WO2022215989A1 - Method of detecting optimal area to examine on smear slide - Google Patents

Method of detecting optimal area to examine on smear slide Download PDF

Info

Publication number
WO2022215989A1
WO2022215989A1 PCT/KR2022/004829 KR2022004829W WO2022215989A1 WO 2022215989 A1 WO2022215989 A1 WO 2022215989A1 KR 2022004829 W KR2022004829 W KR 2022004829W WO 2022215989 A1 WO2022215989 A1 WO 2022215989A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
slide
region
detecting
smear
Prior art date
Application number
PCT/KR2022/004829
Other languages
French (fr)
Korean (ko)
Inventor
정보원
최종호
이주선
이중훈
황호
이봉기
이영득
남병덕
Original Assignee
(주)유아이엠디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)유아이엠디 filed Critical (주)유아이엠디
Publication of WO2022215989A1 publication Critical patent/WO2022215989A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands

Definitions

  • the present invention relates to a method for detecting an inspection area of a smeared slide.
  • the cytopathology test is made by coating a sample taken from the patient's body, that is, thinly and uniformly on a glass, and then covering the sample with another glass. Then, the pathologist observes each slide with examination equipment such as a microscope to determine whether the patient has a disease.
  • the optimal examination area is directly determined for each slide, but when an automated equipment such as an image analyzer is used, it is difficult to determine if the examination area is not uniform.
  • FIG. 1 is a view showing various examples ( S1 to S7 ) of slides having various smear patterns.
  • the length and shape of staining for each slide is variable, and since the slide is a liquid smearing method, there is a limit to regular staining.
  • smear patterns shape, length, thickness
  • the maximum size of the smear on the slide is about 56 mm * 26 mm and the inspection area is about 48 mm * 20 mm, so it is necessary to limit the inspection area to increase the efficiency of observation.
  • the present invention was derived based on the above needs, and an object of the present invention is to provide a method for detecting an optimal inspection area of a smeared slide that can relatively accurately detect an optimal inspection area for observation in a slide smeared in an atypical pattern.
  • it provides a method for detecting the optimal inspection area of a smeared slide that can improve detection efficiency by finding the smear contour or smear boundary through line scan in a slide smeared in an atypical pattern, and determining the optimal inspection area within the found smear contour.
  • a first scanning step (S10) in which the low magnification camera scans the slide in a first area in a line perpendicular to the smearing direction
  • a second scanning step (S20) in which the low-magnification camera line-scans a second area parallel to the line-scanned first area and spaced apart from the first area by a first separation distance (S20); a separation distance calculation step of calculating a second separation distance based on the correlation between the first region and the second region (S30);
  • the optimal test area can also be viewed as the ideal zone, which is an area suitable for observation, and it means the inside within a certain range rather than the outline. refers to the area where
  • the detected optimal examination area may be an imaging target area for the biomaterial smeared on the slide.
  • the method for detecting the optimal inspection area of a smeared slide may further include a flat map generation step (S5) of generating a flat map for a low-magnification image of the slide before the first scanning step (S10).
  • the step of calculating the separation distance ( S30 ) may be a step of calculating the second separation distance based on a weight corresponding to a change in a feature value between the first area and the second area according to the first separation distance.
  • the feature value change may be a numerical change of at least one of brightness, texture, and color.
  • the detection area detection step S50 may include a contour detection step S52 of detecting a smear outline based on the first area, the second area, and the third area; and an examination area determining step (S54) of determining an optimal examination area inside the smear contour.
  • detection efficiency can be increased by finding a smear contour or smear boundary through line scan on a slide smeared in an atypical pattern, and determining an optimal inspection area within the found smear contour.
  • 1 is a view showing various examples of slides having various smear patterns
  • FIG. 2 is a diagram showing an example of a smear pattern of a slide and a selected optimal inspection area
  • FIG. 3 is a flowchart sequentially showing an embodiment of the method for detecting an optimal inspection area of a smeared slide according to the present invention
  • FIG. 4 is a flowchart sequentially showing the steps of detecting an examination area in an embodiment of the method for detecting an optimal examination area of a smeared slide according to the present invention
  • FIG. 5 (a), (b), and (c) are diagrams showing an example of a contour detection method according to an embodiment of the method for detecting an optimal inspection area of a smeared slide according to the present invention
  • FIG. 6 is a diagram showing an example of an image flatness map according to an embodiment of the method for detecting an optimal inspection area of a smeared slide according to the present invention
  • FIG. 7 is a photograph in which the presence or absence of smearing is determined based on the brightness and pattern of an unfocused image according to an embodiment of the method for detecting an optimal inspection area of a smeared slide according to the present invention
  • FIG. 8 is a view showing a smear determination process according to an embodiment of the method for detecting an optimal inspection area of a smeared slide according to the present invention
  • FIGS. 10 (a), (b), and (c) are diagrams showing a slide (left) and a confirmed smear pattern (right) to which an embodiment of the method for detecting an optimal inspection area of a smeared slide according to the present invention is applied.
  • a smear pattern when observing a slide on which a biological material is smeared using an optical system, a smear pattern can be found quickly and easily, and an optimal inspection area can be detected through this.
  • FIG. 2 is a view showing an example of a smear pattern of a slide and a selected optimal inspection area.
  • a biomaterial is smeared on the slide S1 in the same smearing direction D as the longitudinal direction of the slide S1, and the smeared biomaterial becomes thinner as the smear thickness increases toward the end.
  • the optimal examination area A1 may be determined inward along the smear contour C1.
  • the thickness of the smear is neither too thick nor too thin, so there is a high probability that single cells suitable for observation exist. That is, if the smear thickness is too thick, cells may overlap or occlude in the depth direction, and if the smear thickness is too thin, the probability of single cells being present decreases. Therefore, the optimal inspection area A1 is determined within a certain range inward along the smear contour C1.
  • FIG. 3 is a flowchart sequentially showing an embodiment of the method for detecting the optimal inspection region of a smeared slide according to the present invention
  • FIG. 4 is a sequence of the inspection region detection steps in an embodiment of the method for detecting the optimal inspection region of a smeared slide according to the present invention It is a flowchart shown in Hereinafter, this embodiment will be described in detail with reference to FIGS. 3 and 4 .
  • a first scanning step is performed in which the low magnification camera scans the slide in a first line in a direction perpendicular to the smear direction (S10).
  • the smearing direction is generally the longitudinal direction of the slide, but is not limited thereto, and may be defined as a direction in which a pressing force of the glass is applied or a direction from a thick part to a thin part in the smear thickness.
  • the line-scanned first area refers to an area in which a low-magnification image is captured in one line with a field of view (FOV) size of the low-magnification camera.
  • FOV field of view
  • the line scan may be performed with a minimum angle of view size, but may also be performed with a different angle of view size.
  • Imaging in one line means imaging in one direction with the passage of time.
  • a second scanning step of line-scanning a second area in which the low magnification camera is parallel to the line-scanned first area and spaced apart from the first area by a first separation distance is performed ( S20 ).
  • the first separation distance is a distance spaced apart in a direction further moving in the smearing direction
  • the second area refers to an area imaged by line-scanned at the same angle of view size as the first area.
  • the first separation distance may be a preset distance or a distance according to a feature value (at least one of brightness, texture, and color) of the image of the first area corresponding to the first area.
  • a separation distance calculation step S30 of calculating a second separation distance based on the correlation between the first region and the second region is performed.
  • the calculation of the second separation distance may be performed by a separation distance calculating unit equipped with a computer including a CPU and a memory.
  • the step of calculating the separation distance ( S30 ) may be a step of calculating the second separation distance based on a weight corresponding to a change in a feature value between the first area and the second area according to the first separation distance.
  • the feature value of the first region specifically means a feature value of the first region image
  • the feature value of the second region specifically means a feature value of the second region image.
  • the feature value change may be a numerical change of at least one of brightness, texture, and color.
  • the presence or absence of the smear pattern is determined through the feature value, and when the difference between the first region and the second region is large, the second separation distance is calculated to be short and the difference between the first region and the second region When is small, the second separation distance may be calculated to be long.
  • a third scanning step (S40) of row-scanning a third area parallel to the second area and spaced apart by a second separation distance calculated from the second area is performed.
  • the third area refers to an area imaged by line-scanned at the same angle of view size as the aforementioned first and second areas.
  • the inspection region detection step S50 of detecting the optimal inspection region on the slide based on the first region, the second region, and the third region is performed, thereby completing the method of detecting the optimal inspection region of the smeared slide.
  • the detected optimal inspection region may be an imaging target region for a biomaterial smeared on a slide. That is, it is an area in which low and/or high magnification imaging is performed to obtain pathological information or diagnostic information on a biological material, and an area in which an optical image for obtaining meaningful information is obtained.
  • the detection area detection step (S50) includes: a contour detection step (S52) of detecting a smear outline based on the first area, the second area and the third area; and an examination area determination step (S54) of determining an optimal examination area inside the smear contour.
  • the optimal inspection area may be inferred from the detected smear contour or smear pattern.
  • the feature values of the first region image, the second region image, and the third region image corresponding to the first region, the second region, and the third region are utilized, and the first region, the second region, and the third region are Since they are spaced apart by a first separation distance and a second separation distance from each other, a two-dimensional smear pattern or smear outline can be detected.
  • the optimal examination area may be determined as a preset range inward from the smear contour.
  • FIG. 5 (a), (b), and (c) are diagrams showing examples of a contour detection method according to an embodiment of the present invention, the method for detecting an optimal inspection area of a smeared slide.
  • Fig. 5 (a), (b), (c) in the direction perpendicular to the smear direction (a), (b), (c), respectively, from bottom to top 4 lines scan (on the smear pattern) arranged small squares) are performed. Then, it can be seen that the boundary points at which the smear pattern is confirmed are 6 in the case of (a), 4 in the case of (b), and 6 in the case of (c).
  • the line connecting the boundary points where the smear pattern is confirmed becomes the smear contours in (a), (b), (c)d.
  • an optimal inspection area can be derived inside the smear contours.
  • the method for detecting the optimal inspection area of a smeared slide may further include a flat map generation step (S5) of generating a flat map for a low-magnification image of the slide before the first scanning step (S10).
  • a flat map generation step (S5) of generating a flat map for a low-magnification image of the slide before the first scanning step (S10).
  • the depth information of the slide is preferably acquired for each slide in advance when scanning is performed by focusing.
  • a depth map as shown in FIG. 6 may be formed through an interpolation method based on 4N points.
  • the focusing imaging of the low magnification camera is preferably performed based on the depth map.
  • FIG. 7 is a photograph in which the presence or absence of smearing is determined based on the brightness and pattern of an unfocused image according to an exemplary embodiment of a method for detecting an optimal inspection area of a smeared slide according to the present invention.
  • 7, (a), (b), and (c) are pictures in which a smear pattern is confirmed, and (d) and (e) are photos in which there is no smear pattern.
  • the presence or absence of such a smear pattern is determined through the smear determination process as shown in FIG. 8 . That is, the feature analyzer calculates the mean, variance, and standard deviation of the feature values and normalizes the feature values within a certain range to determine whether the final dyeing is done.
  • 9 (a), (b), and (c) are photographs illustrating image processing according to an embodiment of the present invention, a method for detecting an optimal inspection area of a smeared slide.
  • 9 (a) is an image obtained through 4-line row scan
  • (b) is an image obtained by weighting the image of (a)
  • (c) is an image obtained by binarizing the image of (b) (binarization image).
  • FIGS. 10 (a), (b), and (c) are diagrams showing a slide (left) and a confirmed smear pattern (right) to which an embodiment of the method for detecting an optimal inspection area of a smeared slide according to the present invention is applied.
  • FIGS. 10 (a), (b), and (c) it can be seen that by applying this embodiment, a smear pattern (right) almost similar to that of the actually applied slide (left) can be obtained.
  • A1 Optimal inspection area

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

According to one embodiment, the present invention can relatively accurately detect an optimal area to examine on a slide smeared in a formless pattern, identify a smear contour or a smear boundary by line scanning, and determine the optimal area to examine within the identified smear contour, and thus can increase detection efficiency. To this end, one embodiment of the present invention in particular includes a method of detecting an optimal area to examine on a smear slide, the method including: a first scanning step (S10) of line-scanning, by a low-magnification camera, a first area of a slide in a direction perpendicular to a smear direction; a second scanning step (S20) of line-scanning, by the low-magnification camera, a second area that is parallel to the line-scanned first area and spaced apart from the first area by a first spaced-apart distance; a spaced-apart distance calculation step (S30) of calculating a second spaced-apart distance on the basis of a correlation between the first area and the second area; a third scanning step (S40) of line-scanning a third area that is parallel to the second area and spaced apart from the second area by the second spaced-apart distance; and an examination area detection step (S50) of detecting an optimal area to examine on the slide on the basis of the first area, the second area, and the third area.

Description

도말된 슬라이드의 최적 검사 영역 검출 방법How to detect the optimal inspection area of a smeared slide
본 발명은 도말된 슬라이드의 검사 영역 검출 방법에 관한 것이다.The present invention relates to a method for detecting an inspection area of a smeared slide.
광학계를 이용한 생체 물질을 관찰하는 경우, 글라스 표면에 생체 물질을 얇게 펴서 바르는 도말에 의하여 검체 슬라이드(또는 슬라이드)를 제작하고 제작된 슬라이드에 대하여 검사 영역을 확정하고 관찰을 수행되는 것이 일반적이다.When observing a biological material using an optical system, it is common to manufacture a specimen slide (or slide) by smearing a thin layer of the biological material on a glass surface, and to determine an inspection area for the manufactured slide and perform observation.
또한 세포 병리 검사는 환자의 신체로부터 채취한 검체, 즉 시료를 글라스에 얇고 균일하게 도말한 후 다른 글라스로 시료를 덮는 방식으로 제작된다. 그리고, 병리 의사는 각각의 슬라이드를 현미경 등의 검사장비로 관찰하여 환자의 질병 유무를 판단하게 된다.In addition, the cytopathology test is made by coating a sample taken from the patient's body, that is, thinly and uniformly on a glass, and then covering the sample with another glass. Then, the pathologist observes each slide with examination equipment such as a microscope to determine whether the patient has a disease.
관찰자 또는 병리 의사가 직접 검사 영역을 찾는 경우에는 슬라이드마다 최적의 검사 영역을 직접 확정하겠지만 이미지 분석기 등의 자동화 장비를 이용하는 경우에는 검사 영역이 일정하지 않으면 확정에 어려움이 따른다.When an observer or a pathologist directly finds an examination area, the optimal examination area is directly determined for each slide, but when an automated equipment such as an image analyzer is used, it is difficult to determine if the examination area is not uniform.
한편 도 1은 다양한 도말 패턴을 가지는 슬라이드의 다양한 예시들(S1 ~ S7)을 나타낸 도면이다. 도 1에 도시된 바와 같이 슬라이드마다 염색되는 길이와 모양은 가변적이고, 슬라이드는 액체를 도말하는 방식이므로 규칙적인 염색에 한계가 있다. 아울러 병원, 혈액 등 다양한 변수와 이유로 인하여 도말 패턴(모양, 길이, 두께)은 다양할 수 밖에 없다. 결국 다양한 도말 패턴의 슬라이드에서 최적의 검사 영역을 확정할 필요성이 있다.Meanwhile, FIG. 1 is a view showing various examples ( S1 to S7 ) of slides having various smear patterns. As shown in FIG. 1 , the length and shape of staining for each slide is variable, and since the slide is a liquid smearing method, there is a limit to regular staining. In addition, due to various variables and reasons such as hospitals and blood, smear patterns (shape, length, thickness) inevitably vary. Ultimately, there is a need to determine an optimal inspection area from slides of various smear patterns.
아울러 오차가 있겠지만 일반적으로 슬라이드의 도말 최대 사이즈는 56 mm * 26 mm 정도이고 검사 영역은 대략 48 mm * 20 mm 정도이므로 관찰의 효율성을 높이기 위해서도 검사 영역을 한정할 필요가 있다.In addition, although there are errors, in general, the maximum size of the smear on the slide is about 56 mm * 26 mm and the inspection area is about 48 mm * 20 mm, so it is necessary to limit the inspection area to increase the efficiency of observation.
본 발명은 상기와 같은 필요성에 기하여 도출된 것으로서, 비정형 패턴으로 도말되는 슬라이드에서 관찰을 위한 최적 검사 영역을 비교적 정확하게 검출할 수 있는 도말된 슬라이드의 최적 검사 영역 검출 방법을 제공하는 데 있다.The present invention was derived based on the above needs, and an object of the present invention is to provide a method for detecting an optimal inspection area of a smeared slide that can relatively accurately detect an optimal inspection area for observation in a slide smeared in an atypical pattern.
아울러 비정형 패턴으로 도말되는 슬라이드에서 줄 스캔을 통해 도말 윤곽 또는 도말 경계를 찾아내고, 찾아낸 도말 윤곽 내부에서 최적 검사 영역을 결정함으로써 검출 효율을 높일 수 있는 도말된 슬라이드의 최적 검사 영역 검출 방법을 제공하는 데 있다.In addition, it provides a method for detecting the optimal inspection area of a smeared slide that can improve detection efficiency by finding the smear contour or smear boundary through line scan in a slide smeared in an atypical pattern, and determining the optimal inspection area within the found smear contour. there is
상기와 같은 본 발명의 목적은, 저배율 카메라가 슬라이드를 도말 방향에 수직인 방향으로 제1 영역을 줄 스캔하는 제1 스캔단계(S10); 저배율 카메라가 줄 스캔된 제1 영역과 평행하고 제1 영역으로부터 제1 이격 거리만큼 이격된 제2 영역을 줄 스캔하는 제2 스캔단계(S20); 제1 영역과 제2 영역의 상관 관계에 기초하여 제2 이격 거리를 산출하는 이격 거리 산출단계(S30); 제2 영역과 평행하고 제2 영역으로부터 제2 이격 거리만큼 이격된 제3 영역을 줄 스캔하는 제3 스캔단계(S40); 및 제1 영역, 제2 영역 및 제3 영역에 기반하여 슬라이드 상의 최적 검사 영역을 검출하는 검사 영역 검출단계(S50)를 포함하는 도말된 슬라이드의 최적 검사 영역 검출 방법을 제공함으로써 달성될 수 있다.An object of the present invention as described above, a first scanning step (S10) in which the low magnification camera scans the slide in a first area in a line perpendicular to the smearing direction; a second scanning step (S20) in which the low-magnification camera line-scans a second area parallel to the line-scanned first area and spaced apart from the first area by a first separation distance (S20); a separation distance calculation step of calculating a second separation distance based on the correlation between the first region and the second region (S30); a third scanning step (S40) of row-scanning a third area parallel to the second area and spaced apart from the second area by a second separation distance; and an inspection region detection step (S50) of detecting an optimal inspection region on the slide based on the first region, the second region, and the third region.
여기서 최적 검사 영역은 관찰에 적합한 영역인 아이디얼 존(ideal zone)으로도 볼 수 있으며, 윤곽보다 일정 범위에 한하여 그 안쪽을 의미하고, 아이디얼 존은 도말된 슬라이드 내에, 적혈구, 백혈구가 균일하게 분포되어 있는 부위를 일컫는다.Here, the optimal test area can also be viewed as the ideal zone, which is an area suitable for observation, and it means the inside within a certain range rather than the outline. refers to the area where
그리고 검사 영역 검출단계(S50)에서, 검출된 최적 검사 영역은, 슬라이드 상에 도말된 생체물질에 대한 촬상 타겟 영역일 수 있다.In addition, in the detection area detection step ( S50 ), the detected optimal examination area may be an imaging target area for the biomaterial smeared on the slide.
도말된 슬라이드의 최적 검사 영역 검출 방법은 제1 스캔단계(S10) 이전에, 슬라이드의 저배율 이미지에 대한 평탄맵을 생성하는 평탄맵 생성단계(S5)를 더 포함할 수 있다.The method for detecting the optimal inspection area of a smeared slide may further include a flat map generation step (S5) of generating a flat map for a low-magnification image of the slide before the first scanning step (S10).
이격 거리 산출단계(S30)는, 제1 이격 거리에 따른 제1 영역과 제2 영역 사이의 특징 값 변화에 대응하는 가중치에 기반하여 제2 이격 거리를 산출하는 단계일 수 있다.The step of calculating the separation distance ( S30 ) may be a step of calculating the second separation distance based on a weight corresponding to a change in a feature value between the first area and the second area according to the first separation distance.
특징 값 변화는 밝기, 질감 및 색상 중 적어도 어느 하나의 수치 변화일 수 있다.The feature value change may be a numerical change of at least one of brightness, texture, and color.
검사 영역 검출단계(S50)는, 제1 영역, 제2 영역 및 제3 영역에 기반하여 도말 윤곽을 검출하는 윤곽 검출단계(S52); 및 도말 윤곽의 내측에서 최적 검사 영역을 결정하는 검사 영역 결정단계(S54)를 포함하는 것일 수 있다.The detection area detection step S50 may include a contour detection step S52 of detecting a smear outline based on the first area, the second area, and the third area; and an examination area determining step (S54) of determining an optimal examination area inside the smear contour.
상기와 같은 본 발명의 일 실시예에 의하면, 비정형 패턴으로 도말되는 슬라이드에서 관찰을 위한 최적 검사 영역을 비교적 정확하게 검출할 수 있다.According to an embodiment of the present invention as described above, it is possible to relatively accurately detect an optimal inspection area for observation in a slide smeared in an atypical pattern.
그리고 비정형 패턴으로 도말되는 슬라이드에서 줄 스캔을 통해 도말 윤곽 또는 도말 경계를 찾아내고, 찾아낸 도말 윤곽 내부에서 최적 검사 영역을 결정함으로써 검출 효율을 높일 수 있다.In addition, detection efficiency can be increased by finding a smear contour or smear boundary through line scan on a slide smeared in an atypical pattern, and determining an optimal inspection area within the found smear contour.
도 1은 다양한 도말 패턴을 가지는 슬라이드의 다양한 예시들을 나타낸 도면이고,1 is a view showing various examples of slides having various smear patterns,
도 2는 슬라이드의 도말 패턴과 선정된 최적 검사 영역의 예시를 나타낸 도면이며,2 is a diagram showing an example of a smear pattern of a slide and a selected optimal inspection area;
도 3은 본 발명인 도말된 슬라이드의 최적 검사 영역 검출 방법의 일 실시예를 순차적으로 나타낸 순서도이고,3 is a flowchart sequentially showing an embodiment of the method for detecting an optimal inspection area of a smeared slide according to the present invention;
도 4는 본 발명인 도말된 슬라이드의 최적 검사 영역 검출 방법의 일 실시예 중 검사 영역 검출 단계를 순차적으로 나타낸 순서도이고,4 is a flowchart sequentially showing the steps of detecting an examination area in an embodiment of the method for detecting an optimal examination area of a smeared slide according to the present invention;
도 5 (a), (b), (c)는 본 발명인 도말된 슬라이드의 최적 검사 영역 검출 방법의 일 실시예에 따른 윤곽 검출 방법의 예시를 나타낸 도면이고,5 (a), (b), and (c) are diagrams showing an example of a contour detection method according to an embodiment of the method for detecting an optimal inspection area of a smeared slide according to the present invention;
도 6은 본 발명인 도말된 슬라이드의 최적 검사 영역 검출 방법의 일 실시예에 따른 이미지 평탄맵의 예시를 나타낸 도면이고,6 is a diagram showing an example of an image flatness map according to an embodiment of the method for detecting an optimal inspection area of a smeared slide according to the present invention;
도 7은 본 발명인 도말된 슬라이드의 최적 검사 영역 검출 방법의 일 실시예에 따른 언포커스트 이미지(unfocused image)의 밝기 및 패턴을 기준으로 도말 유무를 판단한 사진들이고,7 is a photograph in which the presence or absence of smearing is determined based on the brightness and pattern of an unfocused image according to an embodiment of the method for detecting an optimal inspection area of a smeared slide according to the present invention;
도 8은 본 발명인 도말된 슬라이드의 최적 검사 영역 검출 방법의 일 실시예에 따른 도말 여부 판단 프로세스를 나타낸 도면이고,8 is a view showing a smear determination process according to an embodiment of the method for detecting an optimal inspection area of a smeared slide according to the present invention;
도 9 (a), (b), (c)는 본 발명인 도말된 슬라이드의 최적 검사 영역 검출 방법의 일 실시예에 따른 영상 처리를 나타낸 사진들이고,9 (a), (b), (c) are photographs showing image processing according to an embodiment of the method for detecting an optimal inspection area of a smeared slide according to the present invention;
도 10 (a), (b), (c)는 본 발명인 도말된 슬라이드의 최적 검사 영역 검출 방법의 일 실시예가 적용된 슬라이드(좌측)와, 확정된 도말 패턴(우측)을 나타낸 도면이다.10 (a), (b), and (c) are diagrams showing a slide (left) and a confirmed smear pattern (right) to which an embodiment of the method for detecting an optimal inspection area of a smeared slide according to the present invention is applied.
이하 첨부 도면들 및 첨부 도면들에 기재된 내용들을 참조하여 본 발명의 실시예를 상세하게 설명하지만, 본 발명이 실시예에 의해 제한되거나 한정되는 것은 아니다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings and contents described in the accompanying drawings, but the present invention is not limited or limited by the embodiments.
아래 설명하는 실시예들에는 다양한 변경이 가해질 수 있다. 아래 설명하는 실시예들은 실시 형태에 대해 한정하려는 것이 아니며, 이들에 대한 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Various modifications may be made to the embodiments described below. It should be understood that the embodiments described below are not intended to limit the embodiments, and include all modifications, equivalents, and substitutions thereto.
한편, 본 발명을 설명함에 있어서, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는, 그 상세한 설명을 생략할 것이다. 그리고, 본 명세서에서 사용되는 용어(terminology)들은 본 발명의 실시예를 적절히 표현하기 위해 사용된 용어들로서, 이는 사용자, 운용자의 의도 또는 본 발명이 속하는 분야의 관례 등에 따라 달라질 수 있다. 따라서, 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.Meanwhile, in describing the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted. In addition, the terms used in this specification are terms used to properly express an embodiment of the present invention, which may vary according to the intention of a user or operator or a custom in the field to which the present invention belongs. Accordingly, definitions of these terms should be made based on the content throughout this specification.
도말된 슬라이드의 최적 검사 영역 검출 방법How to detect the optimal inspection area of a smeared slide
본 발명의 일 실시예에 의하면, 광학계를 이용하여 생체 물질이 도말된 슬라이드를 관찰함에 있어서, 도말 패턴을 빠르고 쉽게 찾을 수 있고 이를 통해 최적 검사 영역을 검출할 수 있도록 작용한다.According to an embodiment of the present invention, when observing a slide on which a biological material is smeared using an optical system, a smear pattern can be found quickly and easily, and an optimal inspection area can be detected through this.
도 2는 슬라이드의 도말 패턴과 선정된 최적 검사 영역의 예시를 나타낸 도면이다. 도 2에 도시된 바와 같이, 슬라이드(S1)에 생체 물질을 슬라이드(S1)의 길이 방향과 동일한 도말 방향(D)으로 도말되고, 도말된 생체 물질은 끝으로 갈수록 도말 두께가 얇아지면서 다양한 형태의 도말 윤곽(C1) 또는 도말 경계를 형성한다.2 is a view showing an example of a smear pattern of a slide and a selected optimal inspection area. As shown in FIG. 2 , a biomaterial is smeared on the slide S1 in the same smearing direction D as the longitudinal direction of the slide S1, and the smeared biomaterial becomes thinner as the smear thickness increases toward the end. Form the smear contour (C1) or smear boundary.
이 경우 최적 검사 영역(A1)은 도말 윤곽(C1)을 따라 내측으로 정해질 수 있다. 이러한 최적 검사 영역(A1)은 도말 두께가 너무 두껍지도 않고 너무 얇지도 않아서 관찰하기에 적합한 단일 세포가 존재할 가능성이 높다. 즉 도말 두께가 너무 두꺼우면 깊이방향으로 세포가 중첩되거나 폐색될 수 있고 도말 두께가 너무 얇으면 단일 세포가 존재할 확률이 떨어진다. 따라서 최적 검사 영역(A1)은 도말 윤곽(C1)을 따라 내측으로 일정 범위안에서 결정된다.In this case, the optimal examination area A1 may be determined inward along the smear contour C1. In this optimal inspection area (A1), the thickness of the smear is neither too thick nor too thin, so there is a high probability that single cells suitable for observation exist. That is, if the smear thickness is too thick, cells may overlap or occlude in the depth direction, and if the smear thickness is too thin, the probability of single cells being present decreases. Therefore, the optimal inspection area A1 is determined within a certain range inward along the smear contour C1.
도 3은 본 발명인 도말된 슬라이드의 최적 검사 영역 검출 방법의 일 실시예를 순차적으로 나타낸 순서도이고, 도 4는 본 발명인 도말된 슬라이드의 최적 검사 영역 검출 방법의 일 실시예 중 검사 영역 검출 단계를 순차적으로 나타낸 순서도이다. 이하 도 3 및 4를 참고하여 본 실시예에 대하여 상술한다.3 is a flowchart sequentially showing an embodiment of the method for detecting the optimal inspection region of a smeared slide according to the present invention, and FIG. 4 is a sequence of the inspection region detection steps in an embodiment of the method for detecting the optimal inspection region of a smeared slide according to the present invention It is a flowchart shown in Hereinafter, this embodiment will be described in detail with reference to FIGS. 3 and 4 .
우선 저배율 카메라가 슬라이드를 도말 방향에 수직인 방향으로 제1 영역을 줄 스캔하는 제1 스캔단계가 수행된다(S10). 여기서 도말 방향은 슬라이드의 길이 방향인 것이 일반적이지만, 이에 한정되지는 않으며 글라스의 누름 힘이 가해지는 방향 또는 도말 두께가 두꺼운 부분에서 얇은 부분으로 이어지는 방향으로 정의될 수 있다. First, a first scanning step is performed in which the low magnification camera scans the slide in a first line in a direction perpendicular to the smear direction (S10). Here, the smearing direction is generally the longitudinal direction of the slide, but is not limited thereto, and may be defined as a direction in which a pressing force of the glass is applied or a direction from a thick part to a thin part in the smear thickness.
또한 줄 스캔된 제1 영역은 저배율 카메라의 화각(FOV; Field of View) 사이즈로 저배율 이미지가 한 줄로 촬상되는 영역을 의미한다. 그리고 줄 스캔은 최소 화각 사이즈로 수행될 수 있지만 화각 사이즈를 달리하여 수행될 수도 있다. 한 줄로 촬상한다고 하는 것은 시간의 흐름에 따라 일 방향으로 촬상하는 것을 의미한다. S10 단계가 수행되면 제1 영역에 대응하는 제1 영역 이미지가 획득된다.Also, the line-scanned first area refers to an area in which a low-magnification image is captured in one line with a field of view (FOV) size of the low-magnification camera. In addition, the line scan may be performed with a minimum angle of view size, but may also be performed with a different angle of view size. Imaging in one line means imaging in one direction with the passage of time. When step S10 is performed, a first area image corresponding to the first area is obtained.
다음, 저배율 카메라가 줄 스캔된 제1 영역과 평행하고 제1 영역으로부터 제1 이격 거리만큼 이격된 제2 영역을 줄 스캔하는 제2 스캔단계가 수행된다(S20). 여기서 제1 이격 거리는 도말 방향으로 더 이동하는 방향으로 이격된 거리이고, 제2 영역은 제1 영역과 동일한 화각 사이즈로 줄 스캔되어 촬상되는 영역을 의미한다. 여기서 제1 이격 거리는 기 설정된 거리이거나 제1 영역에 대응하는 제1 영역 이미지의 특징 값(밝기, 질감 및 색상 중 적어도 어느 하나의 값)에 따른 거리일 수 있다. S20 단계가 수행되면 제2 영역에 대응하는 제2 영역 이미지가 획득된다.Next, a second scanning step of line-scanning a second area in which the low magnification camera is parallel to the line-scanned first area and spaced apart from the first area by a first separation distance is performed ( S20 ). Here, the first separation distance is a distance spaced apart in a direction further moving in the smearing direction, and the second area refers to an area imaged by line-scanned at the same angle of view size as the first area. Here, the first separation distance may be a preset distance or a distance according to a feature value (at least one of brightness, texture, and color) of the image of the first area corresponding to the first area. When step S20 is performed, a second area image corresponding to the second area is obtained.
다음, 제1 영역과 제2 영역의 상관 관계에 기초하여 제2 이격 거리를 산출하는 이격 거리 산출단계(S30)가 수행된다. 이러한 제2 이격 거리의 산출은, CPU와 메모리를 포함하는 컴퓨터가 구비된 이격 거리 산출부가 수행할 수 있다.Next, a separation distance calculation step S30 of calculating a second separation distance based on the correlation between the first region and the second region is performed. The calculation of the second separation distance may be performed by a separation distance calculating unit equipped with a computer including a CPU and a memory.
이격 거리 산출단계(S30)는, 제1 이격 거리에 따른 제1 영역과 제2 영역 사이의 특징 값 변화에 대응하는 가중치에 기반하여 제2 이격 거리를 산출하는 단계일 수 있다. 여기서 제1 영역의 특징 값은 구체적으로는 제1 영역 이미지의 특징 값을 의미하고, 제2 영역의 특징 값은 구체적으로 제2 영역 이미지의 특징 값을 의미한다. 또한 특징 값 변화는 밝기, 질감 및 색상 중 적어도 어느 하나의 수치 변화일 수 있다. 가중치에 기반한 제2 이격 거리 산출은, 특징 값을 통해 도말 패턴의 유무를 파악하고 제1 영역과 제2 영역 간의 차이가 큰 경우에는 제2 이격 거리는 짧게 산출되고 제1 영역과 제2 영역 간의 차이가 작은 경우에는 제2 이격 거리는 길게 산출될 수 있다.The step of calculating the separation distance ( S30 ) may be a step of calculating the second separation distance based on a weight corresponding to a change in a feature value between the first area and the second area according to the first separation distance. Here, the feature value of the first region specifically means a feature value of the first region image, and the feature value of the second region specifically means a feature value of the second region image. Also, the feature value change may be a numerical change of at least one of brightness, texture, and color. In the calculation of the second separation distance based on the weight, the presence or absence of the smear pattern is determined through the feature value, and when the difference between the first region and the second region is large, the second separation distance is calculated to be short and the difference between the first region and the second region When is small, the second separation distance may be calculated to be long.
다음, 제2 영역과 평행하고 제2 영역으로부터 산출된 제2 이격 거리만큼 이격된 제3 영역을 줄 스캔하는 제3 스캔단계(S40)가 수행된다. 제3 영역은 전술한 제1 영역과 제2 영역과 동일한 화각 사이즈로 줄 스캔되어 촬상되는 영역을 의미한다. Next, a third scanning step (S40) of row-scanning a third area parallel to the second area and spaced apart by a second separation distance calculated from the second area is performed. The third area refers to an area imaged by line-scanned at the same angle of view size as the aforementioned first and second areas.
마지막으로 제1 영역, 제2 영역 및 제3 영역에 기반하여 슬라이드 상의 최적 검사 영역을 검출하는 검사 영역 검출단계(S50)가 수행됨으로써 도말된 슬라이드의 최적 검사 영역 검출 방법이 완료될 수 있다.Finally, the inspection region detection step S50 of detecting the optimal inspection region on the slide based on the first region, the second region, and the third region is performed, thereby completing the method of detecting the optimal inspection region of the smeared slide.
검사 영역 검출단계(S50)에서, 검출된 최적 검사 영역은, 슬라이드 상에 도말된 생체물질에 대한 촬상 타겟 영역일 수 있다. 즉 생체물질에 대하여 병리 정보 또는 진단 정보를 획득하기 위해 저배율 및/또는 고배율 촬상이 이루어지는 영역이고 의미있는 정보를 얻기 위한 광학적 이미지가 획득되는 영역이다.In the detection region detection step S50, the detected optimal inspection region may be an imaging target region for a biomaterial smeared on a slide. That is, it is an area in which low and/or high magnification imaging is performed to obtain pathological information or diagnostic information on a biological material, and an area in which an optical image for obtaining meaningful information is obtained.
특히 검사 영역 검출단계(S50)는, 제1 영역, 제2 영역 및 제3 영역에 기반하여 도말 윤곽을 검출하는 윤곽 검출단계(S52); 및 도말 윤곽의 내측에서 최적 검사 영역을 결정하는 검사 영역 결정단계(S54)를 포함하는 것이 바람직하다. 여기서 최적 검사 영역은 검출되는 도말 윤곽 또는 도말 패턴으로부터 유추될 수 있다.In particular, the detection area detection step (S50) includes: a contour detection step (S52) of detecting a smear outline based on the first area, the second area and the third area; and an examination area determination step (S54) of determining an optimal examination area inside the smear contour. Here, the optimal inspection area may be inferred from the detected smear contour or smear pattern.
구체적으로는 제1 영역, 제2 영역 및 제3 영역에 대응하는 제1 영역 이미지, 제2 영역 이미지 및 제3 영역 이미지의 특징 값을 활용하고, 제1 영역, 제2 영역 및 제3 영역이 상호 제1 이격거리 및 제2 이격거리로 이격되어 있으므로 2차원 도말 패턴 또는 도말 윤곽이 검출될 수 있다.Specifically, the feature values of the first region image, the second region image, and the third region image corresponding to the first region, the second region, and the third region are utilized, and the first region, the second region, and the third region are Since they are spaced apart by a first separation distance and a second separation distance from each other, a two-dimensional smear pattern or smear outline can be detected.
나아가 도말 윤곽의 내측에서 일정 범위 안에서 최적 검사 영역을 결정할 수 있다. 최적 검사 영역은 도말 윤곽으로부터 내측으로 기 설정된 범위로 결정될 수 있다.Furthermore, it is possible to determine the optimal examination area within a certain range inside the smear contour. The optimal examination area may be determined as a preset range inward from the smear contour.
도 5 (a), (b), (c)는 본 발명인 도말된 슬라이드의 최적 검사 영역 검출 방법의 일 실시예에 따른 윤곽 검출 방법의 예시를 나타낸 도면이다. 도 5 (a), (b), (c)에 도시된 바와 같이, 도말 방향에 수직한 방향으로 (a), (b), (c) 각각 아래에서 위로 4 줄의 줄 스캔(도말 패턴 위에 배열된 작은 사각형들)이 수행된다. 이어서 도말 패턴이 확인되는 경계점이 (a)의 경우 6 개, (b)의 경우 4개, (c)의 경우 6 개임을 알 수 있다. 도말 패턴이 확인되는 경계점들을 이은 선이 (a), (b), (c)d에서의 도말 윤곽들이 된다. 그리고 도말 윤곽들 내측으로 최적 검사 영역이 도출될 수 있다.5 (a), (b), and (c) are diagrams showing examples of a contour detection method according to an embodiment of the present invention, the method for detecting an optimal inspection area of a smeared slide. As shown in Fig. 5 (a), (b), (c), in the direction perpendicular to the smear direction (a), (b), (c), respectively, from bottom to top 4 lines scan (on the smear pattern) arranged small squares) are performed. Then, it can be seen that the boundary points at which the smear pattern is confirmed are 6 in the case of (a), 4 in the case of (b), and 6 in the case of (c). The line connecting the boundary points where the smear pattern is confirmed becomes the smear contours in (a), (b), (c)d. And an optimal inspection area can be derived inside the smear contours.
도말된 슬라이드의 최적 검사 영역 검출 방법은 제1 스캔단계(S10) 이전에, 슬라이드의 저배율 이미지에 대한 평탄맵을 생성하는 평탄맵 생성단계(S5)를 더 포함할 수 있다. 이는 도 6에 도시된 바와 같이, 그리퍼(Gripper)는 슬라이드의 양단 중 일단만 그립하므로 슬라이드는 일 방향으로 휘어지는 특성이 있다. 이러한 원인 이외에도 슬라이드는 여러 이유로 다양한 형태의 불균형 평탄 특성을 가질 수 있다.The method for detecting the optimal inspection area of a smeared slide may further include a flat map generation step (S5) of generating a flat map for a low-magnification image of the slide before the first scanning step (S10). As shown in FIG. 6, since the gripper grips only one end of both ends of the slide, the slide has a characteristic of being bent in one direction. In addition to these causes, the slide may have various types of unbalanced flatness characteristics for various reasons.
본 실시예에서 저배율 카메라가 스캔함에 있어서, 포커싱으로 스캔이 이루어지면 슬라이드의 깊이 정보는 미리 슬라이드마다 획득되는 것이 바람직하다. 도 6에 도시된 바와 같은 깊이 맵(Depth map)은 4N 포인트 기반의 보간(Interpolation) 법을 통해 형성될 수 있다. 저배율 카메라의 포커싱 촬상은, 깊이 맵을 기초로 수행되는 것이 바람직하다.In the present embodiment, when scanning is performed by the low magnification camera, the depth information of the slide is preferably acquired for each slide in advance when scanning is performed by focusing. A depth map as shown in FIG. 6 may be formed through an interpolation method based on 4N points. The focusing imaging of the low magnification camera is preferably performed based on the depth map.
도 7은 본 발명인 도말된 슬라이드의 최적 검사 영역 검출 방법의 일 실시예에 따른 언포커스트 이미지(unfocused image)의 밝기 및 패턴을 기준으로 도말 유무를 판단한 사진들이다. 도 7에서 (a), (b), (c)는 도말 패턴이 확인되는 사진이며, (d), (e)는 도말 패턴이 없는 사진들이다. 이러한 도말 패턴 유무(또는 도말 유무)는 도 8에 도시된 바와 같은 도말 여부 판단 프로세스를 통해 판단된다. 즉 특징 분석부에서 특징 값의 평균, 분산, 표준편차를 계산하고 일정 범위로 특징 값을 정규화하여 최종 염색 여부를 판단한다.7 is a photograph in which the presence or absence of smearing is determined based on the brightness and pattern of an unfocused image according to an exemplary embodiment of a method for detecting an optimal inspection area of a smeared slide according to the present invention. 7, (a), (b), and (c) are pictures in which a smear pattern is confirmed, and (d) and (e) are photos in which there is no smear pattern. The presence or absence of such a smear pattern (or the presence or absence of smear) is determined through the smear determination process as shown in FIG. 8 . That is, the feature analyzer calculates the mean, variance, and standard deviation of the feature values and normalizes the feature values within a certain range to determine whether the final dyeing is done.
도 9 (a), (b), (c)는 본 발명인 도말된 슬라이드의 최적 검사 영역 검출 방법의 일 실시예에 따른 영상 처리를 나타낸 사진들이다. 도 9 (a)가 4 줄의 줄 스캔을 통해 획득한 영상들이라면, (b)는 (a)의 영상을 가중합한 영상(addweighted image)이며, (c)는 (b)의 영상을 이진화한 영상(binarization image)이다.9 (a), (b), and (c) are photographs illustrating image processing according to an embodiment of the present invention, a method for detecting an optimal inspection area of a smeared slide. 9 (a) is an image obtained through 4-line row scan, (b) is an image obtained by weighting the image of (a), (c) is an image obtained by binarizing the image of (b) (binarization image).
도 10 (a), (b), (c)는 본 발명인 도말된 슬라이드의 최적 검사 영역 검출 방법의 일 실시예가 적용된 슬라이드(좌측)와, 확정된 도말 패턴(우측)을 나타낸 도면이다. 도 10 (a), (b), (c)에 도시된 바와 같이, 본 실시예를 적용하면 실제 적용된 슬라이드(좌측)에서와 거의 유사한 도말 패턴(우측)을 획득할 수 있음을 알 수 있다.10 (a), (b), and (c) are diagrams showing a slide (left) and a confirmed smear pattern (right) to which an embodiment of the method for detecting an optimal inspection area of a smeared slide according to the present invention is applied. As shown in FIGS. 10 (a), (b), and (c), it can be seen that by applying this embodiment, a smear pattern (right) almost similar to that of the actually applied slide (left) can be obtained.
이상 첨부된 도면을 참조하여 본 발명의 실시 예를 설명하였지만, 상술한 본 발명의 기술적 구성은 본 발명이 속하는 기술 분야의 당 업자가 본 발명의 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해되어야 한다. 아울러, 본 발명의 범위는 상기의 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어진다. 또한, 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Although the embodiments of the present invention have been described above with reference to the accompanying drawings, the technical configuration of the present invention described above is another specific form for those skilled in the art to which the present invention pertains without changing the technical spirit or essential features of the present invention. It will be understood that it can be implemented as Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive. In addition, the scope of the present invention is indicated by the following claims rather than the above detailed description. In addition, all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included in the scope of the present invention.
[부호의 설명][Explanation of code]
S1~S10 : 슬라이드S1~S10 : Slide
C1 : 도말 윤곽C1: smear contour
D : 도말 방향D: smear direction
A1 : 최적 검사 영역A1: Optimal inspection area
10 : 제1 영역10: first area
12 : 제2 영역12: second area
14 : 제3 영역14: third area
16 : 제4 영역16: fourth area
20 : 평탄맵20: flat map

Claims (6)

  1. 저배율 카메라가 슬라이드를 도말 방향에 수직인 방향으로 제1 영역을 줄 스캔하는 제1 스캔단계(S10);a first scanning step (S10) in which the low magnification camera scans the slide in a first line in a direction perpendicular to the smear direction;
    상기 저배율 카메라가 상기 줄 스캔된 제1 영역과 평행하고 상기 제1 영역으로부터 제1 이격 거리만큼 이격된 제2 영역을 줄 스캔하는 제2 스캔단계(S20);a second scanning step (S20) in which the low magnification camera line-scans a second area parallel to the line-scanned first area and spaced apart from the first area by a first separation distance;
    상기 제1 영역과 상기 제2 영역의 상관 관계에 기초하여 제2 이격 거리를 산출하는 이격 거리 산출단계(S30);a separation distance calculating step of calculating a second separation distance based on the correlation between the first area and the second area (S30);
    상기 제2 영역과 평행하고 상기 제2 영역으로부터 상기 산출된 제2 이격 거리만큼 이격된 제3 영역을 줄 스캔하는 제3 스캔단계(S40); 및a third scanning step (S40) of line-scanning a third area parallel to the second area and spaced apart from the second area by the calculated second separation distance (S40); and
    상기 제1 영역, 상기 제2 영역 및 상기 제3 영역에 기반하여 상기 슬라이드 상의 최적 검사 영역을 검출하는 검사 영역 검출단계(S50)를 포함하는and an inspection region detection step (S50) of detecting an optimal inspection region on the slide based on the first region, the second region, and the third region.
    도말된 슬라이드의 최적 검사 영역 검출 방법.A method for detecting the optimal inspection area of a smeared slide.
  2. 제1 항에 있어서,The method of claim 1,
    상기 검사 영역 검출단계(S50)에서,In the detection area detection step (S50),
    상기 검출된 최적 검사 영역은, 상기 슬라이드 상에 도말된 생체물질에 대한 촬상 타겟 영역인 것을 특징으로 하는The detected optimal inspection area is an imaging target area for the biomaterial smeared on the slide.
    도말된 슬라이드의 최적 검사 영역 검출 방법.A method for detecting the optimal inspection area of a smeared slide.
  3. 제1 항에 있어서,The method of claim 1,
    상기 제1 스캔단계(S10) 이전에,Before the first scanning step (S10),
    상기 슬라이드의 저배율 이미지에 대한 평탄맵을 생성하는 평탄맵 생성단계(S5)를 더 포함하는A flat map generation step (S5) of generating a flat map for the low magnification image of the slide
    도말된 슬라이드의 최적 검사 영역 검출 방법.A method for detecting the optimal inspection area of a smeared slide.
  4. 제1 항에 있어서,The method of claim 1,
    상기 이격 거리 산출단계(S30)는,The separation distance calculation step (S30) is,
    상기 제1 이격 거리에 따른 상기 제1 영역과 상기 제2 영역 사이의 특징 값 변화에 대응하는 가중치에 기반하여 상기 제2 이격 거리를 산출하는 단계인 것을 특징으로 하는calculating the second separation distance based on a weight corresponding to a change in a feature value between the first region and the second region according to the first separation distance
    도말된 슬라이드의 최적 검사 영역 검출 방법.A method for detecting the optimal inspection area of a smeared slide.
  5. 제4 항에 있어서,5. The method of claim 4,
    상기 특징 값 변화는 밝기, 질감 및 색상 중 적어도 어느 하나의 수치 변화인 것을 특징으로 하는 The characteristic value change is a numerical change of at least one of brightness, texture, and color.
    도말된 슬라이드의 최적 검사 영역 검출 방법.A method for detecting the optimal inspection area of a smeared slide.
  6. 제1 항에 있어서,The method of claim 1,
    상기 검사 영역 검출단계(S50)는,The inspection area detection step (S50),
    상기 제1 영역, 상기 제2 영역 및 상기 제3 영역에 기반하여 도말 윤곽을 검출하는 윤곽 검출단계(S52); 및a contour detecting step (S52) of detecting a smear contour based on the first region, the second region, and the third region; and
    상기 도말 윤곽의 내측에서 상기 최적 검사 영역을 결정하는 검사 영역 결정단계(S54)를 포함하는 것인Which includes an examination area determining step (S54) of determining the optimal examination area inside the smear contour
    도말된 슬라이드의 최적 검사 영역 검출 방법.A method for detecting the optimal inspection area of a smeared slide.
PCT/KR2022/004829 2021-04-07 2022-04-05 Method of detecting optimal area to examine on smear slide WO2022215989A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0045069 2021-04-07
KR1020210045069A KR102425195B1 (en) 2021-04-07 2021-04-07 Detection method of optimal inspection area for smear slide

Publications (1)

Publication Number Publication Date
WO2022215989A1 true WO2022215989A1 (en) 2022-10-13

Family

ID=82701501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/004829 WO2022215989A1 (en) 2021-04-07 2022-04-05 Method of detecting optimal area to examine on smear slide

Country Status (2)

Country Link
KR (1) KR102425195B1 (en)
WO (1) WO2022215989A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101741764B1 (en) * 2015-09-14 2017-05-31 (주)뉴옵틱스 Image precessing method of blood
US20180156713A1 (en) * 2016-12-06 2018-06-07 Abbott Laboratories Automated Slide Assessments and Tracking in Digital Microscopy
KR20200030959A (en) * 2018-09-13 2020-03-23 (주)뉴옵틱스 High speed image capture apparatus and method
KR102105489B1 (en) * 2018-12-31 2020-04-28 (주)유아이엠디 Microscopy based slide scanning system for bone marrow interpretation
KR20200053718A (en) * 2018-11-08 2020-05-19 노을 주식회사 Blood diagnostic apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019012467A1 (en) * 2017-07-13 2019-01-17 Spectral Insights Pvt. Ltd. A system and method for detecting a monolayer region in a blood smear slide
KR102080920B1 (en) * 2018-04-23 2020-04-23 연세대학교 산학협력단 Quantitative analysis method of hemoglobin level using color image of blood droplet
KR102140385B1 (en) * 2018-12-31 2020-07-31 (주)유아이엠디 Cell-zone labeling apparatus and cell-zone detecting system including the same apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101741764B1 (en) * 2015-09-14 2017-05-31 (주)뉴옵틱스 Image precessing method of blood
US20180156713A1 (en) * 2016-12-06 2018-06-07 Abbott Laboratories Automated Slide Assessments and Tracking in Digital Microscopy
KR20200030959A (en) * 2018-09-13 2020-03-23 (주)뉴옵틱스 High speed image capture apparatus and method
KR20200053718A (en) * 2018-11-08 2020-05-19 노을 주식회사 Blood diagnostic apparatus
KR102105489B1 (en) * 2018-12-31 2020-04-28 (주)유아이엠디 Microscopy based slide scanning system for bone marrow interpretation

Also Published As

Publication number Publication date
KR102425195B1 (en) 2022-07-27

Similar Documents

Publication Publication Date Title
JP4071186B2 (en) Method and system for identifying an object of interest in a biological specimen
EP1428016B1 (en) Method of quantitative video-microscopy and associated system and computer software program product
CA2825040C (en) Microscope slide coordinate system registration
EP1300713A3 (en) Method and apparatus for automated image analysis of biological specimens
MX2007013581A (en) Automated image analysis.
WO2020141812A1 (en) Region of interest labeling device for bone marrow interpretation, and region of interest detection system comprising same
WO2020141811A1 (en) Slide scanning system for microscope for bone marrow reading
JP2013050713A (en) Method for determining in-focus position and vision inspection system
JP2017125840A (en) Coloration reaction detection system, coloration reaction detection method and program
PT1334461E (en) Method and system for analyzing cells
WO2022215989A1 (en) Method of detecting optimal area to examine on smear slide
JPWO2019065105A1 (en) Image analyzers, methods and programs
CN108830858A (en) It is a kind of based on infrared and optical image double-mode imaging information living body method for counting colonies
US7551762B2 (en) Method and system for automatic vision inspection and classification of microarray slides
JP4938428B2 (en) Specimen image creation method and apparatus
JP2002156212A (en) Apparatus and method for scale display
WO2014061868A1 (en) Apparatus and method for calculating dynamic variation of object
CN116883323A (en) Multiple immunofluorescence image analysis system based on computer vision
EP3816698B1 (en) Digital pathology scanner for large-area microscopic imaging
WO2022124832A1 (en) Method for determining cell zone of sample image of slide smeared with bone marrow, and method for imaging cell zone at high magnification
WO2020246786A1 (en) Detection method and detection pad
WO2017026566A1 (en) Three-dimensional scanning device and scanned three-dimensional image generating method for pipe
WO2022173176A1 (en) Method for obtaining high power image of slide sample
JP3627249B2 (en) Image processing device
CN111929035A (en) Heart rate module LED brightness detection method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784898

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22784898

Country of ref document: EP

Kind code of ref document: A1