WO2022218203A1 - 一种导热件、光模块、散热器和导热件的制备方法 - Google Patents

一种导热件、光模块、散热器和导热件的制备方法 Download PDF

Info

Publication number
WO2022218203A1
WO2022218203A1 PCT/CN2022/085534 CN2022085534W WO2022218203A1 WO 2022218203 A1 WO2022218203 A1 WO 2022218203A1 CN 2022085534 W CN2022085534 W CN 2022085534W WO 2022218203 A1 WO2022218203 A1 WO 2022218203A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
thermally conductive
heat
protective layer
conductive member
Prior art date
Application number
PCT/CN2022/085534
Other languages
English (en)
French (fr)
Inventor
程明
袁步平
杨成鹏
洪宇平
张卿和
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22787429.4A priority Critical patent/EP4318572A1/en
Publication of WO2022218203A1 publication Critical patent/WO2022218203A1/zh
Priority to US18/484,580 priority patent/US20240040751A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20409Outer radiating structures on heat dissipating housings, e.g. fins integrated with the housing
    • H05K7/20418Outer radiating structures on heat dissipating housings, e.g. fins integrated with the housing the radiating structures being additional and fastened onto the housing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/205Heat-dissipating body thermally connected to heat generating element via thermal paths through printed circuit board [PCB]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/021Components thermally connected to metal substrates or heat-sinks by insert mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10121Optical component, e.g. opto-electronic component

Definitions

  • the present application relates to the technical field of electronic devices, and in particular, to a preparation method of a thermally conductive member, an optical module, a heat sink and a thermally conductive member.
  • Optical module is one of the core components in optical network equipment, and its main function is to realize the mutual conversion between optical signals and electrical signals. With the continuous improvement of the performance of the optical module, its power consumption is also increasing, which also causes the optical module to generate more heat during the working process. In practical applications, in order to ensure the normal operation of the optical module, it is necessary to perform heat dissipation treatment on the optical module.
  • a radiator is usually equipped. After the heat-conducting surface of the optical module and the heat-conducting surface of the heat sink are attached, the heat in the optical module can be transferred to the heat sink, thereby realizing heat dissipation of the optical module. Since the heat transfer between the optical module and the heat sink is mainly in the form of contact, the roughness of the heat conduction surface between the optical module and the heat sink determines the heat transfer efficiency. When the roughness of the heat conduction surface is too large, a large contact thermal resistance will be generated, therefore, the heat transfer efficiency between the optical module and the heat sink will be reduced.
  • the contact thermal resistance is reduced blindly by reducing the roughness of the heat conduction surface, it will cause problems such as excessive processing cost.
  • the optical module is usually installed in a pluggable manner. Therefore, there will be friction between the thermal conduction surface of the optical module and the thermal conduction surface of the heat sink. In the case of frequent plugging and unplugging, the thermal conduction surface will be scratched, resulting in will increase the contact thermal resistance.
  • the present application provides a preparation method of a thermally conductive member, an optical module, a heat sink and a thermally conductive member, so as to effectively reduce the contact thermal resistance of the thermally conductive surface, improve the scratch resistance and corrosion resistance of the thermally conductive surface, and reduce the friction of the thermally conductive surface coefficient.
  • the present application provides a thermally conductive member, including a base body and a thermally conductive layer.
  • the base body has a thermally conductive surface.
  • the thermally conductive layer includes a transition layer and a protective layer.
  • the transition layer is arranged on the heat-conducting surface, and the protective layer is arranged on the surface of the transition layer away from the heat-conducting surface.
  • the roughness Ra of the protective layer is less than or equal to 0.4 ⁇ m.
  • the main function of the transition layer is to act as a hardness transition between the substrate and the protective layer, which can effectively improve the overall hardness of the thermally conductive member.
  • the main function of the protective layer is to improve the surface hardness of the heat-conducting member, and provide higher corrosion resistance and lower friction coefficient. Good scratch resistance, which can maintain excellent surface roughness; in addition, the protective layer can also provide high corrosion resistance and low friction coefficient.
  • the transition layer can provide a hardness transition effect between the substrate and the protective layer, which is convenient to improve the overall hardness of the thermally conductive member; the protective layer can ensure the surface hardness and prevent scratches.
  • the protective layer has good corrosion resistance, in some harsh environments, the protective layer can maintain its own roughness, which is conducive to ensuring the thermal conductivity of the thermally conductive member.
  • the protective layer also has a relatively low coefficient of friction. When the surface of the protective layer rubs with the surfaces of other components, the frictional resistance can be effectively reduced, thereby having a better use effect.
  • the microhardness HV of the protective layer may be greater than 1000.
  • the material of the protective layer may be diamond, diamond-like carbon, or amorphous alloy. The present application does not limit the material of the protective layer.
  • the microhardness of the transition layer can be between the matrix and the protective layer.
  • the material of the transition layer may be any one of nickel, chromium, and chromium nitride. In practical application, the material of the transition layer is not limited in this application.
  • a first auxiliary bonding layer may also be disposed between the transition layer and the protective layer.
  • the material of the first auxiliary bonding layer may be tungsten carbide or chromium carbide or the like.
  • the thermally conductive layer may further include an abrasive layer.
  • the abrasive layer may be located between the thermally conductive surface and the transition layer.
  • the grinding layer can be polished, so that the surface roughness Ra is not greater than 0.4 microns, so that the polishing effect can be guaranteed. It can be understood that, in the specific implementation, when the above-mentioned abrasive layer is included in the protective layer, the heat conduction surface of the substrate may not be polished, or may be polished.
  • the thermally conductive layer may further include a second auxiliary bonding layer.
  • the second auxiliary bonding layer may be located between the thermally conductive surface and the abrasive layer.
  • the material of the second auxiliary bonding layer may be a material such as nickel or chromium. The second auxiliary bonding layer can effectively improve the bonding strength between the thermally conductive surface and the grinding layer, and prevent undesirable phenomena such as falling off.
  • the present application also provides an optical module, which includes a housing, a circuit board assembly and any one of the above-mentioned thermally conductive members.
  • the circuit board assembly is disposed within the housing, which contains the base.
  • the surface of the casing may be provided with the above-mentioned thermally conductive layer.
  • the housing can also be understood as the above-mentioned base body, or the base body is a component part of the housing. That is, the surface of the housing includes the thermally conductive surface. A surface with high heat conduction efficiency and high hardness can be formed on the surface of the casing through the thermally conductive layer. Thermal resistance can be reduced when the housing is in dry contact with other components through the thermally conductive layer.
  • the present application also provides a heat sink, comprising a housing and any one of the above-mentioned heat conducting components, wherein the housing may contain the base body.
  • the surface of the casing may be provided with the above-mentioned thermally conductive layer.
  • the housing can also be understood as the above-mentioned base body, or the base body is a component part of the housing. That is, the surface of the housing includes the thermally conductive surface. A surface with high heat conduction efficiency and high hardness can be formed on the surface of the casing through the thermally conductive layer. When the housing is in dry contact with other components through the thermal conductive layer, the thermal resistance can be effectively reduced.
  • the present application also provides a method for preparing a heat-conducting member, which includes providing a base body, the base body having a heat-conducting surface; preparing a transition layer on the heat-conducting surface, and preparing a protective layer on the surface of the transition layer.
  • the method may further include: grinding the thermally conductive surface.
  • grinding the thermally conductive surface In order to make the thermal conductive surface have a lower roughness, so as to ensure the roughness of the protective layer.
  • the method may further include: preparing a first auxiliary bonding layer on the surface of the transition layer.
  • the bonding strength between the transition layer and the protective layer can be improved by the first auxiliary bonding layer.
  • the material of the first auxiliary bonding layer can be tungsten carbide or chromium carbide, etc., and the material such as tungsten carbide or chromium carbide can be formed on the surface of the transition layer by a process such as physical vapor deposition.
  • thermally conductive parts When preparing the thermally conductive parts, the following methods can also be used:
  • the method may include: providing a substrate with a thermally conductive surface, preparing an abrasive layer on the thermally conductive surface, preparing a transition layer on the surface of the abrasive layer, and preparing a protective layer on the surface of the transition layer.
  • the method may further include: grinding the surface of the grinding layer. So that the surface of the grinding layer has a lower roughness, so as to ensure the roughness of the protective layer.
  • the method may further include: preparing a second auxiliary bonding layer on the thermally conductive surface.
  • the material of the second auxiliary bonding layer may be nickel or the like, and the nickel and other materials may be formed on the heat conduction surface by means of electroless plating or the like.
  • the method may further include: preparing a first auxiliary bonding layer on the surface of the transition layer.
  • the material of the first auxiliary bonding layer can be tungsten carbide or chromium carbide, etc., and the material such as tungsten carbide or chromium carbide can be formed on the surface of the transition layer by a process such as physical vapor deposition.
  • thermally conductive member when preparing the thermally conductive member, the method or step sequence disclosed above may not be followed. Wherein, the present application does not limit the specific preparation process and flow of the thermally conductive member.
  • FIG. 1 is a schematic structural diagram of a dry contact between an optical module and a heat sink according to an embodiment of the present application
  • FIG. 2 is a schematic view of the microstructure of a dry contact between an optical module and a heat sink according to an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a thermally conductive member provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another thermally conductive member provided in an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another thermally conductive member provided in an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another thermally conductive member provided in an embodiment of the present application.
  • FIG. 7 is a flowchart of a method for preparing a thermally conductive member provided by an embodiment of the present application.
  • FIG. 8 is a flowchart of another method for preparing a thermally conductive member provided by an embodiment of the present application.
  • FIG. 9 is a flowchart of another method for preparing a thermally conductive member provided in an embodiment of the present application.
  • FIG. 10 is a flow chart of another method for preparing a thermally conductive member provided in an embodiment of the application.
  • FIG. 11 is a schematic structural diagram of an optical module according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a heat sink according to an embodiment of the application.
  • FIG. 13 is a schematic diagram of an exploded structure of a radiator provided by the implementation of the application.
  • FIG. 14 is a schematic structural diagram of a dry contact between an optical module and a heat sink according to an embodiment of the application;
  • FIG. 15 is a schematic diagram of a specific application structure of an optical module and a heat sink provided by an embodiment of the present application.
  • the thermally conductive member provided in the embodiments of the present application may be applied in fields such as chip packaging, optical modules, or heat sinks.
  • the optical module 01 and the heat sink 02 are taken as an example.
  • the optical module 01 will generate heat during operation.
  • the heat sink 02 may be attached to the casing of the optical module 01 .
  • the housing of the optical module 01 has a heat-conducting surface 011
  • the heat sink 02 has a heat-conducting surface 021 for adhering to the heat-conducting surface 011 .
  • the heat can be transferred to the radiator 02 for heat dissipation.
  • the dry contact refers to the relationship between the thermally conductive surface 011 and the thermally conductive surface 021 that are closely attached, and no material is filled between the two attached surfaces.
  • the thermally conductive surface 011 and the thermally conductive surface 021 are closely attached, there will still be a gap 03 between the two thermally conductive surfaces.
  • the gap 03 will increase the conduction resistance, thereby forming a thermal resistance.
  • the main factor affecting the thermal resistance between the two thermally conductive surfaces is the roughness of the two thermally conductive surfaces. Roughness refers to the unevenness of the machined surface (such as the thermally conductive surface 011 or the thermally conductive surface 021 ) with tiny pitches and tiny peaks and valleys. The smaller the roughness, the smoother the surface.
  • the purpose of the embodiments of the present application is to provide a heat-conducting member with low roughness and easy to manufacture, so as to facilitate the heat dissipation of the device or device using the heat-conducting member.
  • references in this specification to "one embodiment” and the like mean that a particular feature, structure, or characteristic described in connection with that embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily all referring to the same embodiment, but rather Means “one or more but not all embodiments” unless specifically emphasized otherwise.
  • the terms “including”, “having” and their variants mean “including but not limited to” unless specifically emphasized otherwise.
  • the thermally conductive member includes a base body 10 and a thermally conductive layer 20 .
  • the upper surface of the base body 10 has a heat conducting surface 11 .
  • the thermally conductive layer 20 includes a transition layer 21 and a protective layer 22 .
  • the transition layer 21 is arranged on the heat conduction surface 11
  • the protective layer 22 is arranged on the upper surface of the transition layer 21 .
  • the main function of the transition layer 21 is to act as a hardness transition between the base body 10 and the protective layer 22, which can effectively improve the overall hardness of the thermally conductive member.
  • the microhardness of the transition layer 21 may be between the base body 10 and the protective layer 22 .
  • the main function of the protective layer 22 is to improve the surface hardness of the heat-conducting member, and provide higher corrosion resistance and lower friction coefficient.
  • the protective layer 22 The thermally conductive member can have better scratch resistance, thereby maintaining excellent surface roughness.
  • the protective layer 22 can also provide higher corrosion resistance and lower friction coefficient.
  • the transition layer 21 can provide a hardness transition effect between the base body 10 and the protective layer 22, which is convenient to improve the overall hardness of the thermally conductive member; through the protective layer 22, the surface hardness can be guaranteed , to prevent the occurrence of scratches and other undesirable situations; in addition, because the protective layer 22 has good corrosion resistance, therefore, in some harsh environments, the protective layer 22 can maintain its own roughness, which is beneficial to ensure the thermal conductivity. Thermal conductivity.
  • the protective layer 22 also has a relatively low coefficient of friction. When the surface of the protective layer 22 rubs with the surfaces of other components, the frictional resistance can be effectively reduced, thereby having a better use effect.
  • the surface of the protective layer 22 can be in dry contact with another component (such as the above-mentioned heat sink), and the heat in the thermally conductive component can be transferred to the component through the transition layer 21 and the protective layer 22, so as to realize the Heat dissipation of heat-conducting components.
  • another component such as the above-mentioned heat sink
  • the material of the base body 10 may be a metal material such as aluminum or an aluminum alloy, or may be other non-metallic materials.
  • the substrate 10 can be prepared by selecting a material with better thermal conductivity, so that it has higher thermal conductivity.
  • the base body 10 can be manufactured by processes such as die casting or machining.
  • the heat-conducting surface 11 can be ground, polished, etc. to reduce the roughness of the heat-conducting surface 11, so that the roughness Ra of the heat-conducting surface 11 is not greater than 0.4 mm, thereby ensuring the protection layer 22.
  • Surface roughness Specifically, when the transition layer 21 is prepared on the thermally conductive surface 11 , since the thermally conductive surface 11 has a relatively low roughness, the surface roughness of the transitional layer 21 is approximately the same as that of the thermally conductive surface 11 after the transition layer 21 is formed.
  • the surface roughness of the protective layer 22 is the same as the surface roughness of the transition layer 21. roughly the same.
  • sandblasting may also be performed on the heat-conducting surface 11 to enhance the bonding strength between the heat-conducting surface 11 and the transition layer 21 and prevent the transition layer 21 from falling off and other undesirable phenomena. It can be understood that, in some other embodiments, the sandblasting process can also be omitted. Wherein, the present application does not limit the material and preparation process of the base body 10 .
  • the material of the transition layer 21 may be nickel, chromium or chromium nitride or other materials.
  • a nickel material may be formed on the thermally conductive surface 11 by means of electroless plating.
  • a process such as physical vapor deposition (Physical Vapor Deposition, PVD) can also be used to form the chromium material on the heat-conducting surface 11 .
  • the thickness of the transition layer 21 may be about 4 ⁇ , and the present application does not limit the thickness of the transition layer 21 . It can be understood that, in the specific implementation, the material and preparation process of the transition layer 21 are not limited in this application.
  • the microhardness HV of the protective layer 22 may be greater than 1000.
  • the material of the protective layer 22 may be diamond, diamond-like carbon, or amorphous alloy.
  • the protective layer 22 may be formed on the surface of the transition layer 21 by a process such as physical vapor deposition or CVD (Chemical Vapor Deposition).
  • the thickness of the protective layer 22 may be about 2 thicknesses, and the present application does not limit the thickness of the protective layer 22 . It can be understood that, in the specific implementation, the material and preparation process of the protective layer 22 are not limited in the present application.
  • a first auxiliary bonding layer 23 may also be provided between the transition layer 21 and the protective layer 22 during specific implementation.
  • the material of the first auxiliary bonding layer 23 may be tungsten carbide or chromium carbide. Wherein, the thickness of the first auxiliary bonding layer 23 may be about 0.5. The present application does not limit the material, thickness and preparation process of the first auxiliary bonding layer 23 .
  • the thermally conductive layer 20 may also include more layer structures.
  • the thermally conductive layer 20 may further include an abrasive layer 24 .
  • the grinding layer 24 is located between the thermally conductive surface 11 and the transition layer 21 .
  • the grinding layer 24 may be copper. Since the copper material has good thermal conductivity, the overall thermal conductivity of the thermally conductive member can be ensured. During fabrication, copper can be formed on the surface of the transition layer 21 by electroplating and other processes, and make it have a certain thickness (eg, 15 surfaces).
  • the grinding layer 24 can be polished, for example, after the thickness of 10 polishing is removed by polishing, the surface roughness Ra of the layer 24 can be no greater than 0.4 ⁇ m, so that the polishing effect can be ensured. It can be understood that, in specific implementation, when the protective layer 20 includes the above-mentioned abrasive layer 24 , the thermally conductive surface 11 of the base body 10 may not be polished, or may be polished.
  • the grinding layer 24 can also be made of materials such as copper alloy.
  • the present application does not limit the material, forming method and thickness of the abrasive layer 24 .
  • the heat-conducting layer 20 may further include a second auxiliary bonding layer 25 .
  • the second auxiliary bonding layer 25 is located between the thermally conductive surface 11 and the grinding layer 24 .
  • the material of the second auxiliary bonding layer 25 may be a material such as nickel or chromium.
  • a nickel material may be formed on the thermally conductive surface 11 by means of electroless plating.
  • a process such as Physical Vapor Deposition (PVD) can also be used to form the chromium material on the heat-conducting surface 11.
  • PVD Physical Vapor Deposition
  • the second auxiliary bonding layer 25 can effectively improve the bonding strength between the thermally conductive surface 11 and the grinding layer 24, and prevent undesirable phenomena such as falling off.
  • the thickness of the second auxiliary bonding layer 25 may be about 0.5 ⁇ .
  • the present application does not limit the material, preparation process and thickness of the second auxiliary bonding layer 25 .
  • the present application further provides a preparation method of the thermally conductive member.
  • the method may include the following steps:
  • the base body has a heat-conducting surface.
  • the base body 10 when preparing the base body 10 , can be made of materials such as aluminum or aluminum alloy by die-casting or machine tool processing. After the base body 10 is prepared and formed, the heat-conducting surface 11 can be ground, polished, etc. to reduce the roughness of the heat-conducting surface 11, so that the heat-conducting surface 11 has better roughness (for example, the roughness Ra of the heat-conducting surface 11 may be less than 0.4 mm).
  • sandblasting may also be performed on the heat-conducting surface 11 to enhance the bonding strength between the heat-conducting surface 11 and the transition layer 21 and prevent the transition layer 21 from falling off and other undesirable phenomena. It can be understood that, in some other embodiments, the sandblasting process can also be omitted. Wherein, the present application does not limit the material and preparation process of the base body 10 .
  • the material of the transition layer 21 may be nickel, chromium, or chromium nitride.
  • a nickel material may be formed on the thermally conductive surface 11 by means of electroless plating.
  • a process such as physical vapor deposition (Physical Vapor Deposition, PVD) can also be used to form the chromium material on the heat-conducting surface 11 .
  • the thickness of the transition layer 21 may be about 4 ⁇ m, and the present application does not limit the thickness of the transition layer 21 .
  • the material of the protective layer 22 may be diamond, diamond-like carbon, amorphous alloy and other materials.
  • the protective layer 22 may be formed on the surface of the transition layer 21 by a process such as physical vapor deposition or CVD (Chemical Vapor Deposition).
  • the thickness of the protective layer 22 may be about 2 thicknesses, and the present application does not limit the thickness of the protective layer 22 .
  • the base body has a heat-conducting surface.
  • a transition layer is prepared on the heat-conducting surface.
  • the material of the first auxiliary bonding layer 23 can be tungsten carbide or chromium carbide, etc., and can be formed on the surface of the transition layer 21 by electroplating and other processes.
  • the thickness of the first auxiliary bonding layer 23 may be about 0.5 ⁇ m, and the thickness of the first auxiliary bonding layer 23 is not limited in the present application.
  • the material of the protective layer 22 may be diamond, diamond-like carbon, amorphous alloy and other materials.
  • the protective layer 22 may be formed on the surface of the first auxiliary bonding layer 23 by a process such as physical vapor deposition or CVD (Chemical Vapor Deposition).
  • the thickness of the protective layer 22 may be about 2 thicknesses, and the present application does not limit the thickness of the protective layer 22 .
  • the thermally conductive layer 20 may further include more layer structures. Specifically, as shown in FIG. 9 , when preparing the thermally conductive member, the following methods can also be used:
  • the base body has a heat-conducting surface.
  • the grinding layer 24 can be made of copper material. Since the copper material has good thermal conductivity, the overall thermal conductivity of the thermally conductive member can be ensured.
  • copper can be formed on the surface of the transition layer 21 by a process such as electroplating, and make it have a certain thickness (for example, 15 ⁇ m).
  • polishing treatment can be performed on the grinding layer 24, for example, after polishing to remove a thickness of 10 ⁇ m, the surface roughness Ra of the layer 24 can be no greater than 0.4 ⁇ m, so that the polishing effect can be ensured.
  • the protective layer 20 includes the above-mentioned abrasive layer 24 , the thermally conductive surface 11 of the base body 10 may not be polished, or may be polished.
  • the material of the transition layer 21 may be nickel, chromium, or chromium nitride.
  • the nickel material may be formed on the surface of the polishing layer 24 by means of electroless plating.
  • a process such as Physical Vapor Deposition (PVD) can also be used to form the chromium material on the surface of the abrasive layer 24 .
  • the thickness of the transition layer 21 may be about 4 ⁇ m, and the present application does not limit the thickness of the transition layer 21 .
  • the material of the protective layer 22 may be diamond, diamond-like carbon, amorphous alloy and other materials.
  • the protective layer 22 may be formed on the surface of the first auxiliary bonding layer 23 by a process such as physical vapor deposition or CVD (Chemical Vapor Deposition).
  • the thickness of the protective layer 22 may be about 2 ⁇ m, and the thickness of the protective layer 22 is not limited in the present application.
  • a second auxiliary bonding layer 25 may also be prepared.
  • the following methods can also be used:
  • the base body has a heat-conducting surface.
  • the material of the second auxiliary bonding layer 25 may be nickel, etc.
  • a material such as nickel is formed on the heat conduction surface 11 .
  • the thickness of the second auxiliary bonding layer 25 may be about 0.5 ⁇ m, and the present application does not limit the thickness of the second auxiliary bonding layer 25 .
  • thermally conductive member when preparing the thermally conductive member, the method or step sequence disclosed above may not be followed. Wherein, the present application does not limit the specific preparation process and flow of the thermally conductive member.
  • thermally conductive member can be used in various scenarios where dry contact between two components needs to be achieved.
  • an embodiment of the present application further provides an optical module 01 , including a casing 010 and a circuit board assembly (not shown in the figure) disposed in the casing 010 .
  • the optical module 01 is an optoelectronic device that performs photoelectric and electro-optical conversion.
  • the circuit board assembly optoelectronic devices, functional circuits and optical interfaces can be included.
  • the transmitting end of the optical module can convert electrical signals into optical signals, and the receiving end can convert optical signals into electrical signals.
  • the above-mentioned thermally conductive layer 20 may be provided on the upper surface of the casing 010 .
  • the housing 010 can also be understood as the above-mentioned base body 10 , or the base body 10 is a component of the housing 010 . That is, the upper surface of the casing 010 includes the heat conduction surface 11 . A surface with higher heat conduction efficiency and higher hardness can be formed on the upper surface of the casing 010 through the thermally conductive layer 20 . When the housing 010 is in dry contact with other components through the thermally conductive layer 20, the thermal resistance can be reduced.
  • an embodiment of the present application further provides a heat sink 02 , which includes a housing 020 and the above-mentioned heat conducting member.
  • the housing 020 includes a bottom plate 0201 , a heat pipe 0202 and a heat sink 0203 .
  • the bottom plate 0201 is a rectangular plate-like structure, and the lower plate surface thereof has a heat-conducting surface.
  • a groove 0204 is formed on the upper surface of the bottom plate 0201 .
  • the bottom plate 0201 can be fabricated by using materials such as aluminum or aluminum alloy through die-casting or machine tool processing.
  • the two heat pipes 0202 can be respectively fixed in the two grooves 0204 , the heat sink 0203 is arranged on the upper surface of the bottom plate 0201 , and the heat pipes 0202 are covered in the grooves 0204 .
  • the fixed connection between the heat sink 0203 and the bottom plate 0201 may be realized by soldering.
  • the upper surface of the bottom plate 0201 can be plated with a layer of nickel material through an electroless plating process.
  • the lower surface of the heat sink 0203 can be plated with a layer of nickel material through an electroless plating process, so as to improve the welding effect between the bottom plate 0201 and the heat sink 0203 .
  • the base plate 0201 and the heat sink 0203 may also be fixedly connected by means of laser welding, etc., and the present application does not limit the connection between the base plate 0201 and the heat sink 0203 .
  • the heat dissipation efficiency of the radiator 02 can be effectively improved by the heat pipe 0202 .
  • the heat pipe 0202 can perform a lateral conduction effect on the heat in the bottom plate 0201 .
  • the heat is transferred to the right through the heat pipe 0202 , which is beneficial to increase the distribution area of the heat in the heat sink 02 .
  • the heat sink 0203 has a plurality of vertically spaced heat dissipation teeth, and the heat dissipation teeth can effectively increase the heat exchange area between the heat sink 02 and the outside, so as to improve the heat dissipation efficiency of the heat sink 02 .
  • the heat sink 0203 can be made of materials such as aluminum or aluminum alloy by die-casting or machine tool processing.
  • the plurality of heat dissipation teeth in the heat dissipation fin 0203 can also be formed separately, and then assembled into an integrated structure by welding and other processes.
  • the above-mentioned heat conducting layer 20 may be provided on the lower surface of the bottom plate 0201 .
  • the base plate 0201 can also be understood as the above-mentioned base body 10 , or the base body 10 is a component of the base plate 0201 . That is, the lower surface of the bottom plate 0201 includes the heat conduction surface 11 . A surface with higher thermal conductivity and higher hardness can be formed on the lower surface of the base plate 0201 through the thermally conductive layer 20 . When the base plate 0201 is in dry contact with other components through the thermal conductive layer 20, the thermal resistance can be reduced.
  • FIG. 14 it is a schematic structural diagram of the optical module 01 after dry contact with the heat sink 02 .
  • the upper surface of the housing 010 of the optical module 01 is provided with a thermally conductive layer 20a
  • the lower surface of the bottom plate 0201 of the heat sink 02 is also provided with a thermally conductive layer 20b.
  • the specific structures of the thermally conductive layer 20a and the thermally conductive layer 220b may be the same or different.
  • the thermally conductive layer 20a may be provided on the upper surface of the housing 010 of the optical module 01
  • the thermally conductive layer 20b may not be provided on the lower surface of the bottom plate 0201 of the heat sink 02 .
  • the thermally conductive layer 20a may not be provided on the upper surface of the housing 010 of the optical module 01
  • the thermally conductive layer 20b may be provided on the lower surface of the bottom plate 0201 of the heat sink 02.
  • the optical module 01 when the optical module 01 is applied in an optical network device, it is usually installed in the optical cage 04 in the optical network device in a pluggable manner.
  • the optical cage 04 can not only provide the required installation space for the optical module 01, but also provide a certain electromagnetic shielding property for the optical module 01 to prevent the optical module 01 from being adversely affected by electromagnetic interference and the like.
  • the optical network device may be a variety of different types of devices such as optical fiber transceivers, switches, optical fiber routers, optical fiber network cards, or base stations.
  • the application does not specifically limit the application scenarios of optical modules.
  • the heat sink 02 can be fixed on the upper end of the optical cage 04 . After the optical module 01 is inserted into the optical cage 04 , an effective dry contact can be formed between the optical module 01 and the heat sink 02 .
  • the following table shows the test results of the heat dissipation effect of the optical module 01 when the upper surface of the housing 010 of the optical module 01 is equipped with the thermally conductive layer 20a and the lower surface of the bottom plate 0201 of the heat sink 02 is equipped with the thermally conductive layer 20b.
  • the chips in the table can be driver chips in the optical module.
  • Optical device 1 , optical device 2 and optical device 3 refer to devices in the optical module for implementing different optical signal processing or conversion, which can be any one of a light emitting device, a light receiving device or a photoelectric conversion device.
  • the heat dissipation efficiency of the optical module 01 can be significantly improved, thereby facilitating the heat dissipation of the optical module 01.
  • the above-mentioned heat conducting components can be applied not only to the optical module 01 or the heat sink 02, but also to various devices that need to achieve heat conduction through dry contact. Wherein, the present application does not limit the specific application scope of the thermally conductive member.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本申请提供了一种导热件、光模块(01)、散热器(02)和导热件的制备方法,涉及电子设备技术领域,以降低光模块(01)和散热器(02)之间的接触热阻,并提升导热面(11)抗划能力。本申请提供的导热件包括基体(10)和导热层(20);基体具有导热面(11),导热层包括过渡层(21)和保护层(22),过渡层(21)设置在导热面(11),保护层(22)设置在过渡层(21)背离导热面(11)的表面,其中,保护层(22)的粗糙度Ra小于或等于0.4等于;通过过渡层(21)能够在基体(10)和保护层(22)之间提供硬度过渡作用,便于提升导热件的整体硬度;通过保护层(22),可以保证表面硬度,防止出现划痕等不良情况;另外,由于保护层(22)具备较好的耐腐蚀性,因此,在一些恶劣的环境中,保护层(22)能够保持其自身的粗糙度,从而有利于保证导热件的导热性能。

Description

一种导热件、光模块、散热器和导热件的制备方法
相关申请的交叉引用
本申请要求在2021年04月13日提交中国专利局、申请号为202110396881.3、申请名称为“一种导热件、光模块、散热器和导热件的制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子设备技术领域,尤其涉及一种导热件、光模块、散热器和导热件的制备方法。
背景技术
光模块是光网络设备中的核心部件之一,其主要功能是实现光信号和电信号之间的相互转换。随着光模块性能的不断提升,其功耗也越来越大,这也导致光模块在工作过程中会产生更多的热量。在实际应用中,为保证光模块的正常工作,需要对光模块进行散热处理。
目前,为了提升光模块的散热性能,通常会配备散热器。将光模块的导热面与散热器的导热面进行贴合后,光模块中的热量能够传递至散热器中,从而实现对光模块的散热。由于光模块与散热器之间主要通过接触的形式进行传热,因此,光模块与散热器之间导热面的粗糙度决定着传热效率。当导热面的粗糙度过大时,会产生较大的接触热阻,因此,会降低光模块与散热器之间的传热效率。但是,如果一味地通过降低导热面粗糙度的形式来降低接触热阻,会造成加工成本过大等不良问题。另外,光模块通常以可插拔的方式进行安装,因此,光模块的导热面与散热器的导热面之间会存在相互摩擦,在频繁插拔的情况下会使导热面产生划痕,从而会增加接触热阻。
因此,如何降低光模块与散热器之间的接触热阻,并提升导热面抗划能力成为亟待解决的技术问题。
发明内容
本申请提供一种导热件、光模块、散热器和导热件的制备方法,以能够有效降低导热面的接触热阻,并提升导热面的抗划能力和耐腐蚀性,并降低导热面的摩擦系数。
一方面,本申请提供了一种导热件,包括基体和导热层。基体具有导热面。导热层包括过渡层和保护层。过渡层设置在导热面,保护层设置在过渡层背离导热面的表面。其中,保护层的粗糙度Ra小于或等于0.4μm。具体来说,过渡层的主要作用是作为基体和保护层之间的硬度过渡,能够有效提升导热件的综合硬度。保护层的主要作用是提升导热件的表面硬度,并提供较高的耐腐蚀性和较低的摩擦系数,当导热件在实际应用过程中,由于保护层具有较高的硬度,因此,具有较好的抗划能力,从而能够保持优秀的表面粗糙度;另外,保护层还能够提供较高的耐腐蚀性和较低的摩擦系数。概括来说,在本申请实施提供的导热件中,通过过渡层能够在基体和保护层之间提供硬度过渡作用,便于提升导热件 的整体硬度;通过保护层,可以保证表面硬度,防止出现划痕等不良情况;另外,由于保护层具备较好的耐腐蚀性,因此,在一些恶劣的环境中,保护层能够保持其自身的粗糙度,从而有利于保证导热件的导热性能。另外,保护层还具有较低的摩擦系数,当保护层的表面与其他部件的表面产生摩擦时,能够有效降低摩擦阻力,从而具备较好的使用效果。
在具体应用时,保护层的显微硬度HV可以大于1000。其中,保护层的材料可以是金刚石、类金刚石或非晶合金等材料。本申请对保护层的材质不作限制。
另外,过渡层的微观硬度可以介于基体和保护层之间。其中,过渡层的材质可以是镍、铬、氮化铬中的任一种。在实际应用时,过渡层的材质本申请不作限制。
在一些实施方式中,在过渡层和保护层之间还可以设置第一辅助结合层。其中,第一辅助结合层的材料可以是碳化钨或碳化铬等。通过第一辅助结合层可以提升过渡层和保护层之间的结合强度,防止出现脱落等不良情况。
另外,在一些实施方式中,导热层还可以包括研磨层。研磨层可以位于导热面和过渡层之间。在具体应用时,可以对研磨层进行抛光等处理,以使其表面的粗糙度Ra不大于0.4微米,从而可以保证抛光效果。可以理解的是,在具体实施时,当保护层中包含上述的研磨层时,基体的导热面也可以不进行抛光处理,也可以进行抛光处理。
另外,在一些实施方式中,导热层还可以包括第二辅助结合层。第二辅助结合层可以位于导热面和研磨层之间。其中,第二辅助结合层的材料可以是镍或铬等材料。通过第二辅助结合层可以有效提升导热面和研磨层之间的结合强度,防止出现脱落等不良现象。
另一方面,本申请还提供了一种光模块,包括壳体、电路板组件和上述任一种导热件。电路板组件设置在壳体内,壳体包含基体。壳体的表面可以设置上述的导热层。具体来说,壳体也可以理解为上述的基体,或者基体属于壳体的组成部分。即壳体的表面包含该导热面。通过导热层可以在壳体的表面形成热传导效率较高且具备较高硬度的表面。当壳体通过导热层与其他部件进行干接触时,可以有降低热阻。
另外,本申请还提供了一种散热器,包括壳体和上述任一种导热件,其中,壳体可以包含该基体。壳体的表面可以设置上述的导热层。具体来说,壳体也可以理解为上述的基体,或者基体属于壳体的组成部分。即壳体的表面包含该导热面。通过导热层可以在壳体的表面形成热传导效率较高且具备较高硬度的表面。当壳体通过导热层与其他部件进行干接触时,可以有效降低热阻。
另一方面,本申请还提供了一种导热件的制备方法,包括提供基体,基体具有导热面;在导热面制备过渡层,在过渡层的表面制备保护层。
在具体制备时,在导热面制备过渡层之前该方法还可以包括:对导热面进行打磨。以使导热面具有较低的粗糙度,从而保证保护层的粗糙度。
另外,在过渡层的表面制备保护层之前,该方法还可以包括:在过渡层的表面制备第一辅助结合层。通过第一辅助结合层可以提升过渡层和保护层之间的结合强度。
在对第一辅助结合层进行制备时,第一辅助结合层的材料可以是碳化钨或碳化铬等,可以采用物理气相沉淀等工艺将碳化钨或碳化铬等材料成型在过渡层的表面。
在对导热件进行制备时,还可以采用如下方法:
该方法可以包括:提供基体,基体具有导热面,在导热面制备研磨层,在研磨层的表面制备过渡层,在过渡层的表面制备保护层。
其中,在研磨层的表面制备过渡层之前该方法还可以包括:对研磨层的表面进行打磨。 以使研磨层的表面具有较低的粗糙度,从而保证保护层的粗糙度。
另外,在具体制备时,在导热面制备研磨层之前该方法还可以包括:在导热面制备第二辅助结合层。
在对第二辅助结合层进行制备时,第二辅助结合层的材料可以是镍等,可以采用化学镀等工艺将镍等材料成型在导热面。
另外,在过渡层的表面制备保护层之前该方法还可以包括:在过渡层的表面制备第一辅助结合层。在对第一辅助结合层进行制备时,第一辅助结合层的材料可以是碳化钨或碳化铬等,可以采用物理气相沉淀等工艺将碳化钨或碳化铬等材料成型在过渡层的表面。
可以理解的是,在对导热件进行制备时,也可以不依照上述所公开的方法或步骤顺序。其中,本申请对导热件具体制备工艺和流程不作限制。
附图说明
图1为本申请实施例提供的一种光模块与散热器干接触的结构示意图;
图2为本申请实施例提供的一种光模块与散热器干接触的微观结构示意图;
图3为本申请实施例提供的一种导热件的结构示意图;
图4为本申请实施例提供的另一种导热件的结构示意图;
图5为本申请实施例提供的另一种导热件的结构示意图;
图6为本申请实施例提供的另一种导热件的结构示意图;
图7为本申请实施例提供的一种导热件的制备方法的流程图;
图8为本申请实施例提供的另一种导热件的制备方法的流程图;
图9为本申请实施例提供的另一种导热件的制备方法的流程图;
图10为本申请实施例提供的另一种导热件的制备方法的流程图;
图11为本申请实施例提供的一种光模块的结构示意图;
图12为本申请实施例提供的一种散热器的结构示意图;
图13为本申请实施提供的一种散热器的分解结构示意图;
图14为本申请实施例提供的一种光模块与散热器干接触的结构示意图;
图15为本申请实施例提供的一种光模块和散热器的具体应用结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
本申请实施例提供的导热件可以应用在芯片封装、光模块或散热器等领域中。例如,如图1所示,以光模块01和散热器02为例。在实际应用中,光模块01在工作时,会产生热量,为了对光模块01进行散热,可以将散热器02与光模块01的外壳进行贴合。具体来说,光模块01的壳体具有导热面011,散热器02具有用于与导热面011相贴合的导热面021,将导热面011与导热面021进行干接触后,光模块01中的热量便可以传递至散热器02进行散热。其中,干接触指的是导热面011和导热面021之间是紧密贴合的关系,且两个贴合面之间没有填充任何材料。
在具体应用中,导热面011与导热面021之间会不可避免的存在接触热阻,当接触热 阻过大时会影响导热面011和导热面021之间热的传递效率。
具体来说,如图2所示,在微观角度上来看,即使导热面011和导热面021紧密贴合,但是两个导热面之间仍会存在空隙03。热量在两个导热面之间进行传导时,空隙03会增加传导阻力,从而形成热阻。其中,影响两个导热面之间热阻的主要因素是两个导热面的粗糙度。粗糙度指的是加工表面(如导热面011或导热面021)具有微小间距和微小峰谷的不平度。其粗糙度越小则表面越光滑。当导热面011和导热面021相接触后,两个导热面的粗糙度越小,所存在的空隙03就会越小,使得两个导热面之间的接触热阻就越小,从而更有利于光模块散热。
本申请实施例的目的就在于提供一种具有较低粗糙度且便于制作的导热件,从而有利于使用该导热件的器件或装置便于散热。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”和“该”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。还应当理解,在本申请以下各实施例中,“至少一个”是指一个、两个或两个以上。
在本说明书中描述的参考“一个实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施方式中”、“在另外的实施方式中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
如图3所示,在本申请提供的一个实施例中,导热件包括基体10和导热层20。其中,基体10的上表面具有导热面11。导热层20包括过渡层21和保护层22。过渡层21设置在导热面11上,保护层22设置在过渡层21的上表面。具体来说,过渡层21的主要作用是作为基体10和保护层22之间的硬度过渡,能够有效提升导热件的综合硬度。其中,过渡层21的微观硬度可以介于基体10和保护层22之间。保护层22的主要作用是提升导热件的表面硬度,并提供较高的耐腐蚀性和较低的摩擦系数,当导热件在实际应用过程中,由于保护层22具有较高的硬度,因此使得导热件可以具有较好的抗划能力,从而能够保持优秀的表面粗糙度。另外,保护层22还能够提供较高的耐腐蚀性和较低的摩擦系数。概括来说,在本申请实施提供的导热件中,通过过渡层21能够在基体10和保护层22之间提供硬度过渡作用,便于提升导热件的整体硬度;通过保护层22,可以保证表面硬度,防止出现划痕等不良情况;另外,由于保护层22具备较好的耐腐蚀性,因此,在一些恶劣的环境中,保护层22能够保持其自身的粗糙度,从而有利于保证导热件的导热性能。另外,保护层22还具有较低的摩擦系数,当保护层22的表面与其他部件的表面产生摩擦时,能够有效降低摩擦阻力,从而具备较好的使用效果。
在实际应用中,保护层22的表面可以与另一个部件(如上述提到的散热器)进行干接触,导热件中的热量可以通过过渡层21和保护层22传递至该部件,从而实现对导热件的散热。
在具体实施时,基体10的材料可以是铝、铝合金等金属材料,也可以是其他的非金属材料。其中,在材料选择上,基体10可以选用导热性能较好的材料进行制备,以使其 具备较高的导热性能。
在进行制作时,基体10可以通过压铸成型或机床加工等工艺进行制作。另外,当基体10制备成型后,可以对导热面11进行磨削、抛光等处理以降低导热面11的粗糙度,使导热面11的粗糙度Ra不大于0.4mm,从而可以保证保护层22的表面粗糙度。具体来说,在导热面11上制备过渡层21时,由于导热面11具有较低的粗糙度,因此,过渡层21制备成型后,其表面粗糙度与导热面11的粗糙度大致相同。相应的,在过渡层21的表面制备保护层22时,由于过渡层21的表面具有较低的粗糙度,因此,保护层22制备成型后,其表面粗糙度与过渡层21的表面的粗糙度大致相同。在一些实施方式中,也可以对导热面11进行喷砂处理,以提升导热面11与过渡层21之间的结合强度,防止过渡层21产生脱落等不良现象。可以理解的是,在其他的一些实施方式中,喷砂工序也可以省略设置。其中,本申请对基体10的材质和制备工艺不作限制。
另外,过渡层21的材料可以是镍、铬或氮化铬等材料。例如,在进行制作时,可以采用化学镀的方式将镍材料成型在导热面11。或者,也可以采用物理气相沉淀(Physical Vapor Deposition,PVD)等工艺将铬材料成型在导热面11。其中,过渡层21的厚度可以是4μ厚左右,本申请对过渡层21的厚度不作限制。可以理解的是,在具体实施时,过渡层21的材质和制备工艺本申请不作限制。
另外,保护层22的显微硬度HV可以大于1000。保护层22的材料可以是金刚石、类金刚石或非晶合金等材料。其中,保护层22可以采用物理气相沉淀或CVD(Chemical Vapor Deposition)等工艺成型在过渡层21的表面。其中,保护层22的厚度可以是2厚度左右,本申请对保护层22的厚度不作限制。可以理解的是,在具体实施时,保护层22的材质和制备工艺本申请也不作限制。
另外,如图4所示,在具体实施时,为了提升过渡层21和保护层22之间的结合强度,在过渡层21和保护层22之间还可以设置第一辅助结合层23。其中,第一辅助结合层23的材料可以是碳化钨或碳化铬等。其中,第一辅助结合层23的厚度可以是0.5可以左右。本申请对第一辅助结合层23的材质、厚度和制备工艺不作限制。
另外,在实际应用中,导热层20还可以包含更多的层结构。例如,如图5所示,在本申请提供的一个实施例中,导热层20还可以包括研磨层24。具体来说,研磨层24位于导热面11和过渡层21之间。在本申请提供的实施例中,研磨层24可以为铜,由于铜材料具有较好的导热性能,因此,能够保证导热件整体的导热性能。在进行制作时,可以采用电镀等工艺将铜成型在过渡层21的表面,并使其具备一定的厚度(如15面,)。然后,可以对研磨层24进行抛光处理,如抛光去除10抛光的厚度后,可以使其表面的粗糙度Ra不大于0.4微米,从而可以保证抛光效果。可以理解的是,在具体实施时,当保护层20中包含上述的研磨层24时,基体10的导热面11也可以不进行抛光处理,也可以进行抛光处理。
可以理解的是,在其他的实施方式中,研磨层24也可以采用铜合金等材料。本申请对研磨层24的材料、成型方式和厚度不作限制。
另外,在实际应用中,为了提升研磨层24与导热面11之间的结合强度,在导热层20中还可以包括第二辅助结合层25。具体来说,如图6所示,第二辅助结合层25位于导热面11和研磨层24之间。其中,第二辅助结合层25的材料可以是镍或铬等材料。例如,在进行制作时,可以采用化学镀的方式将镍材料成型在导热面11。或者,也可以采用物理气 相沉淀(Physical Vapor Deposition,PVD)等工艺将铬材料成型在导热面11。通过第二辅助结合层25可以有效提升导热面11和研磨层24之间的结合强度,防止出现脱落等不良现象。其中,第二辅助结合层25的厚度可以为0.5μ.左右。本申请对第二辅助结合层25的材料、制备工艺和厚度不作限制。
针对上述描述的导热件,如图7所示,本申请还提供了一种导热件的制备方法。请结合图3所示,该方法可以包括以下步骤:
S10、提供基体。其中,基体具有导热面。结合参阅图3和图7,在对基体10进行制备时,基体10可以采用铝或铝合金等材料通过压铸成型或机床加工等工艺进行制作。当基体10制备成型后,可以对导热面11进行磨削、抛光等处理以降低导热面11的粗糙度,使导热面11具有较好的粗糙度(例如导热面11的粗糙度Ra可以小于0.4mm)。在一些实施方式中,也可以对导热面11进行喷砂处理,以提升导热面11与过渡层21之间的结合强度,防止过渡层21产生脱落等不良现象。可以理解的是,在其他的一些实施方式中,喷砂工序也可以省略设置。其中,本申请对基体10的材质和制备工艺不作限制。
S11、在导热面制备过渡层。在对过渡层21进行制备时,过渡层21的材料可以是镍、铬或氮化铬等材料。例如,在进行制作时,可以采用化学镀的方式将镍材料成型在导热面11。或者,也可以采用物理气相沉淀(Physical Vapor Deposition,PVD)等工艺将铬材料成型在导热面11。其中,过渡层21的厚度可以是4μm左右,本申请对过渡层21的厚度不作限制。
S12、在过渡层的表面制备保护层。在对保护层22进行制备时,保护层22的材料可以是金刚石、类金刚石、非晶合金等材料。其中,保护层22可以采用物理气相沉淀或CVD(Chemical Vapor Deposition)等工艺成型在过渡层21的表面。其中,保护层22的厚度可以是2厚度左右,本申请对保护层22的厚度不作限制。
另外,如图8所示。为了提升过渡层21和保护层22之间的结合强度,防止出现脱落等不良情况,请同时参照图4,在对导热件进行制备时,还可以采用以下方法:
S20、提供基体。其中,基体具有导热面。
S21、在导热面制备过渡层。
S22、在过渡层的表面制备第一辅助结合层。在对第一辅助结合层23进行制备时,第一辅助结合层23的材料可以是碳化钨或碳化铬等,可以采用电镀等工艺将碳化钨或碳化铬等材料成型在过渡层21的表面。其中,第一辅助结合层23的厚度可以是0.5μm左右,本申请对第一辅助结合层23的厚度不作限制。
S23、在第一辅助结合层的表面制备保护层。在对保护层22进行制备时,保护层22的材料可以是金刚石、类金刚石、非晶合金等材料。其中,保护层22可以采用物理气相沉淀或CVD(Chemical Vapor Deposition)等工艺成型在第一辅助结合层23的表面。其中,保护层22的厚度可以是2厚度左右,本申请对保护层22的厚度不作限制。
另外,在实际制备时,导热层20还可以包括更多的层结构。具体来说,如图9所示,在对导热件进行制备时,还可以采用以下方法:
S30、提供基体。其中,基体具有导热面。
S31、在导热面制备研磨层。请同时参照图5,在对研磨层24进行制备时,研磨层24可以为铜材料,由于铜材料具有较好的导热性能,因此,能够保证导热件整体的导热性能。在进行制备时,可以采用电镀等工艺将铜成型在过渡层21的表面,并使其具备一定的厚 度(如15μm)。然后,可以对研磨层24进行抛光处理,如抛光去除10μm的厚度后,可以使其表面的粗糙度Ra不大于0.4微米,从而可以保证抛光效果。可以理解的是,在具体实施时,当保护层20中包含上述的研磨层24时,基体10的导热面11也可以不进行抛光处理,也可以进行抛光处理。
S32、对研磨层的表面进行打磨。
S33、在研磨层的表面制备过渡层。在对过渡层21进行制备时,过渡层21的材料可以是镍、铬或氮化铬等材料。例如,在进行制作时,可以采用化学镀的方式将镍材料成型在研磨层24的表面。或者,也可以采用物理气相沉淀(Physical Vapor Deposition,PVD)等工艺将铬材料成型在研磨层24的表面。其中,过渡层21的厚度可以是4μm左右,本申请对过渡层21的厚度不作限制。在对保护层22进行制备时,保护层22的材料可以是金刚石、类金刚石、非晶合金等材料。其中,保护层22可以采用物理气相沉淀或CVD(Chemical Vapor Deposition)等工艺成型在第一辅助结合层23的表面。其中,保护层22的厚度可以是2μm左右,本申请对保护层22的厚度不作限制。
S34、在过渡层的表面制备第一辅助结合层。
S35、在第一辅助结合层的表面制备保护层。
另外,在实际制备时,为了提升研磨层24与导热面11之间的结合强度,在对研磨层24进行制备之前,还可以制备第二辅助结合层25。具体来说,如图10所示,在对导热件进行制备时,还可以采用以下方法:
S40、提供基体。其中,基体具有导热面。
S41、在导热面制备第二辅助结合层;请同时参照图6,在对第二辅助结合层25进行制备时,第二辅助结合层25的材料可以是镍等,可以采用化学镀等工艺将镍等材料成型在导热面11。其中,第二辅助结合层25的厚度可以是0.5μm左右,本申请对第二辅助结合层25的厚度不作限制。
S42、在第二辅助结合层制备研磨层。
S43、对研磨层的表面进行打磨。
S44、在研磨层的表面制备过渡层。
S45、在过渡层的表面制备第一辅助结合层。
S46、在第一辅助结合层的表面制备保护层。
可以理解的是,在对导热件进行制备时,也可以不依照上述所公开的方法或步骤顺序。其中,本申请对导热件具体制备工艺和流程不作限制。
另外,在实际应用中,上述的导热件可以应用在多种需要实现两个部件之间进行干接触的场景中。
例如,如图11所示,本申请实施例还提供了一种光模块01,包括壳体010和设置在壳体010内的电路板组件(图中未示出)。光模块01是进行光电和电光转换的光电子器件。在电路板组件中,可以包括光电子器件、功能电路和光接口等。光模块的发送端可以把电信号转换为光信号,接收端可以把光信号转换为电信号。
在具体应用时,壳体010的上表面可以设置上述的导热层20。具体来说,壳体010也可以理解为上述的基体10,或者基体10属于壳体010的组成部分。即壳体010的上表面包含该导热面11。通过导热层20可以在壳体010的上表面形成热传导效率较高且具备较高硬度的表面。当壳体010通过导热层20与其他部件进行干接触时,可以有降低热阻。
另外,如图12和图13所示,本申请实施例还提供了一种散热器02,包括壳体020和上述的导热件。如图13所示,具体来说,壳体020包括底板0201、导热管0202和散热片0203。其中,底板0201为矩形的板状结构,其下板面具有导热面。底板0201的上表面开设有凹槽0204。在进行制备时,底板0201可以采用铝或铝合金等材料通过压铸成型或机床加工等工艺进行制作。其中,两根导热管0202可以分别固定在两个凹槽0204内,散热片0203设置在底板0201的上板面,并将导热管0202封盖在凹槽0204内。其中,散热片0203与底板0201之间可以采用锡焊的方式实现固定连接。其中,为了保证焊接效果,底板0201的上板面可以通过化学镀的工艺镀一层镍材料。相应的,散热片0203的下表面可以通过化学镀的工艺镀一层镍材料,以提升底板0201和散热片0203之间的焊接效果。可以理解的是,在其他的实施方式中,底板0201与散热片0203之间也可以采用激光焊等方式进行固定连接,本申请对底板0201和散热片0203之间的连接方式不作限制。
其中,通过导热管0202可以有效提升散热器02的散热效率。具体来说,导热管0202可以对底板0201中的热量起到横向传导的作用。例如,当底板0201左侧的温度较高时,热量通过导热管0202向右传递,从而有利于提升热量在散热器02中的分布面积。
通过散热片0203,可以有效提升散热器0203与外界之间的热交换面积,从而提升散热器02的散热效率。具体来说,散热片0203具有多个竖向间隔设置的散热齿,通过散热齿可以有效提升散热器02与外界之间的热交换面积,以提升散热器02的散热效率。在进行制备时,散热片0203可以采用铝或铝合金等材料通过压铸成型或机床加工等工艺进行制作。或者,散热片0203中的多个散热齿也可以分别制作成型,然后采用焊接等工艺装配成一体结构。
在实际应用时,底板0201的下板面可以设置上述的导热层20。底板0201也可以理解为上述的基体10,或者基体10属于底板0201的组成部分。即底板0201的下表面包含导热面11。通过导热层20可以在底板0201的下表面形成热传导效率较高且具备较高硬度的表面。当底板0201通过导热层20与其他部件进行干接触时,可以有降低热阻。
如图14所示,为光模块01与散热器02干接触后的结构示意图。图中,光模块01的壳体010的上表面设有导热层20a,散热器02的底板0201的下表面也设有导热层20b。其中,导热层20a和导热层220b的具体结构可以相同也可以不同。另外,在其他的实施方式中,也可以是在光模块01的壳体010的上表面设置导热层20a,在散热器02的底板0201的下表面不设置导热层20b。或者,也可以是在光模块01的壳体010的上表面不设置导热层20a,在散热器02的底板0201的下表面设置导热层20b。
另外,如图15所示,在实际应用中,当光模块01应用在光网络设备中时,通常会以可插拔的方式安装在光网络设备中的光笼子04内。其中,光笼子04不仅能够为光模块01提供所需的安装空间,还能够为光模块01提供一定的电磁屏蔽性,防止光模块01受电磁干扰等不良影响。其中,光网络设备可以是光纤收发器、交换机、光纤路由器、光纤网卡或基站等多种不同类型的设备,其中,本申请对光模块的应用场景不作具体限制。
在具体应用时,散热器02可以固定在光笼子04的上端,当光模块01插入光笼子04内后,光模块01与散热器02之间便可以形成有效的干接触。
下表为当光模块01的壳体010的上表面配备导热层20a以及散热器02的底板0201的下表面配备导热层20b后,光模块01散热效果的测试结果。
Figure PCTCN2022085534-appb-000001
其中,上述的测试结果中,所采用的光模块的工作功率为26W,规格为CFP2。并且,是在2kg/cm 2散热器压力下测得的。即,导热层20a和导热层20b之间的压力值约为2kg/cm 2=0.196MPa。表格中的芯片可以是光模块内的驱动芯片。光器件1、光器件2和光器件3指的是光模块内用于实现不同光信号处理或转换的器件,可以是光发射器件、光接收器件或光电转换器件中的任一种。
通过上表可以看出,当光模块01和散热器02之间通过导热层20a和导热层20b进行干接触后,可明显提升光模块01的散热效率,从而利于光模块01的散热。
可以理解的是,在具体应用时,上述的导热件除了可以应用在光模块01或散热器02中以外,还可以应用在多种需要通过干接触实现导热的器件中。其中,本申请对导热件的具体应用范围不作限制。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种导热件,其特征在于,包括:基体和导热层;
    所述基体具有导热面;
    所述导热层包括过渡层和保护层;
    所述过渡层设置在所述导热面;
    所述保护层设置在所述过渡层背离所述导热面的表面;
    其中,所述保护层的粗糙度Ra小于或等于0.4μm。
  2. 根据权利要求1所述的导热件,其特征在于,所述保护层的显微硬度HV大于1000。
  3. 根据权利要求1或2所述的导热件,其特征在于,所述过渡层的材料为镍、铬、氮化铬中的任一种。
  4. 根据权利要求1至3中任一所述的导热件,其特征在于,所述保护层的材料为金刚石、类金刚石、非晶合金中的任一种。
  5. 根据权利要求1至4中任一所述的导热件,其特征在于,所述导热层还包括第一辅助结合层;
    所述第一辅助结合层位于所述过渡层和所述保护层之间,用于提升所述过渡层和所述保护层之间的结合强度。
  6. 根据权利要求5所述的导热件,其特征在于,所述第一辅助结合层的材料为碳化钨或碳化铬。
  7. 根据权利要求1至4中任一所述的导热件,其特征在于,所述导热层还包括研磨层,所述研磨层位于所述导热面和所述过渡层之间。
  8. 根据权利要求7所述的导热件,其特征在于,所述研磨层的材料为铜或铜合金。
  9. 根据权利要求7或8所述的导热件,其特征在于,所述研磨层背离所述导热面的表面的粗糙度Ra小于或等于0.4μm。
  10. 根据权利要求7至9中任一所述的导热件,其特征在于,所述导热层还包括第二辅助结合层;
    所述第二辅助结合层位于所述导热面和所述研磨层之间,用于提升所述导热面和所述研磨层之间的结合强度。
  11. 根据权利要求10所述的导热件,其特征在于,所述第二辅助结合层的材料为镍或铬。
  12. 一种光模块,其特征在于,包括壳体、电路板组件和如权利要求1至11中任一所述的导热件,所述电路板组件设置在所述壳体内,所述壳体上设置所述导热件的基体。
  13. 一种散热器,其特征在于,包括壳体和如权利要求1至11中任一所述的导热件;所述壳体上设置所述导热件的基体。
  14. 一种导热件的制备方法,其特征在于,包括:
    提供基体,所述基体具有导热面;
    在所述导热面制备过渡层;
    在所述过渡层的表面制备保护层。
  15. 根据权利要求14所述的制备方法,其特征在于,在所述导热面制备过渡层之前还包括:
    对所述导热面进行打磨。
  16. 根据权利要求14或15所述的制备方法,其特征在于,在所述过渡层的表面制备保护层之前还包括:
    在所述过渡层的表面制备第一辅助结合层。
  17. 一种导热件的制备方法,其特征在于,包括:
    提供基体,所述基体具有导热面;
    在所述导热面制备研磨层;
    在所述研磨层的表面制备过渡层;
    在所述过渡层的表面制备保护层。
  18. 根据权利要求17所述的制备方法,其特征在于,在所述研磨层的表面制备过渡层之前还包括:
    对所述研磨层的表面进行打磨。
  19. 根据权利要求17或18所述的制备方法,其特征在于,在所述导热面制备研磨层之前还包括:
    在所述导热面制备第二辅助结合层。
  20. 根据权利要求17至19中任一所述的制备方法,其特征在于,在所述过渡层的表面制备保护层之前还包括:
    在所述过渡层的表面制备第一辅助结合层。
PCT/CN2022/085534 2021-04-13 2022-04-07 一种导热件、光模块、散热器和导热件的制备方法 WO2022218203A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22787429.4A EP4318572A1 (en) 2021-04-13 2022-04-07 Thermally conductive member, optical module, radiator and preparation method for thermally conductive member
US18/484,580 US20240040751A1 (en) 2021-04-13 2023-10-11 Heat conducting member, optical module, heat sink, and method for preparing heat conducting member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110396881.3 2021-04-13
CN202110396881.3A CN115209674A (zh) 2021-04-13 2021-04-13 一种导热件、光模块、散热器和导热件的制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/484,580 Continuation US20240040751A1 (en) 2021-04-13 2023-10-11 Heat conducting member, optical module, heat sink, and method for preparing heat conducting member

Publications (1)

Publication Number Publication Date
WO2022218203A1 true WO2022218203A1 (zh) 2022-10-20

Family

ID=83570892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085534 WO2022218203A1 (zh) 2021-04-13 2022-04-07 一种导热件、光模块、散热器和导热件的制备方法

Country Status (4)

Country Link
US (1) US20240040751A1 (zh)
EP (1) EP4318572A1 (zh)
CN (1) CN115209674A (zh)
WO (1) WO2022218203A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104674157A (zh) * 2015-03-15 2015-06-03 绍兴斯普瑞微纳科技有限公司 一种热喷涂工艺快速成型铜铸件模具及其制备方法
CN107369660A (zh) * 2016-05-12 2017-11-21 台达电子企业管理(上海)有限公司 功率模块及其制造方法
CN207398158U (zh) * 2017-09-12 2018-05-22 天津莱尔德电子材料有限公司 光电转换装置
CN108215406A (zh) * 2017-12-29 2018-06-29 新奥石墨烯技术有限公司 移动终端背板及其制备方法以及移动终端
WO2019010910A1 (zh) * 2017-07-13 2019-01-17 深圳市光峰光电技术有限公司 一种波长转换装置及光源

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104674157A (zh) * 2015-03-15 2015-06-03 绍兴斯普瑞微纳科技有限公司 一种热喷涂工艺快速成型铜铸件模具及其制备方法
CN107369660A (zh) * 2016-05-12 2017-11-21 台达电子企业管理(上海)有限公司 功率模块及其制造方法
WO2019010910A1 (zh) * 2017-07-13 2019-01-17 深圳市光峰光电技术有限公司 一种波长转换装置及光源
CN207398158U (zh) * 2017-09-12 2018-05-22 天津莱尔德电子材料有限公司 光电转换装置
CN108215406A (zh) * 2017-12-29 2018-06-29 新奥石墨烯技术有限公司 移动终端背板及其制备方法以及移动终端

Also Published As

Publication number Publication date
US20240040751A1 (en) 2024-02-01
EP4318572A1 (en) 2024-02-07
CN115209674A (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
US7038313B2 (en) Semiconductor device and method of manufacturing the same
US10707964B2 (en) Optical transceiver and housing thereof
KR100943520B1 (ko) 고방열 방사 세라믹 무기물이 코팅된 히트싱크와 이의 제조방법 및 이를 구비한 메탈 pcb
WO2012151762A1 (zh) Led光源组件、背光模组及液晶显示装置
US9087814B2 (en) Heat dissipation module
US6324060B1 (en) Heat transfer interface
KR101534232B1 (ko) 고방열 방사 유,무기 복합 코팅박막이 형성된 히트싱크, 이의 제조방법 및 히트싱크 일체형 메탈-피씨비
TWM541642U (zh) 半導體及複合式散熱基板結構
WO2022218203A1 (zh) 一种导热件、光模块、散热器和导热件的制备方法
US5241131A (en) Erosion/corrosion resistant diaphragm
JP2004356625A (ja) 半導体装置及びその製造方法
TW201810560A (zh) 功率模組及其製造方法
JP5863234B2 (ja) セラミックス回路基板およびこれを用いたモジュール
JP2010206122A (ja) 放熱装置
JP2003046038A (ja) 熱伝導基材とその製造方法及び半導体装置
KR20200142264A (ko) 방열부재를 포함하는 인쇄회로기판 어셈블리
JP2013175525A (ja) セラミックス回路基板の製造方法およびその回路基板
EP2416630B1 (en) Circuit board and manufacturing method thereof
TWM593131U (zh) 裸晶的散熱結構
CN219644407U (zh) 电路板散热装置及计算机服务器
JP2009043881A (ja) 放熱配線板とその製造方法
US20070019385A1 (en) Heat-dissipating device
CN220510014U (zh) 一种带连接结构的散热器
TWI828976B (zh) 用於半導體功率元件的洩熱元件及具有該元件的電路板
CN218783020U (zh) 一种轻质合金包覆异种材料的电子封装结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787429

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022787429

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022787429

Country of ref document: EP

Effective date: 20231023

NENP Non-entry into the national phase

Ref country code: DE