WO2022217836A1 - 基于光解水制氢技术的月球基地能源供应及应用系统 - Google Patents

基于光解水制氢技术的月球基地能源供应及应用系统 Download PDF

Info

Publication number
WO2022217836A1
WO2022217836A1 PCT/CN2021/119740 CN2021119740W WO2022217836A1 WO 2022217836 A1 WO2022217836 A1 WO 2022217836A1 CN 2021119740 W CN2021119740 W CN 2021119740W WO 2022217836 A1 WO2022217836 A1 WO 2022217836A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
oxygen
water
storage tank
unit
Prior art date
Application number
PCT/CN2021/119740
Other languages
English (en)
French (fr)
Inventor
谭永华
汪广旭
杜飞平
王君
李星
杨宝娥
尚冬琴
严宇
Original Assignee
西安航天动力研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安航天动力研究所 filed Critical 西安航天动力研究所
Publication of WO2022217836A1 publication Critical patent/WO2022217836A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the invention relates to the technical field of lunar base energy supply, in particular to a lunar base energy supply and application system based on the photolysis water hydrogen production technology.
  • lunar bases usually, we collectively refer to all the infrastructures established on the moon that can be used for long-term human habitation, life, and to carry out various technological experiments, scientific research and resource development as lunar bases.
  • the lunar base must be supported by energy and power on the lunar surface in order to provide basic guarantees for the body of the lunar base, astronauts, lunar rovers, various scientific instruments and equipment, operating tools, and communication and navigation facilities.
  • the purpose of the present invention is to solve the significant increase in energy demand existing in the long-term moon base mission, a single energy supply method cannot meet the energy demand of the moon base, and cannot guarantee the stable supply of base energy, and provides a photolysis water based system. Hydrogen-based energy supply and application system for lunar bases.
  • a lunar base energy supply and application system based on photolysis water hydrogen production technology its special features are:
  • the electric energy output end of the solar photovoltaic power generation unit is connected to the electric energy input end of the power management unit;
  • the photo-splitting unit includes an electrolytic cell, a proton exchange membrane, a hydrogen-producing electrode, an oxygen-producing electrode and a light concentrator; the proton-exchange membrane is arranged in the electrolytic cell, and the electrolytic cell is divided into a hydrogen-producing chamber and an oxygen-producing chamber on the left and right sides. ; the water inlet of the oxygen producing chamber is connected to the water outlet of the water storage tank; the hydrogen producing electrode and the oxygen producing electrode are respectively arranged in the hydrogen producing chamber and the oxygen producing chamber; the concentrator is arranged above the oxygen producing chamber, with to collect sunlight;
  • the hydrogen and oxygen storage unit includes a hydrogen water vapor separator, a hydrogen storage tank, an oxygen water vapor separator and an oxygen storage tank; the outlet of the hydrogen production chamber of the photo-splitting unit is connected to the air inlet of the hydrogen water vapor separator, and the hydrogen water vapor is separated.
  • the air outlet of the device is connected to the air inlet of the hydrogen storage tank, the water outlet of the hydrogen water vapor separator is connected to the water inlet of the water storage tank; the air outlet of the oxygen producing chamber of the photo-splitting unit is connected to the air inlet of the oxygen water vapor separator, The air outlet of the oxygen water vapor separator is connected to the air inlet of the oxygen storage tank, and the water outlet of the oxygen water vapor separator is connected to the water inlet of the water storage tank;
  • the hydrogen-oxygen-water conversion unit is a split-type hydrogen-oxygen fuel cell and water electrolysis device, or an integrated renewable fuel cell;
  • the hydrogen inlet of the hydrogen-oxygen fuel cell is connected to the air outlet of the hydrogen storage tank, the oxygen inlet is connected to the air outlet of the oxygen storage tank, the water outlet is connected to the water inlet of the water storage tank, and the electrical energy output terminal is connected to the electrical energy input of the power management unit.
  • the electric energy input end of the water electrolysis device is connected to the electric energy output end of the power management unit, the water inlet is connected to the water outlet of the water storage tank, the hydrogen outlet is connected to the air inlet of the hydrogen storage tank, and the oxygen outlet is connected to the oxygen storage tank the air intake;
  • the hydrogen inlet and outlet of the integrated renewable fuel cell are connected with the hydrogen storage tank, the oxygen inlet and outlet are connected with the oxygen storage tank, the water inlet and outlet are connected with the water storage tank, and the electrical energy input and output ends are connected with the power management unit;
  • the chemical propulsion unit is powered by hydrogen and oxygen as fuel, the hydrogen inlet is connected to the air outlet of the hydrogen storage tank, the oxygen inlet is connected to the air outlet of the oxygen storage tank, and the electrical energy input end is connected to the electrical energy output end of the power management unit;
  • the environmental control and life protection unit is used to control and guarantee the living environment of the lunar base. Its oxygen inlet is connected to the air outlet of the oxygen storage tank, its electric energy input end is connected to the electric energy output end of the power management unit, and its water outlet is connected to the water storage tank. water intake;
  • the power input terminal of the load is connected to the power output terminal of the power management unit;
  • the state monitoring unit is used to monitor the working state of the solar photovoltaic power generation unit, the water storage tank, the hydrogen-oxygen storage unit, the environmental control and life protection unit, the chemical propulsion unit and the load, and feed back the electricity demand to the power management unit;
  • the power management unit supplies power according to the power demand fed back by the state monitoring unit.
  • the hydrogen-oxygen storage unit also includes a hydrogen booster pump and an oxygen booster pump; the air inlet of the hydrogen booster pump is connected to the air outlet of the hydrogen water vapor separator, and the air outlet is connected to the air intake of the hydrogen storage tank.
  • the air inlet of the oxygen booster pump is connected to the air outlet of the oxygen water vapor separator, and the air outlet is connected to the air inlet of the oxygen storage tank.
  • the solar photovoltaic power generation unit includes a solar panel, a solar controller, a battery and an inverter; the solar panel directly converts solar energy into electrical energy, and stores a part of the electrical energy in the battery through the solar controller;
  • the inverter converts the low-voltage direct current provided by the solar panel and the battery into 220 volt alternating current, and then outputs the electric energy to the outside.
  • the oxygen generating electrode is formed by coupling a self-biased PN junction and a semiconductor photoanode in series.
  • the rated storage pressure of the hydrogen storage tank and the oxygen storage tank is 2MPa-8MPa.
  • the moon base energy supply and application system based on the photo-splitting water hydrogen production technology proposed by the present invention when the light is sufficient, on the one hand utilizes the solar photovoltaic power generation unit for power generation and energy storage, on the other hand utilizes the photo-splitting water unit to produce hydrogen and oxygen,
  • the hydrogen and oxygen are stored to store energy and provide oxygen for the lunar base; when there is no light on the moonlit night, on the one hand, the stored energy of the solar photovoltaic power generation unit can be used to continue to supply energy, and on the other hand, the stored hydrogen and oxygen can also be supplied to hydrogen
  • the oxygen-water conversion unit generates electricity and supplies energy to ensure the stable supply of energy to the lunar base; when the required amount of hydrogen and oxygen is large, the photo-splitting water unit and the hydrogen-oxygen-water conversion unit can be used to produce hydrogen and oxygen at the same time. When power is required, the hydrogen and oxygen produced can be supplied to the engine to generate thrust.
  • Solar photovoltaic power generation is the main energy supply mode of the lunar base
  • hydrogen-oxygen-water conversion power generation is an auxiliary emergency supply mode of energy
  • photo-splitting water to produce hydrogen is the best way for photochemical conversion and storage of solar energy.
  • the combination of the hydrogen-oxygen-water conversion unit can realize the efficient conversion of water-hydrogen/oxygen-electricity in space, effectively solving the problem of stable energy supply for the lunar base when there is no light on the moonlit night.
  • Fig. 1 is the structural block diagram of the lunar base energy supply and application system based on the photolysis water hydrogen production technology of the present invention
  • Fig. 2 is the structural block diagram of the solar photovoltaic power generation unit in the present invention.
  • Fig. 3 is the structural representation of the water storage tank in the present invention.
  • Fig. 4 is the structural representation of photolysis water unit in the present invention.
  • Fig. 5 is the working process schematic diagram of hydrogen-oxygen storage unit in the present invention.
  • FIG. 6 is a schematic diagram of the working process of the integrated renewable fuel cell in the present invention.
  • 1-water storage tank 2-solar photovoltaic power generation unit, 3-power management unit, 4-photolysis water unit, 5-hydrogen-oxygen-water conversion unit, 6-state monitoring unit, 7-hydrogen-oxygen storage unit , 8-chemical propulsion unit, 9-environmental control and life protection unit, 10-load, 11-water inlet valve, 12-water outlet valve, 13-solar panel, 14-solar controller, 15-battery, 16-inverter , 17-concentrator, 18-hydrogen-generating electrode, 19-oxygen-generating electrode, 20-electrolysis cell, 21-proton exchange membrane, 22-hydrogen-generating chamber, 23-oxygen-generating chamber, 24-hydrogen water vapor separator, 25 -Oxygen water vapor separator, 26-hydrogen booster pump, 27-oxygen booster pump, 28-hydrogen storage tank, 29-oxygen storage tank.
  • the system includes a solar photovoltaic power generation unit 2, a power management unit 3, a water storage tank 1, a photolysis water unit 4, a hydrogen-oxygen storage unit 7, a hydrogen-oxygen-water conversion unit 5, a state monitoring unit 6, Chemical propulsion unit 8 , environmental control and life protection unit 9 and load 10 .
  • the solar photovoltaic power generation unit 2 and the hydrogen-oxygen-water conversion unit 5 can generate electricity, and the photo-splitting water unit 4 and the hydrogen-oxygen-water conversion unit 5 can generate hydrogen and oxygen.
  • the solar photovoltaic power generation unit 2 includes a solar cell panel 13 , a solar controller 14 , a storage battery 15 and an inverter 16 .
  • the solar panel 13 directly converts the solar energy into electrical energy, which is used by the load 10 or the like or stored in the battery 15 for backup.
  • the solar controller 14 stores a part of the electrical energy generated by the solar panel 13 in the battery 15 , and the solar controller 14 can provide the battery 15 with optimal charging current and voltage, so as to charge the battery 15 quickly, smoothly and efficiently.
  • the inverter 16 inverts the low-voltage direct current provided by the solar panel 13 and the battery 15 into an alternating current of 220 volts, and then outputs electric energy to the outside.
  • the electric energy output end of the solar photovoltaic power generation unit 2 is connected to the electric energy input end of the power management unit 3, and through the power management unit 3 to the hydrogen-oxygen-water conversion unit 5, the state monitoring unit 6, the chemical propulsion unit 8, the environmental control and life protection unit 9 and the load 10 etc. power supply.
  • the water in the water storage tank 1 is mainly obtained by the in-situ production technology, and is used to supply water to the photolysis water unit 4 and the hydrogen-oxygen-water conversion unit 5.
  • a water inlet is arranged on the top of the water storage tank 1, and a water inlet valve 11 is arranged on the connecting pipeline of the water inlet to control the filling of water;
  • a water outlet is arranged at the bottom of the water storage tank 1, and the connecting pipeline of the water outlet is arranged
  • the photo-splitting unit 4 includes an electrolytic cell 20 , a proton exchange membrane 21 , a hydrogen-generating electrode 18 , an oxygen-generating electrode 19 and a concentrator 17 .
  • the proton exchange membrane 21 is arranged in the electrolytic cell 20 and divides the electrolytic cell 20 into a hydrogen producing chamber 22 and an oxygen producing chamber 23 .
  • the hydrogen-generating electrode 18 and the oxygen-generating electrode 19 are disposed in the hydrogen-generating chamber 22 and the oxygen-generating chamber 23, respectively, and are immersed in the electrolyte.
  • the oxygen-generating electrode 19 is formed by coupling a self-biased PN junction and a semiconductor photoanode in series, which can realize hydrogen production and oxygen production without external electric energy input.
  • the concentrator 17 is arranged above the oxygen generating chamber 23 for collecting sunlight. Under illumination and a certain self-bias voltage, water starts photolysis, hydrogen ions enter the hydrogen production chamber 22 through the proton exchange membrane 21, the hydrogen production electrode 18 and the oxygen production electrode 19 produce hydrogen and oxygen respectively, and the hydrogen produced by the photolysis water unit 4 and oxygen are stored in the hydrogen-oxygen storage unit 7.
  • the hydrogen-oxygen storage unit 7 includes a hydrogen-water vapor separator 24 , a hydrogen booster pump 26 , a hydrogen storage tank 28 , an oxygen-water vapor separator 25 , an oxygen booster pump 27 and an oxygen storage tank 29 .
  • the rated storage pressure of the hydrogen storage tank 28 and the oxygen storage tank 29 is 2 MPa to 8 MPa.
  • the air outlet of the hydrogen production chamber 22 of the photo-splitting unit 4 is connected to the air inlet of the hydrogen water vapor separator 24, the air outlet of the hydrogen water vapor separator 24 is connected to the air inlet of the hydrogen storage tank 28, and the water outlet of the hydrogen water vapor separator 24 is connected to the air inlet of the hydrogen storage tank 28.
  • the water outlet of the water vapor separator 25 is connected to the water inlet of the water storage tank 1;
  • the air inlet of the hydrogen booster pump 26 is connected to the air outlet of the hydrogen water vapor separator 24, and its air outlet is connected to the air inlet of the hydrogen storage tank 28;
  • the air inlet of the pressure pump 27 is connected to the air outlet of the oxygen-water vapor separator 25 , and the air outlet is connected to the air inlet of the oxygen storage tank 29 .
  • the hydrogen-oxygen-water conversion unit 5 can be a split-type hydrogen-oxygen fuel cell and a water electrolysis device, or an integrated renewable fuel cell.
  • the hydrogen inlet of the hydrogen-oxygen fuel cell is connected to the air outlet of the hydrogen storage tank 28, the oxygen inlet is connected to the air outlet of the oxygen storage tank 29, and the water outlet is connected to the water storage tank 29.
  • the water inlet of the box 1, and its electric energy output end is connected to the electric energy input end of the power management unit 3.
  • the electric energy input end of the water electrolysis device is connected to the electric energy output end of the power management unit 3, its water inlet is connected to the water outlet of the water storage tank 1, its hydrogen outlet is connected to the air inlet of the hydrogen storage tank 28, and its oxygen outlet is connected to the oxygen storage tank 29 the air intake.
  • this embodiment adopts the form of an integrated renewable fuel cell.
  • the water electrolysis function and the fuel cell function of the integrated renewable fuel cell are completed by the same component, and the hydrogen inlet and outlet are connected to the hydrogen storage tank 28.
  • the oxygen inlet and outlet are connected to the oxygen storage tank 29 , the water inlet and outlet are connected to the water storage tank 1 , and the electrical energy input and output terminals are connected to the power management unit 3 .
  • the water in the water storage tank 1 is input into the hydrogen-oxygen-water conversion unit 5, and the water is electrolyzed into hydrogen-oxygen under the action of electric energy and stored in the hydrogen-oxygen storage unit 7;
  • the hydrogen and oxygen in the hydrogen-oxygen storage unit 7 are passed into the hydrogen-oxygen-water conversion unit 5 to generate electricity through the function of the fuel cell, and the power supply management unit 3 supplies power to the outside.
  • the hydrogen and oxygen that are photolyzed by the photolysis water unit 4 or electrolyzed by the hydrogen-oxygen-water conversion unit 5 are separated from water and gas through the hydrogen water vapor separator 24 and the oxygen water vapor separator 25, respectively, and the separated water is returned to the water storage tank. 1, the separated hydrogen and oxygen are stored in the hydrogen storage tank 28 and the oxygen storage tank 29, respectively.
  • the generated hydrogen is directly stored in the hydrogen storage tank 28;
  • the pressure of the hydrogen gas electrolyzed by photolysis or the hydrogen-oxygen-water conversion unit 5 is lower than the pressure in the hydrogen storage tank 28 , the generated hydrogen gas needs to be pressurized by the hydrogen booster pump 26 and then stored in the hydrogen storage tank 28 .
  • the chemical propulsion unit 8 uses hydrogen and oxygen as fuel to provide power for vehicles on the lunar surface or for launching probes on the lunar surface. , whose power input terminal is connected to the power output terminal of the power management unit 3 .
  • the environmental control and life protection unit 9 is a complete set of environmental control and life support systems that can create a habitable living environment for astronauts and provide necessary material conditions.
  • the oxygen inlet of the environmental control and life protection unit 9 is connected to the air outlet of the oxygen storage tank 29. , its power input terminal is connected to the power output terminal of the power management unit 3 , and its water outlet is connected to the water inlet of the water storage tank 1 .
  • the load 10 refers to the general name of various instruments and equipment on the lunar base that need to provide energy, and the power input terminal of the load 10 is connected to the power output terminal of the power management unit 3 .
  • the state monitoring unit 6 is used to monitor the working states of the solar photovoltaic power generation unit 2, the water storage tank 1, the hydrogen and oxygen storage unit 7, the environmental control and life protection unit 9, the chemical propulsion unit 8 and the load 10, and feed back the electricity demand to Power Management Unit 3.
  • the power management unit 3 decides which mode to use for power supply according to the electricity demand fed back by the state monitoring unit 6 .
  • Solar photovoltaic power generation is the main energy supply method for the lunar base, and hydrogen-oxygen-water conversion power generation is an auxiliary emergency supply method for energy.

Abstract

本发明涉及一种基于光解水制氢技术的月球基地能源供应及应用系统,以解决长期月球基地任务中存在的能源需求量显著增加,单一的供能方式无法满足月球基地能源需求,且不能保证基地能源的稳定供应问题。该系统包括太阳能光伏发电单元、电源管理单元、水贮箱、光解水单元、氢氧存储单元、氢氧-水转换单元、状态监测单元、化学推进单元、环控生保单元及负载。光解水单元和氢氧-水转换单元可产生氢气和氧气,太阳能光伏发电单元和氢氧-水转换单元可产生电能,保证月球基地的能源稳定供应。

Description

基于光解水制氢技术的月球基地能源供应及应用系统 技术领域
本发明涉及月球基地能源供应技术领域,具体涉及一种基于光解水制氢技术的月球基地能源供应及应用系统。
背景技术
通常我们把在月球上建立的可供人类长期居住、生活以及开展各种技术试验、科学研究和资源开发的所有基础设施统称为月球基地。月球基地在月面上必须有能源动力的支持,才能为月球基地本体、航天员、月球车、各类科学仪器设备和作业工具、通信导航设施等提供基本保障。
在空间站工程中,通过采用大型太阳能电池阵技术来提供航天器所需的能源和动力;在短期的载人登月任务中,登月飞船采用氢氧燃料电池进行供电。而对于长期月球基地任务而言,由于有航天员的参与,需要提供生命保障和健康支持系统,使得月球基地的设备和仪器增多,能源需求量显著增加,单一的供能方式无法满足月球基地能源需求,且不能保证基地能源的稳定供应,因此能源问题成为一个突出的问题,需依靠多种供能方式才能满足需求。
发明内容
本发明的目的是解决长期月球基地任务中存在的能源需求量显著增加,单一的供能方式无法满足月球基地能源需求,且不能保证基地能源的稳定供应问题,而提供一种基于光解水制氢技术的月球 基地能源供应及应用系统。
国外勘测发现月球南极地区的永久阴影区存在着水冰,据估计最少有6亿吨,水冰既可以净化为饮用水,也可对其进行分解获得氢和氧,其中氢气和氧气既可以用来发电,也可作为发动机推进剂,氧气还可供航天员呼吸。因此,将这些水冰资源采用原位制取的方法加以利用,通过光解水和氢氧-水转换技术可实现空间水-氢/氧-电的高效转化,以解决月夜无光照时月球基地的能源供应问题。
为达到上述目的,本发明所采用的技术方案如下:
一种基于光解水制氢技术的月球基地能源供应及应用系统,其特殊之处在于:
包括太阳能光伏发电单元、电源管理单元、水贮箱、光解水单元、氢氧存储单元、氢氧-水转换单元、状态监测单元、化学推进单元、环控生保单元及负载;
所述太阳能光伏发电单元的电能输出端接电源管理单元的电能输入端;
所述光解水单元包括电解池、质子交换膜、产氢电极、产氧电极和聚光器;所述质子交换膜设置在电解池内,并将电解池左右分隔为产氢室和产氧室;所述产氧室的进水口接水贮箱的出水口;所述产氢电极和产氧电极分别设置在产氢室和产氧室内;所述聚光器设置在产氧室上方,用于收集太阳光;
所述氢氧存储单元包括氢气水汽分离器、氢贮箱、氧气水汽分离器和氧贮箱;所述光解水单元的产氢室出气口接氢气水汽分离器 的进气口,氢气水汽分离器的出气口接氢贮箱的进气口,氢气水汽分离器的出水口接水贮箱的进水口;所述光解水单元的产氧室出气口接氧气水汽分离器的进气口,氧气水汽分离器的出气口接氧贮箱的进气口,氧气水汽分离器的出水口接水贮箱的进水口;
所述氢氧-水转换单元为分体式的氢氧燃料电池和电解水装置,或者一体式可再生燃料电池;
所述氢氧燃料电池的氢气进口接氢贮箱的出气口,其氧气进口接氧贮箱的出气口,其出水口接水贮箱的进水口,其电能输出端接电源管理单元的电能输入端;所述电解水装置的电能输入端接电源管理单元的电能输出端,其进水口接水贮箱的出水口,其氢气出口接氢贮箱的进气口,其氧气出口接氧贮箱的进气口;
所述一体式可再生燃料电池的氢气进出口与氢贮箱连接,其氧气进出口与氧贮箱连接,其进出水口与水贮箱连接,其电能输入输出端与电源管理单元连接;
所述化学推进单元以氢氧为燃料提供动力,其氢气进口接氢贮箱的出气口,其氧气进口接氧贮箱的出气口,其电能输入端接电源管理单元的电能输出端;
所述环控生保单元用于对月球基地生存环境进行控制和保障,其氧气进口接氧贮箱的出气口,其电能输入端接电源管理单元的电能输出端,其出水口接水贮箱的进水口;
所述负载的电能输入端接电源管理单元的电能输出端;
所述状态监测单元用于对太阳能光伏发电单元、水贮箱、氢氧 存储单元、环控生保单元、化学推进单元以及负载的工作状态进行监测,并将用电需求反馈给电源管理单元;
所述电源管理单元根据状态监测单元反馈的用电需求进行供电。
进一步地,所述氢氧存储单元还包括氢增压泵和氧增压泵;所述氢增压泵的进气口接氢气水汽分离器的出气口,其出气口接氢贮箱的进气口;所述氧增压泵的进气口接氧气水汽分离器的出气口,其出气口接氧贮箱的进气口。
进一步地,所述太阳能光伏发电单元包括太阳能电池板、太阳能控制器、蓄电池和逆变器;所述太阳能电池板将太阳能直接转换成电能,并通过太阳能控制器将一部分电能储存在蓄电池内;所述逆变器将太阳能电池板和蓄电池提供的低压直流电逆变成220伏交流电后,向外输出电能。
进一步地,所述产氧电极由自偏压PN结和半导体光阳极耦合串联而成。
进一步地,所述的氢贮箱和氧贮箱的额定存储压力为2MPa-8MPa。
本发明的有益效果是:
本发明提出的基于光解水制氢技术的月球基地能源供应及应用系统,当光照充足时,一方面利用太阳能光伏发电单元进行发电储能,另一方面利用光解水单元制氢制氧,并将氢氧贮存起来,为月球基地储备能量和提供氧气;当月夜无光照时,一方面可以利用太阳能光伏发电单元贮存的能量继续进行供能,另一方面也可将贮存的氢氧供给氢氧-水转换单元进行发电供能,保证月球基地的能源稳 定供应;当需要的氢氧气量较大时,可同时利用光解水单元和氢氧-水转换单元进行制氢制氧,当有动力需求时,产生的氢氧可供给发动机产生推力。
太阳能光伏发电为月球基地能源的主要供应方式,氢氧-水转换发电为能源的辅助应急供应方式,光解水制氢是太阳能光化学转化与储存的最好途径,本发明将光解水单元和氢氧-水转换单元相结合,可实现空间水-氢/氧-电的高效转化,有效解决了月夜无光照时月球基地的能源稳定供应问题。
附图说明
图1是本发明基于光解水制氢技术的月球基地能源供应及应用系统的结构框图;
图2是本发明中太阳能光伏发电单元的结构框图;
图3是本发明中水贮箱的结构示意图;
图4是本发明中光解水单元的结构示意图;
图5是本发明中氢氧存储单元的工作过程示意图;
图6是本发明中一体式可再生燃料电池的工作过程示意图。
图中,1-水贮箱,2-太阳能光伏发电单元,3-电源管理单元,4-光解水单元,5-氢氧-水转换单元,6-状态监测单元,7-氢氧存储单元,8-化学推进单元,9-环控生保单元,10-负载,11-进水阀,12-出水阀,13-太阳能电池板,14-太阳能控制器,15-蓄电池,16-逆变器,17-聚光器,18-产氢电极,19-产氧电极,20-电解池,21-质子交换膜,22-产氢室,23-产氧室,24-氢气水汽分离器,25-氧 气水汽分离器,26-氢增压泵,27-氧增压泵,28-氢贮箱,29-氧贮箱。
具体实施方式
为使本发明的目的、优点和特征更加清楚,以下结合附图和具体实施例对本发明提出的基于光解水制氢技术的月球基地能源供应及应用系统作进一步详细说明。
如图1所示,该系统包括太阳能光伏发电单元2、电源管理单元3、水贮箱1、光解水单元4、氢氧存储单元7、氢氧-水转换单元5、状态监测单元6、化学推进单元8、环控生保单元9及负载10。太阳能光伏发电单元2和氢氧-水转换单元5可产生电能,光解水单元4和氢氧-水转换单元5可产生氢气和氧气。
如图2所示,太阳能光伏发电单元2包括太阳能电池板13、太阳能控制器14、蓄电池15和逆变器16。太阳能电池板13将太阳能直接转换成电能,供负载10等使用或储存于蓄电池15内备用。太阳能控制器14将太阳能电池板13产生的一部分电能储存在蓄电池15内,太阳能控制器14可为蓄电池15提供最佳的充电电流和电压,以便快速、平稳、高效地为蓄电池15充电。逆变器16将太阳能电池板13和蓄电池15提供的低压直流电逆变成220伏交流电后,向外输出电能。太阳能光伏发电单元2的电能输出端接电源管理单元3的电能输入端,通过电源管理单元3向氢氧-水转换单元5、状态监测单元6、化学推进单元8、环控生保单元9及负载10等供电。
如图3所示,水贮箱1的水主要通过原位制取技术获得,用于 向光解水单元4和氢氧-水转换单元5供水。水贮箱1顶部设置有进水口,该进水口的连接管路上设置有进水阀11,用于控制水的加注;水贮箱1底部设置有出水口,该出水口的连接管路上设置有出水阀12,用于控制水的输出。
如图4所示,光解水单元4包括电解池20、质子交换膜21、产氢电极18、产氧电极19和聚光器17。质子交换膜21设置在电解池20内,并将电解池20左右分隔为产氢室22和产氧室23,产氧室23的进水口接水贮箱1的出水口。产氢电极18和产氧电极19分别设置在产氢室22和产氧室23内,并浸入电解液中。产氧电极19由自偏压PN结和半导体光阳极耦合串联而成,能够实现在无外加电能输入条件下制氢制氧。聚光器17设置在产氧室23上方,用于收集太阳光。在光照和一定自偏压下,水开始光解,氢离子通过质子交换膜21进入产氢室22,产氢电极18和产氧电极19分别产生氢气和氧气,光解水单元4产生的氢气和氧气存储在氢氧存储单元7中。
如图5所示,氢氧存储单元7包括氢气水汽分离器24、氢增压泵26、氢贮箱28、氧气水汽分离器25、氧增压泵27和氧贮箱29。氢贮箱28和氧贮箱29的额定存储压力为2MPa-8MPa。光解水单元4的产氢室22出气口接氢气水汽分离器24的进气口,氢气水汽分离器24的出气口接氢贮箱28的进气口,氢气水汽分离器24的出水口接水贮箱1的进水口;光解水单元4的产氧室23出气口接氧气水汽分离器25的进气口,氧气水汽分离器25的出气口接氧贮箱29的进气口,氧气水汽分离器25的出水口接水贮箱1的进水口;氢增压泵 26的进气口接氢气水汽分离器24的出气口,其出气口接氢贮箱28的进气口;氧增压泵27的进气口接氧气水汽分离器25的出气口,其出气口接氧贮箱29的进气口。
氢氧-水转换单元5可以为分体式的氢氧燃料电池和电解水装置,或者为一体式可再生燃料电池。
采用分体式的氢氧燃料电池和电解水装置的形式时,氢氧燃料电池的氢气进口接氢贮箱28的出气口,其氧气进口接氧贮箱29的出气口,其出水口接水贮箱1的进水口,其电能输出端接电源管理单元3的电能输入端。电解水装置的电能输入端接电源管理单元3的电能输出端,其进水口接水贮箱1的出水口,其氢气出口接氢贮箱28的进气口,其氧气出口接氧贮箱29的进气口。
如图6所示,本实施例采用一体式可再生燃料电池的形式,一体式可再生燃料电池的水电解功能和燃料电池功能由同一组件完成,其氢气进出口与氢贮箱28连接,其氧气进出口与氧贮箱29连接,其进出水口与水贮箱1连接,其电能输入输出端与电源管理单元3连接。
当氢氧需求量较大时,将水贮箱1中的水输入氢氧-水转换单元5中,在电能的作用下将水电解成氢氧并存储到氢氧存储单元7中;当用电量需求较大时,将氢氧存储单元7中的氢氧通入氢氧-水转换单元5中,通过燃料电池的功能产生电能,并通过电源管理单元3对外供电。
由光解水单元4光解或由氢氧-水转换单元5电解出来的氢气和 氧气分别通过氢气水汽分离器24和氧气水汽分离器25进行水气分离,分离出来的水重新返回水贮箱1内,分离出来的氢气和氧气分别贮存到氢贮箱28和氧贮箱29内。当光解水单元4光解或氢氧-水转换单元5电解出来的氢气压力高于氢贮箱28内的压力时,产生的氢气直接贮存到氢贮箱28内;当光解水单元4光解或氢氧-水转换单元5电解出来的氢气压力低于氢贮箱28内的压力时,产生的氢气需通过氢增压泵26增压后贮存到氢贮箱28内。同理,当光解水单元4光解或氢氧-水转换单元5电解出来的氧气压力高于氧贮箱29内的压力时,产生的氧气直接贮存到氧贮箱29内;当光解水单元4光解或氢氧-水转换单元5电解出来的氧气压力低于氧贮箱29内的压力时,产生的氧气需通过氧增压泵27增压后贮存到氧贮箱29内。
化学推进单元8以氢氧为燃料,为月球表面交通工具提供动力或为月球表面发射探测器提供动力,其氢气进口接氢贮箱28的出气口,其氧气进口接氧贮箱29的出气口,其电能输入端接电源管理单元3的电能输出端。
环控生保单元9是能够为航天员创造一个适居的生存环境并提供必要物质条件的一套完善的环境控制与生命保障系统,环控生保单元9的氧气进口接氧贮箱29的出气口,其电能输入端接电源管理单元3的电能输出端,其出水口接水贮箱1的进水口。
负载10是指月球基地上各种需要提供能源的仪器设备统称,其电能输入端接电源管理单元3的电能输出端。
状态监测单元6用于对太阳能光伏发电单元2、水贮箱1、氢氧存储单元7、环控生保单元9、化学推进单元8以及负载10的工作状态进行监测,并将用电需求反馈给电源管理单元3。
电源管理单元3根据状态监测单元6反馈的用电需求决定采用哪种方式进行供电。太阳能光伏发电为月球基地能源的主要供应方式,氢氧-水转换发电为能源的辅助应急供应方式。

Claims (5)

  1. 一种基于光解水制氢技术的月球基地能源供应及应用系统,其特征在于:
    包括太阳能光伏发电单元(2)、电源管理单元(3)、水贮箱(1)、光解水单元(4)、氢氧存储单元(7)、氢氧-水转换单元(5)、状态监测单元(6)、化学推进单元(8)、环控生保单元(9)及负载(10);
    所述太阳能光伏发电单元(2)的电能输出端接电源管理单元(3)的电能输入端;
    所述光解水单元(4)包括电解池(20)、质子交换膜(21)、产氢电极(18)、产氧电极(19)和聚光器(17);所述质子交换膜(21)设置在电解池(20)内,并将电解池(20)左右分隔为产氢室(22)和产氧室(23);所述产氧室(23)的进水口接水贮箱(1)的出水口;所述产氢电极(18)和产氧电极(19)分别设置在产氢室(22)和产氧室(23)内;所述聚光器(17)设置在产氧室(23)上方,用于收集太阳光;
    所述氢氧存储单元(7)包括氢气水汽分离器(24)、氢贮箱(28)、氧气水汽分离器(25)和氧贮箱(29);所述光解水单元(4)的产氢室(22)出气口接氢气水汽分离器(24)的进气口,氢气水汽分离器(24)的出气口接氢贮箱(28)的进气口,氢气水汽分离器(24)的出水口接水贮箱(1)的进水口;所述光解水单元(4)的产氧室 (23)出气口接氧气水汽分离器(25)的进气口,氧气水汽分离器(25)的出气口接氧贮箱(29)的进气口,氧气水汽分离器(25)的出水口接水贮箱(1)的进水口;
    所述氢氧-水转换单元(5)为分体式的氢氧燃料电池和电解水装置,或者一体式可再生燃料电池;
    所述氢氧燃料电池的氢气进口接氢贮箱(28)的出气口,其氧气进口接氧贮箱(29)的出气口,其出水口接水贮箱(1)的进水口,其电能输出端接电源管理单元(3)的电能输入端;所述电解水装置的电能输入端接电源管理单元(3)的电能输出端,其进水口接水贮箱(1)的出水口,其氢气出口接氢贮箱(28)的进气口,其氧气出口接氧贮箱(29)的进气口;
    所述一体式可再生燃料电池的氢气进出口与氢贮箱(28)连接,其氧气进出口与氧贮箱(29)连接,其进出水口与水贮箱(1)连接,其电能输入输出端与电源管理单元(3)连接;
    所述化学推进单元(8)以氢氧为燃料提供动力,其氢气进口接氢贮箱(28)的出气口,其氧气进口接氧贮箱(29)的出气口,其电能输入端接电源管理单元(3)的电能输出端;
    所述环控生保单元(9)用于对月球基地生存环境进行控制和保障,其氧气进口接氧贮箱(29)的出气口,其电能输入端接电源管理单元(3)的电能输出端,其出水口接水贮箱(1)的进水口;
    所述负载(10)的电能输入端接电源管理单元(3)的电能输出端;
    所述状态监测单元(6)用于对太阳能光伏发电单元(2)、水贮箱(1)、氢氧存储单元(7)、环控生保单元(9)、化学推进单元(8)以及负载(10)的工作状态进行监测,并将用电需求反馈给电源管理单元(3);
    所述电源管理单元(3)根据状态监测单元(6)反馈的用电需求进行供电。
  2. 根据权利要求1所述的基于光解水制氢技术的月球基地能源供应及应用系统,其特征在于:
    所述氢氧存储单元(7)还包括氢增压泵(26)和氧增压泵(27);所述氢增压泵(26)的进气口接氢气水汽分离器(24)的出气口,其出气口接氢贮箱(28)的进气口;所述氧增压泵(27)的进气口接氧气水汽分离器(25)的出气口,其出气口接氧贮箱(29)的进气口。
  3. 根据权利要求1或2所述的基于光解水制氢技术的月球基地能源供应及应用系统,其特征在于:
    所述太阳能光伏发电单元(2)包括太阳能电池板(13)、太阳能控制器(14)、蓄电池(15)和逆变器(16);所述太阳能电池板(13)将太阳能直接转换成电能,并通过太阳能控制器(14)将一部分电能储存在蓄电池(15)内;所述逆变器(16)将太阳能电池板(13)和蓄电池(15)提供的低压直流电逆变成220伏交流电后,向外输出电能。
  4. 根据权利要求3所述的基于光解水制氢技术的月球基地能源 供应及应用系统,其特征在于:
    所述产氧电极(19)由自偏压PN结和半导体光阳极耦合串联而成。
  5. 根据权利要求4所述的基于光解水制氢技术的月球基地能源供应及应用系统,其特征在于:
    所述的氢贮箱(28)和氧贮箱(29)的额定存储压力为2MPa-8MPa。
PCT/CN2021/119740 2021-04-14 2021-09-23 基于光解水制氢技术的月球基地能源供应及应用系统 WO2022217836A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110401123.6 2021-04-14
CN202110401123.6A CN113174606A (zh) 2021-04-14 2021-04-14 基于光解水制氢技术的月球基地能源供应及应用系统

Publications (1)

Publication Number Publication Date
WO2022217836A1 true WO2022217836A1 (zh) 2022-10-20

Family

ID=76923380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119740 WO2022217836A1 (zh) 2021-04-14 2021-09-23 基于光解水制氢技术的月球基地能源供应及应用系统

Country Status (2)

Country Link
CN (1) CN113174606A (zh)
WO (1) WO2022217836A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113174606A (zh) * 2021-04-14 2021-07-27 西安航天动力研究所 基于光解水制氢技术的月球基地能源供应及应用系统
CN115637455A (zh) * 2021-11-26 2023-01-24 昆明理工大学 一种基于太阳能发电供能的质子交换膜pem电解水制氢系统
CN114884431A (zh) * 2022-03-29 2022-08-09 哈尔滨工业大学 一种月球基地光伏-燃料电池多能互补系统
CN114959759A (zh) * 2022-04-20 2022-08-30 西安交通大学 一种光伏驱动的分步式氢-氧-电联产的装置与方法
CN115676775A (zh) * 2022-11-21 2023-02-03 西安航天动力研究所 一种光解水制氢装置及月球基地能源供应系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050109394A1 (en) * 2003-11-24 2005-05-26 The Boeing Company Solar electrolysis power co-generation system
CN101220481A (zh) * 2007-09-26 2008-07-16 哈尔滨工业大学 空间飞行器的太阳能水基高压高纯氢氧燃料制备方法
CN102376999A (zh) * 2010-08-20 2012-03-14 中国科学院大连化学物理研究所 一种耦合光(电)化学池和燃料电池的太阳能贮存系统
DE102011114234A1 (de) * 2011-09-23 2013-03-28 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Energieversorgungssystem mit reversiblem Funktionselement
CN207009561U (zh) * 2017-07-13 2018-02-13 北京理工大学 一种基于太阳能光伏制氢的氢燃料电池系统
CN107878783A (zh) * 2017-10-12 2018-04-06 北京控制工程研究所 一种基于可再生燃料电池的电源推进系统
CN111997782A (zh) * 2020-07-24 2020-11-27 北京控制工程研究所 一种旋流式微型气氢气氧推力器结构
CN112864418A (zh) * 2020-11-18 2021-05-28 西安航天动力研究所 空间动力能源生保一体化系统及方法
CN113174606A (zh) * 2021-04-14 2021-07-27 西安航天动力研究所 基于光解水制氢技术的月球基地能源供应及应用系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080138675A1 (en) * 2006-12-11 2008-06-12 Jang Bor Z Hydrogen generation and storage method for personal transportation applications
CN106571091A (zh) * 2015-10-13 2017-04-19 北京浩运金能科技有限公司 一种风光氢电能源转换演示系统
CN105438501B (zh) * 2015-11-30 2017-08-29 北京控制工程研究所 基于氢电弧推力器和氢氧发动机的空间站水基推进系统
WO2020179973A1 (ko) * 2019-03-07 2020-09-10 (주)케이워터크레프트 에너지 자립형 수전해 연료전지 워터 퓨어 공기 청정 시스템
CN111682241B (zh) * 2020-05-12 2023-07-07 扬州大学 一种太阳能光伏电解水制氢装置
CN112011375A (zh) * 2020-07-14 2020-12-01 中国人民解放军63919部队 地外基地固体废物和原位物质资源化集成利用系统及方法
CN112501632A (zh) * 2020-11-26 2021-03-16 北京星途探索科技有限公司 基于太阳能电解水的轨控发动机系统的研究

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050109394A1 (en) * 2003-11-24 2005-05-26 The Boeing Company Solar electrolysis power co-generation system
CN101220481A (zh) * 2007-09-26 2008-07-16 哈尔滨工业大学 空间飞行器的太阳能水基高压高纯氢氧燃料制备方法
CN102376999A (zh) * 2010-08-20 2012-03-14 中国科学院大连化学物理研究所 一种耦合光(电)化学池和燃料电池的太阳能贮存系统
DE102011114234A1 (de) * 2011-09-23 2013-03-28 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Energieversorgungssystem mit reversiblem Funktionselement
CN207009561U (zh) * 2017-07-13 2018-02-13 北京理工大学 一种基于太阳能光伏制氢的氢燃料电池系统
CN107878783A (zh) * 2017-10-12 2018-04-06 北京控制工程研究所 一种基于可再生燃料电池的电源推进系统
CN111997782A (zh) * 2020-07-24 2020-11-27 北京控制工程研究所 一种旋流式微型气氢气氧推力器结构
CN112864418A (zh) * 2020-11-18 2021-05-28 西安航天动力研究所 空间动力能源生保一体化系统及方法
CN113174606A (zh) * 2021-04-14 2021-07-27 西安航天动力研究所 基于光解水制氢技术的月球基地能源供应及应用系统

Also Published As

Publication number Publication date
CN113174606A (zh) 2021-07-27

Similar Documents

Publication Publication Date Title
WO2022217836A1 (zh) 基于光解水制氢技术的月球基地能源供应及应用系统
CN110654520A (zh) 一种采用燃料电池船舶直流组网系统和应用此系统的船舶
CN101220481B (zh) 空间飞行器的太阳能水基高压高纯氢氧燃料制备方法
CN114395775A (zh) 一种闭式清洁能源制氢储能系统
CN102244283A (zh) 一种膜电解自供氢质子交换膜燃料电池发电系统及其方法
CN106086923B (zh) 一种耦合co2资源化利用的制氢储能装置
CN114024327A (zh) 一种基于可再生能源发电多能互补的控制系统及方法
JP2003257443A (ja) 自然エネルギー発電装置と燃料電池を有する自己完結型発電システム
CN213521311U (zh) 一种弃风电解水制氢能源综合利用系统
CN112736270A (zh) 一种质子传导soec和氧离子传导sofc联合装置
KR20210118528A (ko) 외부 전력 없이 독립적으로 구동되는 태양광을 이용한 수소 생산 및 저장 시스템
CN105720283A (zh) 一种燃料电池混合动力系统及其工作方法
CN216107246U (zh) 一种光、风发电耦合电解水制氢自然平衡生态系统
CN113278987B (zh) 一种soec和ael电解耦合固体循环储放氢系统
WO2012144960A1 (en) A combined magnetohydrodynamic and electrochemical method and facility for namely electric power generation
CN112855381A (zh) 基于光解水制氢技术的空间混合推进系统
JPH09139217A (ja) クローズド型燃料電池システム
CN217922341U (zh) 一种含热管理的集装箱式一体化电氢联产装置
US10840572B1 (en) Solar hydrogen generation and off-peak storage
JPH0491638A (ja) エネルギーシステム
JP3102434B2 (ja) 電力貯蔵発電装置
WO2019140705A1 (zh) 电光充电、充氢燃料电池
CN214012988U (zh) 一种质子传导soec和氧离子传导sofc联合装置
JPH0492374A (ja) エネルギーシステム
CN115637455A (zh) 一种基于太阳能发电供能的质子交换膜pem电解水制氢系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936705

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18553405

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936705

Country of ref document: EP

Kind code of ref document: A1