WO2022217894A1 - 一种高炉风口风量和风速分配的计算方法、计算机设备 - Google Patents

一种高炉风口风量和风速分配的计算方法、计算机设备 Download PDF

Info

Publication number
WO2022217894A1
WO2022217894A1 PCT/CN2021/128111 CN2021128111W WO2022217894A1 WO 2022217894 A1 WO2022217894 A1 WO 2022217894A1 CN 2021128111 W CN2021128111 W CN 2021128111W WO 2022217894 A1 WO2022217894 A1 WO 2022217894A1
Authority
WO
WIPO (PCT)
Prior art keywords
tuyere
air volume
branch
blast furnace
air
Prior art date
Application number
PCT/CN2021/128111
Other languages
English (en)
French (fr)
Inventor
闫朝付
严晗
叶理德
吴映江
秦涔
崔伟
方明新
李雷
Original Assignee
中冶南方工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中冶南方工程技术有限公司 filed Critical 中冶南方工程技术有限公司
Publication of WO2022217894A1 publication Critical patent/WO2022217894A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/006Automatically controlling the process
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2300/00Process aspects
    • C21B2300/04Modeling of the process, e.g. for control purposes; CII

Definitions

  • the invention relates to the technical field of blast furnace ironmaking, in particular to a method and computer equipment for calculating blast furnace tuyere air volume and air velocity distribution.
  • the parameters adjusted in the lower part of the blast furnace include air volume, air temperature, tuyere size, oxygen enrichment, injection, etc., which are an important part of the blast furnace operation. It determines the initial distribution of the gas flow in the lower part of the blast furnace to ensure the active state of the blast furnace hearth. Smelting requirements. Among them, adjusting the air inlet area and depth of the tuyere directly affects the air volume, wind speed and blast kinetic energy of the tuyere. By monitoring the basic parameters of these tuyere, the active situation of the tuyere can be judged, which provides a basis for the analysis of the state of the blast furnace hearth.
  • the object of the present invention is to provide a kind of calculation method of blast furnace tuyere air volume and wind speed distribution, to perfect the tuyere air volume and wind speed distribution calculation model, thereby obtain accurate tuyere air volume and tuyere speed data to guide practical operation .
  • the invention provides the following technical solutions:
  • a method for calculating air volume and air speed distribution at a blast furnace tuyere comprising the following steps:
  • Step S1 collect the structural data of the blast furnace air supply pipeline, the air supply pipeline is simplified as a parallel pipeline composed of multiple tuyere branches, each tuyere branch includes an air supply branch pipe and a tuyere sleeve, and the definition is as follows: The structure data of each air supply branch pipe is consistent, and the initial structure data of each tuyere sleeve before adjustment is consistent; each tuyere sleeve corresponds to a tuyere; the diameter and size of the tuyere can be adjusted by adjusting the position or structure of the tuyere sleeve. / or tuyere length;
  • Step S2 Collect blast furnace blast air volume and tuyere adjustment data, the blast furnace blast air volume is the total air volume entering the air supply pipeline; the tuyere adjustment data includes the adjusted number of tuyere, and the adjusted tuyere diameter and tuyere. / or tuyere length;
  • Step S3 Calculate or query the wind pressure loss of the air supply branch pipe according to the structural data of the air supply branch pipe; calculate or query the wind pressure of the tuyere small cover according to the initial structure data of the tuyere cover and the adjustment data of the tuyere loss;
  • Step S4 according to the tuyere adjustment data, determine whether the tuyere of the air supply pipeline is adjusted, if not, go to step S5; if adjusted, go to step S6;
  • Step S5 Calculate the tuyere air volume and tuyere wind speed of each tuyere according to the blast furnace blast air volume and the number of tuyere, and end;
  • Step S6 Calculate the flow resistance ratio of the tuyere branch according to the wind pressure loss of the air supply branch pipe of each tuyere branch and the wind pressure loss of the tuyere sleeve; calculate the ratio of each tuyere branch and the designated tuyere branch. flow ratio, and then calculate the tuyere air volume and tuyere wind speed of each tuyere branch according to the flow ratio and blast furnace blast air volume.
  • calculation method of the step S5 is:
  • Qi represents the air volume of the ith tuyere
  • vi represents the wind speed of the ith tuyere
  • Q B is the blowing air volume
  • n is the number of tuyere
  • S is the area of the tuyere.
  • the flow resistance ratio of the tuyere branch in the step S6 is equal to the square root of the ratio of the wind pressure loss between the air supply branch pipe and the tuyere sleeve, and its formula is expressed as:
  • represents the flow resistance ratio of the tuyere branch
  • ⁇ p air supply branch pipe represents the wind pressure loss of the air supply branch pipe
  • ⁇ p tuyere small sleeve represents the wind pressure loss of the tuyere small sleeve.
  • step S6 calculate the flow ratio of each tuyere branch and the specified tuyere branch, and then calculate the tuyere air volume and the tuyere wind speed of each tuyere branch according to the flow ratio and the blast furnace blast air volume as follows:
  • Qi represents the air volume of the ith tuyere
  • vi represents the wind speed of the ith tuyere
  • Q B is the blowing air volume
  • d i is the diameter of the ith tuyere
  • n is the number of tuyere.
  • the flow ratio is a function of the diameter of the tuyere, and the expression of the function is:
  • r jk is the flow ratio of any k, j two tuyere, d k and d j represent the diameter of the k-th tuyere and the j-th tuyere, respectively;
  • ⁇ k is the drag coefficient along the k-th tuyere, ⁇ k , ⁇ j respectively Indicates the flow resistance ratio of the branch of the kth tuyere and the flow resistance ratio of the branch of the jth tuyere.
  • the flow ratio is a function of the length of the tuyere, and the expression of the function is:
  • r jk is the flow ratio of any two tuyere k and j
  • L k and L j represent the length of the k-th tuyere and the j-th tuyere respectively
  • ⁇ k is the drag coefficient along the k-th tuyere
  • ⁇ k , ⁇ j respectively Indicates the flow resistance ratio of the branch of the kth tuyere and the flow resistance ratio of the branch of the jth tuyere.
  • the calculation method of the air volume and wind speed distribution of the blast furnace tuyere can obtain accurate tuyere air volume and tuyere speed data through the known structural data of the air supply pipeline and the measurable tuyere adjustment data,
  • the calculation results can be used to effectively monitor the basic parameter state of the blast furnace tuyere in real time and improve the accuracy of the tuyere state monitoring.
  • the present invention also provides a computer device, the computer device includes a processor, a memory and a bus, the processor and the memory are connected through the bus, the memory stores a computer program, and the computer program runs In the processor, the above-mentioned calculation method of the blast furnace tuyere air volume and air speed distribution is executed.
  • Fig. 1 is the schematic diagram of blast furnace hot air conveying system and parallel pipeline
  • Fig. 2 is the typical tuyere branch structure of blast furnace hot air conveying system
  • FIG. 3 is a flow chart for calculating the air volume of the tuyere and the speed of the tuyere according to the present invention.
  • the structure of the blast furnace hot blast conveying system includes a hot blast main pipe, a hot blast surrounding pipe, an air supply branch pipe (including air supply pipes, goosenecks, elbows and other equipment), and a small set of tuyere.
  • the small tuyere cover is directly connected with the blast furnace. Except that the small tuyere cover will be adjusted during operation, the structural design of other equipment is exactly the same.
  • the blast furnace air supply pipeline can be simplified as a parallel pipeline composed of each air supply branch pipe and a small set of tuyere.
  • each parallel branch is equivalently regarded as multiple standard circular pipes in parallel, the pressure loss of each branch is equal, and the total flow/mass is equal to the sum of the flow/mass of each branch, which can be expressed as follows (in the case of the same temperature components , the wind density of each branch is equal):
  • ⁇ p T is the total pressure loss of the tuyere
  • Q B is the blast furnace air volume (that is, the total air volume)
  • is the blast density
  • ⁇ p i represents the pressure loss of the i-th tuyere branch
  • Q i represents the i-th tuyere branch the air volume of the vent.
  • the air supply branch pipe and the small tuyere sleeve in each tuyere branch are equivalently regarded as two standard cylindrical pipeline elements of different diameters connected in series, let their flow resistances be R i1 and R i2 respectively, then the total flow of the branch resistance to Generally, the air supply branch pipe includes various pipeline equipment, and its flow resistance R i1 is difficult to calculate directly; while the tuyere structure is relatively simple, its flow resistance R i2 is relatively easy to calculate. Therefore, in order to conveniently obtain the ratio of the total flow resistance between different tuyere branches, the concept of the tuyere branch flow resistance ratio is proposed. In the i-th tuyere branch, the flow resistance ratio of the air supply branch pipe and the tuyere sleeve is:
  • R i1 and R i2 are the equivalent flow resistances of the air supply branch pipe and the tuyere sleeve in the i-th tuyere branch, respectively.
  • Figure 2 shows an air outlet branch structure, including an air supply branch pipe and a small air outlet sleeve 4, wherein the air supply branch pipe can be divided into three parts: an air supply pipe 1, a gooseneck pipe 3, and an elbow 2.
  • the hot air flow remains unchanged in the pipeline, then from equation (3), it can be seen that the flow resistance ratio of the air supply branch pipe and the tuyere sleeve is equal to the square root of the ratio of the wind pressure loss of the two parts:
  • ⁇ p 1 , ⁇ p 2 , and ⁇ p 3 correspond to the wind pressure losses of the air supply duct 1 , elbow 2 , and gooseneck 3 of the air supply branch pipe respectively;
  • ⁇ p 4 is the wind pressure loss of the small tuyere.
  • the ratio of pressure loss is mainly related to the pipe size, friction coefficient and local resistance coefficient (density and flow rate remain unchanged).
  • the ratio of the partial pressure loss that is, the flow resistance ratio of the branch of the tuyere.
  • the tuyere refers to the air outlet of the tuyere cover.
  • n is the number of branches of the tuyere
  • S is the diameter of the tuyere
  • the total number of tuyere branches in the blast furnace is set to be n
  • the original size of each tuyere branch is the same
  • the area of the tuyere is adjusted by the diameter of the tuyere.
  • the total number of tuyere branches in the blast furnace is set to be n, and the original dimensions of each tuyere branch are the same, and the flow resistance of the corresponding tuyere branch is adjusted by adjusting the length of the tuyere.
  • the flow ratio of any two tuyere is actually equal to the reciprocal of the total flow resistance ratio of the branch where the tuyere is located:
  • the subscript i and the subscript j represent the i-th tuyere branch and the j-th tuyere branch, respectively, and Q i and Q j represent the i-th tuyere branch and the j-th tuyere branch, respectively.
  • the air volume of the tuyere, R i , R j represent the flow resistance of the i-th tuyere branch and the j-th tuyere branch respectively, ⁇ i , ⁇ j are the flow resistance ratio of the i-th tuyere branch and the j-th tuyere branch, ⁇ j is the drag coefficient along the jth tuyere branch; d i , d j represent the diameter of the tuyere of the i th tuyere branch and the jth tuyere branch respectively; L i , L j represent the i th tuyere branch, the jth tuyere branch, respectively The tuyere length of the tuyere branch.
  • the flow rate of each tuyere branch (air volume of the tuyere) can be calculated from the total flow (blast air volume of the blast furnace) and the flow ratio of each tuyere branch and a certain tuyere branch, and then calculated by the flow rate. Get the wind speed of the tuyere.
  • the tuyere wind speed of the i-th tuyere branch can be expressed as:
  • Si is the tuyere cross-sectional area of the i -th tuyere branch
  • di is the tuyere diameter of the i -th tuyere branch.
  • the tuyere air volume and tuyere air speed of each tuyere branch can be calculated by formulae (8) and (9) through a measurable blast furnace air volume and the flow resistance ratio of each tuyere branch and the specified tuyere branch.
  • the present invention provides a calculation method for the distribution of air volume and air velocity at a blast furnace tuyere, including the following steps:
  • Step S1 collect the structural data of the blast furnace air supply pipeline, the air supply pipeline is simplified as a parallel pipeline composed of multiple tuyere branches, each tuyere branch includes an air supply branch pipe and a tuyere sleeve, and the definition is as follows: The structure data of each air supply branch pipe is consistent, and the initial structure data of each tuyere sleeve before adjustment is consistent; each tuyere sleeve corresponds to a tuyere; the diameter and size of the tuyere can be adjusted by adjusting the position or structure of the tuyere sleeve. / or tuyere length;
  • Step S2 Collect blast furnace blast air volume and tuyere adjustment data, the blast furnace blast air volume is the total air volume entering the air supply pipeline; the tuyere adjustment data includes the adjusted number of tuyere, and the adjusted tuyere diameter and tuyere. / or tuyere length;
  • Step S3 Calculate or query the wind pressure loss of the air supply branch pipe according to the structural data of the air supply branch pipe; calculate or query the wind pressure of the tuyere small cover according to the initial structure data of the tuyere cover and the adjustment data of the tuyere loss;
  • Step S4 according to the tuyere adjustment data, determine whether the tuyere of the air supply pipeline is adjusted, if not, go to step S5; if adjusted, go to step S6;
  • Step S5 Calculate the tuyere air volume and tuyere wind speed of each tuyere according to the blast furnace blast air volume and the number of tuyere, and end;
  • Step S6 Calculate the flow resistance ratio of the tuyere branch according to the wind pressure loss of the air supply branch pipe of each tuyere branch and the wind pressure loss of the tuyere sleeve; calculate the ratio of each tuyere branch and the designated tuyere branch. flow ratio, and then calculate the tuyere air volume and tuyere wind speed of each tuyere branch according to the flow ratio and blast furnace blast air volume.
  • the calculation method of air volume and wind speed distribution of blast furnace tuyere can obtain accurate tuyere air volume and tuyere speed data through known structural data of air supply pipeline and measurable tuyere adjustment data, and the calculation results can be used for real-time and effective monitoring Basic parameter status of blast furnace tuyere to improve the accuracy of tuyere status monitoring.
  • the present invention also provides a computer device, the computer device includes a processor, a memory and a bus, the processor and the memory are connected through the bus, the memory stores a computer program, and the computer program runs In the processor, the above-mentioned calculation method of the blast furnace tuyere air volume and air speed distribution is executed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

一种计算高炉风口风量和风速分配的方法、计算机设备。所述方法包括:根据获得风量参数和调整风口后的尺寸,以及风口支路的结构数据,首先通过计算或查询得到各风口支路的流阻比,再根据流阻比得到各风口与指定风口的流量比,由此计算出不同风口的风量与风速分配。计算结果可用于实时有效地监控高炉风口的基本参数状态,提高风口状态监测的准确性。

Description

一种高炉风口风量和风速分配的计算方法、计算机设备 技术领域
本发明涉及高炉炼铁技术领域,尤其涉及一种计算高炉风口风量和风速分配的方法、计算机设备。
背景技术
高炉下部调节的参数包括风量、风温、风口尺寸、富氧、喷吹等,是高炉操作的重要环节,它决定了高炉下部煤气流的初始分布,以保证高炉炉缸工作的活跃状态符合强化冶炼的要求。其中调节风口进风面积和深入长度直接影响了风口风量、风速和鼓风动能,通过对这些风口基本参数的监控,可以判断风口活跃情况,为高炉炉缸状态分析提供依据。
虽然现场操作者已有一些关于风口调整的操作实践和经验,但由于高炉下部的复杂性难以直接监测,并且没有一个具体而完备的风口风量风速分配计算模型,往往无法直接地观察到不同风口调整后基本参数的准确变化。在操作者经验中通常认为当总热风风量不变时,减小风口面积,风口速度增大,鼓风动能增加;反之,风口速度和鼓风动能减小。但上述结论只是由经验或在各种假设下得到,然而,改变一个或几个风口的面积后,鼓风风量如何根据不同风口面积重新分配,不同风口风速、鼓风动能如何变化,在没有找到风口尺寸调整和风口风量风速直接的对应关系前,这些问题都难以得到解决。因此,调整高炉风口长度和面积后,如何得到风口风量和风速的分配变化,这一问题对于指导实践操作显得尤为重要。
发明内容
有鉴于现有技术的上述缺陷,本发明的目的是提供一种高炉风口风量和风速分配的计算方法,以完善风口风量风速分配计算模型,从而获得准确的风口风量和风口速度数据以指导实践操作。
为实现上述目的,本发明提供了以下技术方案:
一种高炉风口风量和风速分配的计算方法,包括以下步骤:
步骤S1:采集高炉送风管路的结构数据,所述送风管路简化为由多个风口支路组成的并联管路,每个风口支路包括一送风支管和一个风口小套,定义每个送风支管的结构数据一致,每个风口小套在未调整前的初始结构数据一致;每个风口小套对应一个风口;通过调整所述风口小套的位置或结构以调节风口直径和/或风口长度;
步骤S2:采集高炉鼓风风量和风口调整数据,所述高炉鼓风风量为进入所述送风管路的总风量;所述风口调整数据包括被调整的风口数量,以及调整后的风口直径和/或风口长度;
步骤S3:根据所述送风支管的结构数据计算或查询所述送风支管的风压损失;根据所述风口小套的初始结构数据及风口调整数据计算或查询所述风口小套的风压损失;
步骤S4:根据所述风口调整数据,判断所述送风管路是否调整了风口,若未调整,执行步骤S5;若调整,执行步骤S6;
步骤S5:根据高炉鼓风风量和风口数量计算每一个风口的风口风量和风口风速,结束;
步骤S6:根据各风口支路的所述送风支管的风压损失和所述风口小套的风压损失计算所述风口支路的流阻比;计算各风口支路与指定风口支路的流量比,进而根据所述流量比和高炉鼓风风量计算各风口支路的风口风量和风口风速。
进一步的,所述步骤S5的计算方法为:
Q i=Q B/n
v i=Q B/nS
i=1,…,n
其中,Q i表示第i风口风量,v i表示第i风口风速,Q B为鼓风风量,n为风口数量,S为风口面积。
进一步的,所述步骤S6中所述风口支路的流阻比等于送风支管和风口小套的风压损失之比的开平方,其公式表达为:
Figure PCTCN2021128111-appb-000001
其中,μ表示风口支路的流阻比,Δp 送风支管表示送风支管的风压损失,Δp 风口小套表示风口小套的风压损失。
进一步的,所述步骤S6中计算各风口支路与指定风口支路的流量比,进而根据所述流量比和高炉鼓风风量计算各风口支路的风口风量和风口风速的计算方法如下:
Figure PCTCN2021128111-appb-000002
Figure PCTCN2021128111-appb-000003
i=1,…,n
其中,Q i表示第i风口风量,v i表示第i风口风速,Q B为鼓风风量,d i为第i风口直径,r i=r i1表示第i个风口与第1风口的流量比,n为风口数量。
进一步的,所述流量比是风口直径的函数,函数的表达式为:
Figure PCTCN2021128111-appb-000004
其中,r jk为任意k,j两个风口的流量比,d k、d j分别表示第k风口直径、第j风口直径;λ k为第k风口沿程阻力系数,μ k、μ j分别表示第k风口支路的流阻比、第j风口支路的流阻比。
进一步的,所述流量比是风口长度的函数,所述函数的表达式为:
Figure PCTCN2021128111-appb-000005
其中,r jk为任意k、j两个风口的流量比,L k、L j分别表示第k风口长度、第j风口长度;λ k为第k风口沿程阻力系数,μ k、μ j分别表示第k风口支路的流阻比、第j风口支路的流阻比。
本发明实现了如下技术效果:本高炉风口风量和风速分配的计算方法,可以通过已知的送风管路的结构数据及可测量的风口调整数据,从而获得准确的风口风量和风口速度数据,计算结果可用于实时有效地监控高炉风口的基本参数状态,提高风口状态监测的准确性。
本发明还提供了一种计算机设备,所述计算机设备包括处理器、存储器和总线,所述处理器和所述存储器通过所述总线连接,所述存储器存储有一段计算机程序,所述计算机程序运行于所述处理器中,执行上述的高炉风口风量和风速分配的计算方法。
附图说明
图1是高炉热风输送系统及并联管路示意图;
图2是高炉热风输送系统的典型风口支路结构;
图3是本发明的风口风量和风口速度计算流程图。
具体实施方式
为进一步说明各实施例,本发明提供有附图。这些附图为本发明揭露内容的一部分,其主要用以说明实施例,并可配合说明书的相关描述来解释实施例的运作原理。配合参考这些内容,本领域普通技术人员应能理解其他可能的实施方式以及本发明的优点。图中的组件并未按比例绘制,而类似的组件符号通常用来表示类似的组件。
现结合附图和具体实施方式对本发明进一步说明。
如图1所示,高炉热风输送系统结构包括热风总管、热风围管、送风支管(包括送风管道、鹅颈管、弯头等设备),以及风口小套。风口小套与高炉直接相通,除风口小套会在操作中调整外,其他设备结构设计完全相同。考虑到各送风支路的热风压力损失相等,且等于围管内热风压力与炉内压力之差,可将高炉送风管路简化为由各送风支管和风口小套组成的并联管路。若将各并联支路等效视为并联的多个标准圆管,则各支路压力损失相等,且总流量/质量等于各支路流量/质量之和,可表达如下(同温度成分情况下,各支路风密度相等):
Δp T=Δp i               (1)
Figure PCTCN2021128111-appb-000006
式中,Δp T为风口总压力损失,Q B为高炉鼓风风量(即总风量),ρ为鼓风密度,Δp i表示第i风口支路的压力损失,Q i表示第i风口支路的风口风量。参考电路的一些概念,风压的开方类似于电压,风量类似于电流,引入类似于电阻的风口支路流阻概念:
Figure PCTCN2021128111-appb-000007
若将各风口支路中的送风支管和风口小套等效地视为串联的两个不同直径标准圆柱管路元件,令它们的流阻分别为R i1,R i2,则支路总流阻为
Figure PCTCN2021128111-appb-000008
一般送风支管包含各种管路设备,其流阻R i1难以直接计算;而风口结构较为简单,其流阻R i2相对易于计算。所以为了方便得到不同风口支路间总流阻的比值,提出风口支路流阻比的概念,第i个风口支路中,送风支管和风口小套的流阻比为:
μ i=R i1/R i2        (4)
式中,R i1、R i2分别为第i个风口支路中送风支管和风口小套的等效流阻。
(1)流阻比的计算方法
图2给出了一个风口支路结构,包括送风支管和风口小套4,其中,送风支管可分为送风管道1、鹅颈管3、弯头2三个部分。对于任一风口支路,热风流量在管道内不变,那么由式(3)可知,送风支管和风口小套的流阻比等于两部分的风压损失之比的开平方:
Figure PCTCN2021128111-appb-000009
其中,Δp 1、Δp 2、Δp 3分别对应送风支管的送风管道1、弯头2、鹅颈管3三个部分的风压损失;Δp 4为风口小套的风压损失。
压力损失之比主要与管道尺寸,摩擦系数和局部阻力系数有关(密度、流 量不变),那么由实际风口支路的各部分结构尺寸,查阅压力降计算手册得到送风支管和风口小套两部分的压力损失之比,即得到了该风口支路的流阻比。
(2)风口风量和风口风速分配方法
在本实施例中,风口是指风口小套的出风口。通过调节各风口小套的形状和位置以调节各风口支路的风口直径或风口长度,进而调节各风口支路的风口风量和风口风速。
在本实施例中,当各个风口支路的风口尺寸(包括风口直径和风口长度)相同时,各风口支路的风口风量相等,则有:
总风量
Figure PCTCN2021128111-appb-000010
各风口支路的风口风量Q i=Q B/n,
风速v i=Q B/nS,i=1,…,n。
n为风口支路数量,S为风口直径。
当存在不同风口尺寸时,在总风量Q B不变的条件下,计算各风口支路的风口风速方法如下:
a)调整风口面积(保持风口长度不变):
在本实施例中,设定高炉内风口支路总数为n,各风口支路的原始尺寸均相同,调整风口面积是通过风口直径获得,通过调整风口直径以调节对应风口支路的流阻和流阻比。由式(3)可知,任意两个风口支路的流量比实际上等于两个风口支路所在支路的总流阻比值的倒数:
Figure PCTCN2021128111-appb-000011
b)调整风口长度(保持风口面积不变):
在本实施例中,设定高炉内风口支路总数为n,各风口支路的原始尺寸均相同,通过调整风口长度以调节对应风口支路的流阻。任意两个风口的流量比实际上等于所述风口所在支路的总流阻比值的倒数:
Figure PCTCN2021128111-appb-000012
式(6)、式(7)中,下标i和下标j分别表示第i风口支路和第j风口支路,Q i,Q j分别表示第i风口支路、第j风口支路的风口风量,R i,R j分别表示第i风口支路和第j风口支路的流阻,μ i、μ j分别为第i风口支路和第j风口支路的流阻比,λ j为第j风口支路的沿程阻力系数;d i,d j分别表示第i风口支路和第j风口支路的风口直径;L i,L j分别表示第i风口支路、第j风口支路的风口长度。
得到任意两个风口的流量比后,由总流量(高炉鼓风风量)和各风口支路与某一风口支路流量比可以求出各风口支路的流量(风口风量),再由流量计算得到风口风速。
假设Q 1指第1风口支路的风量,为简化表示,令r i=r i1,即r i表示第i风口支路和第1风口支路的流阻比,因
Figure PCTCN2021128111-appb-000013
那么第i风口支路的风口风量Q i可由Q 1和r i表示:
Figure PCTCN2021128111-appb-000014
第i风口支路的风口风速可表示为:
Figure PCTCN2021128111-appb-000015
S i为第i风口支路的风口截面积,d i为第i风口支路的风口直径。
通过式(8)和式(9)可通过一个可测量的高炉鼓风风量及各风口支路与指定风口支路的流阻比计算出各风口支路的风口风量和风口风速。
综上所述,本发明提供了一种高炉风口风量和风速分配的计算方法,包括以下步骤:
步骤S1:采集高炉送风管路的结构数据,所述送风管路简化为由多个风口支路组成的并联管路,每个风口支路包括一送风支管和一个风口小套,定义每 个送风支管的结构数据一致,每个风口小套在未调整前的初始结构数据一致;每个风口小套对应一个风口;通过调整所述风口小套的位置或结构以调节风口直径和/或风口长度;
步骤S2:采集高炉鼓风风量和风口调整数据,所述高炉鼓风风量为进入所述送风管路的总风量;所述风口调整数据包括被调整的风口数量,以及调整后的风口直径和/或风口长度;
步骤S3:根据所述送风支管的结构数据计算或查询所述送风支管的风压损失;根据所述风口小套的初始结构数据及风口调整数据计算或查询所述风口小套的风压损失;
步骤S4:根据所述风口调整数据,判断所述送风管路是否调整了风口,若未调整,执行步骤S5;若调整,执行步骤S6;
步骤S5:根据高炉鼓风风量和风口数量计算每一个风口的风口风量和风口风速,结束;
步骤S6:根据各风口支路的所述送风支管的风压损失和所述风口小套的风压损失计算所述风口支路的流阻比;计算各风口支路与指定风口支路的流量比,进而根据所述流量比和高炉鼓风风量计算各风口支路的风口风量和风口风速。
本高炉风口风量和风速分配的计算方法,可以通过已知的送风管路的结构数据及可测量的风口调整数据,从而获得准确的风口风量和风口速度数据,计算结果可用于实时有效地监控高炉风口的基本参数状态,提高风口状态监测的准确性。
本发明还提供了一种计算机设备,所述计算机设备包括处理器、存储器和总线,所述处理器和所述存储器通过所述总线连接,所述存储器存储有一段计算机程序,所述计算机程序运行于所述处理器中,执行上述的高炉风口风量和风速分配的计算方法。
尽管结合优选实施方案具体展示和介绍了本发明,但所属领域的技术人员应该明白,在不脱离所附权利要求书所限定的本发明的精神和范围内,在形式上和细节上可以对本发明做出各种变化,均为本发明的保护范围。

Claims (7)

  1. 一种高炉风口风量和风速分配的计算方法,其特征在于,包括以下步骤:
    步骤S1:采集高炉送风管路的结构数据,所述送风管路简化为由多个风口支路组成的并联管路,每个风口支路包括一送风支管和一个风口小套,定义每个送风支管的结构数据一致,每个风口小套在未调整前的初始结构数据一致;每个风口小套对应一个风口;通过调整所述风口小套的位置或结构以调节风口直径和/或风口长度;
    步骤S2:采集高炉鼓风风量和风口调整数据,所述高炉鼓风风量为进入所述送风管路的总风量;所述风口调整数据包括被调整的风口数量,以及调整后的风口直径和/或风口长度;
    步骤S3:根据所述送风支管的结构数据计算或查询所述送风支管的风压损失;根据所述风口小套的初始结构数据及风口调整数据计算或查询所述风口小套的风压损失;
    步骤S4:根据所述风口调整数据,判断所述送风管路是否调整了风口,若未调整,执行步骤S5;若调整,执行步骤S6;
    步骤S5:根据高炉鼓风风量和风口数量计算每一个风口的风口风量和风口风速,结束;
    步骤S6:根据各风口支路的所述送风支管的风压损失和所述风口小套的风压损失计算所述风口支路的流阻比;计算各风口支路与指定风口支路的流量比,进而根据所述流量比和高炉鼓风风量计算各风口支路的风口风量和风口风速。
  2. 如权利要求1所述的高炉风口风量和风速分配的计算方法,其特征在于,所述步骤S5的计算方法为:
    Q i=Q B/n
    v i=Q B/nS
    i=1,…,n
    其中,Q i表示第i风口风量,v i表示第i风口风速,Q B为鼓风风量,n为风口数量,S为风口面积。
  3. 如权利要求1所述的高炉风口风量和风速分配的计算方法,其特征在于, 所述步骤S6中所述风口支路的流阻比等于送风支管和风口小套的风压损失之比的开平方,其公式表达为
    Figure PCTCN2021128111-appb-100001
    其中,μ表示风口支路的流阻比,Δp 送风支管表示送风支管的风压损失,Δp 风口小套表示风口小套的风压损失。
  4. 如权利要求1所述的高炉风口风量和风速分配的计算方法,其特征在于,所述步骤S6中计算各风口支路与指定风口支路的流量比,进而根据所述流量比和高炉鼓风风量计算各风口支路的风口风量和风口风速的计算方法如下:
    Figure PCTCN2021128111-appb-100002
    Figure PCTCN2021128111-appb-100003
    i=1,…,n
    其中,Q i表示第i风口风量,v i表示第i风口风速,Q B为鼓风风量,d i为第i风口直径,r i=r i1表示第i个风口与第1风口的流量比,n为风口数量。
  5. 如权利要求4所述的高炉风口风量和风速分配的计算方法,其特征在于,所述流量比是风口直径的函数,函数的表达式为:
    Figure PCTCN2021128111-appb-100004
    其中,r jk为任意k、j两个风口的流量比,d k、d j分别表示第k风口直径、第j风口直径;λ k为第k风口沿程阻力系数,μ k、μ j分别表示第k风口支路的流阻比、第j风口支路的流阻比。
  6. 如权利要求4所述的高炉风口风量和风速分配的计算方法,其特征在于,所述流量比是风口长度的函数,所述函数的表达式为:
    Figure PCTCN2021128111-appb-100005
    其中,r jk为任意k、j两个风口的流量比,L k、L j分别表示第k风口长度、第j风口长度;λ k为第k风口沿程阻力系数,μ k、μ j分别表示第k风口支路的流阻比、第j风口支路的流阻比。
  7. 一种计算机设备,其特征在于,包括处理器、存储器和总线,所述处理器和所述存储器通过总线连接,所述存储器存储有一段计算机程序,所述计算机程序运行于所述处理器中,执行如权利要求1-6任一项所述的高炉风口风量和风速分配的计算方法。
PCT/CN2021/128111 2021-04-14 2021-11-02 一种高炉风口风量和风速分配的计算方法、计算机设备 WO2022217894A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110398182.2A CN113215336B (zh) 2021-04-14 2021-04-14 一种高炉风口风量和风速分配的计算方法、计算机设备
CN202110398182.2 2021-04-14

Publications (1)

Publication Number Publication Date
WO2022217894A1 true WO2022217894A1 (zh) 2022-10-20

Family

ID=77087119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128111 WO2022217894A1 (zh) 2021-04-14 2021-11-02 一种高炉风口风量和风速分配的计算方法、计算机设备

Country Status (2)

Country Link
CN (1) CN113215336B (zh)
WO (1) WO2022217894A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113215336B (zh) * 2021-04-14 2022-11-15 中冶南方工程技术有限公司 一种高炉风口风量和风速分配的计算方法、计算机设备
CN115466810B (zh) * 2022-10-12 2024-01-05 广东韶钢松山股份有限公司 一种风口布局调控方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150107A (en) * 1980-04-21 1981-11-20 Nippon Kokan Kk <Nkk> Controlling method of blast amount at blast furnace tuyere
CN105441609A (zh) * 2014-09-30 2016-03-30 上海梅山钢铁股份有限公司 一种鼓风机风量控制方法
CN108396084A (zh) * 2017-02-05 2018-08-14 鞍钢股份有限公司 一种高炉生产过程中鼓风动能的计算方法
CN111074025A (zh) * 2020-01-21 2020-04-28 鞍钢股份有限公司 一种确定高炉鼓风风量的方法
CN111831719A (zh) * 2020-07-22 2020-10-27 山东钢铁股份有限公司 一种高炉炼铁的生产过程智能控制方法及系统
CN112434852A (zh) * 2020-11-20 2021-03-02 江苏沙钢集团有限公司 一种高炉送风制度合理性的评价方法
CN113215336A (zh) * 2021-04-14 2021-08-06 中冶南方工程技术有限公司 一种高炉风口风量和风速分配的计算方法、计算机设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114511A (ja) * 1983-11-25 1985-06-21 Sumitomo Metal Ind Ltd 高炉の送風流量制御方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150107A (en) * 1980-04-21 1981-11-20 Nippon Kokan Kk <Nkk> Controlling method of blast amount at blast furnace tuyere
CN105441609A (zh) * 2014-09-30 2016-03-30 上海梅山钢铁股份有限公司 一种鼓风机风量控制方法
CN108396084A (zh) * 2017-02-05 2018-08-14 鞍钢股份有限公司 一种高炉生产过程中鼓风动能的计算方法
CN111074025A (zh) * 2020-01-21 2020-04-28 鞍钢股份有限公司 一种确定高炉鼓风风量的方法
CN111831719A (zh) * 2020-07-22 2020-10-27 山东钢铁股份有限公司 一种高炉炼铁的生产过程智能控制方法及系统
CN112434852A (zh) * 2020-11-20 2021-03-02 江苏沙钢集团有限公司 一种高炉送风制度合理性的评价方法
CN113215336A (zh) * 2021-04-14 2021-08-06 中冶南方工程技术有限公司 一种高炉风口风量和风速分配的计算方法、计算机设备

Also Published As

Publication number Publication date
CN113215336B (zh) 2022-11-15
CN113215336A (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
WO2022217894A1 (zh) 一种高炉风口风量和风速分配的计算方法、计算机设备
CN107966235B (zh) 一种可变参考压力的高精度压力测量系统
CN207231786U (zh) 一种风阀综合性能测试装置
CN111044252A (zh) 一种高精准度进气道流量测量方法
CN108519129B (zh) 渠道流量监测方法及系统
CN116399547B (zh) 飞行器通气测力风洞试验装置及其安装方法和试验方法
CN203758745U (zh) 采用进排气旁通模拟发动机高原试验装置
Gao et al. Truncation method for calculating the resistance of ventilation air-conditioning duct systems under nonfully developed flow boundary conditions
CN112903232B (zh) 一种用于飞行器大气数据系统风洞试验的流量调节装置
CN107491579A (zh) 一种输电线路覆冰厚度及风速的联合概率计算方法及系统
CN108629115A (zh) 一种除尘管网阻力平衡方法
CN105067273A (zh) 排气系统背压测试的冷流试验装置及热态背压估算方法
Zhang et al. Design optimization of V-sector ball valve core
CN115217110A (zh) 用于大体积混凝土的风冷温控系统、风冷温控方法及设计方法
CN111156834B (zh) 一种降噪蒸汽减温装置及方法
CN206376950U (zh) Egr文丘里管
WO2008052446A1 (fr) Appareil de climatisation à température et humidité constantes pour une pièce avec équipement pour protons
CN211290382U (zh) 云机房环境调节装置
CN209338591U (zh) 一种高炉炉前除尘装置
CN108733097B (zh) 一种并联多排管供水管网水击压力控制方法
CN207248564U (zh) 利用超声波实现煤粉等速取样的装置
CN107843286A (zh) 一种锅炉通风试验数据在线采集系统及分析处理方法
CN117090700B (zh) 节气门关闭速率控制方法、装置、发动机控制系统和汽车
CN113482693B (zh) 隧道防烟分区划分模拟装置及方法、计算模型和应用
CN209974616U (zh) 具有氮气加热结构的超薄玻璃加工用渣箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936761

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023128763

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936761

Country of ref document: EP

Kind code of ref document: A1