WO2022215820A1 - 금형용 주물, 금형, 금형용 주물의 제조방법 및 금형의 제조방법 - Google Patents

금형용 주물, 금형, 금형용 주물의 제조방법 및 금형의 제조방법 Download PDF

Info

Publication number
WO2022215820A1
WO2022215820A1 PCT/KR2021/015724 KR2021015724W WO2022215820A1 WO 2022215820 A1 WO2022215820 A1 WO 2022215820A1 KR 2021015724 W KR2021015724 W KR 2021015724W WO 2022215820 A1 WO2022215820 A1 WO 2022215820A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
cooling channel
casting
forming
channel
Prior art date
Application number
PCT/KR2021/015724
Other languages
English (en)
French (fr)
Inventor
박성수
박경수
김용래
강래철
김준헌
Original Assignee
(주)영신특수강
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)영신특수강 filed Critical (주)영신특수강
Publication of WO2022215820A1 publication Critical patent/WO2022215820A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/22Moulds for peculiarly-shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C11/00Moulding machines characterised by the relative arrangement of the parts of same
    • B22C11/10Moulding machines characterised by the relative arrangement of the parts of same with one or more flasks forming part of the machine, from which only the sand moulds made by compacting are removed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C13/00Moulding machines for making moulds or cores of particular shapes
    • B22C13/10Moulding machines for making moulds or cores of particular shapes for pipes or elongated hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C13/00Moulding machines for making moulds or cores of particular shapes
    • B22C13/12Moulding machines for making moulds or cores of particular shapes for cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/06Permanent moulds for shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • B22C9/108Installation of cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/22Moulds for peculiarly-shaped castings
    • B22C9/24Moulds for peculiarly-shaped castings for hollow articles
    • B22C9/26Moulds for peculiarly-shaped castings for hollow articles for ribbed tubes; for radiators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/22Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
    • B22D17/2218Cooling or heating equipment for dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/22Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
    • B22D17/24Accessories for locating and holding cores or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould

Definitions

  • the present invention relates to a casting for a mold having a shape-adaptive cooling channel therein, a mold manufactured using the same, a casting for the mold, and a method for manufacturing the mold.
  • a conventional mold is processed into a mold using a square material (for example, a cube, a cuboid or a similar shape) made of forged steel, and in processing a cooling channel for cooling the mold, processing using a gun drill is used do.
  • a square material for example, a cube, a cuboid or a similar shape
  • the mold in which the cooling channel is processed through the gun drilling process has a limitation in the shape of the cooling channel, so the effect of cooling the molded body in the mold is often reduced.
  • the cooling channel made by machining such as a gun drill is formed only in a straight line, it cannot be processed into a so-called 'conformal cooling channel' in which the cooling channel is formed according to the shape of the cavity.
  • the conventional plate material is divided and machined, and then the curved shape adaptive cooling channel is processed through a method of joining them, the brazing method, or the shape adaptive cooling through lamination.
  • a method such as a metal 3D printing method for directly making a mold having a channel inside has been proposed.
  • the brazing method causes a lot of defects in the bonding area, and the metal 3D printing method has a problem in that the material for 3D printing having the properties required for the mold is not developed or is too expensive, so the application field is extremely limited.
  • the present inventors make a core for the cooling channel using 3D printing, install the core for the cooling channel inside the mold, and then pour the cooling channel-integrated mold through a method of casting for a mold that can be manufactured at low cost manufacturing technology was developed.
  • the casting for the mold is a near net shape product, and must be processed to the precise dimensions required for the mold through roughing and finishing processes and machining to finally be completed as a mold.
  • the cooling channel is not precisely formed at the originally designed position, and a number of auxiliary channels are formed due to the support formed to support the cooling channel, which has a complicated internal structure. .
  • Such complicated and inaccurate cooling channels and auxiliary channels are embedded in the inside of the mold casting, making it difficult to recognize their positions from the outside. There is a problem.
  • the object of the present invention is a casting for a mold having a shape-adaptive cooling channel that can solve the problems of the prior art, a mold manufactured through the casting for this mold, a method for manufacturing the casting for the mold, and a mold using the casting for the mold To provide a manufacturing method of
  • a first aspect of the present invention for solving the above problems includes a body, a cooling channel formed inside the body, and one or more auxiliary channels communicating with the cooling channel and connected to at least one surface of the body, To provide a casting for a mold in which at least a portion of the cooling channel or the auxiliary channel is formed with a structure for a processing reference that can be used as a processing reference when machining the body.
  • the processing reference structure is formed to have a shape or size different from the shape or size of the cross-section of the cooling channel or the auxiliary channel at the end of the cooling channel or the auxiliary channel exposed to the surface of the body may be in the shape of
  • the processing reference structure formed at the end exposed to the surface of the body may be usefully used for horizontal processing of the body.
  • the structure for the processing reference may be a flat shape of a predetermined area formed in at least a portion of the cooling channel or the auxiliary channel in the interior of the body accessible from the surface of the body.
  • the flat-shaped processing reference structure formed inside the body makes it possible to easily measure the position and depth of the cooling channel embedded in the body.
  • the auxiliary channel includes a column extending from one surface of the body and a connecting portion connected in a curved shape to communicate with the cooling channel from the column, the flat-shaped processing machine
  • the mutatis mutandis structure may be formed in the pillar part.
  • the structure for the processing reference of the flat shape may be formed where the cooling channel and the auxiliary channel are connected.
  • the flat shape formed at the column of the auxiliary channel or at the point where the cooling channel and the auxiliary channel are connected makes it possible to easily measure the position and depth of the cooling channel embedded in the body.
  • the processing reference structure formed at the end of the cooling channel or the auxiliary channel exposed on the surface of the body may be used as an external reference point for leveling the body during machining.
  • the processing reference structure formed inside the body accessible from the surface of the body may be used as an internal reference point for measuring the position or depth of the cooling channel during machining of the body.
  • At least a portion of the cooling channel may have a spiral irregularity formed on its inner surface.
  • the cross section of the cooling channel in which the spiral irregularities are formed may have a shape in which a convex portion and a concave portion intersect each other.
  • the spiral irregularities formed on the inner surface of the cooling channel increase the surface area of the cooling channel to realize excellent cooling efficiency even with a small diameter.
  • the spiral irregularities allow the injected cooling water to form a vortex, thereby suppressing the formation of lime in a portion of the cooling channel where the flow of the cooling water is stagnant, thereby preventing clogging of the cooling channel.
  • the cooling channel communicating with the auxiliary channel may be of a shape-adaptive type.
  • the cooling channel formed inside the casting for a mold according to the present invention is formed in a shape-adaptive type along the molding surface formed in the mold, so that the molding time by the mold can be significantly shortened.
  • a second aspect of the present invention for solving the above problems is to provide a mold in which a molding surface for molding an object on at least one side of the above-described casting for a mold is formed by machining.
  • one end of the auxiliary channel may be formed on a surface other than the molding surface, and the hole formed by the one end may be sealed through a sealing member.
  • the mold may be suitably used for plastic injection, but is not limited thereto, and may be used in a mold for various purposes.
  • a third aspect of the present invention for solving the above problems includes the steps of manufacturing a core for forming a cooling channel by 3D printing, installing the core for forming the cooling channel in a mold, and injecting molten metal into the mold, solidifying; and removing the mold and the core for forming the cooling channel from the solidified casting, wherein the core for forming the cooling channel includes a base, one or more supports fixed on the base, and the support. and a structure for forming the cooling channel supported by Or to provide a method for manufacturing a casting for a mold in which a portion having a size is formed.
  • an end of the structure for forming a cooling channel or an end of the support fixed to the base is different from the cross-sectional shape or size of the structure for forming the cooling channel or the support
  • a portion having a cross-sectional shape or size is formed, and a portion having a shape or size different from the cross-sectional shape or size of the cooling channel or support is transferred to the inside of the casting for a mold, and machining following the transferred shape
  • a fourth aspect of the present invention for solving the above problems includes the steps of manufacturing a core for forming a cooling channel by 3D printing, installing the core for forming the cooling channel in a mold, and injecting molten metal into the mold, solidifying; and removing the mold and the core for forming the cooling channel from the solidified casting, wherein the core for forming the cooling channel includes a base, one or more supports fixed on the base, and the support.
  • the core for forming the cooling channel includes a base, one or more supports fixed on the base, and the support.
  • the end of the structure for forming a cooling channel or an end of the support fixed to the base is different from the cross-sectional shape or size of the structure for forming the cooling channel or the support
  • the base of the core for forming the cooling channel may be coupled to or form an upper portion of the mold.
  • the gas generated in a large amount from the base during the casting process can be discharged directly to the outside through the base without passing through the molten metal. It is possible to greatly reduce casting defects due to gas generated by the decomposition of the binder contained in the .
  • the base may further include a discharge hole capable of discharging the gas in the mold.
  • the mold may include an upper mold and a lower mold separated from each other, and the base of the core for forming the cooling channel may be integrally formed with the upper mold of the mold.
  • a helical unevenness may be formed on a surface of a portion of the structure for forming the cooling channel.
  • the helical unevenness may have a cross-section in which a convex portion and a concave portion are intersected and connected.
  • This shape can more easily form a vortex of the cooling water supplied to the cooling channel, thereby preventing the formation of lime by the cooling water.
  • a fifth aspect of the present invention for solving the above problems is a manufacturing method of a mold for forming a molding surface for molding an object by machining the casting for a mold according to the first aspect, at least a part of the cooling channel or auxiliary channel It is to provide a manufacturing method of a mold that sets processing standards using the structure for processing standards formed in .
  • a mold having a shape-adaptive cooling channel formed therein can be manufactured at low cost.
  • processing standards that can improve the convenience of finishing machining and reduce machining defects are formed therein. Accordingly, it is possible to increase the precision of the finishing machining and prevent damage that may occur during the machining process without damaging the cooling channel and the auxiliary channel that are formed by the casting method and are not identified from the outside.
  • the mold according to the present invention can improve the cooling efficiency by several tens of% or more compared to the conventional mold by having a shape-adaptive cooling channel.
  • the mold according to the present invention has a plurality of auxiliary channels extending from the cooling channel toward at least one surface of the body, and since the cooling water is also filled in the auxiliary channels, the heat distribution of the entire mold becomes uniform, reducing molding defects as well as the mold It may also have the effect of extending the lifespan.
  • the mold according to an embodiment of the present invention has a spiral unevenness formed on the inner surface of the cooling channel to form a larger surface area compared to the cooling passage formed through conventional drilling, so that excellent cooling efficiency can be realized even with a small diameter. have.
  • a vortex of the cooling water injected by the helical uneven surface it is possible to suppress the formation of lime contained in the cooling water, thereby reducing clogging of the cooling channel.
  • the manufacturing method of the casting for a mold according to the present invention it is possible to implement a shape-adaptive cooling channel or a cooling channel having a spiral concave-convex surface, which is difficult to implement by a conventional machining method, at a low cost.
  • the manufacturing method of the mold according to the present invention is obtained by machining the mold casting manufactured through the casting method for the shape-adaptive cooling channel, so there are fewer defects compared to the conventional brazing method, and the mold is manufactured at a lower cost than the metal 3D printing method.
  • the types of alloys that can be used are diverse compared to the metal 3D printing method, it is easy to respond to various physical properties required according to the type of mold.
  • FIG. 1 is a manufacturing process diagram of a mold according to a first embodiment of the present invention.
  • Fig. 2 schematically shows the manufacturing process of the mold and the casting process in the manufacturing process of the mold according to the first embodiment of the present invention.
  • FIG 3 is a perspective view of a core coupled to an upper mold constituting a mold in the manufacturing process of the mold according to the first embodiment of the present invention.
  • FIG. 4 is a partially enlarged view of the center of FIG. 3 .
  • FIG. 5 is a cross-sectional view of a casting for a mold manufactured according to the first embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a mold manufactured according to the first embodiment of the present invention.
  • FIG. 7 is a perspective view of a core for forming a cooling channel according to a second embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of a mold manufactured according to a second embodiment of the present invention.
  • FIG. 1 is a manufacturing process diagram of a mold according to a first embodiment of the present invention.
  • the manufacturing process of a mold according to the first embodiment of the present invention includes manufacturing a core for forming a cooling channel with a 3D printer, manufacturing a mold, and installing the manufactured core in the mold It comprises the steps of: pouring molten metal into the mold to solidify; separating the solidified casting to obtain a casting for a mold; and machining the casting for a mold to form a molding surface of the mold.
  • the steps of manufacturing the core for forming the cooling channel with the 3D printer and the step of manufacturing the mold are performed in parallel, or after the production of the core is first made, then the mold is manufactured, or conversely, after the mold is first manufactured, the core is made This can be done in the order in which they are manufactured.
  • Fig. 2 schematically shows the manufacturing and casting process of the mold in the manufacturing process of the mold according to the first embodiment of the present invention.
  • an upper die 110 and a lower die 120 having a predetermined shape are generally used in the sand casting method and manufactured using a mold manufacturing method.
  • the process according to the present invention can be performed, so that three or more separate shapes are manufactured. It might be When the upper and lower molds are manufactured in several separate shapes, the mold disposed on the upper side of the core is called the upper mold, and the mold disposed on the lower side of the core is called the lower mold.
  • a core for forming a conformal cooling channel is molded using a 3D printer. Molding the core 130 for the cooling channel with a 3D printer is because it is difficult to manufacture a complex three-dimensional shape by a general molding method.
  • the core 130 for the cooling channel may be manufactured through various 3D printing methods. For example, it can be manufactured by 3D printing using silica (SiO 2 ) sand having an average particle size of about 140 ⁇ m and furan resin as a binder.
  • Various methods may be used for the 3D printing method used for manufacturing the core 130 for the cooling channel.
  • a binder such as furan resin is sprayed on a bed made of silica sand according to the 2D spray data determined. It is possible to implement a three-dimensional shape in a stacking method.
  • a method of sintering the resin-coated sand with a laser without spraying a binder may be used, or a three-dimensional shape may be implemented using an inorganic binder instead of an organic binder.
  • FIG 3 is a perspective view of a core coupled to an upper mold constituting a mold.
  • the core 130 for the cooling channel includes a structure 131 for forming a cooling channel, a support 132 for supporting the structure 131 for forming a cooling channel, and the support 132 . and a base 133 for forming and fixing the core 130 to the mold 100 .
  • a portion of the support 132 includes a pillar portion 132a extending in the longitudinal direction, and a connection portion connected in a curved shape toward the cooling channel in the vicinity of an end of the pillar portion 132a. It can be formed into an arcuate shape including 132b.
  • the term 'arch shape' includes a shape having an arc-shaped part, and the pillar part may be formed of one, two, or three or more.
  • the connection portion 132b connected to the structure 131 for forming a cooling channel is formed as one, but it is of course also possible to selectively form two or more.
  • the cross-sectional shape of the pillar portion 132a and the connecting portion 132b may be formed in various shapes such as a circle, an ellipse, a triangle, a polygon such as a square, and a pentagon.
  • the arch-shaped support 132 makes it possible to properly support the cooling channel forming structure 131 even though it has a complex cooling channel shape, and at the same time, the cooling channel forming structure 131 and the support 132 . It is possible to properly maintain the spacing between the supports or the spacing of the supports 132 . Accordingly, the durability of the manufactured mold can be maintained, and the thermal deviation within the mold can be made more uniform, so that the molding efficiency of the mold can be further increased.
  • a flat flat portion 132c may be formed at the inner end of the pillar portion 132a, and this flat portion 132c forms a horizontal portion inside the casting for a mold. , can be used as a reference point for measuring the machining position and depth during machining of a cast mold, and can be used as a reference structure for precise subsequent machining.
  • a button-shaped end portion 132d having a much larger diameter than that of the pillar portion 132a is formed at the outer end of the pillar portion 132a.
  • This button-shaped end forms a diameter different from that of the column on the surface of the casting for a mold, so that when processing on the surface, it can be used as a reference for aligning the processing depth and horizontality. can be used as
  • the mold By inserting the base 133 of the cooling channel core 120 manufactured as described above into the insertion part 111 formed in the upper mold 110 , it is coupled to the upper mold 110 .
  • the mold was manufactured in the shape of inserting the cooling channel core 130 into the upper mold 110, but the upper mold 110 or the lower mold 120 and the cooling channel core 130 were used.
  • the mold 100 After being integrally molded, the mold 100 may be manufactured by assembling it to an opposing mold (upper mold or lower mold).
  • the base 133 of the core 130 for forming a cooling channel by coupling the base 133 of the core 130 for forming a cooling channel to the upper die 110, the gas generated in a large amount from the base during the casting process passes through the molten metal. Since it can be discharged directly to the outside through the expectation, it is possible to greatly reduce casting defects caused by the gas generated by the decomposition of the binder included in the core 130 .
  • the base 133 may have a discharge hole for discharging the air and the generated gas in the mold.
  • the molten alloy is poured.
  • various alloys that can be used in the mold may be used, but preferably, when heat treatment is performed in the cast state or after casting, the physical properties required for the mold (eg, strength, elongation, impact resistance, corrosion resistance, etc.) ), select and use an alloy that can be implemented.
  • a shape-adaptive cooling channel 11 and an auxiliary channel 12 communicating with the mold casting 10 and having one end connected to one surface of the mold casting 10 are formed in the inside of the casting 10 as shown in FIG. .
  • the 'auxiliary channel' means a channel formed in the support 132 .
  • the auxiliary channel 12 is formed with a pillar portion 12a and a connecting portion 12b extending from the pillar portion 12a.
  • a flat area 12aa is formed in the pillar portion 12a so that the position of the inner end of the pillar portion can be measured from the surface of the body.
  • a button-shaped end portion 12ab having a much larger diameter than the diameter of the pillar portion 12a is formed at the outer end of the pillar portion 12a (a portion exposed to the surface of the body to form a hole).
  • a plurality of holes formed by the cooling channel 11 and the auxiliary channel 120 are formed on the surface of the casting 10 for the mold.
  • the end of the hole has a button-shaped end (12ab) having a larger diameter than the diameter of the cooling channel (11) and the auxiliary channel (12) is formed to a predetermined depth (several millimeters to several hundred mm), so that there is a step difference in diameter
  • This point can be used as a reference point for surface processing. For example, surface machining (roughing or finishing) can be performed to the point where there is a difference in diameter.
  • the button-shaped end portion 12ab may be utilized as an external reference point for machining.
  • the button-shaped end portion 12ab having a different diameter is formed, but the cross-sectional shape is formed differently such as a triangle, a square, an oval, etc., so that the operator can easily recognize the processing depth. have.
  • a flat area 12aa is formed inside the hole, so that the distance from the surface of the casting for a mold to the flat area 12aa can be accurately measured.
  • the flat area 12aa may be utilized as an internal reference point for machining.
  • the external reference point and the internal reference point as described above for example, check the position and horizontality based on the external reference point and perform cutting. It can be used as a verification method. Of course, machining can also be performed using the external and internal reference points at the same time. With this processing reference structure, it is possible to perform precise post-processing in a short time without damaging the cooling channel embedded inside.
  • FIG. 6 is a cross-sectional view of a mold manufactured according to the first embodiment of the present invention.
  • the mold manufactured according to the first embodiment of the present invention is formed with a molding surface (surface on which molding is made in the mold) 13 formed through the above machining on one surface.
  • a shape-adaptive cooling channel 11 is formed inside the mold, and a plurality of auxiliary channels 12 having one end communicating with the cooling channel 11 are formed.
  • the auxiliary channel 12 is exposed as a surface other than the molding surface 13 in the body, and the exposed hole of the auxiliary channel 12 is sealed with a blocking member 14 , and the coolant injected into the cooling channel 11 is exposed. is not leaked through the auxiliary channel (12).
  • FIG. 7 is a perspective view of a core for forming a cooling channel according to a second embodiment of the present invention.
  • a spiral concave-convex portion 131a is formed in a part of the structure 131 for forming a cooling channel.
  • the spiral concave and convex portion 131a is formed of a screw thread portion 131aa and a screw concave portion 131ab, and a cross-section of the screw thread portion 131aa and the screw concave portion 131ab intersects and connects.
  • the spiral concave-convex portion 131a is preferably formed in a portion that requires strong cooling or where the diameter of the cooling channel cannot be increased compared to other portions.
  • the surface shape of the core is transferred through the casting process, and as shown in FIG. 8 , when the cross section of the convex part and the concave part intersects inside the mold 10 manufactured after casting, the cooling channel 12 is formed into a spiral. to form
  • the cooling channel with the spiral concavo-convex portion has an increased cooling area compared to the conventional cooling channel having a smooth surface (a cooling channel formed during machining), so that even with the same diameter, a better cooling effect is obtained.
  • the spirally formed cooling channel can increase the speed of the cooling water and prevent the cooling channel from clogging due to lime growing in a portion where the fluid is stagnated in the cooling channel by forming a vortex.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

본 발명은 내부에 형상적응형 냉각채널을 구비하는 금형과, 이러한 금형의 제조방법에 관한 것이다. 본 발명에 따른 금형은, 몸체와, 상기 몸체의 내부에 형성되는 냉각채널과, 상기 냉각채널과 연통하면서 상기 몸체의 적어도 일면과 연결되는 1 이상의 보조채널을 포함하고, 상기 보조채널 중 적어도 하나는 아치형으로 형성되어 있는 것을 특징으로 한다.

Description

금형용 주물, 금형, 금형용 주물의 제조방법 및 금형의 제조방법
본 발명은 내부에 형상적응형 냉각채널을 구비하는 금형용 주물과, 이를 이용하여 제조된 금형, 상기 금형용 주물 및 금형의 제조방법에 관한 것이다.
종래의 금형은 단조강으로 이루어진 각재(예를 들어, 정육면체, 직육면체 또는 이와 유사한 형상)를 사용하여 금형으로 가공하며, 금형을 냉각시키기 위한 냉각채널을 가공함에 있어서, 통상 건드릴 등을 이용한 가공을 사용한다.
그런데 이와 같이 건드릴 가공을 통해 냉각채널을 가공한 금형은 냉각채널의 형상에 제약을 가지고 있어, 금형 내의 성형체를 냉각시키는 효과가 떨어지는 경우가 많다.
특히, 플라스틱 사출성형에서 냉각공정은 전체 사출공정 시간의 약 60%를 점하고 있기 때문에, 사출공정의 생산성에 가장 큰 영향을 미치는 공정변수이다. 이러한 플라스틱 사출성형 시 냉각공정을 단축시키기 위해서는 냉각이 가장 늦게 일어나는 부분의 냉각속도를 높이는 것이 중요하다.
그런데, 건드릴과 같은 기계가공으로 만들어지는 냉각채널은 직선형으로만 형성되기 때문에, 캐비티의 형상에 맞추어 냉각채널이 형성되는 소위 '형상적응형 냉각채널(conformal cooling channel)'로 가공할 수 없다.
한편, 형상적응형 냉각채널을 가공하기 위하여, 종래 판재를 분할하여 기계 가공을 한 후에 이들을 접합하는 방법을 통해 곡선형의 형상적응형 냉각채널을 가공하는 브레이징법이나, 적층을 통해 형상적응형 냉각채널이 내부에 구비된 금형을 직접 만드는 금속 3D 프린팅법과 같은 방법의 사용이 제안되었다.
그런데 상기 브레이징법은 접합부위에서 불량이 많이 발생하고, 금속 3D 프린팅법은 금형에 요구되는 물성을 갖는 3D 프린팅용 재료가 개발되어 있지 않거나 지나치게 고가이어서 적용 분야가 극히 제한적인 문제점이 있다.
이에, 본 발명자들은 3D 프린팅법을 사용하여 냉각채널용 중자를 만들고, 이 냉각채널용 중자를 주형의 내부에 설치한 후, 주탕하는 방법을 통해 냉각채널 일체형 금형을 저비용으로 제조할 수 있는 금형용 주물의 제조기술을 개발하였다.
상기 금형용 주물은 반가공(near net shape) 제품으로 황삭 및 정삭 공정과 기계 가공을 거쳐 금형에 요구되는 정밀한 치수로 가공되어야 최종적으로 금형으로 완성된다.
그런데 주조 과정에 발생하는 중자의 변형, 응고거동 등으로 인해 냉각채널이 최초 설계된 위치에 정확하게 형성되지 않고, 냉각채널을 지지하기 위해 형성한 서포트로 인해 다수의 보조채널이 형성되어 복잡한 내부 구조를 가진다. 이와 같이 복잡하면서도 그 위치가 정확하지 않은 냉각채널과 보조채널은 금형용 주물의 내부에 매립되어 형성되어 외부에서 그 위치를 인지하기 어렵기 때문에, 가공기준을 설정하기 어려워 공정 시간이 길어지거나 불량률이 높아지는 문제점이 있다.
본 발명의 과제는, 전술한 종래기술의 문제점을 해소할 수 있는 형상적응형 냉각채널을 구비하는 금형용 주물, 이 금형용 주물을 통해 제조된 금형, 상기 금형용 주물의 제조방법 및 상기 금형용 주물을 이용한 금형의 제조방법을 제공하는데 있다.
상기 과제를 해결하기 위한 본 발명의 제 1 측면은, 몸체와, 상기 몸체의 내부에 형성되는 냉각채널과, 상기 냉각채널과 연통하면서 상기 몸체의 적어도 일면과 연결되는 1 이상의 보조채널을 포함하고, 상기 냉각채널 또는 보조채널의 적어도 일부에는 상기 몸체의 기계가공 시 가공기준으로 사용할 수 있는 가공기준용 구조가 형성되어 있는 금형용 주물을 제공하는 것이다.
본 발명에 따른 금형용 주물을 금형으로 기계 가공할 때, 상기 냉각채널 또는 보조채널에 형성된 가공기준용 구조를 활용하면, 기계 가공 시간을 단축할 수 있을 뿐 아니라, 정밀도를 높일 수 있어 기계 가공 불량률을 현저하게 줄일 수 있다.
제 1 측면에 있어서, 상기 가공기준용 구조는 상기 냉각채널 또는 보조채널 중 상기 몸체의 표면에 노출되는 단부에, 상기 냉각채널 또는 보조채널의 단면의 형상 또는 크기와 상이한 형상 또는 크기를 가지도록 형성되는 형상일 수 있다.
상기 몸체의 표면에 노출되는 단부에 형성되는 가공기준 구조는 몸체의 수평 가공을 하는데 유용하게 사용될 수 있다.
제 1 측면에 있어서, 상기 가공기준용 구조는 상기 몸체의 표면으로부터 접근 가능한 몸체의 내부에, 상기 상기 냉각채널 또는 보조채널 중 적어도 일부에 형성된 소정 넓이의 편평한 형상일 수 있다.
상기 몸체의 내부에 형성된 편평한 형상의 가공기준 구조는 몸체에 매립된 냉각채널의 위치와 깊이를 쉽게 측정할 수 있게 한다.
제 1 측면에 있어서, 상기 보조채널은 상기 보조채널은 상기 몸체의 일면으로부터 연장하는 기둥부와, 상기 기둥부로부터 상기 냉각채널과 연통되도록 곡선형으로 연결되는 연결부를 포함하고, 상기 편평한 형상의 가공기준용 구조는 상기 기둥부에 형성될 수 있다.
제 1 측면에 있어서, 상기 편평한 형상의 가공기준용 구조는 상기 냉각채널과 보조채널이 연결된 곳에 형성될 수 있다.
상기 보조채널의 기둥부 또는 냉각채널과 보조채널이 연결된 곳에 형성된 편평한 형상은 몸체에 매립된 냉각채널의 위치와 깊이를 쉽게 측정할 수 있게 한다.
제 1 측면에 있어서, 상기 냉각채널 또는 보조채널 중 상기 몸체의 표면에 노출되는 단부에 형성되는 가공기준용 구조는 상기 몸체의 기계 가공 시 수평을 맞추기 위한 외부 기준점으로 사용될 수 있다.
제 1 측면에 있어서, 상기 몸체의 표면으로부터 접근 가능한 몸체의 내부에 형성되는 가공기준용 구조는 상기 몸체의 기계 가공 시 상기 냉각채널의 위치 또는 깊이 측정을 위한 내부 기준점으로 사용될 수 있다.
상기 외부 기준점과 내부 기준점을 동시에 적용할 경우, 기계 가공을 보다 원활하게 정밀하게 수행할 수 있게 된다.
제 1 측면에 있어서, 상기 냉각채널의 적어도 일부분은 그 내면에 나선형의 요철이 형성되어 있을 수 있다.
제 1 측면에 있어서, 상기 나선형의 요철이 형성된 냉각채널의 단면은 볼록부와 오목부가 교차하여 연결된 형상일 수 있다.
상기 냉각채널의 내면에 형성된 나선형의 요철은 냉각채널의 표면적을 넓게 하여 작은 직경으로도 우수한 냉각효율을 구현할 수 있게 한다. 또한, 나선형의 요철은 주입된 냉각수가 와류를 형성하도록 함으로써, 냉각채널 중 냉각수의 흐름이 정체된 부분에서 석회가 형성되는 것을 억제할 수 있어, 냉각채널의 막힘을 방지하는 기능을 할 수 있다.
제 1 측면에 있어서, 상기 보조채널에 연통되는 냉각채널은 형상적응형으로 이루어져 있을 수 있다.
본 발명에 따른 금형용 주물의 내부에 형성된 냉각채널은 금형에 형성되는 성형면을 따라 형상적응형으로 형성되어, 금형에 의한 성형 시간을 현저하게 단축시킬 수 있다.
상기 과제를 해결하기 위한 본 발명의 제 2 측면은, 상기한 금형용 주물의 적어도 일측에 물체를 성형하기 위한 성형면이 기계 가공으로 형성된 금형을 제공하는 것이다.
제 2 측면에 있어서, 상기 보조채널의 일 단부는 상기 성형면이 아닌 면에 형성되고, 상기 일 단부에 의해 형성된 구멍은 밀봉부재를 통해 밀봉될 수 있다.
제 2 측면에 있어서, 상기 금형은 플라스틱 사출용으로 적합하게 사용될 수 있으나, 이에 제한되지 않고 다양한 용도의 금형에도 사용될 수 있다.
상기 과제를 해결하기 위한 본 발명의 제 3 측면은, 3D 프린팅으로 냉각채널 형성용 중자를 제조하는 단계와, 주형에 상기 냉각채널 형성용 중자를 설치하는 단계와, 상기 주형에 금속 용탕을 주입하고 응고시키는 단계와, 응고된 주물로부터 상기 주형과 냉각채널 형성용 중자를 제거하는 단계를 포함하고, 상기 냉각채널 형성용 중자는, 베이스와, 상기 베이스 상에 고정되는 1 이상의 서포트와, 상기 서포트에 의해 지지되는 상기 냉각채널 형성용 구조를 포함하고, 상기 냉각채널 형성용 구조의 단부 또는 상기 베이스에 고정되는 상기 서포트의 단부에는 상기 냉각채널 형성용 구조 또는 상기 서포트의 단면 형상 또는 크기와 상이한 단면 형상 또는 크기를 가지는 부분이 형성되어 있는, 금형용 주물의 제조방법을 제공하는 것이다.
상기 금형용 주물의 제조방법에서는 냉각채널용 중자를 제조할 때, 냉각채널 형성용 구조의 단부 또는 상기 베이스에 고정되는 상기 서포트의 단부에는 상기 냉각채널 형성용 구조 또는 상기 서포트의 단면 형상 또는 크기와 상이한 단면 형상 또는 크기를 가지는 부분이 형성되도록 하고, 이와 같이 냉각채널 또는 서포트의 단면 형상 또는 크기와 다른 형상 또는 크기를 갖는 부분이 금형용 주물의 내부에 전사되도록 하고, 전사된 이 형상을 후속하는 기계가공 시에 가공기준으로 활용함으로써, 금형용 주물의 기계 가공 편의성과 기계 가공 불량률을 줄일 수 있다.
상기 과제를 해결하기 위한 본 발명의 제 4 측면은, 3D 프린팅으로 냉각채널 형성용 중자를 제조하는 단계와, 주형에 상기 냉각채널 형성용 중자를 설치하는 단계와, 상기 주형에 금속 용탕을 주입하고 응고시키는 단계와, 응고된 주물로부터 상기 주형과 냉각채널 형성용 중자를 제거하는 단계를 포함하고, 상기 냉각채널 형성용 중자는, 베이스와, 상기 베이스 상에 고정되는 1 이상의 서포트와, 상기 서포트에 의해 지지되는 상기 냉각채널 형성용 구조를 포함하고, 상기 보조채널 또는 냉각채널 형성용 구조와 상기 서포트가 연결되는 부위에 소정 넓이로 편평한 영역이 형성되어 있는, 금형용 주물의 제조방법을 제공하는 것이다.
상기 금형용 주물의 제조방법에서는 냉각채널용 중자를 제조할 때, 냉각채널 형성용 구조의 단부 또는 상기 베이스에 고정되는 상기 서포트의 단부에 상기 냉각채널 형성용 구조 또는 상기 서포트의 단면 형상 또는 크기와 상이한 단면 형상 또는 크기를 가지는 부분을 형성하고, 이에 의해 전사된 편평한 형상을 후속하는 기계가공 시에 가공기준으로 활용함으로써, 금형용 주물의 기계 가공 편의성과 기계 가공 불량률을 줄일 수 있다.
제 3 측면 또는 제 4 측면에 있어서, 상기 냉각채널 형성용 중자의 베이스는 상기 주형의 상부에 결합되거나 상기 주형의 상부를 형성할 수 있다.
베이스를 주형의 상부에 결합하거나 베이스 자체가 주형의 상부가 되도록 형성할 경우, 주조 과정에서 베이스에서 다량으로 발생하는 가스가 용탕을 통과하지 않고 베이스를 통해 곧바로 외부로 배출될 수 있도록 되어 있어, 중자에 포함된 바인더의 분해에 의해 발생하는 가스에 의한 주조 불량을 크게 줄일 수 있다.
제 3 측면 또는 제 4 측면에 있어서, 상기 베이스에는 상기 주형 내의 가스를 배출할 수 있는 배출공을 더 포함할 수 있다.
상기 베이스 내에 가스 배출공을 형성할 경우, 주형 내부에서 발생하는 가스의 배출이 보다 원활해져 주조 불량을 더 줄일 수 있다.
제 3 측면 또는 제 4 측면에 있어서, 상기 주형은 서로 분리된 상형과 하형을 포함하고, 상기 냉각채널 형성용 중자의 베이스는 상기 주형의 상형과 일체로 형성될 수 있다.
제 3 측면 또는 제 4 측면에 있어서, 상기 냉각채널 형성용 구조 중 일부분의 표면에는 나선형의 요철이 형성되어 있을 수 있다.
이를 통해, 금형용 주물의 내부에 형성되는 나선형의 요철을 쉽게 형성할 수 있다.
제 3 측면 또는 제 4 측면에 있어서, 상기 나선형의 요철은 그 단면이 볼록부와 오목부가 교차하여 연결된 형상일 수 있다.
이러한 형상은 냉각채널에 공급되는 냉각수의 와류를 더 쉽게 형성하여 냉각수에 의한 석회 생성을 방지할 수 있다.
상기 과제를 해결하기 위한 본 발명의 제 5 측면은, 제 1 측면에 따른 금형용 주물을 기계 가공하여 물체를 성형하기 위한 성형면을 형성하는 금형의 제조방법으로, 상기 냉각채널 또는 보조채널의 적어도 일부에 형성되어 있는 가공기준용 구조를 사용하여 가공기준을 설정하는 금형의 제조방법을 제공하는 것이다.
이 방법에 의하면, 내부에 형상적응형 냉각채널이 형성된 금형을 저비용으로 제조할 수 있다.
본 발명에 따른 금형용 주물은 마무리 기계가공의 편의성을 높이고 가공불량을 줄일 수 있는 가공기준이 내부에 형성되어 있다. 이에 따라, 주조방법으로 형성되어 외부에서 식별되지 않는 냉각채널과 보조채널을 손상시키지 않으면서 마무리 기계가공의 정밀도를 높이고 기계가공 과정에 발생할 수 있는 손상을 막을 수 있다.
본 발명에 따른 금형은 형상적응형 냉각채널을 구비하여 종래의 금형에 비해 냉각효율을 수십 %이상 향상시킬 수 있다. 또한, 본 발명에 따른 금형은 냉각채널로부터 몸체의 적어도 일면을 향해 연장하는 다수의 보조채널을 구비하고 있고, 보조채널 내에도 냉각수가 채워지므로 금형 전체의 열 분포가 균일해져 성형 불량 저감은 물론 금형 수명을 연장시키는 효과를 얻을 수도 있다.
또한, 본 발명의 일 실시형태에 따른 금형은, 냉각채널의 내면에 나선형 요철이 형성되어 있어 기존의 드릴 가공을 통해 형성된 냉각유로에 비해 넓은 표면적을 형성하여 작은 직경으로도 우수한 냉각효율을 구현할 수 있다. 또한, 나선형 요철 표면에 의해 주입된 냉각수가 와류를 형성함으로써, 냉각수에 포함된 석회 생성을 억제할 수 있어, 냉각채널의 막힘을 줄일 수 있다.
본 발명에 따른 금형용 주물의 제조방법에 의하면, 종래의 기계가공법으로는 구현하기 어려웠던 형상적응형 냉각채널 또는 나선형의 요철 표면을 갖는 냉각채널을 저비용으로 구현할 수 있다.
본 발명에 따른 금형의 제조방법은 형상적응형 냉각채널을 주조 방법을 통해 제조한 금형용 주물을 기계가공하여 얻기 때문에, 종래의 브레이징법에 비해 불량이 적고, 금속 3D 프린팅법에 비해 저비용으로 금형을 만들 수 있는 이점이 있다. 또한, 금속 3D 프린팅법에 비해 사용할 수 있는 합금의 종류가 다양하므로, 금형의 종류에 따라 요구되는 다양한 물성에 대응하기가 용이하다.
도 1은 본 발명의 제 1 실시형태에 따른 금형의 제조 공정도이다.
도 2는 본 발명의 제 1 실시형태에 따른 금형의 제조 공정 중에서 주형의 제작과 주조 공정을 개략적으로 나타낸 것이다.
도 3은 본 발명의 제 1 실시형태에 따른 금형의 제조 공정에서 주형을 구성하는 상형에 결합된 중자의 사시도이다.
도 4는 도 3의 중자의 부분 확대도이다.
도 5는 본 발명의 제 1 실시형태에 따라 제조된 금형용 주물의 단면도이다.
도 6은 본 발명의 제 1 실시형태에 따라 제조된 금형의 단면도이다.
도 7은 본 발명의 제 2 실시형태에 따른 냉각채널을 형성하기 위한 중자의 사시도이다.
도 8은 본 발명의 제 2 실시형태에 따라 제조된 금형의 단면도이다.
이하, 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
도 1은 본 발명의 제 1 실시형태에 따른 금형의 제조 공정도이다.
도 1에 나타낸 것과 같이, 본 발명의 제 1 실시형태에 따른 금형의 제조공정은, 3D 프린터로 냉각채널 형성용 중자를 제작하는 단계와, 주형을 제작하는 단계와, 제작된 중자를 주형에 설치하는 단계와, 상기 주형에 금속 용탕을 주입하여 응고시키는 단계와, 응고된 주물을 분리하여 금형용 주물을 얻는 단계와, 금형용 주물을 기계가공하여 금형의 성형면을 형성하는 단계를 포함하여 이루어진다.
주형 제작
상기 공정에 있어서, 3D 프린터로 냉각채널 형성용 중자를 제작하는 단계와 주형을 제작하는 단계는 병행하여 이루어지거나, 중자의 제작이 먼저 이루어진 후 주형이 제작되거나, 반대로 주형이 먼저 제작된 후 중자가 제작되는 순서로 행해질 수 있다.
도 2는 본 발명의 제 1 실시형태에 따른 금형의 제조 공정에 있어서, 주형의 제작과 주조 공정을 개략적으로 나타낸 것이다.
도 2에 도시된 것과 같이, 먼저 소정의 형상을 가지는 상형(110)과 하형(120)을 사형 주조법에서 일반적으로 사용하여 주형 제조법을 사용하여 제작한다.
또한, 상형(110)과 하형(120)은 2개로 분리된 구조가 아니더라도, 냉각채널 형성용 중자를 삽입할 수 있는 형상이라면, 본 발명에 따른 공정 수행이 가능하므로 3개 이상 분리된 형상으로 제작될 수도 있다. 여러 개로 분리된 형상으로 상형과 하형을 제작할 경우, 중자의 상측에 배치된 주형을 상형이라고 하고, 중자의 하측에 배치된 주형을 하형이라고 한다.
상기 상형(110)과 하형(120)을 일반적인 사형 주조법에서 사용하는 주형 제조법을 사용하는 것은 경제적이기 때문이며, 3D 프린터를 통해 상형(110)과 하형(120)을 제작하는 것을 배제하는 것은 아니다.
이어서, 3D 프린터를 사용하여 형상적응형 냉각채널을 형성하기 위한 중자를 성형한다. 냉각채널용 중자(130)를 3D 프린터로 성형하는 것은 복잡한 3차원 형상을 일반적인 조형방법으로 제조하기 어렵기 때문이다.
상기 냉각채널용 중자(130)는 다양항 3D 프린팅 방법을 통해 제작될 수 있다. 예를 들어 평균입도 약 140㎛의 실리카(SiO2) 샌드(Silica sand)와 결합제인 푸란 수지(Furan resin)를 이용하여 3D 프린팅으로 제작할 수 있다. 냉각채널용 중자(130)의 제작에 사용되는 3D 프린팅 방법은 다양한 방법이 사용될 수 있으며, 예를 들어 실리카 샌드로 이루어진 베드(bed)에 푸란 수지와 같은 결합제를 정해진 2D 분사 데이터에 따라 결합제를 분사하여 적층하는 방식으로 3차원 형상을 구현할 수 있다. 또한, 결합제를 분사하지 않고 레진이 코팅된 샌드를 레이저로 소결하는 방식을 사용하거나, 유기 바인더가 아닌 무기 바인더를 사용하여 3차원 형상을 구현할 수도 있다.
도 3은 주형을 구성하는 상형에 결합된 중자의 사시도이다.
도 3에 도시된 것과 같이, 냉각채널용 중자(130)는 냉각채널 형성용 구조(131)와, 상기 냉각채널 형성용 구조(131)을 지지하기 위한 서포트(132)와, 상기 서포트(132)를 형성하고 중자(130)를 주형(100)에 고정하기 위한 베이스(133)를 포함하여 이루어진다.
도 4에 도시된 것과 같이, 상기 서포트(132)의 일부는 길이 방향으로 연장하는 기둥부(132a)와, 상기 기둥부(132a)의 단부의 근방에서 상기 냉각채널을 향해 곡선형으로 연결되는 연결부(132b)를 포함하는 아치 형상으로 형성될 수있다.
본 발명에 있어서 '아치 형상'이란 아크 형상부를 구비하는 형상을 포함하는 것으로, 상기 기둥부가 1개이거나, 2개이거나, 3개 이상으로 형성될 수도 있다. 또한, 본 발명의 실시예에서는 냉각채널 형성용 구조(131)와 연결되는 연결부(132b)는 하나로 형성하였으나, 선택적으로 2개 이상으로 형성할 수도 있음은 물론이다.
또한, 상기 기둥부(132a)와 연결부(132b)의 단면 형상은 원형, 타원형, 삼각형, 사각형, 오각형과 같은 다각형 등 다양한 형상으로 형성될 수 있다.
상기 아치 형상의 서포트(132)는 복잡한 냉각채널 형상으로 이루어지더라도 냉각채널 형성용 구조(131)를 적절하게 지지할 수 있도록 하게 함과 동시에, 냉각채널 형성용 구조(131)와 서포트(132) 사이의 간격 또는 서포트(132)들의 간격을 적절하게 유지할 수 있도록 한다. 이에 따라, 제조된 금형의 내구성이 유지됨과 동시에 금형 내의 열 편차를 보다 균일하게 할 수 있어 금형의 성형 효율을 더 높일 수 있다.
또한, 상기 기둥부(132a)의 내측 단부에는 도 4에 도시된 것과 같이, 편평한 편평부(132c)가 형성될 수 있는데, 이러한 편평부(132c)는 금형용 주물의 내부에 수평한 부분을 형성하여, 주조된 금형의 기계가공 시에 가공 위치 및 깊이를 측정하기 위한 기준점으로 활용될 수 있어, 후속 기계가공을 정밀하게 하는 기준 구조로 활용될 수 있다.
또한, 상기 기둥부(132a)의 외측 단부에는 기둥부(132a)의 직경에 비해 훨씬큰 직경으로 이루어진 단추 형상의 단부(132d)가 형성되어 있다. 이러한 단추 형상의 단부는 금형용 주물의 표면에 기둥부와는 다른 직경을 형성하여, 표면에서 가공할 때, 가공 깊이와 수평도를 맞추는 기준으로 활용될 수 있어, 후속 기계가공을 정밀하게 하는 기준 구조로 활용될 수 있다.
이상과 같이 제작된 냉각채널용 중자(120)의 베이스(133)를 상기 상형(110)에 형성된 삽입부(111)에 삽입함으로써 상형(110)과 결합된다. 본 발명의 제 1 실시형태에서는 상형(110)의 내부에 냉각채널용 중자(130)를 삽입하는 형상으로 주형을 제조하였으나, 상형(110) 또는 하형(120)과 냉각채널용 중자(130)을 일체로 성형한 후, 대향하는 주형(상형 또는 하형)에 조립하는 방법으로 주형(100)을 제조할 수도 있다.
본 발명의 제 1 실시형태에 따른 금형의 제조방법에서는 냉각채널 형성용 중자(130)의 베이스(133)를 상형(110)에 결합시킴으로써, 주조 과정에서 기대에서 다량으로 발생하는 가스가 용탕을 통과하지 않고 기대를 통해 곧바로 외부로 배출될 수 있도록 되어 있어, 중자(130)에 포함된 바인더의 분해에 의해 발생하는 가스에 의한 주조 불량을 크게 줄일 수 있다. 또한, 도시하지는 않았지만, 상기 베이스(133)에는 주형 내의 공기, 발생한 가스를 배출할 수 있는 배출공이 형성될 수 있다.
금형용 주물 제작
이상과 같은 과정을 통해 완성된 주형(100)의 내부에, 도 2에 도시된 것과 같이, 합금 용탕을 주탕한다. 합금 용탕으로는 금형에 사용될 수 있는 다양한 합금이 사용될 수 있으나, 바람직하게는 주조된 상태 또는 주조 후 열처리를 수행하였을 때, 금형으로 요구되는 물성(예를 들어, 강도, 연신율, 내충격성, 내식성 등)이 구현될 수 있는 합금을 선정하여 사용한다.
합금 용탕이 응고된 후 냉각채널용 중자(130)를 포함하여 상형(110)과 하형(120)을 제거하면, 도 5에 도시된 것과 같은 단면 구조를 가지는 금형용 주물(10)이 만들어진다.
도 5에 도시된 것과 같이, 금형용 주물(10)의 내부에는 형상적응형 냉각채널(11)과 이와 연통되고 일 단부가 금형용 주물(10)의 일면에 연결되는 보조채널(12)이 형성되어 있다.
본 발명에 있어서, '보조채널'이란 상기 서포트(132)에 형성된 채널을 의미한다.
상기 보조채널(12)은 기둥부(12a)와 기둥부(12a)로부터 연장하는 연결부(12b)가 형성되어 있다. 상기 기둥부(12a)에는 편평한 영역(12aa)가 형성되어 있어 몸체의 표면으로부터 기둥부의 내측 단부의 위치를 측정할 수 있도록 되어 있다.
또한, 상기 기둥부(12a)의 외측 단부(몸체의 표면에 노출되어 구멍을 형성하는 부분)에는 기둥부(12a)의 직경에 비해 훨씬 큰 직경을 가지는 단추 형상의 단부(12ab)가 형성되어 있다.
한편, 도시하지는 않았으나, 아치형이 아닌 직선형으로 이루어진 보조채널과 냉각채널이 연결되는 부위에 냉각채널의 내측에 편평한 영역이 형성되어 있을 경우, 외부에 노출된 보조채널의 구멍으로부터 냉각채널까지의 거리를 정확하게 측정할 수 있으므로, 상기 기둥부(12a)에는 편평한 영역(12aa)으로 충분하지 않은 경우, 보조채널과 냉각채널이 연결되는 부위에 내부 기준점으로 사용될 있는 편평한 영역을 형성할 수도 있다.
금형용 주물의 기계 가공
이러한 주물의 표면은 거칠기 때문에 그대로 금형으로 사용되기 어려우므로, 금형을 체결하기 위한 체결면과 금형의 성형면(즉, 캐비티) 등을 기계가공하는 공정을 수행하여 금형을 제작한다.
상술한 바와 같이, 금형용 주물(10)의 표면에는 냉각채널(11)과 보조채널(120)에 의해 형성된 다수의 구멍이 형성되어 있다.
그리고 상기 구멍의 단부는 냉각채널(11)과 보조채널(12)의 직경에 비해 큰 직경을 가지는 단추 형상의 단부(12ab)가 소정 깊이(수mm ~ 수백 mm)로 형성되어 있어 직경에 단차가 있는 지점이 표면 가공의 기준점으로 사용될 수 있다. 예를 들어 직경의 단차가 있는 지점까지 표면 가공(황삭 또는 정삭 가공)을 수행할 수 있다. 이에 따라, 단추 형상의 단부(12ab)는 기계 가공의 외부 기준점으로 활용될 수 있다.
본 발명의 제 1 실시형태에서는 직경이 상이한 단추 형상의 단부(12ab)를 형성하였으나, 단면의 형상이 삼각형, 사각형, 타원형 등으로 다르게 형성되도록 하여, 작업자가 가공 깊이를 쉽게 인지할 수 있도록 할 수도 있다.
또한, 상기 구멍의 내측에는 편평한 영역(12aa)이 형성되어 있어, 금형용 주물의 표면으로부터 편평한 영역(12aa) 까지의 거리를 정확하게 측정할 수 있다. 상기 편평한 영역(12aa)은 기계 가공의 내부 기준점으로 활용될 수 있다.
이상과 같은 외부 기준점과 내부 기준점은, 예를 들어 외부 기준점을 기준으로 위치와 수평을 확인하고 절삭가공을 수행하고, 외부 기준점으로 위치와 수평 확인이 충분하지 않거나 더 정밀한 가공이 필요한 경우 내부 기준점을 확인하는 방식으로 활용될 수 있다. 물론 외부 기준점과 내부 기준점을 동시에 사용하여 기계 가공을 수행할 수도 있다. 이러한 가공기준 구조에 의해 내부에 매립된 냉각채널에 손상을 입히지 않고도 정밀한 후가공을 단시간에 수행할 수 있게 된다.
기계가공이 완료된 후에는 상기 금형의 몸체의 표면에 노출되는 보조채널(13)들의 구멍을 막음부재를 통해 막음으로써, 금형 제작이 완료된다.
도 6은 본 발명의 제 1 실시형태에 따라 제조된 금형의 단면도이다.
도 6에 도시된 것과 같이, 본 발명의 제 1 실시형태에 따라 제조된 금형은 일면에 상기 기계가공을 통해 형성되는 성형면(금형에서 성형이 이루어지는 면)(13)이 형성되어 있다. 또한, 금형의 내부에는 형상적응형 냉각채널(11)이 형성되어 있고, 냉각채널(11)과 일단이 연통하는 보조채널(12)이 다수 형성되어 있다.
상기 보조채널(12)은 몸체 중에서 성형면(13)이 아닌 면으로 노출되어 있으며, 노출된 보조채널(12)의 구멍은 막음부재(14)로 밀봉되어, 냉각채널(11)에 주입된 냉각수가 보조채널(12)을 통해 누출되지 않도록 되어 있다.
본 발명의 제 2 실시형태에 따른 금형의 제조방법은, 제 1 실시형태와 모든 공정이 실질적으로 동일하다. 다만, 냉각채널용 중자를 구성하는 냉각채널 형성용 구조의 적어도 일부의 표면에 나선형 요철부가 형성되어 있는 점에 특징이 있다.
도 7은 본 발명의 제 2 실시형태에 따른 냉각채널을 형성하기 위한 중자의 사시도이다.
도 7에 도시된 것과 같이, 냉각채널 형성용 구조(131)의 일부에 나선형 요철부(131a)가 형성되어 있다. 상기 나선형 요철부(131a)는 나사산부(131aa)와 나사오목부(131ab)로 형성되어 있고, 그 단면은 나사산부(131aa)와 나사오목부(131ab)가 교차하여 연결된 형태를 이룬다.
상기 나선형 요철부(131a)는 냉각이 강하게 필요한 부분이나 냉각채널의 직경을 다른 부분에 비해 크게 할 수 없는 부분에 형성하는 것이 바람직하다. 이러한 중자의 표면 형상은 주조 과정을 통해 전사되어, 도 8에 도시된 것과 같이, 주조후 제조되는 금형(10)의 내부에 그 단면이 볼록부와 오목부가 교차하면 나선형으로 이루어진 냉각채널(12)을 형성한다.
본 발명의 제 2 실시형태에 따라 나선형 요철부가 형성된 냉각채널은, 종래 표면이 매끄러운 형상의 냉각채널(기계가공 시 형성되는 냉각채널)에 비해 냉각 면적이 증가되어 동일한 직경으로도 더 우수한 냉각 효과를 얻을 수 있다. 특히, 나선형으로 형성된 냉각채널은 냉각수의 속도 증가시킬 수 있고, 와류가 형성되도록 하여 냉각채널 내에 유체가 정체되는 부분에서 성장하는 석회로 인해 냉각채널이 막히는 것도 방지할 수 있다.
[부호의 설명]
10: 금형용 주물
10': 금형
11: 냉각채널
12: 보조채널
13: 성형면(캐비티)
14: 막음부재
100: 주형
110: 상형
120: 하형
130: 중자
131: 냉각채널 형성용 구조
132: 서포트
133: 베이스

Claims (21)

  1. 몸체와,
    상기 몸체의 내부에 형성되는 냉각채널과,
    상기 냉각채널과 연통하면서 상기 몸체의 적어도 일면과 연결되는 1 이상의 보조채널을 포함하고,
    상기 냉각채널 또는 보조채널의 적어도 일부에는 상기 몸체의 기계가공 시 가공기준으로 사용할 수 있는 가공기준용 구조가 형성되어 있는 금형용 주물.
  2. 제 1 항에 있어서,
    상기 가공기준용 구조는 상기 냉각채널 또는 보조채널 중 상기 몸체의 표면에 노출되는 단부에, 상기 냉각채널 또는 보조채널의 단면의 형상 또는 크기와 상이한 형상 또는 크기를 가지도록 형성되는 형상인 금형용 주물.
  3. 제 1 항에 있어서,
    상기 가공기준용 구조는 상기 몸체의 표면으로부터 접근 가능한 몸체의 내부에, 상기 상기 냉각채널 또는 보조채널 중 적어도 일부에 형성된 소정 넓이의 편평한 형상인 금형용 주물.
  4. 제 3 항에 있어서,
    상기 보조채널은 상기 보조채널은 상기 몸체의 일면으로부터 연장하는 기둥부와, 상기 기둥부로부터 상기 냉각채널과 연통되도록 곡선형으로 연결되는 연결부를 포함하고,
    상기 편평한 형상의 가공기준용 구조는 상기 기둥부에 형성되는 금형용 주물.
  5. 제 3 항에 있어서,
    상기 편평한 형상의 가공기준용 구조는 상기 냉각채널과 보조채널이 연결된 곳에 형성되는 금형용 주물.
  6. 제 2 항에 있어서,
    상기 냉각채널 또는 보조채널 중 상기 몸체의 표면에 노출되는 단부에 형성되는 가공기준용 구조는 상기 몸체의 기계 가공 시 수평을 맞추기 위한 외부 기준점으로 사용되는 금형용 주물.
  7. 제 3 항에 있어서,
    상기 몸체의 표면으로부터 접근 가능한 몸체의 내부에 형성되는 가공기준용 구조는 상기 몸체의 기계 가공 시 상기 냉각채널의 위치 또는 깊이 측정을 위한 내부 기준점으로 사용되는 금형용 주물.
  8. 제 1 항에 있어서,
    상기 냉각채널의 적어도 일부분은 그 내면에 나선형의 요철이 형성되어 있는 금형용 주물.
  9. 제 8 항에 있어서,
    상기 나선형의 요철이 형성된 냉각채널의 단면은 볼록부와 오목부가 교차하여 연결된 형상인 금형용 주물.
  10. 제 1 항에 있어서,
    상기 보조채널에 연통되는 냉각채널은 형상적응형으로 이루어져 있는 금형용 주물.
  11. 제 1 항 내지 제 10 항 중 어느 한 항에 기재된 금형용 주물의 구조를 가지고, 적어도 일측에 물체를 성형하기 위한 성형면이 기계 가공으로 형성된 금형.
  12. 제 11 항에 있어서,
    상기 보조채널의 일 단부는 상기 성형면이 아닌 면에 형성되고, 상기 일 단부에 의해 형성된 구멍은 밀봉부재를 통해 밀봉되는 금형.
  13. 제 11 항에 있어서,
    상기 금형은 플라스틱 사출용인 금형.
  14. 3D 프린팅으로 냉각채널 형성용 중자를 제조하는 단계와,
    주형에 상기 냉각채널 형성용 중자를 설치하는 단계와,
    상기 주형에 금속 용탕을 주입하고 응고시키는 단계와,
    응고된 주물로부터 상기 주형과 냉각채널 형성용 중자를 제거하는 단계를 포함하고,
    상기 냉각채널 형성용 중자는, 베이스와, 상기 베이스 상에 고정되는 1 이상의 서포트와, 상기 서포트에 의해 지지되는 상기 냉각채널 형성용 구조를 포함하고,
    상기 냉각채널 형성용 구조의 단부 또는 상기 베이스에 고정되는 상기 서포트의 단부에는 상기 냉각채널 형성용 구조 또는 상기 서포트의 단면 형상 또는 크기와 상이한 단면 형상 또는 크기를 가지는 부분이 형성되어 있는, 금형용 주물의 제조방법.
  15. 3D 프린팅으로 냉각채널 형성용 중자를 제조하는 단계와,
    주형에 상기 냉각채널 형성용 중자를 설치하는 단계와,
    상기 주형에 금속 용탕을 주입하고 응고시키는 단계와,
    응고된 주물로부터 상기 주형과 냉각채널 형성용 중자를 제거하는 단계를 포함하고,
    상기 냉각채널 형성용 중자는, 베이스와, 상기 베이스 상에 고정되는 1 이상의 서포트와, 상기 서포트에 의해 지지되는 상기 냉각채널 형성용 구조를 포함하고,
    상기 보조채널 또는 냉각채널 형성용 구조와 상기 서포트가 연결되는 부위에 소정 넓이로 편평한 영역이 형성되어 있는, 금형용 주물의 제조방법.
  16. 제 14 항 또는 제 15 항에 있어서,
    상기 냉각채널 형성용 중자의 베이스는 상기 주형의 상부에 결합되거나 상기 주형의 상부를 형성하는, 금형용 주물의 제조방법.
  17. 제 16 항에 있어서,
    상기 베이스에는 상기 주형 내의 가스를 배출할 수 있는 배출공을 더 구비하는, 금형용 주물의 제조방법.
  18. 제 16 항에 있어서,
    상기 주형은 서로 분리된 상형과 하형을 포함하고, 상기 냉각채널 형성용 중자의 베이스는 상기 주형의 상형과 일체로 형성되는, 금형용 주물의 제조방법.
  19. 제 14 항 또는 제 15 항에 있어서,
    상기 냉각채널 형성용 구조 중 일부분의 표면에는 나선형의 요철이 형성되어 있는 금형용 주물의 제조방법.
  20. 제 19 항에 있어서,
    상기 나선형의 요철은 그 단면이 볼록부와 오목부가 교차하여 연결된 형상인 금형용 주물의 제조방법.
  21. 제 1 항 내지 제 10 항 중 어느 한 항에 기재된 금형용 주물을 기계 가공하여 물체를 성형하기 위한 성형면을 형성하는 금형의 제조방법으로,
    상기 냉각채널 또는 보조채널의 적어도 일부에 형성되어 있는 가공기준용 구조를 사용하여 가공기준을 설정하는 금형의 제조방법.
PCT/KR2021/015724 2021-04-07 2021-11-02 금형용 주물, 금형, 금형용 주물의 제조방법 및 금형의 제조방법 WO2022215820A1 (ko)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
KR10-2021-0045159 2021-04-07
KR20210045158 2021-04-07
KR10-2021-0045158 2021-04-07
KR20210045159 2021-04-07
KR10-2021-0122712 2021-09-14
KR20210122711 2021-09-14
KR20210122712 2021-09-14
KR10-2021-0122711 2021-09-14
KR10-2021-0122714 2021-09-14
KR20210122713 2021-09-14
KR10-2021-0122713 2021-09-14
KR20210122714 2021-09-14

Publications (1)

Publication Number Publication Date
WO2022215820A1 true WO2022215820A1 (ko) 2022-10-13

Family

ID=83545437

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2021/015724 WO2022215820A1 (ko) 2021-04-07 2021-11-02 금형용 주물, 금형, 금형용 주물의 제조방법 및 금형의 제조방법
PCT/KR2021/015723 WO2022215819A1 (ko) 2021-04-07 2021-11-02 금형용 주물, 금형, 금형용 주물의 제조방법 및 금형의 제조방법

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/015723 WO2022215819A1 (ko) 2021-04-07 2021-11-02 금형용 주물, 금형, 금형용 주물의 제조방법 및 금형의 제조방법

Country Status (2)

Country Link
KR (2) KR102634788B1 (ko)
WO (2) WO2022215820A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005319518A (ja) * 2004-05-06 2005-11-17 General Electric Co <Ge> インベストメント鋳造品内でのコア生成特徴形状部の位置を決定するための方法及び装置
KR20130099880A (ko) * 2012-02-29 2013-09-06 포드 모터 캄파니 성형 공구를 형성하기 위한 주형 코어
CN104527008A (zh) * 2014-12-30 2015-04-22 无锡银邦精密制造科技有限公司 注塑模具模仁的冷却水路结构
KR20190049070A (ko) * 2017-11-01 2019-05-09 삼성전자주식회사 사출금형 및 그 제조방법
KR20190055035A (ko) * 2019-05-02 2019-05-22 주식회사 히즈시스템 3d 프린터를 이용한 알루미늄 사출용 금형 코어 제작방법
CN210851202U (zh) * 2019-09-12 2020-06-26 佛山市顺德精密模具研究院有限公司 一种带多通路随形冷却水道的心状杯外模腔体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH049245A (ja) * 1990-04-25 1992-01-14 Honda Motor Co Ltd エンジンの鋳造方法
KR100980092B1 (ko) * 2008-04-25 2010-09-06 한국생산기술연구원 대면형 냉각 채널
US9738012B2 (en) * 2013-09-20 2017-08-22 Husky Injection Molding Systems Ltd. Mold component
KR102080321B1 (ko) 2018-02-26 2020-02-24 창원대학교 산학협력단 3d 프린팅 기반 세라믹 중자의 제조 방법
KR102300955B1 (ko) * 2020-03-26 2021-09-09 최성환 형상적응형 냉각채널이 적용된 주조 금형

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005319518A (ja) * 2004-05-06 2005-11-17 General Electric Co <Ge> インベストメント鋳造品内でのコア生成特徴形状部の位置を決定するための方法及び装置
KR20130099880A (ko) * 2012-02-29 2013-09-06 포드 모터 캄파니 성형 공구를 형성하기 위한 주형 코어
CN104527008A (zh) * 2014-12-30 2015-04-22 无锡银邦精密制造科技有限公司 注塑模具模仁的冷却水路结构
KR20190049070A (ko) * 2017-11-01 2019-05-09 삼성전자주식회사 사출금형 및 그 제조방법
KR20190055035A (ko) * 2019-05-02 2019-05-22 주식회사 히즈시스템 3d 프린터를 이용한 알루미늄 사출용 금형 코어 제작방법
CN210851202U (zh) * 2019-09-12 2020-06-26 佛山市顺德精密模具研究院有限公司 一种带多通路随形冷却水道的心状杯外模腔体

Also Published As

Publication number Publication date
KR102634788B1 (ko) 2024-02-08
KR102634789B1 (ko) 2024-02-08
KR20220139808A (ko) 2022-10-17
KR20220139809A (ko) 2022-10-17
WO2022215819A1 (ko) 2022-10-13

Similar Documents

Publication Publication Date Title
US6615901B2 (en) Casting of engine blocks
CA2382962C (en) Engine block mold package with single exterior parting line
US20100139884A1 (en) Casting mould for casting a cast part and use of such a casting mould
CN107716875B (zh) 改良有轨车辆钩舌形成的表面下冷芯
KR101962525B1 (ko) 저압이나 중력주조법을 이용한 실린더 크랭크케이스 생산장치
US6533020B2 (en) Casting of engine blocks
US6598655B2 (en) Casting of engine blocks
JPH09271924A (ja) クローズドデッキタイプシリンダブロック鋳造装置と該装置に用いられる砂中子との組合せ
KR20150105463A (ko) 피더의 기능적인 연결을 구비한 주물, 특히 실린더 블록과 실린더 헤드를 제조하기 위한 주조 방법 및 주형
CN112658210B (zh) 地铁转向架异形铸钢件分段铸造方法
US6527040B2 (en) Casting of engine blocks
WO2022215820A1 (ko) 금형용 주물, 금형, 금형용 주물의 제조방법 및 금형의 제조방법
US8720528B2 (en) Method and device for casting a piston for an internal combustion engine
KR102090793B1 (ko) 건설기계 실린더블록용 주형 및 제조방법
CN111590024A (zh) 一种3d打印砂型铸造预埋冷铁的方法
CN112517857B (zh) 一种消除盲孔油道顶面气孔的铸造方法
JP2009536578A (ja) 鋳物を製造するための成形装置
JP2002254136A (ja) 多気筒シリンダーブロック中子造型用コアーボックス
WO2021006378A1 (ko) 연속형 수직 원심주조법
KR100440127B1 (ko) 진공성형용 상부 몰드 제작방법
CN117047042A (zh) 一种内腔结构铸件的铸造方法
KR20040043803A (ko) 알루미늄 실린더 블록 주조방법
CN117583557A (zh) 一种背板类铸件的铸造方法
CN114309523A (zh) 铸造用内冷铁及使用方法、铸造方法
JPH0847768A (ja) 鋳造製品の局部硬化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936158

Country of ref document: EP

Kind code of ref document: A1