WO2022215676A1 - Ceramic heater, and method for manufacturing ceramic heater - Google Patents

Ceramic heater, and method for manufacturing ceramic heater Download PDF

Info

Publication number
WO2022215676A1
WO2022215676A1 PCT/JP2022/017033 JP2022017033W WO2022215676A1 WO 2022215676 A1 WO2022215676 A1 WO 2022215676A1 JP 2022017033 W JP2022017033 W JP 2022017033W WO 2022215676 A1 WO2022215676 A1 WO 2022215676A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
ceramic heater
heating resistor
content
area
Prior art date
Application number
PCT/JP2022/017033
Other languages
French (fr)
Japanese (ja)
Inventor
一樹 谷澤
敦俊 杉山
友亮 牧野
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to EP22784659.9A priority Critical patent/EP4322707A1/en
Priority to JP2022560471A priority patent/JPWO2022215676A1/ja
Priority to CN202280016310.5A priority patent/CN116868684A/en
Publication of WO2022215676A1 publication Critical patent/WO2022215676A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/48Heating elements having the shape of rods or tubes non-flexible heating conductor embedded in insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • H05B2203/003Heaters using a particular layout for the resistive material or resistive elements using serpentine layout
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings

Definitions

  • the present invention relates to ceramic heaters used for, for example, warm-water washing toilet seats, fan heaters, electric water heaters, 24-hour baths, soldering irons, hair irons, and ceramic heater manufacturing methods.
  • a warm water washing toilet seat uses a heat exchange unit having a resin container (heat exchanger).
  • a long pipe-shaped ceramic heater is arranged.
  • the ceramic heater a ceramic sheet having a heater wiring circuit printed thereon, which is a heating resistor, is wrapped around a cylindrical ceramic porcelain tube and integrally fired (see Patent Document 1). Water flowing in the gap between the inner wall of the heat exchanger and the outer periphery of the ceramic heater is heated by the ceramic heater.
  • the wiring circuit of the heater is formed by printing an ink paste containing metal particles, there is a limit to narrowing the line width (for example, about 0.3 mm) in consideration of print bleeding. Therefore, it is necessary to increase the wiring resistance, so ceramic particles such as alumina are added to the ink paste.
  • ceramic particles such as alumina are added to the ink paste.
  • a large amount of ceramic particles, which are insulators, are included in the wiring there is a problem that the ceramic particles are interposed between the metal particles that form the conduction path, hindering the conduction and making the wiring more likely to break.
  • an object of the present invention is to provide a ceramic heater that suppresses disconnection while increasing the resistance of the heating resistor, and a method of manufacturing the ceramic heater.
  • the ceramic heater of the present invention is a ceramic heater comprising a heating resistor embedded in a base, wherein the heating resistor contains a metal component and a ceramic component, and the cross section of the heating resistor has The average content of the metal component is 35 area% or more and less than 50 area%, and the minimum content of the metal component is 30 area% or more when 10 different measurement sites of 10 ⁇ m square are measured. .
  • the "average metal component content" which indicates the electrical resistance of the entire heating resistor, is set to a level that increases the electrical resistance, so the resistance of the heating resistor can be increased.
  • the "minimum content of metal components” is set at a level where the content of ceramic components at each measurement site does not vary, it is possible to suppress the occurrence of disconnection due to local areas with excessively high ceramic components. can.
  • the maximum content of the metal component may be 80 area % or less. According to this ceramic heater, the variation in the content ratio of the ceramic component at each measurement site is further reduced, and disconnection can be further suppressed.
  • the electric resistivity of the heating resistor per 100 ⁇ m 2 area at 25° C. and 25 ⁇ m thickness may be 0.02 ⁇ or more. According to this ceramic heater, the electric resistance of the heating resistor can be reliably increased.
  • a method of manufacturing a ceramic heater according to the present invention is a method of manufacturing a ceramic heater comprising a ceramic substrate manufacturing step of manufacturing a ceramic substrate, and a coating step of applying or printing an ink to be a heating resistor around the ceramic substrate.
  • the ink contains metal particles and ceramic particles, the metal particles having an average particle size of 0.5 to 2.0 ⁇ m, and the ceramic particles having an average particle size of 0.2 to 2.0 ⁇ m. characterized by being
  • disconnection can be suppressed while increasing the resistance of the heating resistor of the ceramic heater.
  • FIG. 1 is a front view showing a ceramic heater according to an embodiment of the invention
  • FIG. FIG. 4 is a developed view showing a ceramic sheet of the ceramic heater
  • FIG. 3 is an exploded view schematically showing a heater wiring circuit included in FIG. 2
  • FIG. 3 is a schematic diagram showing a measurement portion of a heating resistor according to an embodiment of the present invention and conduction paths at the measurement portion
  • FIG. 4 is a schematic diagram showing a measurement portion of a heating resistor that does not correspond to the present invention and a conduction path at the measurement portion
  • FIG. 4 is a diagram showing an example of sampling a plurality of measurement sites from the same cross section of a heating resistor
  • FIG. 4 is a diagram showing the actual relationship between the content of metal components and electrical resistivity
  • FIG. 4 is a diagram showing the results of actually measuring the content of metal components in the heat generating resistors of the present invention and commercially available ceramic heaters.
  • FIG. 9 is a diagram following FIG. 8 ;
  • FIG. 1 is a front view showing a ceramic heater 11 according to an embodiment of the present invention
  • FIG. 2 is a developed view showing a ceramic sheet 19 of the ceramic heater 11
  • FIG. 3 is a simplified illustration of heater wiring circuits 40a and 40b included in FIG. It is an expanded view showing.
  • the ceramic heater 11 according to the embodiment of the present invention can be used, for example, in a heat exchanger of a heat exchange unit of a warm-water washing toilet seat to warm wash water.
  • the ceramic heater 11 is joined to a cylindrical base (ceramic base) 13 in which a heating resistor 40 is embedded, and to the outer periphery of the ceramic base 13 via a joining member 20. an annular ceramic flange 30 with ends.
  • the ceramic substrate 13 includes a cylindrical ceramic support 17 and a ceramic sheet 19 wound around the outer circumference of the support 17.
  • the support 17 has a through hole 17h in the direction of its axis O. .
  • the ceramic heater 11 heats the water flowing inside the through hole 17h, and the ceramic heater 11 also heats the water in the gap between the inner wall of the heat exchanger and the outer periphery of the ceramic heater.
  • Support 17 and ceramic sheet 19 may be made of alumina, for example.
  • the ceramic sheet 19 does not completely cover the outer periphery of the support 17 , and a slit 13 s extending along the axis O direction of the support 17 is formed in the winding portion 19 a of the ceramic sheet 19 .
  • a heating resistor 40 comprising a plurality of heater wiring circuits 40a and 40b in a meandering pattern is formed on the ceramic sheet 19 by printing or the like.
  • Each heater wiring circuit 40a, 40b of the heating resistor 40 includes a plurality of wiring portions 40L (see the upper diagram of FIG. 3) extending in the direction of the axis O, and folded portions 40m at both ends of the wiring portions 40L extend in the width direction. It is configured to be connected to the end of the portion 40L.
  • Wiring portions at both ends of the heater wiring circuits 40a and 40b are integrally connected to three pad-shaped connection terminals 41, 42a and 42b at one end in the axis O direction.
  • wiring portions 40L1 and 40L2 at both ends of the heater wiring circuit 40a are connected to a common ground connection terminal 41 and a plus side connection terminal 42a, respectively.
  • the wiring portions 40L3 and 40L4 at both ends of the heater wiring circuit 40b are connected to the connection terminal 41 and the plus side connection terminal 42b, respectively.
  • the connection terminals 41, 42a, and 42b are connected to three external terminals (only two are shown in FIG. 1) formed on the outer peripheral surface (rear surface of FIG. 2) of the ceramic sheet 19 via via conductors (not shown) or the like. They are electrically connected to the terminals 43 respectively.
  • the heating resistor 40 and the connection terminals 41, 42a, 42b can be made mainly of tungsten, for example.
  • FIG. 4 is a schematic diagram showing the measurement points A1 and A2 of the heating resistor according to the embodiment of the present invention and the conduction paths at the measurement points A1 and A2.
  • the heating resistor 40 contains a metal component and a ceramic component.
  • the average content of the metal component is 35 area % or more and less than 50 area %, and the minimum content of the metal component is 30 area %. That's it.
  • the measurement sites A1 and A2 are 10 ⁇ m squares in the cross section of the heating resistor 40 (in FIG. 4, one wiring portion 40L of the heater wiring circuit 40a in FIG. 3). is the area of Then, the image of the secondary electron image (composition image) is binarized with an electron microscope (SEM) for each of the measurement sites A1, A2, . , is the content of the metal component. Further, the "average content of metal component” is the average value of the content of metal component at each of ten measurement sites. The “minimum content of metal component” is the lowest value among the content of metal components at each measurement site. Similarly, the "maximum content rate of the metal component” described later is the highest value among the content rates of the metal component at each measurement site.
  • the heating resistor 40 is usually formed by printing an ink paste containing metal particles and ceramic particles. Ceramic particles such as alumina increase the wiring resistance, but if a large amount of ceramic particles are included, the ceramic particles intervene between the metal particles that form the conduction path, which impedes conduction and makes disconnection more likely. Therefore, as shown in FIG. 4, the metal particles M and the ceramic particles C are uniformly mixed at each of the measurement sites A1 and A2 (that is, the content ratio of the ceramic component is different at each of the measurement sites A1 and A2). By doing so, the metal particles M are connected without being separated by the ceramic particles C at the respective measurement sites A1 and A2, and the conductive path P is reliably formed.
  • Ceramic particles such as alumina increase the wiring resistance, but if a large amount of ceramic particles are included, the ceramic particles intervene between the metal particles that form the conduction path, which impedes conduction and makes disconnection more likely. Therefore, as shown in FIG. 4, the metal particles M and the ceramic particles C are uniformly mixed at each of the measurement sites
  • the conduction path P along the cross section of each measurement site A1, A2 is shown, but in reality, the conduction path is formed through the cross section of each measurement site A1, A2 toward the depth of the paper surface. be.
  • the arrangement state of the metal particles M and the ceramic particles C is three-dimensionally isotropic (the cross section of each measurement site A1 and A2 is the same, and the direction in the depth of the paper perpendicular to the cross section is the same), so it is shown in the drawing.
  • the above-mentioned "average content of metal components” was determined as an index indicating the electrical resistance of the entire heating resistor, and was set so as to increase the electrical resistance.
  • the above-mentioned "minimum content of metal components” is used as an index for suppressing the occurrence of disconnection due to the occurrence of local areas with an excessively large amount of ceramic components. and suppressed disconnection.
  • the "minimum content of metal component" is less than the specified range of the present invention.
  • the maximum content of the metal component is 80 area % or less, the variation in the content of the ceramic component at each measurement site is further reduced, and disconnection can be further suppressed.
  • the electrical resistivity of the heating resistor 40 per 100 ⁇ m 2 area at 25° C. and 25 ⁇ m thick is 0.02 ⁇ or more, the electrical resistance of the heating resistor can be reliably increased.
  • the electrical resistivity is obtained by cutting the heating resistor 40 and measuring the resistance, measuring the width, thickness and length of the cut portion, and calculating the resistance value per area of 100 ⁇ m 2 with a thickness of 25 ⁇ m.
  • the metal particles and the ceramic particles contained in the resistor ink for forming the heating resistor 40 are It is mentioned that the particle size of is made finer. By making the particle size of each particle finer, it is possible to increase the degree of dispersion when the particles are mixed and reduce the variation in the content ratio of the ceramic component. Specifically, when the particle size distribution is measured by, for example, a laser diffraction/scattering method, the average particle diameter ⁇ of the metal particles is 0.5 to 2.0 ⁇ m, and the average particle diameter ⁇ of the ceramic particles is 0.2 to 2 ⁇ m. 0 ⁇ m.
  • tungsten powder and molybdenum powder can be used in combination.
  • Alumina etc. can be illustrated as a ceramic particle.
  • the resistor ink can be manufactured, for example, as follows. First, metal particles and ceramic particles are weighed and placed in a pot, and after adding a solvent, each particle is pulverized into fine powder with a ball mill. Further, the resin (binder) is put into the ball mill, mixed and pulverized, and then excess solvent is removed by aeration. Thereby, a slurry-like ink is obtained.
  • the ceramic heater 11 can be manufactured, for example, as follows. First, a member to be the support 17 is extruded from a slurry of ceramic powder such as alumina, and then calcined. Also, a green sheet to be the ceramic sheet 19 is formed from the slurry similar to the above, and the resistor ink is printed on the surface of the green sheet to be the heating resistor 40 and the connection terminals 41, 42a and 42b as shown in FIG. dry. Then, another green sheet is laminated on the printed surface of this green sheet and pressed to embed the heating resistor 40 and the connection terminals 41, 42a and 42b between the two green sheets.
  • vias are provided on one side of the laminated body of both green sheets and filled with via conductors, and a conductive paste to be the external terminals 43 is printed and dried just above. Then, a ceramic paste is applied to the opposite surface of the laminate of both green sheets, wound around the support 17 and adhered, and the whole is fired. Also, the flange 30 is obtained by pressure-molding ceramic powder such as alumina in a mold and firing it.
  • the ceramic substrate 13 and the flange 30 manufactured in this way are placed in a gap between the ceramic substrate 13 and the flange 30, and the solid bonding material 20 (glass) serving as the bonding member 20 is placed in the gap between the ceramic substrate 13 and the flange 30, and heated to the melting temperature of the glass or higher, A flange 30 is joined to the outer periphery of the ceramic substrate 13 .
  • a method for manufacturing a ceramic heater according to the present invention includes a ceramic substrate manufacturing step of manufacturing a ceramic substrate, and a coating step of applying (printing) an ink that will become a heating resistor around the ceramic substrate. It contains metal particles and ceramic particles, wherein the metal particles have an average particle size of 0.5 to 2.0 ⁇ m and the ceramic particles have an average particle size of 0.2 to 2.0 ⁇ m.
  • the present invention is not limited to the above-described embodiments, but extends to various modifications and equivalents within the spirit and scope of the present invention.
  • the types of metal components and ceramic components that constitute the heating resistor are not limited to those described above.
  • the number and shape of the heater wiring circuits are also not limited.
  • the measurement sites in the cross section of the heating resistor may be different cross sections, or, as shown in FIG. 6, a plurality of measurement sites A5 and A6 may be taken from the same cross section.
  • Example 1 Tungsten powder and molybdenum powder were used as the metal particles, and alumina powder was used as the ceramic particles.
  • a resistor ink was manufactured. The mixing ratio of metal particles in each resistor ink was varied. This resistor ink was printed in a predetermined heating pattern, dried, and then baked at a temperature at which the metal particles would not be oxidized, and the electrical resistivity was measured by a conventional method when the thickness was 25 ⁇ m at 25°C.
  • the results obtained are shown in FIG.
  • the content of the metal component was defined as the area ratio (area %) obtained by measuring 10 different measurement points of 10 ⁇ m square in the cross section of the heating resistor as described above. As shown in FIG. 7, when the metal component content was less than 50 area %, the electrical resistivity abruptly increased. Based on this result, the average content of metal components in the present invention was set to less than 50 area %.
  • FIG. 8 is a diagram showing the results of actually measuring the content of metal components in the heating resistors in Comparative Examples 1, 2 and 3 and Examples.
  • the plot on the left side of each sample shows the results of measuring 10 randomly selected points for each sample, and the results of measuring by visually selecting regions with a large amount of metal components and regions with a small amount of metal components for each sample. Shown in the right plot of the sample.
  • FIG. 9 shows the average content rate, maximum content rate, minimum content rate, and height difference of the metal component content in Comparative Examples 1, 2, and 3 and Example. is the result of calculating
  • Comparative Examples 1 and 2 the "average content of metal component” was 50 area % or more, which was higher than that of the examples, and the resistance of the heating resistor of the ceramic heater could not be increased.
  • Comparative Example 3 although the "average content of metal components” was as high as that of Examples, the “minimum content of metal components” was less than 30% by area, which was lower than that of Examples, and was likely to break.

Landscapes

  • Resistance Heating (AREA)

Abstract

Provided are a ceramic heater and a method for manufacturing a ceramic heater with which breakages are suppressed while the resistance of a heat generating resistor is increased. A ceramic heater 11 provided with a heat generating resistor that is embedded in a substrate is characterized in that: the heat generating resistor 40 includes a metal component and a ceramic component; and when measurements of different 10 μm square measurement sites A1, A2, A5, A6 in a cross section through the heat generating resistor were taken at ten locations, the mean content of the metal component was at least equal to 35 area % and less than 50 area %, and the minimum content of the metal component was at least equal to 30 area %.

Description

セラミックヒータ及びセラミックヒータの製造方法Ceramic heater and method for manufacturing ceramic heater
 本発明は、例えば温水洗浄便座、ファンヒータ、電気温水器、24時間風呂、半田ごて、ヘアアイロン等に用いられるセラミックヒータ及びセラミックヒータの製造方法に関する。 The present invention relates to ceramic heaters used for, for example, warm-water washing toilet seats, fan heaters, electric water heaters, 24-hour baths, soldering irons, hair irons, and ceramic heater manufacturing methods.
 従来、例えば温水洗浄便座には、樹脂製の容器(熱交換器)を有する熱交換ユニットが用いられており、この熱交換ユニットには、熱交換器内に収容された洗浄水を暖めるために、長尺のパイプ状のセラミックヒータが配置されている。
 このセラミックヒータとしては、円筒状のセラミック製碍管に、発熱抵抗体となるヒータ配線回路を印刷したセラミックシートを巻き付け、一体焼成したものが用いられている(特許文献1参照)。
 そして、熱交換器の内壁と、セラミックヒータの外周との隙間に流れる水がセラミックヒータで加熱される。
Conventionally, for example, a warm water washing toilet seat uses a heat exchange unit having a resin container (heat exchanger). , a long pipe-shaped ceramic heater is arranged.
As the ceramic heater, a ceramic sheet having a heater wiring circuit printed thereon, which is a heating resistor, is wrapped around a cylindrical ceramic porcelain tube and integrally fired (see Patent Document 1).
Water flowing in the gap between the inner wall of the heat exchanger and the outer periphery of the ceramic heater is heated by the ceramic heater.
特開平9-7739号公報JP-A-9-7739
 ところで、セラミックヒータを小型化すると、セラミックシートのうちヒータ配線を形成可能な部位の面積が小さくなる。このため、従来のセラミックヒータと同様の熱量を1回路あたりで稼ぐためには、配線抵抗を高めるか、線幅を細くし折り返し数を増やして従来と同等の配線長を確保する必要がある。
 ここで、ヒータの配線回路は、金属粒子を含むインクペーストを印刷して形成されるため、印刷のにじみを考慮すると、線幅の狭小化には限界がある(例えば、0.3mm程度)。従って、配線抵抗を高めることが必要となり、そのため、インクペーストにアルミナ等のセラミック粒子を添加している。
 しかしながら、配線中に絶縁体であるセラミック粒子を多く含むと、導通経路となる金属粒子の間にセラミック粒子が介在して導通が阻害され、断線し易くなるという問題がある。
By the way, when the size of the ceramic heater is reduced, the area of the portion of the ceramic sheet where the heater wiring can be formed is reduced. For this reason, in order to obtain the same amount of heat per circuit as the conventional ceramic heater, it is necessary to increase the wiring resistance or reduce the line width and increase the number of folds to secure the same wiring length as the conventional one.
Here, since the wiring circuit of the heater is formed by printing an ink paste containing metal particles, there is a limit to narrowing the line width (for example, about 0.3 mm) in consideration of print bleeding. Therefore, it is necessary to increase the wiring resistance, so ceramic particles such as alumina are added to the ink paste.
However, if a large amount of ceramic particles, which are insulators, are included in the wiring, there is a problem that the ceramic particles are interposed between the metal particles that form the conduction path, hindering the conduction and making the wiring more likely to break.
 そこで、本発明は、発熱抵抗体の抵抗を高くしつつ断線を抑制したセラミックヒータ及びセラミックヒータの製造方法の提供を目的とする。 Therefore, an object of the present invention is to provide a ceramic heater that suppresses disconnection while increasing the resistance of the heating resistor, and a method of manufacturing the ceramic heater.
 上記課題を解決するため、本発明のセラミックヒータは、基体に埋設された発熱抵抗体を備えるセラミックヒータにおいて、前記発熱抵抗体は金属成分とセラミック成分とを含み、前記発熱抵抗体の横断面における10μm角の異なる測定部位を10か所測定したとき、前記金属成分の平均含有率が35面積%以上50面積%未満、前記金属成分の最低含有率が30面積%以上であることを特徴とする。 In order to solve the above-mentioned problems, the ceramic heater of the present invention is a ceramic heater comprising a heating resistor embedded in a base, wherein the heating resistor contains a metal component and a ceramic component, and the cross section of the heating resistor has The average content of the metal component is 35 area% or more and less than 50 area%, and the minimum content of the metal component is 30 area% or more when 10 different measurement sites of 10 μm square are measured. .
 このセラミックヒータによれば、発熱抵抗体の全体の電気抵抗を示す「金属成分の平均含有率」を電気抵抗が高くなるレベルに設定したので、発熱抵抗体の抵抗を高くすることができる。
 又、「金属成分の最低含有率」を、各測定部位におけるセラミック成分の含有割合がバラつかないレベルに設定したので、セラミック成分が過度に多い領域が局所的に生じて断線が生じることを抑制できる。
 なお、金属成分の平均含有率が35面積%以上となることで、金属成分が凝集し、発熱抵抗体内全体に連なることにより、安定して高い導電性を発現すると考えられる。
According to this ceramic heater, the "average metal component content", which indicates the electrical resistance of the entire heating resistor, is set to a level that increases the electrical resistance, so the resistance of the heating resistor can be increased.
In addition, since the "minimum content of metal components" is set at a level where the content of ceramic components at each measurement site does not vary, it is possible to suppress the occurrence of disconnection due to local areas with excessively high ceramic components. can.
In addition, it is considered that when the average content of the metal component is 35 area % or more, the metal component agglomerates and is connected to the entire heating resistor, thereby stably exhibiting high conductivity.
 本発明のセラミックヒータにおいて、前記金属成分の最高含有率が80面積%以下であってもよい。
 このセラミックヒータによれば、上記した各測定部位におけるセラミック成分の含有割合のバラツキがさらに小さくなり、断線をさらに抑制できる。
In the ceramic heater of the present invention, the maximum content of the metal component may be 80 area % or less.
According to this ceramic heater, the variation in the content ratio of the ceramic component at each measurement site is further reduced, and disconnection can be further suppressed.
 本発明のセラミックヒータにおいて、25℃で、厚み25μmのときの面積100μmあたりの前記発熱抵抗体の電気抵抗率が0.02Ω以上であってもよい。
 このセラミックヒータによれば、発熱抵抗体の電気抵抗を確実に高くすることができる。
In the ceramic heater of the present invention, the electric resistivity of the heating resistor per 100 μm 2 area at 25° C. and 25 μm thickness may be 0.02Ω or more.
According to this ceramic heater, the electric resistance of the heating resistor can be reliably increased.
 本発明のセラミックヒータの製造方法は、セラミック基体を製造するセラミック基体製造工程と、前記セラミック基体の周囲に発熱抵抗体となるインクを塗布又は印刷する塗布工程と、を有するセラミックヒータの製造方法であって、前記インクは金属粒子とセラミック粒子とを含有し、前記金属粒子の平均粒径が0.5~2.0μであり、前記セラミック粒子の平均粒径が0.2~2.0μmであることを特徴とする。 A method of manufacturing a ceramic heater according to the present invention is a method of manufacturing a ceramic heater comprising a ceramic substrate manufacturing step of manufacturing a ceramic substrate, and a coating step of applying or printing an ink to be a heating resistor around the ceramic substrate. The ink contains metal particles and ceramic particles, the metal particles having an average particle size of 0.5 to 2.0 μm, and the ceramic particles having an average particle size of 0.2 to 2.0 μm. characterized by being
 この発明によれば、セラミックヒータの発熱抵抗体の抵抗を高くしつつ断線を抑制することができる。 According to this invention, disconnection can be suppressed while increasing the resistance of the heating resistor of the ceramic heater.
本発明の実施形態に係るセラミックヒータを示す正面図である。1 is a front view showing a ceramic heater according to an embodiment of the invention; FIG. セラミックヒータのセラミックシートを示す展開図である。FIG. 4 is a developed view showing a ceramic sheet of the ceramic heater; 図2に含まれるヒータ配線回路を簡略に示す展開図である。FIG. 3 is an exploded view schematically showing a heater wiring circuit included in FIG. 2; 本発明の実施形態に係る発熱抵抗体の測定部位、及び測定部位における導通経路を示す模式図である。FIG. 3 is a schematic diagram showing a measurement portion of a heating resistor according to an embodiment of the present invention and conduction paths at the measurement portion; 本発明に該当しない発熱抵抗体の測定部位、及び測定部位における導通経路を示す模式図である。FIG. 4 is a schematic diagram showing a measurement portion of a heating resistor that does not correspond to the present invention and a conduction path at the measurement portion; 発熱抵抗体の同一の横断面から複数の測定部位を採取した例を示す図である。FIG. 4 is a diagram showing an example of sampling a plurality of measurement sites from the same cross section of a heating resistor; 金属成分の含有率と電気抵抗率との実際の関係を示す図である。FIG. 4 is a diagram showing the actual relationship between the content of metal components and electrical resistivity; 本発明及び市販のセラミックヒータの発熱抵抗体の金属成分の含有率を実際に測定した結果を示す図である。FIG. 4 is a diagram showing the results of actually measuring the content of metal components in the heat generating resistors of the present invention and commercially available ceramic heaters. 図8に続く図である。FIG. 9 is a diagram following FIG. 8 ;
 以下に、本発明の実施形態を図面と共に説明する。
 図1は本発明の実施形態に係るセラミックヒータ11を示す正面図、図2はセラミックヒータ11のセラミックシート19を示す展開図、図3は図2に含まれるヒータ配線回路40a、40bを簡略に示す展開図である。
 本発明の実施形態に係るセラミックヒータ11は、例えば温水洗浄便座の熱交換ユニットの熱交換器において、洗浄水を温めるために用いることができる。
Embodiments of the present invention will be described below with reference to the drawings.
1 is a front view showing a ceramic heater 11 according to an embodiment of the present invention, FIG. 2 is a developed view showing a ceramic sheet 19 of the ceramic heater 11, and FIG. 3 is a simplified illustration of heater wiring circuits 40a and 40b included in FIG. It is an expanded view showing.
The ceramic heater 11 according to the embodiment of the present invention can be used, for example, in a heat exchanger of a heat exchange unit of a warm-water washing toilet seat to warm wash water.
 図1に示すように、セラミックヒータ11は、発熱抵抗体40が内部に埋設された筒状の基体(セラミック基体)13と、接合部材20を介してセラミック基体13の外周に接合され、環状又は有端環状のセラミック製のフランジ30と、を備える。
 セラミック基体13は、円筒状のセラミック製の支持体17と、支持体17の外周に巻きつけられたセラミックシート19とを備え、支持体17はその軸線O方向に貫通孔17hを有してなる。そして、熱交換器にて、貫通孔17hの内部に流れる水がセラミックヒータ11で加熱され、さらに熱交換器の内壁と、セラミックヒータの外周との隙間の水もセラミックヒータ11で加熱される。
 支持体17及びセラミックシート19は例えばアルミナから形成することができる。なお、セラミックシート19は支持体17の外周を完全に覆わず、セラミックシート19の巻合わせ部19aには、支持体17の軸線O方向に沿って延びるスリット13sが形成されている。
As shown in FIG. 1, the ceramic heater 11 is joined to a cylindrical base (ceramic base) 13 in which a heating resistor 40 is embedded, and to the outer periphery of the ceramic base 13 via a joining member 20. an annular ceramic flange 30 with ends.
The ceramic substrate 13 includes a cylindrical ceramic support 17 and a ceramic sheet 19 wound around the outer circumference of the support 17. The support 17 has a through hole 17h in the direction of its axis O. . In the heat exchanger, the ceramic heater 11 heats the water flowing inside the through hole 17h, and the ceramic heater 11 also heats the water in the gap between the inner wall of the heat exchanger and the outer periphery of the ceramic heater.
Support 17 and ceramic sheet 19 may be made of alumina, for example. The ceramic sheet 19 does not completely cover the outer periphery of the support 17 , and a slit 13 s extending along the axis O direction of the support 17 is formed in the winding portion 19 a of the ceramic sheet 19 .
 一方、図2に示すように、セラミックシート19には、蛇行したパターン形状の複数のヒータ配線回路40a、40bからなる発熱抵抗体40が印刷等で形成されている。発熱抵抗体40の各ヒータ配線回路40a、40bは、互いに軸線O方向に沿って延びる複数の配線部40L(図3の上図参照)の両端の折り返し部40mが幅方向に延び、隣接する配線部40Lの端部に接続される形態をなす。そして、各ヒータ配線回路40a、40bの両末端の配線部が軸線O方向の一端でパッド状の3個の接続端子41、42a、42bに一体に接続されている。 On the other hand, as shown in FIG. 2, a heating resistor 40 comprising a plurality of heater wiring circuits 40a and 40b in a meandering pattern is formed on the ceramic sheet 19 by printing or the like. Each heater wiring circuit 40a, 40b of the heating resistor 40 includes a plurality of wiring portions 40L (see the upper diagram of FIG. 3) extending in the direction of the axis O, and folded portions 40m at both ends of the wiring portions 40L extend in the width direction. It is configured to be connected to the end of the portion 40L. Wiring portions at both ends of the heater wiring circuits 40a and 40b are integrally connected to three pad- shaped connection terminals 41, 42a and 42b at one end in the axis O direction.
 具体的には、図3に示すように、ヒータ配線回路40aの両端の配線部40L1,40L2は、それぞれ共通グランドとなる接続端子41と、プラス側の接続端子42aとに接続されている。同様に、ヒータ配線回路40bの両端の配線部40L3,40L4は、それぞれは、接続端子41と、プラス側の接続端子42bとに接続されている。
 そして、この接続端子41、42a、42bは、図示しないビア導体等を介して、セラミックシート19の外周面(図2の裏面)に形成された3個の(図1では2個のみ表示)外部端子43にそれぞれ電気的に接続されている。
 発熱抵抗体40及び接続端子41、42a、42bは、例えばタングステンを主成分として形成することができる。
Specifically, as shown in FIG. 3, wiring portions 40L1 and 40L2 at both ends of the heater wiring circuit 40a are connected to a common ground connection terminal 41 and a plus side connection terminal 42a, respectively. Similarly, the wiring portions 40L3 and 40L4 at both ends of the heater wiring circuit 40b are connected to the connection terminal 41 and the plus side connection terminal 42b, respectively.
The connection terminals 41, 42a, and 42b are connected to three external terminals (only two are shown in FIG. 1) formed on the outer peripheral surface (rear surface of FIG. 2) of the ceramic sheet 19 via via conductors (not shown) or the like. They are electrically connected to the terminals 43 respectively.
The heating resistor 40 and the connection terminals 41, 42a, 42b can be made mainly of tungsten, for example.
 次に、図4~図5を参照し、発熱抵抗体40(各ヒータ配線回路40a、40b)について説明する。図4は、本発明の実施形態に係る発熱抵抗体の測定部位A1,A2、及び測定部位A1,A2における導通経路を示す模式図、図5は本発明に該当しない発熱抵抗体の測定部位A10,A20、及び測定部位A10,A20における導通経路を示す模式図である。 Next, the heating resistor 40 (each heater wiring circuit 40a, 40b) will be described with reference to FIGS. 4 and 5. FIG. FIG. 4 is a schematic diagram showing the measurement points A1 and A2 of the heating resistor according to the embodiment of the present invention and the conduction paths at the measurement points A1 and A2. FIG. , A20 and conductive paths at measurement sites A10 and A20.
 発熱抵抗体40は、金属成分とセラミック成分とを含む。そして、発熱抵抗体40の横断面における10μm角の異なる測定部位を10か所測定したとき、金属成分の平均含有率が35面積%以上50面積%未満、金属成分の最低含有率が30面積%以上である。 The heating resistor 40 contains a metal component and a ceramic component. When measuring 10 different 10 μm square measurement points in the cross section of the heating resistor 40, the average content of the metal component is 35 area % or more and less than 50 area %, and the minimum content of the metal component is 30 area %. That's it.
 ここで、図4に示すように、測定部位A1、A2とは、発熱抵抗体40(図4では、図3のヒータ配線回路40aの1本の配線部40Lを表す)の横断面における10μm角の領域である。そして、各測定部位A1、A2・・・につき、電子顕微鏡(SEM)により二次電子像(組成像)の画像を二値化し、金属成分に相当する明るい部位の面積率(面積%)を求め、金属成分の含有率とする。
 又、「金属成分の平均含有率」とは、10か所の各測定部位における金属成分の含有率の平均値である。「金属成分の最低含有率」とは、各測定部位における金属成分の含有率のうち最も低い値である。同様に、後述する「金属成分の最高含有率」とは、各測定部位における金属成分の含有率のうち最も高い値である。
Here, as shown in FIG. 4, the measurement sites A1 and A2 are 10 μm squares in the cross section of the heating resistor 40 (in FIG. 4, one wiring portion 40L of the heater wiring circuit 40a in FIG. 3). is the area of Then, the image of the secondary electron image (composition image) is binarized with an electron microscope (SEM) for each of the measurement sites A1, A2, . , is the content of the metal component.
Further, the "average content of metal component" is the average value of the content of metal component at each of ten measurement sites. The “minimum content of metal component” is the lowest value among the content of metal components at each measurement site. Similarly, the "maximum content rate of the metal component" described later is the highest value among the content rates of the metal component at each measurement site.
 発熱抵抗体40は、通常、金属粒子とセラミック粒子を含むインクペーストを印刷して形成される。そして、アルミナ等のセラミック粒子が配線抵抗を高めるが、セラミック粒子を多く含むと、導通経路となる金属粒子の間にセラミック粒子が介在して導通が阻害され、断線し易くなる。
 そこで、図4に示すように、各測定部位A1、A2において金属粒子Mとセラミック粒子Cが均一に混合されている(つまり、各測定部位A1、A2のそれぞれで、セラミック成分の含有割合がバラつかない)ことで、各測定部位A1、A2で金属粒子Mがセラミック粒子Cで分断されずに繋がって導通経路Pが確実に形成される。
 これにより、発熱抵抗体中のセラミック成分の含有割合を多くして抵抗を高くしつつ断線を抑制することができる。特に、発熱抵抗体40(配線部40L)の線幅が細くなるほど、局所的にセラミック粒子を多く含む部位があると断線し易くなるが、かかる断線も抑制できる。
The heating resistor 40 is usually formed by printing an ink paste containing metal particles and ceramic particles. Ceramic particles such as alumina increase the wiring resistance, but if a large amount of ceramic particles are included, the ceramic particles intervene between the metal particles that form the conduction path, which impedes conduction and makes disconnection more likely.
Therefore, as shown in FIG. 4, the metal particles M and the ceramic particles C are uniformly mixed at each of the measurement sites A1 and A2 (that is, the content ratio of the ceramic component is different at each of the measurement sites A1 and A2). By doing so, the metal particles M are connected without being separated by the ceramic particles C at the respective measurement sites A1 and A2, and the conductive path P is reliably formed.
As a result, it is possible to increase the content of the ceramic component in the heating resistor to increase the resistance while suppressing disconnection. In particular, as the line width of the heating resistor 40 (wiring portion 40L) becomes thinner, disconnection is more likely to occur if there is a local portion containing a large amount of ceramic particles, but such disconnection can also be suppressed.
 なお、図4では便宜上、各測定部位A1、A2の断面に沿った導通経路Pを表示したが、実際には各測定部位A1、A2の断面を通って紙面奥へ向かって導通経路が形成される。しかしながら、金属粒子M及びセラミック粒子Cの配置状態は3次元的に等方(各測定部位A1、A2の断面も、こん断面に直交する紙面奥の方向も同じ)と考えられるから、図面に表す便宜上、各測定部位A1、A2の断面に沿った導通経路Pとして表示した。 In FIG. 4, for the sake of convenience, the conduction path P along the cross section of each measurement site A1, A2 is shown, but in reality, the conduction path is formed through the cross section of each measurement site A1, A2 toward the depth of the paper surface. be. However, the arrangement state of the metal particles M and the ceramic particles C is three-dimensionally isotropic (the cross section of each measurement site A1 and A2 is the same, and the direction in the depth of the paper perpendicular to the cross section is the same), so it is shown in the drawing. For convenience, it is indicated as a conductive path P along the cross section of each measurement site A1, A2.
 一方、図5に示すように、各測定部位A1、A2において金属粒子Mとセラミック粒子Cが均一に混合されていない場合(つまり、各測定部位A1、A2で、セラミック成分の含有割合が大きくバラつく場合)を考える。
 この場合、測定部位A10では、セラミック粒子Cの割合が多いため(測定部位中に4個)、金属粒子Mがセラミック粒子Cで分断されて導通経路が形成されず、断線Bが生じる。一方、測定部位A20では、セラミック粒子Cの割合が少ないため(測定部位中に1個)、金属粒子Mがセラミック粒子Cで分断されずに繋がって導通経路Pが形成される。
On the other hand, as shown in FIG. 5, when the metal particles M and the ceramic particles C are not uniformly mixed at the measurement sites A1 and A2 (that is, the content ratio of the ceramic component varies greatly at the measurement sites A1 and A2). If it is attached).
In this case, since the proportion of the ceramic particles C is large at the measurement site A10 (four in the measurement site), the metal particles M are divided by the ceramic particles C, no conductive path is formed, and disconnection B occurs. On the other hand, at the measurement site A20, since the ratio of the ceramic particles C is small (one in the measurement site), the metal particles M are connected without being separated by the ceramic particles C to form the conductive path P.
 以上のことから、発熱抵抗体の全体の電気抵抗を示す指標として、上述の「金属成分の平均含有率」を定め、電気抵抗が高くなるように設定した。
 又、各測定部位におけるセラミック成分の含有割合がバラつかず、セラミック成分が過度に多い領域が局所的に生じて断線が生じることを抑制する指標として、上述の「金属成分の最低含有率」を定め、断線を抑制した。例えば、図5の測定部位A10では「金属成分の最低含有率」が本発明の規定範囲よりも少ないことになる。
Based on the above, the above-mentioned "average content of metal components" was determined as an index indicating the electrical resistance of the entire heating resistor, and was set so as to increase the electrical resistance.
In addition, as an index for suppressing the occurrence of disconnection due to the occurrence of local areas with an excessively large amount of ceramic components, the above-mentioned "minimum content of metal components" is used. and suppressed disconnection. For example, at the measurement site A10 in FIG. 5, the "minimum content of metal component" is less than the specified range of the present invention.
 本発明において、金属成分の最高含有率が80面積%以下であると、上記した各測定部位におけるセラミック成分の含有割合のバラツキがさらに小さくなり、断線をさらに抑制できる。
 本発明において、25℃で、厚み25μmのときの面積100μmあたりの発熱抵抗体40の電気抵抗率が0.02Ω以上であると、発熱抵抗体の電気抵抗を確実に高くすることができる。電気抵抗率は、発熱抵抗体40をカットして抵抗を測定し、カット部分の幅と厚みと長さを測定して、厚み25μmで面積100μm当たりの抵抗値を算出する。
In the present invention, when the maximum content of the metal component is 80 area % or less, the variation in the content of the ceramic component at each measurement site is further reduced, and disconnection can be further suppressed.
In the present invention, if the electrical resistivity of the heating resistor 40 per 100 μm 2 area at 25° C. and 25 μm thick is 0.02Ω or more, the electrical resistance of the heating resistor can be reliably increased. The electrical resistivity is obtained by cutting the heating resistor 40 and measuring the resistance, measuring the width, thickness and length of the cut portion, and calculating the resistance value per area of 100 μm 2 with a thickness of 25 μm.
 本実施形態において、金属成分の平均含有率、及び金属成分の最低含有率を上述の範囲に制御する方法としては、発熱抵抗体40を形成するための抵抗体インクに含まれる金属粒子とセラミック粒子の粒径を微細にすることが挙げられる。各粒子の粒径を微細にすることで、各粒子を混合したときの分散度を上げ、セラミック成分の含有割合のバラツキを低減できる。
 具体的には、例えばレーザ回折・散乱法による粒度分布にて測定したとき、金属粒子の平均粒径φを0.5~2.0μmとし、セラミック粒子の平均粒径φを0.2~2.0μmとすることができる。
 金属粒子としては、タングステン粉末とモリブデン粉末とを併用することができる。セラミック粒子としてはアルミナ等が例示できる。
 又、発熱抵抗体40を形成する際の焼成温度を調整することにより、特に金属成分の過剰な粒成長や過剰な焼結を抑制することによって、セラミック成分の含有割合のバラツキを低減できる。
In this embodiment, as a method for controlling the average content of the metal component and the minimum content of the metal component within the above ranges, the metal particles and the ceramic particles contained in the resistor ink for forming the heating resistor 40 are It is mentioned that the particle size of is made finer. By making the particle size of each particle finer, it is possible to increase the degree of dispersion when the particles are mixed and reduce the variation in the content ratio of the ceramic component.
Specifically, when the particle size distribution is measured by, for example, a laser diffraction/scattering method, the average particle diameter φ of the metal particles is 0.5 to 2.0 μm, and the average particle diameter φ of the ceramic particles is 0.2 to 2 μm. 0 μm.
As metal particles, tungsten powder and molybdenum powder can be used in combination. Alumina etc. can be illustrated as a ceramic particle.
Moreover, by adjusting the firing temperature when forming the heating resistor 40, particularly by suppressing excessive grain growth and excessive sintering of the metal component, variations in the content of the ceramic component can be reduced.
 抵抗体インクは、例えば以下のようにして製造できる。まず、金属粒子とセラミック粒子を秤量してポットに入れ、さらに溶剤を投入した後ボールミルで各粒子を微細粉末に粉砕する。さらにボールミルに樹脂(バインダー)を投入してさらに混合、粉砕後、余分な溶剤を曝気で除去する。これにより、スラリー状のインクが得られる。  The resistor ink can be manufactured, for example, as follows. First, metal particles and ceramic particles are weighed and placed in a pot, and after adding a solvent, each particle is pulverized into fine powder with a ball mill. Further, the resin (binder) is put into the ball mill, mixed and pulverized, and then excess solvent is removed by aeration. Thereby, a slurry-like ink is obtained.
 又、セラミックヒータ11は、例えば以下のようにして製造することができる。
 まず、アルミナ等のセラミック粉末のスラリーから、支持体17となる部材を押出成形し、仮焼成する。また、上記同様のスラリーから、セラミックシート19となるグリーンシートを形成し、その表面に図2に示すような発熱抵抗体40及び接続端子41、42a、42bとなる上記抵抗体インクを印刷して乾燥させる。そして、このグリーンシートの印刷面に他のグリーンシートを積層して押圧し、発熱抵抗体40及び接続端子41、42a、42bを両グリーンシートの間に埋設させる。さらに、両グリーンシートの積層体の片面にビアを設けてビア導体を充填し、直上に外部端子43となる導電性ペーストを印刷して乾燥させる。
 そして、両グリーンシートの積層体の反対面にセラミックペーストを塗布し、支持体17に巻き付けて接着し、全体を焼成する。
 また、アルミナ等のセラミック粉末を金型にて加圧成形し、焼成することによりフランジ30を得る。
Also, the ceramic heater 11 can be manufactured, for example, as follows.
First, a member to be the support 17 is extruded from a slurry of ceramic powder such as alumina, and then calcined. Also, a green sheet to be the ceramic sheet 19 is formed from the slurry similar to the above, and the resistor ink is printed on the surface of the green sheet to be the heating resistor 40 and the connection terminals 41, 42a and 42b as shown in FIG. dry. Then, another green sheet is laminated on the printed surface of this green sheet and pressed to embed the heating resistor 40 and the connection terminals 41, 42a and 42b between the two green sheets. Further, vias are provided on one side of the laminated body of both green sheets and filled with via conductors, and a conductive paste to be the external terminals 43 is printed and dried just above.
Then, a ceramic paste is applied to the opposite surface of the laminate of both green sheets, wound around the support 17 and adhered, and the whole is fired.
Also, the flange 30 is obtained by pressure-molding ceramic powder such as alumina in a mold and firing it.
 このようにして製造したセラミック基体13及びフランジ30を、接合部材20となる固形の接合材料20(ガラス)をセラミック基体13とフランジ30との隙間に配置してガラスの溶融温度以上に加熱し、セラミック基体13の外周にフランジ30を接合する。 The ceramic substrate 13 and the flange 30 manufactured in this way are placed in a gap between the ceramic substrate 13 and the flange 30, and the solid bonding material 20 (glass) serving as the bonding member 20 is placed in the gap between the ceramic substrate 13 and the flange 30, and heated to the melting temperature of the glass or higher, A flange 30 is joined to the outer periphery of the ceramic substrate 13 .
 本発明のセラミックヒータの製造方法は、セラミック基体を製造するセラミック基体製造工程と、セラミック基体の周囲に発熱抵抗体となるインクを塗布(印刷)する塗布工程と、を有し、上述のインクは金属粒子とセラミック粒子とを含有し、金属粒子の平均粒径が0.5~2.0μであり、セラミック粒子の平均粒径が0.2~2.0μmであることを特徴とする。 A method for manufacturing a ceramic heater according to the present invention includes a ceramic substrate manufacturing step of manufacturing a ceramic substrate, and a coating step of applying (printing) an ink that will become a heating resistor around the ceramic substrate. It contains metal particles and ceramic particles, wherein the metal particles have an average particle size of 0.5 to 2.0 μm and the ceramic particles have an average particle size of 0.2 to 2.0 μm.
 本発明は上記実施形態に限定されず、本発明の思想と範囲に含まれる様々な変形及び均等物に及ぶことはいうまでもない。
 発熱抵抗体を構成する金属成分やセラミック成分の種類は上記に限定されない。
 ヒータ配線回路の個数や形状も限定されない。
 又、発熱抵抗体の横断面における測定部位は、それぞれ異なる横断面としてもよく、又は、図6に示すように、同一の横断面から複数の測定部位A5,A6を採取してもよい。
It goes without saying that the present invention is not limited to the above-described embodiments, but extends to various modifications and equivalents within the spirit and scope of the present invention.
The types of metal components and ceramic components that constitute the heating resistor are not limited to those described above.
The number and shape of the heater wiring circuits are also not limited.
Also, the measurement sites in the cross section of the heating resistor may be different cross sections, or, as shown in FIG. 6, a plurality of measurement sites A5 and A6 may be taken from the same cross section.
[実施例1]
 金属粒子として、タングステン粉末とモリブデン粉末を用い、セラミック粒子としてはアルミナ粉末を用い、上述のようにして、金属粒子の平均粒径φ:1.3μm、セラミック粒子の平均粒径φ:0.5μmとした抵抗体インクを製造した。各抵抗体インクにおける金属粒子の配合割合を種々変化させた。
 この抵抗体インクを所定の発熱パターンで印刷、乾燥後、金属粒子が酸化しない程度の温度で焼成し、25℃で厚み25μmとしたときの電気抵抗率を常法により測定した。
[Example 1]
Tungsten powder and molybdenum powder were used as the metal particles, and alumina powder was used as the ceramic particles. A resistor ink was manufactured. The mixing ratio of metal particles in each resistor ink was varied.
This resistor ink was printed in a predetermined heating pattern, dried, and then baked at a temperature at which the metal particles would not be oxidized, and the electrical resistivity was measured by a conventional method when the thickness was 25 μm at 25°C.
 得られた結果を図7に示す。金属成分の含有率は、上述のように発熱抵抗体の横断面における10μm角の異なる測定部位を10か所測定した面積率(面積%)とした。
 図7に示すように、金属成分の含有率がおよそ50面積%未満となると、電気抵抗率が急激に増加した。この結果に基づき、本発明における金属成分の平均含有率を50面積%未満に設定した。
The results obtained are shown in FIG. The content of the metal component was defined as the area ratio (area %) obtained by measuring 10 different measurement points of 10 μm square in the cross section of the heating resistor as described above.
As shown in FIG. 7, when the metal component content was less than 50 area %, the electrical resistivity abruptly increased. Based on this result, the average content of metal components in the present invention was set to less than 50 area %.
[実施例2]
 実施例1と同様にして製造したセラミックヒータ(実施例)、及び市販のセラミックヒータ(比較例1~3)につき、上述の方法により、それぞれ「金属成分の平均含有率」、「金属成分の最低含有率」、「金属成分の最高含有率」を測定した。又、金属成分の含有率の高低差=(金属成分の最高含有率)-(金属成分の最低含有率)を算出した。
[Example 2]
For the ceramic heater (Example) manufactured in the same manner as in Example 1 and the commercially available ceramic heater (Comparative Examples 1 to 3), the "average metal component content" and "minimum metal component content" and "maximum content of metal components" were measured. Also, the difference in the content of the metal component=(maximum content of the metal component)-(minimum content of the metal component) was calculated.
 得られた結果を図8及び図9に示す。
 図8は比較例1,2,3および実施例における発熱抵抗体の金属成分の含有率を実際に測定した結果を示す図である。各サンプルに対してランダムに10点選別して測定した結果を各サンプルの左側のプロットに、各サンプルに対して目視によって故意に金属成分の多い領域・少ない領域を選択して測定した結果を各サンプルの右側のプロットに示す。
 そして、図9は、図8に示す測定結果を基に、比較例1,2,3および実施例における金属成分の平均含有率、最高含有率、最低含有率、金属成分の含有率の高低差を算出した結果である。
The obtained results are shown in FIGS. 8 and 9. FIG.
FIG. 8 is a diagram showing the results of actually measuring the content of metal components in the heating resistors in Comparative Examples 1, 2 and 3 and Examples. The plot on the left side of each sample shows the results of measuring 10 randomly selected points for each sample, and the results of measuring by visually selecting regions with a large amount of metal components and regions with a small amount of metal components for each sample. Shown in the right plot of the sample.
Based on the measurement results shown in FIG. 8, FIG. 9 shows the average content rate, maximum content rate, minimum content rate, and height difference of the metal component content in Comparative Examples 1, 2, and 3 and Example. is the result of calculating
 比較例1,2は「金属成分の平均含有率」が50面積%以上となって実施例よりも高く、セラミックヒータの発熱抵抗体の抵抗を高くすることができなかった。
 比較例3は、「金属成分の平均含有率」が実施例と同等に高いものの、「金属成分の最低含有率」が30面積%未満となって実施例より低く、断線し易いと考えられる。
In Comparative Examples 1 and 2, the "average content of metal component" was 50 area % or more, which was higher than that of the examples, and the resistance of the heating resistor of the ceramic heater could not be increased.
In Comparative Example 3, although the "average content of metal components" was as high as that of Examples, the "minimum content of metal components" was less than 30% by area, which was lower than that of Examples, and was likely to break.
 11  セラミックヒータ
 40  発熱抵抗体
 A1,A2、A5,A6  測定部位
11 Ceramic heater 40 Heating resistor A1, A2, A5, A6 Measurement part

Claims (4)

  1.  基体に埋設された発熱抵抗体を備えるセラミックヒータにおいて、
     前記発熱抵抗体は金属成分とセラミック成分とを含み、
     前記発熱抵抗体の横断面における10μm角の異なる測定部位を10か所測定したとき、前記金属成分の平均含有率が35面積%以上50面積%未満、前記金属成分の最低含有率が30面積%以上であることを特徴とするセラミックヒータ。
    A ceramic heater comprising a heating resistor embedded in a substrate,
    The heating resistor includes a metal component and a ceramic component,
    When measuring 10 different 10 μm square measurement sites in the cross section of the heating resistor, the average content of the metal component is 35 area % or more and less than 50 area %, and the minimum content of the metal component is 30 area %. A ceramic heater characterized by the above.
  2.  前記金属成分の最高含有率が80面積%以下であることを特徴とする請求項1に記載のセラミックヒータ。 The ceramic heater according to claim 1, characterized in that the maximum content of said metal component is 80 area % or less.
  3.  25℃で、厚み25μmのときの面積100μmあたりの前記発熱抵抗体の電気抵抗率が0.02Ω以上であることを特徴とする請求項1又は2に記載のセラミックヒータ。 3. The ceramic heater according to claim 1, wherein the electric resistivity of the heating resistor per 100 .mu.m.sup.2 area is 0.02 .OMEGA. or more at 25.degree.
  4.  セラミック基体を製造するセラミック基体製造工程と、
     前記セラミック基体の周囲に発熱抵抗体となるインクを塗布又は印刷する塗布工程と、
     を有するセラミックヒータの製造方法であって、
     前記インクは金属粒子とセラミック粒子とを含有し、前記金属粒子の平均粒径が0.5~2.0μであり、前記セラミック粒子の平均粒径が0.2~2.0μmであることを特徴とするセラミックヒータの製造方法。
    a ceramic substrate manufacturing process for manufacturing a ceramic substrate;
    A coating step of coating or printing an ink to be a heating resistor around the ceramic substrate;
    A method for manufacturing a ceramic heater having
    The ink contains metal particles and ceramic particles, the metal particles having an average particle size of 0.5 to 2.0 μm, and the ceramic particles having an average particle size of 0.2 to 2.0 μm. A method for manufacturing a ceramic heater.
PCT/JP2022/017033 2021-04-08 2022-04-04 Ceramic heater, and method for manufacturing ceramic heater WO2022215676A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22784659.9A EP4322707A1 (en) 2021-04-08 2022-04-04 Ceramic heater, and method for manufacturing ceramic heater
JP2022560471A JPWO2022215676A1 (en) 2021-04-08 2022-04-04
CN202280016310.5A CN116868684A (en) 2021-04-08 2022-04-04 Ceramic heater and method for manufacturing ceramic heater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021065623 2021-04-08
JP2021-065623 2021-04-08

Publications (1)

Publication Number Publication Date
WO2022215676A1 true WO2022215676A1 (en) 2022-10-13

Family

ID=83546086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017033 WO2022215676A1 (en) 2021-04-08 2022-04-04 Ceramic heater, and method for manufacturing ceramic heater

Country Status (4)

Country Link
EP (1) EP4322707A1 (en)
JP (1) JPWO2022215676A1 (en)
CN (1) CN116868684A (en)
WO (1) WO2022215676A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08315967A (en) * 1995-05-16 1996-11-29 Ngk Spark Plug Co Ltd Alumina ceramic heater with metallized heating layer
JPH097739A (en) 1995-06-21 1997-01-10 Kyocera Corp Ceramic heater
JPH11135239A (en) * 1997-10-28 1999-05-21 Ngk Spark Plug Co Ltd Ceramic heater
JP2019135713A (en) * 2018-02-05 2019-08-15 日本特殊陶業株式会社 Ceramic heater

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08315967A (en) * 1995-05-16 1996-11-29 Ngk Spark Plug Co Ltd Alumina ceramic heater with metallized heating layer
JPH097739A (en) 1995-06-21 1997-01-10 Kyocera Corp Ceramic heater
JPH11135239A (en) * 1997-10-28 1999-05-21 Ngk Spark Plug Co Ltd Ceramic heater
JP2019135713A (en) * 2018-02-05 2019-08-15 日本特殊陶業株式会社 Ceramic heater

Also Published As

Publication number Publication date
EP4322707A1 (en) 2024-02-14
JPWO2022215676A1 (en) 2022-10-13
CN116868684A (en) 2023-10-10

Similar Documents

Publication Publication Date Title
JP3664757B2 (en) Manufacturing method of ceramic heating element
JP6158461B1 (en) Silver powder and silver paste and use thereof
JP6967845B2 (en) Silver paste and electronic elements
CN103210290A (en) Printed temperature sensor
EP0300685A2 (en) Improvements in or relating to thick film track material
CN104206004B (en) Tubular heater
TW201227761A (en) Improved thick film resistive heater compositions comprising ag & ruo2, and methods of making same
WO2022215676A1 (en) Ceramic heater, and method for manufacturing ceramic heater
JP2019083126A (en) Ceramic heater for heating fluid
JP5342603B2 (en) Method for forming copper fine particles for copper paste and copper fired film
JP5458862B2 (en) Heat-curable silver paste and conductor film formed using the same
JP6889641B2 (en) Silver paste
JP3791085B2 (en) Resistor paste, resistor using the same, and manufacturing method thereof
JP4475022B2 (en) Strain-sensitive resistance paste, strain-sensitive sensor using the same, and manufacturing method thereof
JP6924729B2 (en) Ceramic heater
CN213428323U (en) Ceramic atomizing core
JP2009087712A (en) Conductor paste and thick-film circuit board
KR20180094284A (en) Conductive fuse using thick film printing technology
KR100795571B1 (en) Paste for thick-film resistor, manufacturing method thereof and thick-film resistor
JP7132591B2 (en) Conductive paste and sintered body
JP2004055345A (en) Conductive paste for microscopic circuit formation
JP2013161770A (en) Resistor paste for ceramic substrate heater and ceramic substrate heater
CN110121222B (en) Ceramic heater
JP6709677B2 (en) Method for preparing high-conductivity thick-film aluminum paste
JP6831222B2 (en) Ceramic heater

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022560471

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784659

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280016310.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022784659

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022784659

Country of ref document: EP

Effective date: 20231108