域と、を備える反応処理容器であって、
     前記第1フィルタおよび前記第2フィルタは、通気性を有するとともに撥水性を有し、
     前記第1温度領域から前記第2温度領域に前記試料が移動されるとき、前記第2フィルタで前記試料が堰き止められることにより、前記試料が前記第2温度領域で停止し、
     前記第2温度領域から前記第1温度領域に前記試料が移動されるとき、前記第1フィルタで試料が堰き止められることにより、前記試料が前記第1温度領域で停止することを特徴とする反応処理容器。
    A channel through which a sample moves, a first filter arranged at one end of the channel, a second filter arranged at the other end of the channel, and a first temperature provided at the one end side of the channel A reaction processing container comprising a region and a second temperature region provided on the other end side of the flow path,
    The first filter and the second filter have air permeability and water repellency,
    When the sample is moved from the first temperature region to the second temperature region, the sample is stopped in the second temperature region by blocking the sample by the second filter,
    When the sample is moved from the second temperature region to the first temperature region, the sample is blocked by the first filter, so that the sample stops in the first temperature region. Processing container.
  8.  前記第1フィルタおよび前記第2フィルタは、フッ素樹脂を含有することを特徴とする請求項7に記載の反応処理容器。 The reaction processing container according to claim 7, wherein the first filter and the second filter contain a fluororesin.
  9.  前記第1フィルタおよび前記第2フィルタは、ポリテトラフルオロエチレン、パーフルオロアルコキシアルカン、パーフルオロエチレンプロペンコポリマー、エチレンテトラフルオロエチレンコポリマーから選ばれる少なくとも一つのフッ素樹脂を含有することを特徴とする請求項8に記載の反応処理容器。 The first filter and the second filter contain at least one fluororesin selected from polytetrafluoroethylene, perfluoroalkoxyalkane, perfluoroethylenepropene copolymer, and ethylenetetrafluoroethylene copolymer. 8. The reaction processing container according to item 8.
  10.  前記第1フィルタおよび前記第2フィルタは、ポリテトラフルオロエチレン製であることを特徴とする請求項9に記載の反応処理容器。 The reaction processing container according to claim 9, wherein the first filter and the second filter are made of polytetrafluoroethylene.
  11.  試料が移動する流路と、前記流路の一端に配置された第1フィルタと、前記流路の他端に配置された第2フィルタと、前記流路の前記一端側に設けられる第1温度領域と、前記流路の前記他端側に設けられる第2温度領域と、を備える反応処理容器と、
     前記反応処理容器の前記第1温度領域を第1温度に維持するとともに、前記反応処理容器の前記第2温度領域を前記第1温度よりも低い第2温度に維持する温度制御システムと、
     前記試料を前記流路内で移動させる送液システムと、
     を備える反応処理装置における反応処理方法であって、
     前記第1フィルタおよび前記第2フィルタは、通気性を有するとともに撥水性を有し、
     前記送液システムによって前記第1温度領域から前記第2温度領域に前記試料を移動させるとき、前記第2フィルタで前記試料が堰き止められることにより、前記試料が前記第2温度領域で停止し、
     前記送液システムによって前記第2温度領域から前記第1温度領域に前記試料を移動させるとき、前記第1フィルタで試料が堰き止められることにより、前記試料が前記第1温度領域で停止することを特徴とする反応処理方法。
    A channel through which a sample moves, a first filter arranged at one end of the channel, a second filter arranged at the other end of the channel, and a first temperature provided at the one end side of the channel A reaction processing container including a region and a second temperature region provided on the other end side of the flow path,
    A temperature control system for maintaining the first temperature region of the reaction treatment container at a first temperature and maintaining the second temperature region of the reaction treatment container at a second temperature lower than the first temperature;
    A liquid transfer system for moving the sample in the channel,
    A reaction treatment method in a reaction treatment device comprising:
    The first filter and the second filter have air permeability and water repellency,
    When the sample is moved from the first temperature region to the second temperature region by the liquid sending system, the sample is stopped by the second filter, so that the sample stops in the second temperature region,
    When the sample is moved from the second temperature region to the first temperature region by the liquid delivery system, the sample is stopped by the first filter, so that the sample stops in the first temperature region. Characterized reaction treatment method.
  12.  前記第1フィルタおよび前記第2フィルタは、フッ素樹脂を含有することを特徴とする請求項11に記載の反応処理方法。 The reaction treatment method according to claim 11, wherein the first filter and the second filter contain a fluororesin.
  13.  前記第1フィルタおよび前記第2フィルタは、ポリテトラフルオロエチレン、パーフルオロアルコキシアルカン、パーフルオロエチレンプロペンコポリマー、エチレンテトラフルオロエチレンコポリマーから選ばれる少なくとも一つのフッ素樹脂を含有することを特徴とする請求項12に記載の反応処理方法。 The first filter and the second filter contain at least one fluororesin selected from polytetrafluoroethylene, perfluoroalkoxyalkane, perfluoroethylenepropene copolymer, and ethylenetetrafluoroethylene copolymer. 12. The reaction treatment method according to item 12.
  14.  前記第1フィルタおよび前記第2フィルタは、ポリテトラフルオロエチレン製であることを特徴とする請求項13に記載の反応処理方法。 The reaction treatment method according to claim 13, wherein the first filter and the second filter are made of polytetrafluoroethylene.
  15.  前記反応処理装置は、蛍光検出器をさらに備え、
     前記第1温度は試料を変性させる温度に設定され、前記第2温度は試料をアニーリングおよび伸長させる温度に設定され、
     前記蛍光検出器を用いて、前記第2温度領域内の一部の領域に位置する前記試料からの蛍光を検出することを特徴とする請求項11から14のいずれかに記載の反応処理方法。
    The reaction processing device further comprises a fluorescence detector,
    The first temperature is set to a temperature for denaturing a sample, the second temperature is set to a temperature for annealing and extending the sample,
    15. The reaction treatment method according to claim 11, wherein fluorescence from the sample located in a part of the second temperature region is detected using the fluorescence detector.
  16.  当該反応処理方法はリアルタイムPCR法であることを特徴とする請求項11から15のいずれかに記載の反応処理方法。 The reaction processing method according to any one of claims 11 to 15, wherein the reaction processing method is a real-time PCR method.
  17.  当該反応処理方法はインターカレーター法であることを特徴とする請求項11から16のいずれかに記載の反応処理方法。 The reaction treatment method according to any one of claims 11 to 16, wherein the reaction treatment method is an intercalator method.
  18.  さらに、融解分析工程を備えることを特徴とする請求項17に記載の反応処理方法。 The reaction treatment method according to claim 17, further comprising a melting analysis step.
  19.  前記融解分析工程は、前記第2温度領域内の温度を変化させることにより融解分析曲線を得ることを特徴とする請求項18に記載の反応処理方法。 The reaction treatment method according to claim 18, wherein in the melting analysis step, a melting analysis curve is obtained by changing the temperature in the second temperature region.
PCT/JP2018/046291 2018-12-17 2018-12-17 Reaction treatment device, reaction treatment vessel, and reaction treatment method WO2020129116A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/046291 WO2020129116A1 (en) 2018-12-17 2018-12-17 Reaction treatment device, reaction treatment vessel, and reaction treatment method
ARP190103659A AR117328A1 (en) 2018-12-17 2019-12-13 REACTION TREATMENT APPARATUS, REACTION TREATMENT CONTAINER AND REACTION TREATMENT METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/046291 WO2020129116A1 (en) 2018-12-17 2018-12-17 Reaction treatment device, reaction treatment vessel, and reaction treatment method

Publications (1)

Publication Number Publication Date
WO2020129116A1 true WO2020129116A1 (en) 2020-06-25

Family

ID=71102084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046291 WO2020129116A1 (en) 2018-12-17 2018-12-17 Reaction treatment device, reaction treatment vessel, and reaction treatment method

Country Status (2)

Country Link
AR (1) AR117328A1 (en)
WO (1) WO2020129116A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014515927A (en) * 2011-05-17 2014-07-07 キヤノン ユー.エス. ライフ サイエンシズ, インコーポレイテッド System and method for using an external heater system in a microfluidic device
WO2016006612A1 (en) * 2014-07-08 2016-01-14 国立研究開発法人産業技術総合研究所 Nucleic acid amplification device, nucleic acid amplification method, and chip for nucleic acid amplification
WO2017094674A1 (en) * 2015-12-01 2017-06-08 日本板硝子株式会社 Pcr reaction container, pcr device, and pcr method
WO2017199933A1 (en) * 2016-05-18 2017-11-23 日本板硝子株式会社 Reaction treatment device, and method for controlling reaction treatment device
JP2018019606A (en) * 2016-08-01 2018-02-08 日本板硝子株式会社 Reaction treatment apparatus, reaction treatment method, and dispensation method
WO2018084017A1 (en) * 2016-11-01 2018-05-11 日本板硝子株式会社 Reaction treatment container and reaction treatment device
WO2018225577A1 (en) * 2017-06-06 2018-12-13 日本板硝子株式会社 Reaction treatment device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014515927A (en) * 2011-05-17 2014-07-07 キヤノン ユー.エス. ライフ サイエンシズ, インコーポレイテッド System and method for using an external heater system in a microfluidic device
WO2016006612A1 (en) * 2014-07-08 2016-01-14 国立研究開発法人産業技術総合研究所 Nucleic acid amplification device, nucleic acid amplification method, and chip for nucleic acid amplification
WO2017094674A1 (en) * 2015-12-01 2017-06-08 日本板硝子株式会社 Pcr reaction container, pcr device, and pcr method
WO2017199933A1 (en) * 2016-05-18 2017-11-23 日本板硝子株式会社 Reaction treatment device, and method for controlling reaction treatment device
JP2018019606A (en) * 2016-08-01 2018-02-08 日本板硝子株式会社 Reaction treatment apparatus, reaction treatment method, and dispensation method
WO2018084017A1 (en) * 2016-11-01 2018-05-11 日本板硝子株式会社 Reaction treatment container and reaction treatment device
WO2018225577A1 (en) * 2017-06-06 2018-12-13 日本板硝子株式会社 Reaction treatment device

Also Published As

Publication number Publication date
AR117328A1 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
US11827924B2 (en) PCR reaction vessel, PCR device, and PCR method
CN109844091B (en) Reaction processing container and reaction processing device
JP7223689B2 (en) Reaction processor
WO2017119382A1 (en) Reaction treatment device, reaction treatment container, and reaction treatment method
US11465143B2 (en) Reaction processing vessel
JP6584373B2 (en) Reaction processing apparatus and reaction processing method
CN110603315B (en) Reaction processing apparatus
JP7330514B2 (en) Reaction processor
WO2020129116A1 (en) Reaction treatment device, reaction treatment vessel, and reaction treatment method
JP6652673B1 (en) Reaction processing vessel
JP6652677B2 (en) Reaction treatment apparatus and reaction treatment method
JP2020198867A (en) Reaction processing vessel
WO2020202802A1 (en) Reaction treatment container
JP6876162B2 (en) Reaction processing equipment and reaction processing method
JP2020171315A (en) Reaction treatment vessel, method for producing reaction treatment vessel and reaction treatment method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18943512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP