WO2022217443A1 - 信道估计方法、终端设备、网络设备、芯片和存储介质 - Google Patents

信道估计方法、终端设备、网络设备、芯片和存储介质 Download PDF

Info

Publication number
WO2022217443A1
WO2022217443A1 PCT/CN2021/086712 CN2021086712W WO2022217443A1 WO 2022217443 A1 WO2022217443 A1 WO 2022217443A1 CN 2021086712 W CN2021086712 W CN 2021086712W WO 2022217443 A1 WO2022217443 A1 WO 2022217443A1
Authority
WO
WIPO (PCT)
Prior art keywords
domain resource
time domain
time
resource set
terminal device
Prior art date
Application number
PCT/CN2021/086712
Other languages
English (en)
French (fr)
Inventor
崔胜江
贺传峰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202180082525.2A priority Critical patent/CN116711245A/zh
Priority to EP21936338.9A priority patent/EP4262304A4/en
Priority to PCT/CN2021/086712 priority patent/WO2022217443A1/zh
Publication of WO2022217443A1 publication Critical patent/WO2022217443A1/zh
Priority to US18/355,062 priority patent/US20240023076A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Definitions

  • the present application relates to the field of communications, and more particularly, to a channel estimation method, a terminal device, a network device, a chip, a computer-readable storage medium, a computer program product, a computer program, and a communication system.
  • a data repeat transmission mechanism In wireless communication systems, in order to improve the reliability of data transmission, a data repeat transmission mechanism is designed. Generally, during the repeated transmission of data, the network device performs channel estimation for each transmission separately.
  • Joint channel estimation refers to jointly performing channel estimation with demodulation reference signals (Demodulation Reference Signal, DMRS) in multiple transmissions included in the repeated transmission process, which can improve the accuracy of channel estimation. How to accurately perform joint channel estimation needs to be considered.
  • demodulation Reference Signal Demodulation Reference Signal
  • embodiments of the present application provide a channel estimation method, a terminal device, a network device, a chip, a computer-readable storage medium, a computer program product, a computer program, and a communication system, which can be used to determine the time for performing joint channel estimation. domain resources for accurate joint channel estimation.
  • An embodiment of the present application provides a channel estimation method, including:
  • the terminal device determines, based on the received first indication information from the network device, a first time-domain resource set for repeatedly transmitting the first data;
  • the terminal device determines, based on the first time-domain resource set, a second time-domain resource set for performing joint channel estimation.
  • An embodiment of the present application provides a channel estimation method, including:
  • the network device sends first indication information to the terminal device; wherein the first indication information is used to instruct the terminal device to determine a first time-domain resource set for repeatedly transmitting the first data; the first time-domain resource set for determining a second set of time-domain resources for joint channel estimation.
  • the embodiment of the present application also provides a terminal device, including:
  • the first processing module is configured to determine, based on the received first indication information from the network device, a first time domain resource set for repeatedly transmitting the first data, and based on the first time domain resource set, determine a first time domain resource set for A second set of time-domain resources for joint channel estimation.
  • the embodiment of the present application also provides a network device, including:
  • a communication module configured to send first indication information to a terminal device; wherein, the first indication information is used to instruct the terminal device to determine a first time domain resource set for repeatedly transmitting the first data; the first time The set of domain resources is used to determine a second set of time domain resources for joint channel estimation.
  • Embodiments of the present application further provide a terminal device, including: a processor and a memory, where the memory is used to store a computer program, and the processor invokes and runs the computer program stored in the memory to execute the above channel estimation method.
  • An embodiment of the present application further provides a network device, including: a processor and a memory, where the memory is used to store a computer program, and the processor invokes and runs the computer program stored in the memory to execute the above-mentioned channel estimation method.
  • An embodiment of the present application further provides a chip, including: a processor, configured to call and run a computer program from a memory, so that a device on which the chip is installed executes the above channel estimation method.
  • Embodiments of the present application further provide a computer-readable storage medium for storing a computer program, wherein the computer program causes a computer to execute the above channel estimation method.
  • Embodiments of the present application further provide a computer program product, including computer program instructions, wherein the computer program instructions cause a computer to execute the above channel estimation method.
  • An embodiment of the present application further provides a communication system, including a terminal device and a network device for executing the above channel estimation method.
  • the embodiment of the present application further provides a computer program, the computer program enables a computer to execute the above channel estimation method.
  • the terminal device determines, based on the first indication information sent by the network device, the first time-domain resource set for repeatedly transmitting the first data, and determines the first time-domain resource set for performing joint channel estimation based on the first time-domain resource set.
  • the second time domain resource set Therefore, the terminal device can cooperate with the network device to accurately perform joint channel estimation based on the second time domain resource set.
  • FIG. 1 is a schematic diagram of a communication system architecture according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a time domain resource for repeated PUSCH transmission in an embodiment of the present application.
  • FIG. 3 is a schematic diagram of another time domain resource for repeated PUSCH transmission in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of joint channel estimation of consecutive time slots in an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a channel estimation method according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a channel estimation method according to another embodiment of the present application.
  • FIG. 7 is a schematic diagram 1 of a second time domain resource set in an embodiment of the present application.
  • FIG. 8 is a second schematic diagram of a second time-domain resource set in an embodiment of the present application.
  • FIG. 9 is a third schematic diagram of a second time domain resource set in an embodiment of the present application.
  • FIG. 10 is a fourth schematic diagram of a second time-domain resource set in an embodiment of the present application.
  • FIG. 11 is a fifth schematic diagram of a second time domain resource set in an embodiment of the present application.
  • FIG. 12 is a sixth schematic diagram of a second time domain resource set in an embodiment of the present application.
  • FIG. 13 is a seventh schematic diagram of a second time-domain resource set in an embodiment of the present application.
  • FIG. 14 is a schematic structural block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 15 is a schematic structural block diagram of a network device according to an embodiment of the present application.
  • FIG. 16 is a schematic structural block diagram of a network device according to another embodiment of the present application.
  • FIG. 17 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • FIG. 18 is a schematic block diagram of a chip according to an embodiment of the present application.
  • FIG. 19 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • CDMA Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • NTN Non-Terrestrial Networks
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • Wireless Fidelity Wireless Fidelity
  • WiFi fifth-generation communication
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system in this embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or a standalone (Standalone, SA) distribution. web scene.
  • Carrier Aggregation, CA Carrier Aggregation, CA
  • DC Dual Connectivity
  • SA standalone
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, where the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • the terminal device can be a station (STAION, ST) in the WLAN, can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, next-generation communication systems such as end devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • STAION, ST in the WLAN
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, and an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city or wireless terminal equipment in smart home, etc.
  • a mobile phone Mobile Phone
  • a tablet computer Pad
  • a computer with a wireless transceiver function a virtual reality (Virtual Reality, VR) terminal device
  • augmented reality (Augmented Reality, AR) terminal Equipment wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city or wireless terminal equipment in smart home, etc.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • the network device may be a device for communicating with a mobile device, and the network device may be an access point (Access Point, AP) in WLAN, or a base station (Base Transceiver Station, BTS) in GSM or CDMA , it can also be a base station (NodeB, NB) in WCDMA, it can also be an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or in-vehicle equipment, wearable devices and NR networks
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network device may be a satellite or a balloon station.
  • the satellite may be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geostationary earth orbit (GEO) satellite, a High Elliptical Orbit (HEO) ) satellite etc.
  • the network device may also be a base station set in a location such as land or water.
  • a network device may provide services for a cell, and a terminal device communicates with the network device through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device (
  • the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell).
  • Pico cell Femto cell (Femto cell), etc.
  • These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • FIG. 1 schematically shows one network device 1100 and two terminal devices 1200.
  • the wireless communication system 1000 may include a plurality of network devices 1100, and the coverage of each network device 1100 may include other numbers terminal equipment, which is not limited in this embodiment of the present application.
  • the wireless communication system 1000 shown in FIG. 1 may also include other network entities such as a mobility management entity (Mobility Management Entity, MME), an access and mobility management function (Access and Mobility Management Function, AMF). This is not limited in the application examples.
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • a device having a communication function in the network/system may be referred to as a communication device.
  • the communication device may include a network device and a terminal device with a communication function, and the network device and the terminal device may be specific devices in this embodiment of the application, which will not be repeated here; It may include other devices in the communication system, for example, other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • the "instruction" mentioned in the embodiments of the present application may be a direct instruction, an indirect instruction, or an associated relationship.
  • a indicates B it can indicate that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indicates B indirectly, such as A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • corresponding may indicate that there is a direct or indirect corresponding relationship between the two, or may indicate that there is an associated relationship between the two, or indicate and be instructed, configure and be instructed configuration, etc.
  • the network device sends uplink grant (UL grant) information, such as downlink control information (Downlink Control Information, DCI) in format 0_0 (format 0_0) or format 0_1 (format 0_1), to schedule physical uplink sharing Channel (Physical Uplink Shared Channel, PUSCH) transmission.
  • UL grant uplink grant
  • DCI Downlink Control Information
  • PUSCH Physical Uplink Shared Channel
  • the network device When the network device schedules uplink data transmission through the UL grant information, it will carry the Time Domain Resource Allocation (TDRA) field in the DCI.
  • TDRA Time Domain Resource Allocation
  • the TDRA field is 6-bit (bit) data used to indicate one of 16 rows in the resource allocation table.
  • Each row in the resource allocation table includes a variety of different resource allocation information, such as the PUSCH start position S, the PUSCH length L, the time interval information K 2 and the mapping type (Type).
  • K 2 represents the number of time slots offset between the time slot where the UL grant information is located and the time slot where the PUSCH is located.
  • the mapping types of PUSCH time domain resource allocation include Type A (Type A) and Type B (Type B).
  • Type A Type A
  • Type B Type B
  • the difference between Type A and Type B includes: the value range of S is different and the value range of L is different.
  • Type A is mainly for slot-based scheduling services, S is relatively high, and L is relatively long.
  • Type B is mainly oriented to non-slotted scheduling services such as Ultra Reliability and Low Latency Communication (URLLC), and has higher requirements for delay. Therefore, the location of S is more flexible to transmit service data that arrives at any time. L Shorter, can reduce the transmission delay.
  • URLLC Ultra Reliability and Low Latency Communication
  • the time domain resource allocation table of PUSCH is shown in Table 2 below.
  • j is the time slot where the UL grant information is located.
  • time-slot aggregation PUSCH repeated transmission is introduced in the NR R15 standard.
  • Slot aggregation PUSCH repeated transmission means that the same transmission block is repeatedly transmitted K times with different redundancy versions.
  • the network device configures the maximum number of repetitions K for the terminal device through the high-level parameter PUSCH aggregation factor (pusch-AggregationFactor).
  • PUSCH replicas occupy the same number of symbols in the time domain.
  • the redundancy version (Redundancy Version, RV) of the first PUSCH replica is indicated by uplink grant information such as DCI, and the RVs of the remaining PUSCH replicas are cyclically determined based on the set ⁇ 0, 2, 3, 1 ⁇ in sequence.
  • the numbered RV id of the redundancy version is shown in Table 3 below:
  • the time domain resource corresponding to the PUSCH replica includes at least one semi-static downlink symbol
  • the PUSCH is not sent in this time slot.
  • FIG. 2 a schematic diagram of time domain resources for repeated PUSCH transmission is shown.
  • the network device schedules the terminal device to repeatedly transmit the transmission block four times, and the PUSCH copy of the transmission block needs to occupy the first 12 symbols in each time slot.
  • U is an uplink symbol
  • D is a semi-static downlink symbol
  • F is a flexible symbol.
  • time slot #1 and time slot #2 are semi-static downlink symbols D
  • the 3rd PUSCH (PUSCH#3) of is discarded and not sent.
  • the network device configures the maximum number of repetitions of the transmission block by using the high-level parameter RepK.
  • the network device sends uplink grant information or grant-free configuration information to indicate repeated transmission of one or more nominal PUSCHs.
  • the terminal device transmits one or more actual PUSCH copies in one time slot, or transmits two or more actual PUSCH copies in consecutively available time slots.
  • the network device realizes the designation of time domain resources by indicating a certain row in the TDRA table.
  • a column is also added to the TDRA table, which is used to indicate the number of repetitions of Type B PUSCH repeated transmission, and its value can be ⁇ 1, 2, 3, 4, 7, 8, 12, 16 ⁇ .
  • the uplink scheduling information or the first type of license-free configuration information indicates the start symbol S and duration L of the first nominal PUSCH, and the duration L of each nominal PUSCH copy is the same, where 0 ⁇ S ⁇ 13, 1 ⁇ L ⁇ 14.
  • the high-level signaling uses 4 bits to indicate S and L respectively, which can realize S+L>14.
  • the Transport Block Size (TBS) of the nominal PUSCH and the actual PUSCH replica can be determined according to the time domain length L of the nominal PUSCH. Starting with the second nominal PUSCH, the starting symbol of a nominal PUSCH copy is the next symbol of the ending symbol of the previous nominal PUSCH copy.
  • the terminal device Before determining the time domain resources of the actual PUSCH replica, the terminal device needs to determine invalid symbols, and the symbols other than the invalid symbols may be considered as potentially valid symbols. If the time domain resource corresponding to a nominal PUSCH replica includes at least one potential valid symbol that is consecutive in the same slot, the at least one potential valid symbol may be mapped to an actual PUSCH replica. Therefore, the time domain resources of one nominal PUSCH replica may contain the time domain resources of one or more actual PUSCH replicas. Furthermore, the terminal device does not send a copy of the actual PUSCH for a single symbol unless the single symbol is the duration L of the nominal PUSCH indicated by the network device.
  • FIG. 3 shows a schematic diagram of an exemplary time domain resource for repeated PUSCH transmission.
  • the length L of the nominal PUSCH is 6 symbols, and the number of nominal repetitions is 4, so 4 nominal PUSCH repetitions are included in the 24 symbols.
  • the 6 symbols corresponding to each nominal PUSCH replica downlink symbols or other invalid symbols are not used for actual PUSCH transmission.
  • the corresponding 6 symbols are all potentially valid symbols, then among the 6 symbols, the first and second consecutive symbols in the same time slot are mapped to an actual PUSCH, The consecutive 3rd to 6th symbols in the same slot are mapped to another actual PUSCH.
  • the 1st symbol, the 5th symbol and the 6th symbol are potentially valid symbols.
  • the first symbol is not continuous with other potentially valid symbols, so the first symbol is not used for actual PUSCH transmission, and the fifth symbol and the sixth symbol are continuous in the same time slot, which can be mapped to an actual PUSCH.
  • the terminal device can determine invalid symbols based on the following methods:
  • the downlink symbol semi-statically configured by the high layer parameter tdd-UL-DL-ConfigurationCommon or tdd-UL-DL-Configuration Dedicated is an invalid symbol.
  • the invalid symbol pattern includes a plurality of bits corresponding to a plurality of symbols, and a bit with a value of 1 indicates that the corresponding symbol is an invalid symbol.
  • the DCI in format 0_1 or 0_2 is used to schedule PUSCH repetition, or activate the second type of grant-free PUSCH repetition.
  • a 1-bit invalid symbol pattern indication information field can be configured in the DCI. When the invalid symbol pattern indication information field is 1, the terminal device determines the invalid symbol according to the invalid symbol pattern, otherwise, the terminal device ignores the invalid symbol pattern. If the DCI does not contain the invalid symbol pattern indication information field, the terminal directly determines the invalid symbol according to the invalid symbol pattern. Different DCI formats independently configure the invalid symbol pattern indication information field.
  • the manner of determining the type of the license-free PUSCH repetition includes: when the high-level parameter PUSCHRepTypeIndicatorForType1Configuredgrant is configured as pusch-RepTypeB, the type B PUSCH repetition is used, otherwise, the A type PUSCH repetition is used.
  • the manner of determining the number of grant-free repetitions includes: if the time domain resource allocation table contains numberofrepetitions, the number of nominal repeated transmissions of the PUSCH is indicated by the TDRA table; otherwise, the number of repetitions is indicated by a high-level parameter repK.
  • the number of repeated transmissions of PUSCH is semi-statically configured. Since the system supports a flexible time slot structure, in some slots, the repetition of PUSCH will be ignored, resulting in discontinuous time domain resources for the actual repeated transmission of PUSCH. . Therefore, in some configuration scenarios, especially in time division duplex (Time Division Duplex, TDD) scenarios, the number of configuration repetitions cannot achieve an ideal coverage enhancement effect.
  • TDD Time Division Duplex
  • the number of time slots for performing the joint channel estimation or the number of repeated transmissions of the PUSCH needs to be determined to determine the corresponding time domain range.
  • the network device assumes that the DMRS are related, for example, at least one of the power, antenna port and precoding of the DMRS is constant and/or the phase is continuous, and performs joint channel estimation based on this. Accordingly, the terminal equipment should implement these assumptions related to joint channel estimation in the transmission of PUSCH.
  • the terminal equipment needs to perform joint channel estimation based on the preamble DMRS and the additional DMRS in the time slot #0 to time slot #3 of the repeated PUSCH transmission, and keep the joint channel estimation with the joint channel estimation. related configuration.
  • the terminal device due to the discontinuous time domain resources of the actual repeated transmission of PUSCH, it is difficult for the terminal device to cooperate with the network device to perform corresponding configuration during the entire repeated transmission of the PUSCH, that is, to keep the power, antenna port, precoding of the DMRS unchanged and / or keep the phase continuous, etc.
  • FIG. 5 is a schematic flowchart of a channel estimation method according to an embodiment of the present application. The method can optionally be applied to the system shown in Figure 1, but is not limited thereto. The method includes:
  • Step S510 the terminal device determines, based on the received first indication information from the network device, a first time domain resource set for repeatedly transmitting the first data;
  • Step S520 the terminal device determines, based on the first time-domain resource set, a second time-domain resource set for performing joint channel estimation.
  • the second time domain resource set may include at least one time domain resource used for joint channel estimation. That is, the network device performs joint channel estimation on the time domain resources included in the second time domain resource set. Correspondingly, the terminal device maintains the configuration associated with the joint channel estimation in the second time domain resource set.
  • the above channel estimation method may further include:
  • the terminal device transmits the first data in the second time domain resource set based on the signal configuration corresponding to the joint channel estimation.
  • the signal configuration corresponding to the joint channel estimation includes at least one of the following:
  • FIG. 6 another embodiment of the present application provides a channel estimation method.
  • the method can optionally be applied to the system shown in Figure 1, but is not limited thereto.
  • the method includes:
  • Step S610 The network device sends first indication information to the terminal device; wherein, the first indication information is used to instruct the terminal device to determine the first time domain resource set for repeatedly transmitting the first data; the first time domain resource set is used to determine A second set of time-domain resources for joint channel estimation.
  • the above method further includes: the network device performs joint channel estimation for the first data in the second time domain resource set.
  • the network device performs joint channel estimation for the first data on at least one time domain resource included in the second time domain resource set.
  • the first data may include PUSCH.
  • the first time-domain resource set for repeatedly transmitting the first data may include a time slot or a symbol for actually transmitting the first data.
  • the first time domain resource set may include at least one time slot, and at least one symbol corresponding to the PUSCH replica in the time slot does not contain semi-static downlink symbols; for Type B uplink data transmission , the first time domain resource set may include symbols corresponding to the actual PUSCH.
  • first time domain resource set may include continuous time domain resources, or may include discrete time domain resources.
  • the second time domain resource set may include continuous time domain resources, or may include discrete time domain resources.
  • the time domain resources may include time slots and/or symbols.
  • the first indication information may include at least one of the following:
  • the second window length indication information is the second window length indication information.
  • the uplink grant information may include DCI such as DCI format 0_0 or DCI format 0_1.
  • the terminal device may determine the time domain range of the repeated transmission according to the uplink grant information, and determine the first time domain for the repeated transmission of the first data based on the time slot structure or symbol configuration of each time slot in the time domain range of the repeated transmission Collection of resources.
  • the authorization-free indication information may include configuration information for configuring scheduling-free resources.
  • the authorization-free information may include activation information for activating some scheduling-free resources sent when the scheduling-free resources have been configured.
  • the terminal device can determine the effective scheduling-free resources according to the authorization-free indication information, and determine the first time-domain resources in the scheduling-free resources that can be used for repeated transmission of the first data in the case that some or all of the scheduling-free resources need to be used for repeated transmission. gather.
  • the network device may also determine the first time-domain resource set in the scheduling-free resource that can be used to repeatedly transmit the first data.
  • the first indication information may carry uplink authorization information or authorization-free information to indicate the first time domain resource set, and at the same time carry the second window length indication information so that the terminal device can determine the second time domain according to the second window length indication information. Collection of resources.
  • the second window length indication information may be used to indicate the information related to the length of the time domain window or the time domain interval and the time domain range required for determining the second time domain resource set, for example, the nominal window length, the window length threshold, the interval threshold, etc.
  • the nominal window length may be used to determine the nominal window in the time domain range corresponding to the first time domain resource set, so as to determine the second time domain resource set in the nominal window.
  • the window length threshold may include a length of a continuous time domain range corresponding to the second time domain resource set or a threshold of the number of time domain resources included in the second time domain resource set.
  • the interval threshold may include a length threshold of an interruption-allowed time-domain interval in the second time-domain resource set, or a quantity threshold of interruption-allowed time-domain resources.
  • the network device before performing joint channel estimation for the first data in the second time domain resource set, may also determine the second time domain resource set based on the foregoing first time domain resource set. Specifically, the channel estimation method may further include: the network device determining the second time domain resource set based on the first time domain resource set.
  • the network device or the terminal device may implement the determination of the second time domain resource set based on the first time domain resource set in various ways.
  • Various exemplary implementations are provided below:
  • Example 1 The network device determines the second time domain resource set based on the first time domain resource set, including:
  • the network device determines the first time domain resource set as the second time domain resource set; wherein the first time domain resource set includes at least two time domain resources.
  • the terminal device determining, based on the first time-domain resource set, a second time-domain resource set used for joint channel estimation, comprising: determining, by the terminal device, the first time-domain resource set as the first time-domain resource set. Two time domain resource sets; wherein, the first time domain resource set includes at least two time domain resources.
  • the time domain resources include time slots or symbols.
  • the time domain range for repeated transmission of PUSCH (hereinafter referred to as the retransmission time domain range) includes 5 time slots, namely time slot #0 to time slot #4.
  • the time domain resource corresponding to PUSCH #2 in time slot #1 includes 3 downlink symbols D
  • the time domain resource corresponding to PUSCH #3 in time slot #2 includes 3 downlink symbols D. Therefore, time slot #1 If no repeated transmission of PUSCH is performed in time slot #2, the first time domain resource set used for repeated transmission of PUSCH includes time slot #0, time slot #3 and time slot #4.
  • time slot #0, time slot #3 and time slot #4 are determined as a whole as the second time domain resource set, that is, the second time domain resource set includes time slot #0, time slot #3 and time slot #4.
  • the network device performs joint channel estimation based on time slot #0, time slot #3 and time slot #4.
  • the terminal device maintains power, antenna port, precoding and/or phase continuity on slot #0, slot #3, and slot #4.
  • the retransmission time domain range includes 24 symbols, corresponding to 4 nominal PUSCHs.
  • the first time domain resource set used for repeated transmission of PUSCH includes 6 symbols occupied by actual PUSCH.
  • the terminal device determines the symbols as a whole as a second set of time-domain resources for joint channel estimation. That is, the second time domain resource set includes 6 symbols occupied by the actual PUSCH.
  • the network device performs joint channel estimation based on the symbols occupied by the 6 actual PUSCHs.
  • the terminal device keeps power, antenna port, precoding unchanged and/or phase continuous over the 6 symbols occupied by the actual PUSCH.
  • Example 2 The network device determines the second time domain resource set based on the first time domain resource set, including:
  • the network device obtains the second time domain resource set based on the M time domain resources having a preset relationship in the first time domain resource set; wherein, M is an integer greater than or equal to 1.
  • the terminal device determines, based on the first time-domain resource set, a second time-domain resource set for performing joint channel estimation, including:
  • the terminal device obtains the second time-domain resource set based on M time-domain resources having a preset relationship in the first time-domain resource set; where M is an integer greater than or equal to 1.
  • the network device or the terminal device may determine M time-domain resources having a preset relationship in the first time-domain resource set as the second time-domain resource set.
  • the preset relationship includes being continuous in the time domain.
  • M may be greater than or equal to 2. That is to say, the terminal device obtains a resource set for joint channel estimation based on at least two time domain resources that are consecutive in the time domain in the first time domain resource set.
  • the above-mentioned time domain resources may include time slots or symbols.
  • the first time-domain resource set for repeated transmission of PUSCH includes time slot #0, time slot #3 and time slot #4, wherein time slot #0 has no other consecutive ones available for PUSCH Time slot for data transmission, so time slot #0 is determined as a second time domain resource set for joint channel estimation, denoted as the first second time domain resource set; time slot #3 and time slot #4 are in the time domain Continuous, therefore, time slot #3 and time slot #4 may be determined as a whole as a second time domain resource set, which is denoted as the second second time domain resource set.
  • the first time domain resource set for repeated transmission of PUSCH includes 6 symbols occupied by the actual PUSCH.
  • the two symbols occupied by the first actual PUSCH are consecutive in the time domain. Therefore, the two symbols occupied by the first actual PUSCH can be determined as a second time domain resource set, which is recorded as the first second time Collection of domain resources.
  • the two symbols occupied by the second actual PUSCH can be determined as the second second time domain resource set, and the 10 symbols occupied by the third actual PUSCH, the fourth actual PUSCH and the fifth actual PUSCH It is determined as the third second time domain resource set, and the two symbols occupied by the sixth actual PUSCH are determined as the fourth second time domain resource set.
  • the terminal device or the network device may The third time domain resource is determined as a second time domain resource set. In some scenarios, it may also be considered that the third time domain resource is used for single channel estimation or independent channel estimation.
  • time slot #0 can be used to repeatedly transmit the first data and is not continuous with other resources in the first time domain resource set. Therefore, time slot #0 can be determined as the first second time slot Collection of domain resources.
  • M is less than or equal to a preconfigured resource quantity threshold.
  • the resource quantity threshold can also be regarded as a window length threshold.
  • the time domain resource set used for repeatedly transmitting the first data includes 6 symbols occupied by the actual PUSCH.
  • the 10 symbols occupied by the third actual PUSCH, the fourth actual PUSCH and the fifth actual PUSCH are consecutive in the time domain, but the number of symbols is greater than the resource number threshold.
  • the terminal device and the network device determine the first six consecutive symbols in the time domain (that is, the symbols occupied by the third actual PUSCH and the fourth actual PUSCH) as the ith second time domain resource set, and the last four The consecutive symbols in the time domain (that is, the symbols occupied by the 5th actual PUSCH) are determined as the i+1 th second time domain resource set.
  • the channel estimation method may further include:
  • the terminal device and/or the network device determine the The first time domain resource and the second time domain resource have a preset relationship.
  • the two time domain resources have a preset relationship.
  • the preset relationship includes: the length of the interruption in the time domain is less than or equal to the interval threshold. From another point of view, if the length of the interruption of the M time-domain resources in the time domain is less than or equal to the interval threshold, that is, the time interval between two time-domain resources in the M time-domain resources is less than the interval threshold, then this can be ignored. For the interval between two time domain resources, the M time domain resources as a whole are regarded as the second time domain resource set.
  • the interval threshold is 2 slots.
  • the first time-domain resource set for repeated transmission of PUSCH includes time slot #0, time slot #3 and time slot #4.
  • the time interval between timeslot #0 and timeslot #3 is equal to 2 timeslots
  • the time interval between timeslot #3 and timeslot #4 is 0 (less than 2 timeslots), therefore, timeslots #0, slot #3 and slot #4 have a preset relationship.
  • the terminal device or the network device determines time slot #0, time slot #3 and time slot #4 as the second time domain resource set.
  • the first time-domain resource set for repeated transmission of PUSCH includes time slot #0, time slot #4 and time slot #5.
  • time interval between timeslot #0 and timeslot #4 is greater than 2 timeslots, and the time interval between timeslot #4 and timeslot #5 is 0 (less than 2 timeslots), therefore, timeslot #0 and slot #4 do not have a preset relationship.
  • Time slot #4 and time slot #5 have a preset relationship. Based on this, the terminal device or the network device determines the time slot #4 and the time slot #5 as a whole as the second second time domain resource set.
  • the time slot #0 is independently determined as the first second time domain resource set.
  • the interval threshold is 2 symbols.
  • the first time-domain resource set for repeated transmission of PUSCH includes 6 symbols occupied by the actual PUSCH. Among them, the time interval between the symbol occupied by the first actual PUSCH and the symbol occupied by the second PUSCH is smaller than the interval threshold. Therefore, there is a preset relationship between the two, and the first second time domain resource set includes the first The symbols occupied by the first actual PUSCH and the symbols occupied by the second actual PUSCH. The time interval between the symbol occupied by the second actual PUSCH and the symbol occupied by the third actual PUSCH is greater than the interval threshold. Therefore, there is no preset relationship between the two, and they belong to different second time domain resource sets.
  • Example 3 The network device determines the joint channel estimation window based on the time domain resource set, including:
  • the network device determines N nominal windows in the time domain range corresponding to the first time domain resource set according to the nominal window length; wherein, N is an integer greater than or equal to 1;
  • the network device obtains the second time domain resource set based on the M time domain resources belonging to the first time domain resource set and having a preset relationship; wherein, i is greater than or equal to 1 and an integer less than or equal to N, and M is an integer greater than or equal to 1.
  • the terminal device determines, based on the first time-domain resource set, a second time-domain resource set for performing joint channel estimation, including:
  • the terminal device determines N nominal windows in the time domain range corresponding to the first time domain resource set according to the nominal window length; wherein, N is an integer greater than or equal to 1;
  • the terminal device obtains the second time domain resource in the ith nominal window among the N nominal windows based on M time domain resources belonging to the first time domain resource set and having a preset relationship A set; where i is an integer greater than or equal to 1 and less than or equal to N, and M is an integer greater than or equal to 1.
  • the time domain range corresponding to the first time domain resource set may refer to a time domain interval whose starting point is the first time domain resource in the first time domain resource set and the end point is the last time domain resource in the first time domain resource set .
  • the time domain range corresponding to the first time domain resource set may be divided into at least one nominal window based on a preset nominal window length.
  • the window length is 20 symbols
  • the time domain resource set corresponding to The time domain range is 40 symbols
  • the time domain range corresponding to the first time domain resource set can be divided into two nominal windows.
  • M time-domain resources belonging to the first time-domain resource set and having a preset relationship are determined as joint channel windows.
  • the time domain resources include time slots or symbols.
  • M is less than or equal to a preconfigured resource quantity threshold.
  • the preset relationship includes being continuous in the time domain.
  • the channel estimation method may further include:
  • the terminal device and/or the network device determine the The first time domain resource and the second time domain resource have a preset relationship.
  • the network device may send second indication information to the terminal device to instruct to perform joint channel estimation, and trigger the terminal device to determine the joint channel window.
  • the channel estimation method may further include:
  • the network device sends second indication information to the terminal device, wherein the second indication information is used to instruct to perform joint channel estimation processing.
  • the terminal device determines, based on the first time-domain resource set, a second time-domain resource set for performing joint channel estimation, including:
  • the terminal device determines, based on the first time-domain resource set, the second time-domain resource set for performing joint channel estimation; wherein the The second indication information is used to instruct to perform joint channel estimation.
  • the second indication information includes at least one of the following:
  • the first window length indication information is the first window length indication information.
  • the first window length indication information may be used to indicate at least one of the nominal window length, the window length threshold, the resource quantity threshold, and the interval threshold in the foregoing exemplary embodiment.
  • the terminal device determines that the network device performs joint channel estimation, and therefore determines a second time domain resource set for joint channel estimation based on the first time domain resource set indicated by the first indication information. .
  • the terminal device determines, based on the first indication information sent by the network device, a first time-domain resource set for repeatedly transmitting the first data, and determines a first time-domain resource set for performing joint channel estimation based on the first time-domain resource set. 2. Time domain resource collection. Therefore, the terminal device can cooperate with the network device to accurately perform joint channel estimation based on the second time domain resource set.
  • an embodiment of the present application further provides a terminal device 100, referring to FIG. 14, which includes:
  • the first processing module 110 is configured to determine, based on the received first indication information from the network device, a first set of time domain resources for repeatedly transmitting the first data, and based on the first set of time domain resources, determine a set of time domain resources to use.
  • the first processing module 110 is further configured to:
  • the first data is transmitted based on a signal configuration corresponding to joint channel estimation.
  • the signal configuration corresponding to the joint channel estimation includes at least one of the following:
  • the first processing module 110 is used for:
  • the first time domain resource set is determined as the second time domain resource set; wherein the first time domain resource set includes at least two time domain resources.
  • the first processing module 110 is used for:
  • the second time-domain resource set is obtained based on M time-domain resources having a preset relationship in the first time-domain resource set, where M is an integer greater than or equal to 1.
  • the first processing module 110 is used for:
  • N nominal windows are determined in the time domain range corresponding to the first time domain resource set; wherein, N is an integer greater than or equal to 1;
  • the second time domain resource set is obtained based on M time domain resources belonging to the first time domain resource set and having a preset relationship; wherein, i is an integer greater than or equal to 1 and less than or equal to N, and M is an integer greater than or equal to 1.
  • M is less than or equal to a preconfigured resource quantity threshold.
  • the preset relationship includes being continuous in the time domain.
  • the first processing module 110 is further configured to:
  • the first time domain resource In the case that the time interval between the first time domain resource in the first time domain resource set and the second time domain resource in the first time domain resource set is less than or equal to an interval threshold, determine the first time domain resource The time domain resource and the second time domain resource have the preset relationship.
  • the time domain resources include time slots or symbols.
  • the first processing module 110 is used for:
  • the second time domain resource set for performing joint channel estimation is determined based on the first time domain resource set; wherein the second indication information Used to indicate joint channel estimation.
  • the second indication information includes at least one of the following:
  • the first window length indication information is the first window length indication information.
  • the first indication information includes at least one of the following:
  • the second window length indication information is the second window length indication information.
  • the terminal device 100 in this embodiment of the present application can implement the corresponding functions of the terminal device in the foregoing method embodiments, and the corresponding processes, functions, implementations, and benefits of each module (sub-module, unit, or component, etc.) in the terminal device 100
  • each module submodule, unit, or component, etc.
  • the functions described by each module (submodule, unit, or component, etc.) in the terminal device 100 in the embodiment of the present application may be implemented by different modules (submodule, unit, or component, etc.), or may be implemented by the same module.
  • a module (sub-module, unit or component, etc.) is implemented.
  • the first sending module and the second sending module may be different modules, or may be the same module, both of which can realize their functions in the embodiments of the present application. corresponding function.
  • the communication module in the embodiment of the present application may be implemented by a transceiver of the device, and some or all of the other modules may be implemented by a processor of the device.
  • FIG. 15 is a schematic block diagram of a network device 200 according to an embodiment of the present application.
  • the network device 200 may include:
  • the communication module 210 is configured to send first indication information to a terminal device; wherein, the first indication information is used to instruct the terminal device to determine a first time-domain resource set for repeatedly transmitting the first data; the first The time-domain resource set is used to determine a second time-domain resource set for joint channel estimation.
  • the network device 200 further includes:
  • the second processing module 220 is configured to perform joint channel estimation for the first data in the second time domain resource set.
  • the network device 200 further includes:
  • the third processing module 230 is configured to determine the second time domain resource set based on the first time domain resource set.
  • the third processing module 230 is used for:
  • the first time domain resource set is determined as the second time domain resource set; wherein the first time domain resource set includes at least two time domain resources.
  • the third processing module 230 is used for:
  • the second time-domain resource set is obtained based on M time-domain resources having a preset relationship in the first time-domain resource set, where M is an integer greater than or equal to 1.
  • the third processing module 230 is used for:
  • N nominal windows are determined in the time domain range corresponding to the first time domain resource set; wherein, N is an integer greater than or equal to 1;
  • the second time domain resource set is obtained based on M time domain resources belonging to the first time domain resource set and having a preset relationship; wherein, i is an integer greater than or equal to 1 and less than or equal to N, and M is an integer greater than or equal to 1.
  • M is less than or equal to a preconfigured resource quantity threshold.
  • the preset relationship includes being continuous in the time domain.
  • the third processing module 230 is further configured to:
  • the network device determines The first time domain resource and the second time domain resource have the preset relationship.
  • the time domain resources include time slots or symbols.
  • the communication module 210 is also used for:
  • the second indication information includes at least one of the following:
  • the first window length indication information is the first window length indication information.
  • the network device 200 in this embodiment of the present application can implement the corresponding functions of the network device in the foregoing method embodiments.
  • each module (submodule, unit, or component, etc.) in the network device 200 reference may be made to the corresponding descriptions in the above method embodiments, which will not be repeated here.
  • the functions described by each module (submodule, unit, or component, etc.) in the network device 200 of the application embodiment may be implemented by different modules (submodule, unit, or component, etc.), or may be implemented by the same module Modules (submodules, units, or components, etc.) are implemented.
  • the first sending module and the second sending module may be different modules, or may be the same module, both of which can achieve their corresponding implementations in the embodiments of the present application.
  • the communication module in the embodiment of the present application may be implemented by a transceiver of the device, and some or all of the other modules may be implemented by a processor of the device.
  • FIG. 17 is a schematic structural diagram of a communication device 600 according to an embodiment of the present application, wherein the communication device 600 includes a processor 610, and the processor 610 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 600 may also include a memory 620 .
  • the processor 610 may call and run a computer program from the memory 620 to implement the methods in the embodiments of the present application.
  • the memory 620 may be a separate device independent of the processor 610 , or may be integrated in the processor 610 .
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, specifically, may send information or data to other devices, or receive information or data sent by other devices .
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of the antennas may be one or more.
  • the communication device 600 may be the network device of this embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • the communication device 600 may be a terminal device in this embodiment of the present application, and the communication device 600 may implement corresponding processes implemented by the terminal device in each method in the embodiment of the present application, which is not repeated here for brevity.
  • FIG. 18 is a schematic structural diagram of a chip 700 according to an embodiment of the present application, wherein the chip 700 includes a processor 710, and the processor 710 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720 .
  • the processor 710 may call and run a computer program from the memory 720 to implement the methods in the embodiments of the present application.
  • the memory 720 may be a separate device independent of the processor 710 , or may be integrated in the processor 710 .
  • the chip 700 may further include an input interface 730 .
  • the processor 710 may control the input interface 730 to communicate with other devices or chips, and specifically, may acquire information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740 .
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • the chip can be applied to the terminal device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • the processor mentioned above may be a general-purpose processor, a digital signal processor (DSP), a field programmable gate array (FPGA), an application specific integrated circuit (ASIC) or Other programmable logic devices, transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • the general-purpose processor mentioned above may be a microprocessor or any conventional processor or the like.
  • the memory mentioned above may be either volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM).
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • FIG. 19 is a schematic block diagram of a communication system 800 according to an embodiment of the present application, where the communication system 800 includes a terminal device 810 and a network device 820 .
  • the terminal device 810 may be used to implement the corresponding functions implemented by the terminal device in the methods of the various embodiments of the present application
  • the network device 820 may be used to implement the corresponding functions implemented by the network device in the methods of the various embodiments of the present application. function. For brevity, details are not repeated here.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the procedures or functions according to the embodiments of the present application are generated in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored on or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be transmitted over a wire from a website site, computer, server or data center (eg coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (eg infrared, wireless, microwave, etc.) means to another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, or the like that contains one or more available media integrations.
  • the available media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), among others.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种信道估计方法、终端设备、网络设备、芯片、计算机可读存储介质、计算机程序产品、计算机程序和通信系统。该方法包括:终端设备基于接收到的来自网络设备的第一指示信息,确定用于重复传输第一数据的第一时域资源集合;终端设备基于第一时域资源集合,确定用于进行联合信道估计的第二时域资源集合。利用本申请实施例能够准确进行联合信道估计。

Description

信道估计方法、终端设备、网络设备、芯片和存储介质 技术领域
本申请涉及通信领域,并且更具体地,涉及一种信道估计方法、终端设备、网络设备、芯片、计算机可读存储介质、计算机程序产品、计算机程序和通信系统。
背景技术
在无线通信系统中,为了提高数据传输的可靠性,设计了数据重复传输机制。通常,在数据的重复传输过程中,网络设备针对每次传输分别进行信道估计。
为了提高数据传输的覆盖性能,相关技术中引入了联合信道估计。联合信道估计是指联合重复传输过程所包含的多次传输中的解调参考信号(Demodulation Reference Signal,DMRS)进行信道估计,可以提高信道估计的精度。需要考虑如何准确地进行联合信道估计。
发明内容
有鉴于此,本申请实施例提供一种信道估计方法、终端设备、网络设备、芯片、计算机可读存储介质、计算机程序产品、计算机程序和通信系统,可用于确定用于进行联合信道估计的时域资源,以准确进行联合信道估计。
本申请实施例提供一种信道估计方法,包括:
终端设备基于接收到的来自网络设备的第一指示信息,确定用于重复传输第一数据的第一时域资源集合;
所述终端设备基于所述第一时域资源集合,确定用于进行联合信道估计的第二时域资源集合。
本申请实施例提供一种信道估计方法,包括:
网络设备向终端设备发送第一指示信息;其中,所述第一指示信息用于指示所述终端设备确定用于重复传输第一数据的第一时域资源集合;所述第一时域资源集合用于确定用于进行联合信道估计的第二时域资源集合。
本申请实施例还提供一种终端设备,包括:
第一处理模块,用于基于接收到的来自网络设备的第一指示信息,确定用于重复传输第一数据的第一时域资源集合,并基于所述第一时域资源集合,确定用于进行联合信道估计的第二时域资源集合。
本申请实施例还提供一种网络设备,包括:
通信模块,用于向终端设备发送第一指示信息;其中,所述第一指示信息用于指示所述终端设备确定用于重复传输第一数据的第一时域资源集合;所述第一时域资源集合用于确定用于进行联合信道估计的第二时域资源集合。
本申请实施例还提供一种终端设备,包括:处理器和存储器,存储器用于存储计算机程序,处理器调用并运行存储器中存储的计算机程序,执行上述信道估计方法。
本申请实施例还提供一种网络设备,包括:处理器和存储器,存储器用于存储计算机程序,处理器调用并运行存储器中存储的计算机程序,执行上述的信道估计方法。
本申请实施例还提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有芯片的设备执行上述信道估计方法。
本申请实施例还提供一种计算机可读存储介质,用于存储计算机程序,其中,计算机程序使得计算机执行上述信道估计方法。
本申请实施例还提供一种计算机程序产品,包括计算机程序指令,其中,计算机程序指令使得计算机执行上述信道估计方法。
本申请实施例还提供一种通信系统,包括用于执行上述信道估计方法的终端设备和网络设备。
本申请实施例还提供一种计算机程序,计算机程序使得计算机执行上述信道估计方法。
根据本申请实施例的方法,终端设备基于网络设备发送的第一指示信息确定用于重复传输第一数据的第一时域资源集合,基于第一时域资源集合确定用于进行联合信道估计的第二时域资源集合。从而终端设备可以基于第二时域资源集合配合网络设备准确地进行联合信道估计。
附图说明
图1是本申请实施例的通信系统架构的示意图。
图2是本申请实施例中PUSCH重复传输的一个时域资源示意图。
图3是本申请实施例中PUSCH重复传输的另一个时域资源示意图。
图4是本申请实施例中连续时隙的联合信道估计示意图。
图5是本申请一个实施例的信道估计方法的示意性流程图。
图6是本申请另一实施例的信道估计方法的示意性流程图。
图7是本申请实施例中第二时域资源集合的示意图一。
图8是本申请实施例中第二时域资源集合的示意图二。
图9是本申请实施例中第二时域资源集合的示意图三。
图10是本申请实施例中第二时域资源集合的示意图四。
图11是本申请实施例中第二时域资源集合的示意图五。
图12是本申请实施例中第二时域资源集合的示意图六。
图13是本申请实施例中第二时域资源集合的示意图七。
图14是本申请一个实施例的终端设备的示意性结构框图。
图15是本申请一个实施例的网络设备的示意性结构框图。
图16是本申请另一实施例的网络设备的示意性结构框图。
图17是本申请实施例的通信设备示意性框图。
图18是本申请实施例的芯片的示意性框图。
图19是本申请实施例的通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、免授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、免授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to  Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit, HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
图1示意性地示出了一个网络设备1100和两个终端设备1200,可选地,该无线通信系统1000可以包括多个网络设备1100,并且每个网络设备1100的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。可选地,图1所示的无线通信系统1000还可以包括移动性管理实体(Mobility Management Entity,MME)、接入与移动性管理功能(Access and Mobility Management Function,AMF)等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统为例,通信设备可包括具有通信功能的网络设备和终端设备,网络设备和终端设备可以为本申请实施例中的具体设备,此处不再赘述;通信设备还可包括通信系统中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常可互换使用。本文中术语“和/或”用来描述关联对象的关联关系,例如表示前后关联对象可存在三种关系,举例说明,A和/或B,可以表示:单独存在A、同时存在A和B、单独存在B这三种情况。本文中字符“/”一般表示前后关联对象是“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
在NR系统中,网络设备发送上行授权(Uplink grant,UL grant)信息,例如格式0_0(format 0_0)或格式0_1(format 0_1)的下行控制信息(Downlink Control Information,DCI),以调度物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输。
网络设备通过UL grant信息调度上行数据传输时,会在DCI中携带时域资源分配(Time Domain Resource Allocation,TDRA)域。TDRA域为6比特(bit)数据,用于指示资源分配表格中16行中的一行。
资源分配表格中每一行包含多种不同的资源分配信息,例如PUSCH起始位置S,PUSCH长度L,时间间隔信息K 2以及映射类型(Type)等。其中,K 2表示UL grant信息所在的时隙和PUSCH所在的时隙之间偏移的时隙数量。PUSCH时域资源分配的映射类型包括A类(Type A)和B类(Type B)。Type A和Type B的区别包括:S的取值范围不同以及L的取值范围不同。Type A主要面向时隙型调度(slot-based)业务,S比较靠前,L比较长。Type B主要面向高可靠低时延通信(Ultra Reliability and Low Latency  Communication,URLLC)等非时隙型调度业务,对时延要求较高,因此S的位置比较灵活以便传输随时到达的业务数据,L较短,可降低传输时延。
Type A和Type B的S和L的取值范围如下表1所示。
Figure PCTCN2021086712-appb-000001
表1
PUSCH的时域资源分配表格如下表2所示。
资源编号 PUSCH映射类型 K 2 S L
1 Type A j 0 14
2 Type A j 0 12
3 Type A j 0 10
4 Type B j 2 10
5 Type B j 4 10
6 Type B j 4 8
7 Type B j 4 6
8 Type A j+1 0 14
9 Type A j+1 0 12
10 Type A j+1 0 10
11 Type A j+2 0 14
12 Type A j+2 0 12
13 Type A j+2 0 10
14 Type B j 8 6
15 Type A j+3 0 14
16 Type A j+3 0 10
表2
其中,j为UL grant信息所在的时隙。
为了增强上行传输的可靠性,NR R15标准中引入了时隙聚合PUSCH重复传输。时隙聚合PUSCH重复传输是指同一个传输块采用不同的冗余版本重复传输K次。网络设备通过高层参数PUSCH聚合因子(pusch-AggregationFactor)为终端设备配置最大重复次数K,终端设备在K个连续的时隙上重复发送相同的传输块,且每个时隙中承载该传输块的PUSCH副本在时域上占用相同数量的符号。其中,第一个PUSCH副本的冗余版本(Redundancy Version,RV)是由上行授权信息如DCI指示的,其余PUSCH副本的RV是基于集合{0,2,3,1}顺序循环确定。冗余版本的编号RV id如下表3所示:
Figure PCTCN2021086712-appb-000002
表3
如果PUSCH副本所在的时隙中,与PUSCH副本对应的时域资源包含至少一个半静态下行符号,则在该时隙中不发送PUSCH。如图2所示的PUSCH重复传输的一个时域资源示意图,网络设备调度终端设备将传输块重复发送4次,传输块的PUSCH副本需要占用每个时隙中前12个符号。其中,U为上行符号,D为半静态下行符号,F为灵活符号。由于时隙#1和时隙#2中的前3个符号是半静态下行符号D,因此在时隙#1上待发送的第2个PUSCH(PUSCH#2)和时隙#2上待发送的第3个PUSCH(PUSCH#3)被丢弃而不被发送。
对于上行免调度的时隙聚合PUSCH重复传输,网络设备利用高层参数RepK配置传输块的最大重复次数。
在NR R16标准中,对于基于Tpye B的PUSCH重复传输,网络设备发送上行授权信息或者免授权配置信息,指示一个或多个名义PUSCH的重复传输。
终端设备在一个时隙中传输一个或多个实际PUSCH副本,或者在连续多个可用的时隙中传输两个或多个实际PUSCH副本。前述已经说明,网络设备通过指示TDRA表中的某一行,实现时域资源的指定。根据NR R16标准,TDRA表中还增加一列,用于指示Type B的PUSCH重复传输的副本个数numberofrepetition,其取值可以为{1,2,3,4,7,8,12,16}。
上行调度信息或者第一类免授权配置信息指示第一个名义PUSCH的起始符号S和持续时间L,每一个名义PUSCH副本的持续时间L相同,其中,0≤S≤13,1≤L≤14,高层信令各用4bit分别指示S和L,可以实现S+L>14。名义PUSCH和实际PUSCH副本的传输块大小(Transport Block Size,TBS)可根据名义PUSCH的时域长度L确定。从第二个名义PUSCH开始,名义PUSCH副本的起始符号是上一个名义PUSCH副本的终止符号的下一个符号。
终端设备在确定实际PUSCH副本的时域资源之前,需要确定无效符号,除无效符号外的符号可以认为是潜在有效符号。如果一个名义PUSCH副本对应的时域资源包括在同一隙内连续的至少一个潜在有效符号,则可以将该至少一个潜在有效符号映射为一个实际PUSCH副本。因此,一个名义PUSCH副本的时域资源可包含一个或多个实际PUSCH副本的时域资源。此外,终端设备不发送单个符号的实际PUSCH副本,除非单个符号是网络设备指示的名义PUSCH的持续时间L。
图3示出了示例性的PUSCH重复传输的时域资源示意图。如图3所示,名义PUSCH的长度L为6个符号,名义重复次数为4,则在24个符号中包含4个名义PUSCH重复。其中,在每个名义PUSCH副本对应的6个符号中,下行符号或其他无效的符号不用于实际PUSCH传输。以第3个名义PUSCH重复为例,其对应的6个符号均为潜在有效符号,则6个符号中,在同一时隙内连续的第1个符号和第2个符号映射为一个实际PUSCH,在同一时隙内连续的第3个符号至第6个符号映射为另一个实际PUSCH。以第4个名义PUSCH重复为例,其对应的6个符号中,第1个符号、第5个符号和第6个符号为潜在有效符号。其中,第1个符号不与其他潜在有效符号连续,因此第1个符号不用于实际PUSCH传输,第5个符号和第6个符号在同一时隙内连续,可映射为一个实际PUSCH。
在上述方案中,终端设备可基于以下方式确定无效符号:
1、由高层参数tdd-UL-DL-ConfigurationCommon或tdd-UL-DL-Configuration Dedicated半静态配置的下行符号是一种无效符号。
2、根据高层信令配置的无效符号图样InvalidSymbolPattern确定无效符号。其中,无效符号图样包括对应多个符号的多个比特,以取值为1的比特表示对应的符号为无效符号。格式0_1或者0_2的DCI用于调度PUSCH重复,或者激活第二类免授权 PUSCH重复。该DCI中可配置1Bit的无效符号图样指示信息域,当无效符号图样指示信息域为1时,终端设备根据无效符号图样确定无效符号,否则,终端设备忽略无效符号图样。如果DCI中不包含无效符号图样指示信息域,则终端直接根据无效符号图样确定无效符号。不同的DCI格式独立配置无效符号图样指示信息域。
对于基于Tpye A的PUSCH重复传输,NR系统支持在高层信令配置的时域资源分配表中增加一列numberofrepetitions用于指示Type A的PUSCH重复传输次数K。如果没有配置numberofrepetitions,则基于高层参数聚合因子pusch-AggregationFactor确定重复次数K。如果前述两个参数都没有配置,则重复次数K=1。
对于免授权PUSCH调度:
免授权PUSCH重复类型的确定方式包括:当高层参数PUSCHRepTypeIndicatorForType1Configuredgrant配置为pusch-RepTypeB时,采用B类PUSCH重复,否则采用A类PUSCH重复。免授权重复次数的确定方式包括:如果时域资源分配表中包含numberofrepetitions,则PUSCH的名义重复传输次数由TDRA表指示,否则重复次数由高层参数repK指示。
可见,PUSCH的重复传输次数是半静态配置的,由于系统支持灵活时隙结构,因此,在部分时隙(slot)中,PUSCH的重复会被忽略,导致实际重复传输PUSCH的时域资源不连续。因此,在一些配置场景尤其是时分双工(Time Division Duplex,TDD)场景下,配置的重复次数不能达到理想的覆盖增强效果。
由于进行联合信道估计,需要确定进行联合信道估计的时隙数或PUSCH的重复传输次数,以确定对应的时域范围。在对应的时域范围内,网络设备假设DMRS是相关的,例如DMRS的功率、天线端口和预编码中的至少之一持续不变和/或相位连续,基于此进行联合信道估计。相应的,终端设备应在PUSCH的传输中实现这些与联合信道估计相关的假设。如图4所示的连续时隙的联合信道估计示意图,终端设备需要在重复传输PUSCH的时隙#0至时隙#3中基于前导DMRS和附加DMRS进行联合信道估计,并保持与联合信道估计相关的配置。然而,由于实际重复传输PUSCH的时域资源存在不连续的情况,因此,终端设备难以在整个PUSCH的重复传输期间配合网络设备进行相应配置,即保持DMRS的功率、天线端口、预编码不变和/或保持相位连续等。
本申请实施例提供的方案,主要用于解决上述问题中的至少一个。
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
图5是根据本申请一实施例的信道估计方法的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括:
步骤S510,终端设备基于接收到的来自网络设备的第一指示信息,确定用于重复传输第一数据的第一时域资源集合;
步骤S520,终端设备基于第一时域资源集合,确定用于进行联合信道估计的第二时域资源集合。
本申请实施例中,第二时域资源集合可以包括用于进行联合信道估计的至少一个时域资源。也就是说,网络设备在第二时域资源集合所包含的时域资源上进行联合信道估计。相应的,终端设备在第二时域资源集合中保持与联合信道估计关联的配置。
可选地,上述信道估计方法还可以包括:
终端设备在第二时域资源集合中,基于与联合信道估计对应的信号配置传输第一数据。
可选地,与联合信道估计对应的信号配置包括以下至少之一:
持续不变的功率;
持续不变的天线端口;
持续不变的预编码;
连续的相位。
与上述方法对应的,参见图6,本申请另一实施例提供一种信道估计方法。该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括:
步骤S610:网络设备向终端设备发送第一指示信息;其中,第一指示信息用于指示终端设备确定用于重复传输第一数据的第一时域资源集合;第一时域资源集合用于确定用于进行联合信道估计的第二时域资源集合。
可选地,上述方法还包括:所述网络设备在所述第二时域资源集合中,进行针对所述第一数据的联合信道估计。或者说网络设备在第二时域资源集合所包含的至少一个时域资源上,进行针对第一数据的联合信道估计。
示例性地,第一数据可以包括PUSCH。
本申请实施例中,用于重复传输第一数据的第一时域资源集合可以包括实际传输第一数据的时隙或符号。例如,对于Type A的上行数据传输,第一时域资源集合可以包括至少一个时隙,该时隙中与PUSCH副本对应的至少一个符号中不包含半静态下行符号;对于Type B的上行数据传输,第一时域资源集合可以包括实际PUSCH对应的符号。
需要说明的是,第一时域资源集合可以包括连续的时域资源,也可以包括离散的时域资源。第二时域资源集合可以包括连续的时域资源,也可以包括离散的时域资源。这里,时域资源可以包括时隙和/或符号。
可选地,第一指示信息可以包括以下至少之一:
上行授权信息;
免授权指示信息;
第二窗口长度指示信息。
可选地,上行授权信息可以包括DCI例如DCI format 0_0或DCI format 0_1。终端设备可以根据上行授权信息,确定重复传输的时域范围,并基于重复传输的时域范围中各时隙的时隙结构或者说符号配置,确定用于重复传输第一数据的第一时域资源集合。
可选地,免授权指示信息可以包括用于配置免调度资源的配置信息。或者,免授权信息可以包括在已配置免调度资源的情况下发送的用于激活某些免调度资源的激活信息。终端设备可以根据免授权指示信息确定生效的免调度资源,在需要利用其中部分或全部免调度资源进行重复传输的情况下,确定免调度资源中可用于重复传输第一数据的第一时域资源集合。网络设备在配置或激活免调度资源的情况下,也可以确定免调度资源中可用于重复传输第一数据的第一时域资源集合。
可选地,第一指示信息可以携带上行授权信息或免授权信息以指示第一时域资源集合,同时携带第二窗口长度指示信息以便于终端设备根据第二窗口长度指示信息确定第二时域资源集合。第二窗口长度指示信息可以用于指示确定第二时域资源集合所需的与时域窗口或者说时域区间、时域范围的长度相关的信息,例如,名义窗口长度、窗口长度阈值、间隔阈值等。示例性地,名义窗口长度可以用于在第一时域资源集合所对应的时域范围中确定出名义窗口,以在名义窗口中确定第二时域资源集合。示例性地,窗口长度阈值可以包括第二时域资源集合所对应的连续的时域范围的长度或第二时域资源集合所包含的时域资源的数量阈值。示例性地,间隔阈值可以包括第二时域资源集合中允许中断的时域区间的长度阈值或者说允许中断的时域资源的数量阈值。
本申请实施例中,网络设备在第二时域资源集合中进行针对第一数据的联合信道估计之前,也可以基于上述第一时域资源集合确定第二时域资源集合。具体的,信道 估计方法还可以包括:网络设备基于第一时域资源集合,确定第二时域资源集合。
本申请实施例中,网络设备或终端设备可采用多种方式实现基于第一时域资源集合确定第二时域资源集合。以下提供多种示例性的实施方式:
示例一:网络设备基于第一时域资源集合,确定第二时域资源集合,包括:
网络设备将第一时域资源集合确定为第二时域资源集合;其中,第一时域资源集合包括至少两个时域资源。
相应的,终端设备基于所述第一时域资源集合,确定用于进行联合信道估计的第二时域资源集合,包括:所述终端设备将所述第一时域资源集合确定为所述第二时域资源集合;其中,所述第一时域资源集合包括至少两个时域资源。
可选地,时域资源包括时隙或符号。
例如,如图7所示,对于TypeA的上行数据传输,重复传输PUSCH的时域范围(以下称重传时域范围)包括5个时隙,分别为时隙#0至时隙#4。其中,时隙#1中与PUSCH#2对应的时域资源包含3个下行符号D,时隙#2中与PUSCH#3对应的时域资源包含3个下行符号D,因此,时隙#1和时隙#2中不进行PUSCH重复传输,则用于重复传输PUSCH的第一时域资源集合包括时隙#0、时隙#3和时隙#4。因此,将时隙#0、时隙#3和时隙#4整体确定为第二时域资源集合,即第二时域资源集合包括时隙#0、时隙#3和时隙#4。网络设备基于时隙#0、时隙#3和时隙#4进行联合信道估计。终端设备在时隙#0、时隙#3和时隙#4上保持功率、天线端口、预编码不变和/或相位连续。
又如,如图8所示,对于TypeB的上行数据传输,重传时域范围包括24个符号,对应4个名义PUSCH。其中,用于重复传输PUSCH的第一时域资源集合包括6个实际PUSCH占用的符号。终端设备将这些符号整体确定为用于进行联合信道估计的第二时域资源集合。也就是说,第二时域资源集合包括6个实际PUSCH占用的符号。网络设备基于6个实际PUSCH占用的符号进行联合信道估计。终端设备在6个实际PUSCH占用的符号上保持功率、天线端口、预编码不变和/或相位连续。
示例二:网络设备基于第一时域资源集合,确定第二时域资源集合,包括:
网络设备基于第一时域资源集合中具有预设关系的M个时域资源,得到第二时域资源集合;其中,M为大于等于1的整数。
相应的,所述终端设备基于所述第一时域资源集合,确定用于进行联合信道估计的第二时域资源集合,包括:
所述终端设备基于所述第一时域资源集合中具有预设关系的M个时域资源,得到所述第二时域资源集合;其中,M为大于等于1的整数。
示例性地,网络设备或终端设备可以将第一时域资源集合中具有预设关系的M个时域资源,确定为第二时域资源集合。
可选地,预设关系包括在时域上连续。相应的,M可以大于等于2。也就是说,终端设备基于第一时域资源集合中在时域上连续的至少两个时域资源,得到联合信道估计的资源集合。
可选地,上述时域资源可以包括时隙或符号。
例如,如图9所示,用于重复传输PUSCH的第一时域资源集合包括时隙#0、时隙#3和时隙#4,其中,时隙#0没有相连续的其他可用于PUSCH数据传输的时隙,因此时隙#0确定为一个联合信道估计的第二时域资源集合,记为第1个第二时域资源集合;时隙#3和时隙#4在时域上连续,因此,可以将时隙#3和时隙#4整体确定为一个第二时域资源集合,记为第2个第二时域资源集合。
又如,如图10所示,用于重复传输PUSCH的第一时域资源集合包括6个实际 PUSCH占用的符号。其中,第1个实际PUSCH占用的两个符号在时域上连续,因此,可以将第1个实际PUSCH占用的两个符号确定为一个第二时域资源集合,记为第1个第二时域资源集合。类似地,可以将第2个实际PUSCH占用的两个符号确定为第2个第二时域资源集合,将第3个实际PUSCH、第4个实际PUSCH和第5个实际PUSCH占用的10个符号确定为第3个第二时域资源集合,将第6个实际PUSCH占用的2个符号确定为第4个第二时域资源集合。
可选地,如果第一时域资源集合中的某个时域资源例如第三时域资源与时域资源集合中的其他时域资源在时域上均不连续,则终端设备或网络设备可以将第三时域资源确定为一个第二时域资源集合。在一些场景下,也可以认为第三时域资源用于进行单信道估计或独立信道估计。
例如,如图9所示,时隙#0可用于重复传输第一数据,且与第一时域资源集合中其他资源不连续,因此,可以将时隙#0确定为第1个第二时域资源集合。
可选地,M小于等于预先配置的资源数量阈值。在M个时域资源在时域上连续的情况下,资源数量阈值也可以视为窗口长度阈值。
例如,M=6。如图11所示,用于重复传输第一数据的时域资源集合包括6个实际PUSCH占用的符号。其中,第3个实际PUSCH、第4个PUSCH和第5个实际PUSCH占用的10个符号在时域上连续,但符号数量大于资源数量阈值。终端设备和网络设备将前6个在时域上连续的符号(即第3个实际PUSCH和第4个实际PUSCH占用的符号)确定为第i个第二时域资源集合,将后4个在时域上连续的符号(即第5个实际PUSCH占用的符号)确定为第i+1个第二时域资源集合。
可选地,信道估计方法还可以包括:
在第一时域资源集合中的第一时域资源与第一时域资源集合中的第二时域资源之间的时间间隔小于等于间隔阈值的情况下,终端设备和/或网络设备确定第一时域资源和第二时域资源具有预设关系。
也就是说,若时域资源集合中两个时域资源之间的时间间隔小于间隔阈值,则这两个时域资源具有预设关系。可以理解,根据上述可选方式,预设关系包括:在时域上中断的长度小于等于间隔阈值。从另一角度而言,若M个时域资源在时域上中断的长度小于等于间隔阈值,即M个时域资源中两个时域资源之间的时间间隔小于间隔阈值,则可以忽略这两个时域资源之间的间隔,将M个时域资源整体视为第二时域资源集合。
例如,间隔阈值为2个时隙。如图7所示,用于重复传输PUSCH的第一时域资源集合包括时隙#0、时隙#3和时隙#4。其中,时隙#0和时隙#3之间的时间间隔等于2个时隙,时隙#3和时隙#4之间的时间间隔为0(小于2个时隙),因此,时隙#0、时隙#3和时隙#4具有预设关系。基于此,终端设备或网络设备将时隙#0、时隙#3和时隙#4确定为第二时域资源集合。如图12所示,用于重复传输PUSCH的第一时域资源集合包括时隙#0、时隙#4和时隙#5。其中,时隙#0和时隙#4之间的时间间隔大于2个时隙,时隙#4和时隙#5之间的时间间隔为0(小于2个时隙),因此,时隙#0和时隙#4不具有预设关系。时隙#4和时隙#5具有预设关系。基于此,终端设备或网络设备将时隙#4和时隙#5整体确定为第2个第二时域资源集合。将时隙#0单独确定为第1个第二时域资源集合。
又如,间隔阈值为2个符号。如图13所示,用于重复传输PUSCH的第一时域资源集合包括6个实际PUSCH占用的符号。其中,第1个实际PUSCH占用的符号与第2个PUSCH占用的符号之间的时间间隔小于间隔阈值,因此,两者之间存在预设关系,第1个第二时域资源集合包括第1个实际PUSCH占用的符号与第2个实际 PUSCH占用的符号。第2个实际PUSCH占用的符号与第3个实际PUSCH占用的符号之间的时间间隔大于间隔阈值,因此,两者之间不存在预设关系,属于不同的第二时域资源集合。
示例三:网络设备基于时域资源集合,确定联合信道估计窗口,包括:
网络设备根据名义窗口长度,在第一时域资源集合所对应的时域范围中确定出N个名义窗口;其中,N为大于等于1的整数;
网络设备在N个名义窗口中的第i个名义窗口中,基于属于第一时域资源集合且具有预设关系的M个时域资源,得到第二时域资源集合;其中,i为大于等于1且小于等于N的整数,M为大于等于1的整数。
相应的,所述终端设备基于所述第一时域资源集合,确定用于进行联合信道估计的第二时域资源集合,包括:
所述终端设备根据名义窗口长度,在所述第一时域资源集合所对应的时域范围中确定出N个名义窗口;其中,N为大于等于1的整数;
所述终端设备在所述N个名义窗口中的第i个名义窗口中,基于属于所述第一时域资源集合且具有预设关系的M个时域资源,得到所述第二时域资源集合;其中,i为大于等于1且小于等于N的整数,M为大于等于1的整数。
这里,第一时域资源集合所对应的时域范围可以指起点为第一时域资源集合中第一个时域资源且终点为第一时域资源集合中最后一个时域资源的时域区间。
根据示例三,可以先基于预先设定的名义窗口长度,将第一时域资源集合所对应的时域范围划分为至少一个名义窗口,例如,窗口长度为20个符号,时域资源集合所对应的时域范围为40个符号,则可以将第一时域资源集合所对应的时域范围划分为2个名义窗口。再在每个名义窗口中,将属于第一时域资源集合且具有预设关系的M个时域资源确定为联合信道窗口。
可选地,时域资源包括时隙或符号。
可选地,M小于等于预先配置的资源数量阈值。
可选地,预设关系包括在时域上连续。
可选地,信道估计方法还可以包括:
在第一时域资源集合中的第一时域资源与第一时域资源集合中的第二时域资源之间的时间间隔小于等于间隔阈值的情况下,终端设备和/或网络设备确定第一时域资源和第二时域资源具有预设关系。
实际应用中,上述示例二可视为示例三中名义窗口数量N=1的情况。也就是说,可以将第一时域资源集合对应的时域范围视为一个名义窗口。可以理解,在每个名义窗口中基于M个时域资源得到为第二时域资源集合的方式,可以参考上述示例二在第一时域资源集合中基于M个时域资源得到第二时域资源集合的方式实现。在此不再进行赘述。
可选地,网络设备可以向终端设备发送第二指示信息,以指示进行联合信道估计,触发终端设备确定联合信道窗口。具体地,信道估计方法还可以包括:
网络设备向终端设备发送第二指示信息;其中,第二指示信息用于指示进行联合信道估计处理。
相应的,终端设备基于所述第一时域资源集合,确定用于进行联合信道估计的第二时域资源集合,包括:
在接收到来自网络设备的第二指示信息的情况下,所述终端设备基于所述第一时域资源集合,确定所述用于进行联合信道估计的第二时域资源集合;其中,所述第二指示信息用于指示进行联合信道估计。
可选地,第二指示信息包括以下至少之一:
联合信道估计的使能信息;
第一窗口长度指示信息。
可选地,第一窗口长度指示信息可以用于指示上述示例性的实施方式中的名义窗口长度、窗口长度阈值、资源数量阈值、间隔阈值中至少之一。终端设备在接收到窗口长度指示信息的情况下,确定网络设备进行联合信道估计,因此基于第一指示信息所指示的第一时域资源集合确定用于进行联合信道估计的第二时域资源集合。
以上通过多个实施例从不同角度描述了本申请实施例的具体设置和实现方式。利用上述至少一个实施例,终端设备基于网络设备发送的第一指示信息确定用于重复传输第一数据的第一时域资源集合,基于第一时域资源集合确定用于进行联合信道估计的第二时域资源集合。从而终端设备可以基于第二时域资源集合配合网络设备准确地进行联合信道估计。
与上述至少一个实施例的处理方法相对应地,本申请实施例还提供一种终端设备100,参考图14,其包括:
第一处理模块110,用于基于接收到的来自网络设备的第一指示信息,确定用于重复传输第一数据的第一时域资源集合,并基于所述第一时域资源集合,确定用于进行联合信道估计的第二时域资源集合。
可选地,所述第一处理模块110还用于:
在所述第二时域资源集合中,基于与联合信道估计对应的信号配置传输所述第一数据。
可选地,所述与联合信道估计对应的信号配置包括以下至少之一:
持续不变的功率;
持续不变的天线端口;
持续不变的预编码;
连续的相位。
可选地,所述第一处理模块110用于:
将所述第一时域资源集合确定为所述第二时域资源集合;其中,所述第一时域资源集合包括至少两个时域资源。
可选地,所述第一处理模块110用于:
基于所述第一时域资源集合中具有预设关系的M个时域资源,得到所述第二时域资源集合;其中,M为大于等于1的整数。
可选地,所述第一处理模块110用于:
根据名义窗口长度,在所述第一时域资源集合所对应的时域范围中确定出N个名义窗口;其中,N为大于等于1的整数;
在所述N个名义窗口中的第i个名义窗口中,基于属于所述第一时域资源集合且具有预设关系的M个时域资源,得到所述第二时域资源集合;其中,i为大于等于1且小于等于N的整数,M为大于等于1的整数。
可选地,M小于等于预先配置的资源数量阈值。
可选地,所述预设关系包括在时域上连续。
可选地,所述第一处理模块110还用于:
在所述第一时域资源集合中的第一时域资源与所述第一时域资源集合中的第二时域资源之间的时间间隔小于等于间隔阈值的情况下,确定所述第一时域资源和所述第二时域资源具有所述预设关系。
可选地,所述时域资源包括时隙或符号。
可选地,所述第一处理模块110用于:
在接收到来自网络设备的第二指示信息的情况下,基于所述第一时域资源集合,确定所述用于进行联合信道估计的第二时域资源集合;其中,所述第二指示信息用于指示进行联合信道估计。
可选地,所述第二指示信息包括以下至少之一:
联合信道估计的使能信息;
第一窗口长度指示信息。
可选地,所述第一指示信息包括以下至少之一:
上行授权信息;
免授权指示信息;
第二窗口长度指示信息。
本申请实施例的终端设备100能够实现前述的方法实施例中的终端设备的对应功能,该终端设备100中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,此处不进行赘述。需要说明,关于本申请实施例的终端设备100中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现,举例来说,第一发送模块与第二发送模块可以是不同的模块,也可以是同一个模块,均能够实现其在本申请实施例中的相应功能。此外,本申请实施例中的通信模块,可通过设备的收发机实现,其余各模块中的部分或全部可通过设备的处理器实现。
图15是根据本申请一实施例的网络设备200的示意性框图。该网络设备200可以包括:
通信模块210,用于向终端设备发送第一指示信息;其中,所述第一指示信息用于指示所述终端设备确定用于重复传输第一数据的第一时域资源集合;所述第一时域资源集合用于确定用于进行联合信道估计的第二时域资源集合。
可选地,如图16所示,网络设备200还包括:
第二处理模块220,用于在所述第二时域资源集合中,进行针对所述第一数据的联合信道估计。
可选地,如图16所示,网络设备200还包括:
第三处理模块230,用于基于所述第一时域资源集合,确定所述第二时域资源集合。
可选地,第三处理模块230用于:
将所述第一时域资源集合确定为所述第二时域资源集合;其中,所述第一时域资源集合包括至少两个时域资源。
可选地,第三处理模块230用于:
基于所述第一时域资源集合中具有预设关系的M个时域资源,得到所述第二时域资源集合;其中,M为大于等于1的整数。
可选地,第三处理模块230用于:
根据名义窗口长度,在所述第一时域资源集合所对应的时域范围中确定出N个名义窗口;其中,N为大于等于1的整数;
在所述N个名义窗口中的第i个名义窗口中,基于属于所述第一时域资源集合且具有预设关系的M个时域资源,得到所述第二时域资源集合;其中,i为大于等于1且小于等于N的整数,M为大于等于1的整数。
可选地,M小于等于预先配置的资源数量阈值。
可选地,预设关系包括在时域上连续。
可选地,第三处理模块230还用于:
在所述第一时域资源集合中的第一时域资源与所述第一时域资源集合中的第二时域资源之间的时间间隔小于等于间隔阈值的情况下,所述网络设备确定所述第一时域资源和所述第二时域资源具有所述预设关系。
可选地,时域资源包括时隙或符号。
可选地,通信模块210还用于:
向终端设备发送第二指示信息;其中,第二指示信息用于指示进行联合信道估计处理。
可选地,所述第二指示信息包括以下至少之一:
联合信道估计的使能信息;
第一窗口长度指示信息。
本申请实施例的网络设备200能够实现前述的方法实施例中的网络设备的对应功能。该网络设备200中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的网络设备200中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现,举例来说,第一发送模块与第二发送模块可以是不同的模块,也可以是同一个模块,均能够实现其在本申请实施例中的相应功能。此外,本申请实施例中的通信模块,可通过设备的收发机实现,其余各模块中的部分或全部可通过设备的处理器实现。
图17是根据本申请实施例的通信设备600示意性结构图,其中通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600可为本申请实施例的终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图18是根据本申请实施例的芯片700的示意性结构图,其中芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
上述提及的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、现成可编程门阵列(field programmable gate array,FPGA)、专用集成电路(application specific integrated circuit,ASIC)或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件等。其中,上述提到的通用处理器可以是微处理器或者也可以是任何常规的处理器等。
上述提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图19是根据本申请实施例的通信系统800的示意性框图,该通信系统800包括终端设备810和网络设备820。
其中,该终端设备810可以用于实现本申请各个实施例的方法中由终端设备实现的相应的功能,以及该网络设备820可以用于实现本申请各个实施例的方法中由网络设备实现的相应的功能。为了简洁,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以 是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属技术领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。

Claims (57)

  1. 一种信道估计方法,包括:
    终端设备基于接收到的来自网络设备的第一指示信息,确定用于重复传输第一数据的第一时域资源集合;
    所述终端设备基于所述第一时域资源集合,确定用于进行联合信道估计的第二时域资源集合。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述终端设备在所述第二时域资源集合中,基于与联合信道估计对应的信号配置传输所述第一数据。
  3. 根据权利要求2所述的方法,其中,所述与联合信道估计对应的信号配置包括以下至少之一:
    持续不变的功率;
    持续不变的天线端口;
    持续不变的预编码;
    连续的相位。
  4. 根据权利要求1-3中任一项所述的方法,其中,所述终端设备基于所述第一时域资源集合,确定用于进行联合信道估计的第二时域资源集合,包括:
    所述终端设备将所述第一时域资源集合确定为所述第二时域资源集合;其中,所述第一时域资源集合包括至少两个时域资源。
  5. 根据权利要求1-3中任一项所述的方法,其中,所述终端设备基于所述第一时域资源集合,确定用于进行联合信道估计的第二时域资源集合,包括:
    所述终端设备基于所述第一时域资源集合中具有预设关系的M个时域资源,得到所述第二时域资源集合;其中,M为大于等于1的整数。
  6. 根据权利要求1-3中任一项所述的方法,其中,所述终端设备基于所述第一时域资源集合,确定用于进行联合信道估计的第二时域资源集合,包括:
    所述终端设备根据名义窗口长度,在所述第一时域资源集合所对应的时域范围中确定出N个名义窗口;其中,N为大于等于1的整数;
    所述终端设备在所述N个名义窗口中的第i个名义窗口中,基于属于所述第一时域资源集合且具有预设关系的M个时域资源,得到所述第二时域资源集合;其中,i为大于等于1且小于等于N的整数,M为大于等于1的整数。
  7. 根据权利要求5或6所述的方法,其中,M小于等于预先配置的资源数量阈值。
  8. 根据权利要求5-7中任一项所述的方法,其中,所述预设关系包括在时域上连续。
  9. 根据权利要求5-7中任一项所述的方法,其中,所述方法还包括:
    在所述第一时域资源集合中的第一时域资源与所述第一时域资源集合中的第二时域资源之间的时间间隔小于等于间隔阈值的情况下,所述终端设备确定所述第一时域资源和所述第二时域资源具有所述预设关系。
  10. 根据权利要求4-9中任一项所述的方法,其中,所述时域资源包括时隙或符号。
  11. 根据权利要求1-10中任一项所述的方法,其中,所述终端设备基于所述第一时域资源集合,确定用于进行联合信道估计的第二时域资源集合,包括:
    在接收到来自网络设备的第二指示信息的情况下,所述终端设备基于所述第一时 域资源集合,确定所述用于进行联合信道估计的第二时域资源集合;其中,所述第二指示信息用于指示进行联合信道估计。
  12. 根据权利要求11所述的方法,其中,所述第二指示信息包括以下至少之一:
    联合信道估计的使能信息;
    第一窗口长度指示信息。
  13. 根据权利要求1-12中任一项所述的方法,其中,所述第一指示信息包括以下至少之一:
    上行授权信息;
    免授权指示信息;
    第二窗口长度指示信息。
  14. 一种信道估计方法,包括:
    网络设备向终端设备发送第一指示信息;其中,所述第一指示信息用于指示所述终端设备确定用于重复传输第一数据的第一时域资源集合;所述第一时域资源集合用于确定用于进行联合信道估计的第二时域资源集合。
  15. 根据权利要求14所述的方法,其中,所述方法还包括:
    所述网络设备在所述第二时域资源集合中,进行针对所述第一数据的联合信道估计。
  16. 根据权利要求14或15所述的方法,其中,所述方法还包括:
    所述网络设备基于所述第一时域资源集合,确定所述第二时域资源集合。
  17. 根据权利要求16所述的方法,其中,所述网络设备基于所述第一时域资源集合,确定所述第二时域资源集合,包括:
    所述网络设备将所述第一时域资源集合确定为所述第二时域资源集合;其中,所述第一时域资源集合包括至少两个时域资源。
  18. 根据权利要求16所述的方法,其中,所述网络设备基于所述第一时域资源集合,确定所述第二时域资源集合,包括:
    所述网络设备基于所述第一时域资源集合中具有预设关系的M个时域资源,得到所述第二时域资源集合;其中,M为大于等于1的整数。
  19. 根据权利要求16所述的方法,其中,所述网络设备基于所述第一时域资源集合,确定所述第二时域资源集合,包括:
    所述网络设备根据名义窗口长度,在所述第一时域资源集合所对应的时域范围中确定出N个名义窗口;其中,N为大于等于1的整数;
    所述网络设备在所述N个名义窗口中的第i个名义窗口中,基于属于所述第一时域资源集合且具有预设关系的M个时域资源,得到所述第二时域资源集合;其中,i为大于等于1且小于等于N的整数,M为大于等于1的整数。
  20. 根据权利要求18或19所述的方法,其中,M小于等于预先配置的资源数量阈值。
  21. 根据权利要求18-20中任一项所述的方法,其中,所述预设关系包括在时域上连续。
  22. 根据权利要求18-20中任一项所述的方法,其中,所述方法还包括:
    在所述第一时域资源集合中的第一时域资源与所述第一时域资源集合中的第二时域资源之间的时间间隔小于等于间隔阈值的情况下,所述网络设备确定所述第一时域资源和所述第二时域资源具有所述预设关系。
  23. 根据权利要求17-22中任一项所述的方法,其中,所述时域资源包括时隙或符号。
  24. 根据权利要求14-23中任一项所述的方法,其中,所述方法还包括:
    所述网络设备向所述终端设备发送第二指示信息;其中,所述第二指示信息用于指示进行联合信道估计处理。
  25. 根据权利要求24所述的方法,其中,所述第二指示信息包括以下至少之一:
    联合信道估计的使能信息;
    第一窗口长度指示信息。
  26. 一种终端设备,包括:
    第一处理模块,用于基于接收到的来自网络设备的第一指示信息,确定用于重复传输第一数据的第一时域资源集合,并基于所述第一时域资源集合,确定用于进行联合信道估计的第二时域资源集合。
  27. 根据权利要求26所述的终端设备,其中,所述第一处理模块还用于:
    在所述第二时域资源集合中,基于与联合信道估计对应的信号配置传输所述第一数据。
  28. 根据权利要求27所述的终端设备,其中,所述与联合信道估计对应的信号配置包括以下至少之一:
    持续不变的功率;
    持续不变的天线端口;
    持续不变的预编码;
    连续的相位。
  29. 根据权利要求26-28中任一项所述的终端设备,其中,所述第一处理模块用于:
    将所述第一时域资源集合确定为所述第二时域资源集合;其中,所述第一时域资源集合包括至少两个时域资源。
  30. 根据权利要求26-28中任一项所述的终端设备,其中,所述第一处理模块用于:
    基于所述第一时域资源集合中具有预设关系的M个时域资源,得到所述第二时域资源集合;其中,M为大于等于1的整数。
  31. 根据权利要求26-28中任一项所述的终端设备,其中,所述第一处理模块用于:
    根据名义窗口长度,在所述第一时域资源集合所对应的时域范围中确定出N个名义窗口;其中,N为大于等于1的整数;
    在所述N个名义窗口中的第i个名义窗口中,基于属于所述第一时域资源集合且具有预设关系的M个时域资源,得到所述第二时域资源集合;其中,i为大于等于1且小于等于N的整数,M为大于等于1的整数。
  32. 根据权利要求30或31所述的终端设备,其中,M小于等于预先配置的资源数量阈值。
  33. 根据权利要求30-32中任一项所述的终端设备,其中,所述预设关系包括在时域上连续。
  34. 根据权利要求30-32中任一项所述的终端设备,其中,所述第一处理模块还用于:
    在所述第一时域资源集合中的第一时域资源与所述第一时域资源集合中的第二时域资源之间的时间间隔小于等于间隔阈值的情况下,确定所述第一时域资源和所述第二时域资源具有所述预设关系。
  35. 根据权利要求28-34中任一项所述的终端设备,其中,所述时域资源包括时 隙或符号。
  36. 根据权利要求26-35中任一项所述的终端设备,其中,所述第一处理模块用于:
    在接收到来自网络设备的第二指示信息的情况下,基于所述第一时域资源集合,确定所述用于进行联合信道估计的第二时域资源集合;其中,所述第二指示信息用于指示进行联合信道估计。
  37. 根据权利要求36所述的终端设备,其中,所述第二指示信息包括以下至少之一:
    联合信道估计的使能信息;
    第一窗口长度指示信息。
  38. 根据权利要求26-37中任一项所述的终端设备,其中,所述第一指示信息包括以下至少之一:
    上行授权信息;
    免授权指示信息;
    第二窗口长度指示信息。
  39. 一种网络设备,包括:
    通信模块,用于向终端设备发送第一指示信息;其中,所述第一指示信息用于指示所述终端设备确定用于重复传输第一数据的第一时域资源集合;所述第一时域资源集合用于确定用于进行联合信道估计的第二时域资源集合。
  40. 根据权利要求39所述的网络设备,其中,所述网络设备还包括:
    第二处理模块,用于在所述第二时域资源集合中,进行针对所述第一数据的联合信道估计。
  41. 根据权利要求39或40所述的网络设备,其中,所述网络设备还包括:
    第三处理模块,用于基于所述第一时域资源集合,确定所述第二时域资源集合。
  42. 根据权利要求41所述的网络设备,其中,所述第三处理模块用于:
    将所述第一时域资源集合确定为所述第二时域资源集合;其中,所述第一时域资源集合包括至少两个时域资源。
  43. 根据权利要求41所述的网络设备,其中,所述第三处理模块用于:
    基于所述第一时域资源集合中具有预设关系的M个时域资源,得到所述第二时域资源集合;其中,M为大于等于1的整数。
  44. 根据权利要求41所述的网络设备,其中,所述第三处理模块用于:
    根据名义窗口长度,在所述第一时域资源集合所对应的时域范围中确定出N个名义窗口;其中,N为大于等于1的整数;
    在所述N个名义窗口中的第i个名义窗口中,基于属于所述第一时域资源集合且具有预设关系的M个时域资源,得到所述第二时域资源集合;其中,i为大于等于1且小于等于N的整数,M为大于等于1的整数。
  45. 根据权利要求43或44所述的网络设备,其中,M小于等于预先配置的资源数量阈值。
  46. 根据权利要求43-45中任一项所述的网络设备,其中,所述预设关系包括在时域上连续。
  47. 根据权利要求43-45中任一项所述的网络设备,其中,所述第三处理模块还用于:
    在所述第一时域资源集合中的第一时域资源与所述第一时域资源集合中的第二时域资源之间的时间间隔小于等于间隔阈值的情况下,所述网络设备确定所述第一时域 资源和所述第二时域资源具有所述预设关系。
  48. 根据权利要求42-47中任一项所述的网络设备,其中,所述时域资源包括时隙或符号。
  49. 根据权利要求39-48中任一项所述的网络设备,其中,所述通信模块还用于:
    向所述终端设备发送第二指示信息;其中,所述第二指示信息用于指示进行联合信道估计处理。
  50. 根据权利要求49所述的网络设备,其中,所述第二指示信息包括以下至少之一:
    联合信道估计的使能信息;
    第一窗口长度指示信息。
  51. 一种终端设备,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器调用并运行所述存储器中存储的计算机程序,执行如权利要求1至13中任一项所述的方法的步骤。
  52. 一种网络设备,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器调用并运行所述存储器中存储的计算机程序,执行如权利要求14至25中任一项所述的方法的步骤。
  53. 一种芯片,包括:
    处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至25中任一项所述的方法的步骤。
  54. 一种计算机可读存储介质,用于存储计算机程序,其中,
    所述计算机程序使得计算机执行如权利要求1至25中任一项所述的方法的步骤。
  55. 一种计算机程序产品,包括计算机程序指令,其中,
    所述计算机程序指令使得计算机执行如权利要求1至25中任一项所述的方法的步骤。
  56. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至25中任一项所述的方法的步骤。
  57. 一种通信系统,包括:
    终端设备,用于执行如权利要求1至13中任一项所述的方法;
    网络设备,用于执行如权利要求14至25中任一项所述的方法。
PCT/CN2021/086712 2021-04-12 2021-04-12 信道估计方法、终端设备、网络设备、芯片和存储介质 WO2022217443A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180082525.2A CN116711245A (zh) 2021-04-12 2021-04-12 信道估计方法、终端设备、网络设备、芯片和存储介质
EP21936338.9A EP4262304A4 (en) 2021-04-12 2021-04-12 CHANNEL ESTIMATION METHOD, TERMINAL DEVICE, NETWORK DEVICE, CHIP AND STORAGE MEDIUM
PCT/CN2021/086712 WO2022217443A1 (zh) 2021-04-12 2021-04-12 信道估计方法、终端设备、网络设备、芯片和存储介质
US18/355,062 US20240023076A1 (en) 2021-04-12 2023-07-19 Method for channel estimation, terminal device, and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/086712 WO2022217443A1 (zh) 2021-04-12 2021-04-12 信道估计方法、终端设备、网络设备、芯片和存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/355,062 Continuation US20240023076A1 (en) 2021-04-12 2023-07-19 Method for channel estimation, terminal device, and network device

Publications (1)

Publication Number Publication Date
WO2022217443A1 true WO2022217443A1 (zh) 2022-10-20

Family

ID=83639343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086712 WO2022217443A1 (zh) 2021-04-12 2021-04-12 信道估计方法、终端设备、网络设备、芯片和存储介质

Country Status (4)

Country Link
US (1) US20240023076A1 (zh)
EP (1) EP4262304A4 (zh)
CN (1) CN116711245A (zh)
WO (1) WO2022217443A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111385880A (zh) * 2018-12-27 2020-07-07 华为技术有限公司 一种时域资源的确定方法及装置
WO2021062813A1 (zh) * 2019-09-30 2021-04-08 Oppo广东移动通信有限公司 确定数据传输的时域资源的方法、装置及计算机存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11310088B2 (en) * 2019-07-11 2022-04-19 Qualcomm Incorporated Physical shared channel reference signal bundling
BR112023005147A2 (pt) * 2020-09-24 2023-04-18 Apple Inc Método para estimativa de canal em um sistema sem fio, dispositivo sem fio e circuito integrado
WO2022205412A1 (zh) * 2021-04-02 2022-10-06 Oppo广东移动通信有限公司 一种信道传输方法、电子设备及存储介质

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111385880A (zh) * 2018-12-27 2020-07-07 华为技术有限公司 一种时域资源的确定方法及装置
WO2021062813A1 (zh) * 2019-09-30 2021-04-08 Oppo广东移动通信有限公司 确定数据传输的时域资源的方法、装置及计算机存储介质

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on NR coverage enhancements (Release 17)", 3GPP STANDARD; TECHNICAL REPORT; 3GPP TR 38.830, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. V17.0.0, 17 December 2020 (2020-12-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 91, XP051999753 *
ERICSSON: "Joint Channel Estimation for PUSCH", 3GPP DRAFT; R1-2103446, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210412 - 20210420, 7 April 2021 (2021-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052178176 *
See also references of EP4262304A4 *

Also Published As

Publication number Publication date
EP4262304A4 (en) 2024-03-13
EP4262304A1 (en) 2023-10-18
US20240023076A1 (en) 2024-01-18
CN116711245A (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
WO2022011555A1 (zh) 用于确定上行传输参数的方法和终端设备
WO2021217378A1 (zh) 无线通信方法、终端设备和网络设备
US20230007682A1 (en) Data transmission method, terminal device and network device
WO2022036523A1 (zh) 数据传输的方法及设备
WO2022141106A1 (zh) 重复传输数据信道的方法和设备
WO2022021008A1 (zh) 确定侧行链路配置授权资源的方法和终端设备
WO2022217443A1 (zh) 信道估计方法、终端设备、网络设备、芯片和存储介质
WO2023077439A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022109881A1 (zh) 重复传输控制信道的方法、终端设备和网络设备
WO2023115583A1 (zh) 通信方法、终端设备和网络设备
WO2023108638A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023123199A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023070375A1 (zh) 资源指示的方法、终端设备和网络设备
WO2023197260A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023035144A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023279399A1 (zh) 侧行传输资源的确定方法、发送方法、装置、设备及介质
WO2022151111A1 (zh) 信号配置方法、终端设备、网络设备、芯片和存储介质
WO2023050320A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023102848A1 (zh) 无线通信的方法和终端设备
WO2023279403A1 (zh) 无线通信方法、终端设备和网络设备
WO2022021032A1 (zh) 信息处理方法、终端设备和网络设备
WO2022077191A1 (zh) 资源调度方法、终端设备和网络设备
WO2022021448A1 (zh) 检测控制信息的方法、传输控制信息的方法、终端设备和网络设备
WO2023077369A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022246824A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936338

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180082525.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2021936338

Country of ref document: EP

Effective date: 20230713

NENP Non-entry into the national phase

Ref country code: DE