WO2022215665A1 - Passive part - Google Patents

Passive part Download PDF

Info

Publication number
WO2022215665A1
WO2022215665A1 PCT/JP2022/016985 JP2022016985W WO2022215665A1 WO 2022215665 A1 WO2022215665 A1 WO 2022215665A1 JP 2022016985 W JP2022016985 W JP 2022016985W WO 2022215665 A1 WO2022215665 A1 WO 2022215665A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
inductor
conductor pattern
conductor patterns
parallel running
Prior art date
Application number
PCT/JP2022/016985
Other languages
French (fr)
Japanese (ja)
Inventor
比沙希 北川
雅博 柴田
敏博 多田
丈 木倉
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2022215665A1 publication Critical patent/WO2022215665A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor

Definitions

  • the present invention relates to passive components.
  • Patent Literature 1 discloses a spiral inductor composed of conductor patterns arranged on a plurality of conductor layers.
  • the lower conductor pattern and the upper conductor pattern face each other in the vertical direction. Since a parasitic capacitance is generated between the two conductor patterns facing each other in the vertical direction, the high-frequency characteristics of the inductor, such as the Q value, are degraded. Insulating films must be made thick in order to dispose a plurality of conductor layers sufficiently apart in the vertical direction in order to reduce parasitic capacitance. However, it is difficult to unconditionally increase the thickness of the insulating film due to restrictions on the manufacturing process.
  • An object of the present invention is to provide a passive component capable of reducing the parasitic capacitance of an inductor including laminated conductor patterns.
  • a substrate having an insulating surface; an inductor including two conductor patterns stacked on the insulating surface of the substrate with an insulating film sandwiched therebetween; each of the two conductor patterns forming the inductor has a spiral shape in plan view,
  • the two conductor patterns that make up the inductor are connected in series so that current flows in the same direction with respect to the winding direction, and include parallel running portions that are arranged in parallel and adjacent to each other in a plan view, Both of the parallel running portions of the two conductor patterns that constitute the inductor have portions that do not overlap each other in the width direction orthogonal to the direction extending in parallel,
  • the surface of the conductor pattern farther from the substrate facing the substrate faces the side opposite to the substrate of the conductor pattern closer to the substrate.
  • Passive components are provided that are positioned farther from the substrate than the plane.
  • Both of the parallel running portions of the two conductor patterns that make up the inductor have portions that do not overlap each other in the width direction. , the parasitic capacitance of the inductor can be reduced.
  • FIG. 1A is a plan view of an inductor included in a passive component according to the first embodiment, and FIG. 1B is a cross-sectional view taken along dashed-dotted line 1B-1B in FIG. 1A.
  • 2A is a plan view of an inductor included in a passive component according to the second embodiment, and FIG. 2B is a cross-sectional view taken along dashed-dotted line 2B-2B in FIG. 2A.
  • 3A is a plan view of an inductor included in a passive component according to the third embodiment, and FIG. 3B is a cross-sectional view taken along dashed-dotted line 3B-3B in FIG. 3A.
  • FIG. 4A is a plan view of an inductor included in a passive component according to a fourth embodiment, and FIG. 4B is a cross-sectional view taken along dashed-dotted line 4B-4B in FIG. 4A.
  • 5A is a plan view of an inductor included in a passive component according to the fifth embodiment, and FIG. 5B is a cross-sectional view taken along dashed-dotted line 5B-5B in FIG. 5A.
  • 6A is a plan view of an inductor included in a passive component according to the sixth embodiment, and FIG. 6B is a cross-sectional view taken along dashed-dotted line 6B-6B in FIG. 6A.
  • FIG. 7 is an equivalent circuit diagram of a passive component according to the seventh embodiment.
  • FIG. 7 is an equivalent circuit diagram of a passive component according to the seventh embodiment.
  • FIG. 8A is a plan view of the passive component according to the seventh embodiment at an intermediate stage of manufacturing
  • FIG. 8B is a cross-sectional view taken along dashed-dotted line 8B-8B in FIG. 8A
  • FIG. 9A is a plan view of the passive component according to the seventh embodiment at an intermediate stage of manufacturing
  • FIG. 9B is a cross-sectional view taken along dashed-dotted line 9B-9B in FIG. 9A
  • 10A is a plan view of the passive component according to the seventh embodiment in the middle of manufacturing
  • FIG. 10B is a cross-sectional view taken along the dashed-dotted line 10B-10B in FIG. 10A
  • FIG. 11A is a plan view of the passive component according to the seventh embodiment at an intermediate stage of manufacturing
  • FIG. 11A is a plan view of the passive component according to the seventh embodiment at an intermediate stage of manufacturing
  • FIG. 11A is a plan view of the passive component according to the seventh embodiment at an intermediate stage of manufacturing
  • FIG. 11A is a
  • FIG. 11B is a cross-sectional view taken along dashed-dotted line 11B-11B in FIG. 11A.
  • FIG. 12A is a plan view of the passive component according to the seventh embodiment at an intermediate stage of manufacturing, and FIG. 12B is a cross-sectional view taken along dashed-dotted line 12B-12B in FIG. 12A.
  • 13A is a plan view of a passive component according to the seventh embodiment, and FIG. 13B is a cross-sectional view taken along dashed-dotted line 13B-13B in FIG. 13A.
  • FIG. 14 is a cross-sectional view of part of a passive component according to an eighth embodiment.
  • 15A is a plan view of an inductor included in a passive component according to the ninth embodiment, and FIG. 15B is a cross-sectional view taken along dashed-dotted line 15B-15B in FIG. 15A.
  • 16A and 16B are cross-sectional views of inductors of passive components according to the tenth embodiment and its modification, respectively
  • FIG. 1A is a plan view of an inductor 30 included in the passive component according to the first embodiment
  • FIG. 1B is a cross-sectional view taken along dashed-dotted line 1B-1B in FIG. 1A.
  • a passive component according to the first embodiment includes a substrate 20 having an insulating surface and an inductor 30 disposed over the insulating surface of substrate 20 .
  • the thickness of the substrate 20 is, for example, within the range of 50 ⁇ m or more and 300 ⁇ m or less, and the thickness of the substrate 20 is determined according to the height requirements of the passive components.
  • the inductor 30 includes a lower layer conductor pattern 31 and an upper layer conductor pattern 32 .
  • the lower layer conductor pattern 31 is hatched relatively darkly, and the upper layer conductor pattern 32 is relatively lightly hatched. 2A to 6A, which will be described later, are also hatched in the same manner.
  • the underlying conductor pattern 31 is disposed on the insulating surface of the substrate 20 .
  • a first insulating film 21 is arranged on the substrate 20 so as to cover the conductor pattern 31 in the lower layer.
  • the upper conductor pattern 32 is arranged on the first insulating film 21 .
  • a second-layer insulating film 22 is arranged on the first-layer insulating film 21 so as to cover the upper-layer conductor pattern 32 .
  • the bottom surface of the upper conductor pattern 32 farther from the substrate 20 is lower than the upper surface of the lower conductor pattern 31 closer to the substrate 20 (the surface facing away from the substrate 20). , are located far from the substrate 20 .
  • Each of the conductor patterns 31 and 32 has a spiral shape in plan view.
  • each of the conductor patterns 31 and 32 is arranged along the perimeter of a square or rectangle in plan view.
  • each of the conductor patterns 31 and 32 is composed of a plurality of straight line portions bent at right angles.
  • the two conductor patterns 31 and 32 are connected in series so that current flows in the same direction with respect to the winding direction.
  • Each of the conductor patterns 31 and 32 has about two turns, and one end of the upper conductor pattern 32 is connected to one end of the lower conductor pattern 31 through a via hole 35 .
  • the two conductor patterns 31 and 32 include linear portions arranged side by side in parallel in plan view.
  • "arranged in parallel” means that they are arranged side by side and extend in the same direction.
  • the linear portions that are adjacent to each other and arranged in parallel are referred to as “parallel portions”. Current flows in the same direction in the two straight portions that constitute the parallel running portion.
  • the direction (horizontal direction in FIG. 1B) perpendicular to the direction in which the two conductor patterns 31 and 32 run in parallel in plan view is defined as the width direction. do.
  • the portion with the narrower center-to-center spacings P1 and P2 and the inner peripheral side portion 32A of the upper layer conductor pattern 32 constitute parallel running portions.
  • the inner peripheral side portion 32A of the upper layer conductor pattern 32 and the inner peripheral side portion 31A of the lower layer conductor pattern 31 constitute a parallel running portion.
  • the inner peripheral side portion 32A and the outer peripheral side portion 31B of the underlying conductive pattern 31 do not constitute a parallel running portion. That is, when focusing on a portion of one conductor pattern, the portion of the other conductor pattern that has the narrowest center-to-center distance from the focused portion and the focused portion constitute the parallel running portion.
  • the inner peripheral portion 32A of the upper conductive pattern 32 forms parallel portions with both the inner peripheral portion 31A and the outer peripheral portion 31B of the lower conductive pattern 31.
  • the parallel running portions of the two conductor patterns 31 and 32 do not overlap in plan view. At a location (crossing location) where one conductor pattern 31 crosses the other conductor pattern 32 in the width direction, both have an overlapping portion.
  • an oxide insulating layer or nitride insulating layer is laminated on a ceramic substrate such as silicon nitride or aluminum oxide, a glass substrate made of a glass material containing silicon oxide as a main component, or a semiconductor substrate such as Si or GaAs.
  • a substrate or the like is used.
  • the oxide insulating layer is formed by thermal oxidation, chemical vapor deposition (CVD), or the like, for example.
  • the nitride insulating layer is formed by CVD, for example.
  • a resin material with a low Young's modulus such as epoxy or polyimide is used for the insulating films 21 and 22 .
  • an inorganic material may be mixed in the resin material of the insulating films 21 and 22 .
  • a metal material with high conductivity such as Au, Cu, Al is used.
  • Metal materials containing these metals or alloys containing these metals as main materials may also be used.
  • component A is contained as the main material. It is preferable to use a metal containing Cu or a Cu alloy as a main material for the conductor patterns 31 and 32 because it is relatively inexpensive and can be easily thickened.
  • a metal layer may be arranged between the conductor pattern 31 and the substrate 20 and the insulating film 21 and between the conductor pattern 32 and the insulating films 21 and 22 for the purpose of improving adhesion.
  • Ti, Ni, W, Ta, and alloys containing these metals can be used for the metal layer intended to improve adhesion.
  • An example alloy is TiW.
  • Cu is used as the conductor patterns 31 and 32, the Cu surface may be roughened.
  • the excellent effects of the first embodiment will be described.
  • the parallel running portions of the two conductor patterns 31 and 32 do not overlap in plan view. Therefore, the parasitic capacitance in the parallel running portion is smaller than in the configuration in which the two overlap each other. This suppresses deterioration of the high-frequency characteristics of the inductor 30 .
  • the two conductor patterns 31 and 32 overlap at the intersection, the area of the overlapping portion at the intersection is small compared to the total area of the conductor patterns 31 and 32 . Therefore, the parasitic capacitance generated at the intersection is sufficiently smaller than the parasitic capacitance when the parallel running portions overlap.
  • the bottom surface of the upper conductor pattern 32 is located farther from the substrate 20 than the upper surface of the lower conductor pattern 31 . Therefore, the distance between the upper conductor pattern 32 and the lower conductor pattern 31 becomes wider than in the configuration in which the bottom surface of the upper conductor pattern 32 is positioned closer to the substrate 20 than the upper surface of the lower conductor pattern 31. . Thereby, the parasitic capacitance between the lower layer conductor pattern 31 and the upper layer conductor pattern 32 can be reduced.
  • each of the two conductor patterns 31 and 32 includes a straight portion, but may include only curved portions without including straight portions.
  • the parallel running portions are formed by the curved portions that are arranged adjacent to each other in parallel.
  • the tangential directions of the two curved lines are substantially parallel.
  • the direction orthogonal to the tangential direction of the curved portion corresponds to the width direction of the curved portion.
  • each of the two conductor patterns 31 and 32 has about 2 turns, but the number of turns may be other than 2, and the number of turns need not be an integer. The number of turns may be less than one. Moreover, it is not necessary to make the number of turns of one conductor pattern 31 and the number of turns of the other conductor pattern 32 the same.
  • the inductor 30 may include three or more conductor patterns.
  • the two conductor patterns 31 and 32 are arranged on the insulating surface of the substrate 20 and on the first insulating film 21, respectively.
  • the arrangement of the patterns 31 and 32 is not limited to this configuration.
  • each of the two conductor patterns 31 and 32 may be arranged on the first insulating film 21 and on the second insulating film 22 .
  • the two conductor patterns 31 and 32 may be conductor patterns laminated with an insulating film interposed between them, and are not necessarily on the insulating surface of the substrate 20 and on the first insulating film 21 . Doesn't have to be in place.
  • FIG. 2A is a plan view of an inductor 30 included in a passive component according to the second embodiment
  • FIG. 2B is a cross-sectional view taken along dashed-dotted line 2B-2B in FIG. 2A.
  • each of the two conductor patterns 31, 32 forming the inductor 30 is composed only of linear portions.
  • each of the two conductor patterns 31 and 32 is composed of a straight portion and an arcuate curved portion.
  • the number of turns of the lower conductor pattern 31 is about 2, and the number of turns of the upper conductor pattern 32 is about 1.5.
  • the right portion 32A of the upper conductive pattern 32 overlaps the inner peripheral portion 31A of the lower conductive pattern 31 in plan view, but does not overlap the outer peripheral portion 31B. do not have. Therefore, in FIG. 2B, the widthwise center-to-center spacing P1 between the right side portion 32A of the upper layer conductor pattern 32 and the inner peripheral side portion 31A of the lower layer conductor pattern 31 is equal to the right side portion 32A of the upper layer conductor pattern 32. is narrower than the center-to-center interval P2 in the width direction between the portion 32A and the portion 31B on the outer peripheral side of the conductor pattern 31 in the lower layer.
  • the right-hand portion 32A of the upper-layer conductor pattern 32 constitutes a portion running parallel to the inner peripheral side portion 31A of the lower-layer conductor pattern 31, but the upper-layer conductor The right portion 32A of the pattern 32 does not run parallel to the outer peripheral portion 31B of the underlying conductor pattern 31 .
  • part of the parallel running portions of the lower layer conductor pattern 31 and the upper layer conductor pattern 32 partially overlap in plan view, and each of the two mutually overlapping parallel running portions is It has a portion that does not overlap with respect to the width direction.
  • the parallel running portions of the two conductor patterns 31 and 32 are mutually shifted in the width direction. For this reason, compared to a configuration in which one of the two parallel running portions is included in the other, an excellent effect is obtained in that the parasitic capacitance generated between the two parallel running portions is reduced.
  • the two parallel portions partially overlap in plan view, an excellent effect is obtained that the area occupied by the inductor 30 is reduced.
  • FIG. 3A is a plan view of an inductor 30 included in a passive component according to the third embodiment
  • FIG. 3B is a cross-sectional view taken along dashed-dotted line 3B-3B in FIG. 3A.
  • the lower layer conductor pattern 31 has about 2 turns
  • the upper layer conductor pattern 32 has about 1.5 turns.
  • the number of turns of the conductor pattern 31 in the lower layer is approximately 1.5
  • the number of turns of the conductor pattern 32 in the upper layer is approximately 2.
  • portions of the parallel running portions of the two conductor patterns 31 and 32 overlap each other in plan view.
  • the parallel running portions of the two conductor patterns 31 and 32 do not overlap each other, and the two conductor patterns 31 and 32 do not overlap each other. 32 are overlapped in plan view only at the intersections of the two.
  • the width W1 of the conductor pattern 31 in the lower layer is equal to the width W2 of the conductor pattern 32 in the upper layer.
  • one of the two conductor patterns 31 and 32 is arranged between the inner circumference side portion and the outer circumference side portion of the other conductor pattern.
  • the distances G1 and G2 between the inner and outer peripheral portions of the two conductor patterns 31 and 32 are equal to the widths W1 and W2 of the two conductor patterns 31 and 32, respectively. Therefore, the parallel running portions of the two conductor patterns 31 and 32 are in contact with each other in plan view.
  • One of the two conductor patterns 31 and 32 intersects with the other conductor pattern approximately every half turn, and the positions of the two conductor patterns 31 and 32 in the width direction are exchanged at the crossing point.
  • the distance between the innermost two portions of the upper-layer conductor pattern 32 is denoted by L2.
  • the interval L1 and the interval L2 are equal.
  • the excellent effects of the third embodiment will be described.
  • the parallel running portions of the two conductor patterns 31 and 32 do not overlap in plan view, the parallel running portions partially overlap with the second embodiment (FIGS. 2A and 2B).
  • the parasitic capacitance of inductor 30 is further reduced. Since the parallel running portions of the two conductor patterns 31 and 32 are in contact with each other in a plan view, the area occupied by the inductor 30 is smaller than in a configuration in which the two parallel running portions are spaced apart in the width direction. An excellent effect is obtained.
  • FIG. 4A is a plan view of an inductor included in a passive component according to a fourth embodiment
  • FIG. 4B is a cross-sectional view taken along dashed-dotted line 4B-4B in FIG. 4A.
  • the lower layer conductor pattern 31 has about 1.5 turns
  • the upper layer conductor pattern 32 has about 2 turns.
  • the number of turns of the conductor pattern 31 in the lower layer is approximately 2
  • the number of turns of the conductor pattern 32 in the upper layer is approximately 1.5.
  • One of the two conductor patterns 31 and 32 intersects with the other conductor pattern about every turn. Counting from the inner circumference side of the inductor 30 in plan view, the lower layer conductor pattern 31 is arranged on the first and third turns, and the upper layer conductor pattern 32 is arranged on the second and fourth turns. there is Therefore, in the cross-section shown in FIG. 4B, the interval L1 between the two inner peripheral portions of the lower conductive pattern 31 is narrower than the interval L2 between the two inner peripheral portions of the upper conductive pattern 32 .
  • the parallel running portions of the two conductor patterns 31 and 32 are in contact with each other without overlapping in plan view, as in the third embodiment.
  • the excellent effects of the fourth embodiment will be described. Also in the fourth embodiment, similar to the third embodiment, the excellent effect of further reducing the parasitic capacitance of the inductor 30 can be obtained. Furthermore, an excellent effect is obtained that the area occupied by the inductor 30 is reduced.
  • FIG. 5A is a plan view of an inductor 30 included in a passive component according to the fifth embodiment
  • FIG. 5B is a cross-sectional view taken along dashed-dotted line 5B-5B in FIG. 5A.
  • the widths W1 and W2 of the two conductor patterns 31 and 32 are equal.
  • the width W1 of the conductor pattern 31 in the lower layer is narrower than the width W2 of the conductor pattern 32 in the upper layer.
  • the conductor pattern 31 in the lower layer is thicker than the conductor pattern 32 in the upper layer.
  • the parallel running portions of the two conductor patterns 31 and 32 are in contact with each other without overlapping, as in the third embodiment (FIGS. 3A and 3B). Therefore, in the cross-sectional view shown in FIG. 5B, the interval G1 between the inner peripheral portion and the outer peripheral portion of the lower layer conductor pattern 31 is equal to the width W2 of the upper layer conductor pattern 32 . Similarly, the distance G2 between the inner peripheral portion and the outer peripheral portion of the upper layer conductor pattern 32 is equal to the width W1 of the lower layer conductor pattern 31 .
  • the excellent effects of the fifth embodiment will be described. Also in the fifth embodiment, the excellent effect of reducing the parasitic capacitance of the inductor 30 can be obtained. It is not necessary to make the widths W1 and W2 of the two conductor patterns 31 and 32 equal as in the fifth embodiment. Since the lower conductor pattern 31 having a smaller width is made thicker than the upper conductor pattern 32, an increase in parasitic resistance due to the narrower conductor pattern is suppressed.
  • the insulating surface of the substrate 20, which serves as the base surface of the lower conductor pattern 31, is substantially flat, but the upper surface of the insulating film 21, which serves as the base surface of the upper conductor pattern 32, reflects the shape of the lower conductor pattern 31. unevenness may appear. When the conductor pattern is formed, disconnection is likely to occur if the underlying surface has unevenness. In the fifth embodiment, since the width W2 of the upper layer conductor pattern 32 is relatively large, the occurrence of disconnection can be suppressed.
  • the dielectric constant of the substrate 20 is higher than the dielectric constant of the insulating film 21 , the electric lines of force extending in the lateral direction between the inner peripheral side portion and the outer peripheral side portion of the underlying conductor pattern 31 preferentially enter the substrate 20 . occurs in Therefore, the substrate 20 having a high dielectric constant becomes a factor that increases the parasitic capacitance generated between the inner peripheral side portion and the outer peripheral side portion of the underlying conductor pattern 31 .
  • the width of the lower conductor pattern 31 is relatively narrow, and the width of the upper conductor pattern 32 is relatively wide. The interval G1 with the side portion is widened. Therefore, it is possible to suppress an increase in the parasitic capacitance generated between the inner peripheral portion and the outer peripheral portion of the underlying conductor pattern 31 .
  • the width W1 of the lower conductor pattern 31 is smaller than the width W2 of the upper conductor pattern 32; It can be thinner.
  • the conductor pattern 31 in the lower layer should be thinner than the conductor pattern 32 in the upper layer.
  • the influence of the increase in the parasitic capacitance can be reduced.
  • the conductor pattern 31 of the lower layer is thin, the height of the unevenness generated on the underlying surface of the conductor pattern 32 of the upper layer is reduced. Therefore, disconnection of the conductor pattern 32 in the upper layer does not tend to occur.
  • FIG. 6A is a plan view of an inductor 30 included in a passive component according to the sixth embodiment
  • FIG. 6B is a cross-sectional view taken along dashed-dotted line 6B-6B in FIG. 6A.
  • the width of each of the conductor patterns 31, 32 is uniform.
  • the widths W1o and W2o of the outer peripheral portions of the conductor patterns 31 and 32 are larger than the widths W1i and W2i of the inner peripheral portions.
  • the thicknesses of the conductor patterns 31 and 32 are the same on the inner peripheral side and the outer peripheral side.
  • the length of one turn of the outer peripheral portion is longer than the length of one turn of the inner peripheral portion.
  • the width of the outer peripheral portion of the conductor patterns 31 and 32 is wider than the width of the inner peripheral portion, the resistance per unit length of the outer peripheral portion is greater than that of the inner peripheral side. Lower than the resistance per unit length of the part. Therefore, the difference in resistance per turn between the outer peripheral portion and the inner peripheral portion is reduced.
  • the widths of the conductor patterns 31 and 32 are preferably set so that the resistance per turn is substantially equal between the outer peripheral portion and the inner peripheral portion.
  • the widths of the conductor patterns 31 and 32 are changed for each turn in the winding direction, but the widths of the conductor patterns 31 and 32 may be changed at arbitrary positions in the winding direction. .
  • the dimension in the width direction of the conductor pattern with more than one turn monotonously decreases from the end on the outer circumference side toward the end on the inner circumference side. may be configured.
  • “monotonically decreasing” means “monotonically decreasing" in a broad sense.
  • the width dimension at a certain position narrower than the width at a position closer to the outer end than that position? , or equal to or greater than or equal to the width at a position closer to the inner edge than that position. Even if the configuration according to this modified example is employed, the difference in resistance per turn between the outer peripheral portion and the inner peripheral portion can be reduced.
  • a passive component according to a seventh embodiment will be described with reference to FIGS. 7 to 13B.
  • a passive component according to the seventh embodiment is an integrated passive component (IPD) in which a plurality of inductors and a plurality of capacitors are integrated, and has a bandpass filter function.
  • IPD integrated passive component
  • FIG. 7 is an equivalent circuit diagram of a passive component according to the seventh embodiment.
  • a capacitor C1, an inductor L1, and a capacitor C2 are inserted in series in this order between the input terminal In and the output terminal Out.
  • a series circuit of the capacitor C3 and the inductor L2 and a series circuit of the capacitor C4 and the inductor L3 are connected between the input terminal In and the ground GND.
  • a series circuit of the capacitor C5 and the inductor L4 and a series circuit of the capacitor C6 and the inductor L5 are connected between the output terminal Out and the ground GND.
  • FIGS. 8A to 13B are plan views of the passive component in the middle of manufacturing according to the seventh embodiment.
  • FIG. 13A is a plan view of a passive component according to the seventh embodiment;
  • Figures 8B, 9B, 10B, 11B, 12B, and 13B are shown in Figures 8A, 9A, 10A, 11A, 12A, and 13A, respectively.
  • capacitors C1 to C6 are formed on the insulating surface of the substrate 40, and Intermediate electrodes 52 of capacitors C1, C2, C3, C4, C5 and C6 (hereinafter referred to as capacitors C1 to C6) are formed.
  • the underlying conductor pattern 51 and the intermediate electrode 52 are hatched.
  • the conductor pattern 51 under the inductor L1 has about two turns, and the conductor patterns 51 under the inductors L2, L3, L4, and L5 have about one turn.
  • the lower conductor pattern 51 and the intermediate electrode 52 include a metal layer 61 for enhancing adhesion and a metal layer 62 disposed thereon.
  • the metal layer 61 for enhancing adhesion is made of high-melting-point metals such as Ti, Ni, W, and Ta, or alloys containing these metals. Cu or the like is used for the metal layer 62 .
  • the substrate 40 it is preferable to use a highly insulating material such as silicon oxide or silicon nitride. Since silicon nitride has good thermal conductivity, it is suitably used as the substrate 40 of passive components for applications where a relatively large amount of power is applied.
  • the thickness of the substrate 40 is, for example, 50 ⁇ m or more and 300 ⁇ m or less.
  • a metal layer 61 is formed on the insulating surface of the substrate 40 by sputtering or the like.
  • a Cu film which is used as a power supply electrode for electroplating, is formed on the metal layer 61 by a sputtering method or the like.
  • the upper surface of the Cu film is covered with a photoresist film, and openings are formed in this photoresist film so as to match the underlying conductor pattern 51 and the intermediate electrode 52 .
  • a Cu film is deposited in the opening by electroplating. After removing the photoresist film, the exposed portion of the Cu film used for power supply and the unnecessary metal layer 61 are removed.
  • a Cu film for power supply and a Cu film formed by electrolytic plating constitute the metal layer 62 .
  • a dielectric film 41 is formed on the entire surface of the substrate 40 by plasma-enhanced chemical vapor deposition (P-CVD) or the like so as to cover the underlying conductor pattern 51 and the intermediate electrode 52 .
  • Dielectric film 41 is used as a dielectric film between electrodes of capacitors C1 to C6.
  • the thickness of the dielectric film 41 is determined so as to meet quality requirements such as the capacitance value of the capacitor, withstand voltage, and moisture resistance.
  • the thickness of the dielectric film 41 is 30 nm or more and 500 nm or less.
  • a material of the dielectric film 41 for example, a dielectric material containing silicon nitride, silicon oxide, aluminum oxide, aluminum nitride, tantalum oxide, etc. as a main material is used.
  • dielectric material containing the same material as the main material of the substrate 40 is preferable to use as the dielectric film 41 .
  • the difference in coefficient of linear expansion between the substrate 40 and the dielectric film 41 becomes small. This suppresses the occurrence of defects such as cracks due to concentration of thermal stress.
  • a plurality of via holes H1 are formed in the dielectric film 41 by reactive ion etching (RIE) or the like.
  • the plurality of via holes H1 are arranged at both ends of the conductor pattern 51 under the inductors L1 to L5 and are included in the conductor pattern 51.
  • the dielectric film 41 in unnecessary regions is also removed at the same time.
  • a pair of electrodes 53 for each of the capacitors C1 to C6 are formed.
  • the underlying conductor pattern 51 and the intermediate electrode 52 are represented by outline figures, and the electrodes 53 are hatched.
  • a pair of electrodes 53 of each of capacitors C1-C6 is included in intermediate electrode 52 in plan view.
  • the electrode 53 on one side, the dielectric film 41, the intermediate electrode 52, the dielectric film 41, and the electrode 53 on the other side constitute an MIM capacitor.
  • a pair of electrodes 53 of each of the capacitors C1 to C6 is made of a highly conductive metal such as Al, Au, Cu, or an alloy containing these metals.
  • a metal layer may be provided on at least one of the lower surface and the upper surface of the pair of electrodes to improve adhesion.
  • a high-melting-point metal such as Ti, Ni, W, or Ta, or an alloy containing these metals can be used.
  • This metal layer also functions as a diffusion prevention layer that prevents metal from diffusing into the insulating film.
  • a photoresist pattern is formed by the image reverse method. After forming the photoresist pattern, a Ti film and an Au film are formed by vacuum deposition or sputtering. The thicknesses of the Ti film and the Au film are set to 50 nm and 100 nm, respectively. After that, the photoresist pattern and the Ti film and Au film thereon are removed by a lift-off method.
  • an insulating film 42 is formed on the dielectric film 41 so as to cover the electrodes 53 .
  • a plurality of via holes H2 are formed in the insulating film 42.
  • the plurality of via holes H2 are arranged at positions overlapping with the via holes H1 formed in the dielectric film 41 and at positions included in the pair of electrodes 53 of each of the capacitors C1 to C6.
  • a method for forming the insulating film 42 and the via hole H2 will be described.
  • a B-stage epoxy resin film processed into a film and mixed with a photosensitive material is laminated by a vacuum lamination method.
  • the via hole H2 is formed by developing using an alkaline solution. After that, heat treatment is performed to harden the epoxy resin film.
  • a conductor pattern 56, a plurality of wirings 55, and a plurality of pads 57 are formed on the inductors L1 to L5.
  • the conductor pattern 56, the plurality of wirings 55, and the plurality of pads 57 on the upper layer of the inductors L1 to L5 are hatched.
  • the conductor pattern 51 in the lower layer, the intermediate electrode 52, and the electrodes 53 of the capacitors C1 to C6 are indicated by outline figures.
  • the plurality of conductor patterns 56, the plurality of wirings 55, and the plurality of pads 57 are composed of two layers, a metal layer 63 made of Ti or the like arranged for the purpose of improving adhesion, and a metal layer 64 made of Cu or the like thereon. consists of
  • the number of turns of the conductive pattern 56 on the upper layer of the inductors L1, L2, L4 is about 1.5, and the number of turns of the conductive pattern 56 on the upper layer of the inductors L3, L5 is about 1.
  • the lower-layer conductor pattern 51 and the upper-layer conductor pattern 56 of the inductor L1 are similar to the relationship between the lower-layer conductor pattern 31 and the upper-layer conductor pattern 32 of the inductor 30 according to the third embodiment (FIGS. 3A and 3B).
  • the parallel running portions do not overlap each other.
  • most of the conductor pattern 51 in the lower layer and the conductor pattern 56 in the upper layer are substantially aligned in the width direction.
  • each upper layer conductor pattern 56 is connected to the lower layer conductor pattern 51 through via holes H2 and H1.
  • the other end of conductor pattern 56 on the upper layer of inductor L1 is connected to one electrode 53 of capacitor C1 through via hole H2.
  • the other end of the conductor pattern 56 on the upper layer of the inductors L2 to L5 is continuous with a pad 57 for ground GND.
  • a plurality of wirings 55 connect one end of the conductor pattern 51 under the inductors L1 to L5 and one electrode 53 of each of the capacitors C2 to C6.
  • Three wirings 55 extending from a pad 57 for the input terminal In are connected to one electrodes 53 of the capacitors C1, C3 and C4, respectively.
  • Three wirings 55 extending from a pad 57 for the output terminal Out are connected to one electrodes 53 of the capacitors C2, C5 and C6, respectively.
  • a Ti film and a Cu film are formed by sputtering.
  • a photoresist film is formed on the Cu film, and openings matching the conductor pattern 56 , the wiring 55 and the pad 57 are formed in the photoresist film.
  • a Cu film is deposited in the opening by electroplating.
  • the photoresist film is removed with an organic solvent.
  • the exposed portion of the Cu film used as the seed layer and the unnecessary Ti film are removed by wet etching.
  • an insulating film 43 is formed on the insulating film 42 so as to cover the conductor pattern 56, the wiring 55, and the pad 57, and a plurality of via holes H3 are formed in the insulating film 43.
  • the method of forming the insulating film 43 and the via hole H3 is the same as the method of forming the insulating film 42 and the via hole H2.
  • a plurality of via holes H3 are each included in a plurality of pads 57 in plan view.
  • a plurality of external connection terminals 58 are formed on the insulating film 43 and their surfaces are covered with an anti-oxidation film 59. As shown in FIGS. In FIG. 13A, the external connection terminals 58 are hatched. A plurality of external connection terminals 58 are connected to pads 57 through via holes H3. Two external connection terminals 58 are ground terminals, another external connection terminal 58 is an input terminal In, and the remaining one external connection terminal 58 is an output terminal Out.
  • a low resistance metal such as Cu, Al or Au is used for the external connection terminal 58 .
  • NiAu, NiPdAu, or the like is used for the antioxidant film 59 .
  • the anti-oxidation film 59 prevents oxidation of the external connection terminals 58 and ensures sufficient solder connectivity.
  • a solder layer such as NiSn or NiSnAg may be added on the anti-oxidation film 59 .
  • An external connection terminal 58 is formed by a method similar to the method of forming the conductor pattern 56 , the pad 57 and the wiring 55 .
  • An antioxidant film 59 made of NiAu is formed on the surface of the external connection terminal 58 by electroless plating.
  • the substrate 40 is ground (back-grinded) from the rear surface to reduce the thickness of the substrate 40 to a desired thickness. Finally, the substrate 40 is diced to singulate the passive components.
  • Parasitic capacitance between the lower-layer conductor pattern 51 and the upper-layer conductor pattern 56 is reduced because the parallel-running portions of the lower-layer conductor pattern 51 and the upper-layer conductor pattern 56 of the inductor L1 do not overlap in plan view. be able to.
  • the intermediate electrodes 52 (FIGS. 8A and 8B) of the capacitors C1 to C6 are arranged in the same layer as the conductor patterns 51 (FIGS. 8A and 8B) under the inductors L1 to L5, and the same film formation is performed. Formed in the process. Therefore, the manufacturing process can be simplified.
  • the wiring 55 (FIGS. 12A and 12B) connected to the inductors L1 to L5 and the pad 57 is arranged in the same layer as the conductor pattern 56 on the upper layer of the inductors L1 to L5.
  • Conductive patterns 56 on the upper layer of inductors L1 to L5 are usually formed thick in order to suppress an increase in electrical resistance. Since the wiring 55 arranged in the same layer as the conductor pattern 56 is also thickened, the equivalent series resistance (ESR) of the capacitors C1 to C6 can be reduced. Therefore, the Q value of the filter is improved, and it becomes possible to reduce the filter loss.
  • ESR equivalent series resistance
  • the conductor pattern 51 in the lower layer and the conductor pattern 56 in the upper layer do not overlap each other in the inductor L1.
  • a configuration in which two parallel running portions partially overlap each other may also be used.
  • the parallel running portions of the lower layer conductor pattern 51 and the upper layer conductor pattern 56 may not overlap, or may partially overlap in the width direction.
  • the conductor patterns 51 in the lower layer of the inductors L1 to L5 and the intermediate electrodes 52 of the capacitors C1 to C6 are arranged in the same layer.
  • at least one electrode of capacitors C1 to C6 and at least one conductor pattern of inductors L1 to L5 may be arranged in the same layer.
  • FIG. 14 is a cross-sectional view of part of the passive component according to the eighth embodiment.
  • the conductor patterns 31 and 32 of the inductor 30 have a substantially rectangular cross-sectional shape perpendicular to the winding direction (hereinafter simply referred to as cross-sectional shape).
  • the cross-sectional shape of the lower layer conductor pattern 31 is trapezoidal
  • the cross-sectional shape of the upper layer conductor pattern 32 is an inverted trapezoid.
  • trapezoidal and "inverted trapezoidal” do not mean geometrically strict trapezoids or inverted trapezoids.
  • a cross-sectional shape in which the side surface of the conductor pattern is inclined and the width gradually narrows in the direction away from the substrate 20 is called a “trapezoid”, and the cross-sectional shape in which the width gradually widens in the direction away from the substrate 20 is called a “trapezoid”. It is called "inverted trapezoidal shape”.
  • the width of the surface of the lower conductor pattern 31 facing the substrate 20 is denoted by W1b, and the width of the surface facing away from the substrate 20 is denoted by W1t.
  • the width of the surface of the upper conductor pattern 32 facing the substrate 20 is denoted by W2b, and the width of the surface facing away from the substrate 20 is denoted by W2t.
  • W1b>W1t and W2t>W2b are established.
  • the width of the overlapping portion in plan view of the parallel running portions of the conductor patterns 31 and 32 is denoted as Wova.
  • the width of the overlapped portion of the parallel running portions of the conductor patterns 31 and 32 is denoted by Wovb.
  • the parallel running portions of the two conductor patterns 31 and 32 have portions that do not overlap each other in the width direction. That is, the relationships Wova ⁇ W1b and Wova ⁇ W2t are established. Furthermore, the relationships Wovb ⁇ W1t and Wovb ⁇ W2b are established.
  • the basic process of forming conductor patterns 31 and 32 is common to the process of forming conductor pattern 51 (FIGS. 8A and 8B) in the lower layer of the passive component according to the seventh embodiment.
  • the cross-sectional shape of the opening of the photoresist film used as a mask when depositing the Cu film by electrolytic plating is trapezoidal or inverted trapezoidal.
  • Such an opening can be formed by intentionally shifting the focus position in the thickness direction when exposing the photoresist film.
  • the conductor patterns 31 and 32 having a trapezoidal or inverted trapezoidal cross section can be formed.
  • a Ti film and a Cu film are formed on the entire insulating surface of the substrate 20 by sputtering. After that, using the Cu film as a seed layer, a Cu film is formed on the entire insulating surface of the substrate 20 by electroplating. After that, the portion where the conductor pattern 31 is to be formed is covered with a photoresist pattern. Using this photoresist pattern as an etching mask, the Cu film is etched using an aqueous copper chloride solution or an aqueous iron chloride solution.
  • a conductor pattern 31 having a substantially trapezoidal cross-sectional shape is formed.
  • a film made of a high-melting-point metal such as Ni, W, or Ta, or a film made of an alloy containing a high-melting-point metal such as Ti, Ni, W, or Ta may be used.
  • the area of the overlapping portion in plan view becomes smaller than when the cross-sectional shape is rectangular.
  • the width Wovb of the overlapping portion is narrower than the width Wova of the overlapping portion. Therefore, the parasitic capacitance between the two conductor patterns 31 and 32 is further reduced. Thereby, the Q value of the inductor 30 can be made higher.
  • the width Wovb of the overlapping portion can be made almost zero.
  • the current tends to concentrate near the upward ridgeline of the lower conductor pattern 31 and near the downward ridgeline of the upper conductor pattern 32 .
  • the range in which the current concentrates is composed of planes. As a result, the local concentration of current is alleviated, and an excellent effect is obtained that dielectric breakdown is less likely to occur.
  • it is preferable that the areas where the lower-layer conductor pattern 31 and the upper-layer conductor pattern 32 face each other are configured as planes.
  • the distance between the inner and outer peripheral portions of the conductor patterns 31 and 32 can be narrowed. can. Thereby, it is possible to reduce the size of the inductor 30 .
  • the cross-sectional shapes of the conductor patterns 31 and 32 are both trapezoidal with corners, but they may be trapezoids with rounded corners.
  • the cross-sectional shape of the conductor patterns 31 and 32 may be a rounded trapezoid depending on the conditions of the manufacturing process. Even in this case, when the regions in which the lower-layer conductor pattern 31 and the upper-layer conductor pattern 32 face each other are composed of planes, an excellent effect that dielectric breakdown is less likely to occur can be obtained.
  • the cross-sectional shape of the lower conductor pattern 31 is trapezoidal, and the cross-sectional shape of the upper conductive pattern 32 is an inverted trapezoid.
  • the other conductor pattern 32 may be rectangular or trapezoidal.
  • the cross-sectional shape of the parallel running portion of the upper conductor pattern 32 that is, the conductor pattern of the two conductor patterns 31, 32 farther from the substrate 20
  • the other conductor pattern 31 is , a rectangular shape, or an inverted trapezoidal shape.
  • FIG. 15A is a plan view of an inductor 30 included in a passive component according to the ninth embodiment
  • FIG. 15B is a cross-sectional view taken along dashed-dotted line 15B-15B in FIG. 15A.
  • the planar view shape of the inductor 30 shown in FIG. 15A is the same as the planar view shape of the inductor 30 of the fifth embodiment (FIG. 5A).
  • a substrate 20 used for passive components according to the ninth embodiment includes a base substrate 20A made of a semiconductor such as silicon, and an insulating layer 20B made of silicon oxide, silicon nitride, or the like disposed thereon.
  • a lower layer conductor pattern 31 is arranged on the insulating layer 20B.
  • the width W1 of the lower layer conductor pattern 31 is narrower than the width W2 of the upper layer conductor pattern 32 .
  • the conductor pattern 31 in the lower layer is thicker than the conductor pattern 32 in the upper layer.
  • the lower layer conductor pattern 31 and the upper layer conductor pattern 32 have substantially the same thickness.
  • thickness means a dimension in the height direction when the direction perpendicular to the insulating surface of the substrate 20 is defined as the height direction.
  • the substrate 20 includes a base substrate 20A made of a semiconductor and an insulating layer 20B disposed thereon, parasitic capacitance is generated between the conductor patterns 31, 32 forming the inductor 30 and the base substrate 20A.
  • the parasitic capacitance between the underlying conductor pattern 31 and the underlying substrate 20A tends to increase.
  • the lower-layer conductor pattern 31 is thinner than the upper-layer conductor pattern 32, the lower-layer conductor pattern 31 is thinner than the upper-layer conductor pattern 32, compared to the configuration in which the lower-layer conductor pattern 31 has the same width as the upper-layer conductor pattern 32. and the underlying substrate 20A can be reduced.
  • the parasitic capacitance is greatly affected by the area of the region where the underlying conductor pattern 31 and the base substrate 20A face each other, and is hardly affected by the thickness of the underlying conductor pattern 31. Therefore, in the ninth embodiment, the lower layer conductor pattern 31 may be thicker than the upper layer conductor pattern 32, as in the fifth embodiment (FIG. 5A).
  • FIG. 16A is a cross-sectional view of the passive component inductor 30 according to the tenth embodiment.
  • the distance between the inner peripheral side portion and the outer peripheral side portion of the two conductor patterns 31 and 32 adjacent to each other in the width direction, the lower layer conductor pattern 31 and the upper layer conductor pattern 32 No mention is made of the vertical spacing between and .
  • the tenth embodiment defines the preferred relationship of these intervals.
  • the distance in the height direction between the two conductor patterns 31 and 32 forming the inductor 30 is denoted by H.
  • the distance between the outer peripheral side portion and the inner peripheral side portion of the lower layer conductor pattern 31 adjacent in the width direction is denoted by G1
  • the distance between the outer peripheral side portion and the inner peripheral side portion of the upper layer conductive pattern 32 adjacent in the width direction is denoted by G1.
  • the distance between the parts is labeled as G2.
  • the heightwise interval H is wider than both the widthwise intervals G1 and G2.
  • the excellent effects of the tenth embodiment will be described.
  • the widthwise intervals G1 and G2 cannot be widened without limit. Even if the interval H in the height direction is widened, the area occupied by the inductor 30 does not increase.
  • the parasitic capacitance A certain effect of reducing the It should be noted that the interval H in the height direction may be wider than at least one of the intervals G1 and G2 in the width direction. Also in this configuration, a certain effect of reducing the parasitic capacitance can be obtained.
  • FIG. 16B is a cross-sectional view of the passive component inductor 30 according to the modification of the tenth embodiment.
  • both the widthwise intervals G1 and G2 are wider than the heightwise interval H.
  • the gaps G1 and G2 in the width direction wider than the gap H in the height direction, a certain effect of reducing the parasitic capacitance can be obtained.
  • At least one of the gaps G1 and G2 in the width direction may be wider than the gap H in the height direction. Also in this configuration, a certain effect of reducing the parasitic capacitance can be obtained.

Abstract

In the present invention, on an insulating surface of a substrate is disposed an inductor containing two patterned conductors which are mutually layered with an insulating film sandwiched therebetween. The two patterned conductors constituting the inductor each have a spiral form in plan view. The two patterned conductors are connected in series so that current flows in identical directions relative to the circuiting direction, and contain side-by-side running sections that are disposed in parallel adjoining each other in plan view. Both the side-by-side running sections of the two patterned conductors have portions that do not overlap each other relative to a width direction that is orthogonal to the direction in which the conductors extend in parallel. Between the two patterned conductors constituting the inductor, the patterned conductor that is farther from the substrate has a surface facing toward the substrate, and such surface is disposed in a position which is farther from the substrate than a surface which is of the patterned conductor that is nearer to the substrate and which is facing away from the substrate side.

Description

受動部品passive components
 本発明は、受動部品に関する。 The present invention relates to passive components.
 無線通信機能を有する電子機器の急速な普及に伴い、無線通信において極めて多数の高周波数帯域が利用されるようになってきた。多数の高周波数帯域に対応するために、ひとつの通信モジュールにおいてマルチバンド化及びマルチモード化が進んでいる。また、モジュールサイズの増大を抑制するために、通信モジュール内に搭載される部品の小型薄型化、高集積化が進んでいる。 With the rapid spread of electronic devices with wireless communication functions, an extremely large number of high frequency bands have come to be used in wireless communication. In order to support a large number of high frequency bands, multi-bands and multi-modes are being used in one communication module. In addition, in order to suppress an increase in module size, the components mounted in communication modules are becoming smaller, thinner, and more highly integrated.
 通信モジュールの高集積化を実現する技術として、三次元実装や、パッケージ基板への部品埋め込み等の技術が挙げられる。ノイズフィルタや帯域フィルタ等の集積化された受動部品にも、小型薄型化、またはパッケージ基板への埋め込み対応等が要求されている。基板上に薄膜技術を用いて受動部品を形成する集積受動部品が提案されている(特許文献1参照)。例えば、特許文献1に、複数の導体層に配置した導体パターンで構成したスパイラルインダクタが開示されている。 Technologies for realizing high integration of communication modules include technologies such as three-dimensional mounting and embedding components in package substrates. Integrated passive components such as noise filters and bandpass filters are also required to be smaller and thinner, or to be embedded in package substrates. Integrated passive components have been proposed in which passive components are formed on a substrate using thin film technology (see Patent Document 1). For example, Patent Literature 1 discloses a spiral inductor composed of conductor patterns arranged on a plurality of conductor layers.
特表2018-534763号公報Japanese Patent Publication No. 2018-534763
 導体パターンを積層した構造のインダクタにおいて、下側の導体パターンと上側の導体パターンとが上下方向に対向する。上下方向に対向する2つの導体パターンの間に寄生容量が発生するため、インダクタの高周波特性、例えばQ値が低下してしまう。寄生容量を低減させるために複数の導体層を上下方向に十分離して配置するためには、絶縁膜を厚くしなければならない。ところが、製造プロセス上の制約から、絶縁膜を無条件に厚くすることは困難である。 In an inductor having a structure in which conductor patterns are laminated, the lower conductor pattern and the upper conductor pattern face each other in the vertical direction. Since a parasitic capacitance is generated between the two conductor patterns facing each other in the vertical direction, the high-frequency characteristics of the inductor, such as the Q value, are degraded. Insulating films must be made thick in order to dispose a plurality of conductor layers sufficiently apart in the vertical direction in order to reduce parasitic capacitance. However, it is difficult to unconditionally increase the thickness of the insulating film due to restrictions on the manufacturing process.
 本発明の目的は、積層された導体パターンを含むインダクタの寄生容量を低減させることが可能な受動部品を提供することである。 An object of the present invention is to provide a passive component capable of reducing the parasitic capacitance of an inductor including laminated conductor patterns.
 本発明の一観点によると、
 絶縁性表面の有する基板と、
 前記基板の絶縁性表面の上に、相互に絶縁膜を挟んで積層された2つの導体パターンを含むインダクタと
を備えており、
 前記インダクタを構成する2つの導体パターンの各々は、平面視においてスパイラル形状を有し、
 前記インダクタを構成する2つの導体パターンは、周回方向に関して同一方向に電流が流れるように直列に接続されており、平面視において相互に隣り合って並行に配置された並走部分を含み、
 前記インダクタを構成する2つの導体パターンの並走部分の両方が、並行に延びる方向に対して直交する幅方向に関して相互に重ならない部分を有しており、
 前記インダクタを構成する2つの導体パターンのうち、前記基板から遠い方の導体パターンの、前記基板に対向する面が、前記基板に近い方の導体パターンの、前記基板の側とは反対側を向く面より、前記基板から遠い位置に配置されている受動部品が提供される。
According to one aspect of the invention,
a substrate having an insulating surface;
an inductor including two conductor patterns stacked on the insulating surface of the substrate with an insulating film sandwiched therebetween;
each of the two conductor patterns forming the inductor has a spiral shape in plan view,
The two conductor patterns that make up the inductor are connected in series so that current flows in the same direction with respect to the winding direction, and include parallel running portions that are arranged in parallel and adjacent to each other in a plan view,
Both of the parallel running portions of the two conductor patterns that constitute the inductor have portions that do not overlap each other in the width direction orthogonal to the direction extending in parallel,
Of the two conductor patterns forming the inductor, the surface of the conductor pattern farther from the substrate facing the substrate faces the side opposite to the substrate of the conductor pattern closer to the substrate. Passive components are provided that are positioned farther from the substrate than the plane.
 インダクタを構成する2つの導体パターンの並走部分の両方が、幅方向に関して相互に重ならない部分を有しているため、両者が完全に重なる構成、または一方が他方に包含される構成と比べて、インダクタの持つ寄生容量を低減させることができる。 Both of the parallel running portions of the two conductor patterns that make up the inductor have portions that do not overlap each other in the width direction. , the parasitic capacitance of the inductor can be reduced.
図1Aは、第1実施例による受動部品に含まれるインダクタの平面図であり、図1Bは、図1Aの一点鎖線1B-1Bにおける断面図である。FIG. 1A is a plan view of an inductor included in a passive component according to the first embodiment, and FIG. 1B is a cross-sectional view taken along dashed-dotted line 1B-1B in FIG. 1A. 図2Aは、第2実施例による受動部品に含まれるインダクタの平面図であり、図2Bは、図2Aの一点鎖線2B-2Bにおける断面図である。2A is a plan view of an inductor included in a passive component according to the second embodiment, and FIG. 2B is a cross-sectional view taken along dashed-dotted line 2B-2B in FIG. 2A. 図3Aは、第3実施例による受動部品に含まれるインダクタの平面図であり、図3Bは、図3Aの一点鎖線3B-3Bにおける断面図である。3A is a plan view of an inductor included in a passive component according to the third embodiment, and FIG. 3B is a cross-sectional view taken along dashed-dotted line 3B-3B in FIG. 3A. 図4Aは、第4実施例による受動部品に含まれるインダクタの平面図であり、図4Bは、図4Aの一点鎖線4B-4Bにおける断面図である。FIG. 4A is a plan view of an inductor included in a passive component according to a fourth embodiment, and FIG. 4B is a cross-sectional view taken along dashed-dotted line 4B-4B in FIG. 4A. 図5Aは、第5実施例による受動部品に含まれるインダクタの平面図であり、図5Bは、図5Aの一点鎖線5B-5Bにおける断面図である。5A is a plan view of an inductor included in a passive component according to the fifth embodiment, and FIG. 5B is a cross-sectional view taken along dashed-dotted line 5B-5B in FIG. 5A. 図6Aは、第6実施例による受動部品に含まれるインダクタの平面図であり、図6Bは、図6Aの一点鎖線6B-6Bにおける断面図である。6A is a plan view of an inductor included in a passive component according to the sixth embodiment, and FIG. 6B is a cross-sectional view taken along dashed-dotted line 6B-6B in FIG. 6A. 図7は、第7実施例による受動部品の等価回路図である。FIG. 7 is an equivalent circuit diagram of a passive component according to the seventh embodiment. 図8Aは、第7実施例による受動部品の製造途中段階における平面図であり、図8Bは、図8Aの一点鎖線8B-8Bにおける断面図である。FIG. 8A is a plan view of the passive component according to the seventh embodiment at an intermediate stage of manufacturing, and FIG. 8B is a cross-sectional view taken along dashed-dotted line 8B-8B in FIG. 8A. 図9Aは、第7実施例による受動部品の製造途中段階における平面図であり、図9Bは、図9Aの一点鎖線9B-9Bにおける断面図である。FIG. 9A is a plan view of the passive component according to the seventh embodiment at an intermediate stage of manufacturing, and FIG. 9B is a cross-sectional view taken along dashed-dotted line 9B-9B in FIG. 9A. 図10Aは、第7実施例による受動部品の製造途中段階における平面図であり、図10Bは、図10Aの一点鎖線10B-10Bにおける断面図である。10A is a plan view of the passive component according to the seventh embodiment in the middle of manufacturing, and FIG. 10B is a cross-sectional view taken along the dashed-dotted line 10B-10B in FIG. 10A. 図11Aは、第7実施例による受動部品の製造途中段階における平面図であり、図11Bは、図11Aの一点鎖線11B-11Bにおける断面図である。FIG. 11A is a plan view of the passive component according to the seventh embodiment at an intermediate stage of manufacturing, and FIG. 11B is a cross-sectional view taken along dashed-dotted line 11B-11B in FIG. 11A. 図12Aは、第7実施例による受動部品の製造途中段階における平面図であり、図12Bは、図12Aの一点鎖線12B-12Bにおける断面図である。FIG. 12A is a plan view of the passive component according to the seventh embodiment at an intermediate stage of manufacturing, and FIG. 12B is a cross-sectional view taken along dashed-dotted line 12B-12B in FIG. 12A. 図13Aは、第7実施例による受動部品の平面図であり、図13Bは、図13Aの一点鎖線13B-13Bにおける断面図である。13A is a plan view of a passive component according to the seventh embodiment, and FIG. 13B is a cross-sectional view taken along dashed-dotted line 13B-13B in FIG. 13A. 図14は、第8実施例による受動部品の一部分の断面図である。FIG. 14 is a cross-sectional view of part of a passive component according to an eighth embodiment. 図15Aは、第9実施例による受動部品に含まれるインダクタの平面図であり、図15Bは、図15Aの一点鎖線15B-15Bにおける断面図である。15A is a plan view of an inductor included in a passive component according to the ninth embodiment, and FIG. 15B is a cross-sectional view taken along dashed-dotted line 15B-15B in FIG. 15A. 図16A及び図16Bは、それぞれ第10実施例及びその変形例による受動部品のインダクタの断面図である。16A and 16B are cross-sectional views of inductors of passive components according to the tenth embodiment and its modification, respectively.
 [第1実施例]
 図1A及び図1Bを参照して、第1実施例による受動部品について説明する。
 図1Aは、第1実施例による受動部品に含まれるインダクタ30の平面図であり、図1Bは、図1Aの一点鎖線1B-1Bにおける断面図である。第1実施例による受動部品は、絶縁性表面を有する基板20と、基板20の絶縁性表面の上に配置されたインダクタ30とを含む。基板20の厚さは、例えば50μm以上300μm以下の範囲内であり、受動部品の高さの要請に応じて基板20の厚さが決定される。
[First embodiment]
A passive component according to a first embodiment will be described with reference to FIGS. 1A and 1B.
FIG. 1A is a plan view of an inductor 30 included in the passive component according to the first embodiment, and FIG. 1B is a cross-sectional view taken along dashed-dotted line 1B-1B in FIG. 1A. A passive component according to the first embodiment includes a substrate 20 having an insulating surface and an inductor 30 disposed over the insulating surface of substrate 20 . The thickness of the substrate 20 is, for example, within the range of 50 μm or more and 300 μm or less, and the thickness of the substrate 20 is determined according to the height requirements of the passive components.
 インダクタ30は、下層の導体パターン31と、上層の導体パターン32とを含む。図1Aにおいて、下層の導体パターン31に相対的に濃いハッチングを付し、上層の導体パターン32に相対的に淡いハッチングを付している。後に説明する図2Aから図6Aまでの平面図においても同様のハッチングを付している。下層の導体パターン31は基板20の絶縁性表面の上に配置されている。下層の導体パターン31を覆うように、基板20の上に1層目の絶縁膜21が配置されている。上層の導体パターン32は、1層目の絶縁膜21の上に配置されている。上層の導体パターン32を覆うように、1層目の絶縁膜21の上に2層目の絶縁膜22が配置されている。基板20から遠い方の上層の導体パターン32の底面(基板20に対向する面)が、基板20に近い方の下層の導体パターン31の上面(基板20の側とは反対側を向く面)より、基板20から遠い位置に配置されている。 The inductor 30 includes a lower layer conductor pattern 31 and an upper layer conductor pattern 32 . In FIG. 1A, the lower layer conductor pattern 31 is hatched relatively darkly, and the upper layer conductor pattern 32 is relatively lightly hatched. 2A to 6A, which will be described later, are also hatched in the same manner. The underlying conductor pattern 31 is disposed on the insulating surface of the substrate 20 . A first insulating film 21 is arranged on the substrate 20 so as to cover the conductor pattern 31 in the lower layer. The upper conductor pattern 32 is arranged on the first insulating film 21 . A second-layer insulating film 22 is arranged on the first-layer insulating film 21 so as to cover the upper-layer conductor pattern 32 . The bottom surface of the upper conductor pattern 32 farther from the substrate 20 (the surface facing the substrate 20) is lower than the upper surface of the lower conductor pattern 31 closer to the substrate 20 (the surface facing away from the substrate 20). , are located far from the substrate 20 .
 導体パターン31、32の各々は、平面視においてスパイラル形状を有している。例えば、導体パターン31、32の各々は、平面視において正方形または長方形の外周線に沿うように配置されている。言い換えると、導体パターン31、32の各々は、直角に折れ曲がる複数の直線部分で構成されている。 Each of the conductor patterns 31 and 32 has a spiral shape in plan view. For example, each of the conductor patterns 31 and 32 is arranged along the perimeter of a square or rectangle in plan view. In other words, each of the conductor patterns 31 and 32 is composed of a plurality of straight line portions bent at right angles.
 2つの導体パターン31、32は、周回方向に関して同一方向に電流が流れるように、直列に接続されている。導体パターン31、32の各々のターン数は約2であり、上層の導体パターン32の一方の端部は、ビアホール35を通って下層の導体パターン31の一方の端部に接続されている。 The two conductor patterns 31 and 32 are connected in series so that current flows in the same direction with respect to the winding direction. Each of the conductor patterns 31 and 32 has about two turns, and one end of the upper conductor pattern 32 is connected to one end of the lower conductor pattern 31 through a via hole 35 .
 2つの導体パターン31、32は、平面視において相互に隣り合って並行に配置された直線部分を含む。ここで、「並行に配置」とは、相互に並んで同一方向に延びていることを意味する。相互に隣り合って並行に配置された直線部分を、「並走部分」ということとする。並走部分を構成する2つの直線部分には、同一方向に電流が流れる。2つの導体パターン31、32の並走部分が、平面視において、並行に延びる方向(図1Bの紙面に対して垂直な方向)と直交する方向(図1Bにおいて左右方向)を、幅方向と定義する。 The two conductor patterns 31 and 32 include linear portions arranged side by side in parallel in plan view. Here, "arranged in parallel" means that they are arranged side by side and extend in the same direction. The linear portions that are adjacent to each other and arranged in parallel are referred to as “parallel portions”. Current flows in the same direction in the two straight portions that constitute the parallel running portion. The direction (horizontal direction in FIG. 1B) perpendicular to the direction in which the two conductor patterns 31 and 32 run in parallel in plan view (the direction perpendicular to the paper surface of FIG. 1B) is defined as the width direction. do.
 以下、「並走部分」についてより詳細に説明する。例えば、図1Aの一点鎖線1B-1Bにおける断面において、上層の導体パターン32のうち内周側の部分32Aには、平面視においてその両側に、下層の導体パターン31の2つの部分31A、31Bが並行に配置されている。図1Bに示したように、上層の導体パターン32の内周側の部分32Aと下層の導体パターン31の内周側の部分31Aとの幅方向の中心間の間隔をP1と標記し、上層の導体パターン32の内周側の部分32Aと下層の導体パターン31の外周側の部分31Bとの幅方向の中心間の間隔をP2と標記する。 The "parallel running part" will be explained in more detail below. For example, in the cross section taken along the dashed-dotted line 1B-1B in FIG. 1A, two portions 31A and 31B of the lower layer conductor pattern 31 are located on both sides of the inner peripheral portion 32A of the upper layer conductor pattern 32 in plan view. arranged in parallel. As shown in FIG. 1B, the center-to-center spacing in the width direction between the inner peripheral portion 32A of the upper conductive pattern 32 and the inner peripheral portion 31A of the lower conductive pattern 31 is denoted by P1. The center-to-center spacing in the width direction between the inner peripheral portion 32A of the conductor pattern 32 and the outer peripheral portion 31B of the underlying conductor pattern 31 is denoted by P2.
 下層の導体パターン31の2つの部分31A、31Bのうち、中心間の間隔P1、P2が狭い方の部分と、上層の導体パターン32の内周側の部分32Aとが、並走部分を構成する。例えば、P1<P2の場合、上層の導体パターン32の内周側の部分32Aと、下層の導体パターン31の内周側の部分31Aとが、並走部分を構成し、上層の導体パターン32の内周側の部分32Aと、下層の導体パターン31の外周側の部分31Bとは、並走部分を構成しない。すなわち、一方の導体パターンの一部分に着目したとき、他方の導体パターンのうち、着目した部分からの中心間の間隔が最も狭い部分と、着目した部分とが、並走部分を構成する。なお、P1=P2の場合、上層の導体パターン32の内周側の部分32Aは、下層の導体パターン31の内周側の部分31A及び外周側の部分31Bの両方と並走部分を構成する。 Of the two portions 31A and 31B of the lower layer conductor pattern 31, the portion with the narrower center-to-center spacings P1 and P2 and the inner peripheral side portion 32A of the upper layer conductor pattern 32 constitute parallel running portions. . For example, when P1<P2, the inner peripheral side portion 32A of the upper layer conductor pattern 32 and the inner peripheral side portion 31A of the lower layer conductor pattern 31 constitute a parallel running portion. The inner peripheral side portion 32A and the outer peripheral side portion 31B of the underlying conductive pattern 31 do not constitute a parallel running portion. That is, when focusing on a portion of one conductor pattern, the portion of the other conductor pattern that has the narrowest center-to-center distance from the focused portion and the focused portion constitute the parallel running portion. When P1=P2, the inner peripheral portion 32A of the upper conductive pattern 32 forms parallel portions with both the inner peripheral portion 31A and the outer peripheral portion 31B of the lower conductive pattern 31. FIG.
 2つの導体パターン31、32の並走部分は、平面視において重なりを持たない。なお、一方の導体パターン31が他方の導体パターン32を幅方向に横切る箇所(交差箇所)においては、両者が重なり部分を有している。 The parallel running portions of the two conductor patterns 31 and 32 do not overlap in plan view. At a location (crossing location) where one conductor pattern 31 crosses the other conductor pattern 32 in the width direction, both have an overlapping portion.
 次に、受動部品の各構成部分の材料の例について説明する。
 基板20として、例えば窒化ケイ素や酸化アルミニウム等のセラミック基板、酸化ケイ素を主成分とするガラス材料からなるガラス基板、SiやGaAs等の半導体基板の上に酸化物絶縁層や窒化物絶縁層を積層した基板等が用いられる。酸化物絶縁層は、例えば熱酸化や化学気相成長(CVD)等により形成される。窒化物絶縁層は、例えばCVDにより形成される。
Next, examples of materials for each component of the passive component will be described.
As the substrate 20, for example, an oxide insulating layer or nitride insulating layer is laminated on a ceramic substrate such as silicon nitride or aluminum oxide, a glass substrate made of a glass material containing silicon oxide as a main component, or a semiconductor substrate such as Si or GaAs. A substrate or the like is used. The oxide insulating layer is formed by thermal oxidation, chemical vapor deposition (CVD), or the like, for example. The nitride insulating layer is formed by CVD, for example.
 絶縁膜21、22には、エポキシ、ポリイミド等のヤング率の低い樹脂材料が用いられる。絶縁膜21、22の線膨張係数を基板20の線膨張係数に近づけるために、絶縁膜21、22の樹脂材料内に無機材料を混在させてもよい。 A resin material with a low Young's modulus such as epoxy or polyimide is used for the insulating films 21 and 22 . In order to bring the coefficient of linear expansion of the insulating films 21 and 22 close to that of the substrate 20 , an inorganic material may be mixed in the resin material of the insulating films 21 and 22 .
 導体パターン31、32には、Au、Cu、Al等の導電率の高い金属材料が用いられる。これらの金属、またはこれらの金属を含有する合金を主たる材料として含む金属材料と用いてもよい。成分Aの含有量が50重量%以上であるとき、成分Aが主たる材料として含まれているといえる。なお、比較的低価格で、かつ容易に厚膜化できることから、導体パターン31、32に、CuまたはCuの合金を主たる材料として含む金属を用いることが好ましい。 For the conductor patterns 31 and 32, a metal material with high conductivity such as Au, Cu, Al is used. Metal materials containing these metals or alloys containing these metals as main materials may also be used. When the content of component A is 50% by weight or more, it can be said that component A is contained as the main material. It is preferable to use a metal containing Cu or a Cu alloy as a main material for the conductor patterns 31 and 32 because it is relatively inexpensive and can be easily thickened.
 導体パターン31と基板20及び絶縁膜21との間、導体パターン32と絶縁膜21、22との間に、密着性の向上を目的として金属層を配置してもよい。密着性向上を目的とした金属層には、例えば、Ti、Ni、W、Taや、これらの金属を含有する合金を用いることができる。合金の例として、TiWが挙げられる。導体パターン31、32としてCuを用いる場合は、Cu表面の粗化処理を行ってもよい。 A metal layer may be arranged between the conductor pattern 31 and the substrate 20 and the insulating film 21 and between the conductor pattern 32 and the insulating films 21 and 22 for the purpose of improving adhesion. For example, Ti, Ni, W, Ta, and alloys containing these metals can be used for the metal layer intended to improve adhesion. An example alloy is TiW. When Cu is used as the conductor patterns 31 and 32, the Cu surface may be roughened.
 次に、第1実施例の優れた効果について説明する。
 平面視において、下層の導体パターン31と上層の導体パターン32とが重なりを持つと、両者の間に寄生容量が発生する。第1実施例では、2つの導体パターン31、32の並走部分が、平面視において重なりを持たない。このため、両者が重なりを有する構成と比べて、並走部分における寄生容量が小さくなる。これにより、インダクタ30の高周波特性の低下が抑制される。なお、2つの導体パターン31、32は、交差箇所において重なっているが、交差箇所における重なり部分の面積は、導体パターン31、32の全体の面積に比べて僅かである。このため、並走部分が重なっている場合の寄生容量に比べて、交差箇所に発生する寄生容量は十分小さい。
Next, the excellent effects of the first embodiment will be described.
In plan view, if the lower layer conductor pattern 31 and the upper layer conductor pattern 32 overlap each other, a parasitic capacitance is generated between them. In the first embodiment, the parallel running portions of the two conductor patterns 31 and 32 do not overlap in plan view. Therefore, the parasitic capacitance in the parallel running portion is smaller than in the configuration in which the two overlap each other. This suppresses deterioration of the high-frequency characteristics of the inductor 30 . Although the two conductor patterns 31 and 32 overlap at the intersection, the area of the overlapping portion at the intersection is small compared to the total area of the conductor patterns 31 and 32 . Therefore, the parasitic capacitance generated at the intersection is sufficiently smaller than the parasitic capacitance when the parallel running portions overlap.
 さらに、第1実施例では、上層の導体パターン32の底面が、下層の導体パターン31の上面より、基板20から遠い位置に配置されている。このため、上層の導体パターン32の底面が下層の導体パターン31の上面より基板20に近い位置に配置された構成と比べて、上層の導体パターン32と下層の導体パターン31との間隔が広くなる。これにより、下層の導体パターン31と上層の導体パターン32との間の寄生容量を低減させることができる。 Furthermore, in the first embodiment, the bottom surface of the upper conductor pattern 32 is located farther from the substrate 20 than the upper surface of the lower conductor pattern 31 . Therefore, the distance between the upper conductor pattern 32 and the lower conductor pattern 31 becomes wider than in the configuration in which the bottom surface of the upper conductor pattern 32 is positioned closer to the substrate 20 than the upper surface of the lower conductor pattern 31. . Thereby, the parasitic capacitance between the lower layer conductor pattern 31 and the upper layer conductor pattern 32 can be reduced.
 次に、第1実施例の変形例について説明する。
 第1実施例では、2つの導体パターン31、32の各々が直線部分を含んでいるが、直線部分を含まず曲線部分のみを含むようにしてもよい。この場合、相互に隣り合って並行に配置される曲線部分によって、並走部分が構成される。並走部分を構成する2つの曲線部分においては、2つの曲線の接線方向がほぼ平行になる。平面視において、曲線部分の接線方向に対して直交する方向が、曲線部分の幅方向に相当する。
Next, a modification of the first embodiment will be described.
In the first embodiment, each of the two conductor patterns 31 and 32 includes a straight portion, but may include only curved portions without including straight portions. In this case, the parallel running portions are formed by the curved portions that are arranged adjacent to each other in parallel. In the two curved portions forming the parallel running portion, the tangential directions of the two curved lines are substantially parallel. In plan view, the direction orthogonal to the tangential direction of the curved portion corresponds to the width direction of the curved portion.
 第1実施例では、2つの導体パターン31、32の各々のターン数が約2であるが、ターン数を2以外にしてもよく、ターン数は整数である必要はない。ターン数は1未満であってもよい。また、一方の導体パターン31のターン数と他方の導体パターン32のターン数とを同一にする必要もない。 In the first embodiment, each of the two conductor patterns 31 and 32 has about 2 turns, but the number of turns may be other than 2, and the number of turns need not be an integer. The number of turns may be less than one. Moreover, it is not necessary to make the number of turns of one conductor pattern 31 and the number of turns of the other conductor pattern 32 the same.
 第1実施例では、インダクタ30が2つの導体パターン31、32を含む構成を示したが、インダクタ30に含まれる導体パターンは3つ以上でもよい。また、第1実施例では、2つの導体パターン31、32のそれぞれが、基板20の絶縁性表面の上、及び1層目の絶縁膜21の上に配置されている構成を示したが、導体パターン31、32の配置はこの構成に限定されない。例えば、2つの導体パターン31、32のそれぞれは、1層目の絶縁膜21の上、及び2層目の絶縁膜22の上に配置されていてもよい。言い換えれば、2つの導体パターン31、32は、相互に絶縁膜を挟んで積層された導体パターンであればよく、必ずしも基板20の絶縁性表面の上、及び1層目の絶縁膜21の上に配置されている必要はない。 Although the inductor 30 includes two conductor patterns 31 and 32 in the first embodiment, the inductor 30 may include three or more conductor patterns. In the first embodiment, the two conductor patterns 31 and 32 are arranged on the insulating surface of the substrate 20 and on the first insulating film 21, respectively. The arrangement of the patterns 31 and 32 is not limited to this configuration. For example, each of the two conductor patterns 31 and 32 may be arranged on the first insulating film 21 and on the second insulating film 22 . In other words, the two conductor patterns 31 and 32 may be conductor patterns laminated with an insulating film interposed between them, and are not necessarily on the insulating surface of the substrate 20 and on the first insulating film 21 . Doesn't have to be in place.
 [第2実施例]
 次に、図2A及び図2Bを参照して第2実施例による受動部品について説明する。以下、第1実施例による受動部品(図1A、図1B)と共通の構成については説明を省略する。
[Second embodiment]
Next, a passive component according to a second embodiment will be described with reference to FIGS. 2A and 2B. Hereinafter, descriptions of configurations common to the passive components (FIGS. 1A and 1B) according to the first embodiment will be omitted.
 図2Aは、第2実施例による受動部品に含まれるインダクタ30の平面図であり、図2Bは、図2Aの一点鎖線2B-2Bにおける断面図である。第1実施例では、インダクタ30を構成する2つの導体パターン31、32の各々が、直線部分のみで構成されている。これに対して第2実施例では、2つの導体パターン31、32の各々が、直線部分と円弧状の曲線部分とで構成されている。 FIG. 2A is a plan view of an inductor 30 included in a passive component according to the second embodiment, and FIG. 2B is a cross-sectional view taken along dashed-dotted line 2B-2B in FIG. 2A. In the first embodiment, each of the two conductor patterns 31, 32 forming the inductor 30 is composed only of linear portions. On the other hand, in the second embodiment, each of the two conductor patterns 31 and 32 is composed of a straight portion and an arcuate curved portion.
 下層の導体パターン31のターン数は約2であり、上層の導体パターン32のターン数は約1.5である。図2Bに示した断面図において、上層の導体パターン32の右側の部分32Aは、平面視において下層の導体パターン31の内周側の部分31Aと重なっており、外周側の部分31Bとは重なっていない。このため、図2Bにおいて、上層の導体パターン32の右側の部分32Aと、下層の導体パターン31の内周側の部分31Aとの幅方向の中心間の間隔P1が、上層の導体パターン32の右側の部分32Aと、下層の導体パターン31の外周側の部分31Bとの幅方向の中心間の間隔P2より狭い。 The number of turns of the lower conductor pattern 31 is about 2, and the number of turns of the upper conductor pattern 32 is about 1.5. In the cross-sectional view shown in FIG. 2B, the right portion 32A of the upper conductive pattern 32 overlaps the inner peripheral portion 31A of the lower conductive pattern 31 in plan view, but does not overlap the outer peripheral portion 31B. do not have. Therefore, in FIG. 2B, the widthwise center-to-center spacing P1 between the right side portion 32A of the upper layer conductor pattern 32 and the inner peripheral side portion 31A of the lower layer conductor pattern 31 is equal to the right side portion 32A of the upper layer conductor pattern 32. is narrower than the center-to-center interval P2 in the width direction between the portion 32A and the portion 31B on the outer peripheral side of the conductor pattern 31 in the lower layer.
 上層の導体パターン32の右側の部分32Aに着目すると、上層の導体パターン32の右側の部分32Aは、下層の導体パターン31の内周側の部分31Aと並走部分を構成するが、上層の導体パターン32の右側の部分32Aは、下層の導体パターン31の外周側の部分31Bと並走部分を構成しない。なお、下層の導体パターン31の外周側の部分31Bに着目すると、着目する部分31Bから上層の導体パターン32の右側の部分32Aまでの中心間の間隔が最も狭い。このため、下層の導体パターン31の外周側の部分31Bは、上層の導体パターン32の右側の部分32Aと並走部分を構成する。 Focusing on the right portion 32A of the upper-layer conductor pattern 32, the right-hand portion 32A of the upper-layer conductor pattern 32 constitutes a portion running parallel to the inner peripheral side portion 31A of the lower-layer conductor pattern 31, but the upper-layer conductor The right portion 32A of the pattern 32 does not run parallel to the outer peripheral portion 31B of the underlying conductor pattern 31 . Focusing on the outer peripheral side portion 31B of the lower layer conductor pattern 31, the center-to-center distance from the focused portion 31B to the right portion 32A of the upper layer conductor pattern 32 is the narrowest. Therefore, the portion 31B on the outer peripheral side of the conductor pattern 31 in the lower layer constitutes a portion running parallel to the portion 32A on the right side of the conductor pattern 32 in the upper layer.
 次に、第2実施例の優れた効果について説明する。
 第2実施例においては、下層の導体パターン31と上層の導体パターン32との並走部分のうち一部分が、平面視において部分的に重なっており、相互に重なる2つの並走部分の各々は、幅方向に関して重ならない部分を有している。言い換えると、2つの導体パターン31、32の並走部分は、相互に幅方向にずれている。このため、2つの並走部分の一方が他方に包含される構成と比べて、2つの並走部分の間に発生する寄生容量が小さくなるという優れた効果が得られる。また、2つの並走部分の一部分が平面視において部分的に重なっているため、インダクタ30が占める面積が小さくなるという優れた効果が得られる。
Next, the excellent effects of the second embodiment will be described.
In the second embodiment, part of the parallel running portions of the lower layer conductor pattern 31 and the upper layer conductor pattern 32 partially overlap in plan view, and each of the two mutually overlapping parallel running portions is It has a portion that does not overlap with respect to the width direction. In other words, the parallel running portions of the two conductor patterns 31 and 32 are mutually shifted in the width direction. For this reason, compared to a configuration in which one of the two parallel running portions is included in the other, an excellent effect is obtained in that the parasitic capacitance generated between the two parallel running portions is reduced. In addition, since the two parallel portions partially overlap in plan view, an excellent effect is obtained that the area occupied by the inductor 30 is reduced.
 次に、導体パターン31、32の幅W1、W2と、2つの並走部分が平面視において重なる部分の幅Wovとの好ましい関係について説明する。平面視において2つの並走部分の幅方向の位置が一致していると、W1=W2=Wovの関係が成立する。第2実施例では、2つの並走部分が幅方向にずれているため、Wov<W1、Wov<W2の関係が成立する。W1=W2=Wovになるように設計されたインダクタ30において、プロセス上の許容範囲内の位置ずれが生じた場合にも、Wov<W1、Wov<W2の関係が成立する。 Next, a preferable relationship between the widths W1 and W2 of the conductor patterns 31 and 32 and the width Wov of the portion where the two parallel running portions overlap in plan view will be described. When the widthwise positions of the two parallel running portions match in plan view, the relationship of W1=W2=Wov is established. In the second embodiment, since the two parallel running portions are shifted in the width direction, the relationships Wov<W1 and Wov<W2 are established. In the inductor 30 designed so that W1=W2=Wov, the relationships of Wov<W1 and Wov<W2 are established even when a positional deviation within the process tolerance occurs.
 2つの並走部分が平面視において幅方向にずれていたとしても、その位置ずれ量がプロセス上の許容範囲内である場合には、寄生容量を低減させる十分な効果が得られない。寄生容量を低減させる十分な効果を得るために、2つの並走部分の幅方向のずれ量を、プロセス上許容されるずれ量より大きくすることが好ましい。例えば、2つの並走部分の幅方向の中心間のずれ量を5μm以上にすることが好ましい。このとき、W1-Wov、及びW2-Wovの両方が5μm以上になる。 Even if the two parallel running portions are misaligned in the width direction in plan view, if the amount of positional misalignment is within the allowable range for the process, a sufficient effect of reducing the parasitic capacitance cannot be obtained. In order to obtain a sufficient effect of reducing the parasitic capacitance, it is preferable to make the amount of deviation in the width direction of the two parallel running portions larger than the amount of deviation allowed in the process. For example, it is preferable to set the amount of deviation between the centers of the two parallel running portions in the width direction to 5 μm or more. At this time, both W1-Wov and W2-Wov are 5 μm or more.
 [第3実施例]
 次に、図3A及び図3Bを参照して第3実施例による受動部品について説明する。以下、第2実施例による受動部品(図2A、図2B)と共通の構成については説明を省略する。
[Third embodiment]
Next, a passive component according to a third embodiment will be described with reference to FIGS. 3A and 3B. Hereinafter, descriptions of configurations common to the passive components (FIGS. 2A and 2B) according to the second embodiment will be omitted.
 図3Aは、第3実施例による受動部品に含まれるインダクタ30の平面図であり、図3Bは、図3Aの一点鎖線3B-3Bにおける断面図である。第2実施例では、下層の導体パターン31のターン数が約2であり、上層の導体パターン32のターン数が約1.5である。これに対して第3実施例では、下層の導体パターン31のターン数が約1.5であり、上層の導体パターン32のターン数が約2である。 3A is a plan view of an inductor 30 included in a passive component according to the third embodiment, and FIG. 3B is a cross-sectional view taken along dashed-dotted line 3B-3B in FIG. 3A. In the second embodiment, the lower layer conductor pattern 31 has about 2 turns, and the upper layer conductor pattern 32 has about 1.5 turns. On the other hand, in the third embodiment, the number of turns of the conductor pattern 31 in the lower layer is approximately 1.5, and the number of turns of the conductor pattern 32 in the upper layer is approximately 2.
 また、第2実施例では、2つの導体パターン31、32の並走部分の一部が、平面視において相互に重なっている。これに対して第3実施例では、第1実施例(図1A、図1B)と同様に、2つの導体パターン31、32の並走部分が相互に重なっておらず、2つの導体パターン31、32は、両者交差する部分においてのみ、平面視において重なっている。下層の導体パターン31の幅W1と、上層の導体パターン32の幅W2とが等しい。 Also, in the second embodiment, portions of the parallel running portions of the two conductor patterns 31 and 32 overlap each other in plan view. On the other hand, in the third embodiment, as in the first embodiment (FIGS. 1A and 1B), the parallel running portions of the two conductor patterns 31 and 32 do not overlap each other, and the two conductor patterns 31 and 32 do not overlap each other. 32 are overlapped in plan view only at the intersections of the two. The width W1 of the conductor pattern 31 in the lower layer is equal to the width W2 of the conductor pattern 32 in the upper layer.
 平面視において、2つの導体パターン31、32のうち一方の導体パターンの内周側の部分と外周側の部分との間に、他方の導体パターンが配置されている。2つの導体パターン31、32の各々の内周側の部分と外周側の部分との間隔G1、G2は、2つの導体パターン31、32の幅W1、W2と等しい。このため、2つの導体パターン31、32の並走部分は、平面視において接している。 In a plan view, one of the two conductor patterns 31 and 32 is arranged between the inner circumference side portion and the outer circumference side portion of the other conductor pattern. The distances G1 and G2 between the inner and outer peripheral portions of the two conductor patterns 31 and 32 are equal to the widths W1 and W2 of the two conductor patterns 31 and 32, respectively. Therefore, the parallel running portions of the two conductor patterns 31 and 32 are in contact with each other in plan view.
 2つの導体パターン31、32の一方の導体パターンがほぼ半周するごとに、他方の導体パターンと交差し、交差箇所において2つの導体パターン31、32の幅方向の位置が入れ替わっている。 One of the two conductor patterns 31 and 32 intersects with the other conductor pattern approximately every half turn, and the positions of the two conductor patterns 31 and 32 in the width direction are exchanged at the crossing point.
 2つの導体パターン31、32の直線部分において幅方向に切断した一つの断面、例えば図3Bに示した断面において、下層の導体パターン31の最も内周側の2つの部分の間隔をL1と標記し、上層の導体パターン32の最も内周側の2つの部分の間隔をL2と標記する。このとき、間隔L1と間隔L2とが等しい。 In one cross section cut in the width direction at the linear portions of the two conductor patterns 31 and 32, for example, in the cross section shown in FIG. , the distance between the innermost two portions of the upper-layer conductor pattern 32 is denoted by L2. At this time, the interval L1 and the interval L2 are equal.
 次に、第3実施例の優れた効果について説明する。
 第3実施例においては、2つの導体パターン31、32の並走部分が、平面視において重なっていないため、並走部分が部分的に重なっている第2実施例(図2A、図2B)と比べて、インダクタ30の寄生容量がより低減される。2つの導体パターン31、32の並走部分が平面視において接しているため、2つの並走部分が幅方向に間隔を隔てて配置される構成と比べて、インダクタ30が占める領域の面積が小さくなるという優れた効果が得られる。
Next, the excellent effects of the third embodiment will be described.
In the third embodiment, since the parallel running portions of the two conductor patterns 31 and 32 do not overlap in plan view, the parallel running portions partially overlap with the second embodiment (FIGS. 2A and 2B). In comparison, the parasitic capacitance of inductor 30 is further reduced. Since the parallel running portions of the two conductor patterns 31 and 32 are in contact with each other in a plan view, the area occupied by the inductor 30 is smaller than in a configuration in which the two parallel running portions are spaced apart in the width direction. An excellent effect is obtained.
 [第4実施例]
 次に、図4A及び図4Bを参照して第4実施例による受動部品について説明する。以下、第3実施例による受動部品(図3A、図3B)と共通の構成については説明を省略する。
[Fourth embodiment]
Next, a passive component according to a fourth embodiment will be described with reference to FIGS. 4A and 4B. Hereinafter, descriptions of configurations common to the passive components (FIGS. 3A and 3B) according to the third embodiment will be omitted.
 図4Aは、第4実施例による受動部品に含まれるインダクタの平面図であり、図4Bは、図4Aの一点鎖線4B-4Bにおける断面図である。第3実施例では、下層の導体パターン31のターン数が約1.5であり、上層の導体パターン32のターン数が約2である。これに対して第3実施例では、下層の導体パターン31のターン数が約2であり、上層の導体パターン32のターン数が約1.5である。 4A is a plan view of an inductor included in a passive component according to a fourth embodiment, and FIG. 4B is a cross-sectional view taken along dashed-dotted line 4B-4B in FIG. 4A. In the third embodiment, the lower layer conductor pattern 31 has about 1.5 turns, and the upper layer conductor pattern 32 has about 2 turns. In contrast, in the third embodiment, the number of turns of the conductor pattern 31 in the lower layer is approximately 2, and the number of turns of the conductor pattern 32 in the upper layer is approximately 1.5.
 2つの導体パターン31、32の一方の導体パターンが約1周するごとに、他方の導体パターンと交差している。平面視においてインダクタ30の内周側から数えて1周目及び3周目に、下層の導体パターン31が配置されており、2周目及び4周目に、上層の導体パターン32が配置されている。このため、図4Bに示した断面において、下層の導体パターン31の2つの内周側の部分の間隔L1が、上層の導体パターン32の2つの内周側の部分の間隔L2より狭い。 One of the two conductor patterns 31 and 32 intersects with the other conductor pattern about every turn. Counting from the inner circumference side of the inductor 30 in plan view, the lower layer conductor pattern 31 is arranged on the first and third turns, and the upper layer conductor pattern 32 is arranged on the second and fourth turns. there is Therefore, in the cross-section shown in FIG. 4B, the interval L1 between the two inner peripheral portions of the lower conductive pattern 31 is narrower than the interval L2 between the two inner peripheral portions of the upper conductive pattern 32 .
 2つの導体パターン31、32の並走部分は、第3実施例と同様に、平面視において重なりを持たず、相互に接している。 The parallel running portions of the two conductor patterns 31 and 32 are in contact with each other without overlapping in plan view, as in the third embodiment.
 次に、第4実施例の優れた効果について説明する。
 第4実施例においても、第3実施例と同様に、インダクタ30の寄生容量がより低減されるという優れた効果が得られる。さらに、インダクタ30が占める領域の面積が小さくなるという優れた効果が得られる。
Next, the excellent effects of the fourth embodiment will be described.
Also in the fourth embodiment, similar to the third embodiment, the excellent effect of further reducing the parasitic capacitance of the inductor 30 can be obtained. Furthermore, an excellent effect is obtained that the area occupied by the inductor 30 is reduced.
 [第5実施例]
 次に、図5A及び図5Bを参照して第5実施例による受動部品について説明する。以下、第2実施例による受動部品(図2A、図2B)と共通の構成については説明を省略する。
[Fifth embodiment]
Next, a passive component according to a fifth embodiment will be described with reference to FIGS. 5A and 5B. Hereinafter, descriptions of configurations common to the passive components (FIGS. 2A and 2B) according to the second embodiment will be omitted.
 図5Aは、第5実施例による受動部品に含まれるインダクタ30の平面図であり、図5Bは、図5Aの一点鎖線5B-5Bにおける断面図である。第2実施例(図2A、図2B)では、2つの導体パターン31、32の幅W1、W2が等しい。これに対して第5実施例では、下層の導体パターン31の幅W1は、上層の導体パターン32の幅W2より細い。下層の導体パターン31は、上層の導体パターン32より厚い。 FIG. 5A is a plan view of an inductor 30 included in a passive component according to the fifth embodiment, and FIG. 5B is a cross-sectional view taken along dashed-dotted line 5B-5B in FIG. 5A. In the second embodiment (FIGS. 2A and 2B), the widths W1 and W2 of the two conductor patterns 31 and 32 are equal. In contrast, in the fifth embodiment, the width W1 of the conductor pattern 31 in the lower layer is narrower than the width W2 of the conductor pattern 32 in the upper layer. The conductor pattern 31 in the lower layer is thicker than the conductor pattern 32 in the upper layer.
 平面視において、2つの導体パターン31、32の並走部分は、第3実施例(図3A、図3B)と同様に重なりを持たず、相互に接している。このため、図5Bに示した断面図において、下層の導体パターン31の内周側の部分と外周側の部分との間隔G1は、上層の導体パターン32の幅W2と等しい。同様に、上層の導体パターン32の内周側の部分と外周側の部分との間隔G2は、下層の導体パターン31の幅W1と等しい。 In plan view, the parallel running portions of the two conductor patterns 31 and 32 are in contact with each other without overlapping, as in the third embodiment (FIGS. 3A and 3B). Therefore, in the cross-sectional view shown in FIG. 5B, the interval G1 between the inner peripheral portion and the outer peripheral portion of the lower layer conductor pattern 31 is equal to the width W2 of the upper layer conductor pattern 32 . Similarly, the distance G2 between the inner peripheral portion and the outer peripheral portion of the upper layer conductor pattern 32 is equal to the width W1 of the lower layer conductor pattern 31 .
 次に、第5実施例の優れた効果について説明する。
 第5実施例においても、インダクタ30の寄生容量が小さくなるという優れた効果が得られる。第5実施例のように、2つの導体パターン31,32の幅W1とW2とを必ずしも等しくする必要はない。幅の細い下層の導体パターン31を、上層の導体パターン32より厚くしているため、導体パターンを細くすることによる寄生抵抗の増大が抑制される。
Next, the excellent effects of the fifth embodiment will be described.
Also in the fifth embodiment, the excellent effect of reducing the parasitic capacitance of the inductor 30 can be obtained. It is not necessary to make the widths W1 and W2 of the two conductor patterns 31 and 32 equal as in the fifth embodiment. Since the lower conductor pattern 31 having a smaller width is made thicker than the upper conductor pattern 32, an increase in parasitic resistance due to the narrower conductor pattern is suppressed.
 下層の導体パターン31の下地表面となる基板20の絶縁性表面はほぼ平坦であるが、上層の導体パターン32の下地表面となる絶縁膜21の上面には、下層の導体パターン31の形状が反映された凹凸が現れる場合がある。導体パターンを形成する際に、下地表面に凹凸があると断線が生じやすくなる。第5実施例では、上層の導体パターン32の幅W2が相対的に太くされているため、断線の発生を抑制することができる。 The insulating surface of the substrate 20, which serves as the base surface of the lower conductor pattern 31, is substantially flat, but the upper surface of the insulating film 21, which serves as the base surface of the upper conductor pattern 32, reflects the shape of the lower conductor pattern 31. unevenness may appear. When the conductor pattern is formed, disconnection is likely to occur if the underlying surface has unevenness. In the fifth embodiment, since the width W2 of the upper layer conductor pattern 32 is relatively large, the occurrence of disconnection can be suppressed.
 基板20の誘電率が絶縁膜21の誘電率より高い場合、下層の導体パターン31の内周側の部分と外周側の部分との間に横方向に延びる電気力線が基板20内に優先的に発生する。このため、誘電率の高い基板20が、下層の導体パターン31の内周側の部分と外周側の部分との間に発生する寄生容量を高める要因になる。第5実施例では、下層の導体パターン31の幅を相対的に狭くし、上層の導体パターン32の幅を相対的に広くしているため、下層の導体パターン31の内周側の部分と外周側の部分との間隔G1が広くなる。このため、下層の導体パターン31の内周側の部分と外周側の部分との間に発生する寄生容量の増大を抑制することができる。 When the dielectric constant of the substrate 20 is higher than the dielectric constant of the insulating film 21 , the electric lines of force extending in the lateral direction between the inner peripheral side portion and the outer peripheral side portion of the underlying conductor pattern 31 preferentially enter the substrate 20 . occurs in Therefore, the substrate 20 having a high dielectric constant becomes a factor that increases the parasitic capacitance generated between the inner peripheral side portion and the outer peripheral side portion of the underlying conductor pattern 31 . In the fifth embodiment, the width of the lower conductor pattern 31 is relatively narrow, and the width of the upper conductor pattern 32 is relatively wide. The interval G1 with the side portion is widened. Therefore, it is possible to suppress an increase in the parasitic capacitance generated between the inner peripheral portion and the outer peripheral portion of the underlying conductor pattern 31 .
 次に、第5実施例の変形例について説明する。
 第5実施例では、下層の導体パターン31の幅W1を上層の導体パターン32の幅W2より細くしているが、逆に、上層の導体パターン32の幅W2を下層の導体パターン31の幅W1より細くしてもよい。この場合には、下層の導体パターン31を上層の導体パターン32より薄くするとよい。基板20の誘電率が絶縁膜21の誘電率と同程度である場合には、下層の導体パターン31の内周側の部分と外周側の部分との間に横方向に延びる電気力線が、基板20内に優先的に発生することがない。このため、上層の導体パターン32を細くして、下層の導体パターン31の内周側の部分と外周側の部分とを近付けても、寄生容量の増大による影響は軽減される。また、下層の導体パターン31が薄いため上層の導体パターン32の下地表面に生じる凹凸の高さが低くなる。このため、上層の導体パターン32の断線が生じやすくなることもない。
Next, a modified example of the fifth embodiment will be described.
In the fifth embodiment, the width W1 of the lower conductor pattern 31 is smaller than the width W2 of the upper conductor pattern 32; It can be thinner. In this case, the conductor pattern 31 in the lower layer should be thinner than the conductor pattern 32 in the upper layer. When the dielectric constant of the substrate 20 is approximately the same as the dielectric constant of the insulating film 21, the electric lines of force extending laterally between the inner peripheral side portion and the outer peripheral side portion of the underlying conductive pattern 31 are It does not preferentially occur within the substrate 20 . Therefore, even if the upper-layer conductor pattern 32 is made thinner and the lower-layer conductor pattern 31 is brought closer to the inner peripheral portion and the outer peripheral portion thereof, the influence of the increase in the parasitic capacitance can be reduced. In addition, since the conductor pattern 31 of the lower layer is thin, the height of the unevenness generated on the underlying surface of the conductor pattern 32 of the upper layer is reduced. Therefore, disconnection of the conductor pattern 32 in the upper layer does not tend to occur.
 [第6実施例]
 次に、図6A及び図6Bを参照して第6実施例による受動部品について説明する。以下、第2実施例による受動部品(図2A、図2B)と共通の構成については説明を省略する。
[Sixth embodiment]
Next, a passive component according to a sixth embodiment will be described with reference to FIGS. 6A and 6B. Hereinafter, descriptions of configurations common to the passive components (FIGS. 2A and 2B) according to the second embodiment will be omitted.
 図6Aは、第6実施例による受動部品に含まれるインダクタ30の平面図であり、図6Bは、図6Aの一点鎖線6B-6Bにおける断面図である。第2実施例(図2A、図2B)では、導体パターン31、32の各々の幅が均一である。これに対して第6実施例では、導体パターン31、32の外周側の部分の幅W1o、W2oが、内周側の部分の幅W1i、W2iより太い。導体パターン31、32の厚さは、内周側の部分と外周側の部分とで同一である。 6A is a plan view of an inductor 30 included in a passive component according to the sixth embodiment, and FIG. 6B is a cross-sectional view taken along dashed-dotted line 6B-6B in FIG. 6A. In the second embodiment (FIGS. 2A and 2B), the width of each of the conductor patterns 31, 32 is uniform. On the other hand, in the sixth embodiment, the widths W1o and W2o of the outer peripheral portions of the conductor patterns 31 and 32 are larger than the widths W1i and W2i of the inner peripheral portions. The thicknesses of the conductor patterns 31 and 32 are the same on the inner peripheral side and the outer peripheral side.
 次に、第6実施例の優れた効果について説明する。
 ターン数が1より大きいスパイラル形状の導体パターンにおいては、外周側の部分の1ターン分の長さが、内周側の部分の1ターン分の長さより長くなる。第6実施例では、導体パターン31、32の外周側の部分の幅を内周側の部分の幅より広くしているため、外周側の部分の単位長さ当たりの抵抗が、内周側の部分の単位長さ当たりの抵抗より低い。このため、外周側の部分と内周側の部分との、1ターン当たりの抵抗の差が小さくなる。外周側の部分と内周側の部分とで、1ターン当たりの抵抗がほぼ等しくなるように、導体パターン31、32の幅を設定するとよい。
Next, the excellent effects of the sixth embodiment will be described.
In a spiral conductor pattern having more than one turn, the length of one turn of the outer peripheral portion is longer than the length of one turn of the inner peripheral portion. In the sixth embodiment, since the width of the outer peripheral portion of the conductor patterns 31 and 32 is wider than the width of the inner peripheral portion, the resistance per unit length of the outer peripheral portion is greater than that of the inner peripheral side. Lower than the resistance per unit length of the part. Therefore, the difference in resistance per turn between the outer peripheral portion and the inner peripheral portion is reduced. The widths of the conductor patterns 31 and 32 are preferably set so that the resistance per turn is substantially equal between the outer peripheral portion and the inner peripheral portion.
 次に、第6実施例の変形例について説明する。第6実施例では、周回方向にほぼ1周するごとに、導体パターン31、32の幅を変化させているが、周回方向の任意の位置で導体パターン31、32の幅を変化させてもよい。例えば、インダクタ30を構成する2つの導体パターン31、32のうち、ターン数が1より多い導体パターンの幅方向の寸法が、外周側の端部から内周側の端部に向かって単調減少する構成としてもよい。本明細書において「単調減少」とは、広義の意味の「単調減少」をいう。すなわち、外周側の端部から導体パターンに沿って内周側の端部に向かう経路上において、ある位置の幅方向の寸法は、その位置より外周側の端部に近い位置の幅より狭いか、または等しく、その位置より内周側の端部に近い位置の幅より広いか、または等しい。この変形例による構成を採用しても、外周側の部分と内周側の部分との、1ターン当たりの抵抗の差を小さくすることができる。 Next, a modification of the sixth embodiment will be described. In the sixth embodiment, the widths of the conductor patterns 31 and 32 are changed for each turn in the winding direction, but the widths of the conductor patterns 31 and 32 may be changed at arbitrary positions in the winding direction. . For example, of the two conductor patterns 31 and 32 that make up the inductor 30, the dimension in the width direction of the conductor pattern with more than one turn monotonously decreases from the end on the outer circumference side toward the end on the inner circumference side. may be configured. As used herein, "monotonically decreasing" means "monotonically decreasing" in a broad sense. That is, on the path from the outer end to the inner end along the conductor pattern, is the width dimension at a certain position narrower than the width at a position closer to the outer end than that position? , or equal to or greater than or equal to the width at a position closer to the inner edge than that position. Even if the configuration according to this modified example is employed, the difference in resistance per turn between the outer peripheral portion and the inner peripheral portion can be reduced.
 [第7実施例]
 次に、図7から図13Bまでの図面を参照して、第7実施例による受動部品について説明する。以下、第2実施例による受動部品(図2A、図2B)と共通の構成については説明を省略する。第7実施例による受動部品は、複数のインダクタと複数のキャパシタとが集積化された集積化受動部品(IPD)であり、バンドパスフィルタの機能を有している。
[Seventh embodiment]
Next, a passive component according to a seventh embodiment will be described with reference to FIGS. 7 to 13B. Hereinafter, descriptions of configurations common to the passive components (FIGS. 2A and 2B) according to the second embodiment will be omitted. A passive component according to the seventh embodiment is an integrated passive component (IPD) in which a plurality of inductors and a plurality of capacitors are integrated, and has a bandpass filter function.
 図7は、第7実施例による受動部品の等価回路図である。
 入力端子Inと出力端子Outとの間に、キャパシタC1、インダクタL1、及びキャパシタC2が、この順番に直列に挿入されている。キャパシタC3とインダクタL2との直列回路、及びキャパシタC4とインダクタL3との直列回路が、入力端子InとグランドGNDとの間に接続されている。キャパシタC5とインダクタL4との直列回路、及びキャパシタC6とインダクタL5との直列回路が、出力端子OutとグランドGNDとの間に接続されている。
FIG. 7 is an equivalent circuit diagram of a passive component according to the seventh embodiment.
A capacitor C1, an inductor L1, and a capacitor C2 are inserted in series in this order between the input terminal In and the output terminal Out. A series circuit of the capacitor C3 and the inductor L2 and a series circuit of the capacitor C4 and the inductor L3 are connected between the input terminal In and the ground GND. A series circuit of the capacitor C5 and the inductor L4 and a series circuit of the capacitor C6 and the inductor L5 are connected between the output terminal Out and the ground GND.
 次に、図8Aから図13Bまでの図面を参照して、第7実施例による受動部品の製造方法について説明する。図8A、図9A、図10A、図11A、及び図12Aは、第7実施例による受動部品の製造途中段階における平面図である。図13Aは、第7実施例による受動部品の平面図である。図8B、図9B、図10B、図11B、図12B、及び図13Bは、それぞれ図8A、図9A、図10A、図11A、図12A、及び図13Aの一点鎖線8B-8B、9B-9B、10B-10B、11B-11B、12B-12B、及び13B-13Bにおける断面図である。 Next, a method of manufacturing a passive component according to the seventh embodiment will be described with reference to FIGS. 8A to 13B. 8A, 9A, 10A, 11A, and 12A are plan views of the passive component in the middle of manufacturing according to the seventh embodiment. FIG. 13A is a plan view of a passive component according to the seventh embodiment; Figures 8B, 9B, 10B, 11B, 12B, and 13B are shown in Figures 8A, 9A, 10A, 11A, 12A, and 13A, respectively. 10B-10B, 11B-11B, 12B-12B, and 13B-13B. FIG.
 図8A及び図8Bに示すように、基板40の絶縁性表面の上に、インダクタL1、L2、L3、L4、L5(以下、インダクタL1~L5と標記する。)の下層の導体パターン51、及びキャパシタC1、C2、C3、C4、C5、C6(以下、キャパシタC1~C6と標記する。)の中間電極52を形成する。図8Aにおいて、下層の導体パターン51及び中間電極52にハッチングを付している。 As shown in FIGS. 8A and 8B, conductive patterns 51 under the inductors L1, L2, L3, L4, and L5 (hereinafter referred to as inductors L1 to L5) are formed on the insulating surface of the substrate 40, and Intermediate electrodes 52 of capacitors C1, C2, C3, C4, C5 and C6 (hereinafter referred to as capacitors C1 to C6) are formed. In FIG. 8A, the underlying conductor pattern 51 and the intermediate electrode 52 are hatched.
 インダクタL1の下層の導体パターン51のターン数は約2であり、インダクタL2、L3、L4、L5の下層の導体パターン51のターン数は約1である。下層の導体パターン51及び中間電極52は、密着性を高めるための金属層61と、その上に配置された金属層62とを含む。密着性を高めるための金属層61には、Ti、Ni、W、Ta等の高融点金属、またはこれらの金属を含む合金が用いられる。金属層62にはCu等が用いられる。 The conductor pattern 51 under the inductor L1 has about two turns, and the conductor patterns 51 under the inductors L2, L3, L4, and L5 have about one turn. The lower conductor pattern 51 and the intermediate electrode 52 include a metal layer 61 for enhancing adhesion and a metal layer 62 disposed thereon. The metal layer 61 for enhancing adhesion is made of high-melting-point metals such as Ti, Ni, W, and Ta, or alloys containing these metals. Cu or the like is used for the metal layer 62 .
 基板40として、例えば酸化ケイ素、窒化ケイ素等の絶縁性の高い材料を用いることが好ましい。なお、窒化ケイ素は熱伝導性がよいことから、比較的大きな電力が投入される用途の受動部品の基板40として好適に使用される。基板40の厚さは、例えば50μm以上300μm以下である。 For the substrate 40, it is preferable to use a highly insulating material such as silicon oxide or silicon nitride. Since silicon nitride has good thermal conductivity, it is suitably used as the substrate 40 of passive components for applications where a relatively large amount of power is applied. The thickness of the substrate 40 is, for example, 50 μm or more and 300 μm or less.
 次に、下層の導体パターン51及び中間電極52の形成方法について説明する。基板40の絶縁性表面の上に、金属層61をスパッタリング法等により形成する。金属層61の上に、電解メッキの給電用電極として使用されるCu膜を、スパッタリング法等により形成する。Cu膜の上面をフォトレジスト膜で覆い、このフォトレジスト膜に、下層の導体パターン51及び中間電極52に整合する開口を形成する。電解メッキにより開口内にCu膜を堆積させる。フォトレジスト膜を除去した後、給電用として用いたCu膜の露出部分と、不要な金属層61を除去する。給電用のCu膜と、電解メッキにより形成したCu膜とが、金属層62を構成する。 Next, a method for forming the lower layer conductor pattern 51 and the intermediate electrode 52 will be described. A metal layer 61 is formed on the insulating surface of the substrate 40 by sputtering or the like. A Cu film, which is used as a power supply electrode for electroplating, is formed on the metal layer 61 by a sputtering method or the like. The upper surface of the Cu film is covered with a photoresist film, and openings are formed in this photoresist film so as to match the underlying conductor pattern 51 and the intermediate electrode 52 . A Cu film is deposited in the opening by electroplating. After removing the photoresist film, the exposed portion of the Cu film used for power supply and the unnecessary metal layer 61 are removed. A Cu film for power supply and a Cu film formed by electrolytic plating constitute the metal layer 62 .
 下層の導体パターン51及び中間電極52を覆うように、基板40の全面に誘電体膜41を、プラズマ励起化学気相成長(P-CVD)等により形成する。誘電体膜41は、キャパシタC1~C6の電極間の誘電体膜として用いられる。誘電体膜41の厚さは、キャパシタの容量値、耐圧や耐湿性等の品質の要請を満たすように決定される。一例として、誘電体膜41の厚さは、30nm以上500nm以下である。誘電体膜41の材料として、例えば、窒化ケイ素、酸化ケイ素、酸化アルミニウム、窒化アルミニウム、酸化タンタル等を主たる材料として含有する誘電体材料が用いられる。 A dielectric film 41 is formed on the entire surface of the substrate 40 by plasma-enhanced chemical vapor deposition (P-CVD) or the like so as to cover the underlying conductor pattern 51 and the intermediate electrode 52 . Dielectric film 41 is used as a dielectric film between electrodes of capacitors C1 to C6. The thickness of the dielectric film 41 is determined so as to meet quality requirements such as the capacitance value of the capacitor, withstand voltage, and moisture resistance. As an example, the thickness of the dielectric film 41 is 30 nm or more and 500 nm or less. As a material of the dielectric film 41, for example, a dielectric material containing silicon nitride, silicon oxide, aluminum oxide, aluminum nitride, tantalum oxide, etc. as a main material is used.
 なお、誘電体膜41として、基板40の主たる材料と同一の材料を主たる材料として含有する誘電体材料を用いることが好ましい。基板40と誘電体膜41との主たる材料が同一である場合、基板40と誘電体膜41との線膨張係数の差が小さくなる。これにより、熱応力の集中に起因するクラック等の欠陥の発生が抑制される。 It should be noted that it is preferable to use a dielectric material containing the same material as the main material of the substrate 40 as the dielectric film 41 . When the main materials of the substrate 40 and the dielectric film 41 are the same, the difference in coefficient of linear expansion between the substrate 40 and the dielectric film 41 becomes small. This suppresses the occurrence of defects such as cracks due to concentration of thermal stress.
 図9A及び図9Bに示すように、誘電体膜41に、反応性イオンエッチング(RIE)等により複数のビアホールH1を形成する。複数のビアホールH1は、インダクタL1~L5の下層の導体パターン51の両端に配置されており、導体パターン51に包含されている。さらに、不要な領域の誘電体膜41も同時に除去する。 As shown in FIGS. 9A and 9B, a plurality of via holes H1 are formed in the dielectric film 41 by reactive ion etching (RIE) or the like. The plurality of via holes H1 are arranged at both ends of the conductor pattern 51 under the inductors L1 to L5 and are included in the conductor pattern 51. As shown in FIG. Furthermore, the dielectric film 41 in unnecessary regions is also removed at the same time.
 次に、誘電体膜41の上に、キャパシタC1~C6の各々の一対の電極53を形成する。図9Aにおいて、下層の導体パターン51及び中間電極52を白抜きの図形で表し、電極53にハッチングを付している。キャパシタC1~C6の各々の一対の電極53は、平面視において中間電極52に包含されている。一方の電極53、誘電体膜41、中間電極52、誘電体膜41、及び他方の電極53により、MIMキャパシタが構成される。 Next, on the dielectric film 41, a pair of electrodes 53 for each of the capacitors C1 to C6 are formed. In FIG. 9A, the underlying conductor pattern 51 and the intermediate electrode 52 are represented by outline figures, and the electrodes 53 are hatched. A pair of electrodes 53 of each of capacitors C1-C6 is included in intermediate electrode 52 in plan view. The electrode 53 on one side, the dielectric film 41, the intermediate electrode 52, the dielectric film 41, and the electrode 53 on the other side constitute an MIM capacitor.
 キャパシタC1~C6の各々の一対の電極53は、導電率の高い金属、例えばAl、Au、Cu、またはこれらの金属を含む合金で形成される。一対の電極の下面及び上面の少なくとも一方に、密着性を高めるための金属層を設けてもよい。密着性を高める金属層として、例えばTi、Ni、W、またはTa等の高融点金属、またはこれらの金属を含有する合金を用いることができる。この金属層は、絶縁膜中への金属の拡散を防止する拡散防止層としても機能する。 A pair of electrodes 53 of each of the capacitors C1 to C6 is made of a highly conductive metal such as Al, Au, Cu, or an alloy containing these metals. A metal layer may be provided on at least one of the lower surface and the upper surface of the pair of electrodes to improve adhesion. As the metal layer for improving adhesion, a high-melting-point metal such as Ti, Ni, W, or Ta, or an alloy containing these metals can be used. This metal layer also functions as a diffusion prevention layer that prevents metal from diffusing into the insulating film.
 次に、電極53の形成方法について説明する。まず、イメージリバース法によるフォトレジストパターンを形成する。フォトレジストパターンを形成した後、Ti膜とAu膜とを、真空蒸着法またはスパッタリング法により形成する。Ti膜及びAu膜の厚さは、それぞれ50nm及び100nmとする。その後、リフトオフ法により、フォトレジストパターン及びその上のTi膜及びAu膜を除去する。 Next, a method for forming the electrodes 53 will be described. First, a photoresist pattern is formed by the image reverse method. After forming the photoresist pattern, a Ti film and an Au film are formed by vacuum deposition or sputtering. The thicknesses of the Ti film and the Au film are set to 50 nm and 100 nm, respectively. After that, the photoresist pattern and the Ti film and Au film thereon are removed by a lift-off method.
 図10A及び図10Bに示すように、複数の電極53を覆うように、誘電体膜41の上に絶縁膜42を形成する。その後、絶縁膜42に複数のビアホールH2を形成する。複数のビアホールH2は、誘電体膜41に形成されているビアホールH1と重なる位置、及びキャパシタC1~C6の各々の一対の電極53のそれぞれに包含される位置に配置される。 As shown in FIGS. 10A and 10B, an insulating film 42 is formed on the dielectric film 41 so as to cover the electrodes 53 . After that, a plurality of via holes H2 are formed in the insulating film 42. Next, as shown in FIG. The plurality of via holes H2 are arranged at positions overlapping with the via holes H1 formed in the dielectric film 41 and at positions included in the pair of electrodes 53 of each of the capacitors C1 to C6.
 次に、絶縁膜42及びビアホールH2の形成方法について説明する。まず、フィルム状に加工され、感光材料が混在されたBステージのエポキシ樹脂フィルムを、真空ラミネート法により積層する。フォトリソグラフィにより感光部と非感光部とを形成した後、アルカリ溶液を用いて現像することにより、ビアホールH2を形成する。その後、熱処理を行ってエポキシ樹脂フィルムを硬化させる。 Next, a method for forming the insulating film 42 and the via hole H2 will be described. First, a B-stage epoxy resin film processed into a film and mixed with a photosensitive material is laminated by a vacuum lamination method. After forming a photosensitive portion and a non-photosensitive portion by photolithography, the via hole H2 is formed by developing using an alkaline solution. After that, heat treatment is performed to harden the epoxy resin film.
 図11A及び図11Bに示すように、絶縁膜42の上に、インダクタL1~L5の上層の導体パターン56、複数の配線55、及び複数のパッド57を形成する。図11Aにおいて、インダクタL1~L5の上層の導体パターン56、複数の配線55、及び複数のパッド57にハッチングを付している。また、下層の導体パターン51、中間電極52、及びキャパシタC1~C6の電極53を、白抜きの図形で示している。複数の導体パターン56、複数の配線55、及び複数のパッド57は、密着性を高める目的で配置されたTi等からなる金属層63と、その上のCu等からなる金属層64との2層で構成される。 As shown in FIGS. 11A and 11B, on the insulating film 42, a conductor pattern 56, a plurality of wirings 55, and a plurality of pads 57 are formed on the inductors L1 to L5. In FIG. 11A, the conductor pattern 56, the plurality of wirings 55, and the plurality of pads 57 on the upper layer of the inductors L1 to L5 are hatched. In addition, the conductor pattern 51 in the lower layer, the intermediate electrode 52, and the electrodes 53 of the capacitors C1 to C6 are indicated by outline figures. The plurality of conductor patterns 56, the plurality of wirings 55, and the plurality of pads 57 are composed of two layers, a metal layer 63 made of Ti or the like arranged for the purpose of improving adhesion, and a metal layer 64 made of Cu or the like thereon. consists of
 インダクタL1、L2、L4の上層の導体パターン56のターン数は約1.5であり、インダクタL3、L5の上層の導体パターン56のターン数は約1である。インダクタL1の下層の導体パターン51と上層の導体パターン56とは、第3実施例(図3A、図3B)によるインダクタ30の下層の導体パターン31と上層の導体パターン32との関係と同様に、並走部分が相互に重なりを持たない。他のインダクタL2~L5においては、下層の導体パターン51と上層の導体パターン56との大部分において、幅方向の位置がほぼ一致している。 The number of turns of the conductive pattern 56 on the upper layer of the inductors L1, L2, L4 is about 1.5, and the number of turns of the conductive pattern 56 on the upper layer of the inductors L3, L5 is about 1. The lower-layer conductor pattern 51 and the upper-layer conductor pattern 56 of the inductor L1 are similar to the relationship between the lower-layer conductor pattern 31 and the upper-layer conductor pattern 32 of the inductor 30 according to the third embodiment (FIGS. 3A and 3B). The parallel running portions do not overlap each other. In the other inductors L2 to L5, most of the conductor pattern 51 in the lower layer and the conductor pattern 56 in the upper layer are substantially aligned in the width direction.
 上層の導体パターン56の各々の一方の端部は、ビアホールH2、H1を通って下層の導体パターン51に接続されている。インダクタL1の上層の導体パターン56の他方の端部は、ビアホールH2を通ってキャパシタC1の一方の電極53に接続されている。インダクタL2~L5の上層の導体パターン56の他方の端部は、グランドGND用のパッド57に連続している。 One end of each upper layer conductor pattern 56 is connected to the lower layer conductor pattern 51 through via holes H2 and H1. The other end of conductor pattern 56 on the upper layer of inductor L1 is connected to one electrode 53 of capacitor C1 through via hole H2. The other end of the conductor pattern 56 on the upper layer of the inductors L2 to L5 is continuous with a pad 57 for ground GND.
 複数の配線55は、それぞれインダクタL1~L5の下層の導体パターン51の一方の端部と、キャパシタC2~C6の一方の電極53とを接続する。入力端子In用のパッド57から延びる3本の配線55が、それぞれキャパシタC1、C3、C4の一方の電極53に接続されている。出力端子Out用のパッド57から延びる3本の配線55が、それぞれキャパシタC2、C5、C6の一方の電極53に接続されている。 A plurality of wirings 55 connect one end of the conductor pattern 51 under the inductors L1 to L5 and one electrode 53 of each of the capacitors C2 to C6. Three wirings 55 extending from a pad 57 for the input terminal In are connected to one electrodes 53 of the capacitors C1, C3 and C4, respectively. Three wirings 55 extending from a pad 57 for the output terminal Out are connected to one electrodes 53 of the capacitors C2, C5 and C6, respectively.
 次に、複数の導体パターン56、複数の配線55、及び複数のパッド57の形成方法について説明する。まず、Ti膜とCu膜とをスパッタリング法による形成する。Cu膜の上にフォトレジスト膜を形成し、フォトレジスト膜に、導体パターン56、配線55、及びパッド57に整合する開口を形成する。Cu膜をシード層として用い、電解メッキにより、開口内にCu膜を堆積させる。その後、有機溶剤によってフォトレジスト膜を除去する。さらに、シード層として用いたCu膜の露出部分及び不要なTi膜を、ウェットエッチングにより除去する。 Next, a method for forming the plurality of conductor patterns 56, the plurality of wirings 55, and the plurality of pads 57 will be described. First, a Ti film and a Cu film are formed by sputtering. A photoresist film is formed on the Cu film, and openings matching the conductor pattern 56 , the wiring 55 and the pad 57 are formed in the photoresist film. Using a Cu film as a seed layer, a Cu film is deposited in the opening by electroplating. After that, the photoresist film is removed with an organic solvent. Furthermore, the exposed portion of the Cu film used as the seed layer and the unnecessary Ti film are removed by wet etching.
 図12A及び図12Bに示すように、導体パターン56、配線55、及びパッド57を覆うように、絶縁膜42の上に絶縁膜43を形成し、絶縁膜43に複数のビアホールH3を形成する。絶縁膜43及びビアホールH3の形成方法は、絶縁膜42及びビアホールH2の形成方法と同一である。複数のビアホールH3は、それぞれ平面視において複数のパッド57に包含される。 As shown in FIGS. 12A and 12B, an insulating film 43 is formed on the insulating film 42 so as to cover the conductor pattern 56, the wiring 55, and the pad 57, and a plurality of via holes H3 are formed in the insulating film 43. The method of forming the insulating film 43 and the via hole H3 is the same as the method of forming the insulating film 42 and the via hole H2. A plurality of via holes H3 are each included in a plurality of pads 57 in plan view.
 図13A及び図13Bに示すように、絶縁膜43の上に複数の外部接続端子58を形成し、その表面を酸化防止膜59で被覆する。図13Aにおいて、外部接続端子58にハッチングを付している。複数の外部接続端子58は、それぞれビアホールH3を通ってパッド57に接続される。2つの外部接続端子58がグランド端子であり、他の1つの外部接続端子58が入力端子Inであり、残りの1つの外部接続端子58が出力端子Outである。 As shown in FIGS. 13A and 13B, a plurality of external connection terminals 58 are formed on the insulating film 43 and their surfaces are covered with an anti-oxidation film 59. As shown in FIGS. In FIG. 13A, the external connection terminals 58 are hatched. A plurality of external connection terminals 58 are connected to pads 57 through via holes H3. Two external connection terminals 58 are ground terminals, another external connection terminal 58 is an input terminal In, and the remaining one external connection terminal 58 is an output terminal Out.
 外部接続端子58には、Cu、Al、Au等の低抵抗の金属が用いられる。酸化防止膜59には、NiAu、NiPdAu等が用いられる。酸化防止膜59は、外部接続端子58の酸化を防止するとともに、十分なハンダ接続性を確保する。酸化防止膜59の上に、NiSn、NiSnAg等のハンダ層を追加してもよい。 A low resistance metal such as Cu, Al or Au is used for the external connection terminal 58 . NiAu, NiPdAu, or the like is used for the antioxidant film 59 . The anti-oxidation film 59 prevents oxidation of the external connection terminals 58 and ensures sufficient solder connectivity. A solder layer such as NiSn or NiSnAg may be added on the anti-oxidation film 59 .
 次に、外部接続端子58及び酸化防止膜59の形成方法について説明する。導体パターン56、パッド57、及び配線55の形成方法と同様の方法により、外部接続端子58を形成する。外部接続端子58の表面に、NiAuからなる酸化防止膜59を無電解メッキにより形成する。 Next, a method for forming the external connection terminals 58 and the anti-oxidation film 59 will be described. An external connection terminal 58 is formed by a method similar to the method of forming the conductor pattern 56 , the pad 57 and the wiring 55 . An antioxidant film 59 made of NiAu is formed on the surface of the external connection terminal 58 by electroless plating.
 外部接続端子58及び酸化防止膜59を形成した後、基板40を背面から研削(バックグラインド)することにより、基板40を所望の厚さまで薄くする。最後に、基板40をダイシングすることにより、受動部品を個片化する。 After forming the external connection terminals 58 and the anti-oxidation film 59, the substrate 40 is ground (back-grinded) from the rear surface to reduce the thickness of the substrate 40 to a desired thickness. Finally, the substrate 40 is diced to singulate the passive components.
 次に、第7実施例の優れた効果について説明する。
 インダクタL1の下層の導体パターン51と上層の導体パターン56との並走部分が、平面視において重なりを持たないため、下層の導体パターン51と上層の導体パターン56との間の寄生容量を低減させることができる。
Next, the excellent effects of the seventh embodiment will be described.
Parasitic capacitance between the lower-layer conductor pattern 51 and the upper-layer conductor pattern 56 is reduced because the parallel-running portions of the lower-layer conductor pattern 51 and the upper-layer conductor pattern 56 of the inductor L1 do not overlap in plan view. be able to.
 また、キャパシタC1~C6の中間電極52(図8A、図8B)が、インダクタL1~L5の下層の導体パターン51(図8A、図8B)と同一の層に配置されており、同一の成膜工程で形成される。このため、製造工程を簡略化することができる。 Further, the intermediate electrodes 52 (FIGS. 8A and 8B) of the capacitors C1 to C6 are arranged in the same layer as the conductor patterns 51 (FIGS. 8A and 8B) under the inductors L1 to L5, and the same film formation is performed. Formed in the process. Therefore, the manufacturing process can be simplified.
 インダクタL1~L5やパッド57に接続される配線55(図12A、図12B)が、インダクタL1~L5の上層の導体パターン56と同一の層に配置されている。インダクタL1~L5の上層の導体パターン56は、通常、電気抵抗の増大を抑制するために厚く形成される。導体パターン56と同一の層に配置される配線55も厚くなるため、キャパシタC1~C6の等価直列抵抗(ESR)の低減を図ることができる。このため、フィルタのQ値が向上し、フィルタ損失を低減させることが可能になる。 The wiring 55 (FIGS. 12A and 12B) connected to the inductors L1 to L5 and the pad 57 is arranged in the same layer as the conductor pattern 56 on the upper layer of the inductors L1 to L5. Conductive patterns 56 on the upper layer of inductors L1 to L5 are usually formed thick in order to suppress an increase in electrical resistance. Since the wiring 55 arranged in the same layer as the conductor pattern 56 is also thickened, the equivalent series resistance (ESR) of the capacitors C1 to C6 can be reduced. Therefore, the Q value of the filter is improved, and it becomes possible to reduce the filter loss.
 次に、第7実施例の変形例について説明する。
 第7実施例では、インダクタL1において、下層の導体パターン51と上層の導体パターン56との並走部分が重ならない構成としているが、第2実施例(図2A、図2B)のように、2つの並走部分が部分的に重なる構成としてもよい。また、他のインダクタL2~L5においても、下層の導体パターン51と上層の導体パターン56との並走部分が重ならない構成としてもよいし、幅方向に関して部分的に重なる構成としてもよい。
Next, a modified example of the seventh embodiment will be described.
In the seventh embodiment, the conductor pattern 51 in the lower layer and the conductor pattern 56 in the upper layer do not overlap each other in the inductor L1. A configuration in which two parallel running portions partially overlap each other may also be used. Also, in the other inductors L2 to L5, the parallel running portions of the lower layer conductor pattern 51 and the upper layer conductor pattern 56 may not overlap, or may partially overlap in the width direction.
 また、第7実施例では、インダクタL1~L5の下層の導体パターン51と、キャパシタC1~C6の中間電極52とを同一の層に配置している。その他の構成として、キャパシタC1~C6の少なくとも1つの電極と、インダクタL1~L5の少なくとも1つの導体パターンとを同一の層に配置してもよい。 Also, in the seventh embodiment, the conductor patterns 51 in the lower layer of the inductors L1 to L5 and the intermediate electrodes 52 of the capacitors C1 to C6 are arranged in the same layer. As another configuration, at least one electrode of capacitors C1 to C6 and at least one conductor pattern of inductors L1 to L5 may be arranged in the same layer.
 [第8実施例]
 次に、図14を参照して第8実施例によるインダクタについて説明する。以下、第2実施例による受動部品(図2A、図2B)と共通の構成については説明を省略する。
[Eighth embodiment]
Next, an inductor according to an eighth embodiment will be described with reference to FIG. Hereinafter, descriptions of configurations common to the passive components (FIGS. 2A and 2B) according to the second embodiment will be omitted.
 図14は、第8実施例による受動部品の一部分の断面図である。第2実施例(図2A、図2B)では、インダクタ30の導体パターン31、32の、周回方向に直交する断面形状(以下、単に断面形状という。)がほぼ長方形である。これに対して第8実施例では、下層の導体パターン31の断面形状が台形状であり、上層の導体パターン32の断面形状が逆台形状である。ここで、「台形状」、「逆台形状」とは、幾何学的に厳密な台形または逆台形を意味しているわけではない。導体パターンの側面が傾斜しており、基板20から遠ざかる方向に向かって幅が徐々に狭く断面形状を「台形状」といい、基板20から遠ざかる方向に向かって幅が徐々に広くなる断面形状を「逆台形状」という。 FIG. 14 is a cross-sectional view of part of the passive component according to the eighth embodiment. In the second embodiment (FIGS. 2A and 2B), the conductor patterns 31 and 32 of the inductor 30 have a substantially rectangular cross-sectional shape perpendicular to the winding direction (hereinafter simply referred to as cross-sectional shape). In contrast, in the eighth embodiment, the cross-sectional shape of the lower layer conductor pattern 31 is trapezoidal, and the cross-sectional shape of the upper layer conductor pattern 32 is an inverted trapezoid. Here, "trapezoidal" and "inverted trapezoidal" do not mean geometrically strict trapezoids or inverted trapezoids. A cross-sectional shape in which the side surface of the conductor pattern is inclined and the width gradually narrows in the direction away from the substrate 20 is called a “trapezoid”, and the cross-sectional shape in which the width gradually widens in the direction away from the substrate 20 is called a “trapezoid”. It is called "inverted trapezoidal shape".
 下層の導体パターン31の基板20側を向く面の幅をW1bと標記し、基板20とは反対側を向く面の幅をW1tと標記する。上層の導体パターン32の基板20側を向く面の幅をW2bと標記し、基板20とは反対側を向く面の幅をW2tと標記する。第8実施例においては、W1b>W1t、及びW2t>W2bの関係が成立する。 The width of the surface of the lower conductor pattern 31 facing the substrate 20 is denoted by W1b, and the width of the surface facing away from the substrate 20 is denoted by W1t. The width of the surface of the upper conductor pattern 32 facing the substrate 20 is denoted by W2b, and the width of the surface facing away from the substrate 20 is denoted by W2t. In the eighth embodiment, the relationships W1b>W1t and W2t>W2b are established.
 導体パターン31、32の並走部分の、平面視における重なり部分の幅をWovaと標記する。導体パターン31、32の並走部分の相互に対向する面の重なり部分の幅をWovbと標記する。 The width of the overlapping portion in plan view of the parallel running portions of the conductor patterns 31 and 32 is denoted as Wova. The width of the overlapped portion of the parallel running portions of the conductor patterns 31 and 32 is denoted by Wovb.
 第8実施例においても第2実施例(図2A、図2B)と同様に、2つの導体パターン31、32の並走部分が、幅方向に関して相互に重ならない部分を有している。すなわち、Wova<W1b、Wova<W2tの関係が成立する。さらに、Wovb<W1t、Wovb<W2bの関係が成立する。 In the eighth embodiment, as in the second embodiment (FIGS. 2A and 2B), the parallel running portions of the two conductor patterns 31 and 32 have portions that do not overlap each other in the width direction. That is, the relationships Wova<W1b and Wova<W2t are established. Furthermore, the relationships Wovb<W1t and Wovb<W2b are established.
 次に、断面形状が台形状または逆台形状の導体パターン31、32の形成方法について説明する。導体パターン31、32を形成する基本的なプロセスは、第7実施例による受動部品の下層の導体パターン51(図8A、図8B)を形成するプロセスと共通である。第8実施例においては、電解メッキによってCu膜を堆積させるときにマスクとして用いるフォトレジスト膜の開口部の断面形状を、台形状または逆台形状にする。このような開口部は、フォトレジスト膜を露光するときに、故意にフォーカス位置を厚さ方向にずらすことにより、形成することができる。この開口部内にCu膜を堆積させることにより、断面形状が台形状または逆台形状の導体パターン31、32を形成することができる。 Next, a method for forming the conductor patterns 31 and 32 having trapezoidal or inverted trapezoidal cross-sectional shapes will be described. The basic process of forming conductor patterns 31 and 32 is common to the process of forming conductor pattern 51 (FIGS. 8A and 8B) in the lower layer of the passive component according to the seventh embodiment. In the eighth embodiment, the cross-sectional shape of the opening of the photoresist film used as a mask when depositing the Cu film by electrolytic plating is trapezoidal or inverted trapezoidal. Such an opening can be formed by intentionally shifting the focus position in the thickness direction when exposing the photoresist film. By depositing a Cu film in this opening, the conductor patterns 31 and 32 having a trapezoidal or inverted trapezoidal cross section can be formed.
 次に、断面形状が台形状の導体パターン31を形成する他の方法について説明する。基板20の絶縁性表面の全域にTi膜及びCu膜をスパッタリング法により形成する、その後、Cu膜をシード層として用い、基板20の絶縁性表面の全域に、Cu膜を電解メッキにより形成する。その後、導体パターン31を形成する部分をフォトレジストパターンで覆う。このフォトレジストパターンをエッチングマスクとして用い、塩化銅水溶液または塩化鉄水溶液を用いてCu膜をエッチングする。このエッチングは、深さ方向及び横方向に等方的に進むため、ほぼ台形状の断面形状を持つ導体パターン31が形成される。なお、Ti膜に代えて、Ni、W、Ta等の高融点金属からなる膜、Ti、Ni、W、Ta等の高融点金属を含む合金からなる膜を用いてもよい。 Next, another method for forming the conductor pattern 31 having a trapezoidal cross-sectional shape will be described. A Ti film and a Cu film are formed on the entire insulating surface of the substrate 20 by sputtering. After that, using the Cu film as a seed layer, a Cu film is formed on the entire insulating surface of the substrate 20 by electroplating. After that, the portion where the conductor pattern 31 is to be formed is covered with a photoresist pattern. Using this photoresist pattern as an etching mask, the Cu film is etched using an aqueous copper chloride solution or an aqueous iron chloride solution. Since this etching progresses isotropically in the depth direction and the lateral direction, a conductor pattern 31 having a substantially trapezoidal cross-sectional shape is formed. Instead of the Ti film, a film made of a high-melting-point metal such as Ni, W, or Ta, or a film made of an alloy containing a high-melting-point metal such as Ti, Ni, W, or Ta may be used.
 次に、第8実施例の優れた効果について説明する。
 第8実施例においては、2つの導体パターン31、32の並走部分が相互に対向する面のうち、平面視において相互に重なる部分の面積が、断面形状を長方形にした場合より小さくなる。言い換えると、重なり部分の幅Wovbが、重なり部分の幅Wovaより狭い。このため、2つの導体パターン31、32の間の寄生容量がより低減される。これにより、インダクタ30のQ値をより高くすることができる。
Next, the excellent effects of the eighth embodiment will be described.
In the eighth embodiment, of the surfaces on which the parallel running portions of the two conductor patterns 31 and 32 face each other, the area of the overlapping portion in plan view becomes smaller than when the cross-sectional shape is rectangular. In other words, the width Wovb of the overlapping portion is narrower than the width Wova of the overlapping portion. Therefore, the parasitic capacitance between the two conductor patterns 31 and 32 is further reduced. Thereby, the Q value of the inductor 30 can be made higher.
 下層の導体パターン31の断面形状を三角形または角丸三角形にし、上層の導体パターン32の断面形状を逆三角形または角丸逆三角形にすると、重なり部分の幅Wovbをほぼゼロにすることができる。ただし、この構成の場合には、下層の導体パターン31の上向きの稜線の近傍、及び上層の導体パターン32の下向きの稜線の近傍に電流が集中しやすい。このように狭い領域に電流が集中すると、絶縁破壊が生じやすくなる。これに対して第8実施例では、電流が集中する範囲が面で構成される。このため、電流の局所的な集中が緩和され、絶縁破壊が生じにくいという優れた効果が得られる。電流の集中を抑制するために、下層の導体パターン31と上層の導体パターン32とが相互に対向する領域を面で構成することが好ましい。 When the cross-sectional shape of the lower layer conductor pattern 31 is triangular or rounded triangle, and the cross-sectional shape of the upper layer conductor pattern 32 is inverted triangle or rounded inverted triangle, the width Wovb of the overlapping portion can be made almost zero. However, in this configuration, the current tends to concentrate near the upward ridgeline of the lower conductor pattern 31 and near the downward ridgeline of the upper conductor pattern 32 . When the current concentrates in such a narrow region, dielectric breakdown is likely to occur. On the other hand, in the eighth embodiment, the range in which the current concentrates is composed of planes. As a result, the local concentration of current is alleviated, and an excellent effect is obtained that dielectric breakdown is less likely to occur. In order to suppress concentration of current, it is preferable that the areas where the lower-layer conductor pattern 31 and the upper-layer conductor pattern 32 face each other are configured as planes.
 さらに、第8実施例では、導体パターン31、32の断面形状を長方形にした構成と比べて、導体パターン31、32の各々の内周側の部分と外周側の部分との間隔を狭めることができる。これにより、インダクタ30の小型化を図ることが可能である。 Furthermore, in the eighth embodiment, compared to the configuration in which the conductor patterns 31 and 32 have rectangular cross-sectional shapes, the distance between the inner and outer peripheral portions of the conductor patterns 31 and 32 can be narrowed. can. Thereby, it is possible to reduce the size of the inductor 30 .
 次に、第8実施例の変形例について説明する。
 第8実施例では、導体パターン31、32の断面形状が、いずれも角のある台形にされているが、角を丸めた角丸台形であってもよい。例えば、製造プロセスの条件によって、導体パターン31、32の断面形状が角丸台形になる場合もある。この場合でも、下層の導体パターン31と上層の導体パターン32とが相互に対向する領域が面で構成されている場合、絶縁破壊が生じにくくなるという優れた効果が得られる。
Next, a modified example of the eighth embodiment will be described.
In the eighth embodiment, the cross-sectional shapes of the conductor patterns 31 and 32 are both trapezoidal with corners, but they may be trapezoids with rounded corners. For example, the cross-sectional shape of the conductor patterns 31 and 32 may be a rounded trapezoid depending on the conditions of the manufacturing process. Even in this case, when the regions in which the lower-layer conductor pattern 31 and the upper-layer conductor pattern 32 face each other are composed of planes, an excellent effect that dielectric breakdown is less likely to occur can be obtained.
 第8実施例では、下層の導体パターン31の断面形状が台形状であり、上方の導体パターン32の断面形状が逆台形状である。その他の構成として、下層の導体パターン31(すなわち、2つの導体パターン31、32のうち基板20に近い方の導体パターン)の並走部分の断面形状が台形状であれば、他方の導体パターン32は、長方形状であってもよいし、台形状であってもよい。逆に、上層の導体パターン32(すなわち、2つの導体パターン31、32のうち基板20から遠い方の導体パターン)の並走部分の断面形状が逆台形状であれば、他方の導体パターン31は、長方形状であってもよいし、逆台形状であってもよい。 In the eighth embodiment, the cross-sectional shape of the lower conductor pattern 31 is trapezoidal, and the cross-sectional shape of the upper conductive pattern 32 is an inverted trapezoid. As another configuration, if the cross-sectional shape of the parallel running portion of the lower layer conductor pattern 31 (that is, the conductor pattern closer to the substrate 20 of the two conductor patterns 31 and 32) is trapezoidal, the other conductor pattern 32 may be rectangular or trapezoidal. Conversely, if the cross-sectional shape of the parallel running portion of the upper conductor pattern 32 (that is, the conductor pattern of the two conductor patterns 31, 32 farther from the substrate 20) is an inverted trapezoid, the other conductor pattern 31 is , a rectangular shape, or an inverted trapezoidal shape.
 [第9実施例]
 次に、図15A及び図15Bを参照して第9実施例による受動部品について説明する。以下、第5実施例(図5A、図5B)による受動部品と共通の構成については説明を省略する。
[Ninth embodiment]
Next, a passive component according to the ninth embodiment will be described with reference to FIGS. 15A and 15B. Hereinafter, descriptions of configurations common to the passive components according to the fifth embodiment (FIGS. 5A and 5B) will be omitted.
 図15Aは、第9実施例による受動部品に含まれるインダクタ30の平面図であり、図15Bは、図15Aの一点鎖線15B-15Bにおける断面図である。図15Aに示したインダクタ30の平面視における形状は、第5実施例(図5A)のインダクタ30の平面視における形状と同一である。 15A is a plan view of an inductor 30 included in a passive component according to the ninth embodiment, and FIG. 15B is a cross-sectional view taken along dashed-dotted line 15B-15B in FIG. 15A. The planar view shape of the inductor 30 shown in FIG. 15A is the same as the planar view shape of the inductor 30 of the fifth embodiment (FIG. 5A).
 第5実施例(図5B)では、基板20の詳細な構造については言及していない。第9実施例による受動部品に用いられる基板20は、シリコン等の半導体からなる下地基板20Aと、その上に配置された酸化シリコン、窒化シリコン等からなる絶縁層20Bとを含む。絶縁層20Bの上に、下層の導体パターン31が配置されている。 The detailed structure of the substrate 20 is not mentioned in the fifth embodiment (FIG. 5B). A substrate 20 used for passive components according to the ninth embodiment includes a base substrate 20A made of a semiconductor such as silicon, and an insulating layer 20B made of silicon oxide, silicon nitride, or the like disposed thereon. A lower layer conductor pattern 31 is arranged on the insulating layer 20B.
 第9実施例においても第5実施例(図5B)と同様に、下層の導体パターン31の幅W1が上層の導体パターン32の幅W2より細い。第5実施例(図5B)では、下層の導体パターン31が上層の導体パターン32より厚い。これに対して第9実施例では、下層の導体パターン31と上層の導体パターン32とが、ほぼ同じ厚さである。ここで、「厚さ」とは、基板20の絶縁性表面に対して直交する方向を高さ方向と定義したときの高さ方向の寸法を意味する。 In the ninth embodiment, as in the fifth embodiment (FIG. 5B), the width W1 of the lower layer conductor pattern 31 is narrower than the width W2 of the upper layer conductor pattern 32 . In the fifth embodiment (FIG. 5B), the conductor pattern 31 in the lower layer is thicker than the conductor pattern 32 in the upper layer. On the other hand, in the ninth embodiment, the lower layer conductor pattern 31 and the upper layer conductor pattern 32 have substantially the same thickness. Here, "thickness" means a dimension in the height direction when the direction perpendicular to the insulating surface of the substrate 20 is defined as the height direction.
 次に、第9実施例の優れた効果について説明する。
 基板20が、半導体からなる下地基板20Aと、その上に配置された絶縁層20Bとを含む場合、インダクタ30を構成する導体パターン31、32と下地基板20Aとの間に寄生容量が発生する。特に、下層の導体パターン31と下地基板20Aとの間の寄生容量が大きくなりやすい。第9実施例では、下層の導体パターン31を上層の導体パターン32より細くしているため、下層の導体パターン31を上層の導体パターン32と同じ幅にする構成と比べて、下層の導体パターン31と下地基板20Aとの間の寄生容量を低減させることができる。
Next, the excellent effects of the ninth embodiment will be described.
When the substrate 20 includes a base substrate 20A made of a semiconductor and an insulating layer 20B disposed thereon, parasitic capacitance is generated between the conductor patterns 31, 32 forming the inductor 30 and the base substrate 20A. In particular, the parasitic capacitance between the underlying conductor pattern 31 and the underlying substrate 20A tends to increase. In the ninth embodiment, since the lower-layer conductor pattern 31 is thinner than the upper-layer conductor pattern 32, the lower-layer conductor pattern 31 is thinner than the upper-layer conductor pattern 32, compared to the configuration in which the lower-layer conductor pattern 31 has the same width as the upper-layer conductor pattern 32. and the underlying substrate 20A can be reduced.
 なお、寄生容量は、下層の導体パターン31と下地基板20Aとが相互に対向する領域の面積の影響を大きく受け、下層の導体パターン31の厚さの影響はほとんど受けない。したがって、第9実施例において、第5実施例(図5A)と同様に、下層の導体パターン31を上層の導体パターン32より厚くしてもよい。 The parasitic capacitance is greatly affected by the area of the region where the underlying conductor pattern 31 and the base substrate 20A face each other, and is hardly affected by the thickness of the underlying conductor pattern 31. Therefore, in the ninth embodiment, the lower layer conductor pattern 31 may be thicker than the upper layer conductor pattern 32, as in the fifth embodiment (FIG. 5A).
 [第10実施例]
 次に、図16Aを参照して第10実施例による受動部品について説明する。以下、第1実施例による受動部品(図1A、図1B)と共通の構成については説明を省略する。
[Tenth embodiment]
Next, the passive component according to the tenth embodiment will be described with reference to FIG. 16A. Hereinafter, descriptions of configurations common to the passive components (FIGS. 1A and 1B) according to the first embodiment will be omitted.
 図16Aは、第10実施例による受動部品のインダクタ30の断面図である。第1実施例(図1B)では、2つの導体パターン31、32のそれぞれの幅方向に隣り合う内周側の部分と外周側の部分との間隔、下層の導体パターン31と上層の導体パターン32との高さ方向の間隔について言及していない。第10実施例では、これらの間隔の好ましい関係が規定される。 FIG. 16A is a cross-sectional view of the passive component inductor 30 according to the tenth embodiment. In the first embodiment (FIG. 1B), the distance between the inner peripheral side portion and the outer peripheral side portion of the two conductor patterns 31 and 32 adjacent to each other in the width direction, the lower layer conductor pattern 31 and the upper layer conductor pattern 32 No mention is made of the vertical spacing between and . The tenth embodiment defines the preferred relationship of these intervals.
 インダクタ30を構成する2つの導体パターン31、32の高さ方向の間隔をHと標記する。下層の導体パターン31の幅方向に隣り合う外周側の部分と内周側の部分との間隔をG1と標記し、上層の導体パターン32の幅方向に隣り合う外周側の部分と内周側の部分との間隔をG2と標記する。第10実施例では、高さ方向の間隔Hが、幅方向の間隔G1、G2のいずれよりも広い。 The distance in the height direction between the two conductor patterns 31 and 32 forming the inductor 30 is denoted by H. The distance between the outer peripheral side portion and the inner peripheral side portion of the lower layer conductor pattern 31 adjacent in the width direction is denoted by G1, and the distance between the outer peripheral side portion and the inner peripheral side portion of the upper layer conductive pattern 32 adjacent in the width direction is denoted by G1. The distance between the parts is labeled as G2. In the tenth embodiment, the heightwise interval H is wider than both the widthwise intervals G1 and G2.
 次に、第10実施例の優れた効果について説明する。インダクタ30を構成する導体パターン31、32が持つ寄生容量を低減させるためには、間隔G1、G2、Hを広くすることが好ましい。ところが、基板20の表面においてインダクタ30が占める領域の面積の上限が決められている場合、幅方向の間隔G1、G2を無制限に広くすることはできない。高さ方向の間隔Hを広げても、インダクタ30が占める領域の面積は大きくならない。インダクタ30を配置する領域の面積の上限値による制約により間隔G1、G2を広くすることができない場合であっても、高さ方向の間隔Hを、間隔G1、G2より広くすることにより、寄生容量の低減を図る一定の効果が得られる。なお、高さ方向の間隔Hが、幅方向の間隔G1、G2の少なくとも一方より広い構成としてもよい。この構成においても、寄生容量の低減を図る一定の効果が得られる。 Next, the excellent effects of the tenth embodiment will be described. In order to reduce the parasitic capacitance of the conductor patterns 31, 32 forming the inductor 30, it is preferable to widen the intervals G1, G2, H. However, if the upper limit of the area occupied by the inductor 30 on the surface of the substrate 20 is determined, the widthwise intervals G1 and G2 cannot be widened without limit. Even if the interval H in the height direction is widened, the area occupied by the inductor 30 does not increase. Even if the gaps G1 and G2 cannot be widened due to restrictions imposed by the upper limit of the area of the region where the inductor 30 is arranged, by making the gap H in the height direction wider than the gaps G1 and G2, the parasitic capacitance A certain effect of reducing the It should be noted that the interval H in the height direction may be wider than at least one of the intervals G1 and G2 in the width direction. Also in this configuration, a certain effect of reducing the parasitic capacitance can be obtained.
 次に、図16Bを参照して第10実施例の変形例による受動部品について説明する。図16Bは、第10実施例の変形例による受動部品のインダクタ30の断面図である。本変形例では、幅方向の間隔G1、G2のいずれも、高さ方向の間隔Hより広い。受動部品の高さの上限値による制約により、高さ方向の寸法Hを広くすることができない場合がある。これに対してインダクタ30を配置する領域には余裕がある場合もある。このような場合に、幅方向の間隔G1、G2を高さ方向の間隔Hより広くすることにより、寄生容量の低減を図る一定の効果が得られる。なお、幅方向の間隔G1、G2の少なくとも一方が、高さ方向の間隔Hより広い構成としてもよい。この構成においても、寄生容量の低減を図る一定の効果が得られる。 Next, a passive component according to a modification of the tenth embodiment will be described with reference to FIG. 16B. FIG. 16B is a cross-sectional view of the passive component inductor 30 according to the modification of the tenth embodiment. In this modification, both the widthwise intervals G1 and G2 are wider than the heightwise interval H. FIG. Due to restrictions imposed by the upper limit of the height of passive components, it may not be possible to widen the dimension H in the height direction. On the other hand, there may be a margin in the region where the inductor 30 is arranged. In such a case, by making the gaps G1 and G2 in the width direction wider than the gap H in the height direction, a certain effect of reducing the parasitic capacitance can be obtained. At least one of the gaps G1 and G2 in the width direction may be wider than the gap H in the height direction. Also in this configuration, a certain effect of reducing the parasitic capacitance can be obtained.
 上述の各実施例は例示であり、異なる実施例で示した構成の部分的な置換または組み合わせが可能であることは言うまでもない。複数の実施例の同様の構成による同様の作用効果については実施例ごとには逐次言及しない。さらに、本発明は上述の実施例に制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。 It goes without saying that each of the above-described embodiments is an example, and partial replacement or combination of configurations shown in different embodiments is possible. Similar actions and effects due to similar configurations of multiple embodiments will not be sequentially referred to for each embodiment. Furthermore, the invention is not limited to the embodiments described above. For example, it will be obvious to those skilled in the art that various changes, improvements, combinations, etc. are possible.
20 基板
20A 下地基板
20B 絶縁層
21 1層目の絶縁膜
22 2層目の絶縁膜
30 インダクタ
31 インダクタを構成する下層の導体パターン
31A、31B インダクタを構成する下層の導体パターンの一部分
32 インダクタを構成する上層の導体パターン
32A インダクタを構成する上層の導体パターンの一部分
35 ビアホール
40 基板
41 誘電体膜
42、43 絶縁膜
51 インダクタを構成する下層の導体パターン
52 キャパシタの中間電極
53 キャパシタの一対の電極
55 配線
56 インダクタを構成する上層の導体パターン
57 パッド
58 外部接続端子
59 酸化防止膜
61、62、63、64 金属層
20 substrate 20A base substrate 20B insulating layer 21 first-layer insulating film 22 second-layer insulating film 30 inductor 31 lower- layer conductor patterns 31A and 31B constituting inductor part of lower-layer conductor pattern 32 constituting inductor upper-layer conductor pattern 32A, part 35 of the upper-layer conductor pattern constituting the inductor, via-hole 40, substrate 41, dielectric films 42, 43, insulating film 51, lower-layer conductor pattern 52, which constitutes the inductor, intermediate electrode 53 of the capacitor, and pair of electrodes 55 of the capacitor. Wiring 56 Upper conductor pattern 57 constituting the inductor Pad 58 External connection terminal 59 Anti-oxidation films 61, 62, 63, 64 Metal layer

Claims (17)

  1.  絶縁性表面の有する基板と、
     前記基板の絶縁性表面の上に、相互に絶縁膜を挟んで積層された2つの導体パターンを含むインダクタと
    を備えており、
     前記インダクタを構成する2つの導体パターンの各々は、平面視においてスパイラル形状を有し、
     前記インダクタを構成する2つの導体パターンは、周回方向に関して同一方向に電流が流れるように直列に接続されており、平面視において相互に隣り合って並行に配置された並走部分を含み、
     前記インダクタを構成する2つの導体パターンの並走部分の両方が、並行に延びる方向に対して直交する幅方向に関して相互に重ならない部分を有しており、
     前記インダクタを構成する2つの導体パターンのうち、前記基板から遠い方の導体パターンの、前記基板に対向する面が、前記基板に近い方の導体パターンの、前記基板の側とは反対側を向く面より、前記基板から遠い位置に配置されている受動部品。
    a substrate having an insulating surface;
    an inductor including two conductor patterns stacked on the insulating surface of the substrate with an insulating film sandwiched therebetween;
    each of the two conductor patterns forming the inductor has a spiral shape in plan view,
    The two conductor patterns that make up the inductor are connected in series so that current flows in the same direction with respect to the winding direction, and include parallel running portions that are arranged in parallel and adjacent to each other in a plan view,
    Both of the parallel running portions of the two conductor patterns that constitute the inductor have portions that do not overlap each other in the width direction orthogonal to the direction extending in parallel,
    Of the two conductor patterns forming the inductor, the surface of the conductor pattern farther from the substrate facing the substrate faces the side opposite to the substrate of the conductor pattern closer to the substrate. A passive component located farther from the substrate than the plane.
  2.  平面視において、前記インダクタを構成する2つの導体パターンのうち一方の導体パターンの並走部分の両側に、他方の導体パターンの2つの並走部分が配置されており、一方の導体パターンの並走部分が、他方の導体パターンの2つの並走部分の間に配置されている請求項1に記載の受動部品。 In a plan view, two parallel running portions of one of the two conductor patterns forming the inductor are arranged on both sides of the parallel running portion of the other conductor pattern. 2. Passive component according to claim 1, wherein the part is arranged between two parallel parts of the other conductor pattern.
  3.  平面視において、前記インダクタを構成する2つの導体パターンの並走部分が、幅方向に関して重なりを持たない請求項1または2に記載の受動部品。 The passive component according to claim 1 or 2, wherein the parallel running portions of the two conductor patterns forming the inductor do not overlap in the width direction when viewed from above.
  4.  前記インダクタを構成する2つの導体パターンの並走部分の幅方向の寸法が相互に異なっている請求項1または2に記載の受動部品。 The passive component according to claim 1 or 2, wherein the parallel running portions of the two conductor patterns forming the inductor have mutually different dimensions in the width direction.
  5.  前記インダクタを構成する2つの導体パターンの並走部分のうち、前記基板側に位置する並走部分の幅方向の寸法が、前記基板から遠い側に位置する並走部分の幅方向の寸法より小さい請求項4に記載の受動部品。 Of the parallel running portions of the two conductor patterns forming the inductor, the width direction dimension of the parallel running portion located on the side of the substrate is smaller than the width direction dimension of the parallel running portion located on the far side from the substrate. A passive component according to claim 4 .
  6.  前記基板の絶縁性表面に対して垂直な方向を高さ方向と定義したとき、前記インダクタを構成する2つの導体パターンの並走部分のうち、前記基板側に位置する並走部分の高さ方向の寸法が、前記基板から遠い側に位置する並走部分の高さ方向の寸法より大きい請求項5に記載の受動部品。 When the direction perpendicular to the insulating surface of the substrate is defined as the height direction, of the parallel running portions of the two conductor patterns forming the inductor, the height direction of the parallel running portion located on the substrate side. 6. The passive component according to claim 5, wherein the dimension of is greater than the dimension in the height direction of the parallel running portion located on the far side from the substrate.
  7.  前記インダクタを構成する2つの導体パターンのうち少なくとも一方のターン数は1より多く、相対的に外周側の部分の幅方向の寸法が、相対的に内周側の部分の幅方向の寸法より大きい請求項1または2に記載の受動部品。 At least one of the two conductor patterns forming the inductor has more than one turn, and the widthwise dimension of the relatively outer peripheral portion is larger than the widthwise dimension of the relatively inner peripheral portion. 3. A passive component according to claim 1 or 2.
  8.  前記インダクタを構成する2つの導体パターンのうち、ターン数が1より多い導体パターンの幅方向の寸法は、外周側の端部から内周側の端部に向かって単調に減少する請求項7に記載の受動部品。 8. The method according to claim 7, wherein, of the two conductor patterns forming the inductor, the widthwise dimension of the conductor pattern having more than one turn monotonically decreases from the outer peripheral end to the inner peripheral end. Passive components as described.
  9.  前記インダクタを構成する2つの導体パターンの並走部分のうち前記基板に近い方の導体パターンの並走部分は、前記基板の反対側を向く面の幅方向の寸法が、前記基板に対向する面の幅方向の寸法より小さい断面形状を有する請求項1または2に記載の受動部品。 Of the parallel running portions of the two conductor patterns forming the inductor, the parallel running portion of the conductor pattern closer to the substrate has a dimension in the width direction of the surface facing the opposite side of the substrate, the surface facing the substrate. 3. The passive component according to claim 1, wherein the cross-sectional shape is smaller than the dimension in the width direction.
  10.  前記インダクタを構成する2つの導体パターンの並走部分のうち前記基板に近い方の導体パターンの並走部分の断面形状は、前記基板から遠ざかる方向に向かって幅が狭くなる台形状である請求項9に記載の受動部品。 3. A cross-sectional shape of a parallel running portion of the conductor pattern closer to the substrate, of the parallel running portions of the two conductor patterns forming the inductor, is trapezoidal in cross section, the width of which narrows in the direction away from the substrate. 9. Passive component according to 9.
  11.  前記インダクタを構成する2つの導体パターンの並走部分のうち前記基板から遠い方の導体パターンの並走部分は、前記基板に対向する面の幅方向の寸法が、前記基板の反対側を向く面の幅方向の寸法より小さい請求項1または2に記載の受動部品。 Of the parallel running portions of the two conductor patterns forming the inductor, the parallel running portion of the conductor pattern farther from the substrate has a dimension in the width direction of the surface facing the substrate facing the opposite side of the substrate. 3. The passive component according to claim 1 or 2, which is smaller than the dimension in the width direction of the .
  12.  前記インダクタを構成する2つの導体パターンの並走部分のうち前記基板から遠い方の導体パターンの並走部分の断面形状は、前記基板から遠ざかる方向に向かって幅が広くなる逆台形状である請求項11に記載の受動部品。 The cross-sectional shape of the parallel running portion of the two conductor patterns that constitute the inductor, which is farther from the substrate, is an inverted trapezoid whose width increases in a direction away from the substrate. Item 12. The passive component according to Item 11.
  13.  さらに、前記基板の絶縁性表面の上に配置されたキャパシタを備えており、
     前記キャパシタに含まれる少なくとも1つの電極は、前記インダクタを構成する2つの導体パターンのうち一方の導体パターンと同一の層に配置されている請求項1または2に記載の受動部品。
    further comprising a capacitor disposed over the insulating surface of the substrate;
    3. The passive component according to claim 1, wherein at least one electrode included in said capacitor is arranged in the same layer as one of two conductor patterns forming said inductor.
  14.  前記インダクタを構成する2つの導体パターンは、Au、Cu、Al、またはこれらの金属の合金を主成分として含む請求項1または2に記載の受動部品。 The passive component according to claim 1 or 2, wherein the two conductor patterns forming the inductor contain Au, Cu, Al, or an alloy of these metals as main components.
  15.  前記インダクタを構成する2つの導体パターンの表面の少なくとも一部の領域と前記絶縁膜との間、及び前記インダクタを構成する2つの導体パターンのうち前記基板に近い方の導体パターンと前記基板の絶縁性表面との間の少なくとも一方に、Ti、Ni、W、Ta、またはこれらの金属を含む合金からなる金属層を、さらに備えている請求項1または2に記載の受動部品。 insulation between at least a partial region of the surfaces of the two conductor patterns forming the inductor and the insulating film, and between the conductor pattern closer to the substrate and the substrate among the two conductor patterns forming the inductor; 3. The passive component according to claim 1, further comprising a metal layer made of Ti, Ni, W, Ta, or an alloy containing these metals, on at least one of the surfaces of the passive component.
  16.  前記基板の絶縁性表面に対して垂直な方向を高さ方向としたとき、前記インダクタを構成する2つの導体パターンの高さ方向の間隔が、前記インダクタを構成する2つの導体パターンのうち少なくとも一方の、幅方向に隣り合う内周側の部分と外周側の部分との間隔より広い請求項1または2に記載の受動部品。 When the direction perpendicular to the insulating surface of the substrate is taken as the height direction, at least one of the two conductor patterns constituting the inductor has a height-direction interval between the two conductor patterns constituting the inductor. 3. The passive component according to claim 1, wherein the space between the inner peripheral side portion and the outer peripheral side portion adjacent to each other in the width direction is wider than the interval.
  17.  前記基板の絶縁性表面に対して垂直な方向を高さ方向としたとき、前記インダクタを構成する2つの導体パターンのうち少なくとも一方の、幅方向に隣り合う内周側の部分と外周側の部分との間隔が、前記インダクタを構成する2つの導体パターンの高さ方向の間隔より広い請求項1または2に記載の受動部品。
     
    When the direction perpendicular to the insulating surface of the substrate is taken as the height direction, at least one of the two conductor patterns forming the inductor has an inner peripheral portion and an outer peripheral portion adjacent to each other in the width direction. 3. The passive component according to claim 1, wherein the distance between and is wider than the distance in the height direction between the two conductor patterns forming said inductor.
PCT/JP2022/016985 2021-04-06 2022-04-01 Passive part WO2022215665A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-064880 2021-04-06
JP2021064880 2021-04-06

Publications (1)

Publication Number Publication Date
WO2022215665A1 true WO2022215665A1 (en) 2022-10-13

Family

ID=83546069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016985 WO2022215665A1 (en) 2021-04-06 2022-04-01 Passive part

Country Status (1)

Country Link
WO (1) WO2022215665A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015201606A (en) * 2014-04-10 2015-11-12 株式会社村田製作所 Method of manufacturing multilayer substrate, and multilayer substrate
WO2016199516A1 (en) * 2015-06-11 2016-12-15 株式会社村田製作所 Coil-incorporating multilayer substrate and method for manufacturing same
JP2019507492A (en) * 2016-01-08 2019-03-14 クアルコム,インコーポレイテッド Skewed co-spiral inductor structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015201606A (en) * 2014-04-10 2015-11-12 株式会社村田製作所 Method of manufacturing multilayer substrate, and multilayer substrate
WO2016199516A1 (en) * 2015-06-11 2016-12-15 株式会社村田製作所 Coil-incorporating multilayer substrate and method for manufacturing same
JP2019507492A (en) * 2016-01-08 2019-03-14 クアルコム,インコーポレイテッド Skewed co-spiral inductor structure

Similar Documents

Publication Publication Date Title
US7064629B2 (en) Thin-film common mode filter and thin-film common mode filter array
KR100709775B1 (en) Semiconductor device and method for manufacturing the same
TWI330886B (en) Semiconductor device
JP2007142109A (en) Electronic part
US7023299B2 (en) Thin-film common mode filter and thin-film common mode filter array
JP4518013B2 (en) Electronic components
CN100423264C (en) Semiconductor device and method for manufacturing the same
JP2017195321A (en) Chip capacitor
JP6795327B2 (en) Chip capacitor
US20130271251A1 (en) Substrate-Less Electronic Component
WO2022215665A1 (en) Passive part
JP2000124403A (en) Semiconductor device
US6781229B1 (en) Method for integrating passives on-die utilizing under bump metal and related structure
JP2012178391A (en) Semiconductor device
JP2005108929A (en) Semiconductor device and its manufacturing method
JP5589617B2 (en) Thin film capacitor and manufacturing method thereof
TWI407547B (en) Thin-film device
JP2006319409A (en) Frequency adjustment device and semiconductor package including frequency adjustment device
WO2023181806A1 (en) Electronic component
JP2006501682A (en) Conductive electronic component and manufacturing method thereof
TWI817244B (en) Passive component
WO2023181917A1 (en) Method for manufacturing electronic component
TWI718045B (en) Noncontact information carrier
WO2024004985A1 (en) Electronic component
WO2023181803A1 (en) Electronic component and circuit device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22784648

Country of ref document: EP

Kind code of ref document: A1