WO2022218100A1 - 一种电池充放电系统、电路及方法 - Google Patents

一种电池充放电系统、电路及方法 Download PDF

Info

Publication number
WO2022218100A1
WO2022218100A1 PCT/CN2022/081778 CN2022081778W WO2022218100A1 WO 2022218100 A1 WO2022218100 A1 WO 2022218100A1 CN 2022081778 W CN2022081778 W CN 2022081778W WO 2022218100 A1 WO2022218100 A1 WO 2022218100A1
Authority
WO
WIPO (PCT)
Prior art keywords
current value
index
target current
feedback
control
Prior art date
Application number
PCT/CN2022/081778
Other languages
English (en)
French (fr)
Inventor
刘晓玺
徐志武
李琳
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to EP22787329.6A priority Critical patent/EP4318860A1/en
Publication of WO2022218100A1 publication Critical patent/WO2022218100A1/zh
Priority to US18/485,006 priority patent/US20240039319A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present application relates to the technical field of circuit control, and in particular, to a battery charging and discharging system, circuit and method.
  • Batteries are often used for power supply in various application scenarios.
  • batteries are energy storage batteries.
  • new energy systems by charging and discharging batteries, the power supply in the new energy system can be realized.
  • Two-way flow The size of the charging and discharging current of the battery affects the state of health of the battery and the charging and discharging efficiency of the battery.
  • it is necessary to increase the size of the charging and discharging current but the overcharge (that is, the charging current is too large) or the over-discharging (that is, the discharging current is too large) of the battery will bring safety problems to the battery and the battery charging and discharging circuit. .
  • the present application provides a battery charging and discharging system, circuit and method, which are used to meet various demands for battery charging and discharging.
  • the present application provides a battery charging and discharging system, comprising: a battery charging and discharging circuit and a control circuit coupled to the battery charging and discharging circuit, the battery charging and discharging circuit comprising a DC/DC converter, the DC/DC converter
  • the DC converter includes a switching device for adjusting the current of the battery charging and discharging circuit
  • the control circuit includes a sampling circuit, a processor and a driving circuit;
  • the sampling circuit is configured to sample the battery charging and discharging circuit, obtain sampling data corresponding to at least two feedback controls, and output the sampling data corresponding to the at least two feedback controls to the processor;
  • the processor is configured to determine the first target current value corresponding to the at least two feedback controls according to the sampling data corresponding to the at least two feedback controls respectively, and the corresponding first target current values according to the at least two feedback controls respectively.
  • a target current value determines a second target current value, generates control information according to the second target current value, and outputs the control information to the drive circuit;
  • the drive circuit is configured to generate a drive signal according to the control information output by the processor, and output the drive signal to the DC/DC converter, where the drive signal is used to control the DC/DC the switching states of the switching devices in the converter.
  • the sampling circuit obtains the sampling data corresponding to at least two channels of feedback control
  • the processor according to the at least two channels of feedback control and the corresponding sampling data, comprehensively considers each The corresponding first target current value, comprehensively weighs the first target current value of each feedback control, so as to adaptively finally determine the first target current value to be output, and obtain the real-time demand of the battery charging and discharging circuit.
  • the switching state of the switching device in the converter can adaptively control the charging and discharging behavior within an expected range, which can effectively protect the charging and discharging of the battery charging and discharging circuit.
  • the range of the second target current value may be limited in advance according to the first target current value.
  • the size of the second target current value greater than or equal to the minimum current value among the first target current values corresponding to the at least two feedback controls, and less than or equal to the maximum current value among the first target current values corresponding to the at least two feedback controls, and Less than or equal to the rated current of the battery charging and discharging circuit.
  • the second target current value can be adaptively made to fall between the minimum current value and the maximum current value among the first target current values, and is less than or equal to the rated current of the battery charging and discharging circuit, so that the first target current value can be 2.
  • the target current value is controlled within the expected range, which improves safety.
  • the at least two feedback controls can be flexibly set according to actual needs.
  • the at least two feedback controls include bus voltage feedback control, which is used to control the battery charging and discharging circuit.
  • the bus voltage is within the preset voltage range, and includes at least one of the following feedback controls:
  • a first power feedback control for controlling the power of the battery to be greater than the first power value
  • the second power feedback control is used to control the power of the battery to be smaller than the second power value; the first power value is smaller than the second power value;
  • the first battery voltage feedback control is used to control the voltage of the battery to be greater than the first voltage value
  • the second battery voltage feedback control is used to control the voltage of the battery to be smaller than the second voltage value; the first voltage value is smaller than the second voltage value and is positive;
  • a first current feedback control for controlling the current of the battery to be greater than the first current value
  • the second current feedback control is used to control the current of the battery to be smaller than the second current value; the first current value is smaller than the second current value and is positive.
  • the at least two feedback controls include at least one of a bus voltage feedback control and a plurality of feedback controls, and the bus voltage feedback control is used to control the bus voltage of the battery charging and discharging circuit within a preset voltage range. Therefore, on the basis of ensuring the stability of the battery charging and discharging circuit, the flexibility of controlling the charging and discharging is increased.
  • the processor may determine the second target current value according to the first target current value corresponding to the at least two feedback controls, and the details are as follows:
  • the average value of the first target current values corresponding to at least two feedback controls is used as the second target current value.
  • a current value in the value interval of the following current values is determined as the current value of the second target current value, and the lower limit of the value interval is the smallest current value among the first target current values corresponding to at least two feedback controls.
  • the upper limit of this interval is the maximum current value among the first target current values corresponding to the at least two feedback controls and the minimum value among the rated current values of the battery charging and discharging circuit, so that the current value of the second target current value is greater than or equal to the minimum current value among the first target current values corresponding to the at least two feedback controls, and less than or equal to the maximum current value among the first target current values corresponding to the at least two feedback controls, and less than or equal to the battery charge
  • the rated current of the discharge circuit can also be used as the value interval of the second target current value.
  • the second target current value can adaptively fall between the minimum current value and the maximum current value among the first target current values, and is less than or equal to the rated current of the battery charging and discharging circuit, thereby
  • the current of the battery charging and discharging circuit can be controlled within the expected range, and the safety of the battery charging and discharging circuit and/or the battery is ensured on the basis of comprehensively considering various requirements of the battery.
  • the smallest current value among the first target current values corresponding to the at least two feedback controls is determined as the size of the second target current value.
  • the minimum current value among the first target current values corresponding to the at least two feedback controls is determined as the size of the second target current value, thereby improving the safety of the battery charging and discharging circuit.
  • Any one of the at least two feedback controls corresponds to an index of the battery charging and discharging circuit, and is used to adjust the sampling index obtained based on the sampling data to a preset target index through the first target current,
  • the processor is specifically used for:
  • the respective index deviations corresponding to the at least two feedback controls are respectively determined, wherein the index deviation corresponding to any one of the at least two feedback controls is used to indicate that the sampling index obtained by the feedback control based on the sampling data is different from the preset sampling index.
  • the difference between the sampling index corresponding to each feedback control and the preset target index is represented, which reflects the various indicators in the battery charging and discharging circuit.
  • the adjustment demand degree of the index is sampled, and one feedback control of the at least two feedback controls is selected based on this, so as to adaptively determine the second target current value and automatically meet the real-time adjustment demand of the battery charging and discharging circuit.
  • the fourth way can specifically include the following two sub-cases:
  • the first sub-situation if the first index deviation among the index deviations corresponding to the at least two feedback controls is the only highest index deviation, the first target current value corresponding to the first index deviation is determined as the the second target current value; or
  • the second sub-situation if the N index deviations among the index deviations corresponding to the at least two feedback controls are tied for the highest, then the feedback control corresponding to the second index deviation is randomly selected from the feedback controls corresponding to the N index deviations , determining the first target current value corresponding to the feedback control corresponding to the second index deviation as the second target current value;
  • N is an integer greater than or equal to 2.
  • the highest one or the index deviation reflects the most urgent need to adjust the demand degree in the battery charging and discharging circuit, and the feedback control corresponding to the first index deviation or the second index deviation is used.
  • the corresponding first target current value is determined as the second target current value, which can adaptively and preferentially satisfy the adjustment requirement of the sampling index corresponding to the highest index deviation.
  • Any one of the at least two feedback controls corresponds to an index of the battery charging and discharging circuit, and is used to adjust the sampling index obtained based on the sampling data to a preset target index through the first target current,
  • the processor is specifically used for:
  • the respective index deviations corresponding to the at least two feedback controls are respectively determined, wherein the index deviation corresponding to any one of the at least two feedback controls is used to indicate that the sampling index obtained by the feedback control based on the sampling data is different from the preset sampling index.
  • the first target current values corresponding to the at least two feedback controls are weighted and accumulated, and the result of the weighted accumulation is determined as the second target current value.
  • the respective corresponding index deviations of the at least two feedback controls are determined, and the respective corresponding weights of the at least two feedback controls are determined, so that the real-time adjustment requirements of each sampling index in the battery charging and discharging circuit can be performed.
  • the corresponding weights of the at least two feedback controls are determined in real time, that is, the degree of influence on the final weighted accumulation result is determined in real time, so as to comprehensively consider the degree of adjustment demand and degree of influence of each sampling index in the battery charging and discharging circuit in real time. , adaptively meet real-time and comprehensive adjustment needs.
  • the first target current values corresponding to the at least two feedback controls are weighted and accumulated, and the result of the weighted accumulation is determined as the second target current. value.
  • the first target current values corresponding to the at least two channels of feedback control are weighted and accumulated, so that according to the at least two channels of feedback control
  • the degree of influence of the respective corresponding first target current values on the final weighted accumulation result is controlled to adaptively meet real-time and comprehensive adjustment requirements.
  • the present application provides a control circuit for charging and discharging a battery, the control circuit comprising: a sampling circuit, a control information generating circuit and a driving circuit;
  • the sampling circuit is used for sampling the battery charging and discharging circuit coupled with the battery charging and discharging control circuit to obtain the sampling data corresponding to at least two feedback controls, and the sampling data corresponding to the at least two feedback controls output to the processor;
  • the processor is configured to determine the first target current value corresponding to the at least two feedback controls according to the sampling data corresponding to the at least two feedback controls respectively, and the corresponding first target current values according to the at least two feedback controls respectively.
  • a target current value determines a second target current value, generates control information according to the second target current value, and outputs the control information to the drive circuit;
  • the driving circuit is configured to generate a driving signal according to the control information output by the processor, where the driving signal is used to control the current of the battery charging and discharging circuit.
  • the range of the second target current value may be limited in advance according to the first target current value.
  • the size of the second target current value greater than or equal to the minimum current value among the first target current values corresponding to the at least two feedback controls, and less than or equal to the maximum current value among the first target current values corresponding to the at least two feedback controls, and Less than or equal to the rated current of the battery charging and discharging circuit.
  • the at least two feedback controls can be flexibly set according to actual needs.
  • the at least two feedback controls include bus voltage feedback control, which is used to control the battery charging and discharging circuit.
  • the bus voltage is within the preset voltage range, and includes at least one of the following feedback controls:
  • a first power feedback control for controlling the power of the battery to be greater than the first power value
  • the second power feedback control is used to control the power of the battery to be smaller than the second power value; the first power value is smaller than the second power value;
  • the first battery voltage feedback control is used to control the voltage of the battery to be greater than the first voltage value
  • the second battery voltage feedback control is used to control the voltage of the battery to be smaller than the second voltage value; the first voltage value is smaller than the second voltage value and is positive;
  • a first current feedback control for controlling the current of the battery to be greater than the first current value
  • the second current feedback control is used to control the current of the battery to be smaller than the second current value; the first current value is smaller than the second current value and is positive.
  • the processor determines that there are multiple possible situations of the second target current value according to the respective first target current values corresponding to the at least two feedback controls, which may specifically include:
  • the processor may determine the second target current value according to the first target current value corresponding to the at least two feedback controls, and the details are as follows:
  • the average value of the first target current values corresponding to at least two feedback controls is used as the second target current value.
  • a current value in the value interval of the following current values is determined as the current value of the second target current value, and the lower limit of the value interval is the smallest current value among the first target current values corresponding to at least two feedback controls.
  • the upper limit of this interval is the maximum current value among the first target current values corresponding to the at least two feedback controls and the minimum value among the rated current values of the battery charging and discharging circuit, so that the current value of the second target current value is greater than or equal to the minimum current value among the first target current values corresponding to the at least two feedback controls, and less than or equal to the maximum current value among the first target current values corresponding to the at least two feedback controls, and less than or equal to the battery charge
  • the rated current of the discharge circuit can also be used as the value interval of the second target current value.
  • the smallest current value among the first target current values corresponding to the at least two feedback controls is determined as the size of the second target current value.
  • Any one of the at least two feedback controls corresponds to an index of the battery charging and discharging circuit, and is used to adjust the sampling index obtained based on the sampling data to a preset target index through the first target current value ;
  • the processor is specifically used for:
  • the respective index deviations corresponding to the at least two feedback controls are respectively determined, wherein the index deviation corresponding to any one of the at least two feedback controls is used to indicate that the sampling index obtained by the feedback control based on the sampling data is different from the preset sampling index.
  • the fourth way can specifically include the following two sub-cases:
  • the first sub-situation if the first index deviation among the index deviations corresponding to the at least two feedback controls is the only highest index deviation, the first target current value corresponding to the first index deviation is determined as the the second target current value; or
  • the second sub-situation if the N index deviations among the index deviations corresponding to the at least two feedback controls are tied for the highest, then the feedback control corresponding to the second index deviation is randomly selected from the feedback controls corresponding to the N index deviations , determining the first target current value corresponding to the feedback control corresponding to the second index deviation as the second target current value;
  • N is an integer greater than or equal to 2.
  • Any one of the at least two feedback controls corresponds to an index of the battery charging and discharging circuit, and is used to adjust the sampling index obtained based on the sampling data to a preset target index through the first target current value ;
  • the processor is specifically used for:
  • the respective index deviations corresponding to the at least two feedback controls are respectively determined, wherein the index deviation corresponding to any one of the at least two feedback controls is used to indicate that the sampling index obtained by the feedback control based on the sampling data is different from the preset sampling index.
  • the first target current values corresponding to the at least two feedback controls are weighted and accumulated, and the result of the weighted accumulation is determined as the second target current value.
  • the first target current values corresponding to the at least two feedback controls are weighted and accumulated, and the result of the weighted accumulation is determined as the second target current. value.
  • the present application provides a method for controlling battery charging, the method is applicable to a battery charging and discharging system, and the battery charging and discharging system includes a battery charging and discharging circuit and a control circuit coupled with the battery charging and discharging circuit;
  • the methods described include:
  • sampling data corresponding to at least two feedback controls of the battery charging and discharging circuit
  • the first target current value corresponding to the at least two feedback controls is determined, and the second target current value corresponding to the at least two feedback controls is determined. target current value;
  • control information for generating a drive signal for controlling the current of the battery charging and discharging circuit is generated and output.
  • the range of the second target current value may be limited in advance according to the first target current value.
  • the size of the second target current value greater than or equal to the minimum current value among the first target current values corresponding to the at least two feedback controls, and less than or equal to the maximum current value among the first target current values corresponding to the at least two feedback controls, and Less than or equal to the rated current of the battery charging and discharging circuit.
  • the at least two feedback controls can be flexibly set according to actual needs.
  • the at least two feedback controls include bus voltage feedback control, which is used to control the battery charging and discharging circuit.
  • the bus voltage is within the preset voltage range, and includes at least one of the following feedback controls:
  • a first power feedback control for controlling the power of the battery to be greater than the first power value
  • the second power feedback control is used to control the power of the battery to be smaller than the second power value; the first power value is smaller than the second power value;
  • the first battery voltage feedback control is used to control the voltage of the battery to be greater than the first voltage value
  • the second battery voltage feedback control is used to control the voltage of the battery to be smaller than the second voltage value; the first voltage value is smaller than the second voltage value and is positive;
  • a first current feedback control for controlling the current of the battery to be greater than the first current value
  • the second current feedback control is used to control the current of the battery to be smaller than the second current value; the first current value is smaller than the second current value and is positive.
  • the average value of the first target current values corresponding to at least two feedback controls is used as the second target current value.
  • a current value in the value interval of the following current values is determined as the current value of the second target current value, and the lower limit of the value interval is the smallest current value among the first target current values corresponding to at least two feedback controls.
  • the upper limit of the interval is the maximum current value among the first target current values corresponding to the at least two feedback controls and the minimum value among the rated current values of the battery charging and discharging circuit, so that the current value of the second target current value is greater than or equal to the smallest current value among the first target current values corresponding to the at least two feedback controls, and less than or equal to the largest current value among the first target current values corresponding to the at least two feedback controls, and less than or equal to the battery charge
  • the rated current of the discharge circuit can also be used as the value interval of the second target current value.
  • the smallest current value among the first target current values corresponding to the at least two feedback controls is determined as the size of the second target current value.
  • Any one of the at least two feedback controls corresponds to an index of the battery charging and discharging circuit, and is used to adjust the sampling index obtained based on the sampling data to a preset target index through the first target current value ; Determining a second target current value corresponding to the respective first target current values of the at least two feedback controls, including:
  • the respective index deviations corresponding to the at least two feedback controls are respectively determined, wherein the index deviation corresponding to any one of the at least two feedback controls is used to indicate that the sampling index obtained by the feedback control based on the sampling data is different from the preset sampling index.
  • the fourth way can specifically include the following two sub-cases:
  • the first sub-situation if the first index deviation among the index deviations corresponding to the at least two feedback controls is the only highest index deviation, the first target current value corresponding to the first index deviation is determined as the the second target current value; or
  • the second sub-situation if the N index deviations among the index deviations corresponding to the at least two feedback controls are tied for the highest, then the feedback control corresponding to the second index deviation is randomly selected from the feedback controls corresponding to the N index deviations , determining the first target current value corresponding to the feedback control corresponding to the second index deviation as the second target current value;
  • N is an integer greater than or equal to 2.
  • Any one of the at least two feedback controls corresponds to an index of the battery charging and discharging circuit, and is used to adjust the sampling index obtained based on the sampling data to a preset target index through the first target current value ;
  • the first target current value corresponding to the at least two feedback controls to determine the second target current value including:
  • the respective index deviations corresponding to the at least two feedback controls are respectively determined, wherein the index deviation corresponding to any one of the at least two feedback controls is used to indicate that the sampling index obtained by the feedback control based on the sampling data is different from the preset sampling index.
  • the first target current values corresponding to the at least two feedback controls are weighted and accumulated, and the result of the weighted accumulation is determined as the second target current value.
  • the at least two channels of feedback control the respective corresponding first target current values to determine the second target current value, including:
  • the first target current values corresponding to the at least two feedback controls are weighted and accumulated, and the result of the weighted accumulation is determined as the second target current. value.
  • FIG. 1 is a schematic structural diagram of an optical storage system to which an embodiment of the application is applied;
  • FIG. 2 is a schematic structural diagram of a battery charging and discharging system provided by an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a processor in a battery charging and discharging system provided by an embodiment of the present application
  • FIG. 4 is a schematic flowchart of a battery charging and discharging method according to an embodiment of the present application.
  • references in this specification to "one embodiment” or “some embodiments” and the like mean that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically emphasized otherwise.
  • the terms “including”, “including”, “having” and their variants mean “including but not limited to” unless specifically emphasized otherwise.
  • plural in the embodiments of the present application refers to two or more than two.
  • a plurality may also be understood as “at least two” in the embodiments of the present application.
  • At least one can be understood as one or more, such as one, two or more.
  • including at least one means including one, two or more, and does not limit which ones are included.
  • A, B, and C is included, then A, B, C, A and B, A and C, B and C, or A and B and C may be included.
  • the understanding of descriptions such as "at least one" is similar.
  • ordinal numbers such as “first” and “second” mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the order, sequence, priority, or importance of multiple objects.
  • the embodiment of the present application provides a battery charging and discharging system, which can be applied to an optical storage system, so as to meet various demands for charging and discharging of a battery.
  • FIG. 1 it is a schematic structural diagram of an optical storage system to which an embodiment of the present application is applied.
  • the optical storage system shown in FIG. 1 includes a photovoltaic module 10 , a battery charging and discharging system 20 , a storage battery 30 and an inverter 40 .
  • the photovoltaic module 10 is used to convert solar energy into electrical energy, and transmit the generated electrical energy to the storage battery 30 for storage, or to the grid 50 through the inverter 40 , or to supply power to the load 60 .
  • the battery charging and discharging system 20 is used to store the electrical energy generated by the photovoltaic module 10 into the storage battery 30 , and to transmit the electrical energy in the storage battery 30 to the grid 50 or to the load 60 when needed.
  • the battery 30 can be charged with the electric energy generated by the photovoltaic module 10, or when the power supply capacity of the photovoltaic module 10 is weak ( For example, when the weather is bad, it is dark, and the light is insufficient), the electric energy stored in the storage battery 30 is transmitted to the power grid 50 or provided to the load 60 .
  • the battery 30 is a chemical battery that converts solar energy into electrical energy, and is used to store the electrical energy generated by the photovoltaic module 10 .
  • the storage battery 30 may be understood as a single storage battery 30, and may also be understood as a storage battery group formed by a plurality of single storage batteries.
  • batteries including lithium-ion batteries, hydrogen fuel cells, etc.
  • the inverter 40 is used to convert the direct current output from the photovoltaic storage system into alternating current, so as to transmit the alternating current to the grid 50 or to supply power to the load 60 .
  • the inverter 40 is also referred to as a direct current-alternating current (DC/AC) converter.
  • the function of the battery charging and discharging system 20 is to control the charging and discharging of the storage battery 30, and the control objectives may be various, such as safety and charging/discharging efficiency.
  • the battery charging and discharging system 20 provided by the embodiment of the present application can take into account various control objectives, for example, can take into account the charging and discharging efficiency while ensuring safety.
  • the control objective can be achieved by feedback control. Feedback control refers to the process of returning the output information of the control system to the input end of the control system in automatic control theory, and combining the input information of the control system to control the control system.
  • the charging and discharging state of the battery 30 can be controlled according to the voltage output from the photovoltaic module 10 to the battery charging and discharging system 20 and the voltage of the inverter 40 .
  • the battery 30 needs to be charged, otherwise, the battery 30 needs to be discharged.
  • the current in the battery charging and discharging system 20 can be realized by a feedback control mechanism in the battery charging and discharging system.
  • the feedback control adopted by the battery charging and discharging system may include at least two of the following feedback controls:
  • the busbar voltage feedback control is used to control the busbar voltage of the battery charging and discharging circuit within the preset voltage range to ensure the safety of the battery charging and discharging circuit and the battery. It should be noted that the function of the bus voltage feedback control is to stabilize the bus voltage of the battery charging and discharging circuit around a voltage value, so the preset voltage range can be set according to the preset bus voltage, for example, the preset bus voltage is 220 volts (V) , the preset voltage range is 219V-221V, that is, the busbar voltage feedback control for controlling the battery charging and discharging circuit is within the voltage range of 219V-221V.
  • the bus voltage feedback control corresponds to the bus voltage index of the battery charging and discharging circuit
  • the goal of the bus voltage feedback control is to adjust the sampling index of the bus voltage to the target index.
  • the sampling index of the bus voltage may be obtained based on the sampling data corresponding to the feedback control of the bus voltage, and the target index of the bus voltage may be the above-mentioned preset voltage range.
  • the input of the bus voltage feedback control can be at least one of the following sampling data: current information sampled by the battery charging and discharging circuit, or voltage information obtained by sampling, or power information obtained by sampling (such as charging power or discharging power).
  • the sampled current information may include a current value (ie, the magnitude of the current), and the sampled voltage information may include a voltage value.
  • the output of the bus voltage feedback control may be a first target current value corresponding to the bus voltage feedback control, and the first target current value may be a current value or a value range of the current value or an adjustment value of the current value.
  • the bus voltage of the battery charging and discharging circuit can be guaranteed to be within the preset voltage range.
  • the current value in the embodiments of the present application refers to the magnitude of the current
  • the adjustment value of the current value refers to the current difference value that is increased or decreased on the basis of the sampled current value.
  • the first power feedback control is used to control the power of the battery to be greater than the first power value, so as to ensure that the charging and discharging efficiency of the battery meets certain requirements.
  • the first power value is 1000 watts (W).
  • the first power feedback control corresponds to the power index of the battery
  • the goal of the first power feedback control is to adjust the sampling index of the power of the battery to the target index.
  • the sampling index of the power of the battery may be obtained based on the sampling data corresponding to the first power feedback control, and the target index of the power of the battery may be greater than the above-mentioned first power value.
  • the input of the first power feedback control may also be the above-mentioned at least one item of sampled data.
  • the output of the first power feedback control may be the first target current value corresponding to the first power feedback control, and when the current size of the corresponding position in the battery charging and discharging circuit is the current size matched by the first target current value, the battery can be guaranteed.
  • the power value of is greater than the first power value.
  • the second power feedback control is used to control the power of the battery to be less than the second power value to ensure that the charging efficiency of the battery does not exceed the upper limit, thereby ensuring the safety of the battery and the battery charging and discharging circuit.
  • the first power value is smaller than the second power value.
  • the second power value is 1500 watts (W).
  • the second power feedback control corresponds to the power index of the battery
  • the objective of the second power feedback control is to adjust the sampling index of the power of the battery to the target index.
  • the sampling index of the power of the battery may be obtained based on the sampling data corresponding to the second power feedback control, and the target index of the power of the battery may be smaller than the above-mentioned second power value.
  • the input of the second power feedback control may also be the above-mentioned at least one item of sampled data.
  • the output of the second power feedback control may be the first target current value corresponding to the second power feedback control.
  • the power of the battery can be controlled within the power value range between the first power value and the second power value.
  • the first battery voltage feedback control is used to control the voltage of the battery to be greater than the first voltage value to ensure that the charge and discharge intensity of the battery meets certain requirements.
  • the first voltage value is 100V.
  • the first battery voltage feedback control corresponds to the battery voltage index of the battery
  • the objective of the first battery voltage feedback control is to adjust the sampling index of the battery voltage of the battery to the target index.
  • the sampling index of the battery voltage of the battery can be obtained based on the sampling data corresponding to the first battery voltage feedback control, and the target index of the battery voltage of the battery can be greater than the above-mentioned first battery voltage value.
  • the input of the first voltage feedback control may also be the above-mentioned at least one item of sampled data.
  • the output of the first voltage feedback control may be the first target current value corresponding to the first voltage feedback control.
  • the second battery voltage feedback control is used to control the voltage of the battery to be less than the second voltage value to ensure that the charging intensity of the battery does not exceed the upper limit, thereby ensuring the safety of the battery and the battery charging and discharging circuit.
  • the first voltage value is smaller than the second voltage value and is positive.
  • the second voltage value is 200V.
  • the second battery voltage feedback control corresponds to the battery voltage index of the battery
  • the objective of the second battery voltage feedback control is to adjust the sampling index of the battery voltage of the battery to the target index.
  • the sampling index of the battery voltage of the battery may be obtained based on the sampling data corresponding to the feedback control of the second battery voltage, and the target index of the battery voltage of the battery may be lower than the second battery voltage value.
  • the input of the second voltage feedback control may also be the above-mentioned at least one item of sampled data.
  • the output of the second voltage feedback control can be the first target current value corresponding to the second voltage feedback control.
  • the voltage of the battery can be controlled within the voltage range between the first voltage value and the second voltage value, for example, the voltage of the battery can be controlled within 100V-200V.
  • the first current feedback control is used to control the current of the battery to be greater than the first current value to ensure that the charge and discharge intensity of the battery meets certain requirements.
  • the first current value is 10A.
  • the first current feedback control corresponds to the current index of the battery
  • the objective of the first current feedback control is to adjust the sampling index of the current of the battery to the target index.
  • the sampling index of the current of the battery may be obtained based on the sampling data corresponding to the first current feedback control, and the target index of the current of the battery may be greater than the above-mentioned first current value.
  • the input of the first current feedback control may also be the above-mentioned at least one item of sampled data.
  • the output of the first current feedback control may be the first target current value corresponding to the first current feedback control.
  • the second current feedback control is used to control the current of the battery to be less than the second current value to ensure that the charging intensity of the battery does not exceed the upper limit, thereby ensuring the safety of the battery and the battery charging and discharging circuit; the first current value is less than the second current value value, and is positive.
  • the second current value is 20A.
  • the second current feedback control corresponds to the current index of the battery
  • the objective of the second current feedback control is to adjust the sampling index of the current of the battery to the target index.
  • the sampling index of the current of the battery may be obtained based on the sampling data corresponding to the second current feedback control, and the target index of the current of the battery may be smaller than the second current value.
  • the input of the second current feedback control may also be the above-mentioned at least one item of sampled data.
  • the output of the second current feedback control may be the first target current value corresponding to the second current feedback control.
  • the current of the battery can be controlled within the current value interval between the first current value and the second current value, for example, the current of the battery is controlled at 10A-20A.
  • each feedback control can be implemented by a corresponding feedback control unit.
  • the bus voltage feedback control can be implemented by the corresponding control information determination unit 0
  • the first power feedback control can be implemented by
  • the corresponding control information determination unit 1-1 can realize the second power feedback control
  • the first battery voltage feedback control can be realized by the corresponding control information determination unit 2-1.
  • the second battery voltage The feedback control can be realized by the corresponding control information determining unit 2-2
  • the first current feedback control can be realized by the corresponding control information determining unit 3-1
  • the second current feedback control can be realized by the corresponding control information determining unit 3-2.
  • the embodiments of the present application do not limit the algorithms for implementing the feedback control of the foregoing channels.
  • the above only exemplifies several kinds of feedback controls, and the embodiments of the present application do not limit the types of feedback controls adopted by the battery charging and discharging system.
  • FIG. 2 it is a schematic structural diagram of a battery charging and discharging system 20 provided in an embodiment of the present application.
  • the battery charging and discharging system 20 may specifically include: a battery charging and discharging circuit 100 and a control circuit 200 coupled to the battery charging and discharging circuit 100 .
  • a battery charging and discharging circuit 100 may specifically include: a battery charging and discharging circuit 100 and a control circuit 200 coupled to the battery charging and discharging circuit 100 .
  • a control circuit 200 coupled to the battery charging and discharging circuit 100 .
  • FIG. 2 only the battery charging and discharging circuit 100 shown in FIG. 2 is used as an example.
  • the battery charging and discharging circuit 100 includes a direct current-direct current (DC/DC) converter 101 and an inductor 102.
  • the DC/DC converter 101 is used to convert a fixed DC voltage into a variable DC voltage, and the inductor 102 is used for the storage and release of electrical energy.
  • the DC/DC converter includes a switching device for adjusting the current of the battery charging and discharging circuit 100 .
  • the switching device may be an insulated gate bipolar transistor (IGBT), and a forward voltage and a negative voltage may be applied to the gate and base of the IGBT through a driving signal. voltage to control the turn-on or turn-off of the IGBT.
  • the turn-on or turn-off of the IGBT will cause the energy inside the DC/DC converter 101 to be transferred, so that the DC/DC converter 101 can step up or down the voltage, so that the voltage applied between the positive and negative electrodes of the battery can be adjusted. Further, the control of the size of the charging current and the discharging current of the battery is realized.
  • the battery charging and discharging circuit 100 is connected to the battery 30 to form a loop, which can charge or discharge the battery 30 .
  • the structure of the battery charging and discharging circuit 100 shown in FIG. 2 is only an exemplary structure, and the inductance 102 in the figure represents an equivalent inductance, that is, the equivalent inductance 102 may be formed by several electronic components in an actual circuit.
  • the control circuit 200 includes a sampling circuit 201 , a processor 202 and a driving circuit 203 .
  • the sampling circuit 201 is used for sampling the battery charging and discharging circuit 100 to obtain sampling data, and outputting the sampling data to the processor 202 .
  • This embodiment of the present application may support at least two feedback controls.
  • the sampling circuit 201 may perform sampling for each feedback control, and output the obtained sampling data corresponding to each feedback control to the processor 202 .
  • the sampling data required for each feedback control can be the current size of a certain set point in the battery charging and discharging circuit 100, such as the current flowing through one or some components, or the battery charging and discharging circuit 100.
  • the magnitude of the voltage between the two set points in the discharge circuit 100 such as the magnitude of the voltage between the positive and negative electrodes of the battery, may also be the power of the battery, etc., of course, it may also include the magnitude of the current and the magnitude of the voltage.
  • the sampled data sampled at the same position can be used for feedback control of different channels, and the sampled data required for each channel of feedback control can also be sampled at different positions.
  • the sampling data corresponding to the first battery voltage feedback control and the sampling data corresponding to the second battery voltage feedback control may at least include voltage values of the positive and negative electrodes of the battery 30 (represented by Ubat).
  • the sampling data corresponding to the first battery current feedback control and the sampling data corresponding to the second battery current feedback control may include at least the current value (indicated by iL) from the positive electrode to the negative electrode of the battery 30 .
  • the sampling data corresponding to the first battery power feedback control and the sampling data corresponding to the second battery power feedback control may include at least iL and Ubat.
  • the sampling data corresponding to the bus voltage feedback control may at least include the bus voltage value (represented by Ubus) of the battery charging and discharging circuit 100 .
  • the processor 202 is configured to determine the first target current value corresponding to the at least two feedback controls respectively according to the sampling data corresponding to the at least two feedback controls, and determine the second target current value according to the first target current values corresponding to the at least two feedback controls respectively.
  • the target current value generates control information according to the second target current value, and outputs the control information to the driving circuit 203 so that the driving circuit 203 generates a driving signal for controlling the current of the battery charging and discharging circuit 100 according to the control information.
  • the first target current value (or corresponding) output by each channel of feedback control may include a current value or a value range of a current value or an adjustment value of the current value;
  • the second target current value obtained from the (or corresponding) first target current value output by more than two channels of feedback control may also include the current value or the value range of the current value or the adjustment value of the current value.
  • the processor 202 may specifically be an embedded single-chip microcomputer (STM32) chip or a central processing unit (central processing unit, CPU), etc., and the control information output by the processor 202 may be a pulse signal, such as a pulse width modulation (pulse width modulation, PWM) pulse Signal.
  • STM32 embedded single-chip microcomputer
  • CPU central processing unit
  • PWM pulse width modulation
  • FIG. 3 it is a schematic diagram of the structure of the processor 202 in the battery charging and discharging system provided by the embodiment of the present application.
  • Fig. 3 takes the seven-channel feedback control listed above as an example, and describes the realization method of determining the second target current value according to the first target current value output by each channel of feedback control, which is obtained from the control information determination unit corresponding to each channel of feedback control.
  • the first target current value corresponding to each channel of feedback control is obtained, and the second target current is obtained by the current decision unit based on the first target current value corresponding to each channel of feedback control.
  • FIG. 3 is only used as an example to describe a possible implementation. For other cases, for example, when at least two feedback controls only include bus voltage feedback control, first battery voltage feedback control and second battery voltage feedback control, refer to FIG. 3 . By analogy, we will not repeat them here.
  • the second target current value may be obtained by controlling the respective corresponding first target current values through at least two feedback channels in various ways.
  • the average value of the first target current values corresponding to at least two feedback controls is used as the second target current value. It should be noted that the calculation of the average value of the first target current values corresponding to at least two feedback controls here is only a calculation considering the magnitude of the current.
  • the current values of the first target current value corresponding to the three-way feedback control are respectively expressed as 5A, 9A and 4A, and the second target current value is corresponding to the three-way feedback control.
  • the average value of the first target current value is 6A.
  • a current value in the value interval of the following current values is determined as the current value of the second target current value, and the lower limit of the value interval is the smallest current value among the first target current values corresponding to at least two feedback controls.
  • the upper limit of this interval is the maximum current value among the first target current values corresponding to the at least two feedback controls and the minimum value among the rated current values of the battery charging and discharging circuit, so that the current value of the second target current value is greater than or equal to the minimum current value among the first target current values corresponding to the at least two feedback controls, and less than or equal to the maximum current value among the first target current values corresponding to the at least two feedback controls, and less than or equal to the battery charge
  • the rated current of the discharge circuit can also be used as the value interval of the second target current value.
  • the first target current values corresponding to the five feedback controls are respectively 15A, 6A, 4A, 9A and 8A, and the rated current is 12A.
  • the minimum current value is 4A
  • the maximum current value is 15A
  • the value range of the second target current value can be 4A ⁇ 12A
  • the random value in the range can be 10A
  • the value of the second target current value can be 10A.
  • the median value 8A in the value interval is used as the value of the second target current value.
  • the second target current value can adaptively fall between the minimum current value and the maximum current value among the first target current values, and is less than or equal to the rated current of the battery charging and discharging circuit, thereby
  • the current of the battery charging and discharging circuit can be controlled within an expected range, which ensures the safety of the battery charging and discharging circuit and/or the storage battery.
  • the second target current value is determined by combining the first target current value of the multi-channel feedback control (two or more channels of feedback control), it is possible to take into account the control objectives of the at least two channels of feedback control. On the basis, the safety of the battery charging and discharging circuit and/or the storage battery is improved.
  • the smallest current value among the first target current values corresponding to the at least two feedback controls is determined as the size of the second target current value.
  • the at least two feedback controls specifically include: bus voltage feedback control, first battery voltage feedback control, second battery voltage feedback control, first battery power feedback control, and second battery power feedback control.
  • the smallest current value among the first target current values corresponding to at least two feedback controls is determined as the size of the second target current value, which can ensure the safety of the battery charging and discharging circuit.
  • any one of the at least two feedback controls corresponds to an index of the battery charging and discharging circuit, and is used to adjust the sampling index obtained based on the sampling data to a preset target through the first target current value
  • the process that the processor determines the second target current value according to the first target current value corresponding to the at least two feedback controls may specifically be as follows:
  • the respective index deviations corresponding to at least two feedback controls are respectively determined, wherein the index deviation corresponding to any one of the at least two feedback controls is used to indicate the difference between the sampling index obtained by the feedback control based on the sampling data and the preset target index.
  • the index deviation is used to indicate the difference between the sampling index obtained based on the sampling data and the preset target index in the feedback control.
  • the preset target index is an ideal index of the battery charging and discharging circuit.
  • the value of the index deviation can be the deviation ratio between the sampling index obtained based on the sampling data of the feedback control and the preset target index.
  • the deviation ratio is the deviation value and the sampling index.
  • the ratio of the index, the deviation value is the absolute value of the difference between the sampling index and the preset target index.
  • the specific selection of at least one of the two feedback controls can be flexibly set.
  • the first target current value corresponding to the largest index deviation can be preferentially selected as the second target current value, so as to preferentially adjust the feedback control of the sampling index exceeding the preset target index, and effectively protect the battery charging and discharging circuit.
  • the index deviations are all non-negative, the first target current value corresponding to the feedback control with the largest index deviation is preferentially selected, and the feedback control with the highest adjustment demand is given priority.
  • the foregoing fourth manner may further include the following two sub-situations:
  • indicator deviation 0 is 0.1
  • indicator deviation 1-1 is 0.4
  • indicator deviation 1-2 is 0.3
  • indicator deviation 2-1 is 0.1
  • indicator deviation 2-2 is 0.2
  • indicator deviation 3-1 is 0.1
  • the index deviation 3-2 is 0.2.
  • the first index deviation that is, the index deviation 1-1
  • the first target current value 1-1 corresponding to the index deviation 1-1 is the second target current value.
  • N is an integer greater than or equal to 2.
  • index deviation 0 is 0.1
  • index deviation 1-1 is 0.2
  • index deviation 1-2 is 0.3
  • index deviation 2-1 is 0.1
  • index deviation 2-2 is 0.3
  • index deviation 3-1 is 0.1
  • the index deviation 3-2 is 0.2.
  • the N index deviations are the two index deviations, the index deviation 1-2 and the index deviation 2-2, then the feedback control corresponding to the index deviation 1-2 (ie the second battery voltage feedback control) and the index deviation 2-2.
  • the first target current value 2-2 corresponding to the second battery power feedback control randomly selected in the corresponding feedback control ie, the second battery power feedback control
  • any one of the at least two feedback controls corresponds to an index of the battery charging and discharging circuit, and is used to adjust the sampling index obtained based on the sampling data to a preset target through the first target current value
  • the process that the processor determines the second target current value according to the first target current value corresponding to the at least two feedback controls may specifically be as follows:
  • the respective index deviations corresponding to at least two feedback controls are respectively determined, wherein the index deviation corresponding to any one of the at least two feedback controls is used to indicate the difference between the sampling index obtained by the feedback control based on the sampling data and the preset target index. difference size;
  • the first target current values corresponding to the at least two feedback controls are weighted and accumulated, and the result of the weighted accumulation is determined as the second target current value.
  • the index deviations corresponding to the at least two feedback controls there can be various specific ways to determine the corresponding weights of the at least two feedback controls. Since the greater the index deviation, the greater the demand for feedback control adjustment corresponding to the index deviation, then the According to the principle that the weight corresponding to the feedback control and the index deviation corresponding to the feedback control are positively correlated, the weight corresponding to the feedback control is determined. Specifically, the index deviation corresponding to the feedback control may be used as the weight corresponding to the feedback control.
  • the at least two feedback controls specifically include: bus voltage feedback control, first battery voltage feedback control, second battery voltage feedback control, first battery power feedback control, and second battery power feedback control.
  • the first target current values corresponding to the at least two feedback controls specifically include: a first target current value of 0, a first target current value of 1-1, a first target current value of 1-2, and a first target current value of 2 -1.
  • the first target current value is 2-2.
  • the index deviation 0 corresponding to the bus voltage feedback control is 0.1
  • the index deviation 1-1 corresponding to the first battery voltage feedback control is 0.1
  • the index deviation 1-2 corresponding to the second battery voltage feedback control is 0.3
  • the corresponding index deviation 2-1 is 0.1
  • the index deviation 2-2 corresponding to the second battery power feedback control is 0.2.
  • the weight corresponding to the bus voltage feedback control is 0.1
  • the weight corresponding to the first battery voltage feedback control is 0.1
  • the weight corresponding to the second battery voltage feedback control is 0.3
  • the first battery power feedback control corresponds to The weight is 0.1
  • the weight corresponding to the second battery power feedback control is 0.2.
  • the process that the processor determines the second target current value according to the first target current value corresponding to the at least two feedback controls may specifically be as follows:
  • the first target current values corresponding to the at least two feedback controls are weighted and accumulated, and the result of the weighted accumulation is determined as the second target current value.
  • preset weights can be set based on the degree of emphasis on different performance indicators. If the performance indicator that focuses on adjustment is battery power, then the weight corresponding to the first battery power feedback control and the corresponding weight of the first battery power feedback control are set. The weight setting is the highest.
  • the at least two feedback controls specifically include: bus voltage feedback control, first battery power feedback control, second battery power feedback control, first battery current feedback control, and second battery current feedback control.
  • the weight corresponding to the current feedback control is 0.6, that is, the regulation requirement for battery power is relatively high, followed by battery current, and then bus voltage.
  • preset weights corresponding to at least two feedback controls can also be set according to time periods. For example, in the first period, the weight corresponding to the first battery power feedback control and the weight corresponding to the second battery power feedback control are set to the highest, and in the second period, the weight corresponding to the first battery current feedback control and the second battery current feedback control are set to the highest. Controls the corresponding weight setting to the highest.
  • the battery charging and discharging system shown in FIG. 2 further includes a driving circuit 203 for generating a driving signal according to the control information output by the processor 202 , and the driving signal is used for controlling the current of the battery charging and discharging circuit 100 .
  • a driving signal may be output to the DC/DC converter, and the driving signal is used to control the switching state of the switching device in the DC/DC converter.
  • a possible implementation is that, after the drive circuit 203 receives the control information (such as a PWM pulse signal) output by the processor 202, the drive circuit 203 further generates an amplified drive signal, thereby controlling the DC/DC conversion
  • the control information such as a PWM pulse signal
  • the drive circuit 203 further generates an amplified drive signal, thereby controlling the DC/DC conversion
  • the switching state of the switching device in the device enables the DC/DC converter to generate voltages of different magnitudes and thus output currents of different magnitudes.
  • the present application provides a method for controlling battery charging, and the method can be applied to the battery charging and discharging system provided by the above embodiments of the present application.
  • the method can be executed by the processor 202 in the control circuit 200 in the above-mentioned battery charging and discharging system, and the method can include:
  • Step 401 Obtain sampling data corresponding to at least two feedback controls of the battery charging and discharging circuit.
  • Step 402 Determine the first target current value corresponding to the at least two feedback controls according to the sampling data corresponding to the at least two feedback controls respectively, and determine the second target current value according to the first target current value corresponding to the at least two feedback controls. .
  • Step 403 Generate and output control information according to the second target current value, where the control information is used to generate a drive signal for controlling the current of the battery charging and discharging circuit.
  • At least two feedback controls can be the aforementioned (1) to (7) feedback controls
  • the sampling data corresponding to at least two feedback controls can be obtained from the sampling circuit 201 in the above control circuit 200, and at least two feedback controls
  • the specific information that the corresponding sampling data can contain see the description of the sampling circuit 201 .
  • Step 402 may be specifically performed according to the foregoing first manner to sixth manner.
  • the control information output in step 403 may be a PWM pulse signal.
  • the embodiments of the present application further describe the process of the battery charging control method in detail.
  • the feedback control cycle at the beginning of the first feedback control cycle (denoted as time T1), based on the first target current value 1-1 of the first battery voltage feedback control and the first target of the second battery voltage feedback control The current value 1-2, the first target current value 2-1 of the first battery power feedback control, the first target current value 2-2 of the second battery power feedback control, and the first target current value 0 of the bus voltage feedback control,
  • the second target current value is determined to be the first target current value 1-1 according to the manners in the aforementioned first manner to sixth manner.
  • the second battery voltage feedback control, the first battery power feedback control, the second battery power feedback control and the bus voltage feedback Control can continue to obtain the corresponding sampling data according to the sampling period of the respective feedback control (the sampling period is smaller than the feedback control period), and in the corresponding sampling period, output the first target current value according to the corresponding sampling data until time T2.
  • the second target current value is determined to be the first target current value 2-2, and the current at the corresponding position in the battery charging and discharging circuit is updated from the first target current value 1-1
  • the first target current value is 2-2.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

提供了一种电池充放电系统(20)、电路(100)及方法。其中系统(20)包括:电池充放电电路(100)以及与电池充放电电路(100)耦合的控制电路(200);电池充放电电路(100)包括DC/DC转换器(101),控制电路(200)包括采样电路(201)、处理器(202)和驱动电路(203);处理器(202),用于分别根据至少两路反馈控制对应的采样数据,确定至少两路反馈控制各自对应的第一目标电流值,根据至少两路反馈控制各自对应的第一目标电流值确定第二目标电流值,综合地权衡每路反馈控制的第一目标电流值,从而自适应地最终确定出待输出的第二目标电流值,并根据第二目标电流值生成驱动信号,并将驱动信号输出给DC/DC转换器(101),进而将充放电行为自适应地控制在预期范围内,能有效地保护电池充放电电路(100)的充放电。

Description

一种电池充放电系统、电路及方法
相关申请的交叉引用
本申请要求在2021年04月12日提交中国专利局、申请号为202110390785.8、申请名称为“一种电池充放电系统、电路及方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电路控制技术领域,尤其涉及一种电池充放电系统、电路及方法。
背景技术
蓄电池常用于各种应用场景中的供电,如在包含储能环节的新能源系统中,蓄电池为储能电池,在新能源系统中,通过对蓄电池的充放电,能够实现新能源系统中电量的双向流动。蓄电池的充放电的电流大小影响蓄电池的健康状态以及蓄电池的充放电效率。为了提高蓄电池的充放电效率,需要提高充放电电流大小,但蓄电池的过充(即充电电流过大)或过放(即放电电流过大)均会给蓄电池以及电池充放电电路带来安全问题。
因此如何兼顾针对蓄电池充放电的多方面的需求,比如安全性需求以及充放电效率需求,这是一个亟待解决的问题。
发明内容
本申请提供一种电池充放电系统、电路及方法,用于兼顾针对蓄电池充放电的多方面的需求。
第一方面,本申请提供一种电池充放电系统,包括:电池充放电电路以及与所述电池充放电电路耦合的控制电路,所述电池充放电电路包括DC/DC转换器,所述DC/DC转换器中包括用于调节所述电池充放电电路电流大小的开关器件,所述控制电路包括采样电路、处理器和驱动电路;
所述采样电路,用于对所述电池充放电电路进行采样,得到至少两路反馈控制对应的采样数据,并将所述至少两路反馈控制对应的采样数据输出给所述处理器;
所述处理器,用于分别根据所述至少两路反馈控制对应的采样数据,确定所述至少两路反馈控制各自对应的第一目标电流值,根据所述至少两路反馈控制各自对应的第一目标电流值确定第二目标电流值,根据所述第二目标电流值生成控制信息,并将所述控制信息输出给所述驱动电路;
所述驱动电路,用于根据所述处理器输出的所述控制信息生成驱动信号,并将所述驱动信号输出给所述DC/DC转换器,所述驱动信号用于控制所述DC/DC转换器中的所述开关器件的开关状态。
上述方式下,所述采样电路得到至少两路反馈控制对应的采样数据,所述处理器,分别根据所述至少两路反馈控制以及对应的采样数据,综合考虑了所述至少两路反馈控制各自对应的第一目标电流值,综合地权衡每路反馈控制的第一目标电流值,从而自适应地最 终确定出待输出的第一目标电流值,得到符合所述电池充放电电路池实时需求的第二目标电流值,进一步地,根据所述处理器输出的所述第二目标电流值生成驱动信号,并将所述驱动信号输出给所述DC/DC转换器,从而控制所述DC/DC转换器中的所述开关器件的开关状态,从而可以将充放电行为自适应地控制在预期范围内,能有效地保护电池充放电电路的充放电。
为了进一步保证第二目标电流值在预期范围内,可以根据第一目标电流值预先对第二目标电流值的范围做一定限制,一种可能的实现方式中,所述第二目标电流值的大小大于或等于所述至少两路反馈控制各自对应的第一目标电流值中最小的电流值,且小于或等于所述至少两路反馈控制各自对应的第一目标电流值中最大的电流值,并小于或等于所述电池充放电电路的额定电流。
通过上述方式,可以使得第二目标电流值自适应地落在第一目标电流值中最小的电流值与最大的电流值之间,且小于或等于电池充放电电路的额定电流,从而可以将第二目标电流值控制在预期范围内,提升了安全性。
所述至少两路反馈控制可以根据实际需要灵活设置,一种可能的实现方式中,所述至少两路反馈控制包括母线电压反馈控制,所述母线电压反馈控制用于控制所述电池充放电电路的母线电压在预设电压范围内,以及包括以下反馈控制中的至少一项:
第一功率反馈控制,用于控制蓄电池的功率大于第一功率值;
第二功率反馈控制,用于控制蓄电池的功率小于第二功率值;所述第一功率值小于所述第二功率值;
第一电池电压反馈控制,用于控制蓄电池的电压大于第一电压值;
第二电池电压反馈控制,用于控制蓄电池的电压小于第二电压值;所述第一电压值小于所述第二电压值,且为正;
第一电流反馈控制,用于控制蓄电池的电流大于第一电流值;
第二电流反馈控制,用于控制蓄电池的电流小于第二电流值;所述第一电流值小于所述第二电流值,且为正。
上述方式下,所述至少两路反馈控制包括母线电压反馈控制和多个反馈控制中的至少一项,所述母线电压反馈控制用于控制所述电池充放电电路的母线电压在预设电压范围内,从而在保证电池充放电电路的稳定性的基础上,增加了控制充放电的灵活性。
所述处理器根据所述至少两路反馈控制各自对应的第一目标电流值确定第二目标电流值的方式可以有多种,具体如下:
第一种方式:
将至少两路反馈控制对应的第一目标电流值的平均值,作为第二目标电流值。
需要说明的是,这里至少两路反馈控制对应的第一目标电流值的平均值的运算仅是考虑电流大小的运算。
通过上述第一种方式,通过考虑至少两路反馈控制对应的第一目标电流值的平均值,综合权衡每路反馈控制所对应蓄电池的需求。
第二种方式:
将以下电流值的取值区间中的一个电流值,确定为第二目标电流值的电流值,该取值区间的下限为至少两路反馈控制各自对应的第一目标电流值中最小的电流值,该区间的上限为所述至少两路反馈控制各自对应的第一目标电流值中最大的电流值和电池充放电电 路的额定电流值中的最小值,使得第二目标电流值的电流值大于或等于至少两路反馈控制各自对应的第一目标电流值中最小的电流值,且小于或等于至少两路反馈控制各自对应的第一目标电流值中最大的电流值,并小于或等于电池充放电电路的额定电流。当然,也可以将该取值区间作为第二目标电流值的取值区间。
通过上述第二种方式,可以使得第二目标电流值自适应地落在第一目标电流值中最小的电流值与最大的电流值之间,且小于或等于电池充放电电路的额定电流,从而可以将电池充放电电路的电流控制在预期范围内,在综合考虑蓄电池多方面需求的基础上,保证了电池充放电电路和/或蓄电池的安全性。
第三种方式:
将所述至少两路反馈控制对应的第一目标电流值中最小的电流值,确定为所述第二目标电流值的大小。
上述第三种方式下,将所述至少两路反馈控制对应的第一目标电流值中最小的电流值,确定为所述第二目标电流值的大小,从而提升了电池充放电电路的安全性。
第四种方式:
所述至少两路反馈控制中的任一路反馈控制与所述电池充放电电路的一种指标相对应,并用于通过第一目标电流将基于采样数据得到的采样指标调整到预设的目标指标,所述处理器具体用于:
分别确定所述至少两路反馈控制各自对应的指标偏差,其中所述至少两路反馈控制中任一路反馈控制对应的指标偏差,用于表示该反馈控制基于采样数据得到的采样指标与预设的目标指标间的差异大小;根据所述至少两路反馈控制各自对应的指标偏差,选取所述至少两路反馈控制中的一路反馈控制;将所述选取的一路反馈控制对应的第一目标电流值,确定为所述第二目标电流值。
上述第四种方式下,通过分别确定每路反馈控制各自对应的指标偏差,表征出每路反馈控制各自对应的采样指标与预设的目标指标间的差异大小,反映了电池充放电电路中各采样指标的调整需求程度,并基于此选取所述至少两路反馈控制中的一路反馈控制,从而自适应地确定所述第二目标电流值,自动地契合电池充放电电路的实时调整需求。
第四种方式具体可以包括以下两种子情形:
第一种子情形:若所述至少两路反馈控制各自对应的指标偏差中第一指标偏差为唯一最高的指标偏差,则将所述第一指标偏差对应的第一目标电流值,确定为所述第二目标电流值;或者
第二种子情形:若所述至少两路反馈控制各自对应的指标偏差中N个指标偏差并列最高,则从所述N个指标偏差对应的反馈控制中随机选取出第二指标偏差对应的反馈控制,将所述第二指标偏差对应的反馈控制对应的第一目标电流值,确定为所述第二目标电流值;
其中,N为大于或等于2的整数。
上述第四种方式的两种子情形下,最高的一个或指标偏差反映了电池充放电电路中最迫切需要调整的需求程度,将所述第一指标偏差或所述第二指标偏差对应的反馈控制对应的第一目标电流值,确定为所述第二目标电流值,可以自适应地优先满足最高的指标偏差对应采样指标的调整需求。
第五种方式:
所述至少两路反馈控制中的任一路反馈控制与所述电池充放电电路的一种指标相对 应,并用于通过第一目标电流将基于采样数据得到的采样指标调整到预设的目标指标,所述处理器具体用于:
分别确定所述至少两路反馈控制各自对应的指标偏差,其中所述至少两路反馈控制中任一路反馈控制对应的指标偏差,用于表示该反馈控制基于采样数据得到的采样指标与预设的目标指标间的差异大小;
分别根据所述至少两路反馈控制各自对应的指标偏差,确定所述至少两路反馈控制各自对应的权重;
根据所述至少两路反馈控制各自对应的权重,对所述至少两路反馈控制各自对应的第一目标电流值进行加权累加,将所述加权累加的结果确定为所述第二目标电流值。
上述第五种方式下,分别根据所述至少两路反馈控制各自对应的指标偏差,确定所述至少两路反馈控制各自对应的权重,便可根据电池充放电电路中各采样指标实时的调整需求程度,实时确定所述至少两路反馈控制各自对应的权重,即实时确定对最终加权累加的结果的影响程度,从而实时且全面地考虑电池充放电电路中各采样指标的调整需求程度以及影响程度,自适应地满足实时且全面的调整需求。
第六种方式:
根据所述至少两路反馈控制各自对应的预设权重,对所述至少两路反馈控制各自对应的第一目标电流值进行加权累加,将所述加权累加的结果确定为所述第二目标电流值。
上述第六种方式下,根据所述至少两路反馈控制各自对应的预设权重,对所述至少两路反馈控制各自对应的第一目标电流值进行加权累加,从而根据所述至少两路反馈控制各自对应的第一目标电流值对最终加权累加的结果的影响程度,自适应地满足实时且全面的调整需求。
第二方面,本申请提供一种电池充放电的控制电路,所述控制电路包括:采样电路、控制信息生成电路和驱动电路;
所述采样电路,用于对与所述电池充放电的控制电路耦合的电池充放电电路进行采样,得到至少两路反馈控制对应的采样数据,并将所述至少两路反馈控制对应的采样数据输出给所述处理器;
所述处理器,用于分别根据所述至少两路反馈控制对应的采样数据,确定所述至少两路反馈控制各自对应的第一目标电流值,根据所述至少两路反馈控制各自对应的第一目标电流值确定第二目标电流值,根据所述第二目标电流值生成控制信息,并将所述控制信息输出给所述驱动电路;
所述驱动电路,用于根据所述处理器输出的所述控制信息生成驱动信号,所述驱动信号用于控制所述电池充放电电路的电流。
为了进一步保证第二目标电流值在预期范围内,可以根据第一目标电流值预先对第二目标电流值的范围做一定限制,一种可能的实现方式中,所述第二目标电流值的大小大于或等于所述至少两路反馈控制各自对应的第一目标电流值中最小的电流值,且小于或等于所述至少两路反馈控制各自对应的第一目标电流值中最大的电流值,并小于或等于所述电池充放电电路的额定电流。
所述至少两路反馈控制可以根据实际需要灵活设置,一种可能的实现方式中,所述至少两路反馈控制包括母线电压反馈控制,所述母线电压反馈控制用于控制所述电池充放电电路的母线电压在预设电压范围内,以及包括以下反馈控制中的至少一项:
第一功率反馈控制,用于控制蓄电池的功率大于第一功率值;
第二功率反馈控制,用于控制蓄电池的功率小于第二功率值;所述第一功率值小于所述第二功率值;
第一电池电压反馈控制,用于控制蓄电池的电压大于第一电压值;
第二电池电压反馈控制,用于控制蓄电池的电压小于第二电压值;所述第一电压值小于所述第二电压值,且为正;
第一电流反馈控制,用于控制蓄电池的电流大于第一电流值;
第二电流反馈控制,用于控制蓄电池的电流小于第二电流值;所述第一电流值小于所述第二电流值,且为正。
所述处理器根据所述至少两路反馈控制各自对应的第一目标电流值确定第二目标电流值的存在多种可能情形,具体可以包括:
所述处理器根据所述至少两路反馈控制各自对应的第一目标电流值确定第二目标电流值的方式可以有多种,具体如下:
第一种方式:
将至少两路反馈控制对应的第一目标电流值的平均值,作为第二目标电流值。
第二种方式:
将以下电流值的取值区间中的一个电流值,确定为第二目标电流值的电流值,该取值区间的下限为至少两路反馈控制各自对应的第一目标电流值中最小的电流值,该区间的上限为所述至少两路反馈控制各自对应的第一目标电流值中最大的电流值和电池充放电电路的额定电流值中的最小值,使得第二目标电流值的电流值大于或等于至少两路反馈控制各自对应的第一目标电流值中最小的电流值,且小于或等于至少两路反馈控制各自对应的第一目标电流值中最大的电流值,并小于或等于电池充放电电路的额定电流。当然,也可以将该取值区间作为第二目标电流值的取值区间。
第三种方式:
将所述至少两路反馈控制对应的第一目标电流值中最小的电流值,确定为所述第二目标电流值的大小。
第四种方式:
所述至少两路反馈控制中的任一路反馈控制与所述电池充放电电路的一种指标相对应,并用于通过第一目标电流值将基于采样数据得到的采样指标调整到预设的目标指标;所述处理器具体用于:
分别确定所述至少两路反馈控制各自对应的指标偏差,其中所述至少两路反馈控制中任一路反馈控制对应的指标偏差,用于表示该反馈控制基于采样数据得到的采样指标与预设的目标指标间的差异大小;根据所述至少两路反馈控制各自对应的指标偏差,选取所述至少两路反馈控制中的一路反馈控制;将所述选取的一路反馈控制对应的第一目标电流值,确定为所述第二目标电流值。
第四种方式具体可以包括以下两种子情形:
第一种子情形:若所述至少两路反馈控制各自对应的指标偏差中第一指标偏差为唯一最高的指标偏差,则将所述第一指标偏差对应的第一目标电流值,确定为所述第二目标电流值;或者
第二种子情形:若所述至少两路反馈控制各自对应的指标偏差中N个指标偏差并列最 高,则从所述N个指标偏差对应的反馈控制中随机选取出第二指标偏差对应的反馈控制,将所述第二指标偏差对应的反馈控制对应的第一目标电流值,确定为所述第二目标电流值;
其中,N为大于或等于2的整数。
第五种方式:
所述至少两路反馈控制中的任一路反馈控制与所述电池充放电电路的一种指标相对应,并用于通过第一目标电流值将基于采样数据得到的采样指标调整到预设的目标指标;所述处理器具体用于:
分别确定所述至少两路反馈控制各自对应的指标偏差,其中所述至少两路反馈控制中任一路反馈控制对应的指标偏差,用于表示该反馈控制基于采样数据得到的采样指标与预设的目标指标间的差异大小;
分别根据所述至少两路反馈控制各自对应的指标偏差,确定所述至少两路反馈控制各自对应的权重;
根据所述至少两路反馈控制各自对应的权重,对所述至少两路反馈控制各自对应的第一目标电流值进行加权累加,将所述加权累加的结果确定为所述第二目标电流值。
第六种方式:
根据所述至少两路反馈控制各自对应的预设权重,对所述至少两路反馈控制各自对应的第一目标电流值进行加权累加,将所述加权累加的结果确定为所述第二目标电流值。
上述第二方面的各种可能情形的有益效果可以参考第一方面的相应情形,在此不再赘述。
第三方面,本申请提供一种电池充电的控制方法,所述方法适用于电池充放电系统,所述电池充放电系统包括电池充放电电路以及与所述电池充放电电路耦合的控制电路;所述方法包括:
获取所述电池充放电电路的至少两路反馈控制对应的采样数据;
分别根据所述至少两路反馈控制对应的采样数据,确定所述至少两路反馈控制各自对应的第一目标电流值,根据所述至少两路反馈控制各自对应的第一目标电流值确定第二目标电流值;
根据所述第二目标电流值生成并输出控制信息,所述控制信息用于生成控制所述电池充放电电路的电流的驱动信号。
为了进一步保证第二目标电流值在预期范围内,可以根据第一目标电流值预先对第二目标电流值的范围做一定限制,一种可能的实现方式中,所述第二目标电流值的大小大于或等于所述至少两路反馈控制各自对应的第一目标电流值中最小的电流值,且小于或等于所述至少两路反馈控制各自对应的第一目标电流值中最大的电流值,并小于或等于所述电池充放电电路的额定电流。
所述至少两路反馈控制可以根据实际需要灵活设置,一种可能的实现方式中,所述至少两路反馈控制包括母线电压反馈控制,所述母线电压反馈控制用于控制所述电池充放电电路的母线电压在预设电压范围内,以及包括以下反馈控制中的至少一项:
第一功率反馈控制,用于控制蓄电池的功率大于第一功率值;
第二功率反馈控制,用于控制蓄电池的功率小于第二功率值;所述第一功率值小于所述第二功率值;
第一电池电压反馈控制,用于控制蓄电池的电压大于第一电压值;
第二电池电压反馈控制,用于控制蓄电池的电压小于第二电压值;所述第一电压值小于所述第二电压值,且为正;
第一电流反馈控制,用于控制蓄电池的电流大于第一电流值;
第二电流反馈控制,用于控制蓄电池的电流小于第二电流值;所述第一电流值小于所述第二电流值,且为正。
根据所述至少两路反馈控制各自对应的第一目标电流值确定第二目标电流值的方式可以有多种,具体如下:
第一种方式:
将至少两路反馈控制对应的第一目标电流值的平均值,作为第二目标电流值。
第二种方式:
将以下电流值的取值区间中的一个电流值,确定为第二目标电流值的电流值,该取值区间的下限为至少两路反馈控制各自对应的第一目标电流值中最小的电流值,该区间的上限为所述至少两路反馈控制各自对应的第一目标电流值中最大的电流值和电池充放电电路的额定电流值中的最小值,使得第二目标电流值的电流值大于或等于至少两路反馈控制各自对应的第一目标电流值中最小的电流值,且小于或等于至少两路反馈控制各自对应的第一目标电流值中最大的电流值,并小于或等于电池充放电电路的额定电流。当然,也可以将该取值区间作为第二目标电流值的取值区间。
第三种方式:
将所述至少两路反馈控制对应的第一目标电流值中最小的电流值,确定为所述第二目标电流值的大小。
第四种方式:
所述至少两路反馈控制中的任一路反馈控制与所述电池充放电电路的一种指标相对应,并用于通过第一目标电流值将基于采样数据得到的采样指标调整到预设的目标指标;所述至少两路反馈控制各自对应的第一目标电流值确定第二目标电流值,包括:
分别确定所述至少两路反馈控制各自对应的指标偏差,其中所述至少两路反馈控制中任一路反馈控制对应的指标偏差,用于表示该反馈控制基于采样数据得到的采样指标与预设的目标指标间的差异大小;根据所述至少两路反馈控制各自对应的指标偏差,选取所述至少两路反馈控制中的一路反馈控制;将所述选取的一路反馈控制对应的第一目标电流值,确定为所述第二目标电流值。
第四种方式具体可以包括以下两种子情形:
第一种子情形:若所述至少两路反馈控制各自对应的指标偏差中第一指标偏差为唯一最高的指标偏差,则将所述第一指标偏差对应的第一目标电流值,确定为所述第二目标电流值;或者
第二种子情形:若所述至少两路反馈控制各自对应的指标偏差中N个指标偏差并列最高,则从所述N个指标偏差对应的反馈控制中随机选取出第二指标偏差对应的反馈控制,将所述第二指标偏差对应的反馈控制对应的第一目标电流值,确定为所述第二目标电流值;
其中,N为大于或等于2的整数。
第五种方式:
所述至少两路反馈控制中的任一路反馈控制与所述电池充放电电路的一种指标相对应,并用于通过第一目标电流值将基于采样数据得到的采样指标调整到预设的目标指标; 所述至少两路反馈控制各自对应的第一目标电流值确定第二目标电流值,包括:
分别确定所述至少两路反馈控制各自对应的指标偏差,其中所述至少两路反馈控制中任一路反馈控制对应的指标偏差,用于表示该反馈控制基于采样数据得到的采样指标与预设的目标指标间的差异大小;
分别根据所述至少两路反馈控制各自对应的指标偏差,确定所述至少两路反馈控制各自对应的权重;
根据所述至少两路反馈控制各自对应的权重,对所述至少两路反馈控制各自对应的第一目标电流值进行加权累加,将所述加权累加的结果确定为所述第二目标电流值。
第六种方式:
所述至少两路反馈控制各自对应的第一目标电流值确定第二目标电流值,包括:
根据所述至少两路反馈控制各自对应的预设权重,对所述至少两路反馈控制各自对应的第一目标电流值进行加权累加,将所述加权累加的结果确定为所述第二目标电流值。
上述第三方面的各种可能情形的有益效果可以参考第一方面的相应情形,在此不再赘述。
附图说明
图1为本申请实施例适用的一种光储系统的架构示意图;
图2为本申请实施例提供的一种电池充放电系统的结构示意图;
图3为本申请实施例提供的一种电池充放电系统中处理器的结构示意图;
图4为本申请实施例提供的一种电池充放电方法的流程示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。还应当理解,在本申请实施例中,“一个或多个”是指一个或两个以上(包含两个);“和/或”,描述关联对象的关联关系,表示可以存在三种关系;例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
本申请实施例中的术语多个是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“至少一个”,可理解为一个或多个,例如理解为一个、两个或 更多个。例如,包括至少一个,是指包括一个、两个或更多个,而且不限制包括的是哪几个。例如,包括A、B和C中的至少一个,那么包括的可以是A、B、C,A和B,A和C,B和C,或A和B和C。同理,对于“至少一种”等描述的理解,也是类似的。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
本申请实施例提供了一种电池充放电系统,可应用于光储系统,以兼顾针对蓄电池充放电的多方面的需求。
参见图1,为本申请实施例适用的一种光储系统的架构示意图。图1示出的光储系统包括光伏组件10、电池充放电系统20、蓄电池30和逆变器40。
光伏组件10用于将太阳能转换为电能,并将产生的电能输送至蓄电池30存储起来,或者通过逆变器40输送至电网50,或者向负载60进行供电。
电池充放电系统20用于将光伏组件10产生的电能储存到蓄电池30,并在需要时将蓄电池30中的电能输送到电网50或者提供给负载60。比如,可以在光伏组件10供电能力较强情形下(如天气较好、光照较足时),用光伏组件10产生的电能为蓄电池30充电,也可以在光伏组件10供电能力较弱情形下(如天气较差或黑夜、光照不足时),将蓄电池30中存储的电能输送至电网50或者提供给负载60。
蓄电池30是将太阳能转化为电能的化学电池,用于存储光伏组件10产生的电能。本申请实施例中,蓄电池30可理解为单个蓄电池30,也可理解为由多个单个蓄电池形成的蓄电池组。蓄电池的种类也繁多,包括锂离子电池、氢燃料电池等。
逆变器40用于将光储系统输出的直流电转换为交流电,用以将交流电输送到电网50或者为负载60供电。逆变器40又称为直流-交流(direct current-alternating current,DC/AC)转换器。
电池充放电系统20的功能是对蓄电池30的充放电进行控制,控制目标可能是多方面的,比如安全、充/放电效率。本申请实施例提供的电池充放电系统20可以兼顾多方面的控制目标,比如可以在保证安全的情况下,兼顾充放电效率。控制目标可以通过反馈控制来实现。反馈控制是指,在自动控制理论中将控制系统的输出信息返送到控制系统的输入端,并结合控制系统的输入信息对控制系统进行控制的过程。
需要说明的是,蓄电池30的充放电状态可以根据光伏组件10输出到电池充放电系统20的电压和逆变器40的电压来控制,当光伏组件10输出到电池充放电系统20的电压小于逆变器40的电压时,蓄电池30便需要充电,反之,蓄电池30便需要放电,电池充放电系统20中的电流大小可由电池充放电系统中的反馈控制机制实现。
本申请实施例中,电池充放电系统采用的反馈控制可以包括以下几路反馈控制中的至少两路:
(1)母线电压反馈控制,用于控制电池充放电电路的母线电压在预设电压范围内,以保证电池充放电电路以及蓄电池的安全。需要说明的是,母线电压反馈控制的作用是稳定电池充放电电路的母线电压在一个电压值附近,所以预设电压范围可以根据预设母线电压设置,如预设母线电压为220伏(V),预设电压范围为219V~221V,即母线电压反馈控 制用于控制电池充放电电路的母线电压在219V~221V电压范围内。
可理解的,母线电压反馈控制对应于电池充放电电路的母线电压指标,母线电压反馈控制的目标是将母线电压的采样指标调整到目标指标。其中,母线电压的采样指标可基于母线电压反馈控制对应的采样数据得到,母线电压的目标指标可以是上述预设电压范围。
母线电压反馈控制的输入可以是以下至少一项采样数据:电池充放电电路进行采样得到的电流信息,或者是采样得到的电压信息,或者是采样得到的功率信息(比如充电功率或放电功率)。其中,采样得到的电流信息可包括电流值(即电流大小),采样得到的电压信息可包括电压值。
母线电压反馈控制的输出可以是母线电压反馈控制对应的第一目标电流值,第一目标电流值可以是电流值或电流值的取值范围或电流值的调整值。当电池充放电电路中相应位置的电流大小为该第一目标电流值所匹配的电流大小时,可保证电池充放电电路的母线电压在预设电压范围内。
需要说明的是,本申请实施例中的电流值是指电流大小,电流值的调整值是指在采样电流值基础上增加或减少的电流差值。
(2)第一功率反馈控制,用于控制蓄电池的功率大于第一功率值,以保证蓄电池的充放电效率满足一定要求。举例来说,第一功率值为1000瓦(W)。
可理解的,第一功率反馈控制对应于蓄电池的功率指标,第一功率反馈控制的目标是将蓄电池的功率的采样指标调整到目标指标。其中,蓄电池的功率的采样指标可基于第一功率反馈控制对应的采样数据得到,蓄电池的功率的目标指标可以是大于上述第一功率值。
与母线电压反馈控制的输入类似,第一功率反馈控制的输入也可以是上述至少一项采样数据。第一功率反馈控制的输出可以是第一功率反馈控制对应的第一目标电流值,当电池充放电电路中相应位置的电流大小为该第一目标电流值所匹配的电流大小时,可保证蓄电池的功率值大于第一功率值。
(3)第二功率反馈控制,用于控制蓄电池的功率小于第二功率值,以保证蓄电池的充电效率不超过上限,从而保证蓄电池和电池充放电电路的安全。第一功率值小于第二功率值。举例来说,第二功率值为1500瓦(W)。
可理解的,第二功率反馈控制对应于蓄电池的功率指标,第二功率反馈控制的目标是将蓄电池的功率的采样指标调整到目标指标。其中,蓄电池的功率的采样指标可基于第二功率反馈控制对应的采样数据得到,蓄电池的功率的目标指标可以是小于上述第二功率值。
同理,第二功率反馈控制的输入也可以是上述至少一项采样数据。第二功率反馈控制的输出可以是第二功率反馈控制对应的第一目标电流值,当电池充放电电路中相应位置的电流大小为该第一目标电流值所匹配的电流大小时,可保证蓄电池的功率值小于第二功率值。
显然,第一功率反馈控制和第二功率反馈控制配合使用则可以控制蓄电池的功率在第一功率值与第二功率值的功率值区间内,举例来说,控制蓄电池的功率在1000W~1500W。
(4)第一电池电压反馈控制,用于控制蓄电池的电压大于第一电压值,以保证蓄电池的充放电强度满足一定要求。举例来说,第一电压值为100V。
可理解的,第一电池电压反馈控制对应于蓄电池的电池电压指标,第一电池电压反馈控制的目标是将蓄电池的电池电压的采样指标调整到目标指标。其中,蓄电池的电池电压的采样指标可基于第一电池电压反馈控制对应的采样数据得到,蓄电池的电池电压的目标 指标可以是大于上述第一电池电压值。
第一电压反馈控制的输入也可以是上述至少一项采样数据。第一电压反馈控制的输出可以是第一电压反馈控制对应的第一目标电流值,当电池充放电电路中相应位置的电流大小为该第一目标电流值所匹配的电流大小时,可保证蓄电池的电压值大于第一电压值。
(5)第二电池电压反馈控制,用于控制蓄电池的电压小于第二电压值,以保证蓄电池的充电强度不超过上限,从而保证蓄电池和电池充放电电路的安全。第一电压值小于第二电压值,且为正。举例来说,第二电压值为200V。
可理解的,第二电池电压反馈控制对应于蓄电池的电池电压指标,第二电池电压反馈控制的目标是将蓄电池的电池电压的采样指标调整到目标指标。其中,蓄电池的电池电压的采样指标可基于第二电池电压反馈控制对应的采样数据得到,蓄电池的电池电压的目标指标可以是小于上述第二电池电压值。
第二电压反馈控制的输入也可以是上述至少一项采样数据。第二电压反馈控制的输出可以是第二电压反馈控制对应的第一目标电流值,当电池充放电电路中相应位置的电流大小为该第一目标电流值所匹配的电流大小,可保证蓄电池的电压值小于第二电压值。
显然,第一电压反馈控制和第二电压反馈控制配合使用则可以控制蓄电池的电压在第一电压值与第二电压值的电压值区间内,举例来说,控制蓄电池的电压在100V~200V。
(6)第一电流反馈控制,用于控制蓄电池的电流大于第一电流值,以保证蓄电池的充放电强度满足一定要求。举例来说,第一电流值为10A。
可理解的,第一电流反馈控制对应于蓄电池的电流指标,第一电流反馈控制的目标是将蓄电池的电流的采样指标调整到目标指标。其中,蓄电池的电流的采样指标可基于第一电流反馈控制对应的采样数据得到,蓄电池的电流的目标指标可以是大于上述第一电流值。
第一电流反馈控制的输入也可以是上述至少一项采样数据。第一电流反馈控制的输出可以是第一电流反馈控制对应的第一目标电流值,当电池充放电电路中相应位置的电流大小为该第一目标电流值所匹配的电流大小时,可保证蓄电池的电流值大于第一电流值。
(7)第二电流反馈控制,用于控制蓄电池的电流小于第二电流值,以保证蓄电池的充电强度不超过上限,从而保证蓄电池和电池充放电电路的安全;第一电流值小于第二电流值,且为正。举例来说,第二电流值为20A。
可理解的,第二电流反馈控制对应于蓄电池的电流指标,第二电流反馈控制的目标是将蓄电池的电流的采样指标调整到目标指标。其中,蓄电池的电流的采样指标可基于第二电流反馈控制对应的采样数据得到,蓄电池的电流的目标指标可以是小于上述第二电流值。
第二电流反馈控制的输入也可以是上述至少一项采样数据。第二电流反馈控制的输出可以是第二电流反馈控制对应的第一目标电流值,当电池充放电电路中相应位置的电流大小为该第一目标电流值所匹配的电流大小时,可保证蓄电池的电流值小于第二电流值。
显然,第一电流反馈控制和第二电流反馈控制配合使用则可以控制蓄电池的电流在第一电流值与第二电流值的电流值区间内,举例来说,控制蓄电池的电流在10A~20A。
需要说明的是,上述各路反馈控制可在处理器中实现,每路反馈控制可由对应的反馈控制单元实现,比如母线电压反馈控制可由相应的控制信息确定单元0实现,第一功率反馈控制可由相应的控制信息确定单元1-1实现,第二功率反馈控制可由相应的控制信息确定单元1-2实现,第一电池电压反馈控制可由相应的控制信息确定单元2-1实现,第二电池电压反馈控制可由相应的控制信息确定单元2-2实现,第一电流反馈控制可由相应的控 制信息确定单元3-1实现,第二电流反馈控制可由相应的控制信息确定单元3-2实现。
本申请实施例对于用于实现上述各路反馈控制的算法不做限制。上述仅示例性列举了几种反馈控制,本申请实施例对于电池充放电系统采用的反馈控制的种类不做限制。
参见图2,为本申请实施例提供的电池充放电系统20的结构示意图。
电池充放电系统20具体可以包括:电池充放电电路100以及与电池充放电电路100耦合的控制电路200,在此仅以图2示出的电池充放电电路100示例。
电池充放电电路100中包括直流-直流(direct current-direct current,DC/DC)转换器101和电感102,DC/DC转换器101用于将固定的直流电压转换成可变的直流电压,电感102用于电能的存储和释放。
DC/DC转换器中包括用于调节电池充放电电路100电流大小的开关器件。具体来说,一种可能的实现方式中,开关器件可以为绝缘栅双极型晶体管(insulated gate bipolar transistor,IGBT),可以通过驱动信号给IGBT的栅极和基极加上正向电压和负向电压,以控制IGBT的导通或关断。IGBT的导通或关断会导致DC/DC转换器101内部的能量发生转移,使得DC/DC转换器101进行升压或降压,从而可以调整施加在蓄电池正负极间的电压的大小,进而实现对蓄电池的充电电流和放电电流的大小的控制。
电池充放电电路100连接蓄电池30,形成回路,可以实现对蓄电池30进行充电或放电。
图2所示的电池充放电电路100结构仅为示例性结构,图中的电感102表示等效电感,即,实际电路中可能由若干电子元器件形成等效电感102。
控制电路200包括采样电路201、处理器202和驱动电路203。
采样电路201,用于对电池充放电电路100进行采样,得到采样数据,并将采样数据输出给处理器202。
本申请实施例可支持至少两路反馈控制,相应的,采样电路201可针对每路反馈控制进行采样,并将获得的每路反馈控制对应的采样数据输出给处理器202。需要说明的是,每路反馈控制所需要的采样数据可以为电池充放电电路100中某设定点的电流大小,比如流经某个或某些元器件的电流的大小,也可以是电池充放电电路100中两个设定点之间电压大小,比如蓄电池正负极间的电压的大小,还可以是蓄电池的功率等,当然也可以包括电流的大小以及电压的大小。在相同位置采样得到的采样数据可以用于不同路的反馈控制,每路反馈控制所需的采样数据也可以是在不同位置采样得到的。
举例来说,具体如下:
第一电池电压反馈控制对应的采样数据和第二电池电压反馈控制对应的采样数据可以至少包括蓄电池30正负极的电压值(用Ubat表示)。
第一电池电流反馈控制对应的采样数据和第二电池电流反馈控制对应的采样数据可以至少包括蓄电池30的正极到负极的电流值(用iL表示)。
第一电池功率反馈控制对应的采样数据和第二电池功率反馈控制对应的采样数据可以至少包括iL和Ubat。
母线电压反馈控制对应的采样数据可以至少包括电池充放电电路100的母线电压值(用Ubus表示)。
处理器202,用于分别根据至少两路反馈控制对应的采样数据,确定至少两路反馈控制各自对应的第一目标电流值,根据至少两路反馈控制各自对应的第一目标电流值确定第 二目标电流值,根据第二目标电流值生成控制信息,并将控制信息输出给驱动电路203,以使得驱动电路203根据该控制信息生成控制电池充放电电路100的电流的驱动信号。
其中,如前所述,每路反馈控制输出的(或者说对应的)第一目标电流值可包括电流值或电流值的取值范围或电流值的调整值;根据多路反馈控制(两路或两路以上反馈控制)输出的(或者说对应的)第一目标电流值所得到的第二目标电流值,也可包括电流值或电流值的取值范围或电流值的调整值。
处理器202具体可以为嵌入式单片机(STM32)芯片或中央处理器(central processing unit,CPU)等,处理器202输出的控制信息可以为脉冲信号,如脉冲宽度调制(pulse width modulation,PWM)脉冲信号。
参见图3,为本申请实施例提供的电池充放电系统中处理器202结构的示意图。图3以采用上述列举的七路反馈控制为例,描述了根据每一路反馈控制输出的第一目标电流值确定第二目标电流值的实现方法,由各路反馈控制对应的控制信息确定单元得到各路反馈控制对应的第一目标电流值,并由电流决策单元基于各路反馈控制对应的第一目标电流值得到第二目标电流。图3示出仅作为示例描述一种可能的实现方式,其余情况如至少两路反馈控制只包括母线电压反馈控制、第一电池电压反馈控制和第二电池电压反馈控制时,均可以参照图3类推,在此不再赘述。
可选的,第二目标电流值可以通过多种方式由至少两路反馈控制各自对应的第一目标电流值得到。
第一种方式:
将至少两路反馈控制对应的第一目标电流值的平均值,作为第二目标电流值。需要说明的是,这里至少两路反馈控制对应的第一目标电流值的平均值的运算仅是考虑电流大小的运算。
举例来说,以三路反馈控制为例,这三路反馈控制对应的第一目标电流值的电流值,分别表示为5A、9A和4A,第二目标电流值为这三路反馈控制对应的第一目标电流值的平均值,即为6A。
第二种方式:
将以下电流值的取值区间中的一个电流值,确定为第二目标电流值的电流值,该取值区间的下限为至少两路反馈控制各自对应的第一目标电流值中最小的电流值,该区间的上限为所述至少两路反馈控制各自对应的第一目标电流值中最大的电流值和电池充放电电路的额定电流值中的最小值,使得第二目标电流值的电流值大于或等于至少两路反馈控制各自对应的第一目标电流值中最小的电流值,且小于或等于至少两路反馈控制各自对应的第一目标电流值中最大的电流值,并小于或等于电池充放电电路的额定电流。当然,也可以将该取值区间作为第二目标电流值的取值区间。
举例来说,以五路反馈控制为例,这五路反馈控制各自对应的第一目标电流值分别表示为15A、6A、4A、9A和8A,额定电流为12A。那么最小的电流值为4A,最大的电流值为15A,所以第二目标电流值的取值范围可以为4A~12A,可以将该取值范围中的随机取到的值10A,或者将该取值区间内的中值8A作为第二目标电流值的取值大小。
通过上述第二种方式,可以使得第二目标电流值自适应地落在第一目标电流值中最小的电流值与最大的电流值之间,且小于或等于电池充放电电路的额定电流,从而可以将电池充放电电路的电流控制在预期范围内,保证了电池充放电电路和/或蓄电池的安全性。又 由于第二目标电流值是综合了多路反馈控制(两路或两路以上反馈控制)的第一目标电流值而确定得到的,因此使得在兼顾所述至少两路反馈控制的控制目标的基础上,提升了电池充放电电路和/或蓄电池的安全性。
第三种方式:
将至少两路反馈控制对应的第一目标电流值中最小的电流值,确定为第二目标电流值的大小。
举例来说,至少两路反馈控制具体包括:母线电压反馈控制、第一电池电压反馈控制、第二电池电压反馈控制、第一电池功率反馈控制、第二电池功率反馈控制。
上述方式下,将至少两路反馈控制对应的第一目标电流值中最小的电流值,确定为第二目标电流值的大小,可以保证电池充放电电路的安全性。
第四种方式:
当所述至少两路反馈控制中的任一路反馈控制与所述电池充放电电路的一种指标相对应,并用于通过第一目标电流值将基于采样数据得到的采样指标调整到预设的目标指标时,处理器根据至少两路反馈控制各自对应的第一目标电流值确定第二目标电流值的过程具体可以为:
分别确定至少两路反馈控制各自对应的指标偏差,其中至少两路反馈控制中任一路反馈控制对应的指标偏差,用于表示该反馈控制基于采样数据得到的采样指标与预设的目标指标间的差异大小;根据至少两路反馈控制各自对应的指标偏差,选取至少两路反馈控制中的一路反馈控制;将选取的一路反馈控制对应的第一目标电流值,确定为第二目标电流值。
针对一路反馈控制,其指标偏差用于表示该反馈控制基于采样数据得到的采样指标与预设的目标指标间的差异大小。可理解的,所述预设的目标指标为电池充放电电路的理想指标。
可选的,针对一路反馈控制,其指标偏差的取值可以为该反馈控制基于采样数据得到的采样指标与预设的目标指标间的偏差比例大小,具体来说,偏差比例为偏差值与采样指标的比值,偏差值为采样指标减去预设的目标指标的差值的绝对值。
具体选取至少两路反馈控制中的一路反馈控制的规则可以灵活设置。举例来说,可以优先选择最大的指标偏差对应的第一目标电流值,作为第二目标电流值,从而对采样指标超过预设的目标指标的反馈控制优先调节,对电池充放电电路进行有效保护,若指标偏差均为非负,便优先选择指标偏差最大的反馈控制对应的第一目标电流值,优先满足调节需求最高的反馈控制。
可选的,上述第四种方式还可以包括以下两种子情形:
情形(3-1):若至少两路反馈控制各自对应的指标偏差中第一指标偏差为唯一最高的指标偏差,则将第一指标偏差对应的第一目标电流值,确定为第二目标电流值。
举例来说,指标偏差0为0.1,指标偏差1-1为0.4、指标偏差1-2为0.3、指标偏差2-1为0.1、指标偏差2-2为0.2、指标偏差3-1为0.1和指标偏差3-2为0.2。
第一指标偏差即指标偏差1-1为唯一最高的指标偏差,那么指标偏差1-1对应的第一目标电流值1-1,便是第二目标电流值。
情形(3-2):若至少两路反馈控制各自对应的指标偏差中N个指标偏差并列最高,则从N个指标偏差对应的反馈控制中随机选取出第二指标偏差对应的反馈控制,将第二指标偏 差对应的反馈控制对应的第一目标电流值,确定为第二目标电流值;
其中,N为大于或等于2的整数。
举例来说,指标偏差0为0.1,指标偏差1-1为0.2、指标偏差1-2为0.3、指标偏差2-1为0.1、指标偏差2-2为0.3、指标偏差3-1为0.1和指标偏差3-2为0.2。
N个指标偏差即为指标偏差1-2和指标偏差2-2这2个指标偏差,那么便将指标偏差1-2对应的反馈控制(即第二电池电压反馈控制)和指标偏差2-2对应的反馈控制(即第二电池功率反馈控制)中随机选取的第二电池功率反馈控制对应的第一目标电流值2-2,确定为第二目标电流值。
第五种方式:
当所述至少两路反馈控制中的任一路反馈控制与所述电池充放电电路的一种指标相对应,并用于通过第一目标电流值将基于采样数据得到的采样指标调整到预设的目标指标时,处理器根据至少两路反馈控制各自对应的第一目标电流值确定第二目标电流值的过程具体可以为:
分别确定至少两路反馈控制各自对应的指标偏差,其中至少两路反馈控制中任一路反馈控制对应的指标偏差,用于表示该反馈控制基于采样数据得到的采样指标与预设的目标指标间的差异大小;
分别根据至少两路反馈控制各自对应的指标偏差,确定至少两路反馈控制各自对应的权重;
根据至少两路反馈控制各自对应的权重,对至少两路反馈控制各自对应的第一目标电流值进行加权累加,将加权累加的结果确定为第二目标电流值。
根据至少两路反馈控制各自对应的指标偏差,确定至少两路反馈控制各自对应的权重的具体方式可以有多种,由于指标偏差越大越表明该指标偏差对应反馈控制调节的需求越大,那么可以按照反馈控制对应的权重与反馈控制对应的指标偏差呈正相关的原则,确定反馈控制对应的权重。具体地,可以将反馈控制对应的指标偏差的作为反馈控制对应的权重。
举例来说,至少两路反馈控制具体包括:母线电压反馈控制、第一电池电压反馈控制、第二电池电压反馈控制、第一电池功率反馈控制、第二电池功率反馈控制。
相应地,至少两路反馈控制各自对应的第一目标电流值具体包括:第一目标电流值0、第一目标电流值1-1、第一目标电流值1-2、第一目标电流值2-1、第一目标电流值2-2。母线电压反馈控制对应的指标偏差0为0.1,第一电池电压反馈控制对应的指标偏差1-1为0.1、第二电池电压反馈控制对应的指标偏差1-2为0.3、第一电池功率反馈控制对应的指标偏差2-1为0.1、第二电池功率反馈控制对应的指标偏差2-2为0.2。
那么一种可能的实现方式中,母线电压反馈控制对应的权重为0.1、第一电池电压反馈控制对应的权重为0.1、第二电池电压反馈控制对应的权重为0.3、第一电池功率反馈控制对应的权重为0.1、第二电池功率反馈控制对应的权重为0.2。
第六种方式:
处理器根据至少两路反馈控制各自对应的第一目标电流值确定第二目标电流值的过程具体可以为:
根据至少两路反馈控制各自对应的预设权重,对至少两路反馈控制各自对应的第一目标电流值进行加权累加,将加权累加的结果确定为第二目标电流值。
需要说明的是,可以基于对不同性能指标的侧重程度,设置预设权重,如侧重调节的性能指标是电池功率,那么将第一电池功率反馈控制对应的权重和第一电池功率反馈控制对应的权重设置最高。
举例来说,至少两路反馈控制具体包括:母线电压反馈控制、第一电池功率反馈控制、第二电池功率反馈控制、第一电池电流反馈控制、第二电池电流反馈控制。设置母线电压反馈控制对应的权重为0.4、第一电池功率反馈控制对应的权重为0.8、第二电池功率反馈控制对应的权重为0.8、第一电池电流反馈控制对应的权重为0.6、第二电池电流反馈控制对应的权重为0.6,即对电池功率的调节需求较高,其次是电池电流,再次是母线电压。
进一步地,还可以根据时段设置至少两路反馈控制各自对应的预设权重。如在第一时段,将第一电池功率反馈控制对应的权重和第二电池功率反馈控制对应的权重设置最高,在第二时段,将第一电池电流反馈控制对应的权重和第二电池电流反馈控制对应的权重设置最高。
图2示出的电池充放电系统还包括驱动电路203,用于根据处理器202输出的控制信息生成驱动信号,驱动信号用于控制电池充放电电路100的电流。具体来说,当电池充放电电路100包括DC/DC转换器时,可以将驱动信号输出给DC/DC转换器,驱动信号用于控制DC/DC转换器中的开关器件的开关状态。
具体来说,一种可能的实现方式为,当驱动电路203收到处理器202输出的控制信息(如PWM脉冲信号)后,通过驱动电路203进一步生成放大的驱动信号,从而控制DC/DC转换器中的开关器件的开关状态,使得DC/DC转换器可以产生不同大小电压,从而可以输出不同大小电流。
相应地,如图4所示,本申请提供一种电池充电的控制方法,所述方法可适用于本申请上述实施例提供的电池充放电系统。所述方法可由上述电池充放电系统中的控制电路200中的处理器202执行,该方法可包括:
步骤401:获取电池充放电电路的至少两路反馈控制对应的采样数据。
步骤402:分别根据至少两路反馈控制对应的采样数据,确定至少两路反馈控制各自对应的第一目标电流值,根据至少两路反馈控制各自对应的第一目标电流值确定第二目标电流值。
步骤403:根据第二目标电流值生成并输出控制信息,控制信息用于生成控制电池充放电电路的电流的驱动信号。
步骤401中,至少两路反馈控制可以为前述(1)~(7)种反馈控制,至少两路反馈控制对应的采样数据可从上述控制电路200中的采样电路201获取,至少两路反馈控制对应的采样数据具体可包含的信息可参见采样电路201部分的描述。
步骤402具体可按照前述第一种方式至第六种方式执行。
步骤403输出的控制信息可以为PWM脉冲信号。
基于上述内容,本申请实施例进一步详细描述电池充电的控制方法的过程。
举例来说,按照反馈控制周期,在第一反馈控制周期始(记为T1时刻),基于第一电池电压反馈控制的第一目标电流值1-1、第二电池电压反馈控制的第一目标电流值1-2、第一电池功率反馈控制的第一目标电流值2-1、第二电池功率反馈控制的第一目标电流值2-2和母线电压反馈控制的第一目标电流值0,按照前述第一种方式至第六种方式中的方式,确定第二目标电流值为第一目标电流值1-1。
在第一反馈控制周期之后相邻的第二反馈控制周期的期间内(T1时刻至T2时刻),第二电池电压反馈控制、第一电池功率反馈控制、第二电池功率反馈控制和母线电压反馈控制,可以按照各自反馈控制的采样周期(采样周期均小于反馈控制周期),继续获得相应的采样数据,并在相应采样周期,根据相应的采样数据输出第一目标电流值,直至T2时刻。
在T2时刻时,第一目标电流值1-1、第一目标电流值1-2、第一目标电流值2-1、第一目标电流值2-2和第一目标电流值0,按照前述第一种方式至第六种方式中的方式,确定第二目标电流值为第一目标电流值2-2,便将电池充放电电路中相应位置的电流由第一目标电流值1-1更新第一目标电流值2-2。
在第二反馈控制周期之后相邻的第三反馈控制周期的期间(T2时刻至T3时刻),重复T1~T2时刻的过程,直至在T3时刻。
以此类推,在后续T4、T5等每个时刻,也就是每个反馈控制周期始,若第二目标电流值更新(如在T4时刻),则调整电池充放电电路中相应位置的电流,如此一直循环,从而对电池充放电电路中的电流定期进行反馈控制。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (21)

  1. 一种电池充放电系统,其特征在于,包括:电池充放电电路以及与所述电池充放电电路耦合的控制电路,所述电池充放电电路包括DC/DC转换器,所述DC/DC转换器中包括用于调节所述电池充放电电路电流大小的开关器件,所述控制电路包括采样电路、处理器和驱动电路;
    所述采样电路,用于对所述电池充放电电路进行采样,得到至少两路反馈控制对应的采样数据,并将所述至少两路反馈控制对应的采样数据输出给所述处理器;
    所述处理器,用于分别根据所述至少两路反馈控制对应的采样数据,确定所述至少两路反馈控制各自对应的第一目标电流值,根据所述至少两路反馈控制各自对应的第一目标电流确定第二目标电流值,根据所述第二目标电流值生成控制信息,并将所述控制信息输出给所述驱动电路;
    所述驱动电路,用于根据所述处理器输出的所述控制信息生成驱动信号,并将所述驱动信号输出给所述DC/DC转换器,所述驱动信号用于控制所述DC/DC转换器中的所述开关器件的开关状态。
  2. 如权利要求1所述的系统,其特征在于,所述处理器具体用于:
    将所述至少两路反馈控制对应的第一目标电流值中最小的电流值,确定为所述第二目标电流值。
  3. 如权利要求1所述的系统,其特征在于,所述至少两路反馈控制中的任一路反馈控制与所述电池充放电电路的一种指标相对应,并用于通过第一目标电流值将基于采样数据得到的采样指标调整到预设的目标指标;所述处理器具体用于:
    分别确定所述至少两路反馈控制各自对应的指标偏差,其中所述至少两路反馈控制中任一路反馈控制对应的指标偏差,用于表示该反馈控制基于采样数据得到的采样指标与预设的目标指标间的差异大小;
    根据所述至少两路反馈控制各自对应的指标偏差,选取所述至少两路反馈控制中的一路反馈控制;
    将所述选取的一路反馈控制对应的第一目标电流值,确定为所述第二目标电流值。
  4. 如权利要求3所述的系统,其特征在于,所述处理器具体用于:
    若所述至少两路反馈控制各自对应的指标偏差中第一指标偏差为唯一最高的指标偏差,则将所述第一指标偏差对应的第一目标电流值,确定为所述第二目标电流值;或者
    若所述至少两路反馈控制各自对应的指标偏差中N个指标偏差并列最高,则从所述N个指标偏差对应的反馈控制中随机选取出第二指标偏差对应的反馈控制,将所述第二指标偏差对应的反馈控制对应的第一目标电流值,确定为所述第二目标电流值;
    其中,N为大于或等于2的整数。
  5. 如权利要求1所述的系统,其特征在于,所述至少两路反馈控制中的任一路反馈控制与所述电池充放电电路的一种指标相对应,并用于通过第一目标电流值将基于采样数据得到的采样指标调整到预设的目标指标;所述处理器具体用于:
    分别确定所述至少两路反馈控制各自对应的指标偏差,其中所述至少两路反馈控制中任一路反馈控制对应的指标偏差,用于表示该反馈控制基于采样数据得到的采样指标与预设的目标指标间的差异大小;
    分别根据所述至少两路反馈控制各自对应的指标偏差,确定所述至少两路反馈控制各自对应的权重;
    根据所述至少两路反馈控制各自对应的权重,对所述至少两路反馈控制各自对应的第一目标电流值进行加权累加,将所述加权累加的结果确定为所述第二目标电流值。
  6. 如权利要求1所述的系统,其特征在于,所述处理器具体用于:
    根据所述至少两路反馈控制各自对应的预设权重,对所述至少两路反馈控制各自对应的第一目标电流值进行加权累加,将所述加权累加的结果确定为所述第二目标电流值。
  7. 如权利要求1至6任一项所述的系统,其特征在于,所述至少两路反馈控制包括母线电压反馈控制,所述母线电压反馈控制用于控制所述电池充放电电路的母线电压在预设电压范围内,以及包括以下反馈控制中的至少一项:
    第一功率反馈控制,用于控制蓄电池的功率大于第一功率值;
    第二功率反馈控制,用于控制蓄电池的功率小于第二功率值;所述第一功率值小于所述第二功率值;
    第一电池电压反馈控制,用于控制蓄电池的电压大于第一电压值;
    第二电池电压反馈控制,用于控制蓄电池的电压小于第二电压值;所述第一电压值小于所述第二电压值,且为正;
    第一电流反馈控制,用于控制蓄电池的电流大于第一电流值;
    第二电流反馈控制,用于控制蓄电池的电流小于第二电流值;所述第一电流值小于所述第二电流值,且为正。
  8. 一种电池充放电的控制电路,其特征在于,所述控制电路包括:采样电路、控制信息生成电路和驱动电路;
    所述采样电路,用于对与所述电池充放电的控制电路耦合的电池充放电电路进行采样,得到至少两路反馈控制对应的采样数据,并将所述至少两路反馈控制对应的采样数据输出给所述处理器;
    所述处理器,用于分别根据所述至少两路反馈控制对应的采样数据,确定所述至少两路反馈控制各自对应的第一目标电流值,根据所述至少两路反馈控制各自对应的第一目标电流值确定第二目标电流值,根据所述第二目标电流值生成控制信息,并将所述控制信息输出给所述驱动电路;
    所述驱动电路,用于根据所述处理器输出的所述控制信息生成驱动信号,所述驱动信号用于控制所述电池充放电电路的电流。
  9. 如权利要求8所述的控制电路,其特征在于,所述处理器具体用于:
    将所述至少两路反馈控制对应的第一目标电流值中最小的电流值,确定为所述第二目标电流值的大小。
  10. 如权利要求8所述的控制电路,其特征在于,所述至少两路反馈控制中的任一路反馈控制与所述电池充放电电路的一种指标相对应,并用于通过第一目标电流值将基于采样数据得到的采样指标调整到预设的目标指标;所述处理器具体用于:
    分别确定所述至少两路反馈控制各自对应的指标偏差,其中所述至少两路反馈控制中任一路反馈控制对应的指标偏差,用于表示该反馈控制基于采样数据得到的采样指标与预设的目标指标间的差异大小;
    根据所述至少两路反馈控制各自对应的指标偏差,选取所述至少两路反馈控制中的一 路反馈控制;
    将所述选取的一路反馈控制对应的第一目标电流值,确定为所述第二目标电流值。
  11. 如权利要求10所述的控制电路,其特征在于,所述处理器具体用于:
    若所述至少两路反馈控制各自对应的指标偏差中第一指标偏差为唯一最高的指标偏差,则将所述第一指标偏差对应的第一目标电流值,确定为所述第二目标电流值;或者
    若所述至少两路反馈控制各自对应的指标偏差中N个指标偏差并列最高,则从所述N个指标偏差对应的反馈控制中随机选取出第二指标偏差对应的反馈控制,将所述第二指标偏差对应的反馈控制对应的第一目标电流值,确定为所述第二目标电流值;
    其中,N为大于或等于2的整数。
  12. 如权利要求8所述的控制电路,其特征在于,所述至少两路反馈控制中的任一路反馈控制与所述电池充放电电路的一种指标相对应,并用于通过第一目标电流值将基于采样数据得到的采样指标调整到预设的目标指标;所述处理器具体用于:
    分别确定所述至少两路反馈控制各自对应的指标偏差,其中所述至少两路反馈控制中任一路反馈控制对应的指标偏差,用于表示该反馈控制基于采样数据得到的采样指标与预设的目标指标间的差异大小;
    分别根据所述至少两路反馈控制各自对应的指标偏差,确定所述至少两路反馈控制各自对应的权重;
    根据所述至少两路反馈控制各自对应的权重,对所述至少两路反馈控制各自对应的第一目标电流值进行加权累加,将所述加权累加的结果确定为所述第二目标电流值。
  13. 如权利要求8所述的控制电路,其特征在于,所述处理器具体用于:
    根据所述至少两路反馈控制各自对应的预设权重,对所述至少两路反馈控制各自对应的第一目标电流值进行加权累加,将所述加权累加的结果确定为所述第二目标电流值。
  14. 如权利要求8至13任一项所述的控制电路,其特征在于,所述至少两路反馈控制包括母线电压反馈控制,所述母线电压反馈控制用于控制所述电池充放电电路的母线电压在预设电压范围内,以及包括以下反馈控制中的至少一项:
    第一功率反馈控制,用于控制蓄电池的功率大于第一功率值;
    第二功率反馈控制,用于控制蓄电池的功率小于第二功率值;所述第一功率值小于所述第二功率值;
    第一电池电压反馈控制,用于控制蓄电池的电压大于第一电压值;
    第二电池电压反馈控制,用于控制蓄电池的电压小于第二电压值;所述第一电压值小于所述第二电压值,且为正;
    第一电流反馈控制,用于控制蓄电池的电流大于第一电流值;
    第二电流反馈控制,用于控制蓄电池的电流小于第二电流值;所述第一电流值小于所述第二电流值,且为正。
  15. 一种电池充电的控制方法,其特征在于,所述方法适用于电池充放电系统,所述电池充放电系统包括电池充放电电路以及与所述电池充放电电路耦合的控制电路;所述方法包括:
    获取所述电池充放电电路的至少两路反馈控制对应的采样数据;
    分别根据所述至少两路反馈控制对应的采样数据,确定所述至少两路反馈控制各自对应的第一目标电流值,根据所述至少两路反馈控制各自对应的第一目标电流值确定第二目 标电流值;
    根据所述第二目标电流值生成并输出控制信息,所述控制信息用于生成控制所述电池充放电电路的电流的驱动信号。
  16. 如权利要求15所述的方法,其特征在于,所述根据所述至少两路反馈控制各自对应的第一目标电流值确定第二目标电流值,包括:
    将所述至少两路反馈控制对应的第一目标电流值中最小的电流值,确定为所述第二目标电流值的大小。
  17. 如权利要求15所述的方法,其特征在于,所述至少两路反馈控制中的任一路反馈控制与所述电池充放电电路的一种指标相对应,并用于通过第一目标电流值将基于采样数据得到的采样指标调整到预设的目标指标;所述根据所述至少两路反馈控制各自对应的第一目标电流值确定第二目标电流值,包括:
    分别确定所述至少两路反馈控制各自对应的指标偏差,其中所述至少两路反馈控制中任一路反馈控制对应的指标偏差,用于表示该反馈控制基于采样数据得到的采样指标与预设的目标指标间的差异大小;
    根据所述至少两路反馈控制各自对应的指标偏差,选取所述至少两路反馈控制中的一路反馈控制;
    将所述选取的一路反馈控制对应的第一目标电流值,确定为所述第二目标电流值。
  18. 如权利要求17所述的方法,其特征在于,所述根据所述至少两路反馈控制各自对应的指标偏差,选取所述至少两路反馈控制中的一路反馈控制,以及将所述选取的一路反馈控制对应的第一目标电流值,确定为所述第二目标电流值,包括:
    若所述至少两路反馈控制各自对应的指标偏差中第一指标偏差为唯一最高的指标偏差,则将所述第一指标偏差对应的第一目标电流值,确定为所述第二目标电流值;或者
    若所述至少两路反馈控制各自对应的指标偏差中N个指标偏差并列最高,则从所述N个指标偏差对应的反馈控制中随机选取出第二指标偏差对应的反馈控制,将所述第二指标偏差对应的反馈控制对应的第一目标电流值,确定为所述第二目标电流值;
    其中,N为大于或等于2的整数。
  19. 如权利要求15所述的方法,其特征在于,所述至少两路反馈控制中的任一路反馈控制与所述电池充放电电路的一种指标相对应,并用于通过第一目标电流值将基于采样数据得到的采样指标调整到预设的目标指标;所述根据所述至少两路反馈控制各自对应的第一目标电流值确定第二目标电流值,包括:
    分别确定所述至少两路反馈控制各自对应的指标偏差,其中所述至少两路反馈控制中任一路反馈控制对应的指标偏差,用于表示该反馈控制基于采样数据得到的采样指标与预设的目标指标间的差异大小;
    分别根据所述至少两路反馈控制各自对应的指标偏差,确定所述至少两路反馈控制各自对应的权重;
    根据所述至少两路反馈控制各自对应的权重,对所述至少两路反馈控制各自对应的第一目标电流值进行加权累加,将所述加权累加的结果确定为所述第二目标电流值。
  20. 如权利要求15所述的方法,其特征在于,所述根据所述至少两路反馈控制各自对应的第一目标电流值确定第二目标电流值,包括:
    根据所述至少两路反馈控制各自对应的预设权重,对所述至少两路反馈控制各自对应 的第一目标电流值进行加权累加,将所述加权累加的结果确定为所述第二目标电流值。
  21. 如权利要求15至20任一项所述的方法,其特征在于,所述至少两路反馈控制包括母线电压反馈控制,所述母线电压反馈控制用于控制所述电池充放电电路的母线电压在预设电压范围内,以及包括以下反馈控制中的至少一项:
    第一功率反馈控制,用于控制蓄电池的功率大于第一功率值;
    第二功率反馈控制,用于控制蓄电池的功率小于第二功率值;所述第一功率值小于所述第二功率值;
    第一电池电压反馈控制,用于控制蓄电池的电压大于第一电压值;
    第二电池电压反馈控制,用于控制蓄电池的电压小于第二电压值;所述第一电压值小于所述第二电压值,且为正;
    第一电流反馈控制,用于控制蓄电池的电流大于第一电流值;
    第二电流反馈控制,用于控制蓄电池的电流小于第二电流值;所述第一电流值小于所述第二电流值,且为正。
PCT/CN2022/081778 2021-04-12 2022-03-18 一种电池充放电系统、电路及方法 WO2022218100A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22787329.6A EP4318860A1 (en) 2021-04-12 2022-03-18 Battery charging and discharging system, circuit, and method
US18/485,006 US20240039319A1 (en) 2021-04-12 2023-10-11 Battery charging and discharging system, circuit, and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110390785.8A CN113517730B (zh) 2021-04-12 2021-04-12 一种电池充放电系统、电路及方法
CN202110390785.8 2021-04-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/485,006 Continuation US20240039319A1 (en) 2021-04-12 2023-10-11 Battery charging and discharging system, circuit, and method

Publications (1)

Publication Number Publication Date
WO2022218100A1 true WO2022218100A1 (zh) 2022-10-20

Family

ID=78062668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081778 WO2022218100A1 (zh) 2021-04-12 2022-03-18 一种电池充放电系统、电路及方法

Country Status (4)

Country Link
US (1) US20240039319A1 (zh)
EP (1) EP4318860A1 (zh)
CN (1) CN113517730B (zh)
WO (1) WO2022218100A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115986880A (zh) * 2023-01-06 2023-04-18 中国铁塔股份有限公司 一种充电方法及充电电路

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113517730B (zh) * 2021-04-12 2024-04-09 华为数字能源技术有限公司 一种电池充放电系统、电路及方法
CN115378104B (zh) * 2022-04-22 2024-02-13 宁德时代新能源科技股份有限公司 充放电电路的控制方法、装置、系统、设备及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185531A (zh) * 2011-05-16 2011-09-14 武汉纺织大学 太阳能光伏离网并网多模式发电系统
CN104810858A (zh) * 2015-05-27 2015-07-29 广西大学 一种光储微电网并网发电系统的控制方法
US20160079776A1 (en) * 2013-06-03 2016-03-17 Panasonic Intellectual Property Management Co., Ltd. Charge/discharge device
CN205377414U (zh) * 2016-01-29 2016-07-06 山东鲁能智能技术有限公司 一种具有并网功能的充电机
CN106505602A (zh) * 2016-11-01 2017-03-15 北京科诺伟业科技股份有限公司 一种储能系统的控制方法
CN108199445A (zh) * 2018-02-05 2018-06-22 江门市敏华电器有限公司 一种串联蓄电池组的主动均衡电路和方法
CN110021955A (zh) * 2018-01-08 2019-07-16 丰郅(上海)新能源科技有限公司 集成储能功能的光伏发电系统及动态平衡电能的方法
CN113517730A (zh) * 2021-04-12 2021-10-19 华为技术有限公司 一种电池充放电系统、电路及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2833503B1 (en) * 2012-03-26 2019-10-30 Panasonic Intellectual Property Management Co., Ltd. Charging/discharging control device and charging/discharging control method
JP5978146B2 (ja) * 2013-01-29 2016-08-24 Mywayプラス株式会社 電源システム及び電源装置
JP6520678B2 (ja) * 2015-12-09 2019-05-29 オムロン株式会社 制御装置及び制御方法
CN105490344B (zh) * 2016-01-05 2018-04-06 深圳市金霆正通科技有限公司 电动汽车充电电流控制方法及其控制系统
CN111725865B (zh) * 2020-06-11 2022-08-02 深圳硕日新能源科技有限公司 一种宽电压逆控一体机及其控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185531A (zh) * 2011-05-16 2011-09-14 武汉纺织大学 太阳能光伏离网并网多模式发电系统
US20160079776A1 (en) * 2013-06-03 2016-03-17 Panasonic Intellectual Property Management Co., Ltd. Charge/discharge device
CN104810858A (zh) * 2015-05-27 2015-07-29 广西大学 一种光储微电网并网发电系统的控制方法
CN205377414U (zh) * 2016-01-29 2016-07-06 山东鲁能智能技术有限公司 一种具有并网功能的充电机
CN106505602A (zh) * 2016-11-01 2017-03-15 北京科诺伟业科技股份有限公司 一种储能系统的控制方法
CN110021955A (zh) * 2018-01-08 2019-07-16 丰郅(上海)新能源科技有限公司 集成储能功能的光伏发电系统及动态平衡电能的方法
CN108199445A (zh) * 2018-02-05 2018-06-22 江门市敏华电器有限公司 一种串联蓄电池组的主动均衡电路和方法
CN113517730A (zh) * 2021-04-12 2021-10-19 华为技术有限公司 一种电池充放电系统、电路及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115986880A (zh) * 2023-01-06 2023-04-18 中国铁塔股份有限公司 一种充电方法及充电电路
CN115986880B (zh) * 2023-01-06 2024-05-10 铁塔能源有限公司 一种充电方法及充电电路

Also Published As

Publication number Publication date
CN113517730A (zh) 2021-10-19
US20240039319A1 (en) 2024-02-01
CN113517730B (zh) 2024-04-09
EP4318860A1 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
WO2022218100A1 (zh) 一种电池充放电系统、电路及方法
EP2421138A1 (en) Transformer-isolated switching converter
US9190915B2 (en) Electric-power conversion device
KR102308628B1 (ko) 하이브리드 전력변환 시스템 및 이를 이용하는 최대 효율 결정 방법
US9472960B2 (en) Regulating device, battery assembly device and regulating method
WO2005046033A2 (en) Multiple input dc-dc power converter
WO2018051600A1 (ja) 電力変換装置
KR101397903B1 (ko) 전원 공급 장치와 그 동작 방법, 및 그를 포함하는 태양광 발전 시스템
CN103647310A (zh) 增减模块实现mmc电池储能系统相内soc均衡的方法
KR101665436B1 (ko) Cascade H-bridge Multi-level 구조의 배터리 충/방전 시스템의 SOC 균형 제어 방법
US11894762B2 (en) Direct current-direct current conversion circuit
US20240088785A1 (en) Resonant switched capacitor converter and control method thereof
EP4054065B1 (en) Voltage conversion circuit and power supply system
Liu et al. A novel active equalizer for Li-ion battery pack in electric vehicles
KR100906993B1 (ko) 연료전지 하이브리드 발전시스템의 전력제어시스템 및전력제어방법
EP4391341A1 (en) Multi-level direct current converter, voltage control method for flying capacitor, and control apparatus
WO2023061278A1 (zh) 电池系统及供电系统
WO2013031934A1 (ja) 電力連系システム
CN108121393A (zh) 一种蓄电池充电最大功率点跟踪控制方法
CN104362717A (zh) 一种蓄电池充电系统
Myneni Analysis of Different Charging methods of Batteries for EV Applications with Charge Equalization
JP7500716B2 (ja) 直流給配電システム
CN113783252A (zh) 一种用于电池簇间均衡的虚拟内阻调节装置
JP2014110680A (ja) 充電器
CN113612277A (zh) 一种电池单元及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787329

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022787329

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022787329

Country of ref document: EP

Effective date: 20231023

NENP Non-entry into the national phase

Ref country code: DE