WO2022217851A1 - 冷媒循环系统及空调 - Google Patents

冷媒循环系统及空调 Download PDF

Info

Publication number
WO2022217851A1
WO2022217851A1 PCT/CN2021/120835 CN2021120835W WO2022217851A1 WO 2022217851 A1 WO2022217851 A1 WO 2022217851A1 CN 2021120835 W CN2021120835 W CN 2021120835W WO 2022217851 A1 WO2022217851 A1 WO 2022217851A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
port
communicated
throttling device
circulation system
Prior art date
Application number
PCT/CN2021/120835
Other languages
English (en)
French (fr)
Inventor
刘博�
Original Assignee
芜湖美智空调设备有限公司
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 芜湖美智空调设备有限公司, 广东美的制冷设备有限公司 filed Critical 芜湖美智空调设备有限公司
Publication of WO2022217851A1 publication Critical patent/WO2022217851A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/06Superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound

Definitions

  • the present application relates to the field of refrigeration and HVAC equipment, and in particular, to a refrigerant circulation system and an air conditioner.
  • the refrigerant circulation system is an important component of refrigeration and HVAC equipment such as air conditioners to adjust the outside temperature.
  • the existing refrigerant circulation system after the refrigerant is compressed by the compressor, it is successively supplied to the first heat exchange module, the throttling device and the second heat exchange module. After heat exchange - throttling and depressurization - heat exchange, the refrigerant returns to It is compressed again in the compressor, and this cycle is used to realize the adjustment of the outside temperature.
  • the existing refrigerant circulation system has high energy consumption during operation.
  • the main purpose of this application is to provide a refrigerant circulation system and an air conditioner, aiming to solve the technical problem of high energy consumption in the prior art.
  • the refrigerant circulation system proposed in the present application includes: a compressor, a four-way valve, a first heat exchange module, a first throttling device, a second heat exchange module and a regenerator; wherein, The first port of the four-way valve is communicated with the output end of the compressor, the second port of the four-way valve is communicated with the input end of the compressor; the first port of the first heat exchange module is communicated with the third port of the four-way valve; The first port of the throttling device is communicated with the second port of the first heat exchange module; the first port of the second heat exchange module is communicated with the second port of the first throttling device, and the second port of the second heat exchange module is communicated with the second port of the first throttling device.
  • the fourth port of the four-way valve is connected;
  • the regenerator has a first heat return line and a second heat return line, and the first heat return line is connected in series on the line between the output end of the compressor and the first port,
  • the secondary heat return pipeline is arranged in series on the pipeline between the input end of the compressor and the second interface.
  • the compressor is an air jet enthalpy compressor.
  • the refrigerant circulation system further includes:
  • the first gas-liquid separator the first port of which is communicated with the second port of the first throttling device, the second port of which is communicated with the first port of the second heat exchange module, and the third port of the first gas-liquid separator is connected to the air injection booster through the air supply circuit.
  • the air supply end of the enthalpy compressor is communicated, and the first port of the second heat exchange module is communicated with the second interface of the first throttling device through the first gas-liquid separator, wherein the third port of the first gas-liquid separator is its gas outlet.
  • the refrigerant circulation system further includes:
  • the first heat exchanger is arranged on the air supply circuit.
  • the second heat exchange module includes one or more heat exchange units, the first ports of all the heat exchange units are communicated with the second ports of the first throttling device, and the second ports of all the heat exchange units The ports are all communicated with the fourth interface.
  • the second heat exchange module when the second heat exchange module includes a plurality of heat exchange units, all the heat exchange units are connected in parallel.
  • the heat exchange unit includes:
  • the second heat exchanger is arranged on the medium branch
  • the second throttling device of each heat exchange unit is arranged in series between the first port of the medium branch where it is located and the corresponding second heat exchanger.
  • the second heat exchange module when the second heat exchange module includes a plurality of heat exchange units, all the heat exchange units are sequentially connected to form a multi-stage heat exchange structure;
  • the other heat exchange units include:
  • the second gas-liquid separator the first port of which is communicated with the second port of the third throttling device of this stage;
  • the heat exchange unit of the last stage consists of:
  • the first port of the third throttling device of the heat exchange unit of the first stage is communicated with the second port of the first throttling device, and the first ports of the third throttling device of the remaining heat exchange units are respectively connected with the first ports of the upper stage.
  • the second port of the second gas-liquid separator of the heat exchange unit communicates.
  • the air conditioner proposed in the present application includes the above-mentioned refrigerant circulation system.
  • a four-way valve is provided to facilitate switching between the cooling mode and the heating mode; in order to adjust the external temperature at the second heat exchange module, a regenerator is provided between the compressor and the four-way valve. , the high temperature and high pressure medium output by the compressor output end exchanges heat with the low temperature and low pressure medium after heat exchange in the regenerator, so that the medium output by the compressor can recover part of the cooling capacity; when cooling the second heat exchange module, The first interface is communicated with the third interface, and the second interface is communicated with the fourth interface.
  • the temperature of the medium entering the first heat exchange module can be reduced, and the heat exchange burden of the first heat exchange module can be reduced; on the other hand, The temperature of the medium input to the compressor can be increased, and the compression burden of the compressor can be reduced. Therefore, when the second heat exchange module is refrigerated, the overall energy consumption and noise of the refrigerant circulation system can be reduced.
  • the temperature of the medium in the module is lower, which can reduce the impact on the ambient temperature at the first heat exchange module, and can also make the temperature of the medium flowing out of the first heat exchange module lower, thereby improving the subsequent cooling effect;
  • the first interface is connected to the fourth interface, and the second interface is connected to the third interface, which can also increase the temperature of the medium input to the compressor, reduce the compression burden of the compressor, and reduce the refrigerant circulation system. overall energy consumption. With this arrangement, the purpose of reducing energy consumption can be achieved no matter when heating or cooling is performed at the second heat exchange module.
  • FIG. 1 is a schematic diagram of an embodiment of a refrigerant circulation system with a plurality of heat exchange units in parallel proposed by the application when the second heat exchange module is refrigerated;
  • FIG. 2 is a schematic diagram of an embodiment of a refrigerant circulation system with multiple heat exchange units in parallel proposed by the application when the second heat exchange module is heating;
  • FIG. 3 is a schematic diagram of an embodiment of a refrigerant circulation system in which multiple heat exchange units form a multi-stage structure proposed by the present application when the second heat exchange module is refrigerated;
  • FIG. 4 is a schematic diagram of an embodiment of a refrigerant circulation system in which multiple heat exchange units form a multi-stage structure proposed by the application when the second heat exchange module is heating
  • first heat exchange module 400 first throttling device 500
  • Second heat exchange module 610 heat exchange unit 611
  • Second heat exchanger 612 second throttling device 613 medium branch 614
  • third throttling device 615 third heat exchanger 616
  • Second gas-liquid separator 700 regenerator 710 first heat return line 720
  • Second heat return line 800 Air supply circuit 810 first heat exchanger
  • the terms “connected”, “fixed”, etc. should be understood in a broad sense, for example, “fixed” can be a fixed connection, a detachable connection, or an integrated; it can be a mechanical connection or an electrical connection ; It can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two elements or the interaction relationship between the two elements, unless otherwise clearly defined.
  • “fixed” can be a fixed connection, a detachable connection, or an integrated; it can be a mechanical connection or an electrical connection ; It can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two elements or the interaction relationship between the two elements, unless otherwise clearly defined.
  • the refrigerant circulation system and the air conditioner proposed in the present application can save energy and reduce noise regardless of the operation in the cooling mode or the heating mode.
  • the refrigerant circulation system includes: a compressor 100 , a four-way valve 200 , and a first heat exchange module 300 , which are communicated through a refrigerant circulation pipeline. , a first throttling device 400 , a second heat exchange module 600 and a regenerator 700 .
  • the first port 210 of the four-way valve 200 is connected to the output end of the compressor 100, the second port 220 of the four-way valve 200 is connected to the input end of the compressor 100; the first port of the first heat exchange module 300 is connected to the The third interface 230 of the through valve 200 is communicated with; the first port of the first throttle device 400 is communicated with the second port of the first heat exchange module 300; the first port of the second heat exchange module 600 is communicated with the first throttle device 400 The second port of the second heat exchange module 600 is communicated with the fourth port 240 of the four-way valve 200; the regenerator 700 has a first heat return line 710 and a second heat return line 720.
  • the heat pipeline 710 is connected in series on the pipeline between the output end of the compressor 100 and the first interface 210
  • the second heat return pipeline 720 is connected in series on the pipeline between the input end of the compressor 100 and the second interface 220 .
  • the first throttling device 400 may include an expansion valve, such as an electronic expansion valve or a pressure expansion valve, for adjusting the flow rate of the medium on the pipeline provided with the first throttling device 400 and changing the pressure of the medium.
  • an expansion valve such as an electronic expansion valve or a pressure expansion valve
  • the above-mentioned second heat exchange module 600 can be arranged in the space to be adjusted in temperature, and the first heat exchange module 300 can be arranged outside the space to be adjusted in temperature, so as to adjust the temperature of the space or area at the second heat exchange module 600 .
  • the above-mentioned first heat exchange module 300 can also be arranged in the space where the temperature is to be adjusted, and the second heat exchange module 600 can be arranged outside the space where the temperature is to be adjusted, so as to adjust the temperature of the space or area at the first heat exchange module 300 .
  • the second heat exchange module 600 is disposed in the space where the temperature is to be adjusted, and the first heat exchange module 300 is disposed outside the space where the temperature is to be adjusted.
  • the above-mentioned refrigerant circulation system may be a refrigerant circulation system in an air conditioner.
  • the first heat exchange module 300 may be an outdoor heat exchange module
  • the second heat exchange module 600 may be an indoor heat exchange module.
  • the above-mentioned refrigerant circulation system can also be a system in a device that adjusts the temperature of the water area or other environment that can conduct heat conduction.
  • the medium circulating in the refrigerant circulation system will pass through the first heat exchange module 300, the first throttling device 400 and the second After the heat exchange module 600, the temperature is extremely low, and after the medium returns to the compressor 100, the compressor 100 needs to compress the extremely low-temperature medium to form a high-temperature and high-pressure medium with a preset temperature.
  • the compression burden is large, and the compression process
  • the high temperature and high pressure medium output by the compressor 100 directly enters the first heat exchange module 300 through the four-way valve 200 for heat exchange, and at this time, enters the first heat exchange module 300
  • the temperature of the medium is extremely high, the heat exchange burden of the first heat exchange module 300 is large, the energy consumption is large, and the noise is large.
  • the environment absorbs a lot of heat, which greatly affects the temperature of the environment where the first heat exchange module 300 is located.
  • the temperature of the medium output from the first heat exchange module 300 is high, which will affect the subsequent cooling effect.
  • the four-way valve 200 is provided to facilitate switching between the cooling mode and the heating mode; in order to adjust the external temperature at the second heat exchange module 600 , a return value is set between the compressor 100 and the four-way valve 200 .
  • Heater 700 the high-temperature and high-pressure medium output from the output end of the compressor 100 exchanges heat with the low-temperature and low-pressure medium after heat exchange in the regenerator 700, so that the medium output by the compressor 100 recovers part of the cooling capacity, reduces the medium temperature, and circulates
  • the medium returning to the compressor 100 absorbs heat, and the temperature of the medium increases; when cooling the space or area at the second heat exchange module 600, the first interface 210 communicates with the third interface 230, and the second interface 220 communicates with the fourth interface 240
  • the temperature of the medium entering the first heat exchange module 300 can be reduced, and the heat exchange burden of the first heat exchange module 300 can be reduced; Therefore, when refrigerating the space or area where the second heat exchange module 600 is installed, the overall energy consumption
  • the environment where the first heat exchange module 300 is arranged absorbs less heat, which can reduce the impact on the ambient temperature at the first heat exchange module 300. It can also make the temperature of the medium flowing out of the first heat exchange module 300 lower, thereby improving the subsequent cooling effect; when heating the space or area at the second heat exchange module 600, the first interface 210 and the The fourth port 240 is connected, and the second port 220 is connected with the third port 230, which can also increase the temperature of the medium input to the compressor 100, reduce the compression burden of the compressor 100, and reduce the overall energy consumption and noise of the refrigerant circulation system. With this arrangement, the purpose of reducing energy consumption and noise can be achieved no matter when heating or cooling the space or area at the second heat exchange module 600 .
  • the second heat exchange module 600 is arranged outside the space where the temperature is to be adjusted, so as to adjust the space at the first heat exchange module 300 or The temperature of the area, at this time, when the space to be adjusted temperature is heated, the first interface 210 is communicated with the third interface 230, and the second interface 220 is communicated with the fourth interface 240.
  • the first interface 210 is connected with the fourth interface 240
  • the second interface 220 is connected with the third interface 230 .
  • the compressor 100 is an air jet enthalpy increasing compressor 100 .
  • the refrigerant circulation system further includes: a first gas-liquid separator 500 .
  • the first port of the first gas-liquid separator 500 is communicated with the second interface 220 of the first throttling device 400, the second port of the first gas-liquid separator 500 is communicated with the first port of the second heat exchange module 600, and the second port of the first gas-liquid separator 500 communicates with the first port of the second heat exchange module 600.
  • the third port of the first gas-liquid separator 500 is communicated with the supplemental gas end of the jet enthalpy compressor 100 through the supplemental gas circuit 800 , and the first port of the second heat exchange module 600 is connected to the first section through the first gas-liquid separator 500
  • the second interface 220 of the flow device 400 is in communication, wherein the third port of the first gas-liquid separator 500 is its gas outlet.
  • the first gas-liquid separator 500 can effectively separate the gas and liquid in the medium passing through the first throttling device 400 or the second heat exchange module 600, and pass the gas with low cooling capacity through
  • the air supply circuit 800 is supplied to the jet enthalpy increasing compressor 100 to improve the capacity and energy efficiency of the compressor 100, and make full use of the medium in the refrigerant circulation system for air supply and enthalpy increasing.
  • the liquid contains a lot of cold energy, and the liquid enters the second heat exchange module 600 for heat exchange, and the space or area where the second heat exchange module 600 is located has a good cooling effect; when heating, the medium passes through the second heat exchange module 600 for heat exchange After entering the first gas-liquid separator 500, the gas and liquid are separated, and the gas with low cooling capacity is also supplied to the jet enthalpy increasing compressor 100 through the air supply circuit 800, so as to improve the capacity and energy efficiency of the compressor 100, and the liquid with more cooling capacity After passing through the first heat exchange module 300 and the regenerator 700 , the cooling capacity entering the compressor 100 can be reduced, and the compression burden of the compressor 100 can be reduced.
  • the refrigerant circulation system further includes: a first heat exchanger 810 .
  • the first heat exchanger 810 is disposed on the air supply circuit 800 .
  • the cold or heat of the gas in the air supply circuit 800 can be fully utilized, the first heat exchanger 810 can be arranged in a space, and the temperature in the space can be adjusted; , after the heat exchange of the first heat exchanger 810, the temperature of the medium in the supplemental air circuit 800 is further increased, and the temperature of the supplementary air returned to the compressor 100 can be increased, so as to reduce the burden on the compressor 100, which can play a role in Further energy saving effect.
  • the second heat exchange module 600 includes One or more heat exchange units 610, the first ports of all the heat exchange units 610 are in communication with the second ports of the first throttling device 400, and the second ports of all the heat exchange units 610 are in communication with the fourth interface 240 .
  • the heat exchange unit 610 may include a heat exchanger and a throttling device, and the heat exchanger and the throttling device are serially connected to the fourth interface 240 and the first throttling device 400 . on the pipeline in between.
  • the plurality of heat exchange units 610 may be disposed in different regions of the same space or disposed in different spaces.
  • the second heat exchange module 600 when the second heat exchange module 600 includes a plurality of heat exchange units 610, all the heat exchange units 610 are connected in parallel.
  • each heat exchange unit in the second heat exchange module 600 has no sequential order, the medium can reach each heat exchange unit 610 synchronously, and the cooling capacity or heating capacity of each heat exchange unit 610 is balanced.
  • the heat exchange unit 610 includes: a medium branch 613 , a second heat exchanger 611 and a second throttling device 612 .
  • the first port of the medium branch 613 communicates with the second port of the first throttling device 400, and the second port of the medium branch 613 communicates with the fourth interface 240;
  • the second heat exchanger 611 is arranged on the medium branch 613;
  • the second throttling device 612 and the second heat exchanger 611 are arranged on the medium branch 613 in series.
  • the second throttling device 612 can be an expansion valve, such as an electronic expansion valve or a pressure expansion valve, for adjusting the upward medium flow rate of the medium branch 613 provided with the second throttling device 612 and changing the medium pressure.
  • an expansion valve such as an electronic expansion valve or a pressure expansion valve
  • the flow rate of the medium on the medium branch 613 where it is located can be adjusted through each second throttling, so as to control the medium flowing through the corresponding second heat exchanger 611 on each medium branch 613
  • the heating or cooling effect of the second heat exchanger 611 on each medium branch 613 can be individually controlled, so that each second heat exchanger 611 can produce different cooling or heating effects to meet the needs of different spaces or regions. different temperature requirements.
  • the refrigerant circulation system in this scheme is applied to the central air conditioner, it can control the amount of cold and heat supplied to different rooms according to the different needs of different groups of people, so as to improve the comfort of users.
  • the second throttling device 612 of each heat exchange unit 610 is connected in series with the first port of the medium branch 613 where it is located and the corresponding second heat exchange device Between machines 611.
  • the medium during cooling, can be cooled and depressurized through the second throttling device 612 before entering the corresponding second heat exchanger 611, and the cooling effect is good; during heating, high temperature can be made The high-pressure medium passes through the second heat exchanger 611 and then passes through the corresponding second throttling device 612 to prevent the temperature of the medium from decreasing and to ensure the heating effect; Both are arranged on the corresponding medium branch 613 , and both can control the medium flow on the corresponding medium branch 613 .
  • the second heat exchange module 600 when the second heat exchange module 600 includes a plurality of heat exchange units 610, all the heat exchange units 610 are sequentially connected to form a multi-stage heat exchange structure;
  • each of the other heat exchange units 610 includes: a third throttling device 614 , a second gas-liquid separator 616 and a third heat exchanger 615 .
  • the first port of the second gas-liquid separator 616 communicates with the second port of the third throttling device 614 of the current stage; the third heat exchanger 615, the first port of the third heat exchanger 615 is connected to the second port of the current stage
  • the third port of the gas-liquid separator 616 is in communication, and the second port of the third heat exchanger 615 is in communication with the fourth interface 240, wherein the third port of the second gas-liquid separator 616 is its gas outlet;
  • the heat exchange unit 610 of the last stage includes: a third throttling device 614 and a third heat exchanger 615, the first port of the third heat exchanger 615 is communicated with the second port of the third throttling device 614 of the current stage, The second port of the third heat exchanger 615 communicates with the fourth interface 240;
  • the first port of the third throttle device 614 of the heat exchange unit 610 of the first stage communicates with the second port of the first throttle device 400 , and the first ports of the third throttle device 614 of the remaining heat exchange units 610 are respectively It communicates with the second port of the second gas-liquid separator 616 of the heat exchange unit 610 of the upper stage.
  • the third throttling device 614 can be an expansion valve, such as an electronic expansion valve or a pressure expansion valve, for adjusting the flow of the medium on the pipeline provided with the third throttling device 614 and changing the pressure of the medium.
  • an expansion valve such as an electronic expansion valve or a pressure expansion valve
  • the medium passes through the heat exchange units 610 of each stage for heat exchange in sequence, and the medium passes through the heat exchange units 610 of the previous stages for heat exchange, and then enters the back.
  • the cooling capacity of the medium in the heat exchange units 610 of several stages (especially the heat exchange unit 610 of the last stage) is insufficient, and the cooling effect of the heat exchange units 610 of the following stages is poor;
  • After entering the 610 heat exchange is carried out through the heat exchange units 610 of all levels in sequence, and after the medium passes through the heat exchange units 610 of the following stages for heat exchange, it reaches the heat exchange unit of the first heat exchange units 610 (especially the first heat exchange unit 610).
  • the heating capacity of the medium is insufficient, and the heating effect of the heat exchange units 610 of the previous stages is poor.
  • the liquid medium with large cooling capacity does not pass through the third heat exchanger 615 of the upper stage, and directly enters the heat exchange unit 610 of the next stage, and the heat exchange units 610 of the last several stages can
  • the medium reaches the third heat exchanger 615 of the heat exchange units 610 at all levels synchronously, and the heat exchange units 610 of the previous levels can also obtain the most sufficient heating capacity, which can ensure that it enters the heat exchangers at all levels.
  • the heating capacity and cooling capacity of the heating units 610, the heat exchange units 610 at all levels can show good heating and cooling effects;
  • the medium flow rate of the heat engine 615 is adjusted to control the cooling or heating effect of the third heat exchanger 615 of each heat exchange unit 610 .
  • the heat exchanger 615 produces different degrees of heating and cooling.
  • the four-way valve 200 is controlled so that the first interface 210 is communicated with the third interface 230 , and the second interface 220 is communicated with the fourth interface 240 .
  • the first heat exchange module 300, the first throttling device 400 and the first gas-liquid separator 500 in sequence, the gas returns to the compressor 100, and the liquid enters the parallel connection.
  • each heat exchange unit 610 performs heat exchange in the second heat exchanger 611 of each heat exchange unit 610 , it returns to the compressor 100 through the regenerator 700 for recompression, and thus circulates.
  • the four-way valve 200 is controlled so that the first port 210 is communicated with the fourth port 240 , and the second port 220 is communicated with the third port 230 , the high temperature and high pressure medium compressed by the compressor 100 passes through the regenerator 700 and then enters each heat exchange unit 610 connected in parallel, performs heat exchange in the second heat exchanger 611 of each heat exchange unit 610 and passes through the corresponding second throttling After the device 612, it enters the first gas-liquid separator 500, the gas returns to the compressor 100, and the liquid returns to the compressor 100 through the first heat exchange module 300 and the regenerator 700 to be compressed again, so as to circulate.
  • the four-way valve 200 is controlled to connect the first port 210 with the third port 230 and the second port 220 with the fourth port 240
  • the gas passes through the first heat exchanger 810.
  • the liquid enters the third throttling device 614 of the first-stage heat exchange unit 610 to reduce temperature and pressure
  • the gas-liquid mixture enters the second gas-liquid separator 616 of the heat exchange unit 610.
  • the liquid After heat exchange is performed in the corresponding third heat exchanger 615 to adjust the temperature of the space or area where the third heat exchanger 615 is located, the liquid enters the third throttling device 614 of the next-stage heat exchange unit 610. If the heat unit 610 is not the last stage, the liquid passing through the third throttling device 614 of the heat exchange unit 610 enters the third throttling device 614 of the heat exchange unit 610 to reduce the temperature and pressure, and the gas-liquid mixture enters the heat exchange unit The second gas-liquid separator 616 of 610, gas-liquid separation, the gas passes through the corresponding third heat exchanger 615 for heat exchange, so as to adjust the temperature of the space or area where the third heat exchanger 615 is located, and the liquid enters the next heat exchanger 615.
  • the third throttling device 614 of the heat exchange unit 610 of the last stage enters the third throttling device 614 of the heat exchange unit 610 of the last stage, and the gas-liquid mixture formed after the temperature and pressure of the third throttling device 614 of the last stage is input.
  • the third heat exchanger 615 of the last stage performs heat exchange, and the medium after the heat exchange of the heat exchange units 610 of all levels through the third heat exchanger 615 enters the regenerator 700, and after the cold energy is recovered by the regenerator 700, Compression is performed again in the compressor 100, and the cycle is repeated.
  • the four-way valve 200 is controlled to make the first port 210 communicate with the fourth port 240 and the second port 220 with the third port 230 is connected, and the high-temperature and high-pressure medium compressed by the compressor 100 passes through the regenerator and enters the third heat exchanger 615 of the heat exchange unit 610 at all levels, and conducts heat exchange in the third heat exchanger 615 of the heat exchange unit 610 at each level , in order to adjust the temperature of the space or area where the third heat exchanger 615 of the heat exchange unit 610 of each level is located, and the medium of the heat exchange unit 610 of each level after the heat exchange by the third heat exchanger 615 passes through the third section of the level.
  • the cooling device 614 After the cooling device 614 is cooled and depressurized, it enters the second gas-liquid separator 616 of the heat exchange unit 610 of the previous stage, and the medium of the heat exchange units 610 of all levels finally enters the first gas-liquid separator 500 uniformly, and the first gas-liquid separation
  • the gas separated by the compressor 500 is returned to the compressor 100 through the supplemental gas circuit 800, and the compressor 100 is injected with enthalpy to increase the enthalpy.
  • the space or area where the first heat exchanger 810 is located is heated, and the liquid separated by the first gas-liquid separator 500 passes through the first throttling device 400 to be cooled and depressurized again, and then enters the first heat exchange module 300 for exchange. Heat, releasing part of the cold energy, and then absorbing part of the heat through the regenerator 700, returning to the compressor 100 for recompression, and this cycle is repeated.
  • the air conditioner proposed in the present application includes the above-mentioned refrigerant circulation system.
  • the above-mentioned first heat exchange module 300 is an outdoor heat exchange module
  • the second heat exchange module 600 is an indoor heat exchange module.
  • the air conditioner can be a stand-alone cabinet type, a hanging type air conditioner, or a central air conditioner.
  • the air conditioner proposed in the present application adopts all the technical features of the above-mentioned embodiments of the refrigerant circulation system, it has at least all the beneficial effects brought by the technical solutions of the above-mentioned embodiments of the refrigerant circulation system, which will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

本申请公开了冷媒循环系统及空调,该冷媒循环系统包括:压缩机、四通阀、第一换热模块、第一节流装置、第二换热模块以及回热器;其中,四通阀的第一接口与压缩机的输出端连通,第二接口与压缩机的输入端连通,第三接口与第一换热模块的第一端口连通,第四接口与第二换热模块第二端口连通;第一节流装置的第一端口与第一换热模块的第二端口连通;第二换热模块的第一端口与第一节流装置的第二端口连通;回热器的第一回热管路串设于压缩机的输出端与第一接口之间的管路上,第二回热管路串设于压缩机的输入端与第二接口之间的管路上。空调包括该冷媒循环系统。

Description

冷媒循环系统及空调
本申请要求于2021年4月15日申请的、申请号为202110410072.3的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及制冷暖通设备领域,特别涉及冷媒循环系统及空调。
背景技术
冷媒循环系统是空调等制冷暖通设备的重要组成,用以调节外界温度。现有的冷媒循环系统,冷媒经压缩机压缩后,先后供入第一换热模块、节流装置和第二换热模块,经过换热-节流降压-换热后,冷媒又回到压缩机中再次压缩,以此循环,实现对外界温度的调节。现有冷媒循环系统,在运行的过程中,能耗高。
上述内容仅用于辅助理解本申请的技术方案,并不代表承认上述内容是现有技术。
技术问题
本申请的主要目的是提供冷媒循环系统及空调,旨在解决现有技术中运行能耗高的技术问题。
技术解决方案
为实现上述目的,本申请提出的冷媒循环系统,该冷媒循环系统包括:压缩机、四通阀、第一换热模块、第一节流装置、第二换热模块以及回热器;其中,四通阀的第一接口与压缩机的输出端连通,四通阀的第二接口与压缩机的输入端连通;第一换热模块的第一端口与四通阀的第三接口连通;第一节流装置的第一端口与第一换热模块的第二端口连通;第二换热模块的第一端口与第一节流装置的第二端口连通,第二换热模块第二端口与四通阀的第四接口连通;回热器内具有第一回热管路和第二回热管路,第一回热管路串设于压缩机的输出端与第一接口之间的管路上,第二回热管路串设于压缩机的输入端与第二接口之间的管路上。
在一实施例中,压缩机为喷气增焓压缩机。
在一实施例中,冷媒循环系统还包括:
第一气液分离器,其第一端口与第一节流装置的第二接口连通,其第二端口与第二换热模块的第一端口连通,其第三端口通过补气回路与喷气增焓压缩机的补气端连通,第二换热模块的第一端口通过第一气液分离器与第一节流装置的第二接口连通,其中,第一气液分离器的第三端口为其气体出口。
在一实施例中,冷媒循环系统还包括:
第一换热机,设置于补气回路上。
在一实施例中,第二换热模块包括一个或者多个换热单元,所有的换热单元的第一端口均与第一节流装置的第二端口连通,所有的换热单元的第二端口均与第四接口连通。
在一实施例中,当第二换热模块包括多个换热单元时,所有的换热单元并联。
在一实施例中,换热单元包括:
介质支路,其第一端口与第一节流装置的第二端口连通,其第二端口与第四接口连通;
第二换热机,设置于介质支路上;
以及第二节流装置,与第二换热机串联设置于介质支路上。
在一实施例中,各换热单元的第二节流装置串设于其所在的介质支路的第一端口与对应的第二换热机之间。
在一实施例中,当第二换热模块包括多个换热单元时,所有的换热单元依次连接形成多级换热结构;
其中,除最后一级的换热单元外,其余的各个换热单元均包括:
第三节流装置;
第二气液分离器,其第一端口与本级的第三节流装置的第二端口连通;
以及第三换热机,其第一端口与本级的第二气液分离器的第三端口连通,其第二端口与第四接口连通,其中,第二气液分离器的第三端口为其气体出口;
最后一级的换热单元包括:
第三节流装置;
以及第三换热机,其第一端口与本级的第三节流装置的第二端口连通,其第二端口与第四接口连通;
第一级的换热单元的第三节流装置的第一端口与第一节流装置的第二端口连通,其余的换热单元的第三节流装置的第一端口分别与其上一级的换热单元的第二气液分离器的第二端口连通。
本申请提出的空调,该空调包括上述的冷媒循环系统。
有益效果
在本申请的技术方案中,设置四通阀,方便进行制冷模式和制热模式的切换;为调节第二换热模块处的外界温度,通过在压缩机与四通阀之间设置回热器,压缩机输出端输出的高温高压介质与经过换热后的低温低压介质在回热器内进行换热,使压缩机输出的介质回收部分冷量;在对第二换热模块处制冷时,第一接口与第三接口连通,第二接口与第四接口连通,一方面,可降低进入第一换热模块内的介质的温度,减轻第一换热模块的换热负担;另一方面,可提高输入压缩机的介质的温度,减轻压缩机的压缩负担,因此,在对第二换热模块处制冷时,可降低冷媒循环系统整体的能耗和噪音,同时,由于进入第一换热模块内的介质温度更低,可减小对第一换热模块处环境温度的影响,也可使从第一换热模块中流出的介质的温度更低,进而提高后续的制冷效果;在对第二换热模块处制热时,第一接口与第四接口连通,第二接口与第三接口连通,也可提高输入压缩机的介质的温度,减轻压缩机的压缩负担,降低冷媒循环系统整体的能耗。如此设置,无论在第二换热模块处进行制热或者制冷时,均可实现降低能耗的目的。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请提出的多个换热单元并联的冷媒循环系统的实施例在第二换热模块制冷时的示意图;
图2为本申请提出的多个换热单元并联的冷媒循环系统的实施例在第二换热模块制热时的示意图;
图3为本申请提出的多个换热单元形成多级结构的冷媒循环系统的实施例在第二换热模块制冷时的示意图;
图4为本申请提出的多个换热单元形成多级结构的冷媒循环系统的实施例在第二换热模块制热时的示意图
附图标号说明:
标号 名称 标号 名称
100 压缩机 200 四通阀
210 第一接口 220 第二接口
230 第三接口 240 第四接口
300 第一换热模块 400 第一节流装置
500 第一气液分离器 600 第二换热模块
610 换热单元 611 第二换热机
612 第二节流装置 613 介质支路
614 第三节流装置 615 第三换热机
616 第二气液分离器 700 回热器
710 第一回热管路 720 第二回热管路
800 补气回路 810 第一换热机
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
在本申请中,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
另外,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或隐含地包括至少一个该特征。另外,全文中出现的“和/或”的含义,包括三个并列的方案,以“A和/或B”为例,包括A方案、或B方案、或A和B同时满足的方案。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本申请提出的冷媒循环系统及空调,无论在制冷模式或者制热模式运行中,均能起到节约能耗,降低噪音的效果。
如图1-图4所示,在本申请提出的冷媒循环系统的实施例中,该冷媒循环系统包括通过冷媒循环管路连通的:压缩机100、四通阀200、第一换热模块300、第一节流装置400、第二换热模块600以及回热器700。其中,四通阀200的第一接口210与压缩机100的输出端连通,四通阀200的第二接口220与压缩机100的输入端连通;第一换热模块300的第一端口与四通阀200的第三接口230连通;第一节流装置400的第一端口与第一换热模块300的第二端口连通;第二换热模块600的第一端口与第一节流装置400的第二端口连通,第二换热模块600第二端口与四通阀200的第四接口240连通;回热器700内具有第一回热管路710和第二回热管路720,第一回热管路710串设于压缩机100的输出端与第一接口210之间的管路上,第二回热管路720串设于压缩机100的输入端与第二接口220之间的管路上。
第一节流装置400可包括膨胀阀,如电子膨胀阀或压力膨胀阀等,用于对设置有第一节流装置400的管路上的介质流量进行调节,并使介质压力改变。
可将上述的第二换热模块600设置于待调节温度的空间内,第一换热模块300设置于待调节温度的空间外,以调节第二换热模块600处的空间或者区域的温度。
也可将上述的第一换热模块300设置于待调节温度的空间内,第二换热模块600设置于待调节温度的空间外,以调节第一换热模块300处的空间或者区域的温度。
下面以将第二换热模块600设置于待调节温度的空间内,第一换热模块300设置于待调节温度的空间外为例进行说明。
上述冷媒循环系统可为空调中的冷媒循环系统,此时,第一换热模块300可为室外换热模块,第二换热模块600可为室内换热模块。
当然,上述冷媒循环系统也可为对水域或者其他可进行热传导的环境温度进行调节的设备中的系统。
若在四通阀200与压缩机100的输入端和输出端之间不设置回热器700,冷媒循环系统内循环的介质在经过第一换热模块300、第一节流装置400和第二换热模块600后,温度极低,介质回到压缩机100内后,压缩机100需要将温度极低的介质压缩以形成预设温度的高温高压的介质,此时压缩的负担大,压缩过程中能耗高、噪音大;另外,在制冷模式时,压缩机100输出的高温高压介质直接经过四通阀200进入第一换热模块300进行换热,此时,进入第一换热模块300的介质温度极高,第一换热模块300进行换热的负担大、能耗大、噪音大,且在第一换热模块300中对介质换热后,第一换热模块300所处的环境吸收的热量多,对第一换热模块300所处环境的温度影响大,另外,从第一换热模块300输出的介质的温度较高,会影响后续的制冷效果。
在上述实施例中,设置四通阀200,方便进行制冷模式和制热模式的切换;为调节第二换热模块600处的外界温度,通过在压缩机100与四通阀200之间设置回热器700,压缩机100输出端输出的高温高压介质与经过换热后的低温低压介质在回热器700内进行换热,使压缩机100输出的介质回收部分冷量,介质温度降低,循环回压缩机100的介质吸收热量,介质温度升高;在对第二换热模块600处的空间或者区域制冷时,第一接口210与第三接口230连通,第二接口220与第四接口240连通,一方面,可降低进入第一换热模块300内的介质的温度,减轻第一换热模块300的换热负担;另一方面,可提高输入压缩机100的介质的温度,减轻压缩机100的压缩负担,因此,在对设置第二换热模块600处的空间或者区域进行制冷时,可降低冷媒循环系统整体的能耗和噪音,同时,由于进入第一换热模块300内的介质温度更低,与设置第一换热模块300处的环境进行热交换时,设置第一换热模块300处的环境吸收的热量更少,可减小对第一换热模块300处环境温度的影响,也可使从第一换热模块300中流出的介质的温度更低,进而提高后续的制冷效果;在对第二换热模块600处的空间或者区域制热时,第一接口210与第四接口240连通,第二接口220与第三接口230连通,也可提高输入压缩机100的介质的温度,减轻压缩机100的压缩负担,降低冷媒循环系统整体的能耗和噪音。如此设置,无论在对第二换热模块600处的空间或者区域进行制热或者制冷时,均可实现降低能耗和噪音的目的。
在上述实施例中,若将第一换热模块300设置于待调节温度的空间内,第二换热模块600设置于待调节温度的空间外,以调节第一换热模块300处的空间或者区域的温度,此时,在对待调节温度的空间制热时,使第一接口210与第三接口230连通,第二接口220与第四接口240连通,在对待调节温度的空间制热制冷时,使第一接口210与第四接口240连通,第二接口220与第三接口230连通即可。
作为上述实施例的进一步方案中,压缩机100为喷气增焓压缩机100。
在上述实施例的进一步方案,通过向压缩机100内喷气,可提高压缩能力能效,节省电能消耗。
作为上述实施例的进一步方案中,冷媒循环系统还包括:第一气液分离器500。第一气液分离器500的第一端口与第一节流装置400的第二接口220连通,第一气液分离器500的第二端口与第二换热模块600的第一端口连通,第一气液分离器500的第三端口通过补气回路800与喷气增焓压缩机100的补气端连通,第二换热模块600的第一端口通过第一气液分离器500与第一节流装置400的第二接口220连通,其中,第一气液分离器500的第三端口为其气体出口。
在上述实施例的进一步方案,第一气液分离器500可使经过第一节流装置400或第二换热模块600的介质中的气体和液体有效分离,并将含冷量低的气体通过补气回路800供入喷气增焓压缩机100,以提高压缩机100的能力能效,充分利用冷媒循环系统中的介质进行补气增焓,在制冷时,第一气液分离器500分离出的液体含有的冷量多,液体进入第二换热模块600进行换热,第二换热模块600所处的空间或者区域制冷效果好;在制热时,介质经过第二换热模块600换热后进入第一气液分离器500,气液分离,含冷量低的气体同样通过补气回路800供入喷气增焓压缩机100,以提高压缩机100的能力能效,含冷量多的液体经过第一换热模块300和回热器700后,可减少进入压缩机100的冷量,降低压缩机100的压缩负担。
作为上述实施例的进一步方案中,冷媒循环系统还包括:第一换热机810。第一换热机810设置于补气回路800上。
在上述实施例的进一步方案,可充分利用补气回路800中气体的冷量或者热量,可将第一换热机810设置于一空间内,可对该空间内的温度进行调节;在制冷时,经过第一换热机810的换热后,补气回路800中的介质温度进一步升高,可提高回到压缩机100内的补气的温度,以降低压缩机100的负担,可起到进一步的节能的效果。
在对将第二换热模块600设置于待调节温度的空间内,第一换热模块300设置于待调节温度的空间外的实施例的进行进一步改进的方案中,第二换热模块600包括一个或者多个换热单元610,所有的换热单元610的第一端口均与第一节流装置400的第二端口连通,所有的换热单元610的第二端口均与第四接口240连通。
第二换热模块600仅包括一个换热单元610时,换热单元610可包括换热机和节流装置,换热机和节流装置串设于第四接口240与第一节流装置400之间的管路上。
第二换热模块600包括多个换热单元610时,多个换热单元610可设置于同一空间的不同区域或者各自设置于不同的空间内。
在上述实施例的进一步方案,第二换热模块600中的各换热单元610复制添加或者删减方便,可根据需要将一个或者多个换热单元610接入冷媒循环系统,同时,方便根据需要,在完成的冷媒循环系统中添加或者减少换热单元610,改造容易,在设置多个换热单元610时,可同时对多个空间或多个区域进行温度调节。
作为上述实施例的一个进一步方案中,当第二换热模块600包括多个换热单元610时,所有的换热单元610并联。
在上述实施例的进一步方案中,第二换热模块600中的各换热单元无先后级,介质可同步到达各换热单元610内,各换热单元610的制冷量或者制热量均衡。
作为上述多个换热单元610并联的实施例的进一步方案中,换热单元610包括:介质支路613、第二换热机611以及第二节流装置612。介质支路613的第一端口与第一节流装置400的第二端口连通,介质支路613的第二端口与第四接口240连通;第二换热机611设置于介质支路613上;第二节流装置612与第二换热机611串联设置于介质支路613上。
第二节流装置612可为膨胀阀,如电子膨胀阀或者压力膨胀阀,用于对设置有第二节流装置612的介质支路613向上的介质流量进行调节,并使介质压力改变。
在上述实施例的进一步方案中,可通过各第二节流对其所在介质支路613上的介质流量进行调节,以控制流经各介质支路613上对应的第二换热机611的介质的流量,可单独控制各个介质支路613上的第二换热机611的制热或者制冷效果,使各个第二换热机611产生不同的制冷或者制热效果,以满足不同空间或者区域对不同温度的需求。如将本方案中的冷媒循环系统运用于中央空调时,可根据不同人群不同的冷热量需求,控制实现不同的房间供入的冷热量的控制,提升用户舒适性。
作为上述多个换热单元610并联的实施例的进一步方案中,各换热单元610的第二节流装置612串设于其所在的介质支路613的第一端口与对应的第二换热机611之间。
在上述实施例的进一步方案中,在制冷时,可使介质经过第二节流装置612降温降压之后再进入对应的第二换热机611,制冷效果好;在制热时,可使高温高压的介质经过第二换热机611后再经过对应的第二节流装置612,避免介质温度降低,可保证制热效果;同时,无论在制冷还是制热时,由于第二节流装置612均设置于对应的介质支路613上,均可控制对应的介质支路613上的介质流量。
作为上述实施例的另一个进一步方案中,当第二换热模块600包括多个换热单元610时,所有的换热单元610依次连接形成多级换热结构;
其中,除最后一级的换热单元610外,其余的各个换热单元610均包括:第三节流装置614、第二气液分离器616以及第三换热机615。第二气液分离器616的第一端口与本级的第三节流装置614的第二端口连通;第三换热机615,第三换热机615的第一端口与本级的第二气液分离器616的第三端口连通,第三换热机615的第二端口与第四接口240连通,其中,第二气液分离器616的第三端口为其气体出口;
最后一级的换热单元610包括:第三节流装置614以及第三换热机615,第三换热机615的第一端口与本级的第三节流装置614的第二端口连通,第三换热机615的第二端口与第四接口240连通;
第一级的换热单元610的第三节流装置614的第一端口与第一节流装置400的第二端口连通,其余的换热单元610的第三节流装置614的第一端口分别与其上一级的换热单元610的第二气液分离器616的第二端口连通。
第三节流装置614可为膨胀阀,如电子膨胀阀或压力膨胀阀等,用于对设置有第三节流装置614的管路上的介质流量进行调节,并使介质压力改变。
现有的多个换热单元610串联形成的多级结构中,在制冷时,介质依次经过各级换热单元610进行换热,介质经过前面几级换热单元610进行换热后,进入后面几级换热单元610(特别是最后一级换热单元610)的介质的制冷量不足,后面几级换热单元610的制冷效果差;而在制热时,介质从最后一级换热单元610进入后,依次经过各级换热单元610进行换热,介质经过后面几级换热单元610进行换热后,到达前面几级换热单元610(特别是第一级换热单元610)的介质的制热量不足,前面几级换热单元610的制热效果差。
在上述实施例的进一步方案中,制冷时,含冷量大的液体介质不经过上一级的第三换热机615,直接进入下一级换热单元610,最后几级换热单元610能够得到充分的制冷量,制热时,介质同步到达各级换热单元610的第三换热机615内,前面几级换热单元610也能得到最够的制热量,可保证进入各级换热单元610的制热量和制冷量,各级换热单元610均能表现良好的制热和制冷效果;且可通过对应的第三节流装置614,对经过各换热单元610的第三换热机615的介质流量进行调节,以控制各换热单元610的第三换热机615的制冷或者制热效果,可根据不同空间或者区域对温度的需求,使各个换热单元610的第三换热机615产生不同的制热度和制冷度。
下面,对多个换热单元610并联的实施例制热和制冷时冷媒循环系统中介质的流向进行说明:
如图1所示,在多个换热单元610并联的冷媒循环系统制冷时,控制四通阀200,使第一接口210与第三接口230连通,第二接口220与第四接口240连通,压缩机100压缩形成的高温高压介质依次经过回热器700、第一换热模块300、第一节流装置400和第一气液分离器500后,气体回到压缩机100,液体进入并联的各个换热单元610,在各个换热单元610的第二换热机611内进行换热后,通过回热器700回到压缩机100内再次进行压缩,以此循环。
如图2所示,在多个换热单元610并联的冷媒循环系统制热时,控制四通阀200,使第一接口210与第四接口240连通,第二接口220与第三接口230连通,压缩机100压缩形成的高温高压介质经过回热器700后进入并联的各个换热单元610,在各个换热单元610的第二换热机611内进行换热并通过对应的第二节流装置612后,进入第一气液分离器500,气体回到压缩机100,液体通过第一换热模块300和回热器700回到压缩机100内再次进行压缩,以此循环。
下面,对多个换热单元610形成多级结构的实施例制热和制冷时冷媒循环系统中介质的流向进行说明:
如图3所示,在多个换热单元610形成多级结构的冷媒系统制冷时,控制四通阀200,使第一接口210与第三接口230连通,第二接口220与第四接口240连通,压缩机100压缩形成的高温高压介质依次经过回热器700、第一换热模块300、第一节流装置400和第一气液分离器500后,气体经过第一换热机810后回到压缩机100,液体进入第一级换热单元610的第三节流装置614,降温降压,气液混合物进入该换热单元610的第二气液分离器616,气液分离,气体经过对应的第三换热机615内进行换热,以调节该第三换热机615所处空间或者区域的温度,液体进入下一级换热单元610的第三节流装置614,若换热单元610非最后一级,则经过该换热单元610的第三节流装置614的液体进入该换热单元610的第三节流装置614,降温降压,气液混合物进入该换热单元610的第二气液分离器616,气液分离,气体经过对应的第三换热机615内进行换热,以调节该第三换热机615所处空间或者区域的温度,液体进入下一级换热单元610的第三节流装置614,直到进入最后一级换热单元610的第三节流装置614,最后一级的第三节流装置614降温降压后形成的气液混合物输入最后一级的第三换热机615进行换热,各级换热单元610经过第三换热机615换热后的介质均进入回热器700,通过回热器700回收冷量后,回到压缩机100内再次进行压缩,以此循环。
如图4所示,在多个换热单元610形成多级结构的冷媒系统制热时,控制四通阀200,使第一接口210与第四接口240连通,第二接口220与第三接口230连通,压缩机100压缩形成的高温高压介质经过回热器后进入各级换热单元610的第三换热机615,在各级换热单元610的第三换热机615内进行换热,以调节各级换热单元610的第三换热机615所处空间或者区域的温度,各级换热单元610的经过第三换热机615换热后的介质经过该级的第三节流装置614降温降压后,进入上一级换热单元610的第二气液分离器616中,各级换热单元610的介质最后统一进入第一气液分离器500,第一气液分离器500分离出的气体通过补气回路800回到压缩机100中,对压缩机100进行喷气增焓,在补气回路800上设置第一换热机810,对气体中的热量进行利用,可对第一换热机810所处空间或者区域进行制热,第一气液分离器500分离出的液体经过第一节流装置400再一次降温降压后,进入第一换热模块300进行换热,释放部分冷量,然后通过回热器700吸收部分热量后,回到压缩机100内再次进行压缩,以此循环。
本申请提出的空调,该空调包括上述的冷媒循环系统。上述第一换热模块300为室外换热模块,第二换热模块600为室内换热模块。
空调可为单机的柜式、挂式空调,也可为中央空调等。
由于本申请提出的空调采用了上述冷媒循环系统的实施例的全部技术特征,因此至少具有上述冷媒循环系统的实施例的技术方案所带来的所有有益效果,在此不再累述。
以上所述仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是在本申请的申请构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (10)

  1. 一种冷媒循环系统,其中,所述冷媒循环系统包括:
    压缩机;
    四通阀,其第一接口与所述压缩机的输出端连通,其第二接口与所述压缩机的输入端连通;
    第一换热模块,其第一端口与所述四通阀的第三接口连通;
    第一节流装置,其第一端口与所述第一换热模块的第二端口连通;
    第二换热模块,其第一端口与所述第一节流装置的第二端口连通,其第二端口与所述四通阀的第四接口连通;
    以及回热器,其内具有第一回热管路和第二回热管路,所述第一回热管路串设于所述压缩机的输出端与所述第一接口之间,所述第二回热管路串设于所述压缩机的输入端与所述第二接口之间。
  2. 如权利要求1所述的冷媒循环系统,其中:所述压缩机为喷气增焓压缩机。
  3. 如权利要求2所述的冷媒循环系统,其中,所述冷媒循环系统还包括:
    第一气液分离器,其第一端口与所述第一节流装置的第二接口连通,其第二端口与所述第二换热模块的第一端口连通,其第三端口通过补气回路与所述喷气增焓压缩机的补气端连通,所述第二换热模块的第一端口通过所述第一气液分离器与所述第一节流装置的第二接口连通,其中,所述第一气液分离器的第三端口为其气体出口。
  4. 如权利要求3所述的冷媒循环系统,其中,所述冷媒循环系统还包括:
    第一换热机,设置于所述补气回路上。
  5. 如权利要求1-4任一项所述的冷媒循环系统,其中,所述第二换热模块包括一个或者多个换热单元,所有的所述换热单元的第一端口均与所述第一节流装置的第二端口连通,所有的所述换热单元的第二端口均与所述第四接口连通。
  6. 如权利要求5所述的冷媒循环系统,其中,当所述第二换热模块包括多个所述换热单元时,所有的所述换热单元并联。
  7. 如权利要求6所述的冷媒循环系统,其中,所述换热单元包括:
    介质支路,其第一端口与所述第一节流装置的第二端口连通,其第二端口与所述第四接口连通;
    第二换热机,设置于所述介质支路上;
    以及第二节流装置,与所述第二换热机串联设置于所述介质支路上。
  8. 如权利要求7所述的冷媒循环系统,其中,各所述换热单元的所述第二节流装置串设于其所在的所述介质支路的第一端口与对应的所述第二换热机之间。
  9. 如权利要求5所述的冷媒循环系统,其中,当所述第二换热模块包括多个所述换热单元时,所有的所述换热单元依次连接形成多级换热结构;
    其中,除最后一级的所述换热单元外,其余的各个所述换热单元均包括:
    第三节流装置;
    第二气液分离器,其第一端口与本级的所述第三节流装置的第二端口连通;
    以及第三换热机,其第一端口与本级的所述第二气液分离器的第三端口连通,其第二端口与所述第四接口连通,其中,所述第二气液分离器的第三端口为其气体出口;
    最后一级的所述换热单元包括:
    第三节流装置;
    以及第三换热机,其第一端口与本级的所述第三节流装置的第二端口连通,其第二端口与所述第四接口连通;
    第一级的所述换热单元的所述第三节流装置的第一端口与所述第一节流装置的第二端口连通,其余的所述换热单元的所述第三节流装置的第一端口分别与其上一级的所述换热单元的所述第二气液分离器的第二端口连通。
  10. 一种空调,其中,所述空调包括如权利要求1-9任一项所述的冷媒循环系统。
PCT/CN2021/120835 2021-04-15 2021-09-27 冷媒循环系统及空调 WO2022217851A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110410072.3 2021-04-15
CN202110410072.3A CN115218560A (zh) 2021-04-15 2021-04-15 冷媒循环系统及空调

Publications (1)

Publication Number Publication Date
WO2022217851A1 true WO2022217851A1 (zh) 2022-10-20

Family

ID=83604019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120835 WO2022217851A1 (zh) 2021-04-15 2021-09-27 冷媒循环系统及空调

Country Status (2)

Country Link
CN (1) CN115218560A (zh)
WO (1) WO2022217851A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57200879U (zh) * 1981-06-18 1982-12-21
EP0779481A2 (en) * 1995-12-15 1997-06-18 Showa Aluminum Corporation Refrigeration cycle system
JP2000073974A (ja) * 1998-08-26 2000-03-07 Daikin Ind Ltd 2段圧縮機及び空気調和装置
JP2006029714A (ja) * 2004-07-20 2006-02-02 Denso Corp エジェクタサイクル
JP2008008572A (ja) * 2006-06-30 2008-01-17 Denso Corp エジェクタを用いた蒸気圧縮式冷凍サイクル
KR20090074956A (ko) * 2008-01-03 2009-07-08 주식회사 대우일렉트로닉스 맥동 저감장치를 구비한 냉동사이클
CN104185766A (zh) * 2012-07-10 2014-12-03 夏普株式会社 热泵式加热装置
CN105758042A (zh) * 2016-04-29 2016-07-13 广东美的制冷设备有限公司 冷暖型空调器及其控制方法
CN106839482A (zh) * 2016-12-27 2017-06-13 广东技术师范学院 制冷制热双循环系统、方法及汽车空调系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204963284U (zh) * 2015-08-20 2016-01-13 广东美的制冷设备有限公司 冷暖型空调系统和单冷型空调系统
CN105546864B (zh) * 2016-01-13 2018-05-18 西安交通大学 一种带蒸发过冷器的自复叠蒸气压缩式制冷循环系统
CN105737427B (zh) * 2016-03-15 2018-03-16 西安交通大学 一种采用双级气液分离器的一级自复叠低温制冷循环系统
CN106369864B (zh) * 2016-10-28 2023-04-07 广东美的制冷设备有限公司 空调循环系统和循环方法及空调
CN106524339A (zh) * 2016-12-16 2017-03-22 广东美的制冷设备有限公司 空调节能系统和节能方法及空调
CN208269446U (zh) * 2017-07-20 2018-12-21 南京天源冷冻设备有限公司 一种可调节压缩机排气温度的自复叠双温制冷系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57200879U (zh) * 1981-06-18 1982-12-21
EP0779481A2 (en) * 1995-12-15 1997-06-18 Showa Aluminum Corporation Refrigeration cycle system
JP2000073974A (ja) * 1998-08-26 2000-03-07 Daikin Ind Ltd 2段圧縮機及び空気調和装置
JP2006029714A (ja) * 2004-07-20 2006-02-02 Denso Corp エジェクタサイクル
JP2008008572A (ja) * 2006-06-30 2008-01-17 Denso Corp エジェクタを用いた蒸気圧縮式冷凍サイクル
KR20090074956A (ko) * 2008-01-03 2009-07-08 주식회사 대우일렉트로닉스 맥동 저감장치를 구비한 냉동사이클
CN104185766A (zh) * 2012-07-10 2014-12-03 夏普株式会社 热泵式加热装置
CN105758042A (zh) * 2016-04-29 2016-07-13 广东美的制冷设备有限公司 冷暖型空调器及其控制方法
CN106839482A (zh) * 2016-12-27 2017-06-13 广东技术师范学院 制冷制热双循环系统、方法及汽车空调系统

Also Published As

Publication number Publication date
CN115218560A (zh) 2022-10-21

Similar Documents

Publication Publication Date Title
CN102062496B (zh) 热泵
RU2660234C2 (ru) Холодильный аппарат
CN101713599B (zh) 空调热泵装置
CN101140122B (zh) 使用组合节流装置的热泵机组
CN104101124B (zh) 空调器
CN203203289U (zh) 空调器
CN102759147B (zh) 空调器多联机系统
CN105004100A (zh) 单制冷剂回路、多吸气压力的蒸气压缩制冷/热泵系统
CN105466063A (zh) 一种热泵系统
CN104154609A (zh) 一种双系统热泵屋顶机组
WO2024098868A1 (zh) 空调系统及控制方法
CN201100796Y (zh) 使用组合节流装置的热泵机组
CN112747490A (zh) 一种轨道车辆用co2空调系统及其控制方法
CN210512235U (zh) 热泵系统
CN116972561A (zh) 一种热气旁通除霜系统及其空气热源泵
WO2022217851A1 (zh) 冷媒循环系统及空调
CN108240722B (zh) 一种多循环变流量制冷系统
CN103968455A (zh) 空调器
CN215930175U (zh) 一种制冷系统
WO2022099748A1 (zh) 热泵系统
CN211233446U (zh) 直流变频复叠二氧化碳热泵机组
CN109282520B (zh) 涡流管与压缩式复合的直膨式空调系统及控制方法
CN112628850A (zh) 一种分体式双源热泵空调机组及其运行方法
CN214276190U (zh) 一种轨道车辆用co2空调系统
CN219283481U (zh) 空调系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936719

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936719

Country of ref document: EP

Kind code of ref document: A1