WO2022219731A1 - Nitride semiconductor uv light-emitting element and production method therefor - Google Patents

Nitride semiconductor uv light-emitting element and production method therefor Download PDF

Info

Publication number
WO2022219731A1
WO2022219731A1 PCT/JP2021/015380 JP2021015380W WO2022219731A1 WO 2022219731 A1 WO2022219731 A1 WO 2022219731A1 JP 2021015380 W JP2021015380 W JP 2021015380W WO 2022219731 A1 WO2022219731 A1 WO 2022219731A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
region
algan
mole fraction
type layer
Prior art date
Application number
PCT/JP2021/015380
Other languages
French (fr)
Japanese (ja)
Inventor
光 平野
陽祐 長澤
Original Assignee
創光科学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 創光科学株式会社 filed Critical 創光科学株式会社
Priority to JP2023514234A priority Critical patent/JPWO2022219731A1/ja
Priority to PCT/JP2021/015380 priority patent/WO2022219731A1/en
Priority to TW110144622A priority patent/TW202240932A/en
Publication of WO2022219731A1 publication Critical patent/WO2022219731A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Definitions

  • the present invention relates to a nitride semiconductor ultraviolet light emitting device having a light emitting device structure in which an n-type layer, an active layer, and a p-type layer made of an AlGaN-based semiconductor having a wurtzite structure are vertically laminated, and a manufacture thereof. Regarding the method.
  • nitride semiconductor light emitting devices in which a light emitting device structure composed of a plurality of nitride semiconductor layers is formed by epitaxial growth on a substrate such as sapphire.
  • the nitride semiconductor layer is represented by the general formula Al 1-xy Ga x In y N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x+y ⁇ 1).
  • a light-emitting element structure of a light-emitting diode has a double heterostructure in which an active layer made of a nitride semiconductor layer is sandwiched between two cladding layers of an n-type nitride semiconductor layer and a p-type nitride semiconductor layer.
  • the active layer is an AlGaN-based semiconductor
  • the AlN mole fraction also referred to as the Al composition ratio
  • the bandgap energy can be adjusted to the bandgap energy (approximately 3.4 eV and approximately 6.2 eV) that can be taken by GaN and AlN.
  • an ultraviolet light emitting device having an emission wavelength of about 200 nm to about 365 nm can be obtained.
  • an ultraviolet light emitting device having an emission wavelength of about 200 nm to about 365 nm can be obtained.
  • the recombination of carriers (electrons and holes) in the active layer causes the bandgap energy Luminescence occurs.
  • a p-electrode is provided on the p-type nitride semiconductor layer, and an n-electrode is provided on the n-type nitride semiconductor layer.
  • the active layer is an AlGaN-based semiconductor
  • the n-type nitride semiconductor layer and the p-type nitride semiconductor layer sandwiching the active layer are composed of an AlGaN-based semiconductor with a higher AlN mole fraction than the active layer.
  • a p-type nitride semiconductor layer with a high AlN mole fraction is placed on the uppermost layer of the p-type nitride semiconductor layer.
  • a p-type contact layer capable of good ohmic contact with a p-electrode made of an AlGaN-based semiconductor (specifically, p-GaN). Since the p-type contact layer has a smaller AlN mole fraction than the AlGaN-based semiconductor forming the active layer, the ultraviolet rays emitted from the active layer toward the p-type nitride semiconductor layer are absorbed by the p-type contact layer. , cannot be effectively extracted to the outside of the device. For this reason, a general ultraviolet light emitting diode whose active layer is an AlGaN-based semiconductor employs an element structure as schematically shown in FIG. is effectively extracted to the outside of the device (see, for example, Patent Documents 1 and 2 below).
  • a general ultraviolet light emitting diode has a template 102 formed by depositing an AlGaN semiconductor layer 101 (for example, an AlN layer) on a substrate 100 such as a sapphire substrate.
  • a semiconductor layer 103, an active layer 104, a p-type AlGaN-based semiconductor layer 105, and a p-type contact layer 106 are deposited in order, and a part of the active layer 104, the p-type AlGaN-based semiconductor layer 105, and the p-type contact layer 106 is , the n-type AlGaN-based semiconductor layer 103 is removed by etching until it is exposed, and the n-electrode 107 is formed on the exposed surface of the n-type AlGaN-based semiconductor layer 103, and the p-electrode 108 is formed on the surface of the p-type contact layer 106, respectively.
  • the active layer is made to have a multiple quantum well structure, and an electron blocking layer is provided on the active layer. .
  • compositional modulation occurs due to Ga segregation (segregation associated with mass transfer of Ga), and localized AlN moles extending in an oblique direction with respect to the clad layer surface It has been reported that a layered region with a low fraction is formed (see, for example, Patent Document 3 and Non-Patent Documents 1 and 2 below).
  • An ultraviolet light emitting element composed of an AlGaN-based semiconductor is fabricated on a substrate such as a sapphire substrate, for example, by a well-known epitaxial growth method such as an organometallic compound vapor phase epitaxy (MOVPE) method.
  • MOVPE organometallic compound vapor phase epitaxy
  • Drift in crystal growth equipment is caused by changes in the effective temperature of the crystal growth site due to deposits on trays, chamber walls, etc. For this reason, in order to suppress the drift, conventionally, the growth history is examined, and an experienced person slightly changes the set temperature or the composition of the raw material gas, or the growth schedule for a certain period is fixed, cleaning, etc. Although we have devised ways such as performing maintenance in the same way for a certain period of time, it is difficult to completely eliminate drift.
  • the inventors of the present application have found a locally low AlN mole fraction formed by Ga segregation in the clad layer composed of an n-type AlGaN semiconductor layer and providing a low-resistance current path to the active layer.
  • a ternary mixed crystal such as AlGaN is a crystalline state in which Group 3 elements (Al and Ga) are randomly mixed, and can be approximated by a "random configuration". explained in a simple way.
  • the covalent bond radius of Al differs from the covalent bond radius of Ga, the higher the symmetry of the atomic arrangement of Al and Ga in the crystal structure, the more stable the structure generally.
  • AlGaN-based semiconductors with a wurtzite structure can have two types of arrangement: random arrangement without symmetry and stable symmetric arrangement.
  • a state appears in which the symmetrical arrangement is dominant.
  • metalastable AlGaN in which the AlGaN composition ratio (the composition ratio of Al, Ga, and N) is represented by a predetermined integer ratio, a symmetric arrangement structure of Al and Ga appears.
  • Fig. 1 shows a schematic diagram of one unit cell (two monolayers) in the c-axis direction of AlGaN.
  • white circles indicate sites where Group 3 element atoms (Al, Ga) are located, and black circles indicate sites where Group 5 element atoms (N) are located.
  • ML a monoatomic layer
  • one unit cell is denoted as 2ML.
  • the site planes of the group 3 elements (A3 plane, B3 plane) and the site planes of the group 5 elements (A5 plane, B5 plane) indicated by hexagons in FIG. 1 are both parallel to the (0001) plane.
  • Each site on the A3 plane and the A5 plane (generically called the A plane) has six sites at each vertex of the hexagon and one site at the center of the hexagon.
  • Each site on the A plane overlaps in the c-axis direction, and each site on the B plane overlaps in the c-axis direction.
  • the atoms (N) at one site on the B5 plane are composed of atoms (Al, Ga) at three sites on the A3 plane located above the B5 plane and one site on the B3 plane located below the B5 plane.
  • Site atoms (Al, Ga) form a 4-coordinate bond
  • the atom (Al, Ga) at one site of the B3 plane is the atom (N) at one site of the B5 plane located above the B3 plane.
  • 4-coordinate bonds with atoms (N) at three sites on the A5 plane located below the B3 plane Therefore, as shown in FIG. It does not overlap with each site in the c-axis direction.
  • FIG. 2 illustrates the positional relationship between each site on the A plane and each site on the B plane as a plan view of the A3 plane and the B3 plane viewed from the c-axis direction.
  • the black circles and white circles in FIG. 2 distinguish whether the site surface is the A3 surface or the B3 surface.
  • each of the six vertices of a hexagon is shared by two other adjacent hexagons, and the central site is not shared with any other hexagon, so within one hexagon:
  • FIG. 3 illustrates an arrangement structure of only one of the A3 plane and the B3 plane.
  • Ga is indicated by a large black circle
  • Al is indicated by a small black circle.
  • the Al 1 Ga 5 N 6 of 1) above has one of the A3 plane and the B3 plane of the Al 1 Ga 2 N 3 arrangement structure of 2) above, and the other of the GaN arrangement structure (the site of the group 3 element is It can take a 2ML unit symmetric arrangement structure with all Ga).
  • the Al 1 Ga 5 N 6 of 5) above has one of the A3 plane and the B3 plane of the Al 2 Ga 1 N 3 arrangement structure of 4) above, and the other AlN arrangement structure (the site of the group 3 element is A symmetric arrangement structure of 2ML units with all Al) can be taken.
  • Al3Ga9N12 Al1Ga3N4 )
  • 7 Al5Ga7N12
  • 8 Al7Ga5N12
  • the Al 1 Ga 3 N 4 of 6) above has one of the A3 plane and B3 plane having the Al 1 Ga 1 N 2 arrangement structure of 3) above, and the other having the GaN arrangement structure (group 3 element site can take a symmetrical array structure of 2 ML units where all are Ga).
  • Al 5 Ga 7 N 12 of 7) above has the arrangement structure of Al 1 Ga 2 N 3 of 2) above on one of the A3 plane and the B3 plane, and the arrangement structure of Al 1 Ga 1 N 2 of 3) above on the other.
  • a symmetric array structure of 2ML units can be taken.
  • Al 7 Ga 5 N 12 in 8) above has the arrangement structure of Al 1 Ga 1 N 2 in 3) above on one of the A3 plane and the B3 plane, and the arrangement structure of Al 2 Ga 1 N 3 in 4) on the other.
  • a symmetric array structure of 2ML units can be taken.
  • Al 3 Ga 1 N 4 in 9) above has one of the A3 plane and B3 plane having the Al 1 Ga 1 N 2 arrangement structure of 3) above, and the other having the AlN arrangement structure (all sites of group 3 elements are Al ) can have a 2ML unit symmetric array structure.
  • each of the AlGaN composition ratios 1), 5) to 9 although not specifically exemplified, for example, by synthesizing different symmetrical arrangement structures in the same plane on the A3 plane and the B3 plane described above, , Al 1 Ga 2 N 3 , Al 1 Ga 1 N 2 , and Al 2 Ga 1 N 3 in 2) to 4) above, each of the A3 plane and the B3 plane has the same symmetric arrangement structure of Al and Ga. considered to be obtained.
  • each metastable AlGaN having the AlGaN composition ratios 1), 5) to 9) is formed in the c-axis direction in units of 1 ML in the same manner as the metastable AlGaN having the AlGaN composition ratios 2) to 4).
  • the metastable AlGaN shown in the above 1) to 9) has a symmetrical arrangement of Al and Ga atoms, and is energetically stable AlGaN.
  • AlGaN in order to grow AlGaN while maintaining a certain crystal quality, it is necessary to grow the crystal at a high temperature of 1000° C. or higher.
  • Ga is assumed to move around at 1000° C. or higher even after the atoms reach sites on the crystal surface.
  • Al unlike Ga, Al easily adsorbs to the surface, and although it is thought that Al moves somewhat after entering the site, it is strongly restricted. Therefore, even if it is metastable AlGaN, Al 1 Ga 5 N 6 of the above 1) has a high composition ratio of Ga. It is considered that the disorder causes the atomic arrangement of Al and Ga to become nearly random, and the stability described above is lowered compared to other metastable AlGaN.
  • the peak emission wavelength ( ⁇ p) and the absorption edge wavelength ( ⁇ ae) determined by the average AlN mole fraction of the absorption spectrum of the n-type AlGaN semiconductor layer, if the wavelength difference ( ⁇ p ⁇ ae) is 10 nm or more, light emission from the active layer absorption in the n-type AlGaN semiconductor layer is suppressed.
  • the transmittance (ratio of incident light intensity I0 and transmitted light intensity I, I/I0) when light emitted from the active layer is transmitted through the n-type AlGaN semiconductor layer in the depth direction is the optical path length of n-type AlGaN. Attenuates exponentially with respect to the thickness of the system semiconductor layer. While the thickness of the n-type AlGaN-based semiconductor layer is as large as about 1 to 4 ⁇ m, the thickness of each layer in the depth direction of the layered region is as short as about 20 nm on average.
  • the absorption edge wavelength in the layered region is the absorption of the entire n-type AlGaN semiconductor layer. Although it shifts slightly to longer wavelengths than the edge wavelength ⁇ ae, the optical density of the layered region (the common logarithm of the reciprocal of the transmittance) is smaller than that of the entire n-type AlGaN semiconductor layer, so the wavelength is longer than the absorption edge wavelength ⁇ ae. Absorption at the side becomes very limited.
  • the average AlN mole fraction of the n-type AlGaN-based semiconductor layer should be about 4% higher than the AlN mole fraction of the metastable AlGaN. set.
  • the AlGaN composition ratio of metastable AlGaN is an integer ratio
  • the AlN mole fraction can take discrete values of about 8.33%. Therefore, the setting range of the average AlN mole fraction of the n-type AlGaN-based semiconductor layer is similarly a discrete range about 4% higher than the metastable AlGaN.
  • the absorption edge wavelength ⁇ ae determined by the average AlN mole fraction of the n-type AlGaN-based semiconductor layer is different from the peak emission wavelength ⁇ p. If the wavelength difference ( ⁇ p ⁇ ae) of 10 nm or more cannot be secured by using the above method, part of the emission spectrum (especially the part distributed on the short wavelength side) is absorbed in the n-type AlGaN semiconductor layer, and the external quantum efficiency decreases. lead to decline.
  • the discrete AlN mole fraction that can be taken by metastable AlGaN is increased by one step (approximately 8.33%) so that the wavelength difference ( ⁇ p ⁇ ae) becomes Similarly, the average AlN mole fraction of the n-type AlGaN-based semiconductor layer must be increased stepwise so as to be 10 nm or more.
  • the contact resistance between the n-electrode and the n-type AlGaN-based semiconductor layer and the bulk of the current flowing through the n-type AlGaN-based semiconductor layer increase. Due to the higher resistivity, the parasitic resistance of the current path between the n-electrode and the active layer becomes higher, reducing the wall plug efficiency.
  • the contact resistance between the n-type AlGaN-based semiconductor layer and the n-electrode is the AlN mol of the n-type AlGaN-based semiconductor layer.
  • the contact resistance can be adjusted to 0.01 ⁇ cm 2 or less by appropriately selecting the heat treatment temperature, and the forward voltage Vf is practically problematic. It becomes a level that does not exist (see Patent Document 4).
  • the wavelength difference ( ⁇ p- ⁇ ae) exceeds 10 nm in order to avoid a decrease in external quantum efficiency, the contact resistance and bulk resistivity will rather increase, resulting in a decrease in wall plug efficiency. Things can happen. Therefore, in order to avoid a decrease in the external quantum efficiency with respect to the target peak emission wavelength ⁇ p, if the average AlN mole fraction is set one step higher (about 8.33%), the wavelength difference ( ⁇ p - ⁇ ae) changes from less than 10 nm to more than 10 nm, and the wall plug efficiency decreases, the metastable AlGaN dominates in the layered region so that the wavelength difference does not significantly exceed 10 nm. It is preferable to set an average AlN mole fraction without forming . As a result, it is possible to prevent a decrease in external quantum efficiency and at the same time suppress a decrease in wall plug efficiency according to the target peak emission wavelength ⁇ p.
  • the present invention has been made in view of the above-mentioned problems, and aims to form metastable AlGaN locally in a layered region having a low AlN mole fraction in an n-type AlGaN semiconductor layer. By suppressing it, it is possible to prevent the deterioration of the luminous efficiency caused by the dominant formation of metastable AlGaN in the layered region.
  • the present invention provides a nitride semiconductor comprising a light-emitting element structure in which an n-type layer, an active layer, and a p-type layer made of an AlGaN-based semiconductor having a wurtzite structure are stacked vertically.
  • the n-type layer is composed of an n-type AlGaN semiconductor, the active layer disposed between the n-type layer and the p-type layer has a quantum well structure including one or more well layers made of an AlGaN-based semiconductor;
  • the p-type layer is composed of a p-type AlGaN semiconductor, each of the semiconductor layers in the n-type layer, the active layer, and the p-type layer is an epitaxial growth layer having a surface on which a multi-stepped terrace parallel to the (0001) plane is formed; wherein the n-type layer has a layered region with a locally low AlN mole fraction dispersed within the n-type layer;
  • Each extending direction of the layered region on a first plane perpendicular to the upper surface of the n-type layer has a portion that is inclined with respect to a line of intersection between the upper surface of the n-type layer and the first plane.
  • a first average AlN mole fraction Xna1 over the entire depth direction of the n-type layer is (n ⁇ 0.25)/12 ⁇ Xna1 ⁇ (n+0.25)/12 is within the range of
  • There is a region of n/12 A first feature of the present invention is that an intermediate AlGaN region having an AlN mole fraction of (n-0.5)/12 is formed in the layered region.
  • the third average AlN mole fraction Xna3 over the region from the upper end of the n-type layer to the specific depth is (n ⁇ 0.25)/12 ⁇ Xna3 ⁇ (n+0.25)/12 It is preferable to be within the range of
  • the second average AlN mole fraction Xna2(d) is, over the entire depth direction of the n-type layer, (n ⁇ 0.25)/12 ⁇ Xna2(d) ⁇ (n+0.25)/12 It is preferable to be within the range of
  • the present invention provides a nitride semiconductor comprising a light-emitting element structure in which an n-type layer, an active layer, and a p-type layer made of an AlGaN-based semiconductor having a wurtzite structure are stacked vertically.
  • a method for manufacturing an ultraviolet light emitting device The n-type layer of an n-type AlGaN semiconductor is epitaxially grown on a base portion including a sapphire substrate having a main surface inclined at a predetermined angle with respect to the (0001) plane.
  • the active layer having a quantum well structure including one or more well layers made of an AlGaN-based semiconductor is epitaxially grown, and a multistep terrace parallel to the (0001) plane is formed on the surface of the well layer.
  • the integer n is 6 or 7
  • a first average AlN mole fraction Xna1 over the entire depth direction of the n-type layer is (n ⁇ 0.25)/12 ⁇ Xna1 ⁇ (n+0.25)/12 is within the range of
  • a method for manufacturing a nitride semiconductor ultraviolet light emitting device is provided, the first feature of which is the formation of the n-type layer.
  • the second average AlN mole fraction Xna2(d) is set in the depth direction of the n-type layer across the (n ⁇ 0.25)/12 ⁇ Xna2(d) ⁇ (n+0.25)/12 It is preferable to form the n-type layer so as to be within the range of
  • the AlGaN-based semiconductor is represented by the general formula Al 1-x Ga x N (0 ⁇ x ⁇ 1), and the bandgap energies that GaN and AlN can take are the lower and upper limits, respectively.
  • a trace amount of impurities such as a group 3 element such as B or In or a group 5 element such as P may be contained within the range.
  • a GaN-based semiconductor is basically a nitride semiconductor composed of Ga and N, but it may contain trace amounts of impurities such as group 3 elements such as Al, B or In or group 5 elements such as P.
  • You can AlN-based semiconductors are nitride semiconductors basically composed of Al and N, but contain trace amounts of impurities such as group 3 elements such as Ga, B or In or group 5 elements such as P. You can Therefore, in the present application, the GaN-based semiconductor and the AlN-based semiconductor are each part of the AlGaN-based semiconductor.
  • n-type or p-type AlGaN semiconductors are AlGaN semiconductors doped with Si, Mg, or the like as donor or acceptor impurities.
  • an AlGaN-based semiconductor not specified as p-type or n-type means an undoped AlGaN-based semiconductor, but even an undoped AlGaN-based semiconductor does not include a small amount of donor or acceptor impurities that are unavoidably mixed.
  • the first plane is not an exposed surface specifically formed in the manufacturing process of the n-type layer or a boundary surface with another semiconductor layer, but an imaginary plane extending vertically in parallel within the n-type layer. is a flat surface.
  • an AlGaN-based semiconductor layer, a GaN-based semiconductor layer, and an AlN-based semiconductor layer are semiconductor layers made of an AlGaN-based semiconductor, a GaN-based semiconductor, and an AlN-based semiconductor, respectively.
  • the first average AlN mole fraction Xna1 is n/12, which is the discrete AlN mole fraction of metastable AlGaN where the integer n is 6 or 7. is controlled within a range of ⁇ 0.25/12 ( ⁇ about 2.08%) around , a first metastable AlGaN region (Al n Ga 12-n N 12 ) having an AlN mole fraction of n/12 is stably formed. Furthermore, the second average AlN mole fraction Xna2(d) is also distributed in the vicinity of n/12.
  • a second metastable AlGaN region (Al n ⁇ 1 Ga 13 -n N 12 ) is not predominantly formed, instead an intermediate AlGaN region (Al n-0.5 Ga 12.5 ⁇ n N 12 ) are formed.
  • the target peak emission wavelength ⁇ p is determined by the AlN mole fraction is within a certain wavelength range where it is difficult to simultaneously avoid a decrease in external quantum efficiency and a decrease in wall-plug efficiency due to the selection of discrete values of about 8.33%.
  • an intermediate AlGaN region is formed within the layered region and a first metastable AlGaN region is formed within the n-type body region to avoid a reduction in external quantum efficiency while at the same time reducing wall plug efficiency. can be suppressed.
  • the nitride semiconductor ultraviolet light emitting device having the first characteristic is manufactured, so metastable AlGaN is dominant in the layered region. A decrease in luminous efficiency due to the formation can be prevented.
  • the present invention provides that the second average AlN mole fraction Xna2(d) in a region from the upper end of the n-type layer to the specific depth, Xna2(d) ⁇ n/12
  • the present invention provides a nitride semiconductor ultraviolet light emitting device having a second feature that it is within the range of:
  • the present invention is characterized in that, in the first step, the second average AlN mole fraction Xna2(d) is from the upper end of the n-type layer to the specific depth. in the area Xna2(d) ⁇ n/12
  • a method for manufacturing a nitride semiconductor ultraviolet light emitting device characterized in that the n-type layer is formed so as to fall within the range of:
  • the contact resistance between the n-electrode and the n-type layer, and The bulk resistivity with respect to the current flowing through the upper layer portion of the n-type layer can be further suppressed, and the deterioration of the wall plug efficiency can be further suppressed while avoiding the deterioration of the external quantum efficiency.
  • Xna2(d) ⁇ n/12 It is preferable to be within the range of
  • the second average AlN mole fraction Xna2(d) is the specific depth of the n-type layer.
  • absorption of light emitted from the active layer can be further suppressed in a region deeper than the specific depth of the n-type layer, and a decrease in external quantum efficiency can be further suppressed.
  • the peak emission wavelength is set to a predetermined value within the range of 280 nm to 315 nm when the integer n is 7, and the integer n is 6, it is preferably set to a predetermined value within the range of 300 nm to 330 nm.
  • the peak emission wavelength of the nitride semiconductor ultraviolet light emitting element is within the range of 300 nm to 330 nm when the integer n is 6, so that the peak emission wavelength is a predetermined value within the range of 280 nm to 315 nm when the integer n is 7. It is preferable to form the active layer so as to have a predetermined value.
  • the integer n when the integer n is 7, for a particular peak emission wavelength set to a predetermined value within the range of 280 nm to 315 nm, when the integer n is 6:
  • a specific peak emission wavelength set to a predetermined value within the range of 300 nm to 330 nm. can be done.
  • the specific peak emission wavelength is within the specific wavelength range described above, and the formation of metastable AlGaN predominantly in the layered region reduces the emission efficiency (external quantum efficiency or wall plug efficiency). It is the peak emission wavelength at which degradation can occur.
  • the active layer has a multiple quantum well structure including two or more well layers, and an AlGaN-based quantum well layer is disposed between the two well layers.
  • a barrier layer composed of a semiconductor is preferably present.
  • the well layer made of an AlGaN-based semiconductor and the barrier layer made of an AlGaN-based semiconductor are alternately formed. It is preferable to form the active layer having a multiple quantum well structure including two or more well layers by epitaxial growth.
  • the active layer has a multiple quantum well structure, and an improvement in luminous efficiency can be expected compared to the case where there is only one well layer.
  • the nitride semiconductor ultraviolet light emitting device further includes a base portion including a sapphire substrate, and the sapphire substrate has a main surface inclined at a predetermined angle with respect to the (0001) plane. and the light emitting element structure is formed above the main surface, and each semiconductor layer from the main surface of the sapphire substrate to the p-type layer is formed in a multi-step shape parallel to the (0001) plane It is preferably an epitaxially grown layer having a terraced surface.
  • epitaxial growth can be performed using a sapphire substrate having an off-angle so that multi-stepped terraces appear on the surface of each layer from the main surface of the sapphire substrate to the surface of the active layer. It is possible to realize a nitride semiconductor ultraviolet light emitting device having the above characteristics.
  • the nitride semiconductor ultraviolet light-emitting device or the method for manufacturing the nitride semiconductor ultraviolet light-emitting device having the first or second feature at a specific peak emission wavelength, AlN moles are locally present in the n-type AlGaN-based semiconductor layer.
  • the embodiment that utilizes metastable AlGaN in the layered region of the n-type layer and the embodiment that does not utilize the metastable AlGaN are adjusted to the target peak emission wavelength. By using them properly according to need, it is possible to increase the degree of freedom in setting the peak emission wavelength while preventing a decrease in luminous efficiency.
  • FIG. 2 is a diagram schematically showing the wurtzite crystal structure of AlGaN;
  • FIG. 2 is a plan view showing the positional relationship between each site on the A plane and each site on the B plane viewed from the c-axis direction of the wurtzite crystal structure shown in FIG. 1 ;
  • FIG. 2 is a cross-sectional view of essential parts schematically showing an example of the structure of the nitride semiconductor ultraviolet light emitting device according to the first embodiment
  • FIG. 5 is a cross-sectional view of a main part schematically showing an example of the lamination structure of the active layer of the nitride semiconductor ultraviolet light emitting device shown in FIG. 4
  • FIG. 6 is a diagram schematically showing a more detailed structure of the inclined area IA shown in FIG. 5;
  • the emission wavelength of the quantum well structure composed of the AlGaN well layer and the AlGaN barrier layer, the film thickness of the well layer, and the AlN mole fraction of the barrier layer when the AlN mole fraction of the Ga-enriched well region 220a is 50%.
  • a graph showing the relationship.
  • a graph showing the relationship between 4 is a graph showing the relationship between the emission wavelength of a quantum well structure composed of GaN well layers and AlGaN barrier layers, the film thickness of the well layers, and the AlN mole fraction of the barrier layers.
  • FIG. 5 is a plan view schematically showing an example of the structure of the nitride semiconductor ultraviolet light emitting device shown in FIG. 4 when viewed from the upper side of FIG. 4; 7 is a graph showing an example of changes in second average AlN mole fraction Xna2(d) at depth d from the upper end of the n-type layer according to depth d; SEM image showing the main part of the cross section of the sample piece measured for the AlN mole fraction by the CL method.
  • FIG. 14 is a diagram showing first and second CL spectra on six Y-coordinates on the measurement cross section of the sample piece shown in FIG.
  • FIG. 2 is a cross-sectional view of a main part schematically showing an example of the structure of a nitride semiconductor ultraviolet light emitting device according to a second embodiment
  • FIG. 17 is a cross-sectional view of a main part schematically showing an example of a layered structure of a main part including an active layer of the nitride semiconductor ultraviolet light emitting device shown in FIG. 16
  • FIG. 2 is a cross-sectional view of a main part schematically showing an example of an element structure of a general ultraviolet light emitting diode;
  • a nitride semiconductor ultraviolet light emitting device (hereinafter simply referred to as "light emitting device") according to an embodiment of the present invention will be described based on the drawings.
  • the contents of the invention are schematically shown with emphasis on the essential parts for easy understanding of the explanation, so the dimensional ratio of each part does not necessarily correspond to the actual element. They do not have the same dimensional ratio.
  • the light-emitting element is a light-emitting diode.
  • the light-emitting device 1 of the first embodiment includes a base portion 10 including a sapphire substrate 11, a plurality of AlGaN-based semiconductor layers 21 to 24, a p-electrode 26, and an n-electrode 27. and a structure 20 .
  • the light emitting element 1 is mounted (flip-chip mounted) with the side of the light emitting element structure 20 (upper side in FIG. 4) facing a base for mounting (such as a submount). The direction is the base portion 10 side (lower side in FIG. 4).
  • the direction perpendicular to the main surface 11a of the sapphire substrate 11 (or the upper surfaces of the underlying portion 10 and the AlGaN semiconductor layers 21 to 24) is referred to as the "vertical direction” (or the “vertical direction”).
  • the direction from the base portion 10 to the light emitting element structure portion 20 is defined as the upward direction, and the opposite direction is defined as the downward direction.
  • a plane parallel to the vertical direction is referred to as a "first plane".
  • a plane parallel to the main surface 11a of the sapphire substrate 11 (or the upper surfaces of the underlying portion 10 and the AlGaN-based semiconductor layers 21 to 24) is referred to as a "second plane”, and a direction parallel to the second plane is referred to as a "second plane.” lateral direction”.
  • the underlying portion 10 includes a sapphire substrate 11 and an AlN layer 12 directly formed on the principal surface 11 a of the sapphire substrate 11 .
  • the sapphire substrate 11 has a main surface 11a inclined at an angle (off angle) within a certain range (for example, about 0.3° to 6°) with respect to the (0001) plane, and has a multistep shape on the main surface 11a. This is a slightly inclined substrate with exposed terraces.
  • the AlN layer 12 is composed of AlN crystal epitaxially grown from the main surface of the sapphire substrate 11 , and this AlN crystal has an epitaxial crystal orientation relationship with respect to the main surface 11 a of the sapphire substrate 11 .
  • the AlN crystal is grown such that the C-axis direction ( ⁇ 0001> direction) of the sapphire substrate 11 and the C-axis direction of the AlN crystal are aligned.
  • the AlN crystal forming the AlN layer 12 may be an AlN-based semiconductor layer that may contain a small amount of Ga or other impurities.
  • the film thickness of the AlN layer 12 is assumed to be approximately 2 ⁇ m to 3 ⁇ m.
  • the structure of the base portion 10, the substrates to be used, and the like are not limited to those described above.
  • an AlGaN-based semiconductor layer having an AlN mole fraction equal to or higher than the AlN mole fraction of the AlGaN-based semiconductor layer 21 may be provided between the AlN layer 12 and the AlGaN-based semiconductor layer 21.
  • the AlGaN-based semiconductor layers 21 to 24 of the light-emitting element structure 20 are composed of an n-type cladding layer 21 (n-type layer), an active layer 22, an electron block layer 23 (p-type layer), and a p-type layer in this order from the underlying portion 10 side. It has a structure in which the type contact layer 24 (p-type layer) is epitaxially grown in order and laminated.
  • the AlN layer 12 of the base portion 10 epitaxially grown in order from the main surface 11a of the sapphire substrate 11, the n-type cladding layer 21 of the light emitting element structure portion 20, each semiconductor layer in the active layer 22, and the electron block.
  • the layer 23 has a surface formed with multi-stepped terraces parallel to the (0001) plane derived from the main surface 11a of the sapphire substrate 11 by step-flow growth.
  • the p-type contact layer 24 of the p-type layer since it is formed by epitaxial growth on the electron blocking layer 23, a similar multi-stepped terrace can be formed, but a similar multi-stepped terrace is not necessarily formed. It does not have to have a surface.
  • the active layer 22, the electron blocking layer 23, and the p-type contact layer 24 in the light-emitting element structure 20 are laminated on the second region R2 on the upper surface of the n-type cladding layer 21.
  • the etched portion is removed by etching or the like and formed on the first region R1 on the upper surface of the n-type cladding layer 21 .
  • the upper surface of the n-type cladding layer 21 is exposed in the second region R2 except for the first region R1.
  • the upper surface of the n-type clad layer 21 may differ in height between the first region R1 and the second region R2.
  • the upper surface is separately defined in the first region R1 and the second region R2.
  • n-type cladding layer 21 composed of an n-type AlGaN semiconductor
  • multi-stepped terraces parallel to the (0001) plane are formed on the growth surface in the epitaxial growth process, and Ga, which is easy to mass transfer, moves between adjacent terraces.
  • Ga which is easy to mass transfer, moves between adjacent terraces.
  • the inclined region is formed by extending obliquely upward.
  • the layered regions 21a having a low AlN mole fraction are locally dispersed uniformly in the n-type cladding layer 21.
  • Each extending direction of the layered region 21a on the first plane has a portion that is inclined with respect to the line of intersection between the upper surface of the n-type cladding layer 21 and the first plane.
  • the formation of the Ga-enriched n-type region in the graded region that is, mass transfer of Ga from the terrace region to the graded region causes In part, the density of Al can be relatively increased to form an Al-enriched n-type region in which the AlN mole fraction is higher than the average AlN mole fraction.
  • the layered region 21a extends in an oblique direction with respect to the surface of the n-type cladding layer 21, and the bandgap energy is locally reduced, so that carriers are easily localized. and functions as a low-resistance current path.
  • a region other than the layered region 21a in the n-type cladding layer 21 is called an n-type body region 21b.
  • the first average AlN mole fraction Xna1 over the entire depth of the n-type cladding layer 21 is within the range represented by the following inequality (1).
  • n in the following formula (1) is an integer of 6 or 7. (n ⁇ 0.25)/12 ⁇ Xna1 ⁇ (n+0.25)/12 (1)
  • the third average AlN mole fraction Xna3 over the region from the upper surface of the n-type cladding layer 21 to the specific depth dx is within the range represented by the following inequality (2) preferably in (n ⁇ 0.25)/12 ⁇ Xna3 ⁇ (n+0.25)/12 (2)
  • the above relationship is satisfied for each of the specific depths dx.
  • the second average AlN mole fraction Xna2(d) is within the range represented by the following inequality of formula (3) throughout the depth direction of the n-type cladding layer 21 is more preferable. (n ⁇ 0.25)/12 ⁇ Xna2(d) ⁇ (n+0.25)/12 (3)
  • Xna2(d) is preferably within the range represented by the following inequality (4) in the region from the upper surface of the n-type cladding layer 21 to the specific depth dx. Furthermore, in the above preferred embodiment in which Xna2(d) is within the range represented by formula (3), Xna2(d) is the following in a region from the upper surface of the n-type cladding layer 21 to a specific depth dx: It is more preferable to be within the range represented by the inequality of formula (5). Xna2(d) ⁇ n/12 (4) (n ⁇ 0.25)/12 ⁇ Xna2(d) ⁇ n/12 (5)
  • Xna2(d) is within the range represented by formula (4) or formula (5)
  • Xna2(d) is expressed by the following formula (6) in a region deeper than the specific depth dx ), more preferably within the range represented by the inequality of formula (7).
  • n/12 ⁇ Xna2(d) (6) n/12 ⁇ Xna2(d) ⁇ (n+0.25)/12 (7)
  • the first average AlN mole fraction Xna1 is the AlN mole fraction ( n / 12 ) is controlled within a range of ⁇ 0.25/12 ( ⁇ about 2.08%) around the reference, the first metastable AlGaN region is uniform in the n-type body region 21b. is formed in In the region where the second average AlN mole fraction Xna2(d) is lower than the AlN mole fraction (n/12) of the first metastable AlGaN region, the Al-enriched n-type region of the n-type body region 21b A first metastable AlGaN region is formed therein.
  • the AlN mole fraction is one step (approximately 8.33%) smaller than that of the first metastable AlGaN region, and the AlGaN composition ratio is Al n ⁇ 1 Ga 13-n N 12 with an integer ratio.
  • a second metastable AlGaN region can be formed with the mass transfer of Ga during the formation of the layered region 21a.
  • the second metastable AlGaN region is not predominantly formed, but instead an intermediate AlGaN region in which the AlN mole fraction is intermediate between the first and second metastable AlGaN regions. (Al n-0.5 Ga 12.5-n N 12 ) is formed.
  • the thickness of the n-type cladding layer 21 is assumed to be about 1 ⁇ m to 2 ⁇ m, which is the same as the thickness used in general nitride semiconductor ultraviolet light emitting devices. , 2 ⁇ m to 4 ⁇ m.
  • the active layer 22 includes two or more well layers 220 composed of AlGaN-based semiconductors (excluding AlN-based semiconductors) and one or more layers composed of AlGaN-based semiconductors (excluding GaN-based semiconductors) or AlN-based semiconductors. It has a multiple quantum well structure in which barrier layers 221 are alternately laminated. It is not always necessary to provide the barrier layer 221 between the bottom well layer 220 and the n-type cladding layer 21 . In addition, in this embodiment, the barrier layer 221 is not provided between the uppermost well layer 220 and the electron blocking layer 23. An AlGaN layer or an AlN layer may be provided.
  • the electron block layer 23 is composed of a p-type AlGaN semiconductor.
  • the p-type contact layer 24 is composed of a p-type AlGaN semiconductor or a p-type GaN semiconductor.
  • the p-type contact layer 24 is typically composed of p-GaN.
  • FIG. 5 schematically shows an example of a laminated structure (multiple quantum well structure) of well layers 220 and barrier layers 221 in the active layer 22 .
  • FIG. 5 illustrates a case where the well layers 220 and the barrier layers 221 each include three layers. Three layers of a barrier layer 221 and a well layer 220 are laminated in this order on the n-type cladding layer 21, and the electron blocking layer 23 is positioned on the well layer 220 of the uppermost layer.
  • FIG. 6 schematically shows, for example, a stepped structure (macrostep structure) appearing on the surface of the inclined region IA of one well layer 220. As shown in FIG.
  • the well layer 220 is composed of an AlGaN-based semiconductor and the AlN mole fraction is not 0%
  • the mass of Ga from the terrace region TA to the inclined region IA is Due to the migration, a Ga-enriched well region 220a having an AlN mole fraction lower than the average AlN mole fraction Xwa in the well layer 220 is formed in the graded region IA.
  • the density of Al may be relatively increased to form an Al-enriched well region in which the AlN mole fraction is higher than the average AlN mole fraction Xwa.
  • the average AlN mole fraction Xwa of the well layer 220 is, for example, Ga-enriched
  • the AlN mole fraction difference between the inclined region IA and the terrace region TA in the well layer 220 is 4% or less, which can suppress the occurrence of double emission peaks due to the AlN mole fraction difference.
  • the barrier layer 221 when the barrier layer 221 is composed of an AlGaN-based semiconductor (excluding an AlN-based semiconductor), the barrier layer 221 also has an AlN mole fraction in the graded region IA equal to the average of the barrier layer 221.
  • a Ga-enriched barrier region 221a having a lower AlN mole fraction Xba is formed.
  • an Al-enriched barrier region having a higher AlN mole fraction than the average AlN mole fraction Xba of the barrier layer 221 is formed in a part of the terrace region TA, similar to the well layer 220. It's okay to be there.
  • the average AlN mole fraction Xba of the barrier layer 221 is approximately , Xb0+2% to Xb0+8%. As a result, about 2% or more is ensured as the AlN mole fraction difference between the Ga-enriched barrier region 221a of the barrier layer 221 and the terrace region TA.
  • the AlN mole fraction of the terrace region TA of the barrier layer 221 is 1% or more higher than the AlN mole fraction of the Ga-enriched barrier region 221a within a range of approximately 51% to 90%, It is set to be higher, preferably 2% or more, more preferably 4% or more.
  • the AlN mole fraction difference between the Ga-enriched barrier region 221a and the terrace region TA in the barrier layer 221 is set to 4 to 5% or more. Although it is preferable to do so, the effect of carrier localization can be expected even with a concentration of about 1 to 2%.
  • the Ga-enriched EB region 23a having a lower AlN mole fraction than the average AlN mole fraction Xea of the electron blocking layer 23 is formed in the gradient region IA. Furthermore, in one embodiment, similarly to the well layer 220, an Al-enriched EB region having a higher AlN mole fraction than the average AlN mole fraction Xea of the electron blocking layer 23 is formed in a part of the terrace region TA. It's okay to be.
  • the AlN mole fraction of the terrace region TA of the electron blocking layer 23 is generally within the range of 69% to 90%, and is 20% or more, preferably 25% or more, more preferably 25% or more than the AlN mole fraction of the terrace region of the well layer 220. is set to be higher than 30%. Furthermore, the AlN mole fraction of the Ga-enriched EB region 23a of the electron blocking layer 23 is 20% or more, preferably 25% or more, more preferably 30%, more than the AlN mole fraction of the Ga-enriched well region 220a of the well layer 220. It is set to be higher than %.
  • the average AlN mole fraction Xea of the electron block layer 23 is , Xe0+2% to Xe0+8%. Thereby, about 2% or more is ensured as the AlN mole fraction difference between the Ga-enriched EB region 23a of the electron block layer 23 and the terrace region TA.
  • the AlN mole fraction locally present in the graded region IA of the barrier layer 221
  • the Ga-enriched barrier region 221a with a low AlN mole fraction carriers are easily localized. , carriers are more likely to be localized. Therefore, from the n-type cladding layer 21 side through the layered region 21a, from the electron blocking layer 23 side through the Ga-enriched EB region 23a, the Ga-enriched well region 220a of the well layer 220 is efficiently charged. , and the recombination of carriers (electrons and holes) in the well layer 220 can improve the luminous efficiency.
  • the film thickness of the well layer 220 including the terrace region TA and the inclined region IA, is set within a range of, for example, 3ML to 14ML according to the target value of the peak emission wavelength ⁇ p of the light emitting element 1.
  • the film thickness of the barrier layer 221 is set within a range of 6 nm to 8 nm, for example, including the terrace area TA and the inclined area IA.
  • the film thickness of the electron blocking layer 23 is set within a range of, for example, 15 nm to 30 nm (optimum value is about 20 nm), including the terrace area TA and the inclined area IA.
  • the AlN mole fraction and film thickness of the well layer 220 are
  • the AlN mole fraction of the barrier layer and the electron blocking layer 23 adjacent to the well layer 220 is the peak emission of the light-emitting device 1. It is set according to the target value of the wavelength ⁇ p.
  • the barrier layers and the electron block layer 23 adjacent to the well layer 220 are set according to the target value of the peak emission wavelength ⁇ p of the light emitting device 1 .
  • FIG. 7 shows the quantum well structure model in which the well layer 220 and the barrier layer 221 are made of AlGaN, and the film thickness of the well layer is varied within the range of 3ML to 14ML or 4ML to 14ML.
  • It is a graph of the simulation result of the emission wavelength (corresponding to the peak emission wavelength) obtained by As a condition of the above simulation, it is assumed that the Ga-enriched well region 220a of the well layer 220 is dominated by metastable AlGaN having an AlGaN composition ratio of an integer ratio, and the Ga-enriched well region 220a of the well layer 220 is 50% (1/2), which is the AlN mole fraction of metastable AlGaN, in FIG.
  • metastable AlGaN having an AlGaN composition ratio of Al 1 Ga 1 N 2 , Al 5 Ga 7 N 12 , or Al 1 Ga 2 N 3 is present in the Ga-enriched well region 220 a of the well layer 220 .
  • the film thickness of the well layer 220 is set within the range of 3 ML to 14 ML, and the AlN mole fraction of the Ga-enriched barrier region 221a of the barrier layer 221 is set to 66. It can be seen that the peak emission wavelength can be set within the range of 246 nm to 328 nm by adjusting each within the range of 7% to 100%.
  • FIG. 10 shows that the AlN mole fraction of the barrier layer is 66.7% (AlGaN) and 100% (AlN) for the quantum well structure model in which the well layer is GaN and the barrier layer is AlGaN or AlN.
  • 2 is a graph of simulation results of emission wavelengths (corresponding to peak emission wavelengths) obtained by changing the film thickness of the well layer within the range of 4 ML to 10 ML. From FIG. 10, it can be seen that the emission wavelength varies within the range of approximately 270 nm to 325 nm.
  • the film thickness of the well layer 220 is within the range of 4 ML to 10 ML, and the Ga-enriched barrier region 221a of the barrier layer 221 is It can be seen that by adjusting the AlN mole fraction within the range of 66.7% to 100%, the peak emission wavelength can be set within the range of 270 nm to 325 nm.
  • the first average AlN mole fraction Xna1 is within the range shown by the above formula (1), that is, within the range of about 56.3% to about 60.4%.
  • the absorption edge wavelength ( ⁇ ae) of the n-type cladding layer 21 determined by the average AlN molar fraction Xna1 of 1 is located within the range of about 263 nm to about 269 nm. Therefore, if the target value of the peak emission wavelength ⁇ p is within the above range of 280 nm to 315 nm, the wavelength difference ( ⁇ p ⁇ ae) between the peak emission wavelength ( ⁇ p) and the absorption edge wavelength ( ⁇ ae) is ensured to be 10 nm or more.
  • the first average AlN mole fraction Xna1 is within the range shown by the above formula (1), that is, within the range of about 47.9% to about 52.1%.
  • the absorption edge wavelength ( ⁇ ae) of the n-type cladding layer 21 determined by the average AlN molar fraction Xna1 of 1 is located within the range of about 276 nm to about 283 nm. Therefore, if the target value of the peak emission wavelength ⁇ p is within the above range of 300 nm to 330 nm, the wavelength difference ( ⁇ p ⁇ ae) between the peak emission wavelength ( ⁇ p) and the absorption edge wavelength ( ⁇ ae) is sufficiently 10 nm or more.
  • the lower limit of the target value from 300 nm to about 293 nm.
  • the contact resistance between the n-type cladding layer 21 and the n-electrode 27 formed on its exposed surface is higher than when the AlN mole fraction is less than 50%, but higher than when the AlN mole fraction is 60%. is low, and a significant increase in contact resistance is suppressed.
  • the first average AlN mole fraction Xna1 and the second average AlN mole fraction Xna2(d) are set to Since it is not set unnecessarily high, an unnecessary increase in bulk resistivity is also suppressed.
  • the p-electrode 26 is composed of a multilayer metal film such as Ni/Au, and is formed on the upper surface of the p-type contact layer 24 .
  • the n-electrode 27 is composed of, for example, a multilayer metal film such as Ti/Al/Ti/Au, and is formed on a part of the exposed surface in the second region R2 of the n-type cladding layer 21 .
  • the p-electrode 26 and the n-electrode 27 are not limited to the multilayer metal films described above, and the electrode structure such as the metals constituting each electrode, the number of layers, and the order of layers may be changed as appropriate. FIG.
  • FIG. 11 shows an example of the shape of the p-electrode 26 and the n-electrode 27 viewed from above the light emitting element 1 .
  • a line BL existing between the p-electrode 26 and the n-electrode 27 indicates a boundary line between the first region R1 and the second region R2, and includes the active layer 22, the electron blocking layer 23, and the p-type electrode. It coincides with the outer peripheral side wall surface of the contact layer 24 .
  • the first region R1 and the p-electrode 26 have a comb shape as an example in plan view.
  • the visual shape, arrangement, and the like are not limited to those illustrated in FIG. 11 .
  • the AlN layer 12 included in the base portion 10 and the nitride semiconductor layers 21 to 24 included in the light emitting element structure portion 20 are epitaxially grown in order on the sapphire substrate 11 by the metal-organic compound vapor phase epitaxy (MOVPE) method. lamination.
  • MOVPE metal-organic compound vapor phase epitaxy
  • the n-type cladding layer 21 is doped with, for example, Si as a donor impurity
  • the electron block layer 23 and the p-type contact layer 24 are doped with, for example, Mg as an acceptor impurity.
  • the surfaces of the AlN layer 12, the n-type cladding layer 21, the active layer 22 (well layer 220 and barrier layer 221), and the electron block layer 23 are provided with multistep terraces parallel to the (0001) plane.
  • the main surface 11a is inclined with respect to the (0001) plane at an angle (off angle) within a certain range (for example, about 0.3 ° to 6 °), A slightly inclined substrate is used in which a multi-stepped terrace is exposed on the main surface 11a.
  • a growth rate at which multi-stepped terraces are likely to appear (specifically, for example, growth temperature, raw material gas and carrier
  • the growth rate is achieved by appropriately setting various conditions such as gas supply amount and flow rate. Since these conditions may vary depending on the type and structure of the film forming apparatus, several samples are actually produced in the film forming apparatus to specify these conditions.
  • the growth starting point of the layered region 21a is set in the stepped portion (inclined region) between the multi-stepped terraces formed on the upper surface of the AlN layer 12 immediately after the growth is started by the mass transfer of Ga.
  • the growth temperature, the growth pressure, and the donor impurity concentration are set so that the layered region 21a can grow obliquely upward due to the segregation associated with the mass transfer of Ga, following the epitaxial growth of the n-type cladding layer 21. selected.
  • the growth temperature is preferably 1050° C. or higher at which mass transfer of Ga easily occurs and 1150° C. or lower at which good n-type AlGaN can be prepared.
  • the growth temperature is preferably 1050° C. or higher at which mass transfer of Ga easily occurs and 1150° C. or lower at which good n-type AlGaN can be prepared.
  • the mass of Ga due to excessive migration, the AlN mole fraction tends to fluctuate randomly even in metastable AlGaN, so it becomes difficult to stably form a metastable AlGaN region with an AlN mole fraction of 50% to 58.3%. there is a possibility.
  • the growth pressure 75 Torr or less is preferable as a favorable AlGaN growth condition, and 10 Torr or more is realistic and preferable as the control limit of the film forming apparatus.
  • the donor impurity concentration is preferably about 1 ⁇ 10 18 to 5 ⁇ 10 18 cm ⁇ 3 .
  • the above growth temperature, growth pressure, and the like are only examples, and optimal conditions may be appropriately specified according to the film forming apparatus to be used.
  • the supply amounts and flow rates of source gases (trimethylaluminum (TMA) gas, trimethylgallium (TMG) gas, and ammonia gas) and carrier gases used in the metal-organic compound vapor phase epitaxy are determined by the first is set as a target value of the average AlN mole fraction Xna1.
  • the second average AlN mole fraction Xna2(d) sandwiches the AlN mole fraction (n/12) of the first metastable AlGaN region as the depth d changes. is changing.
  • the change in the AlN mole fraction Xna2(d) can be realized by positively modulating the supply amount and flow velocity of the raw material gas and carrier gas, or modulating the growth temperature.
  • the natural change in substrate surface temperature that occurs as the n-type cladding layer 21 grows and becomes thicker may be utilized. In this case, the supply amounts and flow velocities of the raw material gas and the carrier gas are set according to the tendency of the substrate surface temperature change.
  • the donor impurity concentration does not necessarily have to be controlled uniformly in the vertical direction with respect to the thickness of the n-type cladding layer 21 .
  • the impurity concentration in the predetermined thin film thickness portion in the n-type cladding layer 21 is lower than the above set concentration, for example, less than 1 ⁇ 10 18 cm ⁇ 3 , more preferably 1 ⁇ 10 17 cm ⁇ 3 or less. It may be a controlled low impurity concentration layer.
  • the thickness of the low impurity concentration layer is preferably greater than 0 nm and approximately 200 nm or less, more preferably approximately 10 nm or more and 100 nm or less, and further preferably approximately 20 nm or more and 50 nm or less.
  • the donor impurity concentration of the low impurity concentration layer may be lower than the set concentration, and may partially include an undoped layer (0 cm ⁇ 3 ). Furthermore, part or all of the low impurity concentration layer preferably exists in an upper layer region with a depth of 100 nm or less downward from the upper surface of the n-type cladding layer 21 .
  • the entire upper surface of the n-type cladding layer 21 is subsequently subjected to metal organic chemical vapor phase epitaxy (MOVPE) or the like.
  • MOVPE metal organic chemical vapor phase epitaxy
  • the active layer 22 (well layer 220, barrier layer 221), electron block layer 23, p-type contact layer 24, etc. are formed by the known epitaxial growth method.
  • the acceptor impurity concentration of the electron block layer 23 is preferably about 1.0 ⁇ 10 16 to 1.0 ⁇ 10 18 cm ⁇ 3
  • the acceptor impurity concentration of the p-type contact layer 24 is, for example, 1.0.
  • About ⁇ 10 18 to 1.0 ⁇ 10 20 cm ⁇ 3 is preferable.
  • the acceptor impurity concentration does not necessarily have to be controlled uniformly in the vertical direction with respect to each film thickness of the electron blocking layer 23 and the p-type contact layer 24 .
  • the well layer 220 was grown under the growth conditions under which the above-described multi-stepped terraces are likely to appear, with the average AlN mole fraction Xwa of the well layer 220 as a target value.
  • the barrier layer 221 is grown with the average AlN mole fraction Xba of the barrier layer 221 as a target value.
  • the average AlN molar fractions Xwa and Xba of the well layer 220 and the barrier layer 221 are as described above, and redundant description is omitted.
  • the average AlN mole fraction Xea of the electron blocking layer 23 is set as a target value.
  • An electron blocking layer 23 is grown.
  • the average AlN mole fraction Xea of the electron blocking layer 23 is as described above, and redundant description is omitted.
  • the growth temperature of the active layer 22 (well layer 220, barrier layer 221), the electron blocking layer 23, and the p-type contact layer is set to T1 for the growth temperature of the n-type cladding layer 21, and T1 for the growth temperature of the active layer 22.
  • T2 the growth temperature of the electron blocking layer 23
  • T4 the p-type contact layer growth temperature
  • the growth temperature T3 of the electron blocking layer 23 can be reduced, for example, by increasing the flow rate of the nitrogen source gas and decreasing the growth rate.
  • the GaN When the growth temperature T3 of the electron blocking layer 23 is raised from the growth temperature T2 of the active layer 22, the GaN is decomposed in the well layer 220 positioned therebelow during the transition process of the growth temperature.
  • the characteristics of the light-emitting element 1 may deteriorate due to decomposition. Therefore, in order to suppress decomposition of the GaN, a film thinner than the barrier layer 221 (for example, 3 nm or less, preferably less than 3 nm) is placed between the uppermost well layer 220 and the electron blocking layer 23 to prevent the decomposition of the GaN. , 2 nm or less) with a higher AlN mole fraction than the barrier layer 221 and electron block layer 23 .
  • the active layer 22 (well layer 220, barrier layer 221), the electron blocking layer 23, the p-type contact layer 24, etc. on the entire upper surface of the n-type cladding layer 21 in the manner described above, next, By a well-known etching method such as reactive ion etching, the second regions R2 of the nitride semiconductor layers 21 to 24 are selectively etched until the upper surface of the n-type cladding layer 21 is exposed. A portion of the second region R2 on the upper surface is exposed.
  • a p-electrode 26 is formed on the p-type contact layer 24 in the unetched first region R1 by a well-known film formation method such as an electron beam evaporation method, and an n electrode in the etched first region R2 is formed.
  • An n-electrode 27 is formed on the mold cladding layer 21 .
  • heat treatment may be performed by a known heat treatment method such as RTA (rapid thermal annealing).
  • the light emitting element 1 is flip-chip mounted on a base such as a submount, and then sealed with a predetermined resin (for example, a lens-shaped resin) such as silicone resin or amorphous fluorine resin.
  • a predetermined resin for example, a lens-shaped resin
  • silicone resin or amorphous fluorine resin can be used in any situation.
  • the cross-sectional structure of the AlGaN-based semiconductor layers 21 to 24 of the light-emitting device 1 manufactured in the above manner is as follows.
  • a sample piece having a vertical (or substantially vertical) cross section can be processed with a focused ion beam (FIB) and observed by an HAADF-STEM image of the sample piece.
  • a HAADF-STEM image provides a contrast proportional to the atomic weight, and heavy elements are displayed brightly. Therefore, regions with a low AlN mole fraction are displayed relatively brightly.
  • HAADF-STEM images are more suitable for observing differences in AlN mole fractions than normal STEM images (bright field images).
  • composition analysis within specific semiconductor layers in the AlGaN-based semiconductor layers 21 to 24 is performed using the above sample piece by energy dispersive X-ray spectroscopy (cross-sectional TEM-EDX) or CL (cathode luminescence) method.
  • cross-sectional TEM-EDX energy dispersive X-ray spectroscopy
  • CL cathode luminescence
  • a sample for composition analysis of the n-type cladding layer 21 is prepared, and a sample piece having a cross section perpendicular (or substantially perpendicular) to the upper surface of the n-type cladding layer 21 is processed with a focused ion beam (FIB) from the sample, A sample piece for measurement was produced.
  • FIB focused ion beam
  • the sample was prepared by forming the n-type cladding layer 21 and AlN molar ratio higher than that of the n-type cladding layer 21 on the underlayer 10 composed of the sapphire substrate 11 and the AlN layer 12 according to the manufacturing procedure of the n-type cladding layer 21 and the like.
  • a fractional AlGaN layer, an AlGaN layer for protecting the surface of the sample, and a protective resin film were deposited in order.
  • a sapphire substrate 11 having a main surface at an off-angle with respect to the (0001) plane was used, and an underlayer 10 in which a multi-stepped terrace was exposed on the surface of an AlN layer 12 was used.
  • the dose of donor impurities (Si) was controlled so that the donor impurity concentration was approximately 3 ⁇ 10 18 cm ⁇ 3 .
  • FIG. 12 shows measured values of the second average AlN mole fraction Xna2(d) by the RBS analysis method.
  • the AlN mole fraction Xna2(d) varies within the range of about 57.8% to about 59.9% according to the change in depth d, satisfying the above formula (3).
  • the first average AlN mole fraction Xna1 is calculated to be about 58.4% from Xna2(d) shown in FIG. They are slightly higher, but they are roughly the same. As will be described later, there is one specific depth dx, which is approximately 1061 nm.
  • the third average AlN mole fraction Xna3 is calculated to be about 57.9% from Xna2(d) shown in FIG. Is pleased.
  • the second average AlN mole fraction Xna2(d) is constant at about 57.8% in the upper layer region with a depth d (nm) of 0 nm to about 750 nm, and As the depth d (nm) increases from about 750 nm to about 1900 nm, it gradually increases from about 57.8% to about 59.9%, and the first metastable It is equal to the AlN mole fraction (approximately 58.3%) of the AlGaN region. Therefore, in the example shown in FIG. 12, the specific depth dx is approximately 1061 nm.
  • a He 2+ ion beam (beam diameter: 2.2 mm) is vertically irradiated from the upper surface side of the n-type cladding layer 21 of the sample at an acceleration voltage of 2.3 MeV. Since the range is as large as 300 nm, the film thickness to be analyzed should be greater than 300 nm.
  • FIG. 13 is a scanning electron microscope (SEM) image showing the main part including the n-type cladding layer 21 on the cross section of the sample piece to be measured.
  • the measurement range of the sample piece (the range of the incident point of the electron beam irradiated for measurement) is 6.5 mm in each of the X direction (horizontal direction parallel to the second plane) and Y direction (vertical direction orthogonal to the second plane).
  • the incident points of the electron beams are set in a grid pattern of 121 mesh ⁇ 41 mesh with 25 ⁇ m and 2.2 ⁇ m.
  • the mesh spacing is about 52 nm in the X direction and about 55 nm in the Y direction.
  • An electron beam with a beam diameter of 50 nm (diameter) was irradiated once to the grid-shaped electron beam incident point within the measurement range of the sample piece, and the CL spectrum at each incident point was measured.
  • FIG. 14 shows the 121 A first CL spectrum (solid line) and a second CL spectrum (dashed line) derived in the following manner are shown for the CL spectra.
  • the first and second CL spectra of six Y-coordinates are displayed on the same graph so as to be mutually identifiable with their respective origins shifted in the direction of the vertical axis.
  • the horizontal axis of FIG. 14 indicates the wavelength (nm).
  • the first CL spectrum of each Y coordinate shown in FIG. 6 to 7 points or more of CL spectra shifted to the same wavelength on the wavelength side were extracted, and the extracted CL spectra were averaged for calculation. Therefore, the measurement area related to the first CL spectrum contains more layer regions 21a than other measurement areas of the same Y coordinate.
  • the measurement region for the second CL spectrum includes more n-type body regions 21b (in particular, Al-enriched n-type regions) than other measurement regions with the same Y coordinate.
  • the first CL spectrum includes the CL spectrum from the layered region 21a, the CL spectrum from the first metastable AlGaN region in the n-type body region 21b, and the Al-enriched n-type in the n-type body region 21b. This is because the CL spectrum from the region is included, and in particular the two previous CL spectra are primarily included, resulting in a composite spectrum of these.
  • the Al-enriched n-type region in the n-type body region 21b is formed in the layered region 21a ( Ga - enriched n -type region) is formed along with the formation of the Al
  • a second intermediate AlGaN region (Al n+0.5 Ga 11.5 ⁇ n N 12 ) may also be formed within the enriched n-type region.
  • the second intermediate AlGaN region has an AlN mole fraction in the first metastable AlGaN region and a third subregion in which the AlN mole fraction is one step (about 8.33%) higher than that of the first metastable AlGaN region. It is located intermediate to the stable AlGaN region (Al n+1 Ga 11-n N 12 ).
  • the signal intensity In11(Y) at the wavelength ⁇ s1 (about 266 nm) corresponding to the AlN mole fraction (about 58.3%) of the first metastable AlGaN region is the maximum signal.
  • an n-type body region having an intensity of about 67% to about 96% of In0(Y) and formed predominantly by a first metastable AlGaN region within the measurement region for the first CL spectrum at each Y coordinate; 21b is included.
  • the signal intensity In1m (Y) at the wavelength ⁇ sm (about 273 nm) corresponding to the AlN mole fraction (about 54.2%) in the middle AlGaN region is the maximum signal intensity In0 (Y ), and the middle AlGaN region (Al n-0.5 Ga 12.5-n N 12 ) is dominant in the measurement region for the first CL spectrum of each Y coordinate. It can be seen that the formed layered region 21a is included.
  • the Y coordinate of the first CL spectrum is the middle Limited to the Y coordinate in the region, the influence from the active layer 22 existing above the n-type cladding layer 21 and the underlayer 10 existing below the n-type cladding layer 21 (in one embodiment, the top layer preferably eliminates the influence from AlN12).
  • the signal intensity In12 (Y) at the wavelength ⁇ s2 (about 279 nm) corresponding to the AlN mole fraction (50%) of the second metastable AlGaN region is the maximum signal intensity In0 ( Y) is about 13% to about 40%, and the second metastable AlGaN region exists, but is not predominantly formed, within the measurement region of the first CL spectrum of each Y coordinate. I understand.
  • the signal intensity In12(Y) is less than 50% of the maximum signal intensity In0(Y), it means that the second metastable AlGaN region is not dominantly formed in the layered region 21a. can be determined.
  • the wavelength ⁇ 1(Y) indicating the maximum signal intensity In1(Y) exists within the range of about 258 nm to about 261 nm, and each wavelength ⁇ 1(Y)
  • the AlN mole fraction Xn1(d) at the corresponding depth d lies in the range of about 61.5% to about 63.5%, both of which are within the second average AlN mole fraction Xna2(d ). Therefore, it can be seen that an Al-enriched n-type region is formed in the n-type body region 21b with the mass transfer of Ga during the formation of the layered region 21a. In the vicinity of the upper end of the n-type cladding layer 21, the AlN mole fraction Xn1(d) is about 61.5%.
  • the signal intensity In21(Y) at the wavelength ⁇ s1 (about 266 nm) corresponding to the AlN mole fraction (about 58.3%) of the first metastable AlGaN region is the maximum signal.
  • an n-type body region having an intensity of about 55% to about 84% of In1(Y) and formed predominantly by a first metastable AlGaN region within the measurement region for the second CL spectrum at each Y coordinate; 21b is included.
  • the signal intensity In21(Y) at the wavelength ⁇ s1 (about 266 nm) corresponding to the AlN mole fraction (about 58.3%) of the first metastable AlGaN region is , are the same, it can be seen that the first metastable AlGaN region is uniformly formed in the n-type body region 21b.
  • the signal intensity In2m(Y) at the wavelength ⁇ sm (about 259 nm) corresponding to the AlN mole fraction (62.5%) of the second intermediate AlGaN region is the maximum signal intensity In2 (Y) is about 90% to about 100%
  • a second intermediate AlGaN region (Al n+0.5 Ga 11.5 ⁇ n N 12 ) is within the measurement region for the second CL spectrum of each Y coordinate. It can be seen that the Al-enriched n-type region within the predominantly formed n-type body region 21b is included.
  • the AlN molar fraction uniformly and predominantly formed in the n-type body region 21b is approximately 58.3%. Since the first metastable AlGaN region of and the layered region 21a with a lower AlN mole fraction are exposed, an Al-enriched n-type region with an AlN mole fraction slightly exceeding 60% is partially present. It can be seen that the contact resistance between the surface of the n-type cladding layer 21 and the n-electrode 27 is kept low even with this.
  • FIG. 15 is an HAADF-STEM image showing four measurement regions A to D where the AlN mole fraction in the layered region 21a of the sample piece is measured by cross-sectional TEM-EDX line analysis.
  • composition analysis by the cross-sectional TEM-EDX method, first, in the entire measurement area covering the four measurement areas A to D shown in FIG. direction) and lateral direction (parallel to the second plane), and the detection data (Al and Ga X-ray intensity corresponding to each composition) was obtained.
  • each measurement area A to D is rectangular, and the inclination and size are set for each measurement area so that the extending direction of at least one layered area 21a in the measurement area is orthogonal to the scanning direction of line analysis. ing.
  • the inclinations of the measurement areas A to D are approximately equal to about 20°, but strictly speaking, they are not necessarily the same.
  • the scanning direction of line analysis is the vertical direction, and the direction.
  • the central vertical line shown in each measurement region indicates the scanning direction
  • the x mark on the vertical line indicates the position in the vertical direction of the layered region 21a whose AlN mole fraction is to be measured.
  • the positions of the X marks in the measurement regions A to D roughly correspond to Y coordinates 10, 21, 31, and 36 in the measurement range of the AlN mole fraction by the CL method shown in FIG.
  • the spatial resolution is high.
  • Detection data obtained from a plurality of probe locations aligned in the horizontal direction are accumulated to obtain detection data at each scanning position.
  • horizontal aligned means that the irradiation range of the electron beam probe overlaps with a horizontal line that intersects the vertical line and extends in the horizontal direction at each scanning position.
  • the AlN mole fractions in the layered regions 21a indicated by the crosses in the measurement regions A to D derived based on the cumulative detection data obtained in the manner described above are as follows.
  • the AlN mole fraction of the intermediate AlGaN region (approximately 54.17 %) is subtracted to show the AlN mole fraction difference ⁇ .
  • the p-type layer constituting the light-emitting device structure portion 20 was composed of two layers, the electron blocking layer 23 and the p-type contact layer 24, but in the light-emitting device 2 of the second embodiment, the p-type layer has a p-type clad layer 25 composed of one or more p-type AlGaN semiconductors between the electron block layer 23 and the p-type contact layer 24 .
  • the AlGaN-based semiconductor layers 21 to 25 of the light emitting element structure 20 are composed of an n-type cladding layer 21 (n-type layer), an active layer 22, an electron blocking layer 23 (p-type layer), a p-type cladding layer 25 (p-type layer), and a p-type contact layer 24 (p-type layer) which are epitaxially grown in order and stacked.
  • the base portion 10 and the AlGaN-based semiconductor layers 21 to 24, the p-electrode 26, and the n-electrode 27 of the light-emitting element structural portion 20 in the light-emitting element 2 of the second embodiment are the light emission of any one of the first to third embodiments. Since they are the same as the AlGaN-based semiconductor layers 21 to 24, the p-electrode 26, and the n-electrode 27 of the base portion 10 and the light-emitting device structure portion 20 of the device 1, redundant description will be omitted.
  • the p-type cladding layer 25 is composed of the AlN layer 12 of the underlying portion 10 epitaxially grown in order from the main surface 11a of the sapphire substrate 11, the n-type cladding layer 21 of the light emitting element structure portion 20, and each semiconductor layer in the active layer 22. Like the electron blocking layer 23 , it has a surface on which multi-stepped terraces parallel to the (0001) plane derived from the main surface 11 a of the sapphire substrate 11 are formed.
  • FIG. 17 schematically shows an example of a laminated structure (multiple quantum well structure) of well layers 220 and barrier layers 221 in the active layer 22 .
  • a p-type cladding layer 25 is formed on the electron blocking layer 23 having the laminated structure described with reference to FIG. 5 in the first embodiment.
  • the inclined regions IA inclined with respect to the (0001) plane are formed as described above.
  • the thickness of the p-type cladding layer 25 is adjusted, for example, within the range of 20 nm to 200 nm including the terrace area TA and the inclined area IA.
  • the AlN mole fraction of the terrace region TA of the p-type cladding layer 25 is set within a range of 51% or more and less than the AlN mole fraction of the terrace region TA of the electron blocking layer 23 . Furthermore, the AlN mole fraction of the Ga-enriched p-type region 25 a of the p-type cladding layer 25 is set to be less than the AlN mole fraction of the Ga-enriched EB region 23 a of the electron blocking layer 23 .
  • the AlN mole fraction of the terrace region TA of the p-type cladding layer 25 is 1% or more, preferably 2% or more, more preferably 2% or more, more preferably than the AlN mole fraction of the Ga-enriched p-type region 25a within the above range. It is set to be higher than 4%.
  • the AlN mole fraction difference between the Ga-enriched p-type region 25a of the p-type cladding layer 25 and the terrace region TA is 4-5. % or more is preferable, but the effect of localizing carriers can be expected even at about 1 to 2%.
  • the p-type cladding layer 25 is formed under the same growth conditions as those for the n-type cladding layer 21 and the electron blocking layer 23 described in the first embodiment under the growth conditions under which the above-described multi-stepped terraces are easily exposed.
  • the p-type cladding layer 25 is grown with an average AlN mole fraction Xpa of 25 as a target value.
  • the active layer 22 alternately comprises two or more well layers 220 made of an AlGaN-based semiconductor and one or more barrier layers 221 made of an AlGaN-based semiconductor or an AlN-based semiconductor.
  • the active layer 22 has a single quantum well structure with only one well layer 220 and does not have a barrier layer 221 (quantum barrier layer). It may be configured. It is clear that the effect of the well layer 220 employed in each of the above-described embodiments can be similarly obtained for such a single quantum well structure.
  • an n-type AlGaN semiconductor layer having a higher AlN mole fraction than the n-type cladding layer 21 (hereinafter referred to as "n-type lower (referred to as "stratum”) may be provided.
  • n-type lower referred to as "stratum”
  • the average AlN mole fraction over the entire area in the depth direction where the n-type cladding layer 21 and the n-type underlayer are united may be higher than the range of the above formula (1).
  • the n-type underlayer provided below the n-type cladding layer 21 has a higher AlN mole fraction than the n-type cladding layer 21, light emitted from the active layer is not absorbed.
  • the n-type underlayer has a higher AlN mole fraction than the n-type cladding layer 21, it does not come into contact with the n-electrode 27 and forms a current path between the n-electrode 27 and the active layer. Therefore, the parasitic resistance between the n-electrode 27 and the active layer is not increased, and the wall plug efficiency is not lowered.
  • the n-type underlayer does not substantially function as part of the light emitting element structure 20, it can be said that the provision of the n-type underlayer does not bring any particular advantage or conspicuous disadvantage.
  • the first region R1 and the p-electrode 26 have, as an example, a comb shape in plan view, but the plan view shape is not limited to a comb shape. . Moreover, a planar view shape in which a plurality of first regions R1 are present and each of which is surrounded by one second region R2 may be used.
  • the base portion 10 in which a multi-stepped terrace is exposed on the surface of the AlN layer 12 using the sapphire substrate 11 whose main surface has an off-angle with respect to the (0001) plane is used.
  • the magnitude of the off-angle and the direction in which the off-angle is provided are different from the surface of the AlN layer 12 It may be determined arbitrarily as long as a multi-stepped terrace is exposed at the end and a growth starting point of the layered region 21a is formed.
  • the light emitting element 1 including the underlying portion 10 including the sapphire substrate 11 is illustrated as the light emitting element 1 as illustrated in FIG. A part or all of the layers included in the portion 10) may be removed by lift-off or the like.
  • the substrate forming the underlying portion 10 is not limited to the sapphire substrate.
  • the present invention is applicable to a nitride semiconductor ultraviolet light emitting device having a light emitting device structure in which an n-type layer, an active layer, and a p-type layer made of an AlGaN-based semiconductor having a wurtzite structure are stacked vertically. .
  • nitride semiconductor ultraviolet light emitting device 10 base portion 11: sapphire substrate 11a: main surface of sapphire substrate 12: AlN layer 20: light emitting device structure portion 21: n-type clad layer (n-type layer) 21a: layered region (n-type layer) 21b: n-type body region (n-type layer) 22: Active layer 220: Well layer 220a: Ga-enriched well region 221: Barrier layer 221a: Ga-enriched barrier region 23: Electron blocking layer (p-type layer) 23a: Ga-enriched EB region 24: p-type contact layer (p-type layer) 25: p-type clad layer (p-type layer) 25a: Ga-enriched p-type region 26: p-electrode 27: n-electrode 100: substrate 101: AlGaN-based semiconductor layer 102: template 103: n-type AlGaN-based semiconductor layer 104: active layer 105: p-type AlGaN-based

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

This nitride semiconductor UV light-emitting element comprises an n-type layer, an active layer, and a p-type layer which are each formed from an AlGaN semiconductor having a wurtzite structure. Each of the semiconductor layers is an epitaxially grown layer having a surface in which multi-stage terraces parallel to the (0001) plane are formed. The n-type layer has a layer region where an extension direction in which the AlN molar fraction is locally low is inclined with respect to the upper surface. A first average AlN molar fraction in the entire range in the depth direction of the n-type layer is more than (n-0.25)/12 but less than (n+0.25)/12. On the upper side of at least one specific depth of one or more depths which correspond to a depth d from the upper end of the n-type layer and in which a second average AlN molar fraction becomes equal to n/12, there is a region in which the AlN molar fraction is greater than n/12. On the lower side of the specific depth, there is a region in which the AlN molar fraction is less than n/12. In the layer region, an intermediate AlGaN region in which the AlN molar fraction is (n-0.5)/12 is formed.

Description

窒化物半導体紫外線発光素子及びその製造方法Nitride semiconductor ultraviolet light emitting device and manufacturing method thereof
 本発明は、ウルツ鉱構造のAlGaN系半導体からなるn型層、活性層、及びp型層が上下方向に積層された発光素子構造部を備えてなる窒化物半導体紫外線発光素子、及び、その製造方法に関する。 The present invention relates to a nitride semiconductor ultraviolet light emitting device having a light emitting device structure in which an n-type layer, an active layer, and a p-type layer made of an AlGaN-based semiconductor having a wurtzite structure are vertically laminated, and a manufacture thereof. Regarding the method.
 一般的に、窒化物半導体発光素子は、サファイア等の基板上にエピタキシャル成長により複数の窒化物半導体層からなる発光素子構造を形成したものが多数存在する。窒化物半導体層は、一般式Al1-x-yGaInN(0≦x≦1,0≦y≦1,0≦x+y≦1)で表される。 In general, there are many nitride semiconductor light emitting devices in which a light emitting device structure composed of a plurality of nitride semiconductor layers is formed by epitaxial growth on a substrate such as sapphire. The nitride semiconductor layer is represented by the general formula Al 1-xy Ga x In y N (0≦x≦1, 0≦y≦1, 0≦x+y≦1).
 発光ダイオードの発光素子構造は、n型窒化物半導体層とp型窒化物半導体層の2つのクラッド層の間に、窒化物半導体層よりなる活性層が挟まれたダブルへテロ構造を有している。活性層がAlGaN系半導体の場合、AlNモル分率(Al組成比とも言う)を調整することにより、バンドギャップエネルギを、GaNとAlNが取り得るバンドギャップエネルギ(約3.4eVと約6.2eV)を夫々下限及び上限とする範囲内で調整でき、発光波長が約200nmから約365nmまでの紫外線発光素子が得られる。具体的には、p型窒化物半導体層からn型窒化物半導体層に向けて順方向電流を流すことで、活性層においてキャリア(電子及び正孔)の再結合による上記バンドギャップエネルギに応じた発光が生じる。当該順方向電流を外部から供給するために、p型窒化物半導体層上にp電極が、n型窒化物半導体層上にn電極が、夫々設けられている。 A light-emitting element structure of a light-emitting diode has a double heterostructure in which an active layer made of a nitride semiconductor layer is sandwiched between two cladding layers of an n-type nitride semiconductor layer and a p-type nitride semiconductor layer. there is When the active layer is an AlGaN-based semiconductor, by adjusting the AlN mole fraction (also referred to as the Al composition ratio), the bandgap energy can be adjusted to the bandgap energy (approximately 3.4 eV and approximately 6.2 eV) that can be taken by GaN and AlN. ) can be adjusted within the lower and upper limits, respectively, and an ultraviolet light emitting device having an emission wavelength of about 200 nm to about 365 nm can be obtained. Specifically, by passing a forward current from the p-type nitride semiconductor layer to the n-type nitride semiconductor layer, the recombination of carriers (electrons and holes) in the active layer causes the bandgap energy Luminescence occurs. In order to supply the forward current from the outside, a p-electrode is provided on the p-type nitride semiconductor layer, and an n-electrode is provided on the n-type nitride semiconductor layer.
 活性層がAlGaN系半導体の場合、活性層を挟むn型窒化物半導体層とp型窒化物半導体層は、活性層より高AlNモル分率のAlGaN系半導体で構成される。しかし、高AlNモル分率のp型窒化物半導体層は、p電極と良好なオーミック接触を形成することが困難なため、p型窒化物半導体層の最上層に低AlNモル分率のp型AlGaN系半導体(具体的にはp-GaN)からなるp電極と良好なオーミック接触可能なp型コンタクト層を形成することが一般的に行われている。このp型コンタクト層は、AlNモル分率が活性層を構成するAlGaN系半導体より小さいため、活性層からp型窒化物半導体層側に向けて出射された紫外線は該p型コンタクト層で吸収され、素子外部に有効に取り出すことができない。このため、活性層がAlGaN系半導体の一般的な紫外線発光ダイオードは、図18に模式的に示すような素子構造を採用し、活性層からn型窒化物半導体層側に向けて出射された紫外線を素子外部に有効に取り出している(例えば、下記の特許文献1及び2等参照)。 When the active layer is an AlGaN-based semiconductor, the n-type nitride semiconductor layer and the p-type nitride semiconductor layer sandwiching the active layer are composed of an AlGaN-based semiconductor with a higher AlN mole fraction than the active layer. However, since it is difficult for a p-type nitride semiconductor layer with a high AlN mole fraction to form a good ohmic contact with a p-electrode, a p-type nitride semiconductor layer with a low AlN mole fraction is placed on the uppermost layer of the p-type nitride semiconductor layer. It is common practice to form a p-type contact layer capable of good ohmic contact with a p-electrode made of an AlGaN-based semiconductor (specifically, p-GaN). Since the p-type contact layer has a smaller AlN mole fraction than the AlGaN-based semiconductor forming the active layer, the ultraviolet rays emitted from the active layer toward the p-type nitride semiconductor layer are absorbed by the p-type contact layer. , cannot be effectively extracted to the outside of the device. For this reason, a general ultraviolet light emitting diode whose active layer is an AlGaN-based semiconductor employs an element structure as schematically shown in FIG. is effectively extracted to the outside of the device (see, for example, Patent Documents 1 and 2 below).
 図18に示すように、一般的な紫外線発光ダイオードは、サファイア基板等の基板100上にAlGaN系半導体層101(例えば、AlN層)を堆積して形成されたテンプレート102上に、n型AlGaN系半導体層103、活性層104、p型AlGaN系半導体層105、及び、p型コンタクト層106を順番に堆積し、活性層104とp型AlGaN系半導体層105とp型コンタクト層106の一部を、n型AlGaN系半導体層103が露出するまでエッチング除去し、n型AlGaN系半導体層103の露出面にn電極107を、p型コンタクト層106の表面にp電極108を夫々形成して構成される。 As shown in FIG. 18, a general ultraviolet light emitting diode has a template 102 formed by depositing an AlGaN semiconductor layer 101 (for example, an AlN layer) on a substrate 100 such as a sapphire substrate. A semiconductor layer 103, an active layer 104, a p-type AlGaN-based semiconductor layer 105, and a p-type contact layer 106 are deposited in order, and a part of the active layer 104, the p-type AlGaN-based semiconductor layer 105, and the p-type contact layer 106 is , the n-type AlGaN-based semiconductor layer 103 is removed by etching until it is exposed, and the n-electrode 107 is formed on the exposed surface of the n-type AlGaN-based semiconductor layer 103, and the p-electrode 108 is formed on the surface of the p-type contact layer 106, respectively. be.
 また、活性層内でのキャリア再結合による発光効率(内部量子効率)を高めるために、活性層を多重量子井戸構造とすること、活性層上に電子ブロック層を設けること等が実施されている。 In addition, in order to increase the luminous efficiency (internal quantum efficiency) due to carrier recombination in the active layer, the active layer is made to have a multiple quantum well structure, and an electron blocking layer is provided on the active layer. .
 一方、n型AlGaN系半導体層で構成されるクラッド層内においてGaの偏析(Gaの質量移動に伴う偏析)による組成変調が生じ、クラッド層表面に対して斜め方向に延伸する局所的にAlNモル分率の低い層状領域が形成されることが報告されている(例えば、下記の特許文献3、非特許文献1,2等参照)。局所的にAlNモル分率の低いAlGaN系半導体層はバンドギャップエネルギも局所的に小さくなるため、特許文献3では、当該クラッド層内のキャリアが層状領域に局在化し易くなり、活性層に対して低抵抗の電流経路を提供することができ、紫外線発光ダイオードの発光効率の向上が図れることが報告されている。 On the other hand, in the clad layer composed of the n-type AlGaN-based semiconductor layer, compositional modulation occurs due to Ga segregation (segregation associated with mass transfer of Ga), and localized AlN moles extending in an oblique direction with respect to the clad layer surface It has been reported that a layered region with a low fraction is formed (see, for example, Patent Document 3 and Non-Patent Documents 1 and 2 below). Since an AlGaN-based semiconductor layer with a locally low AlN mole fraction also has a locally small bandgap energy, in Patent Document 3, carriers in the cladding layer tend to be localized in the layered region, and the active layer It has been reported that a low-resistance current path can be provided by using a UV light emitting diode, and that the luminous efficiency of the ultraviolet light emitting diode can be improved.
国際公開第2014/178288号公報International Publication No. 2014/178288 国際公開第2016/157518号公報International Publication No. 2016/157518 国際公開第2019/159265号公報International Publication No. 2019/159265 特開2012-089754号公報JP 2012-089754 A
 AlGaN系半導体で構成される紫外線発光素子は、サファイア基板等の基板上に、例えば、有機金属化合物気相成長(MOVPE)法等の周知のエピタキシャル成長法によって作製される。しかしながら、紫外線発光素子を生産する場合、紫外線発光素子の特性(発光波長、ウォールプラグ効率、順方向バイアス等の特性)は、結晶成長装置のドリフトの影響を受けて変動するため、安定した歩留まりでの生産は必ずしも容易ではない。 An ultraviolet light emitting element composed of an AlGaN-based semiconductor is fabricated on a substrate such as a sapphire substrate, for example, by a well-known epitaxial growth method such as an organometallic compound vapor phase epitaxy (MOVPE) method. However, when producing UV light emitting devices, the characteristics of UV light emitting devices (emission wavelength, wall plug efficiency, forward bias, etc.) fluctuate under the influence of the drift of the crystal growth apparatus, so stable yields can be achieved. is not always easy to produce.
 結晶成長装置のドリフトは、トレーやチャンバの壁等の付着物が原因で、結晶成長部位の実効温度が変化すること等に起因して生じる。このため、ドリフトを抑制するために、従来は、成長履歴を検討して、経験者が設定温度や原料ガスの組成を微妙に変化させる、或いは、一定期間の成長スケジュールを固定して、清掃等のメンテナンスも一定期間で同じように実施する等の工夫をしているが、ドリフトを完全に排除をすることは難しい。 Drift in crystal growth equipment is caused by changes in the effective temperature of the crystal growth site due to deposits on trays, chamber walls, etc. For this reason, in order to suppress the drift, conventionally, the growth history is examined, and an experienced person slightly changes the set temperature or the composition of the raw material gas, or the growth schedule for a certain period is fixed, cleaning, etc. Although we have devised ways such as performing maintenance in the same way for a certain period of time, it is difficult to completely eliminate drift.
 そこで、本願発明者は、n型AlGaN系半導体層で構成されるクラッド層内にGaの偏析により形成され、活性層に対して低抵抗の電流経路を提供する局所的にAlNモル分率の低い層状領域内に、後述するAlGaN組成比が整数比の「準安定AlGaN」が支配的に存在するようにn型AlGaN系半導体層を成長させることで、結晶成長装置のドリフト等に起因する特性変動が抑制され、所期の発光特性を有する窒化物半導体紫外線発光素子を安定的に生産できることを見出し、n型AlGaN系半導体層の層状領域内に準安定AlGaNを利用することを提案している(PCT/JP2020/024827、PCT/JP2020/024828、PCT/JP2020/026558、PCT/JP2020/031620等の国際出願の明細書参照)。 Therefore, the inventors of the present application have found a locally low AlN mole fraction formed by Ga segregation in the clad layer composed of an n-type AlGaN semiconductor layer and providing a low-resistance current path to the active layer. By growing the n-type AlGaN-based semiconductor layer so that "metastable AlGaN" having an AlGaN composition ratio of an integer ratio, which will be described later, predominantly exists in the layered region, characteristic fluctuations caused by drift of the crystal growth apparatus can be prevented. have been found to be able to stably produce a nitride semiconductor ultraviolet light-emitting device having desired light-emitting characteristics by suppressing the emission, and have proposed the use of metastable AlGaN in the layered region of the n-type AlGaN-based semiconductor layer ( See specifications of international applications such as PCT/JP2020/024827, PCT/JP2020/024828, PCT/JP2020/026558, and PCT/JP2020/031620).
<準安定AlGaNの特徴>
 説明の便宜上、先ず、AlGaN組成比が所定の整数比で表される「準安定AlGaN」の特徴について説明する。
<Characteristics of Metastable AlGaN>
For convenience of explanation, first, the characteristics of "metastable AlGaN" in which the AlGaN composition ratio is represented by a predetermined integer ratio will be explained.
 準安定AlGaNを考慮しなければ、AlGaN等の三元混晶は、ランダムに3族元素(AlとGa)が混合している結晶状態であり、「ランダム・コンフィグレーション(random configuration)」で近似的に説明される。しかし、Alの共有結合半径とGaの共有結合半径が異なるため、結晶構造中においてAlとGaの原子配列の対称性が高いほうが、一般的に安定な構造となる。 If metastable AlGaN is not taken into account, a ternary mixed crystal such as AlGaN is a crystalline state in which Group 3 elements (Al and Ga) are randomly mixed, and can be approximated by a "random configuration". explained in a simple way. However, since the covalent bond radius of Al differs from the covalent bond radius of Ga, the higher the symmetry of the atomic arrangement of Al and Ga in the crystal structure, the more stable the structure generally.
 ウルツ鉱構造のAlGaN系半導体は、対称性のないランダム配列と安定な対称配列の2種類の配列が存在し得る。ここで、一定の比率で、対称配列が支配的となる状態が現れる。後述するように、AlGaN組成比(AlとGaとNの組成比)が所定の整数比で表される「準安定AlGaN」において、AlとGaの対称配列構造が発現する。 AlGaN-based semiconductors with a wurtzite structure can have two types of arrangement: random arrangement without symmetry and stable symmetric arrangement. Here, at a certain ratio, a state appears in which the symmetrical arrangement is dominant. As will be described later, in "metastable AlGaN" in which the AlGaN composition ratio (the composition ratio of Al, Ga, and N) is represented by a predetermined integer ratio, a symmetric arrangement structure of Al and Ga appears.
 当該対称配列構造では、結晶成長面へのGa供給量が僅かに増減しても、対称性が高いためにエネルギ的に安定な混晶モル分率となり、質量移動(mass transfer)し易いGaの濃度が制御不能となるのを防止できる。 In the symmetrical arrangement structure, even if the amount of Ga supplied to the crystal growth surface slightly increases or decreases, the high symmetry results in an energetically stable mixed crystal mole fraction, and the mass transfer of Ga is easy. Concentration can be prevented from getting out of control.
<準安定AlGaNにおけるAlとGaの対称配列構造>
 次に、「準安定AlGaN」において、AlとGaの対称配列構造が発現する点について説明する。
<Symmetric Arrangement Structure of Al and Ga in Metastable AlGaN>
Next, the symmetric arrangement structure of Al and Ga in "metastable AlGaN" will be described.
 図1に、AlGaNのc軸方向に1ユニットセル(2単原子層)の模式図を示す。図1において、白丸は3族元素の原子(Al,Ga)が位置するサイトを示し、黒丸は5族元素の原子(N)が位置するサイトを示している。以下の説明では、単原子層をMLと表記する。図1では、1ユニットセルは2MLと表記されている。 Fig. 1 shows a schematic diagram of one unit cell (two monolayers) in the c-axis direction of AlGaN. In FIG. 1, white circles indicate sites where Group 3 element atoms (Al, Ga) are located, and black circles indicate sites where Group 5 element atoms (N) are located. In the following description, a monoatomic layer is denoted as ML. In FIG. 1, one unit cell is denoted as 2ML.
 図1において六角形で示される3族元素のサイト面(A3面、B3面)、及び、5族元素のサイト面(A5面、B5面)は、何れも(0001)面に平行である。A3面とA5面(総称してA面)の各サイトには、六角形の各頂点に6つ、六角形の中心に1つのサイトが存在する。B3面とB5面(総称してB面)についても同様であるが、図1では、B面の六角形内に存在する3つのサイトだけを図示している。A面の各サイトはc軸方向に重なっており、B面の各サイトはc軸方向に重なっている。しかし、B5面の1つのサイトの原子(N)は、B5面の上側に位置するA3面の3つのサイトの原子(Al,Ga)と、B5面の下側に位置するB3面の1つのサイトの原子(Al,Ga)と4配位結合を形成し、B3面の1つのサイトの原子(Al,Ga)は、B3面の上側に位置するB5面の1つのサイトの原子(N)と、B3面の下側に位置するA5面の3つのサイトの原子(N)と4配位結合を形成しているため、図1に示すように、A面の各サイトは、B面の各サイトとはc軸方向に重なっていない。 The site planes of the group 3 elements (A3 plane, B3 plane) and the site planes of the group 5 elements (A5 plane, B5 plane) indicated by hexagons in FIG. 1 are both parallel to the (0001) plane. Each site on the A3 plane and the A5 plane (generically called the A plane) has six sites at each vertex of the hexagon and one site at the center of the hexagon. The same applies to the B3 plane and the B5 plane (generally called the B plane), but FIG. 1 shows only three sites that exist within the hexagon of the B plane. Each site on the A plane overlaps in the c-axis direction, and each site on the B plane overlaps in the c-axis direction. However, the atoms (N) at one site on the B5 plane are composed of atoms (Al, Ga) at three sites on the A3 plane located above the B5 plane and one site on the B3 plane located below the B5 plane. Site atoms (Al, Ga) form a 4-coordinate bond, and the atom (Al, Ga) at one site of the B3 plane is the atom (N) at one site of the B5 plane located above the B3 plane. and 4-coordinate bonds with atoms (N) at three sites on the A5 plane located below the B3 plane. Therefore, as shown in FIG. It does not overlap with each site in the c-axis direction.
 図2は、A面の各サイトとB面の各サイトとの間の位置関係を、A3面及びB3面をc軸方向から見た平面図として図示したものである。図2中の黒丸と白丸は、サイト面がA3面かB3面かを区別している。A3面及びB3面ともに、六角形の6つの各頂点は、隣接する他の2つの六角形により共有され、中心のサイトは他の六角形とは共有されないため、1つの六角形内には、実質的に3原子分のサイトが存在する。従って、1ユニットセル(2ML)当たり、3族元素の原子(Al,Ga)のサイトが6つ、5族元素の原子(N)のサイトが6つ存在する。従って、GaNとAlNを除く整数比で表されるAlGaN組成比としては、以下の5つのケースが存在する。
1)AlGa
2)AlGa(=AlGa)、
3)AlGa(=AlGa)、
4)AlGa(=AlGa)、
5)AlGa
FIG. 2 illustrates the positional relationship between each site on the A plane and each site on the B plane as a plan view of the A3 plane and the B3 plane viewed from the c-axis direction. The black circles and white circles in FIG. 2 distinguish whether the site surface is the A3 surface or the B3 surface. In both the A3 and B3 faces, each of the six vertices of a hexagon is shared by two other adjacent hexagons, and the central site is not shared with any other hexagon, so within one hexagon: There are substantially three atomic sites. Therefore, there are six sites for group 3 element atoms (Al, Ga) and six sites for group 5 element atoms (N) per unit cell (2ML). Therefore, there are the following five cases of AlGaN composition ratios represented by integer ratios excluding GaN and AlN.
1 ) Al1Ga5N6 ,
2 ) Al2Ga4N6 ( = Al1Ga2N3 ) ,
3 ) Al3Ga3N6 ( = Al1Ga1N2 ) ,
4 ) Al4Ga2N6 ( = Al2Ga1N3 ) ,
5 ) Al5Ga1N6 .
 ここで、上記2)~4)のAlGaとAlGaとAlGaは、図3に示すように、A3面及びB3面とも同じAlとGaの対称配列構造を取り得るので、AlGaN組成比が上記2)~4)の準安定AlGaNは、1ML単位でc軸方向に形成される。図3では、A3面及びB3面の一方だけの配列構造を例示している。尚、図3中において、Gaは大きい黒丸、Alは小さい黒丸で示されている。 Here, Al 1 Ga 2 N 3 , Al 1 Ga 1 N 2 and Al 2 Ga 1 N 3 in 2) to 4) above are, as shown in FIG. Since it can have a symmetrical arrangement structure, the metastable AlGaN having the AlGaN composition ratios 2) to 4) is formed in the c-axis direction in units of 1 ML. FIG. 3 illustrates an arrangement structure of only one of the A3 plane and the B3 plane. In FIG. 3, Ga is indicated by a large black circle, and Al is indicated by a small black circle.
 一方、上記1)のAlGaは、A3面及びB3面の一方を、上記2)のAlGaの配列構造、他方をGaNの配列構造(3族元素のサイトが全てGa)とする2ML単位の対称配列構造を取り得る。更に、上記5)のAlGaは、A3面及びB3面の一方を、上記4)のAlGaの配列構造、他方をAlNの配列構造(3族元素のサイトが全てAl)とする2ML単位の対称配列構造を取り得る。 On the other hand, the Al 1 Ga 5 N 6 of 1) above has one of the A3 plane and the B3 plane of the Al 1 Ga 2 N 3 arrangement structure of 2) above, and the other of the GaN arrangement structure (the site of the group 3 element is It can take a 2ML unit symmetric arrangement structure with all Ga). Furthermore, the Al 1 Ga 5 N 6 of 5) above has one of the A3 plane and the B3 plane of the Al 2 Ga 1 N 3 arrangement structure of 4) above, and the other AlN arrangement structure (the site of the group 3 element is A symmetric arrangement structure of 2ML units with all Al) can be taken.
 更に、上記1)と2)、2)と3)、3)と4)、及び4)と5)の各中間に位置するAlGaN組成比が整数比の4つの準安定AlGaNとして、下記の6)~9)が想定される。
6)AlGa12(=AlGa)、
7)AlGa12
8)AlGa12
9)AlGa12(=AlGa)。
Furthermore, as four metastable AlGaNs with integer ratios of AlGaN composition ratios located between the above 1) and 2), 2) and 3), 3) and 4), and 4) and 5), the following 6 ) to 9) are assumed.
6 ) Al3Ga9N12 ( = Al1Ga3N4 ) ,
7 ) Al5Ga7N12 ,
8 ) Al7Ga5N12 ,
9 ) Al9Ga3N12 ( = Al3Ga1N4 ) .
 ここで、上記6)のAlGaは、A3面とB3面の一方を、上記3)のAlGaの配列構造、他方をGaNの配列構造(3族元素のサイトが全てGa)とする2ML単位の対称配列構造を取り得る。上記7)のAlGa12は、A3面とB3面の一方を、上記2)のAlGaの配列構造、他方を上記3)のAlGaの配列構造とする2ML単位の対称配列構造を取り得る。上記8)のAlGa12は、A3面とB3面の一方を、上記3)のAlGaの配列構造、他方を上記4)のAlGaの配列構造とする2ML単位の対称配列構造を取り得る。上記9)のAlGaは、A3面とB3面の一方を、上記3)のAlGaの配列構造、他方をAlNの配列構造(3族元素のサイトが全てAl)とする2ML単位の対称配列構造を取り得る。 Here, the Al 1 Ga 3 N 4 of 6) above has one of the A3 plane and B3 plane having the Al 1 Ga 1 N 2 arrangement structure of 3) above, and the other having the GaN arrangement structure (group 3 element site can take a symmetrical array structure of 2 ML units where all are Ga). Al 5 Ga 7 N 12 of 7) above has the arrangement structure of Al 1 Ga 2 N 3 of 2) above on one of the A3 plane and the B3 plane, and the arrangement structure of Al 1 Ga 1 N 2 of 3) above on the other. A symmetric array structure of 2ML units can be taken. Al 7 Ga 5 N 12 in 8) above has the arrangement structure of Al 1 Ga 1 N 2 in 3) above on one of the A3 plane and the B3 plane, and the arrangement structure of Al 2 Ga 1 N 3 in 4) on the other. A symmetric array structure of 2ML units can be taken. Al 3 Ga 1 N 4 in 9) above has one of the A3 plane and B3 plane having the Al 1 Ga 1 N 2 arrangement structure of 3) above, and the other having the AlN arrangement structure (all sites of group 3 elements are Al ) can have a 2ML unit symmetric array structure.
 従って、上記1)、5)~9)のAlGa、AlGa、AlGa12(=AlGa)、AlGa12、AlGa12、または、AlGa12(=AlGa)は、上述したように、対称配列構造がA3面とB3面で異なる2ML単位の配列構造を取る場合は、AlGaN組成比のが上記1)、5)~9)の準安定AlGaNは、2ML単位でc軸方向に形成される。 Therefore, Al 1 Ga 5 N 6 , Al 5 Ga 1 N 6 , Al 3 Ga 9 N 12 (= Al 1 Ga 3 N 4 ), Al 5 Ga 7 N 12 , Al 7 Ga 5 N 12 or Al 9 Ga 3 N 12 (=Al 3 Ga 1 N 4 ), as described above, when the 2 ML unit arrangement structure is different between the A3 plane and the B3 plane, , and the AlGaN composition ratios 1) and 5) to 9) above are formed in the c-axis direction in units of 2 ML.
 但し、上記1)、5)~9)の各AlGaN組成比においても、具体的には例示しないが、例えば、上述したA3面とB3面で異なる対称配列構造を同一面内で合成することで、上記2)~4)のAlGaとAlGaとAlGaと同様に、A3面とB3面のそれぞれが同じAlとGaの対称配列構造を取り得ると考えられる。その場合は、AlGaN組成比が上記1)、5)~9)の各準安定AlGaNは、AlGaN組成比が上記2)~4)の準安定AlGaNと同様に、1ML単位でc軸方向に形成され得る。 However, even in each of the AlGaN composition ratios 1), 5) to 9), although not specifically exemplified, for example, by synthesizing different symmetrical arrangement structures in the same plane on the A3 plane and the B3 plane described above, , Al 1 Ga 2 N 3 , Al 1 Ga 1 N 2 , and Al 2 Ga 1 N 3 in 2) to 4) above, each of the A3 plane and the B3 plane has the same symmetric arrangement structure of Al and Ga. considered to be obtained. In that case, each metastable AlGaN having the AlGaN composition ratios 1), 5) to 9) is formed in the c-axis direction in units of 1 ML in the same manner as the metastable AlGaN having the AlGaN composition ratios 2) to 4). can be
 以上より、上記1)~9)に示した準安定AlGaNは、AlとGaの原子配列が対称配列となり、エネルギ的に安定なAlGaNとなる。但し、AlGaNを一定の結晶品質を維持して成長させるには、1000℃以上の高温で結晶成長を行う必要がある。しかしながら、Gaは、結晶表面のサイトに原子が到達した後も、1000℃以上では動き回ることが想定される。一方、Alは、Gaと異なり、表面に吸着し易く、サイトに入った後の移動も、多少は動くと考えられるが制限が強い。従って、準安定AlGaNであっても、上記1)のAlGaは、Gaの組成比が高いため、1000℃付近の成長温度では、Gaの移動が激しく、原子配列の対称性が乱れ、AlとGaの原子配列はランダムな状態に近くなり、上述の安定度が、他の準安定AlGaNと比べて低下すると考えられる。 As described above, the metastable AlGaN shown in the above 1) to 9) has a symmetrical arrangement of Al and Ga atoms, and is energetically stable AlGaN. However, in order to grow AlGaN while maintaining a certain crystal quality, it is necessary to grow the crystal at a high temperature of 1000° C. or higher. However, Ga is assumed to move around at 1000° C. or higher even after the atoms reach sites on the crystal surface. On the other hand, unlike Ga, Al easily adsorbs to the surface, and although it is thought that Al moves somewhat after entering the site, it is strongly restricted. Therefore, even if it is metastable AlGaN, Al 1 Ga 5 N 6 of the above 1) has a high composition ratio of Ga. It is considered that the disorder causes the atomic arrangement of Al and Ga to become nearly random, and the stability described above is lowered compared to other metastable AlGaN.
 ここで、AlGaN組成比が上記1)~9)の準安定AlGaNは、整数n(n=2~10)を用いてAlGa12-n12と表記でき、AlGa12-n12のAlNモル分率は、分数で表記するとn/12となるが、百分率で表記すると、小数点以下に端数が生じる。従って、以下では、説明の便宜上、分数表示で2/12(=1/6)、4/12(=1/3)、5/12、7/12、8/12(=2/3)、10/12(=5/6)となる6つのAlNモル分率は、近似的に、16.7%、33.3%、41.7%、58.3%、66.7%、83.3%と表記する。 Here, the metastable AlGaN having the above AlGaN composition ratios 1) to 9) can be expressed as Al n Ga 12-n N 12 using an integer n (n=2 to 10), and Al n Ga 12-n N The AlN mole fraction of 12 is n/12 when expressed as a fraction, but when expressed as a percentage, a fraction occurs after the decimal point. Therefore, for convenience of explanation, 2/12 (= 1/6), 4/12 (= 1/3), 5/12, 7/12, 8/12 (= 2/3), The six AlN mole fractions of 10/12 (=5/6) are approximately 16.7%, 33.3%, 41.7%, 58.3%, 66.7%, 83. It is written as 3%.
<層状領域内に準安定AlGaNを利用する場合の課題>
 上述したように、本願発明者は、結晶成長装置のドリフト等に起因する特性変動を抑制するために、n型AlGaN系半導体層の層状領域内に準安定AlGaNを利用することを提案しているが、層状領域内に準安定AlGaNが支配的に形成されることで生じ得る課題について説明する。
<Issues when using metastable AlGaN in the layered region>
As described above, the inventors of the present application have proposed the use of metastable AlGaN in the layered region of the n-type AlGaN semiconductor layer in order to suppress the characteristic fluctuations caused by the drift of the crystal growth apparatus. describes the problems that can arise from the dominant formation of metastable AlGaN in the layered regions.
 上述した活性層からn型窒化物半導体層(n型AlGaN系半導体層)側に向けて出射された紫外線を素子外部に取り出す一般的な紫外線発光ダイオードでは、活性層からの発光のピーク発光波長(λp)と、n型AlGaN系半導体層の吸収スペクトルの平均的なAlNモル分率で定まる吸収端波長(λae)との波長差(λp-λae)が10nm以上であれば、活性層からの発光のn型AlGaN系半導体層内での吸収が抑制される。 In general ultraviolet light emitting diodes that take out ultraviolet rays emitted from the active layer toward the n-type nitride semiconductor layer (n-type AlGaN semiconductor layer) side, the peak emission wavelength ( λp) and the absorption edge wavelength (λae) determined by the average AlN mole fraction of the absorption spectrum of the n-type AlGaN semiconductor layer, if the wavelength difference (λp−λae) is 10 nm or more, light emission from the active layer absorption in the n-type AlGaN semiconductor layer is suppressed.
 活性層からの発光が、n型AlGaN系半導体層を深さ方向に透過する際の透過率(入射光強度I0と透過光強度Iの比、I/I0)は、光路長であるn型AlGaN系半導体層の厚さに対し指数関数的に減衰する。n型AlGaN系半導体層の膜厚が1~4μm程度と大きいのに対して、層状領域の深さ方向の各層の厚みは平均的に20nm程度と短い。従って、層状領域のAlNモル分率が、n型AlGaN系半導体層の平均的なAlNモル分率より約4%程度低いため、層状領域における吸収端波長が、n型AlGaN系半導体層全体の吸収端波長λaeより僅かに長波長側にシフトするが、層状領域の光学密度(透過率の逆数の常用対数)はn型AlGaN系半導体層全体に比して小さいため、吸収端波長λaeより長波長側での吸収は極めて限定的となる。 The transmittance (ratio of incident light intensity I0 and transmitted light intensity I, I/I0) when light emitted from the active layer is transmitted through the n-type AlGaN semiconductor layer in the depth direction is the optical path length of n-type AlGaN. Attenuates exponentially with respect to the thickness of the system semiconductor layer. While the thickness of the n-type AlGaN-based semiconductor layer is as large as about 1 to 4 μm, the thickness of each layer in the depth direction of the layered region is as short as about 20 nm on average. Therefore, since the AlN mole fraction in the layered region is about 4% lower than the average AlN mole fraction in the n-type AlGaN semiconductor layer, the absorption edge wavelength in the layered region is the absorption of the entire n-type AlGaN semiconductor layer. Although it shifts slightly to longer wavelengths than the edge wavelength λae, the optical density of the layered region (the common logarithm of the reciprocal of the transmittance) is smaller than that of the entire n-type AlGaN semiconductor layer, so the wavelength is longer than the absorption edge wavelength λae. Absorption at the side becomes very limited.
 層状領域内に準安定AlGaNが支配的に形成されるためには、n型AlGaN系半導体層の平均的なAlNモル分率は、当該準安定AlGaNのAlNモル分率より約4%程度高めに設定される。一方、準安定AlGaNはAlGaN組成比が整数比であるため、そのAlNモル分率は、約8.33%毎の離散的な値を取り得る。このため、n型AlGaN系半導体層の平均的なAlNモル分率の設定範囲も、同様に、準安定AlGaNより約4%程度高い離散的な範囲となる。 In order for metastable AlGaN to be predominantly formed in the layered region, the average AlN mole fraction of the n-type AlGaN-based semiconductor layer should be about 4% higher than the AlN mole fraction of the metastable AlGaN. set. On the other hand, since the AlGaN composition ratio of metastable AlGaN is an integer ratio, the AlN mole fraction can take discrete values of about 8.33%. Therefore, the setting range of the average AlN mole fraction of the n-type AlGaN-based semiconductor layer is similarly a discrete range about 4% higher than the metastable AlGaN.
 層状領域内に準安定AlGaNが支配的に形成されるn型AlGaN系半導体層において、n型AlGaN系半導体層の平均的なAlNモル分率で定まる吸収端波長λaeが、ピーク発光波長λpに対して10nm以上の波長差(λp-λae)を確保できない場合は、発光スペクトルの一部(特に短波長側に分布する一部)が、n型AlGaN系半導体層内で吸収され、外部量子効率の低下を招く。従って、この外部量子効率の低下を回避するには、準安定AlGaNの取り得る離散的なAlNモル分率を一段階(約8.33%)ずつ高くして、波長差(λp-λae)が10nm以上となるように、n型AlGaN系半導体層の平均的なAlNモル分率を、同様に段階的に高く設定する必要がある。 In the n-type AlGaN-based semiconductor layer in which metastable AlGaN is predominantly formed in the layered region, the absorption edge wavelength λae determined by the average AlN mole fraction of the n-type AlGaN-based semiconductor layer is different from the peak emission wavelength λp. If the wavelength difference (λp−λae) of 10 nm or more cannot be secured by using the above method, part of the emission spectrum (especially the part distributed on the short wavelength side) is absorbed in the n-type AlGaN semiconductor layer, and the external quantum efficiency decreases. lead to decline. Therefore, in order to avoid this decrease in external quantum efficiency, the discrete AlN mole fraction that can be taken by metastable AlGaN is increased by one step (approximately 8.33%) so that the wavelength difference (λp−λae) becomes Similarly, the average AlN mole fraction of the n-type AlGaN-based semiconductor layer must be increased stepwise so as to be 10 nm or more.
 一方、n型AlGaN系半導体層の平均的なAlNモル分率が高くなると、n電極とn型AlGaN系半導体層との間の接触抵抗、及び、n型AlGaN系半導体層内を流れる電流に対するバルク抵抗率が高くなるため、n電極と活性層間の電流経路の寄生抵抗が高くなって、ウォールプラグ効率が低下する。特に、n型AlGaN系半導体層とn電極(例えば、Ti/Al/Ti/Auの積層構造:最下層がTi、最上層がAu)間の接触抵抗は、n型AlGaN系半導体層のAlNモル分率が大きくなると、増加する傾向にあり、特に60%を超えると顕著となるため、平均的なAlNモル分率は60%を超えないように設定するのが好ましい(非特許文献3参照)。n型AlGaN系半導体層のAlNモル分率が60%以下であれば、熱処理温度を適正に選択することで、接触抵抗を0.01Ωcm以下に調整でき、順方向電圧Vfが実用上問題のないレベルとなる(特許文献4参照)。 On the other hand, when the average AlN mole fraction of the n-type AlGaN-based semiconductor layer increases, the contact resistance between the n-electrode and the n-type AlGaN-based semiconductor layer and the bulk of the current flowing through the n-type AlGaN-based semiconductor layer increase. Due to the higher resistivity, the parasitic resistance of the current path between the n-electrode and the active layer becomes higher, reducing the wall plug efficiency. In particular, the contact resistance between the n-type AlGaN-based semiconductor layer and the n-electrode (for example, a Ti/Al/Ti/Au laminated structure: the bottom layer is Ti and the top layer is Au) is the AlN mol of the n-type AlGaN-based semiconductor layer. As the fraction increases, it tends to increase, especially when it exceeds 60%. . If the AlN mole fraction of the n-type AlGaN semiconductor layer is 60% or less, the contact resistance can be adjusted to 0.01 Ωcm 2 or less by appropriately selecting the heat treatment temperature, and the forward voltage Vf is practically problematic. It becomes a level that does not exist (see Patent Document 4).
 従って、外部量子効率の低下を回避するために、上記波長差(λp-λae)を10nmを超えて大きくし過ぎると、却って、接触抵抗及びバルク抵抗率が高くなって、ウォールプラグ効率が低下する事態が生じ得る。このため、目標とするピーク発光波長λpに対して、外部量子効率の低下を回避するために、平均的なAlNモル分率を1段階(約8.33%)高く設定すると、波長差(λp-λae)が10nm未満の状態から、10nmを超える状態に変化して、ウォールプラグ効率が低下する場合は、該波長差が10nmを大きく超過しないように、層状領域内に準安定AlGaNを支配的に形成させずに、平均的なAlNモル分率を設定するのが好ましい。これにより、目標とするピーク発光波長λpに応じて、外部量子効率の低下を回避しつつ、ウォールプラグ効率の低下も同時に抑制することができる。 Therefore, if the wavelength difference (λp-λae) exceeds 10 nm in order to avoid a decrease in external quantum efficiency, the contact resistance and bulk resistivity will rather increase, resulting in a decrease in wall plug efficiency. Things can happen. Therefore, in order to avoid a decrease in the external quantum efficiency with respect to the target peak emission wavelength λp, if the average AlN mole fraction is set one step higher (about 8.33%), the wavelength difference (λp -λae) changes from less than 10 nm to more than 10 nm, and the wall plug efficiency decreases, the metastable AlGaN dominates in the layered region so that the wavelength difference does not significantly exceed 10 nm. It is preferable to set an average AlN mole fraction without forming . As a result, it is possible to prevent a decrease in external quantum efficiency and at the same time suppress a decrease in wall plug efficiency according to the target peak emission wavelength λp.
 本発明は、上述の問題点に鑑みてなされたものであり、その目的は、n型AlGaN系半導体層内の局所的にAlNモル分率の低い層状領域内での準安定AlGaNの形成を敢えて抑制することで、層状領域内に準安定AlGaNが支配的に形成されることに起因する発光効率の低下を防止することにある。 The present invention has been made in view of the above-mentioned problems, and aims to form metastable AlGaN locally in a layered region having a low AlN mole fraction in an n-type AlGaN semiconductor layer. By suppressing it, it is possible to prevent the deterioration of the luminous efficiency caused by the dominant formation of metastable AlGaN in the layered region.
 本発明は、上記目的を達成するために、ウルツ鉱構造のAlGaN系半導体からなるn型層、活性層、及びp型層が上下方向に積層された発光素子構造部を備えてなる窒化物半導体紫外線発光素子であって、
 前記n型層がn型AlGaN系半導体で構成され、
 前記n型層と前記p型層の間に配置された前記活性層が、AlGaN系半導体で構成された1層以上の井戸層を含む量子井戸構造を有し、
 前記p型層がp型AlGaN系半導体で構成され、
 前記n型層と前記活性層と前記p型層内の各半導体層が、(0001)面に平行な多段状のテラスが形成された表面を有するエピタキシャル成長層であり、
 前記n型層が、前記n型層内に分散して存在する局所的にAlNモル分率の低い層状領域を有し、
 前記n型層の上面と直交する第1平面上での前記層状領域の各延伸方向が、前記n型層の前記上面と前記第1平面との交線に対して傾斜している部分を有し、
 整数nが6または7であって、
 前記n型層の深さ方向の全域にわたる第1の平均的なAlNモル分率Xna1が、
 (n-0.25)/12<Xna1<(n+0.25)/12
となる範囲内にあり、
 前記n型層の上端からの深さdにおける第2の平均的なAlNモル分率Xna2(d)が、前記深さdに応じて変化し、前記n型層内でXna2(d)=n/12となる1以上の深さの少なくとも1つの特定深さにおいて、前記特定深さを挟んで上側にXna2(d)<n/12となる領域が存在し、下側にXna2(d)>n/12となる領域が存在し、
 前記層状領域内に、AlNモル分率が(n-0.5)/12である中間AlGaN領域が形成されていることを第1の特徴とする窒化物半導体紫外線発光素子を提供する。
In order to achieve the above objects, the present invention provides a nitride semiconductor comprising a light-emitting element structure in which an n-type layer, an active layer, and a p-type layer made of an AlGaN-based semiconductor having a wurtzite structure are stacked vertically. An ultraviolet light emitting element,
The n-type layer is composed of an n-type AlGaN semiconductor,
the active layer disposed between the n-type layer and the p-type layer has a quantum well structure including one or more well layers made of an AlGaN-based semiconductor;
The p-type layer is composed of a p-type AlGaN semiconductor,
each of the semiconductor layers in the n-type layer, the active layer, and the p-type layer is an epitaxial growth layer having a surface on which a multi-stepped terrace parallel to the (0001) plane is formed;
wherein the n-type layer has a layered region with a locally low AlN mole fraction dispersed within the n-type layer;
Each extending direction of the layered region on a first plane perpendicular to the upper surface of the n-type layer has a portion that is inclined with respect to a line of intersection between the upper surface of the n-type layer and the first plane. death,
the integer n is 6 or 7,
A first average AlN mole fraction Xna1 over the entire depth direction of the n-type layer is
(n−0.25)/12<Xna1<(n+0.25)/12
is within the range of
A second average AlN mole fraction Xna2(d) at a depth d from the top of the n-type layer varies with the depth d such that within the n-type layer Xna2(d)=n /12, at least one specific depth has a region satisfying Xna2(d)<n/12 on the upper side of the specific depth, and a region satisfying Xna2(d)> on the lower side of the specific depth. There is a region of n/12,
A first feature of the present invention is that an intermediate AlGaN region having an AlN mole fraction of (n-0.5)/12 is formed in the layered region.
 更に、上記第1の特徴の窒化物半導体紫外線発光素子は、前記n型層の上端から前記特定深さまでの領域にわたる第3の平均的なAlNモル分率Xna3が、
 (n-0.25)/12<Xna3<(n+0.25)/12
となる範囲内にあることが好ましい。
Further, in the nitride semiconductor ultraviolet light emitting device having the first characteristic, the third average AlN mole fraction Xna3 over the region from the upper end of the n-type layer to the specific depth is
(n−0.25)/12<Xna3<(n+0.25)/12
It is preferable to be within the range of
 更に、上記第1の特徴の窒化物半導体紫外線発光素子は、前記第2の平均的なAlNモル分率Xna2(d)が、前記n型層の深さ方向の全域において、
 (n-0.25)/12<Xna2(d)<(n+0.25)/12
となる範囲内にあることが好ましい。
Further, in the nitride semiconductor ultraviolet light emitting device of the first characteristic, the second average AlN mole fraction Xna2(d) is, over the entire depth direction of the n-type layer,
(n−0.25)/12<Xna2(d)<(n+0.25)/12
It is preferable to be within the range of
 本発明は、上記目的を達成するために、ウルツ鉱構造のAlGaN系半導体からなるn型層、活性層、及びp型層が上下方向に積層された発光素子構造部を備えてなる窒化物半導体紫外線発光素子の製造方法であって、
 (0001)面に対して所定の角度だけ傾斜した主面を有するサファイア基板を含む下地部の上に、n型AlGaN系半導体の前記n型層をエピタキシャル成長し、前記n型層の表面に(0001)面に平行な多段状のテラスを表出させる第1工程と、
 前記n型層の上に、AlGaN系半導体で構成された井戸層を1層以上含む量子井戸構造の前記活性層をエピタキシャル成長し、前記井戸層の表面に(0001)面に平行な多段状のテラスを表出させる第2工程と、
 前記活性層の上に、p型AlGaN系半導体の前記p型層をエピタキシャル成長により形成する第3工程を有し、
 前記第1工程において、
 整数nが6または7であって、
 前記n型層の深さ方向の全域にわたる第1の平均的なAlNモル分率Xna1が、
 (n-0.25)/12<Xna1<(n+0.25)/12
となる範囲内にあり、
 前記n型層の上端からの深さdにおける第2の平均的なAlNモル分率Xna2(d)が、前記深さdに応じて変化し、前記n型層内でXna2(d)=n/12となる1以上の深さの少なくとも1つの特定深さにおいて、前記特定深さを挟んで上側にXna2(d)<n/12となる領域が存在し、下側にXna2(d)>n/12となる領域が存在するように、且つ、
 前記n型層内で一様に分散して存在する局所的にAlNモル分率の低い層状領域が、斜め上方に向かって延伸して形成され、
 前記層状領域内に、AlNモル分率が(n-0.5)/12である中間AlGaN領域が形成されるように、
 前記n型層を形成することを第1の特徴とする窒化物半導体紫外線発光素子の製造方法を提供する。
In order to achieve the above objects, the present invention provides a nitride semiconductor comprising a light-emitting element structure in which an n-type layer, an active layer, and a p-type layer made of an AlGaN-based semiconductor having a wurtzite structure are stacked vertically. A method for manufacturing an ultraviolet light emitting device,
The n-type layer of an n-type AlGaN semiconductor is epitaxially grown on a base portion including a sapphire substrate having a main surface inclined at a predetermined angle with respect to the (0001) plane. ) a first step of expressing a multi-stepped terrace parallel to the surface;
On the n-type layer, the active layer having a quantum well structure including one or more well layers made of an AlGaN-based semiconductor is epitaxially grown, and a multistep terrace parallel to the (0001) plane is formed on the surface of the well layer. A second step of expressing
a third step of forming the p-type layer of a p-type AlGaN semiconductor on the active layer by epitaxial growth;
In the first step,
the integer n is 6 or 7,
A first average AlN mole fraction Xna1 over the entire depth direction of the n-type layer is
(n−0.25)/12<Xna1<(n+0.25)/12
is within the range of
A second average AlN mole fraction Xna2(d) at a depth d from the top of the n-type layer varies with the depth d such that within the n-type layer Xna2(d)=n /12, at least one specific depth has a region satisfying Xna2(d)<n/12 above the specific depth, and a region satisfying Xna2(d)> below the specific depth. so that there is a region of n/12, and
A layered region with a locally low AlN mole fraction, which is uniformly dispersed in the n-type layer and is formed by extending obliquely upward,
so that an intermediate AlGaN region having an AlN mole fraction of (n−0.5)/12 is formed in the layered region,
A method for manufacturing a nitride semiconductor ultraviolet light emitting device is provided, the first feature of which is the formation of the n-type layer.
 更に、上記第1の特徴の窒化物半導体紫外線発光素子の製造方法は、前記第1工程において、前記n型層の上端から前記特定深さまでの領域にわたる第3の平均的なAlNモル分率Xna3が、
 (n-0.25)/12<Xna3<(n+0.25)/12
となる範囲内にあるように、前記n型層を形成することが好ましい。
Further, in the method for manufacturing a nitride semiconductor ultraviolet light emitting device according to the first characteristic, in the first step, a third average AlN mole fraction Xna3 over a region from the upper end of the n-type layer to the specific depth but,
(n−0.25)/12<Xna3<(n+0.25)/12
It is preferable to form the n-type layer so as to be within the range of
 更に、上記第1の特徴の窒化物半導体紫外線発光素子の製造方法は、前記第1工程において、前記第2の平均的なAlNモル分率Xna2(d)が、前記n型層の深さ方向の全域において、
 (n-0.25)/12<Xna2(d)<(n+0.25)/12
となる範囲内にあるように、前記n型層を形成することが好ましい。
Furthermore, in the method for manufacturing a nitride semiconductor ultraviolet light emitting device having the first characteristic, in the first step, the second average AlN mole fraction Xna2(d) is set in the depth direction of the n-type layer across the
(n−0.25)/12<Xna2(d)<(n+0.25)/12
It is preferable to form the n-type layer so as to be within the range of
 尚、AlGaN系半導体とは、一般式Al1-xGaN(0≦x≦1)で表されるが、バンドギャップエネルギがGaNとAlNが取り得るバンドギャップエネルギを夫々下限及び上限とする範囲内であれば、BまたはIn等の3族元素またはP等の5族元素等の不純物を微量に含んでいてもよい。また、GaN系半導体とは、基本的にGaとNで構成される窒化物半導体であるが、Al、BまたはIn等の3族元素またはP等の5族元素等の不純物を微量に含んでいてもよい。また、AlN系半導体とは、基本的にAlとNで構成される窒化物半導体であるが、Ga、BまたはIn等の3族元素またはP等の5族元素等の不純物を微量に含んでいてもよい。従って、本願では、GaN系半導体及びAlN系半導体は、それぞれAlGaN系半導体の一部である。 The AlGaN-based semiconductor is represented by the general formula Al 1-x Ga x N (0≦x≦1), and the bandgap energies that GaN and AlN can take are the lower and upper limits, respectively. A trace amount of impurities such as a group 3 element such as B or In or a group 5 element such as P may be contained within the range. A GaN-based semiconductor is basically a nitride semiconductor composed of Ga and N, but it may contain trace amounts of impurities such as group 3 elements such as Al, B or In or group 5 elements such as P. You can AlN-based semiconductors are nitride semiconductors basically composed of Al and N, but contain trace amounts of impurities such as group 3 elements such as Ga, B or In or group 5 elements such as P. You can Therefore, in the present application, the GaN-based semiconductor and the AlN-based semiconductor are each part of the AlGaN-based semiconductor.
 更に、n型またはp型AlGaN系半導体は、ドナーまたはアクセプタ不純物としてSiまたはMg等がドーピングされたAlGaN系半導体である。本願では、p型及びn型と明記されていないAlGaN系半導体は、アンドープのAlGaN系半導体を意味するが、アンドープであっても、不可避的に混入する程度の微量のドナーまたはアクセプタ不純物は含まれ得る。また、第1平面は、前記n型層の製造過程で具体的に形成された露出面や他の半導体層との境界面ではなく、前記n型層内を上下方向に平行に延伸する仮想的な平面である。更に、本明細書において、AlGaN系半導体層、GaN系半導体層、及びAlN系半導体層は、それぞれ、AlGaN系半導体、GaN系半導体、及びAlN系半導体で構成された半導体層である。 Furthermore, n-type or p-type AlGaN semiconductors are AlGaN semiconductors doped with Si, Mg, or the like as donor or acceptor impurities. In the present application, an AlGaN-based semiconductor not specified as p-type or n-type means an undoped AlGaN-based semiconductor, but even an undoped AlGaN-based semiconductor does not include a small amount of donor or acceptor impurities that are unavoidably mixed. obtain. In addition, the first plane is not an exposed surface specifically formed in the manufacturing process of the n-type layer or a boundary surface with another semiconductor layer, but an imaginary plane extending vertically in parallel within the n-type layer. is a flat surface. Furthermore, in this specification, an AlGaN-based semiconductor layer, a GaN-based semiconductor layer, and an AlN-based semiconductor layer are semiconductor layers made of an AlGaN-based semiconductor, a GaN-based semiconductor, and an AlN-based semiconductor, respectively.
 上記第1の特徴の窒化物半導体紫外線発光素子では、第1の平均的なAlNモル分率Xna1が、整数nが6または7における準安定AlGaNの離散的なAlNモル分率であるn/12を中心に±0.25/12(±約2.08%)の範囲内に制御されており、n型層内の層状領域以外の領域(以下、適宜「n型本体領域」と称す)には、AlNモル分率がn/12の第1の準安定AlGaN領域(AlGa12-n12)が安定的に形成される。更に、第2の平均的なAlNモル分率Xna2(d)も、n/12を挟んでその近傍に分布している。この結果、層状領域内には、AlNモル分率がn/12より一段階(約8.33%)小さい(n-1)/12の第2の準安定AlGaN領域(Aln-1Ga13-n12)は支配的に形成されず、代わりに、AlNモル分率が第1及び第2の準安定AlGaN領域の中間に位置する中間AlGaN領域(Aln-0.5Ga12.5-n12)が形成される。 In the nitride semiconductor ultraviolet light emitting device of the first characteristic, the first average AlN mole fraction Xna1 is n/12, which is the discrete AlN mole fraction of metastable AlGaN where the integer n is 6 or 7. is controlled within a range of ±0.25/12 (±about 2.08%) around , a first metastable AlGaN region (Al n Ga 12-n N 12 ) having an AlN mole fraction of n/12 is stably formed. Furthermore, the second average AlN mole fraction Xna2(d) is also distributed in the vicinity of n/12. As a result, a second metastable AlGaN region (Al n−1 Ga 13 -n N 12 ) is not predominantly formed, instead an intermediate AlGaN region (Al n-0.5 Ga 12.5 −n N 12 ) are formed.
 従って、n型層内において準安定AlGaNを利用する窒化物半導体紫外線発光素子において、層状領域内に準安定AlGaNが支配的に形成させる場合に、目標とするピーク発光波長λpが、AlNモル分率の選択が約8.33%毎の離散的な値となることに起因して、外部量子効率の低下とウォールプラグ効率の低下を同時に回避するのが困難となる特定の波長範囲内にある場合において、層状領域内に中間AlGaN領域が形成され、n型本体領域内に第1の準安定AlGaN領域が形成されることで、外部量子効率の低下を回避しつつ、ウォールプラグ効率の低下も同時に抑制することができる。 Therefore, in a nitride semiconductor ultraviolet light emitting device that utilizes metastable AlGaN in the n-type layer, when metastable AlGaN is predominantly formed in the layered region, the target peak emission wavelength λp is determined by the AlN mole fraction is within a certain wavelength range where it is difficult to simultaneously avoid a decrease in external quantum efficiency and a decrease in wall-plug efficiency due to the selection of discrete values of about 8.33%. wherein an intermediate AlGaN region is formed within the layered region and a first metastable AlGaN region is formed within the n-type body region to avoid a reduction in external quantum efficiency while at the same time reducing wall plug efficiency. can be suppressed.
 更に、上記第1の特徴の窒化物半導体紫外線発光素子の製造方法によれば、上記第1の特徴の窒化物半導体紫外線発光素子が作製されるため、層状領域内に準安定AlGaNが支配的に形成されることに起因する発光効率の低下を防止することができる。 Furthermore, according to the method for manufacturing a nitride semiconductor ultraviolet light emitting device having the first characteristic, the nitride semiconductor ultraviolet light emitting device having the first characteristic is manufactured, so metastable AlGaN is dominant in the layered region. A decrease in luminous efficiency due to the formation can be prevented.
 更に、本発明は、上記第1の特徴に加えて、前記第2の平均的なAlNモル分率Xna2(d)が、前記n型層の上端から前記特定深さまでの領域において、
 Xna2(d)≦n/12
となる範囲内にあることを第2の特徴とする窒化物半導体紫外線発光素子を提供する。
Furthermore, in addition to the above first feature, the present invention provides that the second average AlN mole fraction Xna2(d) in a region from the upper end of the n-type layer to the specific depth,
Xna2(d)≤n/12
The present invention provides a nitride semiconductor ultraviolet light emitting device having a second feature that it is within the range of:
 更に、本発明は、上記第1の特徴に加えて、前記第1工程において、前記第2の平均的なAlNモル分率Xna2(d)が、前記n型層の上端から前記特定深さまでの領域において、
 Xna2(d)≦n/12
となる範囲内にあるように、前記n型層を形成することを第2の特徴とする窒化物半導体紫外線発光素子の製造方法を提供する。
Furthermore, in addition to the above first feature, the present invention is characterized in that, in the first step, the second average AlN mole fraction Xna2(d) is from the upper end of the n-type layer to the specific depth. in the area
Xna2(d)≤n/12
There is provided a method for manufacturing a nitride semiconductor ultraviolet light emitting device, characterized in that the n-type layer is formed so as to fall within the range of:
 上記第2の特徴の窒化物半導体紫外線発光素子または上記第2の特徴の窒化物半導体紫外線発光素子窒化物半導体紫外線発光素子の製造方法によれば、n電極とn型層間の接触抵抗、及び、n型層の上層部分を流れる電流に対するバルク抵抗率を更に低く抑えることができ、外部量子効率の低下を回避しつつ、ウォールプラグ効率の低下を更に抑制することができる。 According to the method for manufacturing the nitride semiconductor ultraviolet light emitting device of the second characteristic or the nitride semiconductor ultraviolet light emitting device nitride semiconductor ultraviolet light emitting device of the second characteristic, the contact resistance between the n-electrode and the n-type layer, and The bulk resistivity with respect to the current flowing through the upper layer portion of the n-type layer can be further suppressed, and the deterioration of the wall plug efficiency can be further suppressed while avoiding the deterioration of the external quantum efficiency.
 更に、上記第2の特徴の窒化物半導体紫外線発光素子は、前記第2の平均的なAlNモル分率Xna2(d)が、前記n型層の前記特定深さより深い領域において、
 Xna2(d)≧n/12
となる範囲内にあることが好ましい。
Further, in the nitride semiconductor ultraviolet light emitting device having the second characteristic, in a region where the second average AlN mole fraction Xna2(d) is deeper than the specific depth of the n-type layer,
Xna2(d)≧n/12
It is preferable to be within the range of
 更に、上記第2の特徴の窒化物半導体紫外線発光素子の製造方法は、前記第1工程において、前記第2の平均的なAlNモル分率Xna2(d)が、前記n型層の前記特定深さより深い領域において、
 Xna2(d)≧n/12
となる範囲内にあるように、前記n型層を形成することが好ましい。
Further, in the method for manufacturing a nitride semiconductor ultraviolet light emitting device having the second characteristic, in the first step, the second average AlN mole fraction Xna2(d) is the specific depth of the n-type layer. In a deeper realm,
Xna2(d)≧n/12
It is preferable to form the n-type layer so as to be within the range of
 上記何れかの好適な実施態様によれば、n型層の特定深さより深い領域において、活性層からの発光の吸収を更に抑制でき、外部量子効率の低下を更に抑制できる。 According to any of the above preferred embodiments, absorption of light emitted from the active layer can be further suppressed in a region deeper than the specific depth of the n-type layer, and a decrease in external quantum efficiency can be further suppressed.
 更に、上記第1または第2の特徴の窒化物半導体紫外線発光素子は、ピーク発光波長が、前記整数nが7の場合、280nm~315nmの範囲内の所定値に設定されており、前記整数nが6の場合、300nm~330nmの範囲内の所定値に設定されていることが好ましい。 Further, in the nitride semiconductor ultraviolet light emitting device having the first or second characteristic, the peak emission wavelength is set to a predetermined value within the range of 280 nm to 315 nm when the integer n is 7, and the integer n is 6, it is preferably set to a predetermined value within the range of 300 nm to 330 nm.
 更に、上記特徴の窒化物半導体紫外線発光素子の製造方法は、前記第2工程において、
 前記窒化物半導体紫外線発光素子のピーク発光波長が、前記整数nが7の場合、280nm~315nmの範囲内の所定値となるように、前記整数nが6の場合、300nm~330nmの範囲内の所定値となるように、前記活性層を形成することが好ましい。
Furthermore, in the method for manufacturing a nitride semiconductor ultraviolet light emitting device having the above characteristics, in the second step,
When the integer n is 6, the peak emission wavelength of the nitride semiconductor ultraviolet light emitting element is within the range of 300 nm to 330 nm when the integer n is 6, so that the peak emission wavelength is a predetermined value within the range of 280 nm to 315 nm when the integer n is 7. It is preferable to form the active layer so as to have a predetermined value.
 上記何れかの好適な実施態様によれば、前記整数nが7の場合、280nm~315nmの範囲内の所定値に設定された特定のピーク発光波長に対して、前記整数nが6の場合、300nm~330nmの範囲内の所定値に設定された特定のピーク発光波長に対して、それぞれ、層状領域内に準安定AlGaNが支配的に形成されることに起因する発光効率の低下を防止することができる。尚、特定のピーク発光波長とは、上述の特定の波長範囲内にあって、層状領域内に準安定AlGaNが支配的に形成されることで、発光効率(外部量子効率またはウォールプラグ効率)の低下が起こり得るピーク発光波長である。 According to any of the above preferred embodiments, when the integer n is 7, for a particular peak emission wavelength set to a predetermined value within the range of 280 nm to 315 nm, when the integer n is 6: To prevent a decrease in luminous efficiency due to the dominant formation of metastable AlGaN in the layered region, respectively, for a specific peak emission wavelength set to a predetermined value within the range of 300 nm to 330 nm. can be done. The specific peak emission wavelength is within the specific wavelength range described above, and the formation of metastable AlGaN predominantly in the layered region reduces the emission efficiency (external quantum efficiency or wall plug efficiency). It is the peak emission wavelength at which degradation can occur.
 更に、上記第1または第2の特徴の窒化物半導体紫外線発光素子は、前記活性層が、2層以上の前記井戸層を含む多重量子井戸構造を有し、2層の前記井戸層間にAlGaN系半導体で構成されたバリア層が存在することが好ましい。 Further, in the nitride semiconductor ultraviolet light emitting device according to the first or second characteristic, the active layer has a multiple quantum well structure including two or more well layers, and an AlGaN-based quantum well layer is disposed between the two well layers. A barrier layer composed of a semiconductor is preferably present.
 更に、上記第1または第2の特徴の窒化物半導体紫外線発光素子の製造方法は、前記第2工程において、AlGaN系半導体で構成された前記井戸層とAlGaN系半導体で構成されたバリア層を交互にエピタキシャル成長により積層し、前記井戸層を2層以上含む多重量子井戸構造の前記活性層を形成することが好ましい。 Further, in the method for manufacturing a nitride semiconductor ultraviolet light emitting device having the first or second characteristic, in the second step, the well layer made of an AlGaN-based semiconductor and the barrier layer made of an AlGaN-based semiconductor are alternately formed. It is preferable to form the active layer having a multiple quantum well structure including two or more well layers by epitaxial growth.
 上記何れかの好適な実施態様によれば、活性層が多重量子井戸構造となり、井戸層が1層だけの場合に比べて発光効率の向上が期待できる。 According to any of the preferred embodiments described above, the active layer has a multiple quantum well structure, and an improvement in luminous efficiency can be expected compared to the case where there is only one well layer.
 更に、上記第1または第2の特徴の窒化物半導体紫外線発光素子は、サファイア基板を含む下地部を、さらに備え、前記サファイア基板は、(0001)面に対して所定の角度だけ傾斜した主面を有し、当該主面の上方に前記発光素子構造部が形成されており、前記サファイア基板の前記主面から前記p型層までの各半導体層が、(0001)面に平行な多段状のテラスが形成された表面を有するエピタキシャル成長層であることが好ましい。 Further, the nitride semiconductor ultraviolet light emitting device according to the first or second characteristic further includes a base portion including a sapphire substrate, and the sapphire substrate has a main surface inclined at a predetermined angle with respect to the (0001) plane. and the light emitting element structure is formed above the main surface, and each semiconductor layer from the main surface of the sapphire substrate to the p-type layer is formed in a multi-step shape parallel to the (0001) plane It is preferably an epitaxially grown layer having a terraced surface.
 上記好適な実施態様によれば、オフ角を有するサファイア基板を用いて、サファイア基板の主面から活性層の表面までの各層の表面に多段状のテラスが表出するようにエピタキシャル成長を行うことができ、上記各特徴の窒化物半導体紫外線発光素子を実現できる。 According to the preferred embodiment, epitaxial growth can be performed using a sapphire substrate having an off-angle so that multi-stepped terraces appear on the surface of each layer from the main surface of the sapphire substrate to the surface of the active layer. It is possible to realize a nitride semiconductor ultraviolet light emitting device having the above characteristics.
 上記第1または第2の特徴の窒化物半導体紫外線発光素子または窒化物半導体紫外線発光素子の製造方法によれば、特定のピーク発光波長において、n型AlGaN系半導体層内の局所的にAlNモル分率の低い層状領域内での準安定AlGaNの形成を敢えて抑制することで、層状領域内に準安定AlGaNが支配的に形成されることに起因する発光効率の低下を防止できる。更に、所定の波長範囲内に目標とするピーク発光波長を設定する際に、n型層の層状領域内に準安定AlGaNを利用する実施態様と利用しない実施態様を、目標とするピーク発光波長に応じて使い分けることで、発光効率の低下を防止しつつ、ピーク発光波長の設定自由度を高めることができる。 According to the nitride semiconductor ultraviolet light-emitting device or the method for manufacturing the nitride semiconductor ultraviolet light-emitting device having the first or second feature, at a specific peak emission wavelength, AlN moles are locally present in the n-type AlGaN-based semiconductor layer. By deliberately suppressing the formation of metastable AlGaN in the layered region with a low index, it is possible to prevent a decrease in luminous efficiency caused by predominantly forming metastable AlGaN in the layered region. Furthermore, when setting the target peak emission wavelength within a predetermined wavelength range, the embodiment that utilizes metastable AlGaN in the layered region of the n-type layer and the embodiment that does not utilize the metastable AlGaN are adjusted to the target peak emission wavelength. By using them properly according to need, it is possible to increase the degree of freedom in setting the peak emission wavelength while preventing a decrease in luminous efficiency.
AlGaNのウルツ鉱結晶構造を模式的に示す図。FIG. 2 is a diagram schematically showing the wurtzite crystal structure of AlGaN; 図1に示すウルツ鉱結晶構造のc軸方向から見たA面の各サイトとB面の各サイトとの間の位置関係を示す平面図。FIG. 2 is a plan view showing the positional relationship between each site on the A plane and each site on the B plane viewed from the c-axis direction of the wurtzite crystal structure shown in FIG. 1 ; AlGaN組成比が整数比のAlGa、AlGa、AlGaで表される各準安定AlGaNにおける3族元素のサイト面(A3面、B3面)でのAlとGaの対称配列構造を模式的に示す図。On the site plane (A3 plane, B3 plane) of the Group 3 element in each metastable AlGaN represented by Al 1 Ga 2 N 3 , Al 1 Ga 1 N 2 , and Al 2 Ga 1 N 3 with an AlGaN composition ratio of an integer ratio Schematically shows the symmetric arrangement structure of Al and Ga in FIG. 第1実施形態に係る窒化物半導体紫外線発光素子の構造の一例を模式的に示した要部断面図。FIG. 2 is a cross-sectional view of essential parts schematically showing an example of the structure of the nitride semiconductor ultraviolet light emitting device according to the first embodiment; 図4に示す窒化物半導体紫外線発光素子の活性層の積層構造の一例を模式的に示した要部断面図。FIG. 5 is a cross-sectional view of a main part schematically showing an example of the lamination structure of the active layer of the nitride semiconductor ultraviolet light emitting device shown in FIG. 4; 図5に示す傾斜領域IAのより詳細の構造を模式的に示す図。FIG. 6 is a diagram schematically showing a more detailed structure of the inclined area IA shown in FIG. 5; Ga富化井戸領域220aのAlNモル分率が50%の場合における、AlGaN井戸層とAlGaNバリア層からなる量子井戸構造の発光波長と、井戸層の膜厚及びバリア層のAlNモル分率との関係を示すグラフ。The emission wavelength of the quantum well structure composed of the AlGaN well layer and the AlGaN barrier layer, the film thickness of the well layer, and the AlN mole fraction of the barrier layer when the AlN mole fraction of the Ga-enriched well region 220a is 50%. A graph showing the relationship. Ga富化井戸領域220aのAlNモル分率が41.7%の場合における、AlGaN井戸層とAlGaNバリア層からなる量子井戸構造の発光波長と、井戸層の膜厚及びバリア層のAlNモル分率との関係を示すグラフ。Emission wavelength of quantum well structure composed of AlGaN well layer and AlGaN barrier layer, film thickness of well layer, and AlN mole fraction of barrier layer when Ga-enriched well region 220a has an AlN mole fraction of 41.7% A graph showing the relationship between Ga富化井戸領域220aのAlNモル分率が33.3%の場合における、AlGaN井戸層とAlGaNバリア層からなる量子井戸構造の発光波長と、井戸層の膜厚及びバリア層のAlNモル分率との関係を示すグラフ。Emission wavelength of a quantum well structure composed of an AlGaN well layer and an AlGaN barrier layer, the film thickness of the well layer, and the AlN mole fraction of the barrier layer when the AlN mole fraction of the Ga-enriched well region 220a is 33.3%. A graph showing the relationship between GaN井戸層とAlGaNバリア層からなる量子井戸構造の発光波長と、井戸層の膜厚及びバリア層のAlNモル分率との関係を示すグラフ。4 is a graph showing the relationship between the emission wavelength of a quantum well structure composed of GaN well layers and AlGaN barrier layers, the film thickness of the well layers, and the AlN mole fraction of the barrier layers. 図4に示す窒化物半導体紫外線発光素子を図4の上側から見た場合の構造の一例を模式的に示した平面図。FIG. 5 is a plan view schematically showing an example of the structure of the nitride semiconductor ultraviolet light emitting device shown in FIG. 4 when viewed from the upper side of FIG. 4; n型層の上端からの深さdにおける第2の平均的なAlNモル分率Xna2(d)の深さdに応じた変化の一例を示すグラフ。7 is a graph showing an example of changes in second average AlN mole fraction Xna2(d) at depth d from the upper end of the n-type layer according to depth d; 試料片のCL法によるAlNモル分率の測定断面の主要部を示すSEM像。SEM image showing the main part of the cross section of the sample piece measured for the AlN mole fraction by the CL method. 図13に示す試料片の測定断面上の6つY座標上における第1及び第2CLスペクトルを示す図。FIG. 14 is a diagram showing first and second CL spectra on six Y-coordinates on the measurement cross section of the sample piece shown in FIG. 13; 試料片の層状領域内のAlNモル分率を断面TEM-EDXのライン分析により測定する4箇所の測定領域A~Dを示すHAADF-STEM像。HAADF-STEM images showing four measurement areas A to D where the AlN mole fraction in the layered region of the sample piece is measured by cross-sectional TEM-EDX line analysis. 第2実施形態に係る窒化物半導体紫外線発光素子の構造の一例を模式的に示した要部断面図。FIG. 2 is a cross-sectional view of a main part schematically showing an example of the structure of a nitride semiconductor ultraviolet light emitting device according to a second embodiment; 図16に示す窒化物半導体紫外線発光素子の活性層を含む要部の積層構造の一例を模式的に示した要部断面図。FIG. 17 is a cross-sectional view of a main part schematically showing an example of a layered structure of a main part including an active layer of the nitride semiconductor ultraviolet light emitting device shown in FIG. 16; 一般的な紫外線発光ダイオードの素子構造の一例を模式的に示した要部断面図。FIG. 2 is a cross-sectional view of a main part schematically showing an example of an element structure of a general ultraviolet light emitting diode;
 本発明の実施形態に係る窒化物半導体紫外線発光素子(以下、単に「発光素子」と略称する。)につき、図面に基づいて説明する。尚、以下の説明で使用する図面の模式図では、説明の理解の容易のために、要部を強調して発明内容を模式的に示しているため、各部の寸法比は必ずしも実際の素子と同じ寸法比とはなっていない。以下、本実施形態では、発光素子が発光ダイオードの場合を想定して説明する。 A nitride semiconductor ultraviolet light emitting device (hereinafter simply referred to as "light emitting device") according to an embodiment of the present invention will be described based on the drawings. In the schematic diagrams of the drawings used in the following explanation, the contents of the invention are schematically shown with emphasis on the essential parts for easy understanding of the explanation, so the dimensional ratio of each part does not necessarily correspond to the actual element. They do not have the same dimensional ratio. In the following description of the present embodiment, it is assumed that the light-emitting element is a light-emitting diode.
[第1実施形態]
<発光素子の素子構造>
 図4に示すように、第1実施形態の発光素子1は、サファイア基板11を含む下地部10と、複数のAlGaN系半導体層21~24、p電極26、及び、n電極27を含む発光素子構造部20とを備える。発光素子1は、発光素子構造部20側(図4における図中上側)を実装用の基台(サブマウント等)に向けて実装される(フリップチップ実装される)ものであり、光の取出方向は下地部10側(図4における図中下側)である。尚、本明細書では、説明の便宜上、サファイア基板11の主面11a(または、下地部10及び各AlGaN系半導体層21~24の上面)に垂直な方向を「上下方向」(または、「縦方向」)と称し、下地部10から発光素子構造部20に向かう方向を上方向、その逆を下方向とする。また、上下方向に平行な平面を「第1平面」と称す。更に、サファイア基板11の主面11a(または、下地部10及び各AlGaN系半導体層21~24の上面)に平行な平面を「第2平面」と称し、該第2平面に平行な方向を「横方向」と称す。
[First embodiment]
<Element structure of light-emitting element>
As shown in FIG. 4, the light-emitting device 1 of the first embodiment includes a base portion 10 including a sapphire substrate 11, a plurality of AlGaN-based semiconductor layers 21 to 24, a p-electrode 26, and an n-electrode 27. and a structure 20 . The light emitting element 1 is mounted (flip-chip mounted) with the side of the light emitting element structure 20 (upper side in FIG. 4) facing a base for mounting (such as a submount). The direction is the base portion 10 side (lower side in FIG. 4). In this specification, for convenience of explanation, the direction perpendicular to the main surface 11a of the sapphire substrate 11 (or the upper surfaces of the underlying portion 10 and the AlGaN semiconductor layers 21 to 24) is referred to as the "vertical direction" (or the "vertical direction"). The direction from the base portion 10 to the light emitting element structure portion 20 is defined as the upward direction, and the opposite direction is defined as the downward direction. A plane parallel to the vertical direction is referred to as a "first plane". Further, a plane parallel to the main surface 11a of the sapphire substrate 11 (or the upper surfaces of the underlying portion 10 and the AlGaN-based semiconductor layers 21 to 24) is referred to as a "second plane", and a direction parallel to the second plane is referred to as a "second plane." lateral direction”.
 下地部10は、サファイア基板11と、サファイア基板11の主面11a上に直接形成されたAlN層12を備えて構成される。サファイア基板11は、主面11aが(0001)面に対して一定の範囲内(例えば、0.3°~6°程度まで)の角度(オフ角)で傾斜し、主面11a上に多段状のテラスが表出している微傾斜基板である。 The underlying portion 10 includes a sapphire substrate 11 and an AlN layer 12 directly formed on the principal surface 11 a of the sapphire substrate 11 . The sapphire substrate 11 has a main surface 11a inclined at an angle (off angle) within a certain range (for example, about 0.3° to 6°) with respect to the (0001) plane, and has a multistep shape on the main surface 11a. This is a slightly inclined substrate with exposed terraces.
 AlN層12は、サファイア基板11の主面からエピタキシャル成長したAlN結晶で構成され、このAlN結晶はサファイア基板11の主面11aに対してエピタキシャルな結晶方位関係を有している。具体的には、例えば、サファイア基板11のC軸方向(<0001>方向)とAlN結晶のC軸方向が揃うように、AlN結晶が成長する。尚、AlN層12を構成するAlN結晶は、微量のGaやその他の不純物を含んでいてもよいAlN系半導体層であってもよい。本実施形態では、AlN層12の膜厚として、2μm~3μm程度を想定している。尚、下地部10の構造及び使用する基板等は、上述した構成に限定されるものではない。例えば、AlN層12とAlGaN系半導体層21の間に、AlNモル分率が当該AlGaN系半導体層21のAlNモル分率以上のAlGaN系半導体層を備えていてもよい。 The AlN layer 12 is composed of AlN crystal epitaxially grown from the main surface of the sapphire substrate 11 , and this AlN crystal has an epitaxial crystal orientation relationship with respect to the main surface 11 a of the sapphire substrate 11 . Specifically, for example, the AlN crystal is grown such that the C-axis direction (<0001> direction) of the sapphire substrate 11 and the C-axis direction of the AlN crystal are aligned. The AlN crystal forming the AlN layer 12 may be an AlN-based semiconductor layer that may contain a small amount of Ga or other impurities. In this embodiment, the film thickness of the AlN layer 12 is assumed to be approximately 2 μm to 3 μm. The structure of the base portion 10, the substrates to be used, and the like are not limited to those described above. For example, between the AlN layer 12 and the AlGaN-based semiconductor layer 21, an AlGaN-based semiconductor layer having an AlN mole fraction equal to or higher than the AlN mole fraction of the AlGaN-based semiconductor layer 21 may be provided.
 発光素子構造部20のAlGaN系半導体層21~24は、下地部10側から順に、n型クラッド層21(n型層)、活性層22、電子ブロック層23(p型層)、及び、p型コンタクト層24(p型層)を順にエピタキシャル成長させて積層した構造を備えている。 The AlGaN-based semiconductor layers 21 to 24 of the light-emitting element structure 20 are composed of an n-type cladding layer 21 (n-type layer), an active layer 22, an electron block layer 23 (p-type layer), and a p-type layer in this order from the underlying portion 10 side. It has a structure in which the type contact layer 24 (p-type layer) is epitaxially grown in order and laminated.
 本実施形態では、サファイア基板11の主面11aから順番にエピタキシャル成長した下地部10のAlN層12、及び、発光素子構造部20のn型クラッド層21と活性層22内の各半導体層と電子ブロック層23は、ステップフロー成長によるサファイア基板11の主面11aに由来する(0001)面に平行な多段状のテラスが形成された表面を有する。尚、p型層のp型コンタクト層24については、電子ブロック層23上にエピタキシャル成長により形成されるため、同様の多段状のテラスが形成され得るが、必ずしも同様の多段状のテラスが形成された表面を有していなくてもよい。 In this embodiment, the AlN layer 12 of the base portion 10 epitaxially grown in order from the main surface 11a of the sapphire substrate 11, the n-type cladding layer 21 of the light emitting element structure portion 20, each semiconductor layer in the active layer 22, and the electron block. The layer 23 has a surface formed with multi-stepped terraces parallel to the (0001) plane derived from the main surface 11a of the sapphire substrate 11 by step-flow growth. As for the p-type contact layer 24 of the p-type layer, since it is formed by epitaxial growth on the electron blocking layer 23, a similar multi-stepped terrace can be formed, but a similar multi-stepped terrace is not necessarily formed. It does not have to have a surface.
 尚、図4に示すように、発光素子構造部20の内、活性層22、電子ブロック層23、及び、p型コンタクト層24は、n型クラッド層21の上面の第2領域R2上に積層された部分が、エッチング等によって除去され、n型クラッド層21の上面の第1領域R1上に形成されている。そして、n型クラッド層21の上面は、第1領域R1を除く第2領域R2において露出している。n型クラッド層21の上面は、図4に模式的に示すように、第1領域R1と第2領域R2間で高さが異なっている場合があり、その場合は、n型クラッド層21の上面は、第1領域R1と第2領域R2において個別に規定される。 In addition, as shown in FIG. 4, the active layer 22, the electron blocking layer 23, and the p-type contact layer 24 in the light-emitting element structure 20 are laminated on the second region R2 on the upper surface of the n-type cladding layer 21. The etched portion is removed by etching or the like and formed on the first region R1 on the upper surface of the n-type cladding layer 21 . The upper surface of the n-type cladding layer 21 is exposed in the second region R2 except for the first region R1. As schematically shown in FIG. 4, the upper surface of the n-type clad layer 21 may differ in height between the first region R1 and the second region R2. The upper surface is separately defined in the first region R1 and the second region R2.
 n型AlGaN系半導体で構成されるn型クラッド層21では、エピタキシャル成長過程において、成長表面に(0001)面に平行な多段状のテラスが形成され、質量移動し易いGaは、隣接するテラス間を連結する(0001)面に対して傾斜した傾斜領域内に集中することで、AlNモル分率がテラス領域より低いGa富化n型領域が形成される。エピタキシャル成長の進行とともに、上記傾斜領域が斜め上方に延伸して形成される結果、n型クラッド層21内に、局所的にAlNモル分率の低い層状領域21aが一様に分散して形成される。第1平面上での層状領域21aの各延伸方向は、n型クラッド層21の上面と第1平面との交線に対して傾斜している部分を有する。 In the n-type cladding layer 21 composed of an n-type AlGaN semiconductor, multi-stepped terraces parallel to the (0001) plane are formed on the growth surface in the epitaxial growth process, and Ga, which is easy to mass transfer, moves between adjacent terraces. By concentrating in the tilted regions tilted with respect to the connecting (0001) planes, Ga-enriched n-type regions with a lower AlN mole fraction than the terraced regions are formed. As the epitaxial growth progresses, the inclined region is formed by extending obliquely upward. As a result, the layered regions 21a having a low AlN mole fraction are locally dispersed uniformly in the n-type cladding layer 21. . Each extending direction of the layered region 21a on the first plane has a portion that is inclined with respect to the line of intersection between the upper surface of the n-type cladding layer 21 and the first plane.
 一実施態様では、n型クラッド層21のエピタキシャル成長過程において、傾斜領域内でのGa富化n型領域の形成に伴い、つまり、テラス領域から傾斜領域へのGaの質量移動により、テラス領域内の一部において、Alの密度が相対的に増加して、AlNモル分率が平均的なAlNモル分率より高いAl富化n型領域が形成され得る。 In one embodiment, during the epitaxial growth of the n-type cladding layer 21, the formation of the Ga-enriched n-type region in the graded region, that is, mass transfer of Ga from the terrace region to the graded region causes In part, the density of Al can be relatively increased to form an Al-enriched n-type region in which the AlN mole fraction is higher than the average AlN mole fraction.
 層状領域21aは、背景技術の欄で上述したように、n型クラッド層21の表面に対して斜め方向に延伸しており、バンドギャップエネルギが局所的に小さくなるため、キャリアが局在化し易くなり、低抵抗の電流経路として機能する。n型クラッド層21内の層状領域21a以外の領域をn型本体領域21bと呼ぶ。 As described above in the background art section, the layered region 21a extends in an oblique direction with respect to the surface of the n-type cladding layer 21, and the bandgap energy is locally reduced, so that carriers are easily localized. and functions as a low-resistance current path. A region other than the layered region 21a in the n-type cladding layer 21 is called an n-type body region 21b.
 本実施形態では、n型クラッド層21の深さ方向の全域にわたる第1の平均的なAlNモル分率Xna1は、下記の式(1)の不等式で表される範囲内にある。尚、下記の式(1)中のnは整数の6または7である。
 (n-0.25)/12<Xna1<(n+0.25)/12  (1)
In this embodiment, the first average AlN mole fraction Xna1 over the entire depth of the n-type cladding layer 21 is within the range represented by the following inequality (1). Incidentally, n in the following formula (1) is an integer of 6 or 7.
(n−0.25)/12<Xna1<(n+0.25)/12 (1)
 更に、本実施形態では、n型クラッド層21の上面からの深さd(nm)における第2の平均的なAlNモル分率Xna2(d)は、深さdに応じて変化し、Xna2(d)=0となる深さd0が1以上存在する。そして、その深さd0の内の少なくとも1つの特定深さdxにおいて、特定深さdxを挟んで上側にXna2(d)<n/12となる領域が存在し、下側にXna2(d)>n/12となる領域が存在する。 Furthermore, in the present embodiment, the second average AlN mole fraction Xna2(d) at the depth d (nm) from the upper surface of the n-type cladding layer 21 changes according to the depth d, and Xna2( d) There are 1 or more depths d0 at which =0. In at least one specific depth dx of the depths d0, there exists a region where Xna2(d)<n/12 on the upper side across the specific depth dx, and Xna2(d)> on the lower side. There is a region of n/12.
 深さd0及び特定深さdxの一典型例としては、深さd0が1つで、d0=dxの場合が想定される。更に、この典型例では、一例として、後述する図12に示す実施例のように、n型クラッド層21の成長開始時点では、Xna2(d)>n/12であり、成長とともに、Xna2(d)<n/12となるまでXna2(d)が低下するケースが想定される。尚、少なくとも1つの深さd0は、一点でXna2(d0)=0となるのではなく、連続する深さdの範囲で、Xna2(d0)=0となる場合も含まれる。特定深さdxも同様である。 As a typical example of the depth d0 and the specific depth dx, it is assumed that there is one depth d0 and d0=dx. Furthermore, in this typical example, Xna2(d)>n/12 at the start of the growth of the n-type cladding layer 21 as in the example shown in FIG. 12 described later, and Xna2(d )<n/12, where Xna2(d) decreases. Note that at least one depth d0 may be Xna2(d0)=0 in a continuous range of depths d instead of being Xna2(d0)=0 at one point. The same applies to the specific depth dx.
 更に、一実施態様として、n型クラッド層21の上面から特定深さdxまでの領域にわたる第3の平均的なAlNモル分率Xna3が、下記の式(2)の不等式で表される範囲内にあるのが好ましい。
 (n-0.25)/12<Xna3<(n+0.25)/12  (2)
 尚、特定深さdxが複数存在する場合は、特定深さdxのそれぞれに対して、上記関係が満足されているのが好ましい。
Furthermore, as one embodiment, the third average AlN mole fraction Xna3 over the region from the upper surface of the n-type cladding layer 21 to the specific depth dx is within the range represented by the following inequality (2) preferably in
(n−0.25)/12<Xna3<(n+0.25)/12 (2)
When there are a plurality of specific depths dx, it is preferable that the above relationship is satisfied for each of the specific depths dx.
 更に、一実施態様として、第2の平均的なAlNモル分率Xna2(d)が、n型クラッド層21の深さ方向の全域において、下記の式(3)の不等式で表される範囲内にあるのがより好ましい。
 (n-0.25)/12<Xna2(d)<(n+0.25)/12  (3)
Furthermore, as one embodiment, the second average AlN mole fraction Xna2(d) is within the range represented by the following inequality of formula (3) throughout the depth direction of the n-type cladding layer 21 is more preferable.
(n−0.25)/12<Xna2(d)<(n+0.25)/12 (3)
 更に、一実施態様として、Xna2(d)が、n型クラッド層21の上面から特定深さdxまでの領域において、下記の式(4)の不等式で表される範囲内にあるのが好ましい。更に、Xna2(d)が式(3)で表される範囲内にある上記好ましい実施態様において、Xna2(d)が、n型クラッド層21の上面から特定深さdxまでの領域において、下記の式(5)の不等式で表される範囲内にあるのがより好ましい。
 Xna2(d)≦n/12  (4)
 (n-0.25)/12<Xna2(d)≦n/12  (5)
Furthermore, as one embodiment, Xna2(d) is preferably within the range represented by the following inequality (4) in the region from the upper surface of the n-type cladding layer 21 to the specific depth dx. Furthermore, in the above preferred embodiment in which Xna2(d) is within the range represented by formula (3), Xna2(d) is the following in a region from the upper surface of the n-type cladding layer 21 to a specific depth dx: It is more preferable to be within the range represented by the inequality of formula (5).
Xna2(d)≤n/12 (4)
(n−0.25)/12<Xna2(d)≦n/12 (5)
 更に、Xna2(d)が式(4)または式(5)で表される範囲内にある上記好ましい実施態様において、Xna2(d)が、特定深さdxより深い領域において、下記の式(6)、より好ましくは、式(7)の不等式で表される範囲内にあるのが好ましい。
 n/12≦Xna2(d)  (6)
 n/12≦Xna2(d)<(n+0.25)/12  (7)
Furthermore, in the above preferred embodiment in which Xna2(d) is within the range represented by formula (4) or formula (5), Xna2(d) is expressed by the following formula (6) in a region deeper than the specific depth dx ), more preferably within the range represented by the inequality of formula (7).
n/12≤Xna2(d) (6)
n/12≦Xna2(d)<(n+0.25)/12 (7)
 また、第1の平均的なAlNモル分率Xna1が、AlGaN組成比が整数比のAlGa12-n12となっている第1の準安定AlGaN領域のAlNモル分率(n/12)を基準を中心に±0.25/12(±約2.08%)の範囲内に制御されているため、n型本体領域21b内には、当該第1の準安定AlGaN領域が一様に形成されている。第2の平均的なAlNモル分率Xna2(d)が第1の準安定AlGaN領域のAlNモル分率(n/12)より低い領域では、n型本体領域21bの上記Al富化n型領域内に、第1の準安定AlGaN領域が形成される。 Also, the first average AlN mole fraction Xna1 is the AlN mole fraction ( n / 12 ) is controlled within a range of ±0.25/12 (±about 2.08%) around the reference, the first metastable AlGaN region is uniform in the n-type body region 21b. is formed in In the region where the second average AlN mole fraction Xna2(d) is lower than the AlN mole fraction (n/12) of the first metastable AlGaN region, the Al-enriched n-type region of the n-type body region 21b A first metastable AlGaN region is formed therein.
 層状領域21a内には、第1の準安定AlGaN領域よりAlNモル分率が1段階(約8.33%)小さく、AlGaN組成比が整数比のAln-1Ga13-n12となっている第2の準安定AlGaN領域が、層状領域21aの形成時のGaの質量移動に伴い形成され得る。しかし、層状領域21a内には、第2の準安定AlGaN領域は支配的に形成されず、代わりに、AlNモル分率が第1及び第2の準安定AlGaN領域の中間に位置する中間AlGaN領域(Aln-0.5Ga12.5-n12)が形成される。 In the layered region 21a, the AlN mole fraction is one step (approximately 8.33%) smaller than that of the first metastable AlGaN region, and the AlGaN composition ratio is Al n−1 Ga 13-n N 12 with an integer ratio. A second metastable AlGaN region can be formed with the mass transfer of Ga during the formation of the layered region 21a. However, within layered region 21a, the second metastable AlGaN region is not predominantly formed, but instead an intermediate AlGaN region in which the AlN mole fraction is intermediate between the first and second metastable AlGaN regions. (Al n-0.5 Ga 12.5-n N 12 ) is formed.
 本実施形態では、n型クラッド層21の膜厚として、一般的な窒化物半導体紫外線発光素子で採用されている膜厚と同様に、1μm~2μm程度を想定しているが、当該膜厚は、2μm~4μm程度であってもよい。 In this embodiment, the thickness of the n-type cladding layer 21 is assumed to be about 1 μm to 2 μm, which is the same as the thickness used in general nitride semiconductor ultraviolet light emitting devices. , 2 μm to 4 μm.
 活性層22は、AlGaN系半導体(AlN系半導体を除く)で構成される2層以上の井戸層220と、AlGaN系半導体(GaN系半導体を除く)またはAlN系半導体で構成される1層以上のバリア層221を交互に積層した多重量子井戸構造を備える。最下層の井戸層220とn型クラッド層21の間には、バリア層221を必ずしも設ける必要はない。また、本実施形態では、最上層の井戸層220と電子ブロック層23の間には、バリア層221を設けていないが、好ましい一実施態様として、バリア層221より薄膜でAlNモル分率の高いAlGaN層またはAlN層を設けても構わない。 The active layer 22 includes two or more well layers 220 composed of AlGaN-based semiconductors (excluding AlN-based semiconductors) and one or more layers composed of AlGaN-based semiconductors (excluding GaN-based semiconductors) or AlN-based semiconductors. It has a multiple quantum well structure in which barrier layers 221 are alternately laminated. It is not always necessary to provide the barrier layer 221 between the bottom well layer 220 and the n-type cladding layer 21 . In addition, in this embodiment, the barrier layer 221 is not provided between the uppermost well layer 220 and the electron blocking layer 23. An AlGaN layer or an AlN layer may be provided.
 電子ブロック層23は、p型AlGaN系半導体で構成される。p型コンタクト層24は、p型AlGaN系半導体またはp型GaN系半導体で構成される。p型コンタクト層24は、典型的にはp-GaNで構成される。 The electron block layer 23 is composed of a p-type AlGaN semiconductor. The p-type contact layer 24 is composed of a p-type AlGaN semiconductor or a p-type GaN semiconductor. The p-type contact layer 24 is typically composed of p-GaN.
 図5に、活性層22における井戸層220及びバリア層221の積層構造(多重量子井戸構造)の一例を模式的に示す。図5では、井戸層220とバリア層221がそれぞれ3層の場合を例示する。n型クラッド層21上に、バリア層221、井戸層220の順に3層分が積層されており、最上層の井戸層220上に電子ブロック層23が位置している。 FIG. 5 schematically shows an example of a laminated structure (multiple quantum well structure) of well layers 220 and barrier layers 221 in the active layer 22 . FIG. 5 illustrates a case where the well layers 220 and the barrier layers 221 each include three layers. Three layers of a barrier layer 221 and a well layer 220 are laminated in this order on the n-type cladding layer 21, and the electron blocking layer 23 is positioned on the well layer 220 of the uppermost layer.
 図5に示される井戸層220、バリア層221、及び、電子ブロック層23におけるテラスTが多段状に成長する構造は、上記非特許文献1及び2に開示されているように、公知の構造である。各層において横方向に隣接するテラスT間には、上述したように、(0001)面に対して傾斜した傾斜領域IAが形成されている。傾斜領域IA以外の上下がテラスTで挟まれた領域を、テラス領域TAと称す。本実施形態では、1つのテラスTの奥行(隣接する傾斜領域IA間の距離)は数10nm~数100nmが想定される。従って、傾斜領域IA内に階段状に表出する(0001)面は、多段状のテラスTのテラス面とは区別される。図6に、例えば、1つの井戸層220の傾斜領域IAの表面に表出する階段状構造(マクロステップ構造)を模式的に示す。 The structure in which the terraces T in the well layer 220, the barrier layer 221, and the electron blocking layer 23 shown in FIG. be. Between the laterally adjacent terraces T in each layer, as described above, an inclined area IA inclined with respect to the (0001) plane is formed. A region other than the inclined region IA, which is sandwiched between the terraces T, is referred to as a terrace region TA. In this embodiment, the depth of one terrace T (distance between adjacent inclined areas IA) is assumed to be several tens of nanometers to several hundreds of nanometers. Therefore, the (0001) plane appearing stepwise in the inclined area IA is distinguished from the terrace plane of the multi-stepped terrace T. FIG. FIG. 6 schematically shows, for example, a stepped structure (macrostep structure) appearing on the surface of the inclined region IA of one well layer 220. As shown in FIG.
 図5に模式的に示すように、井戸層220がAlGaN系半導体で構成され、AlNモル分率が0%でない場合、井戸層220の各層において、テラス領域TAから傾斜領域IAへのGaの質量移動により、AlNモル分率が井戸層220内の平均的なAlNモル分率Xwaよりの低いGa富化井戸領域220aが傾斜領域IA内に形成されている。更に、一実施態様では、傾斜領域IA内でのGa富化井戸領域220aの形成に伴い、つまり、テラス領域TAから傾斜領域IAへのGaの質量移動により、テラス領域TA内の一部において、Alの密度が相対的に増加して、AlNモル分率が平均的なAlNモル分率Xwaより高いAl富化井戸領域が形成されていても良い。 As schematically shown in FIG. 5, when the well layer 220 is composed of an AlGaN-based semiconductor and the AlN mole fraction is not 0%, in each layer of the well layer 220, the mass of Ga from the terrace region TA to the inclined region IA is Due to the migration, a Ga-enriched well region 220a having an AlN mole fraction lower than the average AlN mole fraction Xwa in the well layer 220 is formed in the graded region IA. Further, in one embodiment, along with the formation of the Ga-enriched well region 220a within the graded area IA, i.e., due to mass transfer of Ga from the terrace area TA to the graded area IA, in a portion of the terrace area TA: The density of Al may be relatively increased to form an Al-enriched well region in which the AlN mole fraction is higher than the average AlN mole fraction Xwa.
 また、好ましい一実施態様として、井戸層220がAlGaN系半導体で構成され、AlNモル分率が0%でない場合において、井戸層220の平均的なAlNモル分率Xwaは、一例として、Ga富化井戸領域220aにAlNモル分率Xw0の準安定AlGaNを形成する場合は、概ね、Xw0+2%~Xw0+3%の範囲内に調整されているのが好ましい。当該好ましい実施態様により、井戸層220における傾斜領域IAとテラス領域TAのAlNモル分率差は、当該AlNモル分率差に起因するダブル発光ピークの発生を抑制し得る4%以下となる。尚、井戸層220の平均的なAlNモル分率Xwaは、Xw0+2%~Xw0+3%の範囲外であっても、井戸層220の傾斜領域IA内に、局所的にAlNモル分率の低いGa富化井戸領域220aが形成される限りにおいて、ピーク発光波長の目標値に応じた当該Ga富化井戸領域220a内のAlNモル分率をXw1%として、Xw1+2%~Xw1+3%の範囲内となる任意の値に設定し得る。 Further, as a preferred embodiment, when the well layer 220 is composed of an AlGaN-based semiconductor and the AlN mole fraction is not 0%, the average AlN mole fraction Xwa of the well layer 220 is, for example, Ga-enriched When metastable AlGaN having an AlN mole fraction of Xw0 is formed in the well region 220a, it is preferably adjusted within a range of approximately Xw0+2% to Xw0+3%. According to this preferred embodiment, the AlN mole fraction difference between the inclined region IA and the terrace region TA in the well layer 220 is 4% or less, which can suppress the occurrence of double emission peaks due to the AlN mole fraction difference. Note that even if the average AlN mole fraction Xwa of the well layer 220 is outside the range of Xw0+2% to Xw0+3%, there are locally Ga-rich As long as the enriched well region 220a is formed, any amount within the range of Xw1+2% to Xw1+3%, where Xw1% is the AlN mole fraction in the Ga-enriched well region 220a corresponding to the target value of the peak emission wavelength. value.
 本実施形態では、バリア層221がAlGaN系半導体(AlN系半導体を除く)で構成されている場合において、バリア層221においても、傾斜領域IA内にAlNモル分率がバリア層221の平均的なAlNモル分率Xbaより低いGa富化バリア領域221aが形成されている。更に、一実施態様では、井戸層220と同様に、テラス領域TA内の一部に、AlNモル分率がバリア層221の平均的なAlNモル分率Xbaより高いAl富化バリア領域が形成されていても良い。 In the present embodiment, when the barrier layer 221 is composed of an AlGaN-based semiconductor (excluding an AlN-based semiconductor), the barrier layer 221 also has an AlN mole fraction in the graded region IA equal to the average of the barrier layer 221. A Ga-enriched barrier region 221a having a lower AlN mole fraction Xba is formed. Furthermore, in one embodiment, an Al-enriched barrier region having a higher AlN mole fraction than the average AlN mole fraction Xba of the barrier layer 221 is formed in a part of the terrace region TA, similar to the well layer 220. It's okay to be there.
 好ましい一実施態様として、バリア層221のGa富化バリア領域221a内に、AlNモル分率Xb0の準安定AlGaN領域を形成する場合において、バリア層221の平均的なAlNモル分率Xbaは、概ね、Xb0+2%~Xb0+8%となる範囲内に調整されるのが好ましい。これにより、バリア層221のGa富化バリア領域221aとテラス領域TAのAlNモル分率差として約2%以上が確保される。 As a preferred embodiment, when forming a metastable AlGaN region with an AlN mole fraction Xb0 in the Ga-enriched barrier region 221a of the barrier layer 221, the average AlN mole fraction Xba of the barrier layer 221 is approximately , Xb0+2% to Xb0+8%. As a result, about 2% or more is ensured as the AlN mole fraction difference between the Ga-enriched barrier region 221a of the barrier layer 221 and the terrace region TA.
 更に、好ましい一実施態様として、バリア層221のテラス領域TAのAlNモル分率は、概ね51%~90%の範囲内において、Ga富化バリア領域221aのAlNモル分率より、1%以上、好ましくは2%以上、より好ましくは4%以上、高くなるように設定される。Ga富化バリア領域221aにおけるキャリアの局在化の効果を十分に確保するために、バリア層221内のGa富化バリア領域221aとテラス領域TAのAlNモル分率差を4~5%以上とするのが好ましいが、1~2%程度でも、キャリアの局在化の効果は期待し得る。 Furthermore, as a preferred embodiment, the AlN mole fraction of the terrace region TA of the barrier layer 221 is 1% or more higher than the AlN mole fraction of the Ga-enriched barrier region 221a within a range of approximately 51% to 90%, It is set to be higher, preferably 2% or more, more preferably 4% or more. In order to sufficiently secure the effect of localizing carriers in the Ga-enriched barrier region 221a, the AlN mole fraction difference between the Ga-enriched barrier region 221a and the terrace region TA in the barrier layer 221 is set to 4 to 5% or more. Although it is preferable to do so, the effect of carrier localization can be expected even with a concentration of about 1 to 2%.
 本実施形態では、電子ブロック層23においても、傾斜領域IA内にAlNモル分率が電子ブロック層23の平均的なAlNモル分率Xeaより低いGa富化EB領域23aが形成されている。更に、一実施態様では、井戸層220と同様に、テラス領域TA内の一部に、AlNモル分率が電子ブロック層23の平均的なAlNモル分率Xeaより高いAl富化EB領域が形成されていても良い。 In this embodiment, in the electron blocking layer 23 as well, the Ga-enriched EB region 23a having a lower AlN mole fraction than the average AlN mole fraction Xea of the electron blocking layer 23 is formed in the gradient region IA. Furthermore, in one embodiment, similarly to the well layer 220, an Al-enriched EB region having a higher AlN mole fraction than the average AlN mole fraction Xea of the electron blocking layer 23 is formed in a part of the terrace region TA. It's okay to be.
 電子ブロック層23のテラス領域TAのAlNモル分率は、概ね69%~90%の範囲内で、井戸層220のテラス領域のAlNモル分率より20%以上、好ましくは25%以上、更に好ましくは30%以上高くなるように設定されている。更に、電子ブロック層23のGa富化EB領域23aのAlNモル分率は、井戸層220のGa富化井戸領域220aのAlNモル分率より20%以上、好ましくは25%以上、更に好ましくは30%以上高くなるように設定されている。 The AlN mole fraction of the terrace region TA of the electron blocking layer 23 is generally within the range of 69% to 90%, and is 20% or more, preferably 25% or more, more preferably 25% or more than the AlN mole fraction of the terrace region of the well layer 220. is set to be higher than 30%. Furthermore, the AlN mole fraction of the Ga-enriched EB region 23a of the electron blocking layer 23 is 20% or more, preferably 25% or more, more preferably 30%, more than the AlN mole fraction of the Ga-enriched well region 220a of the well layer 220. It is set to be higher than %.
 好ましい一実施態様として、電子ブロック層23のGa富化EB領域23a内に、AlNモル分率Xe0の準安定AlGaN領域を形成する場合において、電子ブロック層23の平均的なAlNモル分率Xeaは、概ね、Xe0+2%~Xe0+8%となる範囲内に調整されるのが好ましい。これにより、電子ブロック層23のGa富化EB領域23aとテラス領域TAのAlNモル分率差として約2%以上が確保される。 As a preferred embodiment, when forming a metastable AlGaN region with an AlN mole fraction Xe0 in the Ga-enriched EB region 23a of the electron block layer 23, the average AlN mole fraction Xea of the electron block layer 23 is , Xe0+2% to Xe0+8%. Thereby, about 2% or more is ensured as the AlN mole fraction difference between the Ga-enriched EB region 23a of the electron block layer 23 and the terrace region TA.
 図5に示す発光素子構造部20の積層構造(マクロステップ構造)において、n型クラッド層21では、局所的にAlNモル分率の低い層状領域21aにおいて、キャリアが局在化し易くなっており、活性層22では、井戸層220の傾斜領域IA内に存在する局所的にAlNモル分率の低いGa富化井戸領域220aにおいて、バリア層221の傾斜領域IA内に存在する局所的にAlNモル分率の低いGa富化バリア領域221aにおいて、それぞれキャリアが局在化し易くなっており、電子ブロック層23では、傾斜領域IA内に存在する局所的にAlNモル分率の低いGa富化EB領域23aにおいて、キャリアが局在化し易くなっている。従って、n型クラッド層21側からは層状領域21aを介して、電子ブロック層23側からはGa富化EB領域23aを介して、井戸層220のGa富化井戸領域220aに対してそれぞれ効率的にキャリアを供給することができ、井戸層220内におけるキャリア(電子及び正孔)の再結合による発光効率の向上が図れる素子構造となっている。 In the laminated structure (macrostep structure) of the light emitting element structure portion 20 shown in FIG. In the active layer 22, in the Ga-enriched well region 220a having a locally low AlN mole fraction present in the graded region IA of the well layer 220, the AlN mole fraction locally present in the graded region IA of the barrier layer 221 In the Ga-enriched barrier region 221a with a low AlN mole fraction, carriers are easily localized. , carriers are more likely to be localized. Therefore, from the n-type cladding layer 21 side through the layered region 21a, from the electron blocking layer 23 side through the Ga-enriched EB region 23a, the Ga-enriched well region 220a of the well layer 220 is efficiently charged. , and the recombination of carriers (electrons and holes) in the well layer 220 can improve the luminous efficiency.
 本実施形態では、井戸層220の膜厚は、テラス領域TA及び傾斜領域IAを含めて、例えば、3ML~14MLの範囲内で発光素子1のピーク発光波長λpの目標値に応じて設定されている。また、バリア層221の膜厚は、テラス領域TA及び傾斜領域IAを含めて、例えば、6nm~8nmの範囲内で設定されている。更に、電子ブロック層23の膜厚は、テラス領域TA及び傾斜領域IAを含めて、例えば、15nm~30nmの範囲内(最適値は約20nm)で設定されている。 In this embodiment, the film thickness of the well layer 220, including the terrace region TA and the inclined region IA, is set within a range of, for example, 3ML to 14ML according to the target value of the peak emission wavelength λp of the light emitting element 1. there is Also, the film thickness of the barrier layer 221 is set within a range of 6 nm to 8 nm, for example, including the terrace area TA and the inclined area IA. Furthermore, the film thickness of the electron blocking layer 23 is set within a range of, for example, 15 nm to 30 nm (optimum value is about 20 nm), including the terrace area TA and the inclined area IA.
 井戸層220がAlGaN系半導体で構成され、AlNモル分率が0%でない場合は、井戸層220(特に、傾斜領域IA内のGa富化井戸領域220a)のAlNモル分率と膜厚は、及び、井戸層220に隣接するバリア層及び電子ブロック層23(特に、傾斜領域IA内のGa富化バリア領域221a及びGa富化EB領域23a)のAlNモル分率は、発光素子1のピーク発光波長λpの目標値に応じて設定されている。 When the well layer 220 is composed of an AlGaN-based semiconductor and the AlN mole fraction is not 0%, the AlN mole fraction and film thickness of the well layer 220 (especially the Ga-enriched well region 220a in the graded region IA) are And the AlN mole fraction of the barrier layer and the electron blocking layer 23 adjacent to the well layer 220 (particularly the Ga-enriched barrier region 221a and the Ga-enriched EB region 23a in the graded region IA) is the peak emission of the light-emitting device 1. It is set according to the target value of the wavelength λp.
 井戸層220がGaN系半導体で構成され、AlNモル分率が0%である場合は、井戸層220に隣接するバリア層及び電子ブロック層23(特に、傾斜領域IA内のGa富化バリア領域221a及びGa富化EB領域23a)のAlNモル分率、及び、井戸層220の膜厚は、発光素子1のピーク発光波長λpの目標値に応じて設定されている。 When the well layer 220 is composed of a GaN-based semiconductor and the AlN mole fraction is 0%, the barrier layers and the electron block layer 23 adjacent to the well layer 220 (in particular, the Ga-enriched barrier region 221a in the graded region IA) and the AlN molar fraction of the Ga-enriched EB region 23 a ) and the film thickness of the well layer 220 are set according to the target value of the peak emission wavelength λp of the light emitting device 1 .
 図7、図8及び図9は、井戸層220及びバリア層221がAlGaNで構成された量子井戸構造モデルに対して、井戸層の膜厚を3ML~14MLまたは4ML~14MLの範囲内で変化させて得られる発光波長のシミュレーション結果(ピーク発光波長に相当)をグラフ化したものである。上記シミュレーションの条件として、井戸層220のGa富化井戸領域220aにAlGaN組成比が整数比の準安定AlGaNが支配的に存在している場合を想定し、井戸層220のGa富化井戸領域220aのAlNモル分率を、図7では、準安定AlGaNのAlNモル分率である50%(2分の1)とし、図8では、準安定AlGaNのAlNモル分率である41.7%(12分の5)とし、図9では、準安定AlGaNのAlNモル分率である33.3%(3分の1)とし、図7~図9のそれぞれにおいて、バリア層221のGa富化バリア領域221aのAlNモル分率を、66.7%(3分の2)、75%(4分の3)、及び、83.3%(6分の5)の3通りとした。図7~図9に示すシミュレーション結果では、井戸層220における紫外線発光が、傾斜領域IAで顕著に発生することを想定している。このため、井戸層220の膜厚条件は、当該傾斜領域IAにおいて満足することが重要である。 7, 8 and 9 show the quantum well structure model in which the well layer 220 and the barrier layer 221 are made of AlGaN, and the film thickness of the well layer is varied within the range of 3ML to 14ML or 4ML to 14ML. It is a graph of the simulation result of the emission wavelength (corresponding to the peak emission wavelength) obtained by As a condition of the above simulation, it is assumed that the Ga-enriched well region 220a of the well layer 220 is dominated by metastable AlGaN having an AlGaN composition ratio of an integer ratio, and the Ga-enriched well region 220a of the well layer 220 is 50% (1/2), which is the AlN mole fraction of metastable AlGaN, in FIG. 7, and 41.7% (1/2), which is the AlN mole fraction of metastable AlGaN in FIG. 5/12), and in FIG. 9, 33.3% (1/3), which is the AlN mole fraction of metastable AlGaN, and in each of FIGS. The AlN mole fraction of the region 221a was set to 66.7% (2/3), 75% (3/4), and 83.3% (5/6). The simulation results shown in FIGS. 7 to 9 assume that the well layer 220 emits ultraviolet rays significantly in the inclined region IA. Therefore, it is important to satisfy the film thickness condition of the well layer 220 in the inclined region IA.
 図7~図9より、井戸層220の膜厚が3ML~14MLの範囲内では、井戸層220の膜厚が小さくなるほど、井戸層220への量子閉じ込め効果が大きくなり、発光波長が短波長化していること、更に、バリア層221のAlNモル分率が大きくなるほど、井戸層220の膜厚の変化に対する発光波長の変化の程度が大きくなることが分かる。また、図7より、Ga富化井戸領域220aのAlNモル分率が50%の場合、井戸層220の膜厚及びバリア層221のAlNモル分率の上記範囲内において、発光波長が、概ね246nm~295nmの範囲で変化することが分かる。図8より、Ga富化井戸領域220aのAlNモル分率が41.7%の場合、井戸層220の膜厚及びバリア層221のAlNモル分率の上記範囲内において、発光波長が、概ね249nm~311nmの範囲で変化することが分かる。図9より、Ga富化井戸領域220aのAlNモル分率が33.3%の場合、井戸層220の膜厚及びバリア層221のAlNモル分率の上記範囲内において、発光波長が、概ね261nm~328nmの範囲で変化することが分かる。更に、バリア層221をAlN(AlNモル分率=100%)で構成すると、発光波長を更に拡張することができる。 7 to 9, when the film thickness of the well layer 220 is within the range of 3 ML to 14 ML, the smaller the film thickness of the well layer 220, the greater the quantum confinement effect in the well layer 220 and the shorter the emission wavelength. Furthermore, it can be seen that as the AlN mole fraction of the barrier layer 221 increases, the degree of change in the emission wavelength with respect to the change in the film thickness of the well layer 220 increases. Further, from FIG. 7, when the AlN mole fraction of the Ga-enriched well region 220a is 50%, the emission wavelength is approximately 246 nm within the above ranges of the film thickness of the well layer 220 and the AlN mole fraction of the barrier layer 221. It can be seen that it varies in the range of ~295 nm. From FIG. 8, when the AlN mole fraction of the Ga-enriched well region 220a is 41.7%, the emission wavelength is approximately 249 nm within the above ranges of the film thickness of the well layer 220 and the AlN mole fraction of the barrier layer 221. It can be seen that it varies in the range of ~311 nm. From FIG. 9, when the AlN mole fraction of the Ga-enriched well region 220a is 33.3%, the emission wavelength is approximately 261 nm within the above ranges of the film thickness of the well layer 220 and the AlN mole fraction of the barrier layer 221. It can be seen that it varies in the range of ~328 nm. Furthermore, if the barrier layer 221 is made of AlN (AlN mole fraction=100%), the emission wavelength can be further extended.
 図7~図9より、井戸層220のGa富化井戸領域220aにAlGaN組成比がAlGaまたはAlGa12またはAlGaとなっている準安定AlGaNが形成され、当該準安定AlGaNのAlNモル分率に応じて、井戸層220の膜厚を3ML~14MLの範囲内において、及び、バリア層221のGa富化バリア領域221aのAlNモル分率を66.7%~100%の範囲内において、それぞれ調整することで、ピーク発光波長を、246nm~328nmの範囲内に設定可能であることが分かる。 7 to 9, metastable AlGaN having an AlGaN composition ratio of Al 1 Ga 1 N 2 , Al 5 Ga 7 N 12 , or Al 1 Ga 2 N 3 is present in the Ga-enriched well region 220 a of the well layer 220 . According to the AlN mole fraction of the metastable AlGaN formed, the film thickness of the well layer 220 is set within the range of 3 ML to 14 ML, and the AlN mole fraction of the Ga-enriched barrier region 221a of the barrier layer 221 is set to 66. It can be seen that the peak emission wavelength can be set within the range of 246 nm to 328 nm by adjusting each within the range of 7% to 100%.
 図10は、井戸層がGaNで、バリア層がAlGaNまたはAlNで構成された量子井戸構造モデルに対して、バリア層のAlNモル分率が66.7%(AlGaN)と、100%(AlN)の2通りについて、井戸層の膜厚を4ML~10MLの範囲内で変化させて得られる発光波長のシミュレーション結果(ピーク発光波長に相当)をグラフ化したものである。図10より、当該範囲内において、発光波長が、概ね270nm~325nmの範囲で変化することが分かる。従って、井戸層がGaN(AlNモル分率=0%)で構成された場合でも、井戸層220の膜厚を4ML~10MLの範囲内において、及び、バリア層221のGa富化バリア領域221aのAlNモル分率を66.7%~100%の範囲内において、それぞれ調整することで、ピーク発光波長を、270nm~325nmの範囲内に設定可能であることが分かる。 FIG. 10 shows that the AlN mole fraction of the barrier layer is 66.7% (AlGaN) and 100% (AlN) for the quantum well structure model in which the well layer is GaN and the barrier layer is AlGaN or AlN. 2 is a graph of simulation results of emission wavelengths (corresponding to peak emission wavelengths) obtained by changing the film thickness of the well layer within the range of 4 ML to 10 ML. From FIG. 10, it can be seen that the emission wavelength varies within the range of approximately 270 nm to 325 nm. Therefore, even when the well layer is made of GaN (AlN mole fraction=0%), the film thickness of the well layer 220 is within the range of 4 ML to 10 ML, and the Ga-enriched barrier region 221a of the barrier layer 221 is It can be seen that by adjusting the AlN mole fraction within the range of 66.7% to 100%, the peak emission wavelength can be set within the range of 270 nm to 325 nm.
 本実施形態の好ましい一実施態様として、発光素子1のピーク発光波長λpの目標値を、例えば、n=7の場合は、280nm~315nmの範囲内において、n=6の場合は、300nm~330nmの範囲内において、それぞれ設定する場合を想定する。 As a preferred embodiment of the present embodiment, the target value of the peak emission wavelength λp of the light emitting element 1 is set, for example, in the range of 280 nm to 315 nm when n = 7, and 300 nm to 330 nm when n = 6. It is assumed that each is set within the range of .
 n=7の場合、第1の平均的なAlNモル分率Xna1は、上記式(1)で示される範囲内、つまり、約56.3%~約60.4%の範囲内にあり、第1の平均的なAlNモル分率Xna1で定まるn型クラッド層21の吸収端波長(λae)は、約263nm~約269nmの範囲内に位置する。従って、ピーク発光波長λpの目標値は、上記280nm~315nmの範囲内であれば、ピーク発光波長(λp)と吸収端波長(λae)との波長差(λp-λae)は、10nm以上が確保されており、n型クラッド層21内での発光吸収は十分に抑制されている。ここで、n=7の場合の比較例として、層状領域21a内に、AlNモル分率が50%の第2の準安定AlGaN領域が支配的に形成される場合を仮定すると、第1の平均的なAlNモル分率Xna1は、約54.2%付近の値となるので、その吸収端波長(λae)は約273nmとなり、ピーク発光波長λpの目標値として、283nm未満の値とすると、上記波長差が10nm未満となり、n型クラッド層21内での発光吸収が生じて外部量子効率の低下を招くおそれがある。 When n=7, the first average AlN mole fraction Xna1 is within the range shown by the above formula (1), that is, within the range of about 56.3% to about 60.4%. The absorption edge wavelength (λae) of the n-type cladding layer 21 determined by the average AlN molar fraction Xna1 of 1 is located within the range of about 263 nm to about 269 nm. Therefore, if the target value of the peak emission wavelength λp is within the above range of 280 nm to 315 nm, the wavelength difference (λp−λae) between the peak emission wavelength (λp) and the absorption edge wavelength (λae) is ensured to be 10 nm or more. , and light emission absorption in the n-type cladding layer 21 is sufficiently suppressed. Here, as a comparative example in the case of n=7, assuming that a second metastable AlGaN region having an AlN mole fraction of 50% is predominantly formed in the layered region 21a, the first average Since the typical AlN molar fraction Xna1 is a value of about 54.2%, the absorption edge wavelength (λae) is about 273 nm, and the target value of the peak emission wavelength λp is less than 283 nm. The wavelength difference becomes less than 10 nm, and emission absorption occurs in the n-type cladding layer 21, which may lead to a decrease in external quantum efficiency.
 n=6の場合、第1の平均的なAlNモル分率Xna1は、上記式(1)で示される範囲内、つまり、約47.9%~約52.1%の範囲内にあり、第1の平均的なAlNモル分率Xna1で定まるn型クラッド層21の吸収端波長(λae)は、約276nm~約283nmの範囲内に位置する。従って、ピーク発光波長λpの目標値は、上記300nm~330nmの範囲内であれば、ピーク発光波長(λp)と吸収端波長(λae)との波長差(λp-λae)は、10nm以上が十分に確保されており、n型クラッド層21内での発光吸収は十分に抑制されている。また、上記目標値の下限を300nmから約293nmまで下げることが可能である。ここで、n=6の場合の比較例として、層状領域21a内に、AlNモル分率が約41.7%の第2の準安定AlGaN領域が支配的に形成される場合を仮定すると、第1の平均的なAlNモル分率Xna1は、約45.8%付近の値となるので、その吸収端波長(λae)は約286nmとなり、ピーク発光波長λpの目標値として、296nm未満の値とすると、上記波長差が10nm未満となり、n型クラッド層21内での発光吸収が生じて外部量子効率の低下を招くおそれがある。 When n=6, the first average AlN mole fraction Xna1 is within the range shown by the above formula (1), that is, within the range of about 47.9% to about 52.1%. The absorption edge wavelength (λae) of the n-type cladding layer 21 determined by the average AlN molar fraction Xna1 of 1 is located within the range of about 276 nm to about 283 nm. Therefore, if the target value of the peak emission wavelength λp is within the above range of 300 nm to 330 nm, the wavelength difference (λp−λae) between the peak emission wavelength (λp) and the absorption edge wavelength (λae) is sufficiently 10 nm or more. is ensured, and light emission absorption in the n-type cladding layer 21 is sufficiently suppressed. Also, it is possible to lower the lower limit of the target value from 300 nm to about 293 nm. Here, as a comparative example in the case of n=6, assuming that a second metastable AlGaN region having an AlN mole fraction of about 41.7% is predominantly formed in the layered region 21a, the first Since the average AlN molar fraction Xna1 of 1 is around 45.8%, its absorption edge wavelength (λae) is about 286 nm, and the target value of the peak emission wavelength λp is less than 296 nm. Then, the wavelength difference becomes less than 10 nm, and emission absorption occurs in the n-type cladding layer 21, which may lead to a decrease in external quantum efficiency.
 n型本体領域21b内に形成される第1の準安定AlGaN領域のAlNモル分率(n/12)は、n=7では約58.3%であり、n=6では50%であり、n型クラッド層21とその露出面上に形成されるn電極27との間の接触抵抗は、AlNモル分率が50%未満の場合よりは高いが、AlNモル分率が60%の場合よりは低く、接触抵抗の顕著な増加は抑制されている。 the AlN mole fraction (n/12) of the first metastable AlGaN region formed in the n-type body region 21b is about 58.3% for n=7 and 50% for n=6; The contact resistance between the n-type cladding layer 21 and the n-electrode 27 formed on its exposed surface is higher than when the AlN mole fraction is less than 50%, but higher than when the AlN mole fraction is 60%. is low, and a significant increase in contact resistance is suppressed.
 第1の平均的なAlNモル分率Xna1は、上記式(1)で示される範囲内に制御されているため、n型本体領域21b内には、n=7の場合、AlNモル分率が60%を超える領域も一部に存在し得る。しかし、n電極27はn型クラッド層21の第2領域R2内の露出面上に形成され、n型クラッド層21の上面との接触面積は十分に広いため、当該接触面積内には、AlNモル分率が60%を超える領域以外に、AlNモル分率が約58.3%の第1の準安定AlGaN領域、AlNモル分率が更に小さい層状領域も含まれるため、n電極27とn型クラッド層21間の平均的な接触抵抗は低く抑えられている。n=7の場合において、Xna2(d)が、n型クラッド層21の上面から特定深さdxまでの領域において、上記の式(4)の不等式で表される範囲内にある好ましい実施態様では、n電極27とn型クラッド層21間の平均的な接触抵抗は更に低く抑えられる。また、n=6の場合は、n電極27とn型クラッド層21間の平均的な接触抵抗は、n=7の場合と比べて更に低く抑えられている。 Since the first average AlN mole fraction Xna1 is controlled within the range shown by the above formula (1), in the n-type body region 21b, when n=7, the AlN mole fraction is There may also be some regions above 60%. However, the n-electrode 27 is formed on the exposed surface of the n-type cladding layer 21 in the second region R2, and the contact area with the upper surface of the n-type cladding layer 21 is sufficiently large. In addition to the region with a mole fraction greater than 60%, it also includes a first metastable AlGaN region with an AlN mole fraction of about 58.3% and a layered region with an even smaller AlN mole fraction. The average contact resistance between the mold cladding layers 21 is kept low. In a preferred embodiment, when n=7, Xna2(d) is within the range represented by the above inequality (4) in the region from the upper surface of the n-type cladding layer 21 to the specific depth dx. , the average contact resistance between the n-electrode 27 and the n-type cladding layer 21 can be further reduced. Also, when n=6, the average contact resistance between the n-electrode 27 and the n-type cladding layer 21 is kept lower than when n=7.
 更に、本実施形態では、n型クラッド層21内での発光吸収を抑制するために、第1の平均的なAlNモル分率Xna1及び第2の平均的なAlNモル分率Xna2(d)を不必要に高く設定していないため、不必要なバルク抵抗率の増加も抑制されている。 Furthermore, in this embodiment, in order to suppress emission absorption in the n-type cladding layer 21, the first average AlN mole fraction Xna1 and the second average AlN mole fraction Xna2(d) are set to Since it is not set unnecessarily high, an unnecessary increase in bulk resistivity is also suppressed.
 p電極26は、例えばNi/Au等の多層金属膜で構成され、p型コンタクト層24の上面に形成される。n電極27は、例えばTi/Al/Ti/Au等の多層金属膜で構成され、n型クラッド層21の第2領域R2内の露出面上の一部の領域に形成される。尚、p電極26及びn電極27は、上述の多層金属膜に限定されるものではなく、各電極を構成する金属、積層数、積層順などの電極構造は適宜変更してもよい。図11に、p電極26とn電極27の発光素子1の上側から見た形状の一例を示す。図11において、p電極26とn電極27の間に存在する線BLは、第1領域R1と第2領域R2の境界線を示しており、活性層22、電子ブロック層23、及び、p型コンタクト層24の外周側壁面と一致する。 The p-electrode 26 is composed of a multilayer metal film such as Ni/Au, and is formed on the upper surface of the p-type contact layer 24 . The n-electrode 27 is composed of, for example, a multilayer metal film such as Ti/Al/Ti/Au, and is formed on a part of the exposed surface in the second region R2 of the n-type cladding layer 21 . The p-electrode 26 and the n-electrode 27 are not limited to the multilayer metal films described above, and the electrode structure such as the metals constituting each electrode, the number of layers, and the order of layers may be changed as appropriate. FIG. 11 shows an example of the shape of the p-electrode 26 and the n-electrode 27 viewed from above the light emitting element 1 . In FIG. 11, a line BL existing between the p-electrode 26 and the n-electrode 27 indicates a boundary line between the first region R1 and the second region R2, and includes the active layer 22, the electron blocking layer 23, and the p-type electrode. It coincides with the outer peripheral side wall surface of the contact layer 24 .
 本実施形態では、図11に示すように、第1領域R1及びp電極26の平面視形状は、一例として、櫛形形状のものを採用しているが、第1領域R1及びp電極26の平面視形状及び配置等は、図11の例示に限定されるものではない。 In the present embodiment, as shown in FIG. 11, the first region R1 and the p-electrode 26 have a comb shape as an example in plan view. The visual shape, arrangement, and the like are not limited to those illustrated in FIG. 11 .
 p電極26とn電極27間に順方向バイアスを印加すると、p電極26から活性層22に向けて正孔が供給され、n電極27から活性層22に向けて電子が供給され、供給された正孔及び電子の夫々が活性層22に到達して再結合することで発光する。また、これにより、p電極26とn電極27間に順方向電流が流れる。 When a forward bias is applied between the p-electrode 26 and the n-electrode 27, holes are supplied from the p-electrode 26 toward the active layer 22, and electrons are supplied from the n-electrode 27 toward the active layer 22. Holes and electrons each reach the active layer 22 and recombine to emit light. Further, this causes a forward current to flow between the p-electrode 26 and the n-electrode 27 .
<発光素子の製造方法>
 次に、図4に例示した発光装置1の製造方法の一例について説明する。
<Method for manufacturing light-emitting element>
Next, an example of a method for manufacturing the light emitting device 1 illustrated in FIG. 4 will be described.
 先ず、有機金属化合物気相成長(MOVPE)法により、下地部10に含まれるAlN層12及び発光素子構造部20に含まれる窒化物半導体層21~24を、サファイア基板11上に順番にエピタキシャル成長させて積層する。このとき、n型クラッド層21にはドナー不純物として例えばSiをドーピングし、電子ブロック層23、及び、p型コンタクト層24にはアクセプタ不純物として例えばMgをドーピングする。 First, the AlN layer 12 included in the base portion 10 and the nitride semiconductor layers 21 to 24 included in the light emitting element structure portion 20 are epitaxially grown in order on the sapphire substrate 11 by the metal-organic compound vapor phase epitaxy (MOVPE) method. lamination. At this time, the n-type cladding layer 21 is doped with, for example, Si as a donor impurity, and the electron block layer 23 and the p-type contact layer 24 are doped with, for example, Mg as an acceptor impurity.
 本実施形態では、少なくともAlN層12、n型クラッド層21、活性層22(井戸層220、バリア層221)、及び、電子ブロック層23の各表面に(0001)面に平行な多段状のテラスを表出させるために、サファイア基板11は、主面11aが(0001)面に対して一定の範囲内(例えば、0.3°~6°程度まで)の角度(オフ角)で傾斜し、主面11a上に多段状のテラスが表出している微傾斜基板を使用する。 In this embodiment, at least the surfaces of the AlN layer 12, the n-type cladding layer 21, the active layer 22 (well layer 220 and barrier layer 221), and the electron block layer 23 are provided with multistep terraces parallel to the (0001) plane. In order to expose the sapphire substrate 11, the main surface 11a is inclined with respect to the (0001) plane at an angle (off angle) within a certain range (for example, about 0.3 ° to 6 °), A slightly inclined substrate is used in which a multi-stepped terrace is exposed on the main surface 11a.
 斯かるエピタキシャル成長の条件として、上述の微傾斜基板の(0001)サファイア基板11の使用に加えて、例えば、多段状のテラスが表出し易い成長速度(具体的に例えば、成長温度、原料ガスやキャリアガスの供給量や流速等の諸条件を適宜設定することで、当該成長速度を達成する)等が挙げられる。尚、これらの諸条件は、成膜装置の種類や構造によって異なり得るため、成膜装置において実際に幾つかの試料を作製して、これらの条件を特定すればよい。 As conditions for such epitaxial growth, in addition to the use of the slightly inclined (0001) sapphire substrate 11 described above, for example, a growth rate at which multi-stepped terraces are likely to appear (specifically, for example, growth temperature, raw material gas and carrier The growth rate is achieved by appropriately setting various conditions such as gas supply amount and flow rate. Since these conditions may vary depending on the type and structure of the film forming apparatus, several samples are actually produced in the film forming apparatus to specify these conditions.
 n型クラッド層21の成長条件として、成長開始直後に、AlN層12の上面に形成された多段状のテラス間の段差部(傾斜領域)にGaの質量移動によって層状領域21aの成長開始点が形成され、引き続き、n型クラッド層21のエピタキシャル成長に伴い、層状領域21aが、Gaの質量移動に伴う偏析によって斜め上方に向かって成長できるように、成長温度、成長圧力、及び、ドナー不純物濃度が選択される。 As for the growth condition of the n-type cladding layer 21, the growth starting point of the layered region 21a is set in the stepped portion (inclined region) between the multi-stepped terraces formed on the upper surface of the AlN layer 12 immediately after the growth is started by the mass transfer of Ga. The growth temperature, the growth pressure, and the donor impurity concentration are set so that the layered region 21a can grow obliquely upward due to the segregation associated with the mass transfer of Ga, following the epitaxial growth of the n-type cladding layer 21. selected.
 具体的には、成長温度としては、Gaの質量移動の生じ易い1050℃以上で、良好なn型AlGaNが調製可能な1150℃以下が好ましい。また、好ましい一実施態様として、n型本体領域21b内に、AlNモル分率がn/12の第1の準安定AlGaN領域を形成する場合においては、1170℃を超える成長温度では、Gaの質量移動が過剰となり、準安定AlGaNといえども、AlNモル分率がランダムに変動し易くなるため、AlNモル分率が50%~58.3%の準安定AlGaN領域は安定的に形成し辛くなる可能性がある。成長圧力としては、75Torr以下が良好なAlGaNの成長条件として好ましく、成膜装置の制御限界として10Torr以上が現実的であり好ましい。ドナー不純物濃度は、1×1018~5×1018cm-3程度が好ましい。尚、上記成長温度及び成長圧力等は、一例であって、使用する成膜装置に応じて適宜最適な条件を特定すればよい。 Specifically, the growth temperature is preferably 1050° C. or higher at which mass transfer of Ga easily occurs and 1150° C. or lower at which good n-type AlGaN can be prepared. Further, as a preferred embodiment, when forming the first metastable AlGaN region having an AlN mole fraction of n/12 in the n-type body region 21b, at a growth temperature exceeding 1170° C., the mass of Ga Due to excessive migration, the AlN mole fraction tends to fluctuate randomly even in metastable AlGaN, so it becomes difficult to stably form a metastable AlGaN region with an AlN mole fraction of 50% to 58.3%. there is a possibility. As for the growth pressure, 75 Torr or less is preferable as a favorable AlGaN growth condition, and 10 Torr or more is realistic and preferable as the control limit of the film forming apparatus. The donor impurity concentration is preferably about 1×10 18 to 5×10 18 cm −3 . The above growth temperature, growth pressure, and the like are only examples, and optimal conditions may be appropriately specified according to the film forming apparatus to be used.
 有機金属化合物気相成長法で使用する原料ガス(トリメチルアルミニウム(TMA)ガス、トリメチルガリウム(TMG)ガス、アンモニアガス)やキャリアガスの供給量及び流速は、上述したn型クラッド層21の第1の平均的なAlNモル分率Xna1を目標値として設定される。 The supply amounts and flow rates of source gases (trimethylaluminum (TMA) gas, trimethylgallium (TMG) gas, and ammonia gas) and carrier gases used in the metal-organic compound vapor phase epitaxy are determined by the first is set as a target value of the average AlN mole fraction Xna1.
 本実施形態では、第2の平均的なAlNモル分率Xna2(d)が、深さdの変化に応じて、第1の準安定AlGaN領域のAlNモル分率(n/12)を挟んで変化している。当該AlNモル分率Xna2(d)の変化は、上記原料ガスやキャリアガスの供給量及び流速の変調、或いは、成長温度の変調等を積極的に行うことで実現できる。更に、n型クラッド層21の成長に伴い膜厚が厚くなるにつれて生じる自然な基板表面温度の変化を利用しても良い。この場合、上記原料ガスやキャリアガスの供給量及び流速は、基板表面温度の変化の傾向に応じて設定する。 In the present embodiment, the second average AlN mole fraction Xna2(d) sandwiches the AlN mole fraction (n/12) of the first metastable AlGaN region as the depth d changes. is changing. The change in the AlN mole fraction Xna2(d) can be realized by positively modulating the supply amount and flow velocity of the raw material gas and carrier gas, or modulating the growth temperature. Furthermore, the natural change in substrate surface temperature that occurs as the n-type cladding layer 21 grows and becomes thicker may be utilized. In this case, the supply amounts and flow velocities of the raw material gas and the carrier gas are set according to the tendency of the substrate surface temperature change.
 尚、ドナー不純物濃度は、n型クラッド層21の膜厚に対して、必ずしも上下方向に均一に制御する必要はない。例えば、n型クラッド層21内の所定の薄い膜厚部分の不純物濃度が、上記設定濃度より低く、例えば、1×1018cm-3未満、更に好ましくは、1×1017cm-3以下に制御された低不純物濃度層であってもよい。当該低不純物濃度層の膜厚としては、0nmより大きく200nm以下程度が好ましく、10nm以上100nm以下程度がより好ましく、更に、20nm以上50nm以下程度がより好ましい。また、当該低不純物濃度層のドナー不純物濃度は、上記設定濃度より低ければよく、アンドープ層(0cm-3)が一部に含まれていてもよい。更に、該低不純物濃度層の一部または全部は、n型クラッド層21の上面から下方側に100nm以内の深さの上層域に存在することが好ましい。 The donor impurity concentration does not necessarily have to be controlled uniformly in the vertical direction with respect to the thickness of the n-type cladding layer 21 . For example, the impurity concentration in the predetermined thin film thickness portion in the n-type cladding layer 21 is lower than the above set concentration, for example, less than 1×10 18 cm −3 , more preferably 1×10 17 cm −3 or less. It may be a controlled low impurity concentration layer. The thickness of the low impurity concentration layer is preferably greater than 0 nm and approximately 200 nm or less, more preferably approximately 10 nm or more and 100 nm or less, and further preferably approximately 20 nm or more and 50 nm or less. Also, the donor impurity concentration of the low impurity concentration layer may be lower than the set concentration, and may partially include an undoped layer (0 cm −3 ). Furthermore, part or all of the low impurity concentration layer preferably exists in an upper layer region with a depth of 100 nm or less downward from the upper surface of the n-type cladding layer 21 .
 上記要領で、層状領域21aとn型本体領域21bを有するn型クラッド層21が形成されると、n型クラッド層21の上面の全面に、引き続き、有機金属化合物気相成長(MOVPE)法等の周知のエピタキシャル成長法により、活性層22(井戸層220、バリア層221)、電子ブロック層23、及び、p型コンタクト層24等を形成する。 After the n-type cladding layer 21 having the layered region 21a and the n-type main body region 21b is formed in the above manner, the entire upper surface of the n-type cladding layer 21 is subsequently subjected to metal organic chemical vapor phase epitaxy (MOVPE) or the like. The active layer 22 (well layer 220, barrier layer 221), electron block layer 23, p-type contact layer 24, etc. are formed by the known epitaxial growth method.
 電子ブロック層23のアクセプタ不純物濃度は、一例として、1.0×1016~1.0×1018cm-3程度が好ましく、p型コンタクト層24のアクセプタ不純物濃度は、一例として、1.0×1018~1.0×1020cm-3程度が好ましい。尚、アクセプタ不純物濃度は、電子ブロック層23及びp型コンタクト層24の各膜厚に対して、必ずしも上下方向に均一に制御する必要はない。 For example, the acceptor impurity concentration of the electron block layer 23 is preferably about 1.0×10 16 to 1.0×10 18 cm −3 , and the acceptor impurity concentration of the p-type contact layer 24 is, for example, 1.0. About ×10 18 to 1.0×10 20 cm −3 is preferable. The acceptor impurity concentration does not necessarily have to be controlled uniformly in the vertical direction with respect to each film thickness of the electron blocking layer 23 and the p-type contact layer 24 .
 活性層22の形成において、n型クラッド層21と同様の要領で、上述した多段状のテラスが表出し易い成長条件で、井戸層220の平均的なAlNモル分率Xwaを目標値として井戸層220を成長させ、更に、バリア層221の平均的なAlNモル分率Xbaを目標値として、バリア層221を成長させる。井戸層220及びバリア層221の平均的なAlNモル分率Xwa及びXbaは、上述した通りであり重複する説明は省略する。 In the formation of the active layer 22, in the same manner as the n-type cladding layer 21, the well layer 220 was grown under the growth conditions under which the above-described multi-stepped terraces are likely to appear, with the average AlN mole fraction Xwa of the well layer 220 as a target value. 220 is grown, and further, the barrier layer 221 is grown with the average AlN mole fraction Xba of the barrier layer 221 as a target value. The average AlN molar fractions Xwa and Xba of the well layer 220 and the barrier layer 221 are as described above, and redundant description is omitted.
 電子ブロック層23の形成において、n型クラッド層21と同様の要領で、上述した多段状のテラスが表出し易い成長条件で、電子ブロック層23の平均的なAlNモル分率Xeaを目標値として電子ブロック層23を成長させる。電子ブロック層23の平均的なAlNモル分率Xeaは、上述した通りであり重複する説明は省略する。 In the formation of the electron blocking layer 23, in the same manner as for the n-type cladding layer 21, under the growth conditions where the above-described multi-stepped terraces are likely to appear, the average AlN mole fraction Xea of the electron blocking layer 23 is set as a target value. An electron blocking layer 23 is grown. The average AlN mole fraction Xea of the electron blocking layer 23 is as described above, and redundant description is omitted.
 本実施形態では、活性層22(井戸層220、バリア層221)、電子ブロック層23、及び、p型コンタクト層の成長温度は、n型クラッド層21の成長温度をT1、活性層22の成長温度をT2、電子ブロック層23の成長温度をT3、p型コンタクト層の成長温度をT4とした場合、上述の好ましい温度範囲内(1050℃~1170℃)において、以下の式(8)及び(9)に示す関係を満足していることが好ましい。
 T3≧T2     (8)
 T3>T1>T4  (9)
In this embodiment, the growth temperature of the active layer 22 (well layer 220, barrier layer 221), the electron blocking layer 23, and the p-type contact layer is set to T1 for the growth temperature of the n-type cladding layer 21, and T1 for the growth temperature of the active layer 22. When the temperature is T2, the growth temperature of the electron blocking layer 23 is T3, and the p-type contact layer growth temperature is T4, the following equations (8) and ( It is preferable that the relationship shown in 9) is satisfied.
T3≧T2 (8)
T3>T1>T4 (9)
 電子ブロック層23の成長温度T3は、例えば、窒素原料ガスの流量を増加し、成長速度を低下させることで低減することは可能である。 The growth temperature T3 of the electron blocking layer 23 can be reduced, for example, by increasing the flow rate of the nitrogen source gas and decreasing the growth rate.
 尚、電子ブロック層23の成長温度T3を活性層22の成長温度T2から上げる場合、当該成長温度の遷移過程において、その下方に位置する井戸層220内でGaNの分解が生じて、当該GaNの分解に起因して発光素子1の特性が悪化する可能性がある。従って、当該GaNの分解を抑制するために、最上層の井戸層220と電子ブロック層23の間に、上記GaNの分解を防止するために、バリア層221より薄膜(例えば、3nm以下、好ましくは、2nm以下)でバリア層221及び電子ブロック層23よりAlNモル分率の高いAlGaN層またはAlN層を形成するのが好ましい。 When the growth temperature T3 of the electron blocking layer 23 is raised from the growth temperature T2 of the active layer 22, the GaN is decomposed in the well layer 220 positioned therebelow during the transition process of the growth temperature. The characteristics of the light-emitting element 1 may deteriorate due to decomposition. Therefore, in order to suppress decomposition of the GaN, a film thinner than the barrier layer 221 (for example, 3 nm or less, preferably less than 3 nm) is placed between the uppermost well layer 220 and the electron blocking layer 23 to prevent the decomposition of the GaN. , 2 nm or less) with a higher AlN mole fraction than the barrier layer 221 and electron block layer 23 .
 上記要領で、n型クラッド層21の上面の全面に、活性層22(井戸層220、バリア層221)、電子ブロック層23、及び、p型コンタクト層24等が形成されると、次に、反応性イオンエッチング等の周知のエッチング法により、窒化物半導体層21~24の第2領域R2を、n型クラッド層21の上面が露出するまで選択的にエッチングして、n型クラッド層21の上面の第2領域R2部分を露出させる。そして、電子ビーム蒸着法などの周知の成膜法により、エッチングされていない第1領域R1内のp型コンタクト層24上にp電極26を形成するとともに、エッチングされた第1領域R2内のn型クラッド層21上にn電極27を形成する。尚、p電極26及びn電極27の一方または両方の形成後に、RTA(瞬間熱アニール)等の周知の熱処理方法により熱処理を行ってもよい。 After forming the active layer 22 (well layer 220, barrier layer 221), the electron blocking layer 23, the p-type contact layer 24, etc. on the entire upper surface of the n-type cladding layer 21 in the manner described above, next, By a well-known etching method such as reactive ion etching, the second regions R2 of the nitride semiconductor layers 21 to 24 are selectively etched until the upper surface of the n-type cladding layer 21 is exposed. A portion of the second region R2 on the upper surface is exposed. Then, a p-electrode 26 is formed on the p-type contact layer 24 in the unetched first region R1 by a well-known film formation method such as an electron beam evaporation method, and an n electrode in the etched first region R2 is formed. An n-electrode 27 is formed on the mold cladding layer 21 . After forming one or both of the p-electrode 26 and the n-electrode 27, heat treatment may be performed by a known heat treatment method such as RTA (rapid thermal annealing).
 尚、発光素子1は、一例として、サブマウント等の基台にフリップチップ実装された後、シリコーン樹脂や非晶質フッ素樹脂等の所定の樹脂(例えば、レンズ形状の樹脂)によって封止された状態で使用され得る。 As an example, the light emitting element 1 is flip-chip mounted on a base such as a submount, and then sealed with a predetermined resin (for example, a lens-shaped resin) such as silicone resin or amorphous fluorine resin. can be used in any situation.
 上記要領で作製された発光素子1のAlGaN系半導体層21~24の断面構造は、p第2領域R2のエッチング及び電極26とn電極27の形成前の試料を作製し、該試料の上面に垂直(または略垂直)な断面を有する試料片を収束イオンビーム(FIB)で加工し、該試料片のHAADF-STEM像により観察することができる。HAADF-STEM像は、原子量に比例したコントラストが得られ、重い元素は明るく表示される。よって、AlNモル分率の低い領域は、相対的に明るく表示される。HAADF-STEM像は、通常のSTEM像(明視野像)よりAlNモル分率の差の観察には適している。 The cross-sectional structure of the AlGaN-based semiconductor layers 21 to 24 of the light-emitting device 1 manufactured in the above manner is as follows. A sample piece having a vertical (or substantially vertical) cross section can be processed with a focused ion beam (FIB) and observed by an HAADF-STEM image of the sample piece. A HAADF-STEM image provides a contrast proportional to the atomic weight, and heavy elements are displayed brightly. Therefore, regions with a low AlN mole fraction are displayed relatively brightly. HAADF-STEM images are more suitable for observing differences in AlN mole fractions than normal STEM images (bright field images).
 更に、AlGaN系半導体層21~24中の特定の半導体層内の組成分析は、上記試料片を用いて、エネルギ分散型X線分光法(断面TEM-EDX)、または、CL(カソードルミネッセンス)法で行うことができる。断面TEM-EDX及びCL法による組成分析については、本願発明者の先行する別出願(PCT/JP2020/024827、PCT/JP2020/024828、PCT/JP2020/026558、PCT/JP2020/031620等)の明細書中に詳細な説明がなされている。 Furthermore, the composition analysis within specific semiconductor layers in the AlGaN-based semiconductor layers 21 to 24 is performed using the above sample piece by energy dispersive X-ray spectroscopy (cross-sectional TEM-EDX) or CL (cathode luminescence) method. can be done with Regarding the composition analysis by cross-sectional TEM-EDX and CL method, the specifications of other previous applications by the inventor of the present application (PCT/JP2020/024827, PCT/JP2020/024828, PCT/JP2020/026558, PCT/JP2020/031620, etc.) A detailed explanation is given inside.
<n型クラッド層の組成分析結果>
 次に、n型クラッド層21の第2の平均的なAlNモル分率Xna2(d)をラザフォード後方散乱(RBS)分析法により測定した結果、n型クラッド層21内の層状領域21aとn型本体領域21bのAlNモル分率の測定をCL(カソードルミネッセンス)法で行った結果、及び、n型クラッド層21内の層状領域21aのAlNモル分率の測定を断面TEM-EDX法で行った結果を、それぞれ説明する。
<Results of composition analysis of n-type cladding layer>
Next, the second average AlN mole fraction Xna2(d) of the n-type cladding layer 21 was measured by Rutherford backscattering (RBS) spectroscopy. Results of measurement of the AlN mole fraction of the main body region 21b by the CL (cathode luminescence) method, and measurement of the AlN mole fraction of the layered region 21a in the n-type clad layer 21 by the cross-sectional TEM-EDX method. Each result will be explained.
 n型クラッド層21の組成分析用に試料を作製し、該試料からn型クラッド層21の上面に垂直(または略垂直)な断面を有する試料片を収束イオンビーム(FIB)で加工して、測定用の試料片を作製した。 A sample for composition analysis of the n-type cladding layer 21 is prepared, and a sample piece having a cross section perpendicular (or substantially perpendicular) to the upper surface of the n-type cladding layer 21 is processed with a focused ion beam (FIB) from the sample, A sample piece for measurement was produced.
 上記試料は、上述したn型クラッド層21等の作製要領に従って、上述のサファイア基板11とAlN層12からなる下地部10上に、n型クラッド層21と、n型クラッド層21より高AlNモル分率のAlGaN層と、試料表面保護用のAlGaN層と、保護用樹脂膜を順番に堆積して作製した。尚、該試料の作製においては、主面が(0001)面に対してオフ角を有するサファイア基板11を用いてAlN層12の表面に多段状のテラスが表出した下地部10を使用した。更に、ドナー不純物濃度が約3×1018cm-3となるように、ドナー不純物(Si)の注入量を制御した。 The sample was prepared by forming the n-type cladding layer 21 and AlN molar ratio higher than that of the n-type cladding layer 21 on the underlayer 10 composed of the sapphire substrate 11 and the AlN layer 12 according to the manufacturing procedure of the n-type cladding layer 21 and the like. A fractional AlGaN layer, an AlGaN layer for protecting the surface of the sample, and a protective resin film were deposited in order. In preparing the samples, a sapphire substrate 11 having a main surface at an off-angle with respect to the (0001) plane was used, and an underlayer 10 in which a multi-stepped terrace was exposed on the surface of an AlN layer 12 was used. Furthermore, the dose of donor impurities (Si) was controlled so that the donor impurity concentration was approximately 3×10 18 cm −3 .
 上記試料のn型クラッド層21の第1の平均的なAlNモル分率Xna1、深さd(nm)における第2の平均的なAlNモル分率Xna2(d)、及び、第3の平均的なAlNモル分率Xna3は、n=7の場合の上記式(1)、式(3)、及び式(2)を満足している。従って、n型本体領域21b内には、AlNモル分率が7/12(約58.3%)の第1の準安定AlGaN領域が形成され、層状領域21a内には、AlNモル分率が6.5/12(約54.2%)の中間AlGaN領域が形成されている。 The first average AlN molar fraction Xna1, the second average AlN molar fraction Xna2(d) at the depth d (nm), and the third average The AlN molar fraction Xna3 satisfies the above formulas (1), (3), and (2) when n=7. Therefore, a first metastable AlGaN region having an AlN mole fraction of 7/12 (approximately 58.3%) is formed in the n-type body region 21b, and an AlN mole fraction is formed in the layered region 21a. A 6.5/12 (approximately 54.2%) intermediate AlGaN region is formed.
 図12に、第2の平均的なAlNモル分率Xna2(d)のRBS分析法による測定値を示す。AlNモル分率Xna2(d)は、深さdの変化に応じて、約57.8%~約59.9%の範囲内で変化しており、上記式(3)を満足している。第1の平均的なAlNモル分率Xna1は、図12に示すXna2(d)より約58.4%と計算され、第1の準安定AlGaN領域のAlNモル分率(約58.3%)より僅かに高くなっているが、概ね一致している。後述するように、特定深さdxは1つで、約1061nmである。第3の平均的なAlNモル分率Xna3は、図12に示すXna2(d)より約57.9%と計算され、第1の平均的なAlNモル分率Xna1より小さく、式(2)を満足している。第2の平均的なAlNモル分率Xna2(d)が式(3)を満足する場合は、第1の平均的なAlNモル分率Xna1は、当然に上記式(1)を満足し、第3の平均的なAlNモル分率Xna3も、当然に式(2)を満足する。 FIG. 12 shows measured values of the second average AlN mole fraction Xna2(d) by the RBS analysis method. The AlN mole fraction Xna2(d) varies within the range of about 57.8% to about 59.9% according to the change in depth d, satisfying the above formula (3). The first average AlN mole fraction Xna1 is calculated to be about 58.4% from Xna2(d) shown in FIG. They are slightly higher, but they are roughly the same. As will be described later, there is one specific depth dx, which is approximately 1061 nm. The third average AlN mole fraction Xna3 is calculated to be about 57.9% from Xna2(d) shown in FIG. Is pleased. When the second average AlN mole fraction Xna2(d) satisfies the formula (3), the first average AlN mole fraction Xna1 naturally satisfies the above formula (1), The average AlN mole fraction Xna3 of 3 naturally also satisfies equation (2).
 図12に示すように、第2の平均的なAlNモル分率Xna2(d)は、深さd(nm)が0nm~約750nmの上層領域では、約57.8%で一定であり、深さd(nm)が約750nmから約1900nmまで増加すると、約57.8%から約59.9%に向けて徐々に増加し、深さd(nm)が約1061nmにおいて、第1の準安定AlGaN領域のAlNモル分率(約58.3%)と等しくなっている。よって、図12に示す例では、特定深さdxは約1061nmである。第2の平均的なAlNモル分率Xna2(d)は、深さd(nm)が0nm~約1061nmの領域では、第1の準安定AlGaN領域のAlNモル分率(約58.3%)より小さく、式(5)を満足しており、深さd(nm)が約1061nm~約1900nmの領域では、第1の準安定AlGaN領域のAlNモル分率(約58.3%)より大きく、式(7)を満足している。よって、図12に示す第2の平均的なAlNモル分率Xna2(d)は、式(5)及び式(7)を満足する典型例の1つである。つまり、d=約1061nmは、特定深さdxである。 As shown in FIG. 12, the second average AlN mole fraction Xna2(d) is constant at about 57.8% in the upper layer region with a depth d (nm) of 0 nm to about 750 nm, and As the depth d (nm) increases from about 750 nm to about 1900 nm, it gradually increases from about 57.8% to about 59.9%, and the first metastable It is equal to the AlN mole fraction (approximately 58.3%) of the AlGaN region. Therefore, in the example shown in FIG. 12, the specific depth dx is approximately 1061 nm. The second average AlN mole fraction Xna2(d) is the AlN mole fraction of the first metastable AlGaN region (about 58.3%) in the region where the depth d (nm) is 0 nm to about 1061 nm. is smaller than the AlN mole fraction (about 58.3%) of the first metastable AlGaN region in the region where the depth d (nm) is about 1061 nm to about 1900 nm, satisfying the formula (5). , satisfies equation (7). Therefore, the second average AlN mole fraction Xna2(d) shown in FIG. 12 is one of the typical examples satisfying the formulas (5) and (7). That is, d=approximately 1061 nm is the specific depth dx.
 尚、RBS分析法では、例えば、He2+イオンビーム(ビーム径:2.2mm)を加速電圧2.3MeVで、試料のn型クラッド層21の上面側より垂直に照射するが、垂直方向の測定範囲が300nm程度と大きいため、分析対象の膜厚は、300nmより大きい必要がある。 In the RBS analysis method, for example, a He 2+ ion beam (beam diameter: 2.2 mm) is vertically irradiated from the upper surface side of the n-type cladding layer 21 of the sample at an acceleration voltage of 2.3 MeV. Since the range is as large as 300 nm, the film thickness to be analyzed should be greater than 300 nm.
 図13は、上記試料片の測定断面上のn型クラッド層21を含む主要部を示す走査型電子顕微鏡(SEM)像である。試料片の測定範囲(測定用に照射した電子ビームの入射点の範囲)は、X方向(第2平面に平行な横方向)とY方向(第2平面と直交する縦方向)にそれぞれ6.25μmと2.2μmで、121メッシュ×41メッシュの格子状に電子ビームの入射点が設定されている。メッシュ間隔は、X方向が約52nmで、Y方向が約55nmである。 FIG. 13 is a scanning electron microscope (SEM) image showing the main part including the n-type cladding layer 21 on the cross section of the sample piece to be measured. The measurement range of the sample piece (the range of the incident point of the electron beam irradiated for measurement) is 6.5 mm in each of the X direction (horizontal direction parallel to the second plane) and Y direction (vertical direction orthogonal to the second plane). The incident points of the electron beams are set in a grid pattern of 121 mesh×41 mesh with 25 μm and 2.2 μm. The mesh spacing is about 52 nm in the X direction and about 55 nm in the Y direction.
 図13に示す試料片の測定範囲中に記されたY値(Y座標)は、各測定範囲の上端から数えたメッシュ数を表しており、上端がY=0である。図13では、Y=4とY=38が、それぞれn型クラッド層21の上端と下端の近傍に位置する。よって、n型クラッド層21の膜厚は約1.9μmである。 The Y value (Y coordinate) written in the measurement range of the sample piece shown in FIG. 13 represents the number of meshes counted from the upper end of each measurement range, and the upper end is Y=0. In FIG. 13, Y=4 and Y=38 are located near the upper end and the lower end of the n-type cladding layer 21, respectively. Therefore, the thickness of the n-type cladding layer 21 is approximately 1.9 μm.
 試料片の測定範囲内の格子状の電子ビームの入射点に、ビーム径50nm(直径)の電子ビームを1回ずつ照射して、各入射点におけるCLスペクトルを測定した。 An electron beam with a beam diameter of 50 nm (diameter) was irradiated once to the grid-shaped electron beam incident point within the measurement range of the sample piece, and the CL spectrum at each incident point was measured.
 図14は、試料片AのY=10、Y=16、Y=21、Y=26、Y=31、Y=35の6つのY座標のそれぞれにおいて、X方向に走査して得られた121個のCLスペクトルに対して、下記の要領で導出した第1CLスペクトル(実線)と第2CLスペクトル(破線)を示す。6つのY座標(Y=10~35)は、n型クラッド層21の上端からの深さdに換算すると、約330nm~約1700nmに相当する。6つのY座標の第1及び第2CLスペクトルは、縦軸方向にそれぞれの原点をずらして、同じグラフ上で相互に識別可能に表示されている。図14の縦軸は、発光強度(任意単位)を示しており、更に、2つのY座標(Y=10,35)の発光強度は、0.5倍(Y=10)と1.5倍(Y=35)にして見易くしている。図14の横軸は、波長(nm)を示している。 FIG. 14 shows the 121 A first CL spectrum (solid line) and a second CL spectrum (dashed line) derived in the following manner are shown for the CL spectra. The six Y coordinates (Y=10 to 35) correspond to approximately 330 nm to approximately 1700 nm when converted to the depth d from the upper end of the n-type cladding layer 21 . The first and second CL spectra of six Y-coordinates are displayed on the same graph so as to be mutually identifiable with their respective origins shifted in the direction of the vertical axis. The vertical axis of FIG. 14 indicates the emission intensity (arbitrary unit), and the emission intensity of the two Y coordinates (Y = 10, 35) is 0.5 times (Y = 10) and 1.5 times (Y=35) to make it easier to see. The horizontal axis of FIG. 14 indicates the wavelength (nm).
 また、図14上に、参照用として、3つの準安定AlGaN(AlNモル分率が50%、58.3%、66.7%)に対応する3つのCL波長(約253nm、約266nm、約279nm)を一点鎖線の縦線で図示している。 Also, on FIG. 14, for reference, three CL wavelengths (about 253 nm, about 266 nm, about 279 nm) is shown by a dashed-dotted vertical line.
 図14に示す各Y座標の第1CLスペクトルは、同じY座標のCLスペクトルの中から、発光強度のピークが、第1の準安定AlGaN領域のAlNモル分率(約58.3%)より長波長側の同じ波長付近にシフトしているCLスペクトルを6~7点以上を抽出し、抽出されたCLスペクトルを平均して算出した。従って、第1CLスペクトルに係る測定領域内には、同じY座標の他の測定領域より、層状領域21aが多く含まれている。 The first CL spectrum of each Y coordinate shown in FIG. 6 to 7 points or more of CL spectra shifted to the same wavelength on the wavelength side were extracted, and the extracted CL spectra were averaged for calculation. Therefore, the measurement area related to the first CL spectrum contains more layer regions 21a than other measurement areas of the same Y coordinate.
 一方、図14に示す各Y座標の第2CLスペクトルは、同じY座標のCLスペクトルの中から、発光強度のピークが、第1の準安定AlGaN領域のAlNモル分率(約58.3%)より短波長側の同じ波長付近にシフトしているCLスペクトルを6~7点以上を抽出し、抽出されたCLスペクトルを平均して算出した。従って、第2CLスペクトルに係る測定領域内には、同じY座標の他の測定領域より、n型本体領域21b(特に、Al富化n型領域)が多く含まれている。 On the other hand, the second CL spectrum of each Y coordinate shown in FIG. 6 to 7 or more points of the CL spectrum shifted to the vicinity of the same wavelength on the shorter wavelength side were extracted, and the extracted CL spectrum was averaged for calculation. Therefore, the measurement region for the second CL spectrum includes more n-type body regions 21b (in particular, Al-enriched n-type regions) than other measurement regions with the same Y coordinate.
 図14に示す各Y座標の第1CLスペクトルは、最大信号強度In0(Y)を示す波長λ0(Y)が、約268nm~約271nmの範囲内に存在しており、n=7の場合の中間AlGaN領域(Aln-0.5Ga12.5-n12)のAlNモル分率((n-0.5)/12)に対応するCL波長(約273nm)と、n=7の場合の第1の準安定AlGaN領域(AlGa12-n12)のAlNモル分率(n/12)に対応するCL波長(約266nm)との間に存在している。これは、第1CLスペクトルには、層状領域21aからのCLスペクトルと、n型本体領域21b内の第1の準安定AlGaN領域からのCLスペクトルと、n型本体領域21b内のAl富化n型領域からのCLスペクトルが含まれ、特に、前の2つのCLスペクトルが主として含まれ、これらの合成スペクトルとなっているためである。 In the first CL spectrum of each Y coordinate shown in FIG. 14, the wavelength λ0 (Y) indicating the maximum signal intensity In0 (Y) exists within the range of about 268 nm to about 271 nm, and the intermediate CL wavelength (approximately 273 nm) corresponding to the AlN mole fraction ((n-0.5)/12) of the AlGaN region (Al n-0.5 Ga 12.5-n N 12 ), and when n=7 and the CL wavelength (approximately 266 nm) corresponding to the AlN mole fraction (n/12) of the first metastable AlGaN region (Al n Ga 12-n N 12 ). This is because the first CL spectrum includes the CL spectrum from the layered region 21a, the CL spectrum from the first metastable AlGaN region in the n-type body region 21b, and the Al-enriched n-type in the n-type body region 21b. This is because the CL spectrum from the region is included, and in particular the two previous CL spectra are primarily included, resulting in a composite spectrum of these.
 ここで、n型本体領域21b内のAl富化n型領域は、上述したように、n型クラッド層21のエピタキシャル成長過程において、テラス領域から傾斜領域へのGaの質量移動により、層状領域21a(Ga富化n型領域)の形成に伴い形成されるため、層状領域21a内に中間AlGaN領域(Aln-0.5Ga12.5-n12)が形成されるのと同様に、Al富化n型領域内にも、第2の中間AlGaN領域(Aln+0.5Ga11.5-n12)が形成され得る。第2の中間AlGaN領域は、AlNモル分率が、第1の準安定AlGaN領域と、第1の準安定AlGaN領域よりAlNモル分率が1段階(約8.33%)大きい第3の準安定AlGaN領域(Aln+1Ga11-n12)との中間に位置する。尚、n=7の場合の第2の中間AlGaN領域のAlNモル分率((n+0.5)/12)に対応するCL波長は、約259nmである。 Here, as described above, the Al-enriched n-type region in the n-type body region 21b is formed in the layered region 21a ( Ga - enriched n -type region) is formed along with the formation of the Al A second intermediate AlGaN region (Al n+0.5 Ga 11.5−n N 12 ) may also be formed within the enriched n-type region. The second intermediate AlGaN region has an AlN mole fraction in the first metastable AlGaN region and a third subregion in which the AlN mole fraction is one step (about 8.33%) higher than that of the first metastable AlGaN region. It is located intermediate to the stable AlGaN region (Al n+1 Ga 11-n N 12 ). The CL wavelength corresponding to the AlN mole fraction ((n+0.5)/12) of the second intermediate AlGaN region when n=7 is approximately 259 nm.
 また、各Y座標の第1CLスペクトルにおいて、第1の準安定AlGaN領域のAlNモル分率(約58.3%)に対応する波長λs1(約266nm)における信号強度In11(Y)が、最大信号強度In0(Y)の約67%~約96%であり、各Y座標の第1CLスペクトルに係る測定領域内には、第1の準安定AlGaN領域が支配的に形成されているn型本体領域21bが含まれていることが分かる。 Further, in the first CL spectrum of each Y coordinate, the signal intensity In11(Y) at the wavelength λs1 (about 266 nm) corresponding to the AlN mole fraction (about 58.3%) of the first metastable AlGaN region is the maximum signal. an n-type body region having an intensity of about 67% to about 96% of In0(Y) and formed predominantly by a first metastable AlGaN region within the measurement region for the first CL spectrum at each Y coordinate; 21b is included.
 また、各Y座標の第1CLスペクトルにおいて、中間AlGaN領域のAlNモル分率(約54.2%)に対応する波長λsm(約273nm)における信号強度In1m(Y)が、最大信号強度In0(Y)の約73%~約93%であり、各Y座標の第1CLスペクトルに係る測定領域内には、中間AlGaN領域(Aln-0.5Ga12.5-n12)が支配的に形成されている層状領域21aが含まれていることが分かる。 Further, in the first CL spectrum of each Y coordinate, the signal intensity In1m (Y) at the wavelength λsm (about 273 nm) corresponding to the AlN mole fraction (about 54.2%) in the middle AlGaN region is the maximum signal intensity In0 (Y ), and the middle AlGaN region (Al n-0.5 Ga 12.5-n N 12 ) is dominant in the measurement region for the first CL spectrum of each Y coordinate. It can be seen that the formed layered region 21a is included.
 上記測定結果に対して、信号強度In1m(Y)が最大信号強度In0(Y)の70%以上であれば、層状領域21a内に中間AlGaN領域(Aln-0.5Ga12.5-n12)が支配的に形成されていると判定し得ると考えられる。n=6の場合も同様に考えられる。但し、CL法による測定精度を確保するために、第1CLスペクトルのY座標は、n型クラッド層21の上端から下方に150nmまでの上端領域と、下端から上方に150nmまでの下端領域を除く中間領域内のY座標に限定し、n型クラッド層21の上側に存在する活性層22からの影響、及び、n型クラッド層21の下側に存在する下地部10(一実施形態では、最上層がAlN12)からの影響を排除するのが好ましい。 Regarding the above measurement results, if the signal intensity In1m(Y) is 70% or more of the maximum signal intensity In0(Y), the intermediate AlGaN region (Al n-0.5 Ga 12.5-n N 12 ) is predominantly formed. The case of n=6 is also conceivable. However, in order to ensure the measurement accuracy by the CL method, the Y coordinate of the first CL spectrum is the middle Limited to the Y coordinate in the region, the influence from the active layer 22 existing above the n-type cladding layer 21 and the underlayer 10 existing below the n-type cladding layer 21 (in one embodiment, the top layer preferably eliminates the influence from AlN12).
 また、各Y座標の第1CLスペクトルにおいて、第2の準安定AlGaN領域のAlNモル分率(50%)に対応する波長λs2(約279nm)における信号強度In12(Y)が、最大信号強度In0(Y)の約13%~約40%であり、各Y座標の第1CLスペクトルに係る測定領域内には、第2の準安定AlGaN領域は存在しているものの、支配的には形成されていないことが分かる。 Further, in the first CL spectrum of each Y coordinate, the signal intensity In12 (Y) at the wavelength λs2 (about 279 nm) corresponding to the AlN mole fraction (50%) of the second metastable AlGaN region is the maximum signal intensity In0 ( Y) is about 13% to about 40%, and the second metastable AlGaN region exists, but is not predominantly formed, within the measurement region of the first CL spectrum of each Y coordinate. I understand.
 上記測定結果に対して、信号強度In12(Y)が最大信号強度In0(Y)の50%未満であれば、層状領域21a内に第2の準安定AlGaN領域が支配的に形成されていないと判定し得ると考えられる。n=6の場合も同様に考えられる。但し、CL法による測定精度を確保するために、第1CLスペクトルのY座標は、中間領域内のY座標に限定するのが好ましい。 Regarding the above measurement results, if the signal intensity In12(Y) is less than 50% of the maximum signal intensity In0(Y), it means that the second metastable AlGaN region is not dominantly formed in the layered region 21a. can be determined. The case of n=6 is also conceivable. However, in order to ensure measurement accuracy by the CL method, it is preferable to limit the Y coordinate of the first CL spectrum to the Y coordinate within the intermediate region.
 図14に示す各Y座標の第2CLスペクトルは、最大信号強度In1(Y)を示す波長λ1(Y)が、約258nm~約261nmの範囲内に存在しており、各波長λ1(Y)に対応する深さdにおけるAlNモル分率Xn1(d)は、約61.5%~約63.5%の範囲内に存在し、何れも、第2の平均的なAlNモル分率Xna2(d)よりも高い値を示している。従って、層状領域21aの形成時のGaの質量移動に伴い、n型本体領域21b内にAl富化n型領域が形成されていることが分かる。尚、n型クラッド層21の上端付近では、AlNモル分率Xn1(d)は、約61.5%である。 In the second CL spectrum of each Y coordinate shown in FIG. 14, the wavelength λ1(Y) indicating the maximum signal intensity In1(Y) exists within the range of about 258 nm to about 261 nm, and each wavelength λ1(Y) The AlN mole fraction Xn1(d) at the corresponding depth d lies in the range of about 61.5% to about 63.5%, both of which are within the second average AlN mole fraction Xna2(d ). Therefore, it can be seen that an Al-enriched n-type region is formed in the n-type body region 21b with the mass transfer of Ga during the formation of the layered region 21a. In the vicinity of the upper end of the n-type cladding layer 21, the AlN mole fraction Xn1(d) is about 61.5%.
 また、各Y座標の第2CLスペクトルにおいて、第1の準安定AlGaN領域のAlNモル分率(約58.3%)に対応する波長λs1(約266nm)における信号強度In21(Y)が、最大信号強度In1(Y)の約55%~約84%であり、各Y座標の第2CLスペクトルに係る測定領域内には、第1の準安定AlGaN領域が支配的に形成されているn型本体領域21bが含まれていることが分かる。 Further, in the second CL spectrum of each Y coordinate, the signal intensity In21(Y) at the wavelength λs1 (about 266 nm) corresponding to the AlN mole fraction (about 58.3%) of the first metastable AlGaN region is the maximum signal. an n-type body region having an intensity of about 55% to about 84% of In1(Y) and formed predominantly by a first metastable AlGaN region within the measurement region for the second CL spectrum at each Y coordinate; 21b is included.
 更に、各Y座標の第1及び第2CLスペクトルにおいて、第1の準安定AlGaN領域のAlNモル分率(約58.3%)に対応する波長λs1(約266nm)における信号強度In21(Y)が、同程度であるので、第1の準安定AlGaN領域が、n型本体領域21b内に一様に形成されていることが分かる。 Furthermore, in the first and second CL spectra of each Y coordinate, the signal intensity In21(Y) at the wavelength λs1 (about 266 nm) corresponding to the AlN mole fraction (about 58.3%) of the first metastable AlGaN region is , are the same, it can be seen that the first metastable AlGaN region is uniformly formed in the n-type body region 21b.
 また、各Y座標の第2CLスペクトルにおいて、第2の中間AlGaN領域のAlNモル分率(62.5%)に対応する波長λsm(約259nm)における信号強度In2m(Y)が、最大信号強度In2(Y)の約90%~約100%であり、各Y座標の第2CLスペクトルに係る測定領域内には、第2の中間AlGaN領域(Aln+0.5Ga11.5-n12)が支配的に形成されているn型本体領域21b内のAl富化n型領域が含まれていることが分かる。 Further, in the second CL spectrum of each Y coordinate, the signal intensity In2m(Y) at the wavelength λsm (about 259 nm) corresponding to the AlN mole fraction (62.5%) of the second intermediate AlGaN region is the maximum signal intensity In2 (Y) is about 90% to about 100%, and a second intermediate AlGaN region (Al n+0.5 Ga 11.5−n N 12 ) is within the measurement region for the second CL spectrum of each Y coordinate. It can be seen that the Al-enriched n-type region within the predominantly formed n-type body region 21b is included.
 従って、n型クラッド層21の表面(特に、第2領域R2内の露出面)において、n型本体領域21b内に一様且つ支配的に形成されているAlNモル分率が約58.3%の第1の準安定AlGaN領域、及び、更にAlNモル分率の低い層状領域21aが露出しているため、AlNモル分率が60%を僅かに超えるAl富化n型領域が一部に存在していても、n型クラッド層21の表面とn電極27との間の接触抵抗は、低く抑えられていることが分かる。 Therefore, on the surface of the n-type cladding layer 21 (particularly, the exposed surface in the second region R2), the AlN molar fraction uniformly and predominantly formed in the n-type body region 21b is approximately 58.3%. Since the first metastable AlGaN region of and the layered region 21a with a lower AlN mole fraction are exposed, an Al-enriched n-type region with an AlN mole fraction slightly exceeding 60% is partially present. It can be seen that the contact resistance between the surface of the n-type cladding layer 21 and the n-electrode 27 is kept low even with this.
 図15は、上記試料片の層状領域21a内のAlNモル分率を断面TEM-EDXのライン分析により測定する4箇所の測定領域A~Dを示すHAADF-STEM像である。 FIG. 15 is an HAADF-STEM image showing four measurement regions A to D where the AlN mole fraction in the layered region 21a of the sample piece is measured by cross-sectional TEM-EDX line analysis.
 断面TEM-EDX法による組成分析(EDX測定)では、先ず、図15に示す4箇所の測定領域A~Dをカバーする全体測定領域において、電子線プローブ(直径:約2nm)を縦方向(上下方向)及び横方向(第2平面に平行な方向)に走査して、512×512のマトリクス状に、縦方向及び横方向に約4nm間隔で分布した各プローブ箇所における検出データ(Al及びGaの各組成に対応するX線強度)を取得した。 In the composition analysis (EDX measurement) by the cross-sectional TEM-EDX method, first, in the entire measurement area covering the four measurement areas A to D shown in FIG. direction) and lateral direction (parallel to the second plane), and the detection data (Al and Ga X-ray intensity corresponding to each composition) was obtained.
 次に、全体測定領域に分散して存在する層状領域21aに対して、EDX測定によるライン分析を行うために、全体測定領域内に上述の4箇所の測定領域A~D(図15中に破線で図示)を設定した。各測定領域A~Dは長方形状で、その傾き及び大きさが、測定領域内の少なくとも1本の層状領域21aの延伸方向がライン分析の走査方向と直交するように、測定領域毎に設定されている。また、測定領域A~Dの各傾き(全体測定領域の縦方向と各測定領域の縦方向の成す角度)は、約20°でほぼ等しいが、厳密には必ずしも同じではない。ここで、全体測定領域の縦方向及び横方向とは別に、図15の各測定領域A~D内において、説明の便宜上、ライン分析の走査方向を縦方向とし、走査方向と直交する方向を横方向とする。各測定領域内に示されている中央の縦線は走査方向を示し、当該縦線上の×印は、AlNモル分率の測定対象となる層状領域21aの縦方向上の位置を示している。尚、測定領域A~Dの×印の位置は、図13に示すCL法によるAlNモル分率の測定範囲中のY座標の10、21、31、及び36と概ね対応している。 Next, in order to perform line analysis by EDX measurement on the layered regions 21a dispersed in the entire measurement region, the four measurement regions A to D (broken lines in FIG. 15) are set in the entire measurement region. ) was set. Each measurement area A to D is rectangular, and the inclination and size are set for each measurement area so that the extending direction of at least one layered area 21a in the measurement area is orthogonal to the scanning direction of line analysis. ing. The inclinations of the measurement areas A to D (the angles formed by the vertical direction of the entire measurement area and the vertical direction of each measurement area) are approximately equal to about 20°, but strictly speaking, they are not necessarily the same. Here, apart from the vertical and horizontal directions of the entire measurement area, in each measurement area A to D in FIG. 15, for convenience of explanation, the scanning direction of line analysis is the vertical direction, and the direction. The central vertical line shown in each measurement region indicates the scanning direction, and the x mark on the vertical line indicates the position in the vertical direction of the layered region 21a whose AlN mole fraction is to be measured. The positions of the X marks in the measurement regions A to D roughly correspond to Y coordinates 10, 21, 31, and 36 in the measurement range of the AlN mole fraction by the CL method shown in FIG.
 EDX測定では、照射する電子線プローブの直径が約2nmと小さいため、空間分解能は高いが、各プローブ箇所から放射されるX線が微弱であるため、本実施形態のライン分析では、各走査位置において横方向に整列した複数のプローブ箇所から得られる検出データを累積して、各走査位置での検出データとしている。尚、「横方向に整列」するとは、電子線プローブの照射範囲が、各走査位置において上記縦線と交差し横方向に延伸する横線と重なっていることを意味する。 In the EDX measurement, since the diameter of the electron beam probe to be irradiated is as small as about 2 nm, the spatial resolution is high. Detection data obtained from a plurality of probe locations aligned in the horizontal direction are accumulated to obtain detection data at each scanning position. Note that "horizontally aligned" means that the irradiation range of the electron beam probe overlaps with a horizontal line that intersects the vertical line and extends in the horizontal direction at each scanning position.
 上記要領で得られた累積検出データに基づいて導出された測定領域A~Dの×印で示される層状領域21a内のAlNモル分率は、下記に示す通りである。尚、AlNモル分率の測定結果の右側の括弧内に、各測定領域A~Dでの層状領域21a内のAlNモル分率の測定結果から中間AlGaN領域のAlNモル分率(約54.17%)を差し引いたAlNモル分率差Δを示す。
 測定領域A(Y=約10):52.62% (Δ=-1.55%)
 測定領域B(Y=約21):54.52% (Δ=0.35%)
 測定領域C(Y=約31):54.63% (Δ=0.46%)
 測定領域D(Y=約36):54.05% (Δ=-0.12%)
The AlN mole fractions in the layered regions 21a indicated by the crosses in the measurement regions A to D derived based on the cumulative detection data obtained in the manner described above are as follows. The AlN mole fraction of the intermediate AlGaN region (approximately 54.17 %) is subtracted to show the AlN mole fraction difference Δ.
Measurement area A (Y = about 10): 52.62% (Δ = -1.55%)
Measurement area B (Y = about 21): 54.52% (Δ = 0.35%)
Measurement area C (Y = about 31): 54.63% (Δ = 0.46%)
Measurement area D (Y = about 36): 54.05% (Δ = -0.12%)
 各測定領域A~Dでの層状領域21a内のAlNモル分率の測定結果より、層状領域21a内には、AlNモル分率が6.5/12(約54.2%)の中間AlGaN領域が支配的に形成されていることが分かる。このことは、図14の第1CLスペクトルから導かれる結果と符合する。 From the measurement results of the AlN mole fraction in the layered region 21a in each of the measurement regions A to D, an intermediate AlGaN region having an AlN mole fraction of 6.5/12 (about 54.2%) was found in the layered region 21a. is predominantly formed. This agrees with the results derived from the first CL spectrum in FIG.
[第2実施形態]
 第1実施形態の発光素子1では、発光素子構造部20を構成するp型層は、電子ブロック層23とp型コンタクト層24の2層であったが、第2実施形態の発光素子2では、p型層が、電子ブロック層23とp型コンタクト層24の間に1層以上のp型AlGaN系半導体で構成されたp型クラッド層25を有する。
[Second embodiment]
In the light-emitting device 1 of the first embodiment, the p-type layer constituting the light-emitting device structure portion 20 was composed of two layers, the electron blocking layer 23 and the p-type contact layer 24, but in the light-emitting device 2 of the second embodiment, , the p-type layer has a p-type clad layer 25 composed of one or more p-type AlGaN semiconductors between the electron block layer 23 and the p-type contact layer 24 .
 従って、第2実施形態では、図16に示すように、発光素子構造部20のAlGaN系半導体層21~25は、下地部10側から順に、n型クラッド層21(n型層)、活性層22、電子ブロック層23(p型層)、p型クラッド層25(p型層)、及び、p型コンタクト層24(p型層)を順にエピタキシャル成長させて積層した構造を備える。 Therefore, in the second embodiment, as shown in FIG. 16, the AlGaN-based semiconductor layers 21 to 25 of the light emitting element structure 20 are composed of an n-type cladding layer 21 (n-type layer), an active layer 22, an electron blocking layer 23 (p-type layer), a p-type cladding layer 25 (p-type layer), and a p-type contact layer 24 (p-type layer) which are epitaxially grown in order and stacked.
 第2実施形態の発光素子2における下地部10、及び、発光素子構造部20のAlGaN系半導体層21~24、p電極26、n電極27は、第1乃至第3実施形態の何れかの発光素子1の下地部10及び発光素子構造部20のAlGaN系半導体層21~24、p電極26、n電極27と同じであるので、重複する説明は省略する。 The base portion 10 and the AlGaN-based semiconductor layers 21 to 24, the p-electrode 26, and the n-electrode 27 of the light-emitting element structural portion 20 in the light-emitting element 2 of the second embodiment are the light emission of any one of the first to third embodiments. Since they are the same as the AlGaN-based semiconductor layers 21 to 24, the p-electrode 26, and the n-electrode 27 of the base portion 10 and the light-emitting device structure portion 20 of the device 1, redundant description will be omitted.
 p型クラッド層25は、サファイア基板11の主面11aから順番にエピタキシャル成長した下地部10のAlN層12、及び、発光素子構造部20のn型クラッド層21と活性層22内の各半導体層と電子ブロック層23と同様に、サファイア基板11の主面11aに由来する(0001)面に平行な多段状のテラスが形成された表面を有する。 The p-type cladding layer 25 is composed of the AlN layer 12 of the underlying portion 10 epitaxially grown in order from the main surface 11a of the sapphire substrate 11, the n-type cladding layer 21 of the light emitting element structure portion 20, and each semiconductor layer in the active layer 22. Like the electron blocking layer 23 , it has a surface on which multi-stepped terraces parallel to the (0001) plane derived from the main surface 11 a of the sapphire substrate 11 are formed.
 図17に、活性層22における井戸層220及びバリア層221の積層構造(多重量子井戸構造)の一例を模式的に示す。図17では、第1実施形態において図5を用いて説明した積層構造の電子ブロック層23の上に、p型クラッド層25が形成されている。 FIG. 17 schematically shows an example of a laminated structure (multiple quantum well structure) of well layers 220 and barrier layers 221 in the active layer 22 . In FIG. 17, a p-type cladding layer 25 is formed on the electron blocking layer 23 having the laminated structure described with reference to FIG. 5 in the first embodiment.
 p型クラッド層25においても、横方向に隣接するテラスT間には、上述したように、(0001)面に対して傾斜した傾斜領域IAが形成されている。傾斜領域IA以外の上下がテラスTで挟まれた領域を、テラス領域TAと称す。p型クラッド層25の膜厚は、テラス領域TA及び傾斜領域IAを含めて、例えば、20nm~200nmの範囲内に調整されている。 Also in the p-type cladding layer 25, between the laterally adjacent terraces T, the inclined regions IA inclined with respect to the (0001) plane are formed as described above. A region other than the inclined region IA, which is sandwiched between the terraces T, is referred to as a terrace region TA. The thickness of the p-type cladding layer 25 is adjusted, for example, within the range of 20 nm to 200 nm including the terrace area TA and the inclined area IA.
 図17に模式的に示すように、p型クラッド層25において、テラス領域TAから傾斜領域IAへのGaの質量移動により、傾斜領域IA内にテラス領域TAよりAlNモル分率の低いGa富化p型領域25aが形成されている。 As schematically shown in FIG. 17, in the p-type cladding layer 25, due to mass transfer of Ga from the terrace region TA to the gradient region IA, Ga enrichment with a lower AlN mole fraction in the gradient region IA than in the terrace region TA A p-type region 25a is formed.
 p型クラッド層25のテラス領域TAのAlNモル分率は、51%以上、電子ブロック層23のテラス領域TAのAlNモル分率未満の範囲内に設定されている。更に、p型クラッド層25のGa富化p型領域25aのAlNモル分率は、電子ブロック層23のGa富化EB領域23aのAlNモル分率未満となるように設定されている。 The AlN mole fraction of the terrace region TA of the p-type cladding layer 25 is set within a range of 51% or more and less than the AlN mole fraction of the terrace region TA of the electron blocking layer 23 . Furthermore, the AlN mole fraction of the Ga-enriched p-type region 25 a of the p-type cladding layer 25 is set to be less than the AlN mole fraction of the Ga-enriched EB region 23 a of the electron blocking layer 23 .
 更に、p型クラッド層25のテラス領域TAのAlNモル分率は、上記範囲内において、Ga富化p型領域25aのAlNモル分率より、1%以上、好ましくは2%以上、より好ましくは4%以上、高くなるように設定される。Ga富化p型領域25aにおけるキャリアの局在化の効果を十分に確保するために、p型クラッド層25のGa富化p型領域25aとテラス領域TAのAlNモル分率差を4~5%以上とするのが好ましいが、1~2%程度でも、キャリアの局在化の効果は期待し得る。 Furthermore, the AlN mole fraction of the terrace region TA of the p-type cladding layer 25 is 1% or more, preferably 2% or more, more preferably 2% or more, more preferably than the AlN mole fraction of the Ga-enriched p-type region 25a within the above range. It is set to be higher than 4%. In order to sufficiently ensure the effect of localizing carriers in the Ga-enriched p-type region 25a, the AlN mole fraction difference between the Ga-enriched p-type region 25a of the p-type cladding layer 25 and the terrace region TA is 4-5. % or more is preferable, but the effect of localizing carriers can be expected even at about 1 to 2%.
 次に、p型クラッド層25の成長方法について簡単に説明する。p型クラッド層25の形成において、第1実施形態で説明したn型クラッド層21及び電子ブロック層23と同様の要領で、上述した多段状のテラスが表出し易い成長条件で、p型クラッド層25の平均的なAlNモル分率Xpaを目標値としてp型クラッド層25を成長させる。 Next, a method for growing the p-type cladding layer 25 will be briefly described. In the formation of the p-type cladding layer 25, the p-type cladding layer 25 is formed under the same growth conditions as those for the n-type cladding layer 21 and the electron blocking layer 23 described in the first embodiment under the growth conditions under which the above-described multi-stepped terraces are easily exposed. The p-type cladding layer 25 is grown with an average AlN mole fraction Xpa of 25 as a target value.
[別実施形態]
 以下に、上記第1及び第2実施形態の変形例について説明する。
[Another embodiment]
Modifications of the first and second embodiments will be described below.
(1)上記各実施形態では、活性層22は、AlGaN系半導体で構成される2層以上の井戸層220と、AlGaN系半導体またはAlN系半導体で構成される1層以上のバリア層221を交互に積層した多重量子井戸構造で構成されている場合を想定したが、活性層22は、井戸層220が1層だけの単一量子井戸構造であり、バリア層221(量子バリア層)を備えない構成としても良い。斯かる単一量子井戸構造に対しても、上記各実施形態で採用した井戸層220による効果は同様に奏し得ることは明らかである。 (1) In each of the above embodiments, the active layer 22 alternately comprises two or more well layers 220 made of an AlGaN-based semiconductor and one or more barrier layers 221 made of an AlGaN-based semiconductor or an AlN-based semiconductor. However, the active layer 22 has a single quantum well structure with only one well layer 220 and does not have a barrier layer 221 (quantum barrier layer). It may be configured. It is clear that the effect of the well layer 220 employed in each of the above-described embodiments can be similarly obtained for such a single quantum well structure.
(2)上記各実施形態に対して、n型クラッド層21と下地部10との間に、n型クラッド層21よりAlNモル分率の高いn型AlGaN系半導体層(以下、「n型下地層」と称す)を設けても良い。これにより、n型クラッド層21と当該n型下地層とを合体した深さ方向の全域にわたる平均的なAlNモル分率が、上記式(1)の範囲より高くなっても良い。 (2) In each of the above embodiments, an n-type AlGaN semiconductor layer having a higher AlN mole fraction than the n-type cladding layer 21 (hereinafter referred to as "n-type lower (referred to as "stratum") may be provided. As a result, the average AlN mole fraction over the entire area in the depth direction where the n-type cladding layer 21 and the n-type underlayer are united may be higher than the range of the above formula (1).
 n型クラッド層21の下側に設けられたn型下地層は、n型クラッド層21よりAlNモル分率が高いため、活性層からの発光は吸収されない。また、当該n型下地層は、n型クラッド層21よりAlNモル分率が高くなっていても、n電極27と接触することもなく、n電極27と活性層間の電流経路を形成することもないので、n電極27と活性層間の寄生抵抗を増加させず、ウォールプラグ効率の低下の要因とはならない。つまり、当該n型下地層は、実質的に発光素子構造部20の一部として機能しないため、当該n型下地層を設けても、特段のメリットもなければ、顕著なデメリットもないと言える。 Since the n-type underlayer provided below the n-type cladding layer 21 has a higher AlN mole fraction than the n-type cladding layer 21, light emitted from the active layer is not absorbed. In addition, even if the n-type underlayer has a higher AlN mole fraction than the n-type cladding layer 21, it does not come into contact with the n-electrode 27 and forms a current path between the n-electrode 27 and the active layer. Therefore, the parasitic resistance between the n-electrode 27 and the active layer is not increased, and the wall plug efficiency is not lowered. In other words, since the n-type underlayer does not substantially function as part of the light emitting element structure 20, it can be said that the provision of the n-type underlayer does not bring any particular advantage or conspicuous disadvantage.
(3)上記各実施形態では、第1領域R1及びp電極26の平面視形状は、一例として、櫛形形状のものを採用しが、該平面視形状は、櫛形形状に限定されるものではない。また、第1領域R1が複数存在して、夫々が、1つの第2領域R2に囲まれている平面視形状であってもよい。 (3) In each of the above-described embodiments, the first region R1 and the p-electrode 26 have, as an example, a comb shape in plan view, but the plan view shape is not limited to a comb shape. . Moreover, a planar view shape in which a plurality of first regions R1 are present and each of which is surrounded by one second region R2 may be used.
(4)上記各実施形態では、主面が(0001)面に対してオフ角を有するサファイア基板11を用いてAlN層12の表面に多段状のテラスが表出した下地部10を使用する場合を例示したが、当該オフ角の大きさや、オフ角を設ける方向(具体的には、(0001)面を傾ける方向であり、例えばm軸方向やa軸方向等)は、AlN層12の表面に多段状のテラスが表出して、層状領域21aの成長開始点が形成される限りにおいて、任意に決定してもよい。 (4) In each of the above-described embodiments, the base portion 10 in which a multi-stepped terrace is exposed on the surface of the AlN layer 12 using the sapphire substrate 11 whose main surface has an off-angle with respect to the (0001) plane is used. , the magnitude of the off-angle and the direction in which the off-angle is provided (specifically, the direction in which the (0001) plane is tilted, such as the m-axis direction and the a-axis direction) are different from the surface of the AlN layer 12 It may be determined arbitrarily as long as a multi-stepped terrace is exposed at the end and a growth starting point of the layered region 21a is formed.
(5)上記各実施形態では、発光素子1として、図1に例示するように、サファイア基板11を含む下地部10を備える発光素子1を例示しているが、サファイア基板11(更には、下地部10に含まれる一部または全部の層)をリフトオフ等により除去してもよい。更に、下地部10を構成する基板は、サファイア基板に限定されるものではない。 (5) In each of the above-described embodiments, the light emitting element 1 including the underlying portion 10 including the sapphire substrate 11 is illustrated as the light emitting element 1 as illustrated in FIG. A part or all of the layers included in the portion 10) may be removed by lift-off or the like. Furthermore, the substrate forming the underlying portion 10 is not limited to the sapphire substrate.
 本発明は、ウルツ鉱構造のAlGaN系半導体からなるn型層、活性層、及びp型層が上下方向に積層された発光素子構造部を備えてなる窒化物半導体紫外線発光素子に利用可能である。 INDUSTRIAL APPLICABILITY The present invention is applicable to a nitride semiconductor ultraviolet light emitting device having a light emitting device structure in which an n-type layer, an active layer, and a p-type layer made of an AlGaN-based semiconductor having a wurtzite structure are stacked vertically. .
 1:    窒化物半導体紫外線発光素子
 10:   下地部
 11:   サファイア基板
 11a:  サファイア基板の主面
 12:   AlN層
 20:   発光素子構造部
 21:   n型クラッド層(n型層)
 21a:  層状領域(n型層)
 21b:  n型本体領域(n型層)
 22:   活性層
 220:  井戸層
 220a: Ga富化井戸領域
 221:  バリア層
 221a: Ga富化バリア領域
 23:   電子ブロック層(p型層)
 23a:  Ga富化EB領域
 24:   p型コンタクト層(p型層)
 25:   p型クラッド層(p型層)
 25a:  Ga富化p型領域
 26:   p電極
 27:   n電極
 100:  基板
 101:  AlGaN系半導体層
 102:  テンプレート
 103:  n型AlGaN系半導体層
 104:  活性層
 105:  p型AlGaN系半導体層
 106:  p型コンタクト層
 107:  n電極
 108:  p電極
 BL:   第1領域と第2領域の境界線
 IA:   傾斜領域
 R1:   第1領域
 R2:   第2領域
 T:    テラス
 TA:   テラス領域
 
Reference Signs List 1: nitride semiconductor ultraviolet light emitting device 10: base portion 11: sapphire substrate 11a: main surface of sapphire substrate 12: AlN layer 20: light emitting device structure portion 21: n-type clad layer (n-type layer)
21a: layered region (n-type layer)
21b: n-type body region (n-type layer)
22: Active layer 220: Well layer 220a: Ga-enriched well region 221: Barrier layer 221a: Ga-enriched barrier region 23: Electron blocking layer (p-type layer)
23a: Ga-enriched EB region 24: p-type contact layer (p-type layer)
25: p-type clad layer (p-type layer)
25a: Ga-enriched p-type region 26: p-electrode 27: n-electrode 100: substrate 101: AlGaN-based semiconductor layer 102: template 103: n-type AlGaN-based semiconductor layer 104: active layer 105: p-type AlGaN-based semiconductor layer 106: p-type contact layer 107: n-electrode 108: p-electrode BL: boundary line between first region and second region IA: inclined region R1: first region R2: second region T: terrace TA: terrace region

Claims (17)

  1.  ウルツ鉱構造のAlGaN系半導体からなるn型層、活性層、及びp型層が上下方向に積層された発光素子構造部を備えてなる窒化物半導体紫外線発光素子であって、
     前記n型層がn型AlGaN系半導体で構成され、
     前記n型層と前記p型層の間に配置された前記活性層が、AlGaN系半導体で構成された1層以上の井戸層を含む量子井戸構造を有し、
     前記p型層がp型AlGaN系半導体で構成され、
     前記n型層と前記活性層と前記p型層内の各半導体層が、(0001)面に平行な多段状のテラスが形成された表面を有するエピタキシャル成長層であり、
     前記n型層が、前記n型層内に分散して存在する局所的にAlNモル分率の低い層状領域を有し、
     前記n型層の上面と直交する第1平面上での前記層状領域の各延伸方向が、前記n型層の前記上面と前記第1平面との交線に対して傾斜している部分を有し、
     整数nが6または7であって、
     前記n型層の深さ方向の全域にわたる第1の平均的なAlNモル分率Xna1が、
     (n-0.25)/12<Xna1<(n+0.25)/12
    となる範囲内にあり、
     前記n型層の上端からの深さdにおける第2の平均的なAlNモル分率Xna2(d)が、前記深さdに応じて変化し、前記n型層内でXna2(d)=n/12となる1以上の深さの少なくとも1つの特定深さにおいて、前記特定深さを挟んで上側にXna2(d)<n/12となる領域が存在し、下側にXna2(d)>n/12となる領域が存在し、
     前記層状領域内に、AlNモル分率が(n-0.5)/12である中間AlGaN領域が形成されていることを特徴とする窒化物半導体紫外線発光素子。
    A nitride semiconductor ultraviolet light-emitting device comprising a light-emitting device structure in which an n-type layer, an active layer, and a p-type layer made of an AlGaN-based semiconductor having a wurtzite structure are vertically stacked,
    The n-type layer is composed of an n-type AlGaN semiconductor,
    the active layer disposed between the n-type layer and the p-type layer has a quantum well structure including one or more well layers made of an AlGaN-based semiconductor;
    The p-type layer is composed of a p-type AlGaN semiconductor,
    each of the semiconductor layers in the n-type layer, the active layer, and the p-type layer is an epitaxial growth layer having a surface on which a multi-stepped terrace parallel to the (0001) plane is formed;
    wherein the n-type layer has a layered region with a locally low AlN mole fraction dispersed within the n-type layer;
    Each extending direction of the layered region on a first plane perpendicular to the upper surface of the n-type layer has a portion that is inclined with respect to a line of intersection between the upper surface of the n-type layer and the first plane. death,
    the integer n is 6 or 7,
    A first average AlN mole fraction Xna1 over the entire depth direction of the n-type layer is
    (n−0.25)/12<Xna1<(n+0.25)/12
    is within the range of
    A second average AlN mole fraction Xna2(d) at a depth d from the top of the n-type layer varies with the depth d such that within the n-type layer Xna2(d)=n /12, at least one specific depth has a region satisfying Xna2(d)<n/12 above the specific depth, and a region satisfying Xna2(d)> below the specific depth. There is a region of n/12,
    A nitride semiconductor ultraviolet light emitting device, wherein an intermediate AlGaN region having an AlN mole fraction of (n-0.5)/12 is formed in the layered region.
  2.  前記n型層の上端から前記特定深さまでの領域にわたる第3の平均的なAlNモル分率Xna3が、
     (n-0.25)/12<Xna3<(n+0.25)/12
    となる範囲内にあることを特徴とする請求項1に記載の窒化物半導体紫外線発光素子。
    A third average AlN mole fraction Xna3 over a region from the upper end of the n-type layer to the specific depth is
    (n−0.25)/12<Xna3<(n+0.25)/12
    2. The nitride semiconductor ultraviolet light emitting device according to claim 1, wherein the range is:
  3.  前記第2の平均的なAlNモル分率Xna2(d)が、前記n型層の深さ方向の全域において、
     (n-0.25)/12<Xna2(d)<(n+0.25)/12
    となる範囲内にあることを特徴とする請求項1または2に記載の窒化物半導体紫外線発光素子。
    The second average AlN mole fraction Xna2(d) is, over the entire depth direction of the n-type layer,
    (n−0.25)/12<Xna2(d)<(n+0.25)/12
    3. The nitride semiconductor ultraviolet light emitting device according to claim 1 or 2, wherein the range is:
  4.  前記第2の平均的なAlNモル分率Xna2(d)が、前記n型層の上端から前記特定深さまでの領域において、
     Xna2(d)≦n/12
    となる範囲内にあることを特徴とする請求項1~3の何れか1項に記載の窒化物半導体紫外線発光素子。
    In a region from the upper end of the n-type layer to the specific depth, the second average AlN mole fraction Xna2(d) is
    Xna2(d)≤n/12
    The nitride semiconductor ultraviolet light emitting device according to any one of claims 1 to 3, characterized in that it is within the range of:
  5.  前記第2の平均的なAlNモル分率Xna2(d)が、前記n型層の前記特定深さより深い領域において、
     Xna2(d)≧n/12
    となる範囲内にあることを特徴とする請求項4に記載の窒化物半導体紫外線発光素子。
    In a region where the second average AlN mole fraction Xna2(d) is deeper than the specific depth of the n-type layer,
    Xna2(d)≧n/12
    5. The nitride semiconductor ultraviolet light emitting device according to claim 4, wherein the range is:
  6.  前記整数nが7であって、ピーク発光波長が、280nm~315nmの範囲内の所定値に設定されていることを特徴とする請求項1~5の何れか1項に記載の窒化物半導体紫外線発光素子。 The nitride semiconductor ultraviolet light according to any one of claims 1 to 5, wherein the integer n is 7 and the peak emission wavelength is set to a predetermined value within the range of 280 nm to 315 nm. light-emitting element.
  7.  前記整数nが6であって、ピーク発光波長が、300nm~330nmの範囲内の所定値に設定されていることを特徴とする請求項1~5の何れか1項に記載の窒化物半導体紫外線発光素子。 The nitride semiconductor ultraviolet light according to any one of claims 1 to 5, wherein the integer n is 6, and the peak emission wavelength is set to a predetermined value within the range of 300 nm to 330 nm. light-emitting element.
  8.  前記活性層が、2層以上の前記井戸層を含む多重量子井戸構造を有し、
     2層の前記井戸層間にAlGaN系半導体で構成されたバリア層が存在することを特徴とする請求項1~7の何れか1項に記載の窒化物半導体紫外線発光素子。
    wherein the active layer has a multiple quantum well structure including two or more well layers;
    8. The nitride semiconductor ultraviolet light emitting device according to claim 1, further comprising a barrier layer made of an AlGaN-based semiconductor between the two well layers.
  9.  サファイア基板を含む下地部を、さらに備え、
     前記サファイア基板は、(0001)面に対して所定の角度だけ傾斜した主面を有し、当該主面の上方に前記発光素子構造部が形成されており、
     前記サファイア基板の前記主面から前記p型層までの各半導体層が、(0001)面に平行な多段状のテラスが形成された表面を有するエピタキシャル成長層であることを特徴とする請求項1~8の何れか1項に記載の窒化物半導体発光素子。
    further comprising a base portion including a sapphire substrate,
    The sapphire substrate has a main surface inclined by a predetermined angle with respect to the (0001) plane, and the light emitting element structure is formed above the main surface,
    Each of the semiconductor layers from the main surface of the sapphire substrate to the p-type layer is an epitaxial growth layer having a surface on which a multi-stepped terrace parallel to the (0001) plane is formed. 9. The nitride semiconductor light emitting device according to any one of 8.
  10.  ウルツ鉱構造のAlGaN系半導体からなるn型層、活性層、及びp型層が上下方向に積層された発光素子構造部を備えてなる窒化物半導体紫外線発光素子の製造方法であって、
     (0001)面に対して所定の角度だけ傾斜した主面を有するサファイア基板を含む下地部の上に、n型AlGaN系半導体の前記n型層をエピタキシャル成長し、前記n型層の表面に(0001)面に平行な多段状のテラスを表出させる第1工程と、
     前記n型層の上に、AlGaN系半導体で構成された井戸層を1層以上含む量子井戸構造の前記活性層をエピタキシャル成長し、前記井戸層の表面に(0001)面に平行な多段状のテラスを表出させる第2工程と、
     前記活性層の上に、p型AlGaN系半導体の前記p型層をエピタキシャル成長により形成する第3工程を有し、
     前記第1工程において、
     整数nが6または7であって、
     前記n型層の深さ方向の全域にわたる第1の平均的なAlNモル分率Xna1が、
     (n-0.25)/12<Xna1<(n+0.25)/12
    となる範囲内にあり、
     前記n型層の上端からの深さdにおける第2の平均的なAlNモル分率Xna2(d)が、前記深さdに応じて変化し、前記n型層内でXna2(d)=n/12となる1以上の深さの少なくとも1つの特定深さにおいて、前記特定深さを挟んで上側にXna2(d)<n/12となる領域が存在し、下側にXna2(d)>n/12となる領域が存在するように、且つ、
     前記n型層内で一様に分散して存在する局所的にAlNモル分率の低い層状領域が、斜め上方に向かって延伸して形成され、
     前記層状領域内に、AlNモル分率が(n-0.5)/12である中間AlGaN領域が形成されるように、
     前記n型層を形成することを特徴とする窒化物半導体紫外線発光素子の製造方法。
    A method for manufacturing a nitride semiconductor ultraviolet light-emitting device comprising a light-emitting device structure in which an n-type layer, an active layer, and a p-type layer made of an AlGaN-based semiconductor having a wurtzite structure are vertically stacked,
    The n-type layer of an n-type AlGaN semiconductor is epitaxially grown on a base portion including a sapphire substrate having a main surface inclined at a predetermined angle with respect to the (0001) plane. ) a first step of expressing a multi-stepped terrace parallel to the surface;
    On the n-type layer, the active layer having a quantum well structure including one or more well layers made of an AlGaN-based semiconductor is epitaxially grown, and a multistep terrace parallel to the (0001) plane is formed on the surface of the well layer. A second step of expressing
    a third step of forming the p-type layer of a p-type AlGaN semiconductor on the active layer by epitaxial growth;
    In the first step,
    the integer n is 6 or 7,
    A first average AlN mole fraction Xna1 over the entire depth direction of the n-type layer is
    (n−0.25)/12<Xna1<(n+0.25)/12
    is within the range of
    A second average AlN mole fraction Xna2(d) at a depth d from the top of the n-type layer varies with the depth d such that within the n-type layer Xna2(d)=n /12, at least one specific depth has a region satisfying Xna2(d)<n/12 above the specific depth, and a region satisfying Xna2(d)> below the specific depth. so that there is a region of n/12, and
    A layered region with a locally low AlN mole fraction, which is uniformly dispersed in the n-type layer and is formed by extending obliquely upward,
    so that an intermediate AlGaN region having an AlN mole fraction of (n−0.5)/12 is formed in the layered region,
    A method for manufacturing a nitride semiconductor ultraviolet light emitting device, comprising forming the n-type layer.
  11.  前記第1工程において、前記n型層の上端から前記特定深さまでの領域にわたる第3の平均的なAlNモル分率Xna3が、
     (n-0.25)/12<Xna3<(n+0.25)/12
    となる範囲内にあるように、前記n型層を形成することを特徴とする請求項10に記載の窒化物半導体紫外線発光素子の製造方法。
    In the first step, the third average AlN mole fraction Xna3 over the region from the upper end of the n-type layer to the specific depth is
    (n−0.25)/12<Xna3<(n+0.25)/12
    11. The method of manufacturing a nitride semiconductor ultraviolet light emitting device according to claim 10, wherein said n-type layer is formed so as to be within the range of:
  12.  前記第1工程において、前記第2の平均的なAlNモル分率Xna2(d)が、前記n型層の深さ方向の全域において、
     (n-0.25)/12<Xna2(d)<(n+0.25)/12
    となる範囲内にあるように、前記n型層を形成することを特徴とする請求項10または11に記載の窒化物半導体紫外線発光素子の製造方法。
    In the first step, the second average AlN mole fraction Xna2(d) in the entire depth direction of the n-type layer is
    (n−0.25)/12<Xna2(d)<(n+0.25)/12
    12. The method for manufacturing a nitride semiconductor ultraviolet light emitting device according to claim 10, wherein the n-type layer is formed so as to fall within a range of:
  13.  前記第1工程において、前記第2の平均的なAlNモル分率Xna2(d)が、前記n型層の上端から前記特定深さまでの領域において、
     Xna2(d)≦n/12
    となる範囲内にあるように、前記n型層を形成することを特徴とする請求項10~12の何れか1項に記載の窒化物半導体紫外線発光素子の製造方法。
    In the first step, the second average AlN mole fraction Xna2(d) in a region from the upper end of the n-type layer to the specific depth is
    Xna2(d)≤n/12
    13. The method for manufacturing a nitride semiconductor ultraviolet light emitting device according to claim 10, wherein said n-type layer is formed so as to fall within a range of:
  14.  前記第1工程において、前記第2の平均的なAlNモル分率Xna2(d)が、前記n型層の前記特定深さより深い領域において、
     Xna2(d)≧n/12
    となる範囲内にあるように、前記n型層を形成することを特徴とする請求項13に記載の窒化物半導体紫外線発光素子の製造方法。
    In the first step, in a region where the second average AlN mole fraction Xna2(d) is deeper than the specific depth of the n-type layer,
    Xna2(d)≧n/12
    14. The method of manufacturing a nitride semiconductor ultraviolet light emitting device according to claim 13, wherein the n-type layer is formed so as to be within the range of:
  15.  前記整数nが7であって、前記第2工程において、前記窒化物半導体紫外線発光素子のピーク発光波長が、280nm~315nmの範囲内の所定値となるように、前記活性層を形成することを特徴とする請求項10~14の何れか1項に記載の窒化物半導体紫外線発光素子の製造方法。 The integer n is 7, and in the second step, the active layer is formed so that the peak emission wavelength of the nitride semiconductor ultraviolet light emitting element is a predetermined value within the range of 280 nm to 315 nm. A method for manufacturing a nitride semiconductor ultraviolet light emitting device according to any one of claims 10 to 14.
  16.  前記整数nが6であって、前記第2工程において、前記窒化物半導体紫外線発光素子のピーク発光波長が、300nm~330nmの範囲内の所定値となるように、前記活性層を形成することを特徴とする請求項10~14の何れか1項に記載の窒化物半導体紫外線発光素子の製造方法。 The integer n is 6, and in the second step, the active layer is formed so that the peak emission wavelength of the nitride semiconductor ultraviolet light emitting element is a predetermined value within the range of 300 nm to 330 nm. A method for manufacturing a nitride semiconductor ultraviolet light emitting device according to any one of claims 10 to 14.
  17.  前記第2工程において、AlGaN系半導体で構成された前記井戸層とAlGaN系半導体で構成されたバリア層を交互にエピタキシャル成長により積層し、前記井戸層を2層以上含む多重量子井戸構造の前記活性層を形成することを特徴とする請求項10~16の何れか1項に記載の窒化物半導体発光素子の製造方法。
     
    In the second step, the well layers made of an AlGaN-based semiconductor and the barrier layers made of an AlGaN-based semiconductor are alternately laminated by epitaxial growth, and the active layer has a multiple quantum well structure including two or more of the well layers. The method for manufacturing a nitride semiconductor light-emitting device according to any one of claims 10 to 16, wherein a is formed.
PCT/JP2021/015380 2021-04-14 2021-04-14 Nitride semiconductor uv light-emitting element and production method therefor WO2022219731A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023514234A JPWO2022219731A1 (en) 2021-04-14 2021-04-14
PCT/JP2021/015380 WO2022219731A1 (en) 2021-04-14 2021-04-14 Nitride semiconductor uv light-emitting element and production method therefor
TW110144622A TW202240932A (en) 2021-04-14 2021-11-30 Nitride semiconductor uv light-emitting element and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/015380 WO2022219731A1 (en) 2021-04-14 2021-04-14 Nitride semiconductor uv light-emitting element and production method therefor

Publications (1)

Publication Number Publication Date
WO2022219731A1 true WO2022219731A1 (en) 2022-10-20

Family

ID=83639883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015380 WO2022219731A1 (en) 2021-04-14 2021-04-14 Nitride semiconductor uv light-emitting element and production method therefor

Country Status (3)

Country Link
JP (1) JPWO2022219731A1 (en)
TW (1) TW202240932A (en)
WO (1) WO2022219731A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015079844A (en) * 2013-10-17 2015-04-23 日亜化学工業株式会社 Nitride semiconductor laminate and light emitting element using the same
WO2019159265A1 (en) * 2018-02-14 2019-08-22 創光科学株式会社 Nitride semiconductor ultraviolet light-emitting element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015079844A (en) * 2013-10-17 2015-04-23 日亜化学工業株式会社 Nitride semiconductor laminate and light emitting element using the same
WO2019159265A1 (en) * 2018-02-14 2019-08-22 創光科学株式会社 Nitride semiconductor ultraviolet light-emitting element

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KOJIMA K.; NAGASAWA Y.; HIRANO A.; IPPOMMATSU M.; HONDA Y.; AMANO H.; AKASAKI I.; CHICHIBU S. F.: "Carrier localization structure combined with current micropaths in AlGaN quantum wells grown on an AlN template with macrosteps", APPLIED PHYSICS LETTERS, AMERICAN INSTITUTE OF PHYSICS, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747, vol. 114, no. 1, 7 January 2019 (2019-01-07), 2 Huntington Quadrangle, Melville, NY 11747, XP012234428, ISSN: 0003-6951, DOI: 10.1063/1.5063735 *
NAGASAWA, YOSUKE ET AL.: "Two-dimensional analysis of the nonuniform quantum yields of multiple quantum wells for AlGaN-based deep-ultraviolet LEDs grown on A1N templates with dense macrosteps using cathodoluminescence spectroscopy", JOUANAL OF APPLIED PHYSICS, vol. 126, 3 December 2019 (2019-12-03), pages 215703, XP012242639, DOI: 10.1063/1.5125623 *
SHI, HENGZHI ET AL.: "Performance improvements of AlGaN-based deep-ultraviolet light-emitting diodes with specifically des", OPTICS COMMUNICATIONS, vol. 441, 27 February 2019 (2019-02-27), pages 149 - 154, XP055909328, DOI: 10.1016/j.optcom.2019.02.054 *

Also Published As

Publication number Publication date
TW202240932A (en) 2022-10-16
JPWO2022219731A1 (en) 2022-10-20

Similar Documents

Publication Publication Date Title
TWI557936B (en) High efficiency ultraviolet light emitting diode with band structure potential fluctuations
TWI703741B (en) Nitride semiconductor ultraviolet light emitting element and manufacturing method of nitride semiconductor ultraviolet light emitting element
US11217726B2 (en) Nitride semiconductor ultraviolet light-emitting element
WO2015182207A1 (en) Epitaxial wafer, semiconductor light emitting element, light emitting device, and method for producing epitaxial wafer
JP7421657B2 (en) Nitride semiconductor ultraviolet light emitting device
JP7406633B2 (en) Nitride semiconductor ultraviolet light emitting device and manufacturing method thereof
TWI828945B (en) Nitride semiconductor ultraviolet light-emitting element
JP7462047B2 (en) Nitride semiconductor ultraviolet light emitting device and its manufacturing method
WO2022219731A1 (en) Nitride semiconductor uv light-emitting element and production method therefor
US20230307578A1 (en) Nitride Semiconductor Ultraviolet Light Emitting Element
WO2022091173A1 (en) Nitride semiconductor ultraviolet light emitting element
WO2022149183A1 (en) Method for producing nitride semiconductor ultraviolet light emitting element, and nitride semiconductor ultraviolet light emitting element
WO2023203599A1 (en) Nitride semiconductor ultraviolet light-emitting diode
JP2017224841A (en) Nitride semiconductor ultraviolet light-emitting element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936933

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023514234

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936933

Country of ref document: EP

Kind code of ref document: A1