WO2019140705A1 - 电光充电、充氢燃料电池 - Google Patents

电光充电、充氢燃料电池 Download PDF

Info

Publication number
WO2019140705A1
WO2019140705A1 PCT/CN2018/073892 CN2018073892W WO2019140705A1 WO 2019140705 A1 WO2019140705 A1 WO 2019140705A1 CN 2018073892 W CN2018073892 W CN 2018073892W WO 2019140705 A1 WO2019140705 A1 WO 2019140705A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
fuel cell
charging
storage
management system
Prior art date
Application number
PCT/CN2018/073892
Other languages
English (en)
French (fr)
Inventor
顾士平
顾海涛
Original Assignee
顾士平
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 顾士平 filed Critical 顾士平
Publication of WO2019140705A1 publication Critical patent/WO2019140705A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0656Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a secondary battery, and more particularly to a secondary battery that utilizes light energy, electrical energy charging, and inflation.
  • This patent is a patent in the hydrogen fuel cell patent family.
  • the solar light is dehydrated to produce hydrogen; the hydrogen is produced by electrolysis; the hydrogen station is filled with hydrogen and pressed into the compressed hydrogen storage;
  • the solar light is decomposed to produce hydrogen storage;
  • the hydrogen is produced by electrolysis;
  • the hydrogen station is filled with hydrogen and dissolved in the liquid solution;
  • Hydrogen is produced by decomposing water by sunlight; hydrogen is produced by electrolysis; hydrogen station is charged into one or two of three ways to press into a compressed hydrogen storage;
  • Hydrogen is produced by decomposing water by sunlight; hydrogen is produced by electrolysis; hydrogen station is charged in one or two of three ways to dissolve in a liquid solution;
  • Hydrogen is used as a chemical energy storage medium to store chemical energy, thereby avoiding the problem that the lithium secondary battery crystal and the graphite layer are constantly deformed from the discharge process, thereby shortening the life of the lithium battery, and only need to replace the solution of dissolved hydrogen, and its life is unlimited; the fuel cell There is no self-discharge.
  • the fuel cell reacts completely with oxygen under the action of the controller to generate current. It is necessary to increase the power only by increasing the power supply. The power supply only needs to reduce the supply of hydrogen.
  • the fuel cell is very safe. Explosion or burning of the fuel cell due to acupuncture battery occurs;
  • the hydrogen station or other hydrogen gas source is supplied with hydrogen to the compressed hydrogen storage; the hydrogen gas is supplied to the solution container at the hydrogen station or other hydrogen gas source to realize the solution storage of the hydrogen;
  • hydrogen can be stored independently;
  • the hydrogen-dissolving solution can directly flow into the anode of the fuel cell, and the hydrogen solution directly participates in the electrochemical reaction in the anodic hydrogen evolution to realize the transportation of high-capacity hydrogen, and the high-power density electric output of the real fuel cell;
  • Hydrogen peroxide can directly flow into the cathode of the fuel cell, and the high-power density of the real fuel cell is output.
  • Hydrogen is used as a chemical energy storage medium to store chemical energy, thereby avoiding the movement of lithium ions in the lithium secondary battery crystal and graphite layer during discharge, resulting in continuous deformation of lithium salt crystals and graphite, resulting in shortened battery life, and only need to be replaced and deactivated.
  • the liquid that dissolves hydrogen has an infinite life.
  • the chemical energy of the fuel cell is stored in hydrogen, stored in a hydrogen pressure storage tank or a hydrogen solution, completely isolated from the oxidant; the fuel cell does not self-discharge; the fuel cell is completely operated by the controller, and the power needs to be increased only by increasing the hydrogen Supply, reduce power only need to reduce the supply of hydrogen; turn off the hydrogen supply when no power is needed; the fuel cell is very safe, and there will be no explosion or burning of the fuel cell due to the needling battery.
  • the hydrogen pressure storage (103) has three sources at the same time: (1) hydrogen production by solar energy, hydrogen production by solar energy hydrolysis; (2) hydrogen production by power supply such as grid power, wind power, photovoltaic, etc.; (3) hydrogen source: such as hydrogen gas station Hydrogenation
  • Electro-optic charging and hydrogen-filled fuel cells include three parts: fueling equipment (charging equipment such as charging piles, hydrogenation station hydrogenation equipment, solar photolysis water); fuel storage equipment (hydrogen pressure storage); hydrogen fuel cell stack ( Including external electric field, hydrogen electrode, oxygen electrode or air electrode, luminous tube).
  • fueling equipment charging equipment such as charging piles, hydrogenation station hydrogenation equipment, solar photolysis water
  • fuel storage equipment hydrogen pressure storage
  • hydrogen fuel cell stack Including external electric field, hydrogen electrode, oxygen electrode or air electrode, luminous tube.
  • Solar hydrogen production (201), electrolysis hydrogen production (202), hydrogen source (205), hydrogen solution storage (203), hydrogen fuel cell (204);
  • the hydrogen solution storage (203) has three sources at the same time: (1) hydrogen production by solar energy, hydrogen production by solar energy hydrolysis; (2) hydrogen production by power supply such as grid power, wind power, photovoltaic, etc.; (3) hydrogen source: such as hydrogen gas station Hydrogenation
  • Electro-optic charging and hydrogen-filled fuel cells include three parts: fueling equipment (charging equipment such as charging piles, hydrogenation station hydrogenation equipment, solar photolysis water); fuel storage equipment (hydrogen solution storage); hydrogen fuel cell stack ( Including external electric field, hydrogen electrode, oxygen electrode or air electrode, luminous tube).
  • fueling equipment charging equipment such as charging piles, hydrogenation station hydrogenation equipment, solar photolysis water
  • fuel storage equipment hydrogen solution storage
  • hydrogen fuel cell stack Including external electric field, hydrogen electrode, oxygen electrode or air electrode, luminous tube.
  • the battery management system BMS (309) controls the water tank (301), the battery management system BMS (309) controls the photolysis water (303), the battery management system BMS (309) controls the charging circuit (306), and the battery management system BMS (309) controls Electrolyzed water (307), battery management system BMS (309) controls hydrogen gas inlet (308), battery management system BMS (309) controls compressor (304), and battery management system BMS (309) controls hydrogen-dissolved liquid container (305) And receiving the feedback temperature and pressure of the hydrogen storage tank (305), the battery management system BMS (309) controls the photocatalytic hydrogen fuel cell stack (302) and receives the feedback temperature and the generated voltage value of the photocatalytic hydrogen fuel cell stack (302). The generated current value, the water content of the photocatalytic hydrogen fuel cell stack (302); the battery management system BMS (309) controls the amount of air or hydrogen peroxide (310) entering to operate the stack at an optimum state.
  • the battery management system BMS (409) controls the water tank (401), the battery management system BMS (409) controls the photolysis water (403), the battery management system BMS (409) controls the charging circuit (406), and the battery management system BMS (409) controls Electrolyzed water (407), battery management system BMS (409) controls hydrogen gas inlet (408), battery management system BMS (409) control controller (404), battery management system BMS (409) controls hydrogen-dissolved liquid container (405) And receiving the feedback temperature of the controlled hydrogen storage liquid container (405), the hydrogen content in the liquid, the battery management system BMS (409) controlling the photocatalytic hydrogen fuel cell stack (402) and receiving the photocatalytic hydrogen fuel cell stack (402) The feedback temperature, the feedback power generation voltage value, the feedback power generation current value, and the water content of the feedback photocatalytic hydrogen fuel cell stack (402); the battery management system BMS (409) controls the air or the hydrogen peroxide solution (410) into the amount to make the battery stack operate at the most Good state.
  • the hydrogen-dissolving liquid uses an aqueous solution of a hydrogen surfactant, the hydrogen surfactant has a hydrogen-hydrogen molecule at one end, and the other end is a hydrophilic molecule; the hydrogen surfactant is used to dissolve hydrogen in water; and the aqueous hydrogen-containing solution flows through the photocatalytic hydrogen fuel cell stack ( 402), under the action of the photocatalyst, the hydrogen molecules are cleaved into two hydrogen atoms, the hydrogen atoms are forming protons and electrons, the electrons are concentrated on the electrodes, and the protons are diffused to the negative electrode under the action of the electric field and the concentration difference, forming Hydrogen fuel cell.
  • the hydrogen-dissolving solution can directly flow into the anode of the fuel cell, and the hydrogen solution directly participates in the electrochemical reaction in the anodic hydrogen evolution, thereby realizing the transportation of high-capacity hydrogen, and the high-power density electric output of the real fuel cell.
  • the hydrogen peroxide can directly flow into the cathode of the fuel cell.
  • the active oxygen atom in the hydrogen peroxide participates in the electrochemical reaction with the proton at the cathode under the combined action of the electric field and the concentration difference, and outputs the high power density of the real fuel cell.
  • the invention solves the problem of the battery of the new energy vehicle: (1) can realize convenient and rapid energy storage service at the same time, charge hydrogen, electrolytic hydrogen storage, photolysis hydrogen storage; realize rapid hydrogen charging through the hydrogen station Energy storage service; in areas without hydrogen refueling stations, charging piles can be used to electrolyze water to produce hydrogen storage energy. Even the mains socket can be directly connected to the mains electricity, and hydrogen can be produced by electrolysis of water to realize energy storage. Under sunlight, Photolysis hydrogen production to achieve energy storage; (2) to solve the problem of cycle times; (3) to solve the problem of insufficient battery capacity; (4) to solve the problem of existing energy pollution; (5) renewable energy Features.
  • FIG. 1 Electro-optical charging, hydrogen-filled fuel cell hydrogen pressure storage system diagram
  • FIG. 1 Photovoltaic, electric charge, hydrogen pressure storage fuel cell system block diagram
  • FIG. 4 Photovoltaic, electric charge, hydrogen solution storage fuel cell system block diagram
  • the solar light is dehydrated to produce hydrogen; the hydrogen is produced by electrolysis; the hydrogen station is filled with hydrogen and pressed into the compressed hydrogen storage;
  • the solar light is decomposed to produce hydrogen storage;
  • the hydrogen is produced by electrolysis;
  • the hydrogen station is filled with hydrogen and dissolved in the liquid solution;
  • Hydrogen is produced by decomposing water by sunlight; hydrogen is produced by electrolysis; hydrogen station is charged into one or two of three ways to press into a compressed hydrogen storage;
  • Hydrogen is produced by decomposing water by sunlight; hydrogen is produced by electrolysis; hydrogen station is charged in one or two of three ways to dissolve in a liquid solution;
  • Hydrogen is used as a chemical energy storage medium to store chemical energy, thereby avoiding the problem that the lithium secondary battery crystal and the graphite layer are constantly deformed from the discharge process, thereby shortening the life of the lithium battery, and only need to replace the solution of dissolved hydrogen, and its life is unlimited; the fuel cell There is no self-discharge.
  • the fuel cell reacts completely with oxygen under the action of the controller to generate current. It is necessary to increase the power only by increasing the power supply. The power supply only needs to reduce the supply of hydrogen.
  • the fuel cell is very safe. Explosion or burning of the fuel cell due to acupuncture battery occurs;
  • the hydrogen station or other hydrogen gas source is supplied with hydrogen to the compressed hydrogen storage; the hydrogen gas is supplied to the solution container at the hydrogen station or other hydrogen gas source to realize the solution storage of the hydrogen;
  • hydrogen can be stored independently;
  • the hydrogen-dissolving solution can directly flow into the anode of the fuel cell, and the hydrogen solution directly participates in the electrochemical reaction in the anodic hydrogen evolution to realize the transportation of high-capacity hydrogen, and the high-power density electric output of the real fuel cell;
  • Hydrogen peroxide can directly flow into the cathode of the fuel cell, and the high-power density of the real fuel cell is output.
  • Hydrogen is used as a chemical energy storage medium to store chemical energy, thereby avoiding the movement of lithium ions in the lithium secondary battery crystal and graphite layer during discharge, resulting in continuous deformation of lithium salt crystals and graphite, resulting in shortened battery life, and only need to be replaced and deactivated.
  • the liquid that dissolves hydrogen has an infinite life.
  • the chemical energy of the fuel cell is stored in hydrogen, stored in a hydrogen pressure storage tank or a hydrogen solution, completely isolated from the oxidant; the fuel cell does not self-discharge; the fuel cell is completely operated by the controller, and the power needs to be increased only by increasing the hydrogen Supply, reduce power only need to reduce the supply of hydrogen; turn off the hydrogen supply when no power is needed; the fuel cell is very safe, and there will be no explosion or burning of the fuel cell due to the needling battery.
  • solar hydrogen production (101), electrolysis hydrogen production (102), hydrogen source (105), hydrogen pressure storage (103), hydrogen fuel cell (104);
  • the hydrogen pressure storage (103) has three sources at the same time: (1) hydrogen production by solar energy, hydrogen production by solar energy hydrolysis; (2) hydrogen production by power supply such as grid power, wind power, photovoltaic, etc.; (3) hydrogen source: such as hydrogen gas station Hydrogenation
  • Electro-optic charging and hydrogen-filled fuel cells include three parts: fueling equipment (charging equipment such as charging piles, hydrogenation station hydrogenation equipment, solar photolysis water); fuel storage equipment (hydrogen pressure storage); hydrogen fuel cell stack ( Including external electric field, hydrogen electrode, oxygen electrode or air electrode, luminous tube).
  • fueling equipment charging equipment such as charging piles, hydrogenation station hydrogenation equipment, solar photolysis water
  • fuel storage equipment hydrogen pressure storage
  • hydrogen fuel cell stack Including external electric field, hydrogen electrode, oxygen electrode or air electrode, luminous tube.
  • solar hydrogen production (201), electrolysis hydrogen production (202), hydrogen source (205), hydrogen solution storage (203), hydrogen fuel cell (204);
  • the hydrogen solution storage (203) has three sources at the same time: (1) hydrogen production by solar energy, hydrogen production by solar energy hydrolysis; (2) hydrogen production by power supply such as grid power, wind power, photovoltaic, etc.; (3) hydrogen source: such as hydrogen gas station Hydrogenation
  • Electro-optic charging and hydrogen-filled fuel cells include three parts: fueling equipment (charging equipment such as charging piles, hydrogenation station hydrogenation equipment, solar photolysis water); fuel storage equipment (hydrogen solution storage); hydrogen fuel cell stack ( Including external electric field, hydrogen electrode, oxygen electrode or air electrode, luminous tube).
  • fueling equipment charging equipment such as charging piles, hydrogenation station hydrogenation equipment, solar photolysis water
  • fuel storage equipment hydrogen solution storage
  • hydrogen fuel cell stack Including external electric field, hydrogen electrode, oxygen electrode or air electrode, luminous tube.
  • the battery management system BMS (309) controls the water tank (301), the battery management system BMS (309) controls the photolysis water (303), the battery management system BMS (309) controls the charging circuit (306), and the battery management system BMS (309) controls Electrolyzed water (307), battery management system BMS (309) controls hydrogen gas inlet (308), battery management system BMS (309) controls compressor (304), and battery management system BMS (309) controls hydrogen-dissolved liquid container (305) And receiving the feedback temperature and pressure of the hydrogen storage tank (305), the battery management system BMS (309) controls the photocatalytic hydrogen fuel cell stack (302) and receives the feedback temperature and the generated voltage value of the photocatalytic hydrogen fuel cell stack (302). The generated current value, the water content of the photocatalytic hydrogen fuel cell stack (302); the battery management system BMS (309) controls the amount of air or hydrogen peroxide (310) entering to operate the stack at an optimum state.
  • the battery management system BMS (409) controls the water tank (401), the battery management system BMS (409) controls the photolysis water (403), the battery management system BMS (409) controls the charging circuit (406), and the battery management system BMS (409) controls Electrolyzed water (407), battery management system BMS (409) controls hydrogen gas inlet (408), battery management system BMS (409) control controller (404), battery management system BMS (409) controls hydrogen-dissolved liquid container (405) And receiving the feedback temperature of the controlled hydrogen storage liquid container (405), the hydrogen content in the liquid, the battery management system BMS (409) controlling the photocatalytic hydrogen fuel cell stack (402) and receiving the photocatalytic hydrogen fuel cell stack (402) The feedback temperature, the feedback power generation voltage value, the feedback power generation current value, and the water content of the feedback photocatalytic hydrogen fuel cell stack (402); the battery management system BMS (409) controls the air or the hydrogen peroxide solution (410) into the amount to make the battery stack operate at the most Good state.
  • the hydrogen-dissolving liquid uses an aqueous solution of a hydrogen surfactant, the hydrogen surfactant has a hydrogen-hydrogen molecule at one end, and the other end is a hydrophilic molecule; the hydrogen surfactant is used to dissolve hydrogen in water; and the aqueous hydrogen-containing solution flows through the photocatalytic hydrogen fuel cell stack ( 402), under the action of the photocatalyst, the hydrogen molecules are cleaved into two hydrogen atoms, the hydrogen atoms are forming protons and electrons, the electrons are concentrated on the electrodes, and the protons are diffused to the negative electrode under the action of the electric field and the concentration difference, forming Hydrogen fuel cell.
  • the hydrogen-dissolving solution can directly flow into the anode of the fuel cell, and the hydrogen solution directly participates in the electrochemical reaction in the anodic hydrogen evolution, thereby realizing the transportation of high-capacity hydrogen, and the high-power density electric output of the real fuel cell.
  • the hydrogen peroxide can directly flow into the cathode of the fuel cell.
  • the active oxygen atom in the hydrogen peroxide participates in the electrochemical reaction with the proton at the cathode under the combined action of the electric field and the concentration difference, and outputs the high power density of the real fuel cell.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

一种利用光能、电能充电、充气的二次电池。同时实现(1)电能电解水产生氢气,将氢气存储;(2)太阳能光解出氢气;(3)外来氢气充入氢气存储系统,供发电时使用。采用氢气作为化学能存储介质存储化学能,从而避免锂二次电池晶体和石墨层在放电过程中,锂离子运动,导致锂盐晶体、石墨不断变形从而导致电池寿命缩短问题,仅需更换失活的溶解氢气的液体,其寿命无限。燃料电池安全性好,效率高,电池完全自主可控。燃料电池发电功率完全在电池的控制系统下工作,需要增加电池功率时,增加气体的供应量;用户功率减少时,减少氢气量的供应,相应减少燃料电池的发电功率,避免能源的浪费。

Description

电光充电、充氢燃料电池 技术领域
技术领域
本发明涉及一种二次电池,特别涉及一种利用光能、电能充电、充气的二次电池。
背景技术
本专利为氢燃料电池专利族中的一个专利。
发明内容
要解决的问题:
技术方案:
同时实现(1)电能电解水产生氢气,将氢气存储,供发电时使用;(2)太阳能光解出氢气,将氢气存储,供发电时使用;(3)外来氢气充入氢气存储系统,供发电时使用;
同时实现太阳光光解水制得氢气;电解制得氢气;氢气站充入氢气压入压缩氢气存储器;
同时实现太阳光光解水制氢存储;电解制氢;氢气站充氢气溶解于液体溶液中;
太阳光光解水制得氢气;电解制得氢气;氢气站充入三种方式中的一种或两种方式压入压缩氢气存储器;
太阳光光解水制得氢气;电解制得氢气;氢气站充入三种方式中的一种或两种方式溶解于液体溶液中;
采用氢气作为化学能存储介质存储化学能,从而避免锂二次电池晶体和石墨层从放电过程中,不断变形从而导致锂电池寿命缩短问题,仅需更换溶解氢气的溶液,其寿命无限;燃料电池也不会产生自放电,燃料电池完全在控制器的作用下氢与氧反应生成电流,需要增加功率只需增加氢气供应量,减小功率只需减少氢气的供应量;燃料电池非常安全,不会发生因针刺电池发生燃料电池的爆炸或燃烧;
在氢气站或其它氢气气源供应地充入氢气到压缩氢气存储器;在氢气站或其它氢气气源供应地氢气充入溶液容器中,实现氢气的溶液存储;
在需要发电时,将氢气从压缩氢气存储器,取出氢气送至氢燃料电池中发电;在需要发电时,将溶解氢气的溶液取出到氢燃料电池中发电;
本专利的创新点:
(1)利用氢气作为燃料电池化学能存储的中间媒质,氢气能独立存储;
(2)太阳能制氢、电解制氢、氢气充气源集中于一起;
(3)氢气存储采用氢溶液进行存储;
(4)燃料电池发电功率完全在电池的控制系统下工作,需要增加电池功率时,增加气体的供应量;用户功率减少时,减少氢气量的供应,相应减少燃料电池的发电功率,避免能源的浪费,同时提高电池的安全性;
(5)燃料电池的输出电源线短路、燃料电池针刺不会发生燃料电池的爆炸或燃烧;
(6)溶氢溶液可直接流入燃料电池阳极,氢溶液直接在阳极析氢参加电化学反应,实现高容量的氢气的运输,实燃料电池的高功率密度的电量输出;
(7)双氧水可直接流入燃料电池阴极,实燃料电池的高功率密度的电量输出。
采用氢气作为化学能存储介质存储化学能,从而避免锂二次电池晶体和石墨层在放电过程中,锂离子运动,导致锂盐晶体、石墨不断变形从而导致电池寿命缩短问题,仅需更换失活的溶解氢气的液体,其寿命无限。
燃料电池的化学能存储在氢气中,氢气压力存储罐或氢气溶液存储,与氧化剂完全隔离;燃料电池不会产生自放电;燃料电池完全在控制器的作用下工作,需要增加功率只需增加氢气供应量,减小功率只需减少氢气的供应量;无需供电时关闭氢气供应;燃料电池非常安全,不会发生因针刺电池发生燃料电池的爆炸或燃烧。
太阳能制氢(101),电解制氢(102),氢气源(105),氢气压力存储器(103),氢燃料电池(104);
氢气压力存储器(103)同时有三个来源:(1)太阳能制氢,利用太阳能水解制氢;(2)电网电源、风电、光电等电源电解制氢;(3)氢气源:如氢气加气站加氢;
电光充电、充氢燃料电池包括3个部分:加注燃料设备(充电桩等充电设备,加氢站加氢设备,太阳能光解水);储燃料设备(氢气压力存储器);氢燃料电池堆(包括外加电场,氢电极,氧电极或空气电极,发光管)。
太阳能制氢(201),电解制氢(202),氢气源(205),氢气溶液存储器(203),氢燃料电池(204);
氢气溶液存储器(203)同时有三个来源:(1)太阳能制氢,利用太阳能水解制氢;(2)电网电源、风电、光电等电源电解制氢;(3)氢气源:如氢气加气站加氢;
电光充电、充氢燃料电池包括3个部分:加注燃料设备(充电桩等充电设备,加氢站加氢设备,太阳能光解水);储燃料设备(氢气溶液存储器);氢燃料电池堆(包括外加电场,氢电极,氧电极或空气电极,发光管)。
水箱(301),光解水(303),充电电路(306),电解水(307),氢气充气口(308), 压缩机(304),氢储气罐(305),光催化氢燃料电池堆(302),电池管理系统BMS(309),空气或双氧水溶液(310);
电池管理系统BMS(309)控制水箱(301),电池管理系统BMS(309)控制光解水(303),电池管理系统BMS(309)控制充电电路(306),电池管理系统BMS(309)控制电解水(307),电池管理系统BMS(309)控制氢气充气口(308),电池管理系统BMS(309)控制压缩机(304),电池管理系统BMS(309)控制溶氢液体容器(305)并接收氢储气罐(305)的反馈温度、压力,电池管理系统BMS(309)控制光催化氢燃料电池堆(302)并接收光催化氢燃料电池堆(302)的反馈温度、发电电压值、发电电流值、光催化氢燃料电池堆(302)的含水量;电池管理系统BMS(309)控制空气或双氧水溶液(310)进入量使电池堆运营在最佳状态。
水箱(401),光解水(403),充电电路(406),电解水(407),氢气充气口(408),控制器(404),溶氢液体容器(405),光催化氢燃料电池堆(402),电池管理系统BMS(409),空气或双氧水溶液(410);
电池管理系统BMS(409)控制水箱(401),电池管理系统BMS(409)控制光解水(403),电池管理系统BMS(409)控制充电电路(406),电池管理系统BMS(409)控制电解水(407),电池管理系统BMS(409)控制氢气充气口(408),电池管理系统BMS(409)控制控制器(404),电池管理系统BMS(409)控制溶氢液体容器(405)并接收控制溶氢液体容器(405)的反馈温度、液体中的含氢量,电池管理系统BMS(409)控制光催化氢燃料电池堆(402)并接收光催化氢燃料电池堆(402)的反馈温度、反馈发电电压值、反馈发电电流值、反馈光催化氢燃料电池堆(402)的含水量;电池管理系统BMS(409)控制空气或双氧水溶液(410)进入量使电池堆运营在最佳状态。
溶氢液体采用氢表面活性剂的水溶液,氢表面活性剂一端亲氢气分子,另外一端亲水的分子;利用氢表面活性剂实现氢气溶解于水;含氢水溶液流过光催化氢燃料电池堆(402),在光催化剂的作用下,氢气分子裂解为两个氢原子,氢原子在形成质子和电子,电子在聚集在电极上,质子在电场和浓度差的共同作用下,扩散到负极,形成氢燃料电池。
溶氢溶液可直接流入燃料电池阳极,氢溶液直接在阳极析氢参加电化学反应,实现高容量的氢气的运输,实燃料电池的高功率密度的电量输出。
双氧水可直接流入燃料电池阴极,双氧水中的活性氧原子在在电场和浓度差的共同作用下,在阴极参加与质子发生电化学反应,实燃料电池的高功率密度的电量输出。
有益效果:本发明解决了新能源车电池的问题:(1)能同时实现便捷快速的储能服 务,充氢、电解制氢存储,光解制氢储存;通过加氢站实现快速的充氢储能服务;没有加氢站的地区采用充电桩插电电解水制氢储能,甚至可以使用市电插座直接接入市电,电解水制氢,从而实现储能;在太阳光照射下,光解制氢,实现储能;(2)解决了循环次数问题,;(3)解决了现有电池容量不足的问题;(4)解决现有能源的污染问题;(5)电能的可再生功能。
附图说明
图1电光充电、充氢燃料电池氢气压力存储系统图
图2电光充电、充氢燃料电池氢气溶液存储系统图
图3光充、电充、氢气压力存储燃料电池系统框图
图4光充、电充、氢气溶液存储燃料电池系统框图
具体实施方式
下面结合附图对本发明的实施方式进行详细描述:
优选实例1:
同时实现(1)电能电解水产生氢气,将氢气存储,供发电时使用;(2)太阳能光解出氢气,将氢气存储,供发电时使用;(3)外来氢气充入氢气存储系统,供发电时使用;
同时实现太阳光光解水制得氢气;电解制得氢气;氢气站充入氢气压入压缩氢气存储器;
同时实现太阳光光解水制氢存储;电解制氢;氢气站充氢气溶解于液体溶液中;
太阳光光解水制得氢气;电解制得氢气;氢气站充入三种方式中的一种或两种方式压入压缩氢气存储器;
太阳光光解水制得氢气;电解制得氢气;氢气站充入三种方式中的一种或两种方式溶解于液体溶液中;
采用氢气作为化学能存储介质存储化学能,从而避免锂二次电池晶体和石墨层从放电过程中,不断变形从而导致锂电池寿命缩短问题,仅需更换溶解氢气的溶液,其寿命无限;燃料电池也不会产生自放电,燃料电池完全在控制器的作用下氢与氧反应生成电流,需要增加功率只需增加氢气供应量,减小功率只需减少氢气的供应量;燃料电池非常安全,不会发生因针刺电池发生燃料电池的爆炸或燃烧;
在氢气站或其它氢气气源供应地充入氢气到压缩氢气存储器;在氢气站或其它氢气气源供应地氢气充入溶液容器中,实现氢气的溶液存储;
在需要发电时,将氢气从压缩氢气存储器,取出氢气送至氢燃料电池中发电;在需要发电时, 将溶解氢气的溶液取出到氢燃料电池中发电;
本专利的创新点:
(1)利用氢气作为燃料电池化学能存储的中间媒质,氢气能独立存储;
(2)太阳能制氢、电解制氢、氢气充气源集中于一起;
(3)氢气存储采用氢溶液进行存储;
(4)燃料电池发电功率完全在电池的控制系统下工作,需要增加电池功率时,增加气体的供应量;用户功率减少时,减少氢气量的供应,相应减少燃料电池的发电功率,避免能源的浪费,同时提高电池的安全性;
(5)燃料电池的输出电源线短路、燃料电池针刺不会发生燃料电池的爆炸或燃烧;
(6)溶氢溶液可直接流入燃料电池阳极,氢溶液直接在阳极析氢参加电化学反应,实现高容量的氢气的运输,实燃料电池的高功率密度的电量输出;
(7)双氧水可直接流入燃料电池阴极,实燃料电池的高功率密度的电量输出。
优选实例2:
采用氢气作为化学能存储介质存储化学能,从而避免锂二次电池晶体和石墨层在放电过程中,锂离子运动,导致锂盐晶体、石墨不断变形从而导致电池寿命缩短问题,仅需更换失活的溶解氢气的液体,其寿命无限。
优选实例3:
燃料电池的化学能存储在氢气中,氢气压力存储罐或氢气溶液存储,与氧化剂完全隔离;燃料电池不会产生自放电;燃料电池完全在控制器的作用下工作,需要增加功率只需增加氢气供应量,减小功率只需减少氢气的供应量;无需供电时关闭氢气供应;燃料电池非常安全,不会发生因针刺电池发生燃料电池的爆炸或燃烧。
优选实例4:
如图1所示,太阳能制氢(101),电解制氢(102),氢气源(105),氢气压力存储器(103),氢燃料电池(104);
氢气压力存储器(103)同时有三个来源:(1)太阳能制氢,利用太阳能水解制氢;(2)电网电源、风电、光电等电源电解制氢;(3)氢气源:如氢气加气站加氢;
电光充电、充氢燃料电池包括3个部分:加注燃料设备(充电桩等充电设备,加氢站加氢设备,太阳能光解水);储燃料设备(氢气压力存储器);氢燃料电池堆(包括外加电场,氢电极,氧电极或空气电极,发光管)。
优选实例5:
如图2所示,太阳能制氢(201),电解制氢(202),氢气源(205),氢气溶液存储器(203),氢燃料电池(204);
氢气溶液存储器(203)同时有三个来源:(1)太阳能制氢,利用太阳能水解制氢;(2)电网电源、风电、光电等电源电解制氢;(3)氢气源:如氢气加气站加氢;
电光充电、充氢燃料电池包括3个部分:加注燃料设备(充电桩等充电设备,加氢站加氢设备,太阳能光解水);储燃料设备(氢气溶液存储器);氢燃料电池堆(包括外加电场,氢电极,氧电极或空气电极,发光管)。
优选实例6:
如图3所示,水箱(301),光解水(303),充电电路(306),电解水(307),氢气充气口(308),压缩机(304),氢储气罐(305),光催化氢燃料电池堆(302),电池管理系统BMS(309),空气或双氧水溶液(310);
电池管理系统BMS(309)控制水箱(301),电池管理系统BMS(309)控制光解水(303),电池管理系统BMS(309)控制充电电路(306),电池管理系统BMS(309)控制电解水(307),电池管理系统BMS(309)控制氢气充气口(308),电池管理系统BMS(309)控制压缩机(304),电池管理系统BMS(309)控制溶氢液体容器(305)并接收氢储气罐(305)的反馈温度、压力,电池管理系统BMS(309)控制光催化氢燃料电池堆(302)并接收光催化氢燃料电池堆(302)的反馈温度、发电电压值、发电电流值、光催化氢燃料电池堆(302)的含水量;电池管理系统BMS(309)控制空气或双氧水溶液(310)进入量使电池堆运营在最佳状态。
优选实例7:
如图4所示,水箱(401),光解水(403),充电电路(406),电解水(407),氢气充气口(408),控制器(404),溶氢液体容器(405),光催化氢燃料电池堆(402),电池管理系统BMS(409),空气或双氧水溶液(410);
电池管理系统BMS(409)控制水箱(401),电池管理系统BMS(409)控制光解水(403),电池管理系统BMS(409)控制充电电路(406),电池管理系统BMS(409)控制电解水(407),电池管理系统BMS(409)控制氢气充气口(408),电池管理系统BMS(409)控制控制器(404),电池管理系统BMS(409)控制溶氢液体容器(405)并接收控制溶氢液体容器(405)的反馈温度、液体中的含氢量,电池管理系统BMS(409)控制光催化氢燃料电池堆(402)并接收光催化氢燃料电池堆(402)的反馈温度、反馈发电电压值、反馈发电电流值、反馈光催化氢燃料电池堆(402)的含水量;电池管理系统BMS(409)控制空 气或双氧水溶液(410)进入量使电池堆运营在最佳状态。
优选实例8:
溶氢液体采用氢表面活性剂的水溶液,氢表面活性剂一端亲氢气分子,另外一端亲水的分子;利用氢表面活性剂实现氢气溶解于水;含氢水溶液流过光催化氢燃料电池堆(402),在光催化剂的作用下,氢气分子裂解为两个氢原子,氢原子在形成质子和电子,电子在聚集在电极上,质子在电场和浓度差的共同作用下,扩散到负极,形成氢燃料电池。
优选实例9:
溶氢溶液可直接流入燃料电池阳极,氢溶液直接在阳极析氢参加电化学反应,实现高容量的氢气的运输,实燃料电池的高功率密度的电量输出。
优选实例10:
双氧水可直接流入燃料电池阴极,双氧水中的活性氧原子在在电场和浓度差的共同作用下,在阴极参加与质子发生电化学反应,实燃料电池的高功率密度的电量输出。
虽然结合附图对本发明的实施方式进行说明,但本领域普通技术人员可以在所附权利要求的范围内作出各种变形或修改,也可以本设计中的一部分。

Claims (10)

  1. 一种电光充电、充氢电池,其特征是:
    同时实现(1)电能电解水产生氢气,将氢气存储,供发电时使用;(2)太阳能光解出氢气,将氢气存储,供发电时使用;(3)外来氢气充入氢气存储系统,供发电时使用;
    同时实现太阳光光解水制得氢气;电解制得氢气;氢气站充入氢气压入压缩氢气存储器;
    同时实现太阳光光解水制氢存储;电解制氢;氢气站充氢气溶解于液体溶液中;
    太阳光光解水制得氢气;电解制得氢气;氢气站充入三种方式中的一种或两种方式压入压缩氢气存储器;
    太阳光光解水制得氢气;电解制得氢气;氢气站充入三种方式中的一种或两种方式溶解于液体溶液中;
    采用氢气作为化学能存储介质存储化学能,从而避免锂二次电池晶体和石墨层从放电过程中,不断变形从而导致锂电池寿命缩短问题,仅需更换溶解氢气的溶液,其寿命无限;燃料电池也不会产生自放电,燃料电池完全在控制器的作用下氢与氧反应生成电流,需要增加功率只需增加氢气供应量,减小功率只需减少氢气的供应量;燃料电池非常安全,不会发生因针刺电池发生燃料电池的爆炸或燃烧;
    在氢气站或其它氢气气源供应地充入氢气到压缩氢气存储器;在氢气站或其它氢气气源供应地氢气充入溶液容器中,实现氢气的溶液存储;
    在需要发电时,将氢气从压缩氢气存储器,取出氢气送至氢燃料电池中发电;在需要发电时,将溶解氢气的溶液取出到氢燃料电池中发电;
    本专利的创新点:
    (1)利用氢气作为燃料电池化学能存储的中间媒质,氢气能独立存储;
    (2)太阳能制氢、电解制氢、氢气充气源集中于一起;
    (3)氢气存储采用氢溶液进行存储;
    (4)燃料电池发电功率完全在电池的控制系统下工作,需要增加电池功率时,增加气体的供应量;用户功率减少时,减少氢气量的供应,相应减少燃料电池的发电功率,避免能源的浪费,同时提高电池的安全性;
    (5)燃料电池的输出电源线短路、燃料电池针刺不会发生燃料电池的爆炸或燃烧;
    (6)溶氢溶液可直接流入燃料电池阳极,氢溶液直接在阳极析氢参加电化学反应,实现高容量的氢气的运输,实燃料电池的高功率密度的电量输出;
    (7)双氧水可直接流入燃料电池阴极,实燃料电池的高功率密度的电量输出。
  2. 根据权利要求1所述的一种电光充电、充氢电池,其特征是:
    采用氢气作为化学能存储介质存储化学能,从而避免锂二次电池晶体和石墨层在放电过程中,锂离子运动,导致锂盐晶体、石墨不断变形从而导致电池寿命缩短问题,仅需更换失活的溶解氢气的液体,其寿命无限。
  3. 根据权利要求1所述的一种电光充电、充氢电池,其特征是:
    燃料电池的化学能存储在氢气中,氢气压力存储罐或氢气溶液存储,与氧化剂完全隔离;燃料电池不会产生自放电;燃料电池完全在控制器的作用下工作,需要增加功率只需增加氢气供应量,减小功率只需减少氢气的供应量;无需供电时关闭氢气供应;燃料电池非常安全,不会发生因针刺电池发生燃料电池的爆炸或燃烧。
  4. 根据权利要求1所述的一种电光充电、充氢电池,其特征是:
    太阳能制氢(101),电解制氢(102),氢气源(105),氢气压力存储器(103),氢燃料电池(104);
    氢气压力存储器(103)同时有三个来源:(1)太阳能制氢,利用太阳能水解制氢;(2)电网电源、风电、光电等电源电解制氢;(3)氢气源:如氢气加气站加氢;
    电光充电、充氢燃料电池包括3个部分:加注燃料设备(充电桩等充电设备,加氢站加氢设备,太阳能光解水);储燃料设备(氢气压力存储器);氢燃料电池堆(包括外加电场,氢电极,氧电极或空气电极,发光管)。
  5. 根据权利要求1所述的一种电光充电、充氢电池,其特征是:
    太阳能制氢(201),电解制氢(202),氢气源(205),氢气溶液存储器(203),氢燃料电池(204);
    氢气溶液存储器(203)同时有三个来源:(1)太阳能制氢,利用太阳能水解制氢;(2)电网电源、风电、光电等电源电解制氢;(3)氢气源:如氢气加气站加氢;
    电光充电、充氢燃料电池包括3个部分:加注燃料设备(充电桩等充电设备,加氢站加氢设备,太阳能光解水);储燃料设备(氢气溶液存储器);氢燃料电池堆(包括外加电场,氢电极,氧电极或空气电极,发光管)。
  6. 根据权利要求1所述的一种电光充电、充氢电池,其特征是:
    水箱(301),光解水(303),充电电路(306),电解水(307),氢气充气口(308),压缩机(304),氢储气罐(305),光催化氢燃料电池堆(302),电池管理系统BMS(309),空气或双氧水溶液(310);
    电池管理系统BMS(309)控制水箱(301),电池管理系统BMS(309)控制光解水(303),电池管理系统BMS(309)控制充电电路(306),电池管理系统BMS(309)控制电解水 (307),电池管理系统BMS(309)控制氢气充气口(308),电池管理系统BMS(309)控制压缩机(304),电池管理系统BMS(309)控制溶氢液体容器(305)并接收氢储气罐(305)的反馈温度、压力,电池管理系统BMS(309)控制光催化氢燃料电池堆(302)并接收光催化氢燃料电池堆(302)的反馈温度、发电电压值、发电电流值、光催化氢燃料电池堆(302)的含水量;电池管理系统BMS(309)控制空气或双氧水溶液(310)进入量使电池堆运营在最佳状态。
  7. 根据权利要求1所述的一种电光充电、充氢电池,其特征是:
    水箱(401),光解水(403),充电电路(406),电解水(407),氢气充气口(408),控制器(404),溶氢液体容器(405),光催化氢燃料电池堆(402),电池管理系统BMS(409),空气或双氧水溶液(410);
    电池管理系统BMS(409)控制水箱(401),电池管理系统BMS(409)控制光解水(403),电池管理系统BMS(409)控制充电电路(406),电池管理系统BMS(409)控制电解水(407),电池管理系统BMS(409)控制氢气充气口(408),电池管理系统BMS(409)控制控制器(404),电池管理系统BMS(409)控制溶氢液体容器(405)并接收控制溶氢液体容器(405)的反馈温度、液体中的含氢量,电池管理系统BMS(409)控制光催化氢燃料电池堆(402)并接收光催化氢燃料电池堆(402)的反馈温度、反馈发电电压值、反馈发电电流值、反馈光催化氢燃料电池堆(402)的含水量;电池管理系统BMS(409)控制空气或双氧水溶液(410)进入量使电池堆运营在最佳状态。
  8. 根据权利要求1所述的一种电光充电、充氢电池,其特征是:
    溶氢液体采用氢表面活性剂的水溶液,氢表面活性剂一端亲氢气分子,另外一端亲水的分子;利用氢表面活性剂实现氢气溶解于水;含氢水溶液流过光催化氢燃料电池堆(402),在光催化剂的作用下,氢气分子裂解为两个氢原子,氢原子在形成质子和电子,电子在聚集在电极上,质子在电场和浓度差的共同作用下,扩散到负极,形成氢燃料电池。
  9. 根据权利要求1所述的一种电光充电、充氢电池,其特征是:
    溶氢溶液可直接流入燃料电池阳极,氢溶液直接在阳极析氢参加电化学反应,实现高容量的氢气的运输,实燃料电池的高功率密度的电量输出。
  10. 根据权利要求1所述的一种电光充电、充氢电池,其特征是:
    双氧水可直接流入燃料电池阴极,双氧水中的活性氧原子在在电场和浓度差的共同作用下,在阴极参加与质子发生电化学反应,实燃料电池的高功率密度的电量输出。
PCT/CN2018/073892 2018-01-19 2018-01-23 电光充电、充氢燃料电池 WO2019140705A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810051597.0 2018-01-19
CN201810051597.0A CN108666601A (zh) 2018-01-19 2018-01-19 电光充电、充氢燃料电池

Publications (1)

Publication Number Publication Date
WO2019140705A1 true WO2019140705A1 (zh) 2019-07-25

Family

ID=63784059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/073892 WO2019140705A1 (zh) 2018-01-19 2018-01-23 电光充电、充氢燃料电池

Country Status (2)

Country Link
CN (1) CN108666601A (zh)
WO (1) WO2019140705A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109461955A (zh) * 2018-11-02 2019-03-12 浙江晨阳新材料有限公司 一种燃料电池系统
CN111412380B (zh) * 2020-03-27 2022-08-12 东南大学 一种氢气制、储、用及运输一体系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3811949A (en) * 1969-07-03 1974-05-21 Varta Ag Hydrazine fuel cell and method of operating same
CN101111964A (zh) * 2004-12-28 2008-01-23 株式会社杰士汤浅 燃料电池发电装置
CN102797970A (zh) * 2011-05-27 2012-11-28 中国地质大学(武汉) 一种基于氢能的储能供能一体化系统
CN104791603A (zh) * 2014-01-20 2015-07-22 上海华捷视医疗设备有限公司 氢能存储和供应系统以及存储和供应氢能的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841277A (zh) * 2009-03-17 2010-09-22 无锡尚弗能源科技有限公司 可再生能源储能储氢综合发电系统
CN102751523B (zh) * 2012-07-17 2015-10-14 中国东方电气集团有限公司 一体化电池、包括其的一体化电池堆和一体化电池系统
CN104457439A (zh) * 2014-12-14 2015-03-25 醴陵天马花炮机械有限公司 一种鞭炮注引机
CN107359363A (zh) * 2017-07-13 2017-11-17 北京理工大学 一种基于太阳能光伏制氢的氢燃料电池系统及其发电方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3811949A (en) * 1969-07-03 1974-05-21 Varta Ag Hydrazine fuel cell and method of operating same
CN101111964A (zh) * 2004-12-28 2008-01-23 株式会社杰士汤浅 燃料电池发电装置
CN102797970A (zh) * 2011-05-27 2012-11-28 中国地质大学(武汉) 一种基于氢能的储能供能一体化系统
CN104791603A (zh) * 2014-01-20 2015-07-22 上海华捷视医疗设备有限公司 氢能存储和供应系统以及存储和供应氢能的方法

Also Published As

Publication number Publication date
CN108666601A (zh) 2018-10-16

Similar Documents

Publication Publication Date Title
KR100456198B1 (ko) 수소 연료 충전 방법 및 장치
CN1966777B (zh) 质子交换膜电解水装置
JP2010535942A (ja) 二酸化硫黄によって減極される陽極を備えた電解槽および水素生成における同電解槽の使用方法
WO2022217836A1 (zh) 基于光解水制氢技术的月球基地能源供应及应用系统
KR101911873B1 (ko) 수전해장치와 연료전지 발전장치 일체형 수소 에너지 전력공급 시스템
CN203996744U (zh) 一种氢燃料电池电动自行车
CN112736270A (zh) 一种质子传导soec和氧离子传导sofc联合装置
CN105423218A (zh) 一种路灯
WO2019140705A1 (zh) 电光充电、充氢燃料电池
CN210596280U (zh) 一种光伏电解制氢设备
CN101330145A (zh) 便携式燃料电池系统
CN117393804A (zh) 一种自动恢复碱性液流电池电解液性能的方法及系统
CN109196748B (zh) 用于通过自主混合站对设备进行供电的方法
CN212025475U (zh) 移动式水电解制氢加氢装置
CN113846340B (zh) 一种氢能管理系统
CN103840184B (zh) 一种直接硼氢化物燃料电池单电池活化方法
CN114300790A (zh) 一种深海氢燃料电池系统
CN212587542U (zh) 可再生能源和燃料电池的联合发电系统
CN115637455A (zh) 一种基于太阳能发电供能的质子交换膜pem电解水制氢系统
CN111668522A (zh) 可再生能源和燃料电池的联合发电系统
CN201072787Y (zh) 便携式燃料电池系统
CN108172951B (zh) 一种锌空气电池系统及其控制方法
WO2018166443A1 (zh) 电燃料储能系统及方法
CN111180835A (zh) 一种基于锌或铝空气电池系统的co2制氢发电方法
CN219117570U (zh) 电解水装置和水焊机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901792

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18901792

Country of ref document: EP

Kind code of ref document: A1