WO2022217779A1 - 一种井下至地面的测井通信和控制装置及方法 - Google Patents

一种井下至地面的测井通信和控制装置及方法 Download PDF

Info

Publication number
WO2022217779A1
WO2022217779A1 PCT/CN2021/108395 CN2021108395W WO2022217779A1 WO 2022217779 A1 WO2022217779 A1 WO 2022217779A1 CN 2021108395 W CN2021108395 W CN 2021108395W WO 2022217779 A1 WO2022217779 A1 WO 2022217779A1
Authority
WO
WIPO (PCT)
Prior art keywords
downhole
signal
electromagnetic wave
ground
receiving device
Prior art date
Application number
PCT/CN2021/108395
Other languages
English (en)
French (fr)
Inventor
孙哲
冯泽东
贺羽
Original Assignee
国仪石油技术(无锡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国仪石油技术(无锡)有限公司 filed Critical 国仪石油技术(无锡)有限公司
Priority to US18/040,753 priority Critical patent/US20230279773A1/en
Priority to DE212021000400.8U priority patent/DE212021000400U1/de
Publication of WO2022217779A1 publication Critical patent/WO2022217779A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/13Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency

Definitions

  • the invention relates to the technical field of quantum logging, in particular to a well logging communication and control device from downhole to surface, and also provides a method for well logging communication and control from downhole to surface.
  • the transmission of downhole data to the surface of the existing logging technology is carried out by mud pulse or EM-MWD.
  • the working method of the mud pulse is to encode the mud pressure signal in the wellbore during drilling, and realize the information transmission by collecting the change of the mud pressure signal. Increase, the instability of the mud signal continues to increase, and the difficulty of decoding work also increases rapidly.
  • mud is the only way to drive the underground generator, and the pressure coding of the mud signal will interfere with the work of the generator to a certain extent, resulting in insufficient power of the generator and reducing the overall work efficiency.
  • EM-MWD realizes downhole to ground communication through electromagnetic signal transmission, and its ground part is also an electromagnetic wave antenna.
  • EM-MWD has poor sensitivity and accuracy, so the transmission depth of EM-MWD is relatively limited, even if a signal is added in the middle In the case of relay, it is often not more than 3000 meters.
  • the present invention provides a logging communication and control device from downhole to surface, which has the advantages of high detection sensitivity, wide operating temperature range, low operating energy consumption, small occupied volume, large channel width, fast transmission rate, and low cost.
  • the low-cost feature has obvious advantages in the wireless transmission of data communication from the well to the surface.
  • a ground-to-downhole quantum logging communication and control device is characterized in that: it comprises a ground part and a downhole part, the ground part is provided with an atomic magnetometer receiving device and a quantum detection device for reading quantum data, the downhole part An electromagnetic wave transmitting system is included, and the electromagnetic wave transmitting system is used for encoding the signals detected downhole and transmitting through electromagnetic waves.
  • the atomic magnetometer receiving device and the quantum detection device for reading quantum data are connected by cables to ensure the accuracy and reliability of the final decoding of the data;
  • the atomic magnetometer receiving device adopts high-sensitivity 87 Rb atomic magnetometer or diamond quantum magnetometer, its transmission channel covers 0-100Hz, the magnetic field intensity that can be detected is as low as 10-12 T, and the noise floor is as low as 1PT /Hz 1/2 , with ultra-high sensitivity and detection signal-to-noise ratio;
  • the electromagnetic wave transmitting system can achieve the stable transmission and detection effect of the signal by using a lower transmitting power to transmit the signal, and reduce the overall energy consumption of the downhole instrument system;
  • It also includes an underground electromagnetic signal repeater.
  • the underground part is provided with an underground electromagnetic signal repeater, and the signal sent by the electromagnetic wave transmitting system passes through the electromagnetic signal.
  • the repeater After being amplified, the repeater sends the amplified signal toward the atomic magnetometer receiving device, so that the atomic magnetometer receiving device receives an effective signal, so that the transmission distance and depth of the entire device are extended.
  • a downhole to surface logging communication and control method characterized in that: the information to be transmitted is coded and modulated by a downhole electromagnetic wave transmitting system during operation and transmitted according to the frequency, and the electromagnetic wave signal is radiated to the ground by the borehole through the formation, and is located on the ground.
  • the atomic magnetometer detects the electromagnetic wave signal, records and decodes it through the corresponding receiving device, and realizes the communication function from the well to the ground.
  • the low-frequency electromagnetic signal is detected and received with high sensitivity through the atomic magnetometer receiving device, and the particularly high signal-to-noise ratio and detection sensitivity are suitable for the field of downhole to ground communication in the detection while drilling;
  • the encoding method of the electromagnetic wave transmitting system is set according to the requirements, and the transmitting frequency is within the range of 1-100Hz.
  • the quantum logging communication device and method from downhole to the surface can detect and receive low-frequency electromagnetic signals with high sensitivity through atomic magnetometer, and the specific extremely high signal-to-noise ratio and detection sensitivity are compared with traditional mud pulse and Electromagnetic transmission has the advantages of higher transmission rate, better stability, larger transmission distance and depth; it has high detection sensitivity, wide operating temperature range, low operating energy consumption, small occupied volume, large channel width, and transmission rate. It is fast and cheap, and has obvious advantages in the wireless transmission of data communication from the well to the surface.
  • Fig. 1 is a schematic diagram of the arrangement corresponding to the device
  • Fig. 2 is the data transmission flow chart corresponding to the method
  • a ground-to-downhole quantum logging communication and control device is shown in Figure 1: it includes a surface portion 10 and a downhole portion 20, and the ground portion 10 is provided with an atomic magnetometer receiving device 1 and a quantum detection device 2 for reading quantum data.
  • the part 20 includes an electromagnetic wave transmitting system 3, and the electromagnetic wave transmitting system 3 is used to encode the signals detected downhole and transmit them through electromagnetic waves.
  • the atomic magnetometer receiving device 1 and the quantum detection device 2 for reading the quantum data are connected by cables to ensure the accuracy and reliability of the final decoding of the data;
  • the atomic magnetometer receiving device 1 adopts a high-sensitivity 87 Rb atomic magnetometer or a diamond quantum magnetometer, its transmission channel covers 0-100Hz, the detected magnetic field strength is as low as 10-12 T, and the noise floor is as low as 1PT/Hz 1/2 , with ultra-high sensitivity and detection signal-to-noise ratio;
  • the electromagnetic wave transmitting system 3 can achieve the stable transmission and detection effect of the signal by using a lower transmitting power to transmit the signal, and reduce the overall energy consumption of the downhole instrument system;
  • the downhole part is provided with a downhole electromagnetic signal repeater 4, and the electromagnetic wave transmitting system 3 sends out the signal repeater 4.
  • the amplified signal is sent to the atomic magnetometer receiving device 1, so that the atomic magnetometer receiving device 1 receives an effective signal, so that the transmission distance and depth of the entire device are extended. The distance can be extended to more than 5km.
  • a downhole to surface logging communication and control method when working, the information to be transmitted is encoded and modulated by a downhole electromagnetic wave transmitting system and transmitted according to the frequency.
  • the electromagnetic wave signal is detected, recorded and decoded through the corresponding receiving device, so as to realize the communication function from the well to the ground.
  • the low-frequency electromagnetic signal is detected and received with high sensitivity through the atomic magnetometer receiving device, and the particularly high signal-to-noise ratio and detection sensitivity are suitable for the field of downhole to ground communication in the detection while drilling;
  • the encoding method of the electromagnetic wave transmitting system is set according to the requirements, and the transmitting frequency is generally selected as the frequency within the range of 1-100Hz.
  • Electromagnetic transmission has the advantages of higher transmission rate, better stability, larger transmission distance and depth; it has high detection sensitivity, wide operating temperature range, low operating energy consumption, small occupied volume, large channel width, and transmission rate. It has the characteristics of fast speed and low price, and has obvious advantages in wireless transmission of data communication from underground to surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mining & Mineral Resources (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geophysics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

一种井下至地面的测井通信和控制装置,包括地面部分(10)和井下部分(20),所述地面部分(10)设置有原子磁力计接收装置(1)及量子数据读出的量子探测设备(2),所述井下部分(20)包括有电磁波发射系统(3),所述电磁波发射系统(3)用于将井下探测到的信号进行编码并通过电磁波发射。该装置具有探测灵敏度高、工作温度范围宽、工作能耗低、占用体积小、信道宽度大、传输速率快、价格低廉的特点,在井下至地面数据通讯的无线传输方面具有明显优势。

Description

一种井下至地面的测井通信和控制装置及方法 技术领域
本发明涉及量子测井的技术领域,具体为一种井下至地面的测井通信和控制装置,本发明还提供了井下至地面的测井通信和控制的方法。
背景技术
现有的测井技术的井下数据向地面的传输是通过泥浆脉冲或EM-MWD来进行。泥浆脉冲的工作方法是通过钻井时对井眼中的泥浆压力信号进行编码,通过采集泥浆压力信号的变化实现信息传输,这种方式的传输速率非常有限,一般为几个bps,并且随着井深的加大,泥浆信号的不稳定性持续增大,解码工作的困难程度也快速增加。此外,泥浆还是驱动井下发电机唯一手段,对泥浆信号做压力编码会在一定程度上干扰发电机的工作,导致发电机的功率不足,降低了整体的工作效率。EM-MWD是通过电磁信号传输来实现井下至地面通信的,其地面部分也是一个电磁波天线,EM-MWD灵敏度和精度较差,因此EM-MWD的传输深度比较有限,即使中间加了一节信号中继的情况也往往不能超过3000米。
由于测井的距离和深度不断扩大,故需要一种传输速度更高、稳定性更好、传输距离和深度更大的井下至地面的测井通信和控制装置。
发明内容
针对上述问题,本发明提供了一种井下至地面的测井通信和控制装置,其具有探测灵敏度高、工作温度范围宽、工作能耗低、占用体积小、信道宽度大、传输速率快、价格低廉的特点,在井下至地面数据通讯的无线传输方 面具有明显优势。
一种地面至井下量子测井通信和控制装置,其特征在于:其包括地面部分和井下部分,所述地面部分设置有原子磁力计接收装置及量子数据读出的量子探测设备,所述井下部分包括有电磁波发射系统,所述电磁波发射系统用于将井下探测到的信号进行编码并通过电磁波发射。
其进一步特征在于:
原子磁力计接收装置与量子数据读出的量子探测设备之间通过线缆连接,确保数据最后解码的准确可靠;
所述原子磁力计接收装置采用高灵敏度 87Rb原子磁力计或金刚石量子磁力计,其传输信道覆盖0-100Hz,所能够探测的磁场强度低至10 -12T量级,本底噪声低至1PT/Hz 1/2,具有超高的灵敏度和探测信噪比;
在原子磁力计接收装置作为信号接收装置时,电磁波发射系统采用更低的发射功率进行信号发射即可达到信号的稳定传输和探测效果,降低了井下仪器系统的整体能耗;
其还包括有一井下电磁信号中继器,当电磁波发射系统和原子磁力计接收装置的直线距离大于4km时,井下部分设置有井下电磁信号中继器,电磁波发射系统所发出的信号通过电磁信号中继器放大后朝向原子磁力计接收装置发出放大后的信号,使得原子磁力计接收装置接收到有效信号,使得整个装置的传输距离和深度得到扩展。
一种井下至地面测井通信和控制方法,其特征在于:工作时由井下电磁波发射系统对要发射的信息进行编码和调制并按照频率进行发射,电磁波信号由井眼经由地层辐射到地面,位于地面的原子磁力计对电磁波信号进行探 测,并通过对应的接收装置对其进行记录和解码,实现井下到地面的通信功能。
其进一步特征在于:通过原子磁力计接收装置对低频电磁信号进行高灵敏度探测和接收,具体极高的信噪比和探测灵敏度,适用于随钻探测中的井下至地面通信领域;
电磁波发射系统的编码方式根据需求进行设置,其发射频率为1-100Hz范围之内的频率。
采用本发明后,井下至地面的量子测井通信装置及方法通过原子磁力计对低频电磁信号进行高灵敏度探测和接收,具体极高的信噪比和探测灵敏度,相较于传统的泥浆脉冲和电磁传输具有传输速率更高、稳定性更好、传输距离和深度更大的多方面优势;其具有探测灵敏度高、工作温度范围宽、工作能耗低、占用体积小、信道宽度大、传输速率快、价格低廉的特点,在井下至地面数据通讯的无线传输方面具有明显优势。
附图说明
图1为装置所对应的布置示意简图;
图2为方法所对应的数据传输流程图;
图中序号所对应的名称如下:
地面部分10、井下部分20、原子磁力计接收装置1、量子探测设备2、电磁波发射系统3、井下电磁信号中继器4。
具体实施方式
一种地面至井下量子测井通信和控制装置,见图1:其包括地面部分10和井下部分20,地面部分10设置有原子磁力计接收装置1及量子数据读出的 量子探测设备2,井下部分20包括有电磁波发射系统3,电磁波发射系统3用于将井下探测到的信号进行编码并通过电磁波发射。
原子磁力计接收装置1与量子数据读出的量子探测设备2之间通过线缆连接,确保数据最后解码的准确可靠;
原子磁力计接收装置1采用高灵敏度 87Rb原子磁力计或金刚石量子磁力计,其传输信道覆盖0-100Hz,其探测的磁场强度低至10 -12T量级,本底噪声低至1PT/Hz 1/2,具有超高的灵敏度和探测信噪比;
在原子磁力计接收装置1作为信号接收装置时,电磁波发射系统3采用更低的发射功率进行信号发射即可达到信号的稳定传输和探测效果,降低了井下仪器系统的整体能耗;
其还包括有一井下电磁信号中继器4,当电磁波发射系统3和原子磁力计接收装置1的直线距离大于4km时,井下部分设置有井下电磁信号中继器4,电磁波发射系统3所发出的信号通过电磁信号中继器4放大后朝向原子磁力计接收装置1发出放大后的信号,使得原子磁力计接收装置1接收到有效信号,使得整个装置的传输距离和深度得到扩展。其距离可以扩大到5km以上。
一种井下至地面测井通信和控制方法:工作时由井下电磁波发射系统对要发射的信息进行编码和调制并按照频率进行发射,电磁波信号由井眼经由地层辐射到地面,位于地面的原子磁力计对电磁波信号进行探测,并通过对应的接收装置对其进行记录和解码,实现井下到地面的通信功能。
其进一步特征在于:通过原子磁力计接收装置对低频电磁信号进行高灵敏度探测和接收,具体极高的信噪比和探测灵敏度,适用于随钻探测中的井下至地面通信领域;
电磁波发射系统的编码方式根据需求进行设置,其发射频率一般选为1-100Hz范围之内的频率。
其工作原理如下:井下至地面的量子测井通信装置及方法通过原子磁力计对低频电磁信号进行高灵敏度探测和接收,具体极高的信噪比和探测灵敏度,相较于传统的泥浆脉冲和电磁传输具有传输速率更高、稳定性更好、传输距离和深度更大的多方面优势;其具有探测灵敏度高、工作温度范围宽、工作能耗低、占用体积小、信道宽度大、传输速率快、价格低廉的特点,在井下至地面数据通讯的无线传输方面具有明显优势。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (8)

  1. 一种井下至地面的测井通信和控制装置,其特征在于:其包括地面部分和井下部分,所述地面部分设置有原子磁力计接收装置及量子数据读出的量子探测设备,所述井下部分包括有电磁波发射系统,所述电磁波发射系统用于将井下探测到的信号进行编码并通过电磁波发射。
  2. 如权利要求1所述的一种井下至地面的测井通信和控制装置,其特征在于:原子磁力计接收装置与量子数据读出的量子探测设备之间通过线缆连接。
  3. 如权利要求1所述的一种井下至地面的测井通信和控制装置,其特征在于:所述原子磁力计接收装置采用高灵敏度 87Rb原子磁力计或金刚石量子磁力计,其传输信道覆盖0-100Hz,所能够探测的磁场强度低至10 -12T量级,本底噪声低至1PT/Hz 1/2,具有超高的灵敏度和探测信噪比。
  4. 如权利要求3所述的一种井下至地面的测井通信和控制装置,其特征在于:在原子磁力计接收装置作为信号接收装置时,电磁波发射系统采用更低的发射功率进行信号发射即可达到信号的稳定传输和探测效果,降低了井下仪器系统的整体能耗。
  5. 如权利要求1所述的一种井下至地面的测井通信和控制装置,其特征在于:其还包括有一井下电磁信号中继器,当电磁波发射系统和原子磁力计接收装置的直线距离大于4km时,井下部分设置有井下电磁信号中继器,电磁波发射系统所发出的信号通过电磁信号中继器放大后朝向原子磁力计接收装置发出放大后的信号。
  6. 一种井下至地面测井通信和控制方法,其特征在于:工作时由井下电磁波发射系统对要发射的信息进行编码和调制并按照频率进行发射,电磁波 信号由井眼经由地层辐射到地面,位于地面的原子磁力计对电磁波信号进行探测,并通过对应的接收装置对其进行记录和解码,实现井下到地面的通信功能。
  7. 如权利要求6所述的一种井下至地面测井通信和控制方法,其特征在于:通过原子磁力计接收装置对低频电磁信号进行高灵敏度探测和接收,具体极高的信噪比和探测灵敏度,适用于随钻探测中的井下至地面通信领域。
  8. 如权利要求6所述的一种井下至地面测井通信和控制方法,其特征在于:电磁波发射系统的编码方式根据需求进行设置,其发射频率为1-100Hz范围之内的频率。
PCT/CN2021/108395 2021-04-16 2021-07-26 一种井下至地面的测井通信和控制装置及方法 WO2022217779A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/040,753 US20230279773A1 (en) 2021-04-16 2021-07-26 Downhole-to-ground logging communication and control apparatus and method
DE212021000400.8U DE212021000400U1 (de) 2021-04-16 2021-07-26 Kommunikations- und Steuervorrichtung für Untertagevermessung von Untertage zu Bodenfläche

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110411350.7A CN113073974A (zh) 2021-04-16 2021-04-16 一种井下至地面的测井通信和控制装置及方法
CN202110411350.7 2021-04-16

Publications (1)

Publication Number Publication Date
WO2022217779A1 true WO2022217779A1 (zh) 2022-10-20

Family

ID=76617733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108395 WO2022217779A1 (zh) 2021-04-16 2021-07-26 一种井下至地面的测井通信和控制装置及方法

Country Status (4)

Country Link
US (1) US20230279773A1 (zh)
CN (1) CN113073974A (zh)
DE (1) DE212021000400U1 (zh)
WO (1) WO2022217779A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113216942A (zh) * 2021-04-16 2021-08-06 国仪石油技术(无锡)有限公司 一种地面至井下量子测井通信和控制装置及方法
CN113073974A (zh) * 2021-04-16 2021-07-06 国仪石油技术(无锡)有限公司 一种井下至地面的测井通信和控制装置及方法
CN117538346A (zh) * 2024-01-08 2024-02-09 四川阳光墨新科技有限公司 基于量子探测技术的混凝土结构裂缝探测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101441253A (zh) * 2008-12-02 2009-05-27 浙江大学 高灵敏度原子磁力仪
CN102704925A (zh) * 2012-06-06 2012-10-03 中国石油化工股份有限公司 井间电磁测井系统
US20130278265A1 (en) * 2011-01-03 2013-10-24 Korea Research Institute Of Standards And Science Low-field nuclear magnetic resonance device and low-field nuclear magnetic resonance method
CN107015172A (zh) * 2017-04-24 2017-08-04 兰州空间技术物理研究所 一种铷原子磁力仪及其磁场测量方法
CN109779617A (zh) * 2018-12-20 2019-05-21 中国石油集团川庆钻探工程有限公司 一种井下全井无线传输方法
CN113006778A (zh) * 2021-03-22 2021-06-22 国仪石油技术(无锡)有限公司 一种具有超高灵敏度的量子测井方法
CN113073974A (zh) * 2021-04-16 2021-07-06 国仪石油技术(无锡)有限公司 一种井下至地面的测井通信和控制装置及方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100225313A1 (en) * 2009-03-03 2010-09-09 Baker Hughes Incorporated Atomic magnetometers for use in the oil service industry
CN102331588B (zh) * 2011-08-03 2014-08-06 中国石油大学(北京) 核磁共振测井仪的探头磁体、探头和核磁共振测井仪
AU2013354973B2 (en) * 2012-12-07 2016-11-17 Halliburton Energy Services, Inc. Gradient-based single well SAGD ranging system
EP3030916A4 (en) * 2013-12-20 2017-03-15 Halliburton Energy Services, Inc. Optical sensors in downhole logging tools
US20160025887A1 (en) * 2013-12-27 2016-01-28 Halliburton Energy Services, Inc. Target well ranging method, apparatus, and system
EP3129590B1 (en) * 2014-05-01 2020-09-09 Halliburton Energy Services, Inc. Casing segment having at least one transmission crossover arrangement
US10088594B2 (en) * 2014-10-16 2018-10-02 Schlumberger Technology Corporation Methods and apparatuses for echo processing of nuclear magnetic resonance (NMR) data
US10900916B2 (en) * 2018-07-16 2021-01-26 Baker Hughes, A Ge Company, Llc Method and apparatus to detect free induction decay NMR signals

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101441253A (zh) * 2008-12-02 2009-05-27 浙江大学 高灵敏度原子磁力仪
US20130278265A1 (en) * 2011-01-03 2013-10-24 Korea Research Institute Of Standards And Science Low-field nuclear magnetic resonance device and low-field nuclear magnetic resonance method
CN102704925A (zh) * 2012-06-06 2012-10-03 中国石油化工股份有限公司 井间电磁测井系统
CN107015172A (zh) * 2017-04-24 2017-08-04 兰州空间技术物理研究所 一种铷原子磁力仪及其磁场测量方法
CN109779617A (zh) * 2018-12-20 2019-05-21 中国石油集团川庆钻探工程有限公司 一种井下全井无线传输方法
CN113006778A (zh) * 2021-03-22 2021-06-22 国仪石油技术(无锡)有限公司 一种具有超高灵敏度的量子测井方法
CN113073974A (zh) * 2021-04-16 2021-07-06 国仪石油技术(无锡)有限公司 一种井下至地面的测井通信和控制装置及方法

Also Published As

Publication number Publication date
US20230279773A1 (en) 2023-09-07
CN113073974A (zh) 2021-07-06
DE212021000400U1 (de) 2023-02-27

Similar Documents

Publication Publication Date Title
WO2022217779A1 (zh) 一种井下至地面的测井通信和控制装置及方法
CN106506050B (zh) 井下无线低频电磁波双向通信系统
US7170423B2 (en) Electromagnetic MWD telemetry system incorporating a current sensing transformer
US7411517B2 (en) Apparatus and method for providing communication between a probe and a sensor
US8400326B2 (en) Instrumentation of appraisal well for telemetry
US6880634B2 (en) Coiled tubing acoustic telemetry system and method
CN102733799B (zh) 基于钻柱信道的钻井信息声波传输中继装置
CN100501448C (zh) 采用高基数相移键控的低频电磁遥测系统
US9778389B2 (en) Communication applications
CN204357427U (zh) 井底测试数据无线地面直读系统
CN203925484U (zh) 一种新型的随钻测井数据传输系统
CN102937022B (zh) 一种近钻头钻井信号传输系统、设备及方法
CN109869142B (zh) 一种井下数据传输装置以及方法
CN105201489A (zh) 气体钻井钻柱内声波随钻数据无线传输方法
CN111577259B (zh) 一种双谐振型近钻头信号短传系统
CN101737034B (zh) 一种井筒数据传输方法及系统
CN113006778A (zh) 一种具有超高灵敏度的量子测井方法
US20130146279A1 (en) System and method for borehole communication
CN113236236A (zh) 一种以油井管道作为信道的信号传输装置
CN106894813B (zh) 一种基于邻井接收天线的电磁随钻测量系统及方法
CN203756158U (zh) 一种双流钻杆信号传输系统
WO2022217778A1 (zh) 一种地面至井下量子测井通信和控制装置及方法
CN107676078A (zh) 煤矿井下水脉冲无线随钻测量系统及测量方法
CN106593419B (zh) 一种基于电磁波用于中深井的无线双向通讯系统
CN208456583U (zh) 一种随钻近钻头电磁波无线传输装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936651

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21936651

Country of ref document: EP

Kind code of ref document: A1