WO2022215645A1 - Biological information detection device and seating assessment device - Google Patents

Biological information detection device and seating assessment device Download PDF

Info

Publication number
WO2022215645A1
WO2022215645A1 PCT/JP2022/016498 JP2022016498W WO2022215645A1 WO 2022215645 A1 WO2022215645 A1 WO 2022215645A1 JP 2022016498 W JP2022016498 W JP 2022016498W WO 2022215645 A1 WO2022215645 A1 WO 2022215645A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressing portion
vibration
pad
pressing
plate
Prior art date
Application number
PCT/JP2022/016498
Other languages
French (fr)
Japanese (ja)
Inventor
松田勲
青木洋一
堀内裕城
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Priority to JP2023512995A priority Critical patent/JPWO2022215645A1/ja
Publication of WO2022215645A1 publication Critical patent/WO2022215645A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/90Details or parts not otherwise provided for

Definitions

  • the present invention relates to a biological information detection device and a seating determination device, and for example, to a biological information detection device and a seating determination device that detect vital vibrations.
  • Biological information detection devices are known that detect vibrations of human vitals such as pulse waves and respiration (for example, Patent Documents 1 to 6). It is known to detect vibrations of vital signs by using a bag-shaped member containing air and detecting the pressure of the air in the bag-shaped member (for example, Patent Document 4 and 5).
  • JP 2017-219341 A Japanese Patent Application Laid-Open No. 2006-218068 JP-A-2006-42904 JP 2018-47862 A JP 2009-82585 A JP 2009-104599 A
  • highly sensitive vibration detectors are susceptible to external vibrations.
  • large disturbance vibration such as drive noise occurs while the vehicle is running.
  • the output signal of a sensor element that detects vibration is amplified and converted into an analog voltage, the signal becomes saturated. This is because the output of the amplifier is within the range of the power supply voltage, so if the output signal of the sensor element is large, the amplified signal exceeds the range of the power supply voltage.
  • the signal saturates, it becomes impossible to detect minute vital vibrations inherent in large vibrations.
  • the present invention has been made in view of the above problems, and aims to improve detection accuracy.
  • the present invention has a bag-shaped first member having first and second surfaces facing each other and filled with gas, and third and fourth surfaces facing each other, the third surface being A bag-like second member that faces the second surface and is filled with gas; and a first pressing portion that is positioned in the center of the first surface when viewed from the stacking direction of the first member and the second member. and a second pressing portion in contact with at least a central portion of the fourth surface; a detector for detecting a difference between the gas pressure in the first member and the gas pressure in the second member; , the distance between the first surface and the fifth surface of the first pressing portion facing the first surface decreases from the peripheral portion toward the central portion, and the first surface and the first A biometric information detection device is capable of transmitting vibration between the five surfaces.
  • the surface of the first pressing portion facing the first surface may be configured such that the central portion protrudes toward the first surface from the peripheral portion.
  • the first surface may have a configuration in which the central portion protrudes toward the first pressing portion with respect to the peripheral portion.
  • the second surface and the third surface may be in contact with each other.
  • the module includes a separator provided between the second surface and the third surface so as to be in contact with the peripheral edge portions of the second surface and the third surface, and the separator causes the second surface to and the third surface can be configured to be separated from each other.
  • the module may include a support member that surrounds the first member and the second member and connects the first pressing portion and the second pressing portion.
  • the module includes a plate-like member provided on the opposite side of the first pressing portion from the first pressing portion and away from the first pressing portion;
  • a shaft core member connected to the central portion of the first pressing portion and having a plane area smaller than that of the plate member may be provided.
  • the first surface, the second surface, the third surface and the fourth surface may be arranged in a direction substantially perpendicular to the vertical direction.
  • the module includes: a third member provided on the side opposite to the first member with respect to the first pressing portion; a third pressing portion located at the peripheral portion and in contact with the first surface and the third member, wherein vibration can be transmitted between the first surface and the third member via the first pressing portion; It can be configured as follows.
  • the module may include a support member that surrounds the first member and the second member and connects the third member and the second pressing portion.
  • the module includes a separator provided between the second surface and the third surface so as to be in contact with the peripheral edge portions of the second surface and the third surface, and the separator causes the second surface to and the third surface can be configured to be separated from each other.
  • the module includes a plate-like member provided on a side opposite to the first member with respect to the third member and away from the third member, a central portion of the plate-like member, and the third member. and a shaft core member connecting the central portion of the.
  • the present invention has a bag-shaped first member having first and second surfaces facing each other and filled with gas, and third and fourth surfaces facing each other, the third surface being A bag-shaped second member facing the second surface and filled with gas, a first pressing portion in contact with at least the central portion of the first surface, and a second pressing portion in contact with at least the central portion of the fourth surface.
  • a plate-like member provided away from the first pressing portion on a side opposite to the first member with respect to the first pressing portion; a center portion of the plate-like member and a center of the first pressing portion; and a shaft core member having a plane area smaller than that of the plate-like member, and detecting a difference between gas pressure in the first member and gas pressure in the second member. and a detector.
  • the present invention has a bag-shaped first member having first and second surfaces facing each other and filled with gas, and third and fourth surfaces facing each other, the third surface being A bag-shaped second member facing the second surface and filled with gas, a first pressing portion in contact with at least the central portion of the first surface, and a second pressing portion in contact with at least the central portion of the fourth surface. and a detector that detects a difference between the gas pressure in the first member and the gas pressure in the second member, wherein the first surface, the second surface, the second The third surface and the fourth surface are biological information detection devices arranged in a direction substantially perpendicular to the vertical direction.
  • the second surface and the third surface may be in contact with each other.
  • the module may be configured to be installed inside the seat of the vehicle.
  • the present invention is a seating determination device comprising the biological information detection device described above and a determination unit that determines whether or not a passenger is seated in a vehicle seat provided with the module based on the output of the detector. is.
  • FIG. 1 is a schematic diagram showing a module and a differential pressure sensor in Example 1.
  • FIG. FIG. 2 is a block diagram showing the detection device in Example 1.
  • FIG. FIG. 3 is a diagram showing an example in which the modules in Example 1 are arranged on a seat.
  • FIG. 4(a) is a plan view of the pad in Example 1
  • FIG. 4(b) is a sectional view along AA of FIG. 4(a)
  • FIGS. It is a cross-sectional view of the part.
  • FIG. 5 is a diagram showing changes in pressure with respect to the amount of vibration applied to the pad.
  • 6(a) and 6(b) are sectional views of the module in Example 1.
  • FIG. 7A to 7C are sectional views of the module in Example 1.
  • FIG. 8(a) and 8(b) are diagrams showing another example of the first embodiment.
  • FIGS. 9A and 9B are diagrams showing another example of the first embodiment.
  • FIG. 10 is a cross-sectional view of a module according to Example 2.
  • FIG. 11(a) to 11(d) are plan views of a module according to Example 2.
  • FIG. 12 is a diagram showing the output signal of the detector against time in experiment 1.
  • FIG. 13(a) and 13(b) are cross-sectional views of modules in Modifications 1 and 2 of Example 2, respectively.
  • 14 is a cross-sectional view of a module in Modification 3 of Embodiment 2.
  • FIG. 15 is a cross-sectional view of a module according to Example 3.
  • FIG. 16(a) to 16(d) are plan views of a module according to Example 3.
  • FIG. 17 is a diagram showing the output signal of the detector against time in experiment 2.
  • FIG. 18A is a cross-sectional view of a module according to Example 4, and FIGS. 18B and 18C are plan views of the module according to Example 4.
  • FIG. 19(a) is a diagram showing the output signal of the sensor 20a with respect to time in Experiment 3
  • FIG. 19(b) is a diagram showing a spectrum obtained by Fourier transforming the output signal in period 72 of FIG. 19(a).
  • 20 is a cross-sectional view of a module in Modification 1 of Embodiment 4.
  • FIG. 21(a) is a cross-sectional view of the module in Comparative Example 5, and FIG.
  • FIG. 21(b) is a cross-sectional view of the module in Example 5.
  • FIG. 22(a) and 22(b) are cross-sectional views of a car seat in which modules are installed in Example 5.
  • FIG. 23(a) to 23(d) are diagrams showing the output signal of the differential pressure sensor with respect to time in Experiment 4.
  • FIG. 24(a) to 24(g) are diagrams showing the results of spectral analysis of FIG. 23(a) in Experiment 4.
  • FIG. 25(a) to 25(g) are diagrams showing the results of spectrum analysis of FIG. 23(b) in experiment 4.
  • FIG. 26(a) to 26(g) are diagrams showing the results of spectrum analysis of FIG. 23(c) in experiment 4.
  • FIG. 27(a) to 27(g) are diagrams showing the results of spectrum analysis of FIG. 23(d) in Experiment 4.
  • FIG. 28(a) and 28(b) are flowcharts showing the processing of the processing unit in the sixth embodiment.
  • FIG. 29 is a flow chart showing a detection method according to the sixth embodiment.
  • Example 1 is an example of a biological information detection device.
  • FIG. 1 is a schematic diagram showing a module and a differential pressure sensor in a biological information detecting device according to Example 1.
  • module 10 includes pad 12 (first member) and pad 14 (second member).
  • Pad 12 overlaps pad 14 .
  • Pads 12 and 14 may be in contact or may be spaced apart and not in contact.
  • Pads 12 and 14 are bag-like members having spaces 11 and 13 filled with gas such as air.
  • the pads 12 and 14 are bags made of resin material, and the pressure in the spaces 11 and 13 is kept at a level not to be crushed by the weight of the human body.
  • the material of the pads 12 and 14 may be a flexible material or a somewhat hard material as long as the material changes the pressure in the spaces 11 and 13 by vibration.
  • the material of the pads 12 and 14 is, for example, resin such as polyethylene or polycarbonate.
  • the outer shape of the pads 12 and 14 is a thin rectangular parallelepiped, for example, a shape like a small air mat or cushion, or a shape like an edible pie dough that is circular or oval in plan view. 12 and 14 have a bag-like shape with a hollow structure.
  • the spaces 11 and 13 within the pads 12 and 14 may be filled with other gas or liquid than air.
  • the vibrations described above are, in other words, pressure fluctuations, and the forces are applied to pads 12 and 14 .
  • the target biological information is detected by the differential pressure sensor described below.
  • the differential pressure sensor 20 includes a housing 22, a vibrating membrane 24 and a sensor element 25.
  • a strain is generated in the vibrating membrane 24 due to the force applied to the vibrating membrane 24 .
  • the sensor element 25 is an element that converts the strain of the vibrating membrane 24 into an electrical signal.
  • the differential pressure sensor 20 in which the piezoelectric element is mounted on the vibrating membrane 24 as the sensor element 25 is shown.
  • the differential pressure sensor 20 may be a differential pressure sensor that detects pressure.
  • the sensor element 25 may be a capacitive sensor, an electret condenser microphone, a piezoresistive sensor, a differential transformer, or the like.
  • the housing 22 is a rigid body, and spaces 21 and 23 are provided in the housing 22 with the diaphragm 24 as a boundary.
  • the differential pressure sensor 20 may be a commercially available differential pressure sensor having a sensor element 25 other than a piezoelectric element and a built-in vibrating membrane 24 .
  • the sensor element 25 is provided with a case (or housing) that protects the sensor body.
  • the size of the opening surrounded by the projecting portion 22a may be the size of the case of the sensor element 25, and the case of the sensor element 25 may be tightly inserted (fitted) into the opening.
  • the spaces 21 and 23 may be provided by the sensor element 25 and the protruding portion 22a.
  • the shape and size of the spaces 21 and 23 are preferably almost the same, for example.
  • the shape of the housing 22 is, for example, a cylinder or a box, and the housing 22 is mainly made of metal or resin.
  • the housing 22 in FIG. 1 is, for example, a cylinder having a circular top surface, a circular bottom surface, and side surfaces connecting the two.
  • the first embodiment can detect desired vibrations with a simple configuration.
  • the vibration to be detected is, for example, the vital vibration of a passenger in a car, such as the vibration of breathing or pulse.
  • disturbance vibration is vibration that enters as noise when vital vibration is detected.
  • the disturbance vibrations are drive noise or road noise.
  • Drive noise includes, for example, road noise, drive sound, wind from an air conditioner, mechanical sounds such as engine sounds (motor sounds in EVs), body motion sounds of the human body, and the like.
  • Road noise is the noise of an engine or motor driven vehicle running on the road, generally noise from the road and tires.
  • Body motion noise is noise generated by the motion of the driver. In the following description, it is assumed that the vehicle is driven by the engine.
  • the purpose of the embodiments of the present specification is to efficiently detect the vibration to be detected in an environment where the vibration to be detected and the external disturbance vibration to be eliminated exist.
  • various cases are conceivable, such as detecting the vital vibration of a person, or detecting the good sound of an engine or a motor for processing.
  • the S case and N case are classified as follows from the viewpoint of extracting the vital signs of the vehicle occupants.
  • Case 1 The car engine is off and the passenger is sitting in the seat.
  • Case 2 The passenger is sitting on the seat and the car engine is running, but the car is stopped without running.
  • Case 3 A passenger is seated, the car engine is running, and the car is traveling at low speed on the road. Especially when driving on flat asphalt.
  • Case 4 The passenger is sitting in the seat, the vehicle engine is running, and the vehicle is traveling on a road, but the vehicle is traveling at high speed, on a gravel road, or on a rough road.
  • Cases 3 and 4 which are called N Cases.
  • Cases 1 to 3 when there is little noise are called S cases.
  • case 3 may correspond to the S case or the N case depending on the magnitude of the noise.
  • the housing is divided into two types.
  • the first is a housing 52 (see FIG. 7(c)) in which the pads 12 and 14 are placed.
  • the second is a housing 22 that contains a sensor element 25 that detects pressure and vibration within the pads 12 and 14 .
  • the housing 22 containing the sensor element 25 is a rigid body.
  • a rigid body is a virtual object that does not change volume and shape, and is made of, for example, rigid plastic or metal. By using a rigid body for the housing 22, noise from the outside of the housing 22 is not taken into the housing 22 as much as possible.
  • the housing 22 is a box made of a rigid body and surrounded by a strong plate. A rigid body will be described as a body that can exclude a bending component when external vibration is applied. This point will be described later.
  • the housing 52 in which the pads are housed is divided into two parts, and when vibration is transmitted from the upper plate, the lower plate or the side plates, it is more flexible than the rigid body.
  • the sensor element 25 has advantages and disadvantages depending on its type.
  • a piezoelectric sensor has high resolution and high detection accuracy. However, since it is mounted on a part that vibrates, there is a possibility that the connection may become defective due to long-term use.
  • the capacitive sensor has a structure in which capacitance is generated by two opposing electrodes. For example, at least one electrode vibrates to change the capacitance. Since no element is placed on the diaphragm or diaphragm, the possibility of poor connection due to sticking or the like is low.
  • various sensor elements 25 for the differential pressure sensor 20 although there are advantages and disadvantages depending on the type of the sensor element 25. Therefore, the setting environment is taken into consideration when selecting the mode of use. In the following description, piezoelectric elements are mainly used.
  • a vibration film 24 is provided so as to partition the spaces 21 and 23 . That is, the lower surface of the inner wall defining the space 21 is the upper surface of the vibrating membrane 24 , and the upper surface of the inner wall defining the space 23 is the lower surface of the vibrating membrane 24 .
  • An inner wall corresponding to the side wall of the housing 22 is provided with a ring-shaped protruding portion 22a having a predetermined width over the entire circumference and protruding inward.
  • a peripheral edge of the vibrating membrane 24 is bonded to the upper surface of the projecting portion 22a. The entire peripheral edge of vibrating membrane 24 is fixed to projecting portion 22a. Note that the vibrating membrane 24 may be provided on the lower surface of the projecting portion 22a.
  • a side wall of the housing 22 is provided with connection pipes corresponding to the spaces 21 and 23 .
  • the pipes are referred to herein as connections 28 and 29.
  • FIG. The connections 28 and 29 are provided for connecting the tubes 26 and 27 . Therefore, the space 21 is connected (that is, communicated) with the space 11 inside the pad 12 via the connecting portion 28 and the tube 26 (first tube).
  • the space 23 is connected to the space 13 inside the pad 14 via the connecting portion 29 and the tube 27 (second tube). Spaces 21 and 23 are filled with air. Spaces 21 and 23 may be filled with fluid such as gas or liquid other than air.
  • a sensor element 25 is provided on the upper surface of the vibration film 24 .
  • the vibrating membrane 24 temporarily receives vibrations (for example, pressure vibrations) from the pads 12 and 14 and transmits them to the sensor element 25, so the sensor element 25 is provided so as not to overlap the projecting portion 22a.
  • FIG. 2 is a block diagram showing the biometric information detection device according to the first embodiment.
  • the detection device 100 includes a module 10 and a sensor unit 31.
  • the differential pressure sensor 20 outputs a detection signal to the circuit component 35 .
  • the circuit component 35 includes, for example, a preamplifier (analog amplifier) and amplifies the detection signal.
  • a printed circuit board may be provided inside the housing 22 of the differential pressure sensor 20 , and the circuit component 35 may be provided on this printed circuit board, or may be provided outside the housing 22 .
  • the preamplifier is prepared as one chip or one package, and if the preamplifier is equal to or smaller than the sensor element 25, the preamplifier may be provided on the front surface or the rear surface of the vibrating membrane 24.
  • a preamplifier with a desired power supply voltage converts and amplifies the output of the sensor element 25
  • saturation of the output signal does not occur as long as the amplified signal is within the power supply voltage range.
  • the output of the sensor element 25 is large, and the output signal of the preamplifier is saturated.
  • the embodiments herein suppress the saturation of this output signal by suppressing the vibrations propagating to the pads 12 and 14 in various ways, thereby detecting the desired vibrations. As described in the specification, even if the sensor element 25 is an element other than a piezoelectric element, saturation can be suppressed in a similar manner.
  • a signal processed by the circuit component 35 is output to the signal processing device 30 .
  • the signal processing device 30 includes an amplifier 32, a processing section 34, a memory 36, an output section 38, and the like.
  • Amplifier 32 amplifies the output signal of circuit component 35 .
  • the gain of amplifier 32 is variable.
  • the processing unit 34 is a processor such as, for example, a CPU (Central Processing Unit), AD (Analog Digital) converts the amplified signal, digitally processes the converted digital signal, and obtains vital information such as respiration and pulse wave. Perform the operation (or calculation) to extract.
  • the memory 36 is a volatile memory or a non-volatile memory, and stores programs executed by the processing unit 34 and data being processed.
  • the output unit 38 outputs the vital information calculated by the processing unit 34 to an external device. Wireless communication or wired communication, for example, is used to output vital information.
  • FIG. 3 is a diagram showing an example in which the module 10 in Example 1 is arranged in a car seat.
  • the right direction is the +X direction side
  • the forward direction is the +Y direction side
  • the upward direction is the +Z direction side.
  • a pedestal 42, a seat cushion 44 and a seat back 46 are provided as a car seat 41 in a four-wheeled vehicle.
  • the pedestal 42 is, for example, a metal member.
  • the seat cushion 44 is in contact with the thighs and buttocks of a passenger such as a driver, and the seat back 46 is in contact with the neck, back and hips of the passenger.
  • a module 10 shown in FIG. 1 is provided in the seat cushion 44 .
  • the seat cushion 44 is covered with a seat cloth (not shown).
  • the seat cushion 44 is made of a soft resin, such as foamed resin such as urethane.
  • foamed resin such as urethane.
  • the right buttock of the passenger is positioned so as to overlap the module 10 in FIG. Vibrations such as the passenger's vital signs are transmitted to the module 10 via the right buttock and the seat cushion 44 .
  • the module 10 may be placed over the left buttock or over the thigh. Alternatively, the module 10 may be placed in the seat back 46 to overlap the neck, back, or lumbar area.
  • the module 10 may be provided on a bicycle saddle, desk chair, bed, mat, bracelet, and the like.
  • a car seat 41 used in a four-wheeled vehicle is described as an example, but the car seat 41 shown in FIG. is also possible. These vehicles may be engine driven, motor driven, or the like.
  • the seat may be a home sofa or a chair with only a cushion without a seat back.
  • the module 10 described below is to be embedded in a chair.
  • a module without a shaft core member and a plate member and as shown in FIGS. 8(a) and 8(b), a shaft core member and a module provided with a plate-like member, any module 10 is embedded in a sheet or the like as shown in FIG.
  • this module 10 was used to detect the pressure difference between the pads 12 and 14 with the differential pressure sensor 20, and to extract vital vibration.
  • pads 12 and 14 and the pressing portions 16 and 18 that press the pads 12 and 14 were considered.
  • pads 12 and 14 correspond to the first member and the second member, respectively, except for the description of FIGS. 9(a) and 9(b).
  • the upper surface 12a and the lower surface 12b of the pad 12 respectively correspond to the first and second surfaces facing each other.
  • Upper surface 14a and lower surface 14b of pad 14 correspond to third and fourth surfaces facing each other, respectively.
  • Pushers 16 and 18 correspond to the first pusher and the second pusher, respectively.
  • FIG. 4(a) is a plan view of the pad in Example 1
  • FIG. 4(b) is a cross-sectional view taken along line AA of FIG. 4(a).
  • 4(b) to 4(d) explain how to press the pads 12 and 14.
  • FIG. Actually, the pressing portion 16 of the pad 12 in FIG. 4(c) is in contact with the upper surface 12a of the pad 12, and the pressing portion 18 of the pad 14 in FIG. 4(d) is in contact with the lower surface 14b of the pad 14. . Both are illustrated in FIG. 4(b), so that both upper surface 12a and lower surface 14b are shown above pads 12 and 14, and both lower surface 12b and upper surface 14a are shown below pads 12 and 14. It is illustrated in FIG. 4(b), so that both upper surface 12a and lower surface 14b are shown above pads 12 and 14, and both lower surface 12b and upper surface 14a are shown below pads 12 and 14. It is illustrated in FIG. 4(b), so that both upper surface 12a and lower surface 14b are shown above pads 12 and 14, and
  • the pad 12 has a central portion 63 and a peripheral portion 64 outside the central portion 63 . Since the upper surface 12a of the pad 12 or the lower surface 14b of the pad 14 is pushed by the pressing portions 16 and 18, the central portion 63 and the peripheral portion 64 are used to define the positions of the upper surface 12a and the lower surface 14b with which the pressing portions 16 and 18 abut. ing.
  • the central portion 63 is a region including the center 65 of the upper surface 12a and the lower surface 14b.
  • the center 65 is, for example, the center point (for example, the center of gravity) of the planar shape of the upper surface 12a and the lower surface 14b.
  • the position where the pressing portion 16 abuts on the upper surface 12a is preferably the center 65 of the upper surface 12a of the pad 12, but deviation from the center 65 does not mean that vibration cannot be detected.
  • the central portion 63 in this specification is a portion having a width within which vibration can be detected.
  • the peripheral edge portion 64 of the upper surface 12a or the lower surface 12b is roughly in the range of 20% or 30% of the planar area of the upper surface 12a or the lower surface 14b.
  • the central portion 63 may be a region away from the peripheral edge portion 64, or the central portion may be entirely inside the peripheral edge portion 64 as in a region 63a.
  • the first pressing method is to press a range including the center 65 of the upper surface 12a or the lower surface 14b of the pad 12 or 14 with a small contact surface, as indicated by an arrow 80a.
  • This pressing method may be referred to as "point pressing" in this specification.
  • a point has no area.
  • the second way of pushing is to push the upper surface 12a or the lower surface 14b in a wide range including the center 65 from the left arrow 80b to the right arrow 80b in FIG. 4(b).
  • the upper surface 12a or the lower surface 14b is pressed in almost the entire area from the left arrow 80b to the right arrow 80b
  • the peripheral edge 64 of the upper surface 12a or the lower surface 14b is pressed in a ring shape, or when the upper surface 12a or the lower surface 14b is pressed. is rectangular in plan view, and the four corners of the peripheral portion 64 are pressed.
  • This pressing method may be referred to as "surface pressing" in this specification. Also, as shown in FIG.
  • the pressing portion 18 presses the lower surface 14b with a contact area larger than that of the pressing portion 16, which is point pressing. In some cases, the pressing portion 16 or 18 presses an area that is more than half of the planar area of . This case may also be referred to as "face pressing".
  • the pads 12 and 14 have high leaf spring properties. Vibration can be detected even if the point to be pushed is slightly deviated from the center 65 . Therefore, as shown in FIG. 4(c), even if a small force such as a vital vibration is applied to the pressing portion 16 having a point pressing structure, the change in the pressure of the pad 12 or 14 can be increased.
  • the effect is slightly different, but the vital vibration can be detected relatively large, and detection is possible. be.
  • the pressure difference between the pads 12 and 14 due to disturbance vibration is reduced by the differential pressure sensor 20, and vital vibration is efficiently detected.
  • one pad e.g. pad 12 in FIG. 4(c)
  • the other pad e.g. pad 14 in FIG. 4(d)
  • the responsiveness of the two pads 12 and 14 can be almost the same.
  • a large vibration is transmitted from below, and the vibration of the pressure inside the pad 14 is small.
  • the transmitted vibration is smaller than that of the pad 14, and the vibration of the pressure inside the pad 12 is small. Therefore, the pressure difference between pads 12 and 14 is reduced.
  • the output signal from the differential pressure sensor 20 due to the disturbance vibration becomes smaller. As a result, the output signal is not a signal that saturates the preamplifier. Details will be described later.
  • FIGS. 4(c) and 4(d) are cross-sectional views of the pad and the pressing portion.
  • FIG. 5 is a diagram showing changes in pressure with respect to the amount of vibration applied to the pad. The amount of vibration corresponds to the force applied to pads 12 and 14 and is indicated by the size of the arrow.
  • the pushers 18 and 16 are of two types. In FIG. 4C, the contact area between the pressing portion 16 and the upper surface 12a is smaller than the contact area between the pressing portion 18 and the lower surface 14b. In FIG. 4D, the pressing portion 18 abuts on the lower surface 14b over a wide area up to the peripheral edge portion 64 of the lower surface 14b.
  • a range 61 with a small amount of vibration corresponds to the S case.
  • a range 62 where the amount of vibration is large corresponds to the N case.
  • the pressing portion 16 when the narrow pressing portion 16 presses the upper surface 12a of the pad 12 (arrow 80), the pressing portion 16 mainly presses the central portion of the upper surface 12a.
  • a dotted line 75c in FIG. 5 indicates the change in the pressure in the space 11 with respect to the amount of vibration of the pressing portion 16 pressing the upper surface 12a of the pad 12.
  • the central portion 63 has a high leaf spring property, the change in pressure with respect to the amount of vibration is large. As the amount of vibration that the pressing portion 16 presses against the upper surface 12a increases, the change in pressure also increases.
  • the change in the pressure inside the pad 12 can be increased. Also, even if the location where the pressing portion 16 presses the upper surface 12a deviates from the center 65 to some extent, the vibration can be detected within the range where the location where the pressing portion 16 presses the upper surface 12a is the central portion.
  • the pressing portion 18 presses the area from the central portion 63 to the peripheral portion 64 of the lower surface 14b. do.
  • the contact area of the pressing portion 18 only has to be larger than the contact area of the pressing portion 16 , and the pressing portion 18 does not have to press up to the peripheral edge portion 64 .
  • the contact area of the pressing portion 18 can be selected within a range from half or more of the area of the lower surface 14b to the area of the entire area of the lower surface 14b.
  • the pressing portion 18 presses the entire region from the central portion 63 to the peripheral edge portion 64 of the lower surface 12b, as described above, if the pressing portion 18 presses a wide range of the lower surface 12b, the springiness as a whole decreases. Therefore, as indicated by the solid line 75b in FIG. 5, the change in pressure with respect to the amount of vibration is small. That is, the surface pressing structure lowers the responsiveness of the pad 14 . That is, large vibrations such as disturbance vibrations are reduced and taken into the pressure inside the pad 14 . In the embodiment of the present specification, by selectively using the point pressing structure and the surface pressing structure, large disturbance vibration such as road noise is canceled by the pressure difference between the pads 12 and 14 . This point will be explained below.
  • FIG. 6(a) and 6(b) are sectional views of the module in Example 1.
  • FIG. 6(a) and 6(b) are sectional views of the module in Example 1.
  • the pressing portion 16 has a three-dimensional shape in which the cross-sectional area parallel to the upper surface 12a decreases toward the bottom.
  • the pressing portion 16 includes, for example, a structure like a sliced ball, and the lower surface 14b has a convex shape with an inclined surface or a curved surface.
  • the contact area of the pressing portion 16 gradually increases as the force increases. This is a mechanism in which the pressing portion 16 enters the pad 12 due to the flexibility of the pad 12, as shown in FIGS. 6(a) and 6(b).
  • the pressing portion 16 side may be made flexible, and the pressing portion 16 itself may be deformed into surface contact.
  • the pressing part 16 may be a bag-shaped member such as a balloon, placed on a flat surface, and pressed from above.
  • the pressing portion 16 digitally changes the contact area of the pressing portion 16 from a small area to a large area at a certain force as the force increases. change to This is also a structure that changes from point pressing to surface pressing.
  • the pressing portion 18 has a wide contact surface and a columnar shape. The contact area of the pressing portion 18 is large and corresponds to a surface pressing structure.
  • the vibration is disturbance vibration
  • the two pads 12 and 14 are subjected to disturbance vibration of the same degree, and the disturbance vibration can be canceled by taking the difference. Even if it cannot be canceled completely, it can be canceled to some extent, so that the output signal of the differential pressure sensor 20 due to the disturbance vibration can be reduced. That is, saturation of the preamplifier due to disturbance vibration can be suppressed, and vital vibration superimposed on disturbance vibration can be detected.
  • the pressing portion 16 is positioned at the central portion 63 of the upper surface 12a when viewed from the stacking direction (Z direction) of the pads 12 and 14. As shown in FIG. When the force applied in the ⁇ Z direction (the direction toward the upper surface 12a) is small, the area of the pressing portion 16 in contact with the upper surface 12a is small as shown in FIG. 6(a). As the force increases, the contact area of the pressing portion 16 with the upper surface 12a increases as shown in FIG. 6(b). After that, when the force becomes smaller, it returns to FIG. 6A, and the area of the pressing portion 16 in contact with the upper surface 12a becomes smaller.
  • the pressing portion 18 has a surface pressing structure and contacts at least the central portion of the lower surface 14b of the pad 14, and even if the magnitude of the force changes, the contact area between the pressing portion 18 and the lower surface 14b hardly changes. That is, the distance between the upper surface 12a of the pad 12 and the lower surface (fifth surface) of the pressing portion 16 decreases from the peripheral portion toward the central portion. Vibration can be transmitted between the upper surface 12 a and the lower surface of the pressing portion 16 .
  • the central portion of the surface 16d of the pressing portion 16 facing the upper surface 12a of the pad 12 protrudes toward the pad 12 from the peripheral edge portion 64. As shown in FIG. Therefore, when no force is applied from the pressing portion 16 to the upper surface 12a or when the force is small (in the point pressing structure), the area of the pressing portion 16 in contact with the upper surface 12a is preferably 1/4 or less of the planar area of the pad 12. 1/16 or less is more preferable.
  • FIG. 7A to 7C are sectional views of the module in Example 1.
  • FIG. 7A A case where the width of the upper pressing portion 16 is narrow and the width of the lower pressing portion 18 is large will be described.
  • the pressing portion 16 has a small contact area and has a point pressing structure, and the pressing portion 18 has a large contact area and has a surface pressing structure.
  • FIG. 7A the lower surface 12b of the pad 12 and the upper surface 14a of the pad 14 are in contact.
  • the vibrations of pads 12 and 14 interfere with each other, arrow 82 .
  • the detection accuracy is slightly lower than that of FIG. 7B, but it is possible to detect vital vibrations.
  • FIG. 7(b) shows a state in which the two pads 12 and 14 are separated by the separator 50.
  • the separator 50 is positioned between the lower surface 12b of the pad 12 and the upper surface 14a of the pad 14 and provided on the peripheral edge thereof. Moreover, the separator 50 is provided in contact with the lower surface 12b and the upper surface 14a. Since the peripheral portions of the pads 12 and 14 have a low leaf spring property, the vibrations are less likely to be transmitted to the pads 12 and 14 through the separator 50 . Moreover, it can be said that the pads 12 and 14 are pressed against each other, and the propagation of vibration between the pads 12 and 14 is suppressed.
  • the separators 50 may be provided in a ring shape on the peripheral edges of the lower surface 12b and the upper surface 14a, or may be independently provided at four corners of the lower surface 12b and the upper surface 14a. If the lower surface 12b and the upper surface 14a have different sizes, the separator 50 may be provided on the peripheral edge of at least one of the lower surface 12b and the upper surface 14a. This technical idea of the separator is applied to all the embodiments.
  • the housing 52 surrounds the pads 12 and 14 with inner walls.
  • the housing 52 has an upper plate 52a, a lower plate 52b and side plates 52c.
  • the planar shape of the pads 12 and 14 also changes the shape of the housing 52 .
  • the housing 52 has a cylindrical shape, and if the planar shapes of the pads 12 and 14 are polygonal, the housing 52 has a prismatic shape.
  • the lower surface of the upper plate 52 a contacts the pressing portion 16 .
  • the upper surface of the lower plate 52b contacts the pressing portion 18.
  • the upper plate 52a and the lower plate 52b are flat plates.
  • the side plate 52c forms a box by connecting the periphery of the upper plate 52a and the periphery of the lower plate 52b.
  • the housing 52 surrounds the pads 12 and 14 and is provided away from the sides or perimeters of the pads 12 and 14 . Between the side plate 52c and the pads 12 and 14 is a gap 53 made of air or the like.
  • the side plate 52c may be a ring-shaped plate surrounding the pads 12 and 14, or may be connected by a plurality of plates extending in the Z direction. For example, if the housing 52 is a hexahedron, the side plates 52c are four plates. Also, the tubes 26 and 27 shown in FIG. 1 are pulled out to the outside through holes provided in the side plate 52c.
  • the inside of the housing 52 may be filled with fluid, that is, gas or liquid other than air.
  • the housing 52 surrounds the pads 12 and 14 and connects the pressing portions 16 and 18. With this construction, the pads 12, 14, etc. will not break even if the module 10 is subjected to excessive body weight. Further, since the periphery of the pads 12 and 14 does not touch the inner wall, the vibration transmitted from the outside of the side plate 52c can be suppressed from entering the pads 12 and 14 from the side plate 52c. It is considered that the side faces of the housing 52 are close to each other in a pressing structure, so that large noise vibrations from the outside are difficult to propagate. In the S case, the pressing portion 16 transmits vital vibrations to the pad 12 with a large vibration, and the vital vibrations are transmitted to the lower plate 52b via the side plate 52c.
  • the pressing portion 18 is a surface pressing, which suppresses the propagation of vibration to the pad 14 . Therefore, a pressure difference is generated between the pads 12 and 14, and the differential pressure sensor 20 can detect vital vibration.
  • N disturbance vibration is transmitted to the upper plate 52a and the lower plate 52b.
  • differential pressure sensor 20 detects the pressure difference between pads 12 and 14 . Therefore, disturbance vibration is less likely to be detected by the differential pressure sensor 20, and vital vibration can be detected while suppressing saturation of the output signal by the preamplifier.
  • the housing 52 is made of a harder material than the pads 12 and 14, and is mainly made of hard resin such as acrylic or metal. Except for the upper plate 52a, the lower plate 52b and the side plates 52c may be integrally molded.
  • the top plate 52a may be a lid with a packing.
  • the upper plate 52a, the lower plate 52b, and the side plate 52c may be separate members, and may be joined with a jointing agent or the like.
  • the upper plate 52a and the pressing portion 16 may be integrally formed, or may be separate members that are joined by a bonding agent or the like.
  • the lower plate 52b and the pressing portion 18 may be integrally formed, or may be separate members that are joined by a jointing agent or the like.
  • the pressing portions 16 and 18 may correspond to the first pressing portion and the second pressing portion, respectively, and the housing 52 may correspond to the support member.
  • the pressing portion 16 and the upper plate 52a may correspond to the first pressing portion
  • the pressing portion 18 and the lower plate 52b may correspond to the second pressing portion
  • the side plate 52c may correspond to the supporting member.
  • FIGS. 8(a) to 9(b) are diagrams showing another example of the first embodiment.
  • the plate-like member 55 is provided on the side of the top plate 52a opposite to the pad 12 and is spaced apart from the top plate 52a.
  • the shaft core member 54 connects the central portion of the plate member 55 and the central portion of the upper plate 52a.
  • the area obtained by cutting the axial core member 54 in the plane direction (hereinafter referred to as plane area) is smaller than the plane area of the plate member 55 .
  • a load of the human body 60 is applied to the plate member 55 .
  • a cushion material may be provided between the plate member 55 and the human body 60 .
  • the shaft core member 54 transmits the vibration of the human body 60 to the central portion of the upper plate 52a.
  • the sources of vital vibrations of the human body 60 are small areas. Even if the seating position of the human body 60 deviates in the X and Y directions, the vital vibration from the vital vibration source is transmitted from the plate-like member 55 to the upper plate 52a via the shaft core member . This is analogous to the principle of operation of a top plate scale. For example, even if the object to be measured deviates from the center of the upper plate, the weight does not change.
  • the axis means the axis located in the center, and here, it refers to the axis that is arranged approximately in the center of the plate-like member 55 that serves as the upper plate. Even if the position of the buttocks of the human body or the position of the blood vessel deviates from the center of the plate-like member 55, the vital vibration propagates through the plate-like member 55 and passes through the shaft core member 54 to the upper plate 52a, which is a diaphragm. Propagate to the central part. Therefore, even if the vital vibration source is slightly displaced from the center of the plate member 55 , the vital vibration is transmitted to the pad 12 .
  • the planar area of the axial core member 54 is preferably 1/4 or less, more preferably 1/10 or less, of the planar shape of the plate member 55.
  • the plate-like member 55, the shaft core member 54 and the upper plate 52a may be integrally formed, or may be separate members joined by an adhesive or the like.
  • the upper surface 12a of the pad 12 is a flat surface, and the downward surface 16d of the pressing portion 16 facing the upper surface 12a of the pad 12 is curved so that the central portion protrudes below the peripheral portion.
  • the pressing portion 16 has a small contact area with the upper surface 12a. As the vibration increases, the pressing portion 16 enters the pad 12 and the area in contact with the upper surface 12a increases. After that, when the vibration becomes smaller, it returns to the original state, and the area of the pressing portion 16 in contact with the upper surface 12a becomes smaller.
  • the vital vibration transmitted to the pressing portion 16 via the shaft core member 54 causes the pressing portion 16 to press the surface of the pad 12 with a point pressing structure.
  • the central portion of the upper surface 12a of the pad 12 vibrates greatly in the vertical direction.
  • the pressing portion 18 of the lower plate 52b has a surface pressing structure, vibration propagation to the pad 14 is suppressed.
  • the differential pressure sensor 20 detects the pressure difference between the pads 12 and 14, it can detect vital vibrations.
  • a separator 50 is provided on the peripheral portion between the pads 12 and 14. As shown in FIG. 8(b), vibration interference between the pads 12 and 14 can be suppressed, and detection accuracy can be improved.
  • Other configurations are the same as those in FIG. 8A, and descriptions thereof are omitted.
  • the pressing portion 16 may be in contact with the lower plate 52b, and the pressing portion 18 may be in contact with the upper plate 52a.
  • the configurations of the pressing portions 16, 18, the pads 12, 14, and the separator 50 may be upside down.
  • the pads 14 and 12 correspond to the first member and the second member, respectively.
  • the lower surface 14b and the upper surface 14a of the pad 14 respectively correspond to the first and second surfaces facing each other.
  • Lower surface 12b and upper surface 12a of pad 12 correspond to third and fourth surfaces facing each other, respectively.
  • the lower plate 52b corresponds to the first pressing portion.
  • the pressing portion 16 and the upper plate 52a correspond to the second pressing portion.
  • the pressing portion 16 is wide and provided from the central portion to the peripheral portion of the upper surface 12a of the pad 12. As shown in FIG. That is, the pressing portion 16 has a surface pressing structure. The central portion of the lower surface 14b of the pad 14 protrudes toward the lower plate 52b from the peripheral portion. That is, the pressing portion 18 has a point pressing structure. Thus, the inner surface of the lower plate 52b is flat, and the lower surface 14b of the pad 14 protrudes. With this structure, the pad 12 side has a surface pressing structure, and the pad 14 has a point pressing structure. 6(a) and 6(b), the pressing part 16 is changed from point pressing to surface pressing, but in FIG. Change from push to face push structure.
  • a separator 50 is provided on the peripheral portion between the pads 12 and 14. As shown in FIG. 9A, vibration interference between the pads 12 and 14 can be suppressed.
  • the principle and effect of separator 50 are as described above. Other configurations are the same as those in FIG. 9A, and descriptions thereof are omitted.
  • 9A the upper surface 12a of the pad 12 protrudes toward the upper plate 52a, the lower surface 14b of the pad 14 is flat, and the pressing portion shown in FIG. 9A is provided between the pad 14 and the lower plate 52b.
  • a pressing portion 18 having a structure similar to that of 16 may be provided, or a separator 50 may be provided as shown in FIG. 9(b). In short, the configurations of the pressing portions 16, 18, the pads 12, 14, and the separator 50 may be upside down.
  • the elastic modulus of the material used for the pads 12 and 14 is preferably 2 MPa to 5000 MPa.
  • the material of pads 12 and 14 is polyethylene resin (modulus of elasticity: 1080 MPa).
  • the elastic modulus of the material used for the pressing portions 16, 18, the separator 50, the housing 52, the shaft core member 54 and the plate-like member 56 is preferably larger than the elastic modulus of the material used for the pads 12 and 14, for example 2 MPa. ⁇ 10000 MPa is preferred.
  • the material of the pressing portions 16 and 18, the separator 50, the housing 52, the shaft core member 54 and the plate member 56 is acrylic resin (3000 MPa).
  • FIG. 10 is a cross-sectional view of a module according to Example 2.
  • FIG. 11(a) to 11(d) are plan views of a module according to Example 2.
  • FIG. 11(a) illustrates the plate member 55 and the shaft member 54.
  • FIG. 11(b) illustrates the pad 12, the pressing portions 16a and 16b, and the side plate 52c.
  • FIG. 11(c) illustrates pads 12, 14, separator 50 and side plate 52c.
  • FIG. 11(d) illustrates the pad 14, the pressing portion 18 and the lower plate 52b.
  • pads 12 and 14 correspond to the first and second members, respectively.
  • the upper surface 12a and the lower surface 12b of the pad 12 respectively correspond to the first and second surfaces facing each other.
  • Upper surface 14a and lower surface 14b of pad 14 correspond to third and fourth surfaces facing each other, respectively.
  • the upper plate 52a corresponds to the third member.
  • the pressing portions 16a and 16b correspond to the first pressing portion and the second pressing portion, respectively.
  • the pressing portion 18 and the lower plate 52b correspond to the third pressing portion.
  • the side plate 52c corresponds to the support member.
  • two pressing portions 16a and 16b are provided between the upper plate 52a and the pad 12.
  • the pressing portion 16a is located in the central portion of the upper surface 12a of the pad 12.
  • the pressing portion 16a is in contact with and fixed to the upper plate 52a.
  • the pressing portion 16a and the upper surface 12a are not in contact with each other.
  • the pressing portion 16a and the pressing portion 16b come into contact with the upper surface 12a at a certain point.
  • the pressing portion 16a and the upper surface 12a are separated and returned to their original state.
  • the pressing portion 16b is located between the upper surface 12a and the upper plate 52a, at the peripheral portion of the upper surface 12a, and is always in contact with the upper surface 12a and the upper plate 52a regardless of the magnitude of the force.
  • the pressing portions 16 b are provided at the four corners of the pad 12 . As long as the pressing portion 16b is provided on the peripheral portion of the upper surface 12a, the pressing portion 16b may be ring-shaped, or may be provided on a pair of opposing sides of the upper surface 12a.
  • the separators 50 are provided at four corners of the lower surface 12b of the pad 12 and the upper surface 12a of the pad 14. As shown in FIG.
  • the separator 50 may be ring-shaped, or may be provided along two opposite sides of the upper surface 12a. Other configurations are the same as those in FIG.
  • the module 10 is not subjected to external vibrations and the module 10 is subjected to vital vibrations from the human body 60.
  • the separator 50 as a fixed end, the vital vibration is transmitted to the plate-like member 55, the axial core member 54 and the upper plate 52a.
  • the shaft core member 54 is in contact with the central portion of the upper plate 52a.
  • the shaft core member 54 constitutes a point pressing structure, and the vital vibration is transmitted to the upper plate 52a.
  • the pressing portion 16b is provided on the peripheral portion of the upper surface 12a of the pad 12. As shown in FIG. Therefore, the pressing portion 16b has a surface pressing structure.
  • the vibration of the pad 12 is suppressed, and the vibration transmitted from the upper plate 52 a to the pressing portion 16 b is less likely to be transmitted to the pad 12 .
  • the pressing portion 16a is not in contact with the pad 12, the vital vibration is hardly transmitted to the pad 12 even through the pressing portion 16a.
  • the vital vibration is transmitted from the upper plate 52a to the pad 14 via the side plate 52c, the lower plate 52b and the pressing portion 18.
  • the contact area of the pressing portion 18 on the pad 14 side is smaller than the contact area of the pressing portion 16b on the pad 12 side, and the vital vibrations transmitted to the pads 12 and 14 are different. Therefore, when the pressure difference between the pads 12 and 14 is detected by the differential pressure sensor 20, the vital vibration can be detected, although the difference is slightly reduced.
  • a pressing portion 16 having the same shape as the pressing portion 18 in FIG. 10 is provided between the pad 12 and the upper plate 52a, and a pressing portion having the same shape as the pressing portion 16a in FIG. 10 is provided on the lower plate 52b.
  • a pressing portion having the same shape as the pressing portion 16b shown in FIG. the pressing portions 16a, 16b, 18, the pads 12, 14, and the separator 50 may be arranged upside down.
  • Example 1 Using the module of Example 2, changes in pressure in spaces 11 and 13 due to vital vibration and disturbance vibration were detected.
  • the material of pads 12 and 14 is polyethylene.
  • Other members were made by cutting an acrylic plate. An instant adhesive was applied to the cut members so as to have a thickness of 0.1 mm, and then the members were joined.
  • each member is as follows.
  • the upper plate 52a, the lower plate 52b and the side plate 52c are bonded using an adhesive having a thickness of 0.1 mm.
  • Separator 50: X x Y x Z 5 mm x 5 mm x 2 mm
  • Pads 12, 14: X x Y x Z 40 mm x 40 mm x 8 mm, thickness is 1 mm
  • the countersunk was covered with a lid.
  • a weak vibration corresponding to a vital signal was applied to the lid by lightly pressing the top surface of the lid with a finger.
  • a strong vibration equivalent to the disturbance vibration was applied to the lid by striking the lid with a hand.
  • the pressure in spaces 11 and 13 of pads 12 and 14 was detected by a detector.
  • FIG. 12 is a diagram showing the output signal of the detector against time in Experiment 1.
  • a period 70 is a period in which the vibration corresponding to the vital signal is applied
  • a period 71 is a period in which the vibration corresponding to the disturbance vibration is applied.
  • the output signal from pad 14 is greater than the output signal from pad 12 . Therefore, even if the differential pressure sensor 20 is used to cancel pressure changes in the pads 12 and 14, it is considered possible to detect vital vibrations.
  • the output signals from pads 12 and 14 are approximately the same magnitude. Therefore, it is considered that the disturbance vibration can be canceled by using the differential pressure sensor 20 to cancel the pressure change of the pads 12 and 14 . This point will be explained below.
  • the pressing portion 16a is positioned between the upper surface 12a and the upper plate 52a (third member), and is positioned in the center of the upper surface 12a.
  • the pressing portion 16a does not come into contact with the pad 12.
  • the pressing portion 16b (third pressing portion) is positioned between the upper surface 12a and the upper plate 52a, is positioned on the peripheral edge of the upper surface 12a, and contacts the upper surface 12a and the upper plate 52a. Vibration can be transmitted between the upper surface 12a and the upper plate 52a via the pressing portion 16a.
  • the pressing portion 18 contacts at least the central portion of the lower surface 14b. That is, the pads 12 and 14 each have a surface pressing structure, and external vibration such as road noise is transmitted to the pads 12 and 14 with the vibration reduced. As a result, the disturbance vibration is canceled in the differential pressure sensor 20 to some extent, the output signal of the differential pressure sensor 20 becomes small, and the vital vibration superimposed on the disturbance vibration can be detected.
  • FIG. 13A is a cross-sectional view of a module in Modification 1 of Embodiment 2.
  • FIG. 13(a) in the S case, when no force such as vital vibration is applied to the module or when the force is small, the pressing portion 16a is not in contact with the upper plate 52a.
  • case N when the force increases, the upper plate 52a deforms and the pressing portion 16a comes into contact with the upper plate 52a.
  • the pressing portion 16a is separated from the upper plate 52a and returns.
  • the pressing portion 16a may contact the upper plate 52a and be spaced apart from the pad 12 in a relationship opposite to that of the second embodiment and its first modification.
  • a pressing portion 16 having the same shape as the pressing portion 18 in FIG. 13A is provided between the pad 12 and the upper plate 52a, and a pressing portion having the same shape as the pressing portion 16a in FIG.
  • a pressing portion having the same shape as the pressing portion 16b may be in contact with the pad 14 and the lower plate 52b.
  • the pressing portions 16a, 16b, 18, the pads 12, 14, and the separator 50 may be arranged upside down.
  • FIG. 13(b) is a cross-sectional view of a module in Modification 2 of Embodiment 2.
  • FIG. 13(b) is a cross-sectional view of a module in Modification 2 of Embodiment 2.
  • FIG. 13(b) in the S case, when no force is applied from the upper plate 52a to the pad 12 or the force is small, the contact area of the pressing portion 16a with the upper surface 12a of the pad 12 is small, or It is spaced apart, and the pressing portion 16a has a point pressing structure.
  • N as the force increases, the area of contact between the pressing portion 16a and the upper surface 12a increases.
  • the pressing portion 16a has a surface pressing structure. Further, when the force is reduced, the contact area of the pressing portion 16a with the upper surface 12a is reduced, and the original state is restored.
  • the vital vibration is transmitted mainly to the pad 14 in the S case, and the disturbance vibration is transmitted to both the pads 12 and 14 in the N case.
  • the vital vibration is transmitted to the plate-shaped member 55, the shaft core member 54 and the upper plate 52a.
  • the shaft core member 54 is in contact with the central portion of the upper plate 52a, the shaft core member 54 constitutes a point pressing structure, and the vital vibration is transmitted to the upper plate 52a.
  • the pressing portion 16b is in contact with the peripheral portion of the pad 12 and the housing 52, and the pressing portion 16a is not in contact with the pad 12 or is in weak contact therewith. Not much vital vibration is transmitted from the pressing portion 16b to the pad 12.
  • - ⁇ The vital vibration is transmitted to the pad 14 via the side plate 52c, the lower plate 52b and the pressing portion 18. As shown in FIG. Therefore, a pressure difference is generated between the two pads 12 and 14, and when the differential pressure sensor 20 detects the pressure difference, vital vibration is detected.
  • 13(b) is provided between the pad 12 and the upper plate 52a, and is the same as the pressing portion 16a in FIG.
  • a shaped pressing portion may contact the lower plate 52b, and a pressing portion having the same shape as the pressing portion 16b in FIG. 13(b) may contact the pad 14 and the lower plate 52b.
  • the pressing portions 16a, 16b, 18, the pads 12, 14, and the separator 50 may be arranged upside down.
  • FIG. 14 is a cross-sectional view of a module in Modification 3 of Embodiment 2.
  • the housing 52 does not have a lower plate 52b, and has a lower plate 52d extending outward from the lower ends of the side plates 52c.
  • the pressing portion 18 is not supported by the housing 52 because the lower plate 52b is not provided. Since the module is embedded in the concave portion of the seat cushion, the pressing portion 18 is supported by the seat cushion 44 (see FIG. 3) made of urethane or the like, which is the bottom portion.
  • the portion below the plate member 55 is entirely embedded in the sheet as shown in FIGS. 3, 22(a) and 22(b).
  • the seat is formed with a recess into which this module is received, and the module is mounted within the recess.
  • a lid of the sheet is provided on the sheet, including the recess. Drivers and passengers sit on the seats. This configuration may be applied to all embodiments.
  • the passenger's vital vibration is transmitted to the upper plate 52a via the plate-like member 55 and the shaft core member 54.
  • the pressing portion 16a abuts and is fixed to the pad 12, but the upper surface of the pressing portion 16a is separated from the upper plate 52a.
  • the pressing portion 16b is in contact with the four corners of the pad 12 or in a ring shape. Therefore, in the pad 12, the pressing portions 16a and 16b have a surface pressing structure, and propagation of vital vibration to the pad 12 is suppressed.
  • the vital vibration is transmitted downward through the side plate 52c.
  • the pressing portion 18 is supported by the recessed portion of the sheet, that is, the bottom surface of the foaming resin.
  • the vital vibration is transmitted from the side plate 52c to the pressing portion 18 through the foamed resin, and the pressing portion 18 presses the pad 14. As shown in FIG. In this manner, the vital vibration transmitted to the pad 12 is suppressed, and the pressing portion 18 abuts the central portion of the lower surface 14 b , so the vital vibration is transmitted to the pad 14 . Therefore, a pressure difference is generated between the two pads 12 and 14, and the differential pressure sensor 20 can detect vital vibration.
  • Vital vibration is superimposed on the disturbance vibration, and the vital vibration can be detected as a vital signal by the signal processing shown in FIG.
  • the plate-like member 55 and the shaft core member 54 In order to transmit vital vibrations from the human body to the upper plate 52a, it is preferable to include the plate-like member 55 and the shaft core member 54.
  • a pressing portion 16 having the same shape as the pressing portion 18 in FIG. 14 is provided between the pad 12 and the upper plate 52a, and pressing portions having the same shape as the pressing portions 16a and 16b in FIG. may be provided.
  • the pressing portions 16a, 16b, 18, the pads 12, 14, and the separator 50 may be arranged upside down.
  • FIG. 15 is a cross-sectional view of a module according to Example 3.
  • FIG. 16(a) to 16(d) are plan views of a module according to Example 3.
  • FIG. FIG. 16(a) illustrates the upper plate 52a and the plate member 56.
  • FIG. FIG. 16(b) illustrates the pad 12, the pressing portions 16a and 16b, and the side plate 52c.
  • FIG. 16(c) illustrates pads 12, 14 and side plate 52c.
  • FIG. 16(d) illustrates the pad 14, the pressing portion 18 and the lower plate 52b.
  • pads 12 and 14 correspond to the first and second members, respectively.
  • the upper surface 12a and the lower surface 12b of the pad 12 respectively correspond to the first and second surfaces facing each other.
  • Upper surface 14a and lower surface 14b of pad 14 correspond to third and fourth surfaces facing each other, respectively.
  • the pressing portion 16a and the plate member 56 correspond to the first pressing portion.
  • the pressing portion 18 and the lower plate 52b correspond to the second pressing portion.
  • the pressing portion 16b and the upper plate 52a correspond to the second pressing portion.
  • the side plate 52c corresponding to the third pressing portion corresponds to the supporting member.
  • the plate member 55 and the shaft core member 54 are not provided.
  • An opening 57 is provided in the central portion of the upper plate 52a.
  • a plate member 56 is provided in the opening 57 .
  • the peripheries of the upper plate 52a and the plate-like member 56 are separated.
  • a pressing portion 16 a is provided between the plate member 56 and the pad 12 .
  • the pressing portion 16a and the upper surface 12a are in contact with each other, and the pressing portion 16a and the plate-like member 56 are also in contact with each other, regardless of the force applied from the pressing portion 16a toward the pad 12 .
  • the pressing portion 16b is located on the peripheral edge portion of the upper surface 12a between the upper surface 12a and the upper plate 52a, is in contact with the upper surface 12a and the upper plate 52a, and is separated from the pressing portion 16a.
  • the pressing portions 16 b are provided at the four corners of the pad 12 . As long as the pressing portion 16b is provided on the peripheral portion of the upper surface 12a, it may be provided at each of the four corners, or may be provided in a ring shape. Furthermore, they may be provided on a pair of opposing sides of the upper surface 12a.
  • the lower surface 12b of the pad 12 and the upper surface 14a of the pad 14 are in contact with each other.
  • the pressing portion 18 is provided between the pad 14 and the lower plate 52b and is in contact with the pad 14 and the lower plate 52b. Other configurations are the same as those of the second embodiment, and description thereof is omitted.
  • the differential pressure sensor 20 can detect vital vibrations.
  • Example 2 Using the module of Example 3, changes in pressure in spaces 11 and 13 due to vital vibration and disturbance vibration were detected.
  • the material of pads 12 and 14 is polyethylene.
  • Other members were made by cutting an acrylic plate. An instant adhesive was applied to the cut members so as to have a thickness of 0.1 mm, and then the members were joined.
  • each member is as follows.
  • the upper plate 52a, the lower plate 52b and the side plate 52c are bonded using an adhesive having a thickness of 0.1 mm.
  • Pressing portion 18: X x Y x Z 25 mm x 25 mm x 1 mm
  • Pads 12, 14: X x Y x Z 40 mm x 40 mm x 8 mm, thickness is 1 mm
  • the counterbore is covered with urethane, which is the same material as the cushion.
  • As the vital vibration a weak vibration corresponding to a vital signal was applied to the lid by lightly pressing the upper surface of the lid with a finger.
  • As disturbance vibration strong vibration corresponding to disturbance vibration was applied to the lid by hitting the lid strongly with a hand. The pressure in spaces 11 and 13 of pads 12 and 14 was detected by a detector.
  • FIG. 17 shows the results of Experiment 2 and shows the output signal of the detector against time.
  • the output signal from the pad 12 is larger than the output signal from the pad 14 in the period 70, which is the S case and a small vibration such as a vital signal occurs. Therefore, even if the differential pressure sensor 20 is used to cancel pressure changes in the pads 12 and 14, it is considered possible to detect vital vibrations.
  • the output signals of the pads 12 and 14 are different, but have substantially the same magnitude over the entire area. As a result, when the differential pressure sensor 20 is used to detect the pressure changes of the pads 12 and 14, the pressures of the pads 12 and 14 are canceled to some extent, and the output signal corresponding to the disturbance vibration can be reduced. Therefore, the vital vibration superimposed on this disturbance vibration can be detected.
  • the pressing portion 16a is in contact with the central portion of the upper surface 12a of the pad 12.
  • the pressing portion 18 contacts at least the central portion of the lower surface 14b of the pad 14, and the area of contact of the pressing portion 18 with the lower surface 14b is larger than the area of contact of the pressing portion 16a with the upper surface 12a.
  • Vital vibrations are thus transmitted mainly to the pad 12 .
  • the area of the pressing portion 18 in contact with the lower surface 14b is preferably twice or more, more preferably 4 times or more, the area of the pressing portion 16a in contact with the upper surface 12a.
  • the area of the pressing portion 16a in contact with the upper surface 12a is preferably 1/3 or less of the planar area of the pad 12, and more preferably within the range of 1/32 to 1/8.
  • the pressing portion 16a and the plate-like member 56 and the pressing portion 16b and the upper plate 52a move independently of each other.
  • the lower surface 12b of the pad 12 and the upper surface 14a of the pad 14 are in contact with each other. As a result, when external vibrations are applied to the module, the vibrations are easily transmitted to both the pads 12 and 14 .
  • the upper surface of the upper plate 52a and the upper surface of the plate-like member 56 may be positioned on the same plane. may be located.
  • the plate member 56 and the pressing portion 16a may be integrally formed, or may be formed separately and joined by an adhesive or the like.
  • the upper plate 52a and the pressing portion 16b may be integrally molded, or may be formed separately and joined by an adhesive or the like.
  • the upper plate 52a, the plate member 56, the pressing portions 16a and 16b may be arranged on the lower surface 14b side of the pad 14, and the lower plate 52b and the pressing portion 18 may be arranged on the upper surface 12a of the pad 12.
  • the pressing portions 16a, 16b, 18, the pads 12, 14, the separator 50, the upper plate 52a, the plate member 56 and the lower plate 52b may be arranged upside down.
  • FIG. 18A is a cross-sectional view of a module according to Example 4, and FIGS. 18B and 18C are plan views of the module according to Example 4.
  • FIG. FIG. 18(b) illustrates the upper plate 52a and the pressing portion 16.
  • FIG. 18(c) illustrates the pad 12, the pressing portion 16 and the side plate 52c.
  • the pad 12 corresponds to the member.
  • the upper surface 12a and the lower surface 12b of the pad 12 respectively correspond to the first and second surfaces facing each other.
  • the pressing portion 16 and the lower plate 52b correspond to the first pressing portion and the second pressing portion, respectively.
  • the side plate 52c and the top plate 52a correspond to the housing.
  • one pad 12 is provided.
  • the pressing portion 16 is in contact with the central portion of the upper surface 12 a of the pad 12 .
  • An opening 57 is provided in the central portion of the upper plate 52a.
  • the pressing portion 16 passes through the opening 57 and is in contact with or fixed to the central portion of the plate-like member 55 .
  • the lower surface 12b of the pad 12 is in contact with the lower plate 52b.
  • the side plate 52c connects the periphery of the upper plate 52a and the periphery of the lower plate 52b, surrounds the pad 12, and is separated from the pad 12.
  • the space 11 within the pad 12 is connected via a tube 26 to the sensor 20a.
  • Sensor 20 a detects the pressure in space 11 .
  • Other configurations are the same as those of the first embodiment, and description thereof is omitted.
  • the pressing portion 16 is in contact with the central portion of the upper surface 12 a of the pad 12 .
  • the sensor 20a can accurately detect the vital vibration.
  • the housing 52 is preferably a rigid body.
  • the housing 52 is also generally hexahedral, with each face supporting a respective peripheral edge. Therefore, both of them form a surface-pressing structure, and the effect of both can suppress the intrusion of external vibration such as road noise into the pad 12 . Therefore, in the S case, when most of the vital vibrations occur, and in the N case, when external vibrations are added to the vital vibrations, the propagation of the disturbance vibrations to the pad 12 can be greatly suppressed. Therefore, vital vibration can be detected.
  • the area of the pressing portion 16 in contact with the upper surface 12a is preferably 1/4 or less of the planar area of the pad 12, more preferably 1/16 or less. Since the housing 52 surrounds the pads 12 , external vibrations are less likely to be transmitted to the pads 12 .
  • Example 3 Using the module of Example 4, changes in pressure in spaces 11 and 13 due to vital vibration and disturbance vibration were detected.
  • the material of pad 12 is polyethylene.
  • Other members were made by cutting an acrylic plate. An instant adhesive was applied to the cut members so as to have a thickness of 0.1 mm, and then the members were joined.
  • each member is as follows.
  • the module of Example 4 was installed in the car seat of the vehicle, and the vital signals of the passenger seated in the car seat were detected.
  • FIG. 19(a) is a diagram showing the output signal of the sensor 20a with respect to time in Experiment 3
  • FIG. 19(b) is a diagram showing a spectrum obtained by Fourier transforming the output signal in period 72 of FIG. 19(a).
  • a period 72 is a period during which the vehicle passes through a flat road surface
  • a period 73 is a period during which the vehicle passes over an uneven road surface with traces of construction. During the period 73, the noise of the output signal is large, but during the period 72, the noise of the output signal is small.
  • FIG. 19A a period 72 is a period during which the vehicle passes through a flat road surface
  • a period 73 is a period during which the vehicle passes over an uneven road surface with traces of construction.
  • the noise of the output signal is large, but during the period 72, the noise of the output signal is small.
  • the side plate 52c and the upper plate 52a surround the pad 12 together with the lower plate 52b (second pressing portion) and surround the pad 12 apart from it. Further, an opening 57 is provided in the upper plate 52a, and the side surface of the opening 57 and the pressing portion 16 are separated. As a result, the portion of the housing 52 made up of the side plate 52c and the upper plate 52a suppresses the transmission of external vibrations to the pad 12. As shown in FIG. Therefore, detection accuracy of vital vibration can be improved.
  • the upper plate 52a (part) of the housing 52 is provided apart from the upper surface 12a of the pad 12 and has an opening 57 through which the pressing portion 16 penetrates. Since the housing 52 can surround the pad 12 from above, the detection accuracy of vital vibration can be further improved.
  • [Modification 1 of Embodiment 4] 20 is a cross-sectional view of a module in Modification 1 of Embodiment 4.
  • FIG. 20 a pressing portion 18 is provided between the lower surface 12b and the lower plate 52b.
  • the pressing portion 18 contacts the pad 12 and the lower plate 52b.
  • the pressing portion 18 and the lower plate 52b correspond to the second pressing portion.
  • the area of the pressing portion 18 in contact with the lower surface 12b is preferably smaller than the area of the pressing portion 16 in contact with the upper surface 12a, preferably twice or more, and more preferably four times or more.
  • Example 5 is an example regarding module installation.
  • 21(a) is a cross-sectional view of the module in Comparative Example 5
  • FIG. 21(b) is a cross-sectional view of the module in Example 5.
  • FIG. 21(a) and 21(b) the downward direction is the direction of gravity, the vertical direction, and is the centerline 67 of pads 12 and 14.
  • FIG. 21(a) and 21(b) the downward direction is the direction of gravity, the vertical direction, and is the centerline 67 of pads 12 and 14.
  • the upper surface 12a and the lower surface 12b of the pad 12, and the upper surface 14a and the lower surface 14b of the pad 14 are inclined with respect to the vertical direction.
  • the direction of the force 68 from the pressing portion 16 to the pad 12 presses the center of the pad 12 and is inclined with respect to the normal direction Z direction of the upper surface 12a and the lower surface 12b.
  • the force 68 is divided into a force component 68a in the -Z direction and a force component 68b in the X direction.
  • the force component 68a that effectively acts is weakened.
  • the upper surface 12a and the lower surface 12b of the pad 12, and the upper surface 14a and the lower surface 14b of the pad 14 are substantially orthogonal to the vertical direction and arranged horizontally.
  • the direction of applied force is preferably perpendicular to the surfaces of pads 12 and 14.
  • FIGS. 22(a) and 22(b) are cross-sectional views of a car seat in which the module in Example 5 is installed.
  • FIG. 22(a) is a cross-sectional view of the car seat 41 cut in the left-right direction
  • FIG. 22(b) is a view of the car seat 41 cut in the front-rear direction.
  • the upper surface of the seat cushion 44 of the car seat 41 is inclined downward toward the rear. This is to protect passengers in the event of a head-on collision of the vehicle.
  • the module 10 is installed horizontally so that the top and bottom surfaces of the pads 12 and 14 are substantially perpendicular to the vertical direction.
  • the passenger's vital vibrations are applied perpendicularly to the surfaces of the pads 12 and 14, improving detection accuracy.
  • substantially perpendicular to the vertical direction means that an inclination of about ⁇ 10° or ⁇ 5° is allowed with respect to a horizontal plane perpendicular to the vertical direction.
  • Embodiment 6 is an example of a seating determination device that determines whether an object such as 40 kg of rice is placed on the front passenger seat or the driver's seat, whether the object is a person or luggage. It is possible to suppress the sounding of the alarm that the seat belt is not fastened when rice is placed. In addition, it is possible to prevent the engine from starting even when no passenger is on board during automatic driving.
  • the modules of Examples 1 to 5 are installed in a car seat as shown in FIG. 3 or FIGS. It may be determined whether Furthermore, by installing a temperature sensor in the interior of the vehicle, it is possible to make the following determinations and alarm notifications.
  • the determination device uses the human sensor of the sixth embodiment to determine whether a person is inside the vehicle.
  • the determination device determines that there is a person inside the vehicle, and issues an alarm when the room temperature of the vehicle exceeds, for example, 20° C. and the vehicle has been parked for longer than a predetermined period of time.
  • the determination device may notify the alarm outside the vehicle by sound, or may notify the alarm to the driver's portable device using wireless communication means such as BLE (Bluetooth (registered trademark) Low Energy).
  • Example 4 The module used in Experiment 2 of Example 3 was placed in a cushion made of urethane on the rear seat of the vehicle.
  • the output signal of the differential pressure sensor 20 was acquired when the passenger sat on the cushion and when 40 kg of rice was placed. Reference vital signs were acquired from the passenger's chest.
  • the vehicle was driven at a speed of 40 km/h when acquiring the passenger's vital signs, and the vehicle was driven at a speed of 20 km/h when the rice was placed.
  • the sampling frequency is 133.3 Hz
  • the number of Fourier transform blocks is 2048
  • the calculation method is 30-second average
  • the upper limit frequency is 0.5 Hz. More specifically, when the sampling frequency is 133.3 Hz and the number of Fourier transform blocks is 2048, the measurement time is 15.4 seconds.
  • Respiration rate varies greatly among individuals, and the measurement time of 15.4 seconds is too short, so the average of 30 seconds was analyzed.
  • the upper limit frequency was set to 0.5 Hz
  • the maximum number of breaths per minute was set to 30 times, and spectral components above 0.5 Hz were set not to be regarded as respirations.
  • FIGS. 23(a) to 23(d) are diagrams showing the output signal of the differential pressure sensor with respect to time in Experiment 4.
  • FIG. Solid lines in FIGS. 23(a) and 23(b) indicate the output signal of the differential pressure sensor 20 when the passenger (human body) is seated.
  • the reference signal ref is a reference vital signal that is measured simultaneously with the acquisition of the output signal of the differential pressure sensor 20 and acquired from the chest of the passenger. Acquisition of the output signal was performed twice in FIGS. 23(a) and 23(b).
  • Solid lines in FIGS. 23(c) and 23(d) indicate the output signal when 40 kg of rice is placed on the cushion.
  • the reference signal ref is a reference vital signal obtained from the chest of the passenger who boarded together. Acquisition of the output signal was performed twice as shown in FIGS. 23(c) and 23(d).
  • the output signal of the differential pressure sensor 20 shows the same tendency as ref.
  • the output signal of the differential pressure sensor 20 exhibits movements that are not related to ref.
  • the period 76 is divided into 7 sections. Each section contains 2048 points of data. Fourier transform was performed for each interval and spectral analysis was performed. As a result, seven spectra were obtained for each of FIGS. 23(a) to 23(d).
  • FIGS. 24(a) to 24(g) are diagrams showing the results of the spectrum analysis of FIG. 23(a) for the first human body in Experiment 4.
  • FIG. FIGS. 25(a) to 25(g) are diagrams showing the results of the spectrum analysis of FIG. 23(b) for the second time on the human body.
  • the solid line is the spectrum of the output signal of the differential pressure sensor 20, and the dotted line is the spectrum of the reference signal ref.
  • FIGS. 24(a) to 25(g) in the spectrum of the reference signal, a peak in the respiratory component is observed near 0.2 to 0.3 Hz as indicated by arrow 58.
  • FIGS. 26(a) to 26(g) show the results of the spectral analysis of FIG. 23(c) for the first rice in Experiment 4.
  • FIG. FIG. 27(a) to FIG. 27(g) are diagrams showing the results of the spectral analysis of FIG. 23(d) for the second rice.
  • the solid line is the spectrum of the output signal of the differential pressure sensor 20
  • the dotted line is the spectrum of the reference signal ref.
  • FIGS. 26(a) to 27(g) in the spectrum of the reference signal, a peak in the respiratory component is observed near 0.2 to 0.3 Hz as indicated by arrow 58.
  • FIG. 28(a) and 28(b) are flowcharts showing the processing of the processing unit in the sixth embodiment.
  • the processing unit 34 acquires the output signal of the differential pressure sensor 20 for a predetermined period (step S10).
  • the processing unit 34 Fourier-transforms the acquired output signal (step S12).
  • the processing unit 34 determines whether or not there is a peak in a specific frequency range (for example, 0.2 Hz to 0.5 Hz) in the Fourier-transformed spectrum (step S14).
  • the processing unit 34 determines that the passenger is seated in the car seat 41 (step S16). When No, the processing unit 34 determines that the passenger is not seated in the car seat 41 (step S18). Then exit. Thus, the processing unit 34 can determine whether or not the passenger is seated in the car seat 41 .
  • the processing unit 34 performs steps S10, S12 and S14 as in FIG. 28(a).
  • the processing unit 34 does not perform step S24.
  • k is a value greater than 0 and less than 1;
  • n and k may be changed depending on the situation. For example, when the vehicle is stopped, the disturbance vibration is small. Therefore, n is made small and k is made large. For example, when the vehicle is running fast, the disturbance vibration is large. Therefore, n is increased and k is decreased.
  • a module including pads 12 and 14 and pressing portions 16 and 18 is provided in a car seat 41 of a vehicle, and the determination portion determines whether the passenger is seated on the seat based on the output of the differential pressure sensor 20. determine whether or not there is This makes it possible to accurately determine whether or not the passenger is seated on the car seat 41 .
  • the module 10 can be installed in the driver's seat, passenger's seat or rear seat of the vehicle.
  • the pads 12 and 14 are provided so as to overlap the human body part (for example, the right buttock or the left buttock) to which a load is applied, such as the buttocks of the subject.
  • the pads 12 and 14 may be provided so as to overlap the vibration source such as the vitals of the subject's thighs.
  • FIG. 29 is a flow chart showing the detection method in the sixth embodiment.
  • the modules of Examples 1 to 3 and their modifications are prepared by being embedded in the seat of a four-wheeled vehicle (step S40).
  • at least one of the pads 12 and 14 adjusts the vibration transmitted to the pad by the pressing portion that abuts on the pad (step S42).
  • the pad 12 or 14 may be arranged so that the vital vibrations of the occupant are primarily transmitted.
  • the differential pressure sensor 20 detects the difference between the gas pressure in the pad 12 and the gas pressure in the pad 14 (step S44).
  • the processing unit 34 analyzes the pressure difference between the pads 12 and 14 (step S46).
  • the processing unit 34 determines the state of vital vibration of the passenger (step S48). In step S48, it may be determined whether the object placed on the sheet is a person or a load.
  • the vital vibration of the passenger is detected and the state of the vital vibration is determined.
  • the state of the motor may be determined.
  • a capacitance sensor In International Publication No. 2020/158952, a capacitance sensor, an electret condenser microphone, a piezoresistive sensor, a differential transformer, or the like may be used instead of the piezoelectric element.
  • vital vibration was mainly described as the vibration detected by the processing unit 34 from the pads 12 and 14 .
  • the processing unit 34 may detect road noise and perform arithmetic processing on the road noise.
  • the vehicle control device may determine the fuel consumption of the vehicle or control the speed of the vehicle from the vibration of this road noise.
  • the processing unit 34 may detect vibration of the vehicle drive motor.
  • the processing unit 34 may extract an abnormal sound of the motor for driving the wheels, and the control device of the vehicle may control the vehicle to decelerate or stop when the abnormal sound is detected.
  • the vehicle control device may notify the driver of the current road surface condition or fuel consumption, or may guide the driver to another route in conjunction with the navigation system. Furthermore, the vehicle control device may store the detected road noise information in the cloud. The vehicle control device may notify the driver of the fuel consumption or the degree of fatigue due to driving when traveling on the estimated road surface obtained from the cloud, propose a driving route according to it, and prevent accidents. You may make an announcement for
  • a bag-shaped first member having a first surface and a second surface facing each other and filled with gas
  • a bag-shaped second member having a third surface and a fourth surface facing each other, the third surface facing the second surface, and filled with a gas
  • It is positioned at the center of the first surface when viewed from the lamination direction of the first member and the second member, and is in contact with the first surface when no force is applied in the direction of the first surface or when the force is small.
  • the force is not applied or when the force is small, the area in contact with the first surface is small, and when the force is large, the area in contact with the first surface is reduced.
  • a biological information detection device comprising: (Feature 2) The biological information detection device according to feature 1, wherein the surface of the first pressing portion facing the first surface has a central portion that protrudes toward the first surface from a peripheral portion. (Feature 3) The biological information detection device according to feature 1, wherein the first surface has a central portion that protrudes toward the first pressing portion with respect to the peripheral portion. (Feature 4) 4. The biological information detection device according to any one of features 1 to 3, wherein the second surface and the third surface are in contact with each other.
  • the module comprises a separator provided between the second surface and the third surface in contact with the peripheral edges of the second surface and the third surface; 5.
  • the biometric information detecting device according to any one of features 1 to 4, wherein the second surface and the third surface are separated by the separator.
  • the module includes a support member that surrounds the first member and the second member and connects the first pressing portion and the second pressing portion. Device.
  • the module is a plate-shaped member provided away from the first pressing portion on a side opposite to the first member with respect to the first pressing portion; an axial core member connecting the central portion of the plate-like member and the central portion of the first pressing portion and having a plane area smaller than that of the plate-like member;
  • the biological information detection device according to any one of features 1 to 6, comprising: (Feature 8) a bag-shaped first member having a first surface and a second surface facing each other and filled with gas; a bag-shaped second member having a third surface and a fourth surface facing each other, the third surface facing the second surface, and filled with a gas; a third member provided away from the first surface on the side opposite to the second member with respect to the first member; Positioned in the center of the first surface between the first surface and the third member, when no force is applied from the third member in the direction of the first surface or when the force is small, the first It does not touch either one of the first member and the third member, but touches the one member when the force increases, or touches
  • a biological information detection device comprising: (Feature 9) The biological information detection device according to feature 8, wherein the module includes a support member that surrounds the first member and the second member and connects the third member and the second pressing portion.
  • the module comprises a separator provided between the second surface and the third surface in contact with the peripheral edges of the second surface and the third surface; 10.
  • the module is a plate-shaped member provided away from the third member on the side opposite to the first member with respect to the third member; a shaft core member that connects the central portion of the plate member and the central portion of the third member;
  • the biological information detection device according to any one of features 8 to 10, comprising: (Feature 12) a bag-shaped first member having a first surface and a second surface facing each other and filled with gas; a bag-shaped second member having a third surface and a fourth surface facing each other, the third surface facing the second surface, and filled with a gas; a first pressing portion in contact with the central portion of the first surface; a second pressing portion that is in contact with at least a central portion of the fourth surface and has an area in contact with the fourth surface that is larger than an area
  • the biological information detection device wherein the first pressing portion is separated from the third pressing portion.
  • (Feature 14) 14 14.
  • a biological information detection device comprising: (Feature 16) 16.
  • Biometric information according to feature 15, wherein the housing is provided on a side of the member opposite to the second pressing portion, away from the first surface, and has a portion having an opening through which the first pressing portion passes. detection device. (Feature 17) 17.
  • the module includes a plate-like member provided on the side of the member opposite to the second pressing portion, away from the first surface, and having a center portion in contact with the first pressing portion. Biometric information detection device.
  • a bag-shaped first member having a first surface and a second surface facing each other and filled with gas; a bag-shaped second member having a third surface and a fourth surface facing each other, the third surface facing the second surface, and filled with a gas; a first pressing portion in contact with at least a central portion of the first surface; a second pressing portion in contact with at least a central portion of the fourth surface; a separator provided between the second surface and the third surface in contact with peripheral edge portions of the second surface and the third surface; wherein the second surface and the third surface are separated by the separator; and a detector that detects the difference between the gas pressure in the first member and the gas pressure in the second member;
  • a biological information detection device comprising: (Feature 19) a bag-shaped first member having a first surface and a second surface facing each other and filled with gas; a bag-shaped second member having a third surface and a fourth surface facing each other, the third surface facing the second surface, and filled with a gas; a first pressing portion in contact with at least
  • the biological information detection device according to any one of features 1 to 14, wherein the first surface, the second surface, the third surface, and the fourth surface are arranged in a direction substantially perpendicular to the vertical direction.
  • a bag-shaped first member having a first surface and a second surface facing each other and filled with gas
  • a bag-shaped second member having a third surface and a fourth surface facing each other, the third surface facing the second surface, and filled with a gas
  • a first pressing portion in contact with at least a central portion of the first surface
  • a second pressing portion in contact with at least a central portion of the fourth surface
  • a module comprising a detector that detects the difference between the gas pressure in the first member and the gas pressure in the second member; with The biological information detecting device, wherein the first surface, the second surface, the third surface and the fourth surface are arranged in a direction substantially orthogonal to a vertical direction.
  • (Feature 22) 22 The biological information detection device according to feature 21, wherein the second surface and the third surface are in contact with each other.
  • (Feature 23) 23 The biometric information detection device according to feature 21 or 22, wherein the module is installed in a seat of a vehicle.
  • a bag-shaped first member having a first surface and a second surface facing each other and filled with gas
  • a bag-shaped second member having a third surface and a fourth surface facing each other, the third surface facing the second surface, and filled with a gas
  • a first pressing portion in contact with at least a central portion of the first surface
  • a second pressing portion in contact with at least a central portion of the fourth surface
  • a module provided in the vehicle seat comprising a detector that detects the difference between the gas pressure in the first member and the gas pressure in the second member; a determination unit that determines whether or not the passenger is seated on the seat based on the output of the detector;
  • a seating determination device comprising a detector that detects the difference between the gas pressure in the first member and the gas pressure in the second member; a determination unit that determines whether or not the passenger is seated on the seat based on the output of the detector; A seating determination device.
  • a first bag-shaped member filled with gas a second bag-shaped member placed under the first member and filled with gas; and a first pressing portion abutting on an upper surface of the first member.
  • a second pressing portion that abuts on the lower surface of the second member, a first tube that communicates with the first member, a second tube that communicates with the second member, and the first tube and the second tube.
  • a differential pressure sensor that detects a difference between the gas pressure in the first member and the gas pressure in the second member via at least the first member, the second member, preparing the first pressing portion and the second pressing portion by embedding them in a sheet; At least one of the first member and the second member absorbs vibration transmitted to the at least one member by a pressing portion that abuts on at least one of the first pressing portion and the second pressing portion. adjust and A sensing method for detecting a difference between the gas pressure in the first member and the gas pressure in the second member.
  • the module is embedded in the seat of a four-wheeled vehicle, and the vital vibration of the passenger, the vibration of the drive noise, or the vibration of the drive motor mainly propagates to either one of the first member and the second member.
  • the sensing method of feature 26 for determining the state of the (Feature 28) 28.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

This biological information detection device is provided with: a bag-shaped first member which is filled with air and which has a first surface and a second surface facing one another; a bag-shaped second member which is filled with air and which has a third surface and a fourth surface facing one another, the third surface facing the second surface; a module provided with a first pusher that is located at the center of the first surface as seen from the direction of stacking of the first member and the second member, and a second pusher that is in contact with at least the center of the fourth surface; and a detector for detecting the difference between the gas pressure inside the first member and the gas pressure inside the second member. The distance between the first surface and a fifth surface, which is a surface of the first pusher and faces the first surface, decreases going from the peripheral edge toward the center. Vibrations can be transmitted between the first surface and the fifth surface. 

Description

生体情報検出装置および着座判定装置Biological information detection device and seating determination device
 本発明は、生体情報検出装置および着座判定装置に関し、例えば、バイタルの振動を検出する生体情報検出装置および着座判定装置に関する。 The present invention relates to a biological information detection device and a seating determination device, and for example, to a biological information detection device and a seating determination device that detect vital vibrations.
 脈波や呼吸などの人体のバイタル等の振動を検出する生体情報検出装置が知られている(例えば特許文献1~6)。バイタル等の振動の検出に、空気が入った袋状部材を用い、袋状部材内の空気の圧力を検出することでバイタル等の振動を検出することが知られている(例えば特許文献4および5)。  Biological information detection devices are known that detect vibrations of human vitals such as pulse waves and respiration (for example, Patent Documents 1 to 6). It is known to detect vibrations of vital signs by using a bag-shaped member containing air and detecting the pressure of the air in the bag-shaped member (for example, Patent Document 4 and 5).
特開2017-219341号公報JP 2017-219341 A 特開2006-218068号公報Japanese Patent Application Laid-Open No. 2006-218068 特開2006-42904号公報JP-A-2006-42904 特開2018-47862号公報JP 2018-47862 A 特開2009-82585号公報JP 2009-82585 A 特開2009-104599号公報JP 2009-104599 A
 しかしながら、高感度な振動検出器は外乱振動の影響を受けやすい。例えば、車両走行中はドライブノイズ等の大きな外乱振動が生じる。振動を検出するセンサ素子の出力信号を増幅しアナログ電圧に変換するときに信号が飽和してしまう。これは、増幅器の出力は電源電圧の範囲内であるため、センサ素子の出力信号が大きいと増幅された信号が電源電圧の範囲を越えてしまうためである。信号が飽和すると、大きな振動に内在する微小なバイタル振動の検出ができなくなる。 However, highly sensitive vibration detectors are susceptible to external vibrations. For example, large disturbance vibration such as drive noise occurs while the vehicle is running. When the output signal of a sensor element that detects vibration is amplified and converted into an analog voltage, the signal becomes saturated. This is because the output of the amplifier is within the range of the power supply voltage, so if the output signal of the sensor element is large, the amplified signal exceeds the range of the power supply voltage. When the signal saturates, it becomes impossible to detect minute vital vibrations inherent in large vibrations.
 本発明は、上記課題に鑑みなされたものであり、検出精度を向上させることを目的とする。 The present invention has been made in view of the above problems, and aims to improve detection accuracy.
 本発明は、互いに対向する第1面および第2面を有し、気体が充填される袋状の第1部材と、互いに対向する第3面および第4面を有し、前記第3面は前記第2面に対向し、気体が充填される袋状の第2部材と、前記第1部材と前記第2部材との積層方向からみて前記第1面の中央部に位置する第1押部と、前記第4面の少なくとも中央部に接する第2押部と、を備えるモジュールと、前記第1部材内の気体圧力と前記第2部材内の気体圧力との差を検出する検出器と、を備え、前記第1面と、前記第1押部のうち前記第1面に対向する第5面と、の距離は、周縁部から中央部に向かうに従い近くなり、前記第1面と前記第5面との間は振動が伝達可能である生体情報検出装置である。 The present invention has a bag-shaped first member having first and second surfaces facing each other and filled with gas, and third and fourth surfaces facing each other, the third surface being A bag-like second member that faces the second surface and is filled with gas; and a first pressing portion that is positioned in the center of the first surface when viewed from the stacking direction of the first member and the second member. and a second pressing portion in contact with at least a central portion of the fourth surface; a detector for detecting a difference between the gas pressure in the first member and the gas pressure in the second member; , the distance between the first surface and the fifth surface of the first pressing portion facing the first surface decreases from the peripheral portion toward the central portion, and the first surface and the first A biometric information detection device is capable of transmitting vibration between the five surfaces.
 上記構成において、前記第1押部の前記第1面に対向する面は中央部が周縁部より前記第1面の方に突出する構成とすることができる。 In the above configuration, the surface of the first pressing portion facing the first surface may be configured such that the central portion protrudes toward the first surface from the peripheral portion.
 上記構成において、前記第1面は中央部が周縁部に対し前記第1押部の方に突出する構成とすることができる。 In the above configuration, the first surface may have a configuration in which the central portion protrudes toward the first pressing portion with respect to the peripheral portion.
 上記構成において、前記第2面と前記第3面とは接触する構成とすることができる。 In the above configuration, the second surface and the third surface may be in contact with each other.
 上記構成において、前記モジュールは、前記第2面と前記第3面との間に前記第2面および前記第3面の周縁部に接して設けられたセパレータを備え、前記セパレータにより前記第2面と前記第3面は離間される構成とすることができる。 In the above configuration, the module includes a separator provided between the second surface and the third surface so as to be in contact with the peripheral edge portions of the second surface and the third surface, and the separator causes the second surface to and the third surface can be configured to be separated from each other.
 上記構成において、前記モジュールは、前記第1部材および前記第2部材を囲み、前記第1押部と前記第2押部とを連結する支持部材を備える構成とすることができる。 In the above configuration, the module may include a support member that surrounds the first member and the second member and connects the first pressing portion and the second pressing portion.
 上記構成において、前記モジュールは、前記第1押部に対し前記第1部材と反対の側に前記第1押部から離れて設けられた板状部材と、前記板状部材の中央部と前記第1押部の中央部とを接続し、平面面積が前記板状部材の平面面積より小さい軸芯部材と、を備える構成とすることができる。 In the above configuration, the module includes a plate-like member provided on the opposite side of the first pressing portion from the first pressing portion and away from the first pressing portion; A shaft core member connected to the central portion of the first pressing portion and having a plane area smaller than that of the plate member may be provided.
 上記構成において、前記第1面、前記第2面、前記第3面および前記第4面は鉛直方向に対し略直交する方向に配置される構成とすることができる。 In the above configuration, the first surface, the second surface, the third surface and the fourth surface may be arranged in a direction substantially perpendicular to the vertical direction.
 上記構成において、前記モジュールは、前記第1押部に対し前記第1部材と反対の側に設けられた第3部材と、前記第1面と前記第3部材との間の前記第1面の周縁部に位置し、前記第1面および前記第3部材に接する第3押部と、を備え、前記第1面と前記第3部材との間は前記第1押部を介し振動が伝達可能である構成とすることができる。 In the above configuration, the module includes: a third member provided on the side opposite to the first member with respect to the first pressing portion; a third pressing portion located at the peripheral portion and in contact with the first surface and the third member, wherein vibration can be transmitted between the first surface and the third member via the first pressing portion; It can be configured as follows.
 上記構成において、前記モジュールは、前記第1部材および前記第2部材を囲み、前記第3部材と前記第2押部とを接続する支持部材を備える構成とすることができる。 In the above configuration, the module may include a support member that surrounds the first member and the second member and connects the third member and the second pressing portion.
 上記構成において、前記モジュールは、前記第2面と前記第3面との間に前記第2面および前記第3面の周縁部に接して設けられたセパレータを備え、前記セパレータにより前記第2面と前記第3面は離間される構成とすることができる。 In the above configuration, the module includes a separator provided between the second surface and the third surface so as to be in contact with the peripheral edge portions of the second surface and the third surface, and the separator causes the second surface to and the third surface can be configured to be separated from each other.
 上記構成において、前記モジュールは、前記第3部材に対し前記第1部材と反対の側に前記第3部材から離れて設けられた板状部材と、前記板状部材の中央部と前記第3部材の中央部を接続する軸芯部材と、を備える構成とすることができる。 In the above configuration, the module includes a plate-like member provided on a side opposite to the first member with respect to the third member and away from the third member, a central portion of the plate-like member, and the third member. and a shaft core member connecting the central portion of the.
 本発明は、互いに対向する第1面および第2面を有し、気体が充填される袋状の第1部材と、互いに対向する第3面および第4面を有し、前記第3面は前記第2面に対向し、気体が充填される袋状の第2部材と、前記第1面の少なくとも中央部に接する第1押部と、前記第4面の少なくとも中央部に接する第2押部と、前記第1押部に対し前記第1部材と反対の側に前記第1押部から離れて設けられた板状部材と、前記板状部材の中央部と前記第1押部の中央部を接続し、平面面積が前記板状部材の平面面積より小さい軸芯部材と、を備えるモジュールと、前記第1部材内の気体圧力と前記第2部材内の気体圧力との差を検出する検出器と、を備える生体情報検出装置である。 The present invention has a bag-shaped first member having first and second surfaces facing each other and filled with gas, and third and fourth surfaces facing each other, the third surface being A bag-shaped second member facing the second surface and filled with gas, a first pressing portion in contact with at least the central portion of the first surface, and a second pressing portion in contact with at least the central portion of the fourth surface. a plate-like member provided away from the first pressing portion on a side opposite to the first member with respect to the first pressing portion; a center portion of the plate-like member and a center of the first pressing portion; and a shaft core member having a plane area smaller than that of the plate-like member, and detecting a difference between gas pressure in the first member and gas pressure in the second member. and a detector.
 本発明は、互いに対向する第1面および第2面を有し、気体が充填される袋状の第1部材と、互いに対向する第3面および第4面を有し、前記第3面は前記第2面に対向し、気体が充填される袋状の第2部材と、前記第1面の少なくとも中央部に接する第1押部と、前記第4面の少なくとも中央部に接する第2押部と、を備えるモジュールと、前記第1部材内の気体圧力と前記第2部材内の気体圧力との差を検出する検出器と、を備え、前記第1面、前記第2面、前記第3面および前記第4面は鉛直方向に対し略直交する方向に配置される生体情報検出装置である。 The present invention has a bag-shaped first member having first and second surfaces facing each other and filled with gas, and third and fourth surfaces facing each other, the third surface being A bag-shaped second member facing the second surface and filled with gas, a first pressing portion in contact with at least the central portion of the first surface, and a second pressing portion in contact with at least the central portion of the fourth surface. and a detector that detects a difference between the gas pressure in the first member and the gas pressure in the second member, wherein the first surface, the second surface, the second The third surface and the fourth surface are biological information detection devices arranged in a direction substantially perpendicular to the vertical direction.
 上記構成において、前記第2面と前記第3面は接触する構成とすることができる。 In the above configuration, the second surface and the third surface may be in contact with each other.
 上記構成において、前記モジュールは、車両のシート内に設置される構成とすることができる。 In the above configuration, the module may be configured to be installed inside the seat of the vehicle.
 本発明は、上記生体情報検出装置と、前記検出器の出力に基づき、前記モジュールが設けられた車両のシートに搭乗者が着座しているか否かを判定する判定部と、を備える着座判定装置である。 The present invention is a seating determination device comprising the biological information detection device described above and a determination unit that determines whether or not a passenger is seated in a vehicle seat provided with the module based on the output of the detector. is.
 本発明によれば、検出精度を向上させることができる。 According to the present invention, detection accuracy can be improved.
図1は、実施例1におけるモジュールおよび差圧センサを示す概略図である。FIG. 1 is a schematic diagram showing a module and a differential pressure sensor in Example 1. FIG. 図2は、実施例1における検出装置を示すブロック図である。FIG. 2 is a block diagram showing the detection device in Example 1. FIG. 図3は、実施例1におけるモジュールが座席シートに配置される例を示す図である。FIG. 3 is a diagram showing an example in which the modules in Example 1 are arranged on a seat. 図4(a)は、実施例1におけるパッドの平面図、図4(b)は図4(a)のA-A断面図、図4(c)および図4(d)は、パッドと押部の断面図である。FIG. 4(a) is a plan view of the pad in Example 1, FIG. 4(b) is a sectional view along AA of FIG. 4(a), and FIGS. It is a cross-sectional view of the part. 図5は、パッドに加わる振動量に対する圧力変化を示す図である。FIG. 5 is a diagram showing changes in pressure with respect to the amount of vibration applied to the pad. 図6(a)および図6(b)は、実施例1におけるモジュールの断面図である。6(a) and 6(b) are sectional views of the module in Example 1. FIG. 図7(a)から図7(c)は、実施例1におけるモジュールの断面図である。7A to 7C are sectional views of the module in Example 1. FIG. 図8(a)および図8(b)は、実施例1における別の例を示す図である。FIGS. 8(a) and 8(b) are diagrams showing another example of the first embodiment. 図9(a)および図9(b)は、実施例1における別の例を示す図である。FIGS. 9A and 9B are diagrams showing another example of the first embodiment. 図10は、実施例2に係るモジュールの断面図である。FIG. 10 is a cross-sectional view of a module according to Example 2. FIG. 図11(a)から図11(d)は、実施例2に係るモジュールの平面図である。11(a) to 11(d) are plan views of a module according to Example 2. FIG. 図12は、実験1における時間に対する検出器の出力信号を示す図である。12 is a diagram showing the output signal of the detector against time in experiment 1. FIG. 図13(a)および図13(b)は、それぞれ実施例2の変形例1および2におけるモジュールの断面図である。13(a) and 13(b) are cross-sectional views of modules in Modifications 1 and 2 of Example 2, respectively. 図14は、実施例2の変形例3におけるモジュールの断面図である。14 is a cross-sectional view of a module in Modification 3 of Embodiment 2. FIG. 図15は、実施例3に係るモジュールの断面図である。15 is a cross-sectional view of a module according to Example 3. FIG. 図16(a)から図16(d)は、実施例3に係るモジュールの平面図である。16(a) to 16(d) are plan views of a module according to Example 3. FIG. 図17は、実験2における時間に対する検出器の出力信号を示す図である。17 is a diagram showing the output signal of the detector against time in experiment 2. FIG. 図18(a)は、実施例4に係るモジュールの断面図、図18(b)および図18(c)は、実施例4に係るモジュールの平面図である。18A is a cross-sectional view of a module according to Example 4, and FIGS. 18B and 18C are plan views of the module according to Example 4. FIG. 図19(a)は、実験3における時間に対するセンサ20aの出力信号を示す図、図19(b)は、図19(a)の期間72の出力信号をフーリエ変換処理したスペクトルを示す図である。FIG. 19(a) is a diagram showing the output signal of the sensor 20a with respect to time in Experiment 3, and FIG. 19(b) is a diagram showing a spectrum obtained by Fourier transforming the output signal in period 72 of FIG. 19(a). . 図20は、実施例4の変形例1におけるモジュールの断面図である。20 is a cross-sectional view of a module in Modification 1 of Embodiment 4. FIG. 図21(a)は、比較例5におけるモジュールの断面図、図21(b)は、実施例5におけるモジュールの断面図である。21(a) is a cross-sectional view of the module in Comparative Example 5, and FIG. 21(b) is a cross-sectional view of the module in Example 5. FIG. 図22(a)および図22(b)は、実施例5におけるモジュールを設置したカーシートの断面図である。22(a) and 22(b) are cross-sectional views of a car seat in which modules are installed in Example 5. FIG. 図23(a)から図23(d)は、実験4における時間に対する差圧センサの出力信号を示す図である。23(a) to 23(d) are diagrams showing the output signal of the differential pressure sensor with respect to time in Experiment 4. FIG. 図24(a)から図24(g)は、実験4における図23(a)のスペクトル解析の結果を示す図である。24(a) to 24(g) are diagrams showing the results of spectral analysis of FIG. 23(a) in Experiment 4. FIG. 図25(a)から図25(g)は、実験4における図23(b)のスペクトル解析の結果を示す図である。25(a) to 25(g) are diagrams showing the results of spectrum analysis of FIG. 23(b) in experiment 4. FIG. 図26(a)から図26(g)は、実験4における図23(c)のスペクトル解析の結果を示す図である。26(a) to 26(g) are diagrams showing the results of spectrum analysis of FIG. 23(c) in experiment 4. FIG. 図27(a)から図27(g)は、実験4における図23(d)のスペクトル解析の結果を示す図である。27(a) to 27(g) are diagrams showing the results of spectrum analysis of FIG. 23(d) in Experiment 4. FIG. 図28(a)および図28(b)は、実施例6における処理部の処理を示すフローチャートである。28(a) and 28(b) are flowcharts showing the processing of the processing unit in the sixth embodiment. 図29は、実施例6における検知方法を示すフローチャートである。FIG. 29 is a flow chart showing a detection method according to the sixth embodiment.
 以下、図面を参照し実施例について説明する。 Examples will be described below with reference to the drawings.
[重ねられた二つのパッドと差圧センサの説明]
 実施例1は生体情報検出装置の例である。図1は、実施例1における生体情報検出装置内のモジュールおよび差圧センサを示す概略図である。図1に示すように、モジュール10は、パッド12(第1部材)およびパッド14(第2部材)を備えている。パッド14上にパッド12が重なる。パッド12と14は、接触していてもよいし、互いに離間し接触していなくてもよい。パッド12および14は、内部に空気等の気体が充填された空間11および13を有する袋状の部材である。パッド12および14は、樹脂材料の袋であり、空間11および13の圧力は人体の体重でつぶれない程度の圧力に保たれている。パッド12および14の材料は、振動により空間11および13内の圧力が変化する材料であれば可撓性を有する材料でもよいし、ある程度硬い材料でもよい。パッド12および14の材料は、例えばポリエチレンまたはポリカーボネート等の樹脂である。パッド12と14の外形は、厚みの薄い直方体、例えばエアーマットや座布団を小さくしたような形状、または平面視で円形状または楕円形状の食用のパイ(pie)生地のような形状であり、パッド12および14は中空構造の袋状の形状を有している。前述したようにパッド12および14内の空間11および13には、空気以外にも他のガスや液体などで充填されてもよい。なお、前述した振動は、別の言い方をすると、圧力が変動したものであり、その力がパッド12および14に加わる。そして、これから述べる差圧センサで、目的とする生体情報(バイタル振動)が検出される。
[Explanation of two stacked pads and a differential pressure sensor]
Example 1 is an example of a biological information detection device. FIG. 1 is a schematic diagram showing a module and a differential pressure sensor in a biological information detecting device according to Example 1. FIG. As shown in FIG. 1, module 10 includes pad 12 (first member) and pad 14 (second member). Pad 12 overlaps pad 14 . Pads 12 and 14 may be in contact or may be spaced apart and not in contact. Pads 12 and 14 are bag-like members having spaces 11 and 13 filled with gas such as air. The pads 12 and 14 are bags made of resin material, and the pressure in the spaces 11 and 13 is kept at a level not to be crushed by the weight of the human body. The material of the pads 12 and 14 may be a flexible material or a somewhat hard material as long as the material changes the pressure in the spaces 11 and 13 by vibration. The material of the pads 12 and 14 is, for example, resin such as polyethylene or polycarbonate. The outer shape of the pads 12 and 14 is a thin rectangular parallelepiped, for example, a shape like a small air mat or cushion, or a shape like an edible pie dough that is circular or oval in plan view. 12 and 14 have a bag-like shape with a hollow structure. As described above, the spaces 11 and 13 within the pads 12 and 14 may be filled with other gas or liquid than air. It should be noted that the vibrations described above are, in other words, pressure fluctuations, and the forces are applied to pads 12 and 14 . Then, the target biological information (vital vibration) is detected by the differential pressure sensor described below.
 差圧センサ20は、筐体22、振動膜24およびセンサ素子25を備えている。振動膜24に加わる力により、振動膜24に歪が発生する。センサ素子25は、振動膜24の歪を電気信号に変える素子である。ここでは、センサ素子25として圧電素子が振動膜24の上に載った差圧センサ20を示した。差圧センサ20は、圧力を検知する差圧型のセンサであればよい。センサ素子25は、静電容量型センサ、エレクトレットコンデンサマイク、ピエゾ抵抗型センサまたは差動トランス等でもよい。 The differential pressure sensor 20 includes a housing 22, a vibrating membrane 24 and a sensor element 25. A strain is generated in the vibrating membrane 24 due to the force applied to the vibrating membrane 24 . The sensor element 25 is an element that converts the strain of the vibrating membrane 24 into an electrical signal. Here, the differential pressure sensor 20 in which the piezoelectric element is mounted on the vibrating membrane 24 as the sensor element 25 is shown. The differential pressure sensor 20 may be a differential pressure sensor that detects pressure. The sensor element 25 may be a capacitive sensor, an electret condenser microphone, a piezoresistive sensor, a differential transformer, or the like.
 筐体22は剛体であり、筐体22内には、振動膜24を境界にして空間21および23が設けられている。差圧センサ20は、圧電素子以外のセンサ素子25を有し振動膜24を内蔵した市販の差圧センサでもよい。この場合、センサ素子25にはセンサ本体を保護するケース(または筐体)が設けられている。振動膜24の代わりに、突出部22aに囲まれた開口の大きさをセンサ素子25のケースの大きさとし、開口にセンサ素子25のケースを密着挿入(嵌合)してもよい。このように、センサ素子25と突出部22aとにより、空間21と23とを設けてもよい。空間21と23の形状および大きさは、例えばほとんど同じであることが好ましい。筐体22の形状は、例えば筒状または箱体であり、筐体22は、金属または樹脂を主材料として構成されている。図1の筐体22は、例えば円形の上面、円形の下面、その間をつなぐ側面からなる円筒形である。 The housing 22 is a rigid body, and spaces 21 and 23 are provided in the housing 22 with the diaphragm 24 as a boundary. The differential pressure sensor 20 may be a commercially available differential pressure sensor having a sensor element 25 other than a piezoelectric element and a built-in vibrating membrane 24 . In this case, the sensor element 25 is provided with a case (or housing) that protects the sensor body. Instead of the vibrating membrane 24, the size of the opening surrounded by the projecting portion 22a may be the size of the case of the sensor element 25, and the case of the sensor element 25 may be tightly inserted (fitted) into the opening. Thus, the spaces 21 and 23 may be provided by the sensor element 25 and the protruding portion 22a. The shape and size of the spaces 21 and 23 are preferably almost the same, for example. The shape of the housing 22 is, for example, a cylinder or a box, and the housing 22 is mainly made of metal or resin. The housing 22 in FIG. 1 is, for example, a cylinder having a circular top surface, a circular bottom surface, and side surfaces connecting the two.
[バイタル振動と外乱振動について]
 一般に、検出したい振動があり、その周りから入り込む外乱振動(以下ノイズともいう)により、振動の検出が容易でない場合がある。実施例1は、この環境下、簡単な構成で検出したい振動を検出できるものである。検出したい振動とは、本明細書の実施例では、一例として、車に乗った搭乗者のバイタル振動であり、例えば呼吸または脈拍等の振動である。一方、外乱振動は、バイタル振動の検出の際にノイズとして入ってくる振動である。車の場合、外乱振動は、ドライブノイズまたはロードノイズである。ドライブノイズは、例えば、ロードノイズの他、駆動音、エアコンの風、エンジン音(EVではモータ音)などの機械的音、人体の体動音などである。ロードノイズは、エンジンまたはモータで駆動した車が道路を走った時のノイズであり、一般には道路とタイヤからのノイズである。体動音とは、運転手の動きにより発生するノイズである。なお、以下からは、車の駆動はエンジンによるものとして説明していく。
[Regarding vital vibration and disturbance vibration]
In general, there are vibrations to be detected, and disturbance vibrations (hereinafter also referred to as noise) entering from the surroundings may make it difficult to detect the vibrations. In this environment, the first embodiment can detect desired vibrations with a simple configuration. In the embodiment of this specification, the vibration to be detected is, for example, the vital vibration of a passenger in a car, such as the vibration of breathing or pulse. On the other hand, disturbance vibration is vibration that enters as noise when vital vibration is detected. In the case of cars, the disturbance vibrations are drive noise or road noise. Drive noise includes, for example, road noise, drive sound, wind from an air conditioner, mechanical sounds such as engine sounds (motor sounds in EVs), body motion sounds of the human body, and the like. Road noise is the noise of an engine or motor driven vehicle running on the road, generally noise from the road and tires. Body motion noise is noise generated by the motion of the driver. In the following description, it is assumed that the vehicle is driven by the engine.
 なお、本明細書の実施例では、一例として、車の走行時に、バイタル振動を検出することを例に説明する。しかしながら、人体のバイタル振動の検出が求められるケースは色々とある。例えば、車椅子、ベッドまたは移動式ベッドに乗っている人体からのバイタル振動、ランニングまたは散歩している人からのバイタル振動などである。人がとった物または人が移動すると、車両に乗った人と同様に、検出したい振動にはノイズが重畳するため人体のバイタル振動を検出することが難しくなる。 In addition, in the embodiment of the present specification, as an example, the detection of vital vibration while the vehicle is running will be described. However, there are various cases where detection of vital vibrations of the human body is required. For example, vital vibrations from a person sitting in a wheelchair, bed or cot, vital vibrations from a person running or walking, and the like. When an object picked up by a person or a person moves, it becomes difficult to detect the vital vibration of the human body because noise is superimposed on the vibration to be detected, as is the case with a person riding in a vehicle.
 また、本明細書の実施例における目的は、検出したい振動と、外部から入ってくる排除したい外乱振動が存在する環境において、検出したい振動を効率よく検出することを目的としている。例えば、騒音が大きい工場において、人のバイタル振動を検出したり、良好なエンジンまたは加工用のモータの音を検出したりと、色々な場合が考えられる。 In addition, the purpose of the embodiments of the present specification is to efficiently detect the vibration to be detected in an environment where the vibration to be detected and the external disturbance vibration to be eliminated exist. For example, in a noisy factory, various cases are conceivable, such as detecting the vital vibration of a person, or detecting the good sound of an engine or a motor for processing.
[静音ケースと騒音ケース]
 例えば、車の走行を考えると、大きなノイズ、例えばロードノイズが生じる場合と、ロードノイズが生じない場合に分けられる。前者をロードノイズ等の外乱振動が生じるケースとして、N(Noise)ケースと呼び、後者を静音な雰囲気であるため、S(Silent)ケースと呼ぶ。
[Quiet Case and Noise Case]
For example, when a car travels, it can be divided into cases where large noise such as road noise occurs and cases where no road noise occurs. The former is called an N (Noise) case as a case in which external vibration such as road noise occurs, and the latter is called an S (Silent) case because it is a quiet atmosphere.
 このSケースとNケースを、車の搭乗者のバイタル抽出の観点で、以下のように分類する。
ケース1:車のエンジンが停止し、搭乗者がシートに座っている。
ケース2:搭乗者がシートに座り、車のエンジンを駆動しているが、走行しないで停車している。
ケース3:搭乗者がシートに座り、車のエンジンを駆動し、道路を低速走行している。特に、平らなアスファルトを走行している。
ケース4:搭乗者がシートに座り、車のエンジンを駆動し、道路を走行しているが、高速走行、砂利道または凹凸の大きい道路を走行している。
The S case and N case are classified as follows from the viewpoint of extracting the vital signs of the vehicle occupants.
Case 1: The car engine is off and the passenger is sitting in the seat.
Case 2: The passenger is sitting on the seat and the car engine is running, but the car is stopped without running.
Case 3: A passenger is seated, the car engine is running, and the car is traveling at low speed on the road. Especially when driving on flat asphalt.
Case 4: The passenger is sitting in the seat, the vehicle engine is running, and the vehicle is traveling on a road, but the vehicle is traveling at high speed, on a gravel road, or on a rough road.
 以下に述べる説明や実験は、2つに大別される。つまりロードノイズのような大きなノイズ、外乱振動が加わる場合、これは、ケース3および4であり、Nケースと呼ぶ。それ以外のノイズが少ない場合、ケース1~3の場合を、Sケースと呼ぶ。ここで、ケース3は、ノイズの大きさにより、Sケースに該当する場合と、Nケースに該当する場合がある。 The explanations and experiments described below are roughly divided into two. That is, when large noise such as road noise and disturbance vibration are added, these are Cases 3 and 4, which are called N Cases. Cases 1 to 3 when there is little noise are called S cases. Here, case 3 may correspond to the S case or the N case depending on the magnitude of the noise.
[筐体]
 ここで筐体は、2つのタイプに分けられる。一つ目は、パッド12および14が入る筐体52(図7(c)参照)である。2つ目は、パッド12および14内の圧力や振動を検知するセンサ素子25を入れる筐体22である。
[Chassis]
Here, the housing is divided into two types. The first is a housing 52 (see FIG. 7(c)) in which the pads 12 and 14 are placed. The second is a housing 22 that contains a sensor element 25 that detects pressure and vibration within the pads 12 and 14 .
 前述したが、センサ素子25が入る筐体22は剛体であると説明した。剛体とは、体積および形状を変えない仮想物であり、例えば強固なプラスチックまたは金属を材料とする。筐体22に剛体を用いることで、できる限り筐体22の外からのノイズを筐体22の中に取り込まない。筐体22は、剛体を材料とし、周辺を強固な板で覆うボックスである。外乱振動が加わった場合に撓み成分を除外することができるものは、剛体として説明する。この点は、また後述する。一方、パッドが収納される筐体52は、2つに分けられ、上板、下板または側板より振動を伝搬させる場合には、どちらかと言うと剛体よりも柔軟性を有する。 As described above, the housing 22 containing the sensor element 25 is a rigid body. A rigid body is a virtual object that does not change volume and shape, and is made of, for example, rigid plastic or metal. By using a rigid body for the housing 22, noise from the outside of the housing 22 is not taken into the housing 22 as much as possible. The housing 22 is a box made of a rigid body and surrounded by a strong plate. A rigid body will be described as a body that can exclude a bending component when external vibration is applied. This point will be described later. On the other hand, the housing 52 in which the pads are housed is divided into two parts, and when vibration is transmitted from the upper plate, the lower plate or the side plates, it is more flexible than the rigid body.
[差圧センサ用のセンサ素子]
 センサ素子25は、その種類により一長一短である。圧電センサは、分解能が高く、検出精度が高い。しかし、振動する部分に実装するため、長期的な使用により、接続不良となる可能性がある。他方、静電容量型センサは、二つの対向電極で容量を発生する構造である。例えば少なくとも一方の電極が振動して容量変化するものである。振動板またはダイヤフラムの部分には素子が配置されておらず、固着などが原因である接続不良の可能性は低い。このように、センサ素子25の種類により一長一短であるが、色々なセンサ素子25を差圧センサ20に用いるとは可能である。よって設定環境が考慮されて、使用形態が選択される。なお、以下の説明では、主に圧電素子を用いている。
[Sensor element for differential pressure sensor]
The sensor element 25 has advantages and disadvantages depending on its type. A piezoelectric sensor has high resolution and high detection accuracy. However, since it is mounted on a part that vibrates, there is a possibility that the connection may become defective due to long-term use. On the other hand, the capacitive sensor has a structure in which capacitance is generated by two opposing electrodes. For example, at least one electrode vibrates to change the capacitance. Since no element is placed on the diaphragm or diaphragm, the possibility of poor connection due to sticking or the like is low. Thus, it is possible to use various sensor elements 25 for the differential pressure sensor 20, although there are advantages and disadvantages depending on the type of the sensor element 25. Therefore, the setting environment is taken into consideration when selecting the mode of use. In the following description, piezoelectric elements are mainly used.
[差圧センサ]
 振動膜24は空間21と23とを仕切るように設けられている。すなわち、空間21を画定する内壁の下面は振動膜24の上面であり、空間23を画定する内壁の上面は振動膜24の下面である。筐体22の側壁に対応する内壁には、全周に渡り所定の幅でリング状であり内側に突出する突出部22aが設けられている。突出部22aの上面に振動膜24の周縁が接合されている。振動膜24の周縁全体は突出部22aに固定されている。なお、振動膜24は、突出部22aの下面に設けてもよい。また筐体22の側壁には、空間21と23に対応して、接続用のパイプが設けられている。このパイプをここでは、接続部28および29とよぶ。この接続部28および29は、チューブ26および27を接続するために設けている。よって、空間21は接続部28およびチューブ26(第1チューブ)を介しパッド12内の空間11と繋がっている(すなわち連通している)。空間23は接続部29およびチューブ27(第2チューブ)を介しパッド14内の空間13と繋がっている。空間21および23中には空気が充填されている。なお、空間21および23には、空気以外の気体または液体などの流体が充填されてもよい。振動膜24の上面にはセンサ素子25が設けられている。振動膜24で、パッド12および14からの振動(例えば圧力の振動)を一旦受けてセンサ素子25に伝えるため、センサ素子25は、突出部22aに重ならないように設けられている。
[Differential pressure sensor]
A vibration film 24 is provided so as to partition the spaces 21 and 23 . That is, the lower surface of the inner wall defining the space 21 is the upper surface of the vibrating membrane 24 , and the upper surface of the inner wall defining the space 23 is the lower surface of the vibrating membrane 24 . An inner wall corresponding to the side wall of the housing 22 is provided with a ring-shaped protruding portion 22a having a predetermined width over the entire circumference and protruding inward. A peripheral edge of the vibrating membrane 24 is bonded to the upper surface of the projecting portion 22a. The entire peripheral edge of vibrating membrane 24 is fixed to projecting portion 22a. Note that the vibrating membrane 24 may be provided on the lower surface of the projecting portion 22a. A side wall of the housing 22 is provided with connection pipes corresponding to the spaces 21 and 23 . The pipes are referred to herein as connections 28 and 29. FIG. The connections 28 and 29 are provided for connecting the tubes 26 and 27 . Therefore, the space 21 is connected (that is, communicated) with the space 11 inside the pad 12 via the connecting portion 28 and the tube 26 (first tube). The space 23 is connected to the space 13 inside the pad 14 via the connecting portion 29 and the tube 27 (second tube). Spaces 21 and 23 are filled with air. Spaces 21 and 23 may be filled with fluid such as gas or liquid other than air. A sensor element 25 is provided on the upper surface of the vibration film 24 . The vibrating membrane 24 temporarily receives vibrations (for example, pressure vibrations) from the pads 12 and 14 and transmits them to the sensor element 25, so the sensor element 25 is provided so as not to overlap the projecting portion 22a.
 パッド12および14に振動が加わる際、前述したようにパッド12および14に圧力が加わり、パッド12および14が変形する。その結果、空間11および13内の気体の圧力が変化する。気体の圧力の変化は空間21および23に伝わる。パッド12と14に加わる振動が同じ位相および振幅のとき振動膜24はほとんど振動しない。振動膜24には、パッド12と14とに加わる振動の差分に相当する振動が伝わる。センサ素子25は、この振動膜24の振動(例えば圧力の振動)を検出し、検出信号を信号処理装置30(例えば回路)に出力する。このように、差圧センサ20は、パッド12内の気体圧力(すなわち空間11に充填された気体の圧力)とパッド14内の気体圧力(すなわち空間13に充填された気体の圧力)との差を検出する。 When vibration is applied to the pads 12 and 14, pressure is applied to the pads 12 and 14 as described above, and the pads 12 and 14 are deformed. As a result, the pressure of the gas in spaces 11 and 13 changes. Changes in gas pressure are transmitted to spaces 21 and 23 . When the vibrations applied to pads 12 and 14 have the same phase and amplitude, vibrating membrane 24 hardly vibrates. Vibration corresponding to the difference between the vibrations applied to the pads 12 and 14 is transmitted to the vibrating membrane 24 . The sensor element 25 detects the vibration (for example, pressure vibration) of the vibrating film 24 and outputs a detection signal to the signal processing device 30 (for example, a circuit). Thus, the differential pressure sensor 20 detects the difference between the gas pressure in the pad 12 (that is, the pressure of the gas filled in the space 11) and the gas pressure in the pad 14 (that is, the pressure of the gas that is filled in the space 13). to detect
[センサユニット]
 図2は、実施例1における生体情報検出装置を示すブロック図である。図2に示すように、検出装置100は、モジュール10とセンサユニット31を備えている。差圧センサ20は回路部品35に検出信号を出力する。回路部品35は、例えばプリアンプ(アナログアンプ)を含んでおり、検出信号を増幅する。差圧センサ20の筐体22内にプリント基板を設け、回路部品35は、このプリント基板に設けられていてもよいし、筐体22外に設けられていてもよい。また、プリアンプは、1チップまたは1パッケージとして用意され、さらに、プリアンプはセンサ素子25と同等かそれよりも小型である場合、プリアンプを振動膜24の表面、または裏面に設けてもよい。
[Sensor unit]
FIG. 2 is a block diagram showing the biometric information detection device according to the first embodiment. As shown in FIG. 2, the detection device 100 includes a module 10 and a sensor unit 31. As shown in FIG. The differential pressure sensor 20 outputs a detection signal to the circuit component 35 . The circuit component 35 includes, for example, a preamplifier (analog amplifier) and amplifies the detection signal. A printed circuit board may be provided inside the housing 22 of the differential pressure sensor 20 , and the circuit component 35 may be provided on this printed circuit board, or may be provided outside the housing 22 . Further, the preamplifier is prepared as one chip or one package, and if the preamplifier is equal to or smaller than the sensor element 25, the preamplifier may be provided on the front surface or the rear surface of the vibrating membrane 24.
 所望の電源電圧(例えば、3.3V)のプリアンプが、センサ素子25の出力を電圧変換して増幅するときに、増幅後の信号が電源電圧の範囲内であれば出力信号の飽和は生じない。外乱振動のような大きな振動ではセンサ素子25の出力が大きく、プリアンプの出力信号が飽和(サチュレーション)を起こしてしまう。これにより、バイタル振動のような小さな振動の検出ができない場合がある。本明細書の実施例は、パッド12および14に伝搬する振動を様々な方法で抑制することにより、この出力信号の飽和を抑制し、検出したい振動を検出するものである。なお、明細書の中で述べているように、センサ素子25は圧電素子以外の素子であっても、同様な方法でサチュレーションを抑制できる。 When a preamplifier with a desired power supply voltage (for example, 3.3 V) converts and amplifies the output of the sensor element 25, saturation of the output signal does not occur as long as the amplified signal is within the power supply voltage range. . With large vibrations such as disturbance vibrations, the output of the sensor element 25 is large, and the output signal of the preamplifier is saturated. As a result, it may not be possible to detect small vibrations such as vital vibrations. The embodiments herein suppress the saturation of this output signal by suppressing the vibrations propagating to the pads 12 and 14 in various ways, thereby detecting the desired vibrations. As described in the specification, even if the sensor element 25 is an element other than a piezoelectric element, saturation can be suppressed in a similar manner.
 回路部品35が処理した信号は信号処理装置30に出力される。信号処理装置30は、増幅器32、処理部34、メモリ36および出力部38等を備えている。増幅器32は回路部品35の出力信号を増幅する。増幅器32の利得は可変である。処理部34は、例えばCPU(Central Processing Unit)等のプロセッサであり、増幅された信号をAD(Analog Digital)変換し、変換されたデジタル信号をデジタル処理し、呼吸および脈波等のバイタル情報を抽出する演算(または算出)を行う。メモリ36は、揮発性メモリまたは不揮発性メモリであり、処理部34が実行するプログラムおよび処理中のデータを格納する。出力部38は処理部34が算出したバイタル情報を外部装置に出力する。バイタル情報の出力には例えば無線通信または有線通信を用いる。 A signal processed by the circuit component 35 is output to the signal processing device 30 . The signal processing device 30 includes an amplifier 32, a processing section 34, a memory 36, an output section 38, and the like. Amplifier 32 amplifies the output signal of circuit component 35 . The gain of amplifier 32 is variable. The processing unit 34 is a processor such as, for example, a CPU (Central Processing Unit), AD (Analog Digital) converts the amplified signal, digitally processes the converted digital signal, and obtains vital information such as respiration and pulse wave. Perform the operation (or calculation) to extract. The memory 36 is a volatile memory or a non-volatile memory, and stores programs executed by the processing unit 34 and data being processed. The output unit 38 outputs the vital information calculated by the processing unit 34 to an external device. Wireless communication or wired communication, for example, is used to output vital information.
[カーシート]
 図3は、実施例1におけるモジュール10がカーシートに配置される例を示す図である。搭乗者がカーシート41に着座したとき、向かって右方向を+X方向側、前方向を+Y方向側および上方向を+Z方向側とする。図3に示すように、4輪車両内のカーシート41として、台座42、シートクッション44およびシートバック46が設けられている。台座42は例えば金属部材である。シートクッション44には、運転者等の搭乗者の大腿部および臀部が接触し、シートバック46には搭乗者の頸部、背部および腰部が接触する。シートクッション44内に図1に示すモジュール10が設けられている。シートクッション44はシートクロス(不図示)に覆われている。シートクッション44は、柔らかな樹脂からなり、例えばウレタン等の発泡樹脂である。搭乗者がカーシート41に着座すると、図3では、搭乗者の右臀部がモジュール10に重なるように位置する。搭乗者のバイタル等の振動は、右臀部およびシートクッション44を介しモジュール10に伝わる。モジュール10を左臀部に重なるように配置してもよく、大腿部に重なるように配置してもよい。なお、モジュール10をシートバック46に配置し、頸部、背部または腰部に重なるようにしてもよい。
[Car seat]
FIG. 3 is a diagram showing an example in which the module 10 in Example 1 is arranged in a car seat. When the passenger sits on the car seat 41, the right direction is the +X direction side, the forward direction is the +Y direction side, and the upward direction is the +Z direction side. As shown in FIG. 3, a pedestal 42, a seat cushion 44 and a seat back 46 are provided as a car seat 41 in a four-wheeled vehicle. The pedestal 42 is, for example, a metal member. The seat cushion 44 is in contact with the thighs and buttocks of a passenger such as a driver, and the seat back 46 is in contact with the neck, back and hips of the passenger. A module 10 shown in FIG. 1 is provided in the seat cushion 44 . The seat cushion 44 is covered with a seat cloth (not shown). The seat cushion 44 is made of a soft resin, such as foamed resin such as urethane. When the passenger sits on the car seat 41, the right buttock of the passenger is positioned so as to overlap the module 10 in FIG. Vibrations such as the passenger's vital signs are transmitted to the module 10 via the right buttock and the seat cushion 44 . The module 10 may be placed over the left buttock or over the thigh. Alternatively, the module 10 may be placed in the seat back 46 to overlap the neck, back, or lumbar area.
 モジュール10は、自転車のサドル、デスクチェア、ベッド、マットおよびブレスレッドなどに設けてもよい。ここでは、4輪車両に用いられるカーシート41を例に説明しているが、図3に示すようなカーシート41は、例えば二輪車、列車、飛行機、クレーン、ブルドーザまたはロケットなどの移動体に用いることも可能である。これらの車両は、エンジン駆動またはモータ駆動などでもよい。また、シートは、シートバックが省略され、家庭のソファーやクッションだけの椅子でもよい。 The module 10 may be provided on a bicycle saddle, desk chair, bed, mat, bracelet, and the like. Here, a car seat 41 used in a four-wheeled vehicle is described as an example, but the car seat 41 shown in FIG. is also possible. These vehicles may be engine driven, motor driven, or the like. Also, the seat may be a home sofa or a chair with only a cushion without a seat back.
 また、これから述べるモジュール10は、椅子に埋め込まれるものである。モジュール10として、図7(a)~図7(c)のように軸芯部材および板状部材が設けられていないモジュール、図8(a)および図8(b)のように、軸芯部材および板状部材が設けられているモジュールがあるが、いずれのモジュール10も図3のようにシート等に埋め込まれる。 Also, the module 10 described below is to be embedded in a chair. As the module 10, as shown in FIGS. 7(a) to 7(c), a module without a shaft core member and a plate member, and as shown in FIGS. 8(a) and 8(b), a shaft core member and a module provided with a plate-like member, any module 10 is embedded in a sheet or the like as shown in FIG.
 ドライブノイズ等の外乱振動が入るNケース、静音のSケースにおいて、本モジュール10を用いてパッド12および14内の圧力差を差圧センサ20により検出し、バイタル振動を抽出する検討を行った。 In the N case, where external vibration such as drive noise enters, and the silent S case, this module 10 was used to detect the pressure difference between the pads 12 and 14 with the differential pressure sensor 20, and to extract vital vibration.
[押部:押部が押すパッドの中央部と周縁部]
 まず、パッド12および14とパッド12および14を押圧する押部16および18について考察した。実施例1の説明では図9(a)および図9(b)の説明を除き、パッド12および14はそれぞれ第1部材および第2部材に対応する。パッド12の上面12aおよび下面12bはそれぞれ互いに対向する第1面および第2面に対応する。パッド14の上面14aおよび下面14bはそれぞれ互いに対向する第3面および第4面に対応する。押部16および18はそれぞれ第1押部および第2押部に対応する。
[Pushing part: the central part and peripheral part of the pad that the pushing part pushes]
First, the pads 12 and 14 and the pressing portions 16 and 18 that press the pads 12 and 14 were considered. In the description of the first embodiment, pads 12 and 14 correspond to the first member and the second member, respectively, except for the description of FIGS. 9(a) and 9(b). The upper surface 12a and the lower surface 12b of the pad 12 respectively correspond to the first and second surfaces facing each other. Upper surface 14a and lower surface 14b of pad 14 correspond to third and fourth surfaces facing each other, respectively. Pushers 16 and 18 correspond to the first pusher and the second pusher, respectively.
 図4(a)は、実施例1におけるパッドの平面図、図4(b)は図4(a)のA-A断面図である。なお、図4(b)~図4(d)は、パッド12および14の押し方について説明している。実際は、図4(c)のパッド12の押部16はパッド12の上面12aに当接され、図4(d)のパッド14の押部18は、パッド14の下面14bに当接されている。この両者を図4(b)で説明しているので、パッド12と14の上には上面12aと下面14bが両方図示され、パッド12と14の下には、下面12bと上面14aが両方図示されている。 4(a) is a plan view of the pad in Example 1, and FIG. 4(b) is a cross-sectional view taken along line AA of FIG. 4(a). 4(b) to 4(d) explain how to press the pads 12 and 14. FIG. Actually, the pressing portion 16 of the pad 12 in FIG. 4(c) is in contact with the upper surface 12a of the pad 12, and the pressing portion 18 of the pad 14 in FIG. 4(d) is in contact with the lower surface 14b of the pad 14. . Both are illustrated in FIG. 4(b), so that both upper surface 12a and lower surface 14b are shown above pads 12 and 14, and both lower surface 12b and upper surface 14a are shown below pads 12 and 14. It is
 まず、押部16および18の位置関係を説明するため、中央部63と周縁部64について説明する。図4(a)および図4(b)に示すように、パッド12には、中央部63とその中央部63の外側の周縁部64がある。パッド12の上面12aまたはパッド14の下面14bは、押部16および18で押されるので、中央部63および周縁部64を用い押部16および18が当接する上面12aおよび下面14bの位置を規定している。 First, in order to describe the positional relationship between the pressing portions 16 and 18, the central portion 63 and the peripheral portion 64 will be described. As shown in FIGS. 4(a) and 4(b), the pad 12 has a central portion 63 and a peripheral portion 64 outside the central portion 63 . Since the upper surface 12a of the pad 12 or the lower surface 14b of the pad 14 is pushed by the pressing portions 16 and 18, the central portion 63 and the peripheral portion 64 are used to define the positions of the upper surface 12a and the lower surface 14b with which the pressing portions 16 and 18 abut. ing.
 中央部63は、上面12aおよび下面14bの中心65を含む領域である。なお、中心65は、例えば上面12aおよび下面14bの平面形状の中心点(例えば重心)である。後述するが、押部16が上面12aに当接する位置は、パッド12の上面12aの中心65が好ましいが、中心65からずれても振動が検出できないわけではない。その意味で、本明細書における中央部63とは、振動を検出可能な範囲であり、幅を有する部分である。上面12aまたは下面12bの周縁部64は、おおまかに上面12aまたは下面14bの平面面積の2割または3割の範囲である。図4(a)のように、中央部63は、周縁部64から離れた領域でもよいし、領域63aのように、周縁部64の内側が全て中央部でもよい。 The central portion 63 is a region including the center 65 of the upper surface 12a and the lower surface 14b. Note that the center 65 is, for example, the center point (for example, the center of gravity) of the planar shape of the upper surface 12a and the lower surface 14b. As will be described later, the position where the pressing portion 16 abuts on the upper surface 12a is preferably the center 65 of the upper surface 12a of the pad 12, but deviation from the center 65 does not mean that vibration cannot be detected. In this sense, the central portion 63 in this specification is a portion having a width within which vibration can be detected. The peripheral edge portion 64 of the upper surface 12a or the lower surface 12b is roughly in the range of 20% or 30% of the planar area of the upper surface 12a or the lower surface 14b. As shown in FIG. 4(a), the central portion 63 may be a region away from the peripheral edge portion 64, or the central portion may be entirely inside the peripheral edge portion 64 as in a region 63a.
[点押しと面押し]
 図4(b)を用い、点押しと面押しの二つの押し方を説明する。なお、押部16または18が上面12aまたは下面14bに当接する面積を当接面積という。1つ目の押し方は、矢印80aで示すように、パッド12または14の上面12aまたは下面14bの中心65を含む範囲を少ない当接面で押す場合である。この押し方を、本明細書では「点押し」と言う場合がある。幾何学的には、点は面積を有さないが、本明細書では、図4(c)の押部16のように、図4(d)の押部18に比べ当接面積が少ない場合をいう。
[Dot press and area press]
Two pressing methods, point pressing and surface pressing, will be described with reference to FIG. 4(b). In addition, the area where the pressing portion 16 or 18 contacts the upper surface 12a or the lower surface 14b is called a contact area. The first pressing method is to press a range including the center 65 of the upper surface 12a or the lower surface 14b of the pad 12 or 14 with a small contact surface, as indicated by an arrow 80a. This pressing method may be referred to as "point pressing" in this specification. Geometrically, a point has no area. Say.
 2つ目の押し方として、図4(b)の左の矢印80b~右の矢印80bに渡り中心65を含む広い範囲で上面12aまたは下面14bを押す場合である。例えば、左の矢印80b~右の矢印80bに渡りほぼ全域で上面12aまたは下面14bを当接して押す場合、上面12aまたは下面14bの周縁部64をリング状で押す場合、または上面12aまたは下面14bの平面形状が矩形の場合、周縁部64の4つの角部を押す場合、である。この押し方を本明細書では「面押し」と言う場合がある。また、図4(d)のように、点押しである押部16の当接面積よりも大きな当接面積により、押部18が下面14bを押す場合であり、例えば上面12aまたは下面14bの各々の平面面積の半分以上の面積を、押部16または18が押す場合がある。この場合も、「面押し」と呼称する場合がある。 The second way of pushing is to push the upper surface 12a or the lower surface 14b in a wide range including the center 65 from the left arrow 80b to the right arrow 80b in FIG. 4(b). For example, when the upper surface 12a or the lower surface 14b is pressed in almost the entire area from the left arrow 80b to the right arrow 80b, when the peripheral edge 64 of the upper surface 12a or the lower surface 14b is pressed in a ring shape, or when the upper surface 12a or the lower surface 14b is pressed. is rectangular in plan view, and the four corners of the peripheral portion 64 are pressed. This pressing method may be referred to as "surface pressing" in this specification. Also, as shown in FIG. 4(d), the pressing portion 18 presses the lower surface 14b with a contact area larger than that of the pressing portion 16, which is point pressing. In some cases, the pressing portion 16 or 18 presses an area that is more than half of the planar area of . This case may also be referred to as "face pressing".
 図4(b)に戻ると、矢印80aのように、上面12aまたは下面14bの中央部63が押された場合、パッド12および14は板バネ性が高い。押される箇所が中心65から若干ずれても振動の検出が可能である。そのため、図4(c)のように、点押し構造の押部16に小さな力、つまりバイタル振動のような力が加わっても、パッド12または14の圧力の変化を大きくできる。また、上面12aまたは下面14bにおける押部16または18に押される箇所は、前述した中央部63の範囲内であれば、効果は多少異なるが、バイタル振動を比較的大きく検出でき、検出が可能である。 Returning to FIG. 4(b), when the central portion 63 of the upper surface 12a or the lower surface 14b is pushed as indicated by the arrow 80a, the pads 12 and 14 have high leaf spring properties. Vibration can be detected even if the point to be pushed is slightly deviated from the center 65 . Therefore, as shown in FIG. 4(c), even if a small force such as a vital vibration is applied to the pressing portion 16 having a point pressing structure, the change in the pressure of the pad 12 or 14 can be increased. In addition, if the portion of the upper surface 12a or the lower surface 14b that is pressed by the pressing portion 16 or 18 is within the range of the central portion 63 described above, the effect is slightly different, but the vital vibration can be detected relatively large, and detection is possible. be.
 一方、面押し構造を説明する。図4(b)における左と右の矢印80bのように、上面12aまたは下面14bの周縁部64が押された場合(図10~図11(d)参照)である。パッド12または14の中央部63から周縁部64に向かうにしたがい、パッド12または14の板バネ性は減少する。つまり面押しの場合、点押しと比べると、パッド12の上面12aまたはパッド14の下面14bの上下振動はしにくくなる。別の表現では、面押し構造は、パッド12または14の振動を少し抑制し、パッド12または14への振動の侵入を弱くしているとも考えられる。例えば、Nケースの場合、差圧センサ20により、外乱振動によるパッド12と14の圧力差を小さくし、バイタル振動を効率よく検出するため、面押し構造は重要になる。図4(b)のように、一方のパッド(例えば図4(c)のパッド12)は応答性を高くし、他方のパッド(例えば図4(d)のパッド14)は応答性を低くする、このように二つのパッドの応答性に差を持たせることが重要である。 On the other hand, I will explain the surface pressing structure. This is the case where the peripheral edge portion 64 of the upper surface 12a or the lower surface 14b is pushed as indicated by left and right arrows 80b in FIG. 4(b) (see FIGS. 10 to 11(d)). The leaf springiness of the pad 12 or 14 decreases from the central portion 63 of the pad 12 or 14 toward the peripheral edge portion 64 . That is, in surface pressing, vertical vibration of the upper surface 12a of the pad 12 or the lower surface 14b of the pad 14 is less likely than in point pressing. In other words, it can be considered that the surface pressing structure slightly suppresses the vibration of the pad 12 or 14 and weakens the penetration of the vibration into the pad 12 or 14 . For example, in the case of N case, the pressure difference between the pads 12 and 14 due to disturbance vibration is reduced by the differential pressure sensor 20, and vital vibration is efficiently detected. As shown in FIG. 4(b), one pad (e.g. pad 12 in FIG. 4(c)) is made highly responsive and the other pad (e.g. pad 14 in FIG. 4(d)) is made less responsive. , it is important to provide a difference in the responsiveness of the two pads.
 Sケースの場合で、バイタル振動のみのような小さい振動量が加わり、大きな外乱振動が加わらない場合、図4(c)のように、一方のパッド12を点押し構造とし、パッド12の応答性を高くしてバイタル振動を検出する。図4(d)のように、もう一つのパッド14は、面押しとして、パッド14の振動を抑制している。その結果、二つのパッド12と14との圧力差を大きくしている。 In the S case, when a small amount of vibration such as only vital vibration is applied and no large external vibration is applied, as shown in FIG. to detect vital vibrations. As shown in FIG. 4(d), another pad 14 suppresses the vibration of the pad 14 as surface pressing. As a result, the pressure difference between the two pads 12 and 14 is increased.
 一方、Nケースのように、外乱振動のような大きな振動量が入る場合、二つのパッド12および14の応答性がほぼ同等になりうる。つまりパッド14の面押し構造では下から大きな振動が伝わってパッド14内の圧力の振動は小さい。パッド12の点押し構造では伝わる振動はパッド14より小さく、パッド12内の圧力の振動は小さい。このため、パッド12と14の圧力差は小さくなる。パッド12と14の圧力の振動の大きさが全く同じとなることはないが、圧力の差を検出すれば、外乱振動による差圧センサ20からの出力信号は小さくなる。これにより、出力信号がプリアンプにおいて飽和するような信号でなくなる。詳細は後述する。 On the other hand, like the N case, when a large amount of vibration such as disturbance vibration enters, the responsiveness of the two pads 12 and 14 can be almost the same. In other words, in the surface-pressing structure of the pad 14, a large vibration is transmitted from below, and the vibration of the pressure inside the pad 14 is small. In the point pressing structure of the pad 12, the transmitted vibration is smaller than that of the pad 14, and the vibration of the pressure inside the pad 12 is small. Therefore, the pressure difference between pads 12 and 14 is reduced. Although the magnitude of the pressure vibration of the pads 12 and 14 is not exactly the same, if the pressure difference is detected, the output signal from the differential pressure sensor 20 due to the disturbance vibration becomes smaller. As a result, the output signal is not a signal that saturates the preamplifier. Details will be described later.
 図4(c)および図4(d)は、パッドと押部の断面図である。図5は、パッドに加わる振動量に対する圧力変化を示す図である。振動量はパッド12および14に加わる力に相当し、矢印の大きさで示した。図4(c)および図4(d)のように、押部18および16は、二つのタイプに分かれる。図4(c)では、押部16と上面12aの当接面積は押部18と下面14bの当接面積よりも小さい。図4(d)では、押部18は下面14bの周縁部64まで広い面積で下面14bに当接する、 FIGS. 4(c) and 4(d) are cross-sectional views of the pad and the pressing portion. FIG. 5 is a diagram showing changes in pressure with respect to the amount of vibration applied to the pad. The amount of vibration corresponds to the force applied to pads 12 and 14 and is indicated by the size of the arrow. As shown in FIGS. 4(c) and 4(d), the pushers 18 and 16 are of two types. In FIG. 4C, the contact area between the pressing portion 16 and the upper surface 12a is smaller than the contact area between the pressing portion 18 and the lower surface 14b. In FIG. 4D, the pressing portion 18 abuts on the lower surface 14b over a wide area up to the peripheral edge portion 64 of the lower surface 14b.
 図5において、振動量が小さい範囲61はSケースに相当する。振動量が大きい範囲62はNケースに相当する。図4(c)に示すように、幅の狭い押部16がパッド12の上面12aを押圧する場合(矢印80)、押部16は主に上面12aの中央部を押圧する。図5の点線75cは押部16がパッド12の上面12aを押す振動量に対する空間11の圧力の変化を示す。中央部63は板バネ性が高いため、振動量に対する圧力の変化が大きい。押部16が上面12aを押す振動量が大きくなると、圧力の変化も大きくなる。つまり、小さい振動を点押し構造で受ければ、パッド12内の圧力の変化を大きくできる。また押部16が上面12aを押す箇所が中心65からある程度のずれた場合にも、押部16が上面12aを押す箇所が中央部の範囲で振動の検出が可能となる。 In FIG. 5, a range 61 with a small amount of vibration corresponds to the S case. A range 62 where the amount of vibration is large corresponds to the N case. As shown in FIG. 4C, when the narrow pressing portion 16 presses the upper surface 12a of the pad 12 (arrow 80), the pressing portion 16 mainly presses the central portion of the upper surface 12a. A dotted line 75c in FIG. 5 indicates the change in the pressure in the space 11 with respect to the amount of vibration of the pressing portion 16 pressing the upper surface 12a of the pad 12. As shown in FIG. Since the central portion 63 has a high leaf spring property, the change in pressure with respect to the amount of vibration is large. As the amount of vibration that the pressing portion 16 presses against the upper surface 12a increases, the change in pressure also increases. In other words, if a small vibration is received by the point pressing structure, the change in the pressure inside the pad 12 can be increased. Also, even if the location where the pressing portion 16 presses the upper surface 12a deviates from the center 65 to some extent, the vibration can be detected within the range where the location where the pressing portion 16 presses the upper surface 12a is the central portion.
 図4(d)に示すように、幅の広い押部18がパッド14の下面14bを押圧する場合(矢印81)、押部18は下面14bの中央部63から周縁部64にかけての領域を押圧する。なお、押部18の当接面積は押部16の当接面積よりも広ければよく、押部18は周縁部64まで押さなくてもよい。例えば、押部18の当接面積は、下面14bの面積の半分以上から下面14bの全領域の面積の範囲で選択できる。押部18が下面12bにおける中央部63から周縁部64にかけての全領域を押す場合、前述したように、押部18が下面12bの広い範囲を押すと、全体としてバネ性が低くなる。このため、図5の実線75bのように、振動量に対する圧力の変化が小さい。つまり面押し構造は、パッド14の応答性を低くしている。つまり外乱振動のような大きな振動を小さくしてパッド14内の圧力に取り込んでいる。本明細書の実施例では、点押し構造と面押し構造を使い分けることで、ロードノイズなどの大きな外乱振動をパッド12と14の圧力差においてキャンセルする。この点を以下に説明していく。 As shown in FIG. 4(d), when the wide pressing portion 18 presses the lower surface 14b of the pad 14 (arrow 81), the pressing portion 18 presses the area from the central portion 63 to the peripheral portion 64 of the lower surface 14b. do. The contact area of the pressing portion 18 only has to be larger than the contact area of the pressing portion 16 , and the pressing portion 18 does not have to press up to the peripheral edge portion 64 . For example, the contact area of the pressing portion 18 can be selected within a range from half or more of the area of the lower surface 14b to the area of the entire area of the lower surface 14b. When the pressing portion 18 presses the entire region from the central portion 63 to the peripheral edge portion 64 of the lower surface 12b, as described above, if the pressing portion 18 presses a wide range of the lower surface 12b, the springiness as a whole decreases. Therefore, as indicated by the solid line 75b in FIG. 5, the change in pressure with respect to the amount of vibration is small. That is, the surface pressing structure lowers the responsiveness of the pad 14 . That is, large vibrations such as disturbance vibrations are reduced and taken into the pressure inside the pad 14 . In the embodiment of the present specification, by selectively using the point pressing structure and the surface pressing structure, large disturbance vibration such as road noise is canceled by the pressure difference between the pads 12 and 14 . This point will be explained below.
[点押しから面押しに変化する押部]
 図6(a)および図6(b)は、実施例1におけるモジュールの断面図である。
[Pressing part that changes from point pressing to surface pressing]
6(a) and 6(b) are sectional views of the module in Example 1. FIG.
[凸状の押部と柔軟パッド]
 図6(a)および図6(b)に示すように、押部16は下に行くほど上面12aに平行な断面積が小さくなる立体形状である。押部16は、例えば、ボールを輪切りしたような構造を含み、下面14bは傾斜面または湾曲面を有する凸状形状である。図8(a)および図8(b)における押部16も、力の増加につれて徐々に押部16の当接面積が増大していく。これは、図6(a)および図6(b)に示すようにパッド12の柔軟性から押部16がパッド12に入り込む機構である。しかし押部16側に柔軟性を持たせ、押部16自体が変形して面接触に変形してもよい。例えば押部16を風船のような袋状部材とし平らな面に置いて、押部16を上から押したような構造でもよい。
[Convex pressing part and flexible pad]
As shown in FIGS. 6A and 6B, the pressing portion 16 has a three-dimensional shape in which the cross-sectional area parallel to the upper surface 12a decreases toward the bottom. The pressing portion 16 includes, for example, a structure like a sliced ball, and the lower surface 14b has a convex shape with an inclined surface or a curved surface. As for the pressing portion 16 in FIGS. 8A and 8B, the contact area of the pressing portion 16 gradually increases as the force increases. This is a mechanism in which the pressing portion 16 enters the pad 12 due to the flexibility of the pad 12, as shown in FIGS. 6(a) and 6(b). However, the pressing portion 16 side may be made flexible, and the pressing portion 16 itself may be deformed into surface contact. For example, the pressing part 16 may be a bag-shaped member such as a balloon, placed on a flat surface, and pressed from above.
 また、図10、図13(a)、図13(b)および図14の押部16aは、力が大きくなると、ある力でデジタル的に、押部16の当接面積が小さい面積から大きな面積へ変化する。これも、点押しから面押しへ変化する構造である。一方、押部18は、当接面の幅が広く、柱形状である。押部18の当接面積は大きく、面押し構造に相当する。 10, 13(a), 13(b) and 14 digitally changes the contact area of the pressing portion 16 from a small area to a large area at a certain force as the force increases. change to This is also a structure that changes from point pressing to surface pressing. On the other hand, the pressing portion 18 has a wide contact surface and a columnar shape. The contact area of the pressing portion 18 is large and corresponds to a surface pressing structure.
 図6(a)に示すように、上面12aおよび下面14bを押す振動量が小さいとき、例えば、Sケースの場合、ドライバーの臀部が上に位置するため、押部16が上面12aの中央部63を主に押す。このため、図5の破線75aのように、振動量が小さい範囲61では、中心65の方が振動しやすいことから、空間11の圧力の変化が大きくなる。一方、押部18は面押し構造のため、パッド14にはバイタル振動および他のノイズは伝わりづらい。このため、差圧センサ20で圧力差を検出すれば、バイタル振動が検出できる。 As shown in FIG. 6(a), when the amount of vibration that presses the upper surface 12a and the lower surface 14b is small, for example, in the case of the S case, the driver's buttocks are positioned upward, so that the pressing portion 16 is positioned at the central portion 63 of the upper surface 12a. mainly. Therefore, as indicated by the dashed line 75a in FIG. 5, in the range 61 where the amount of vibration is small, the center 65 vibrates more easily, so the change in pressure in the space 11 increases. On the other hand, since the pressing portion 18 has a surface-pressing structure, vital vibrations and other noises are less likely to be transmitted to the pad 14 . Therefore, vital vibration can be detected by detecting the pressure difference with the differential pressure sensor 20 .
 上面12aおよび下面14bを押す振動量が大きいとき、例えば、Nケースの場合、図6(b)に示すように、押部16は上面12aの中央部63から周縁部64にかけての領域を主に押す。これにより、押部16は、点押し構造から面押し構造へアナログ的(連続的)に変化している。このため、図5の破線75aのように、振動量が大きい範囲62では、パッド12と14ともに面押し構造となり、パッド12と14に振動が伝わりにくくなる。このため、パッド12および14内の空間11および13の圧力の変化は抑えられる。これにより、空間11および13の圧力の変化は、同程度、または互いに近づく。つまりその振動が外乱振動であれば、二つのパッド12および14には、同程度の外乱振動が加わり、その差をとれば、外乱振動はキャンセルできる。また完全にキャンセルできなくても、ある程度キャンセルができるので、外乱振動による差圧センサ20の出力信号を小さくできる。つまり外乱振動が原因によるプリアンプの飽和が抑制でき、外乱振動に重畳するバイタル振動を検出できる。 When the amount of vibration that presses the upper surface 12a and the lower surface 14b is large, for example, in the case of N case, as shown in FIG. push. As a result, the pressing portion 16 changes analogously (continuously) from the point pressing structure to the surface pressing structure. Therefore, as indicated by the dashed line 75a in FIG. 5, in the range 62 where the amount of vibration is large, both the pads 12 and 14 have a surface pressing structure, and the vibration is less likely to be transmitted to the pads 12 and 14. FIG. Therefore, pressure changes in the spaces 11 and 13 within the pads 12 and 14 are suppressed. This causes the pressure changes in spaces 11 and 13 to be similar or close to each other. In other words, if the vibration is disturbance vibration, the two pads 12 and 14 are subjected to disturbance vibration of the same degree, and the disturbance vibration can be canceled by taking the difference. Even if it cannot be canceled completely, it can be canceled to some extent, so that the output signal of the differential pressure sensor 20 due to the disturbance vibration can be reduced. That is, saturation of the preamplifier due to disturbance vibration can be suppressed, and vital vibration superimposed on disturbance vibration can be detected.
 このように、押部16は、パッド12および14の積層方向(Z方向)からみて上面12aの中央部63に位置する。-Z方向(上面12aに向かう方向)に加わる力が小さいとき、図6(a)のように、押部16が上面12aに接する面積が小さい。力が大きくなると、図6(b)のように押部16が上面12aに接する面積が大きくなる。その後力が小さくなると、図6(a)に戻り、押部16は上面12aに接する面積が小さくなる。一方、押部18は、面押し構造であり、パッド14の下面14bの少なくとも中央部に接し、力の大きさが変わっても押部18と下面14bとが接する面積はほとんど変わらない。すなわち、パッド12の上面12aと押部16の下面(第5面)と、の距離は、周縁部から中央部に向かうに従い近くなる。上面12aと押部16の下面との間は振動が伝達可能である。 Thus, the pressing portion 16 is positioned at the central portion 63 of the upper surface 12a when viewed from the stacking direction (Z direction) of the pads 12 and 14. As shown in FIG. When the force applied in the −Z direction (the direction toward the upper surface 12a) is small, the area of the pressing portion 16 in contact with the upper surface 12a is small as shown in FIG. 6(a). As the force increases, the contact area of the pressing portion 16 with the upper surface 12a increases as shown in FIG. 6(b). After that, when the force becomes smaller, it returns to FIG. 6A, and the area of the pressing portion 16 in contact with the upper surface 12a becomes smaller. On the other hand, the pressing portion 18 has a surface pressing structure and contacts at least the central portion of the lower surface 14b of the pad 14, and even if the magnitude of the force changes, the contact area between the pressing portion 18 and the lower surface 14b hardly changes. That is, the distance between the upper surface 12a of the pad 12 and the lower surface (fifth surface) of the pressing portion 16 decreases from the peripheral portion toward the central portion. Vibration can be transmitted between the upper surface 12 a and the lower surface of the pressing portion 16 .
 パッド12の上面12aに対向する押部16の面16dは中央部が周縁部64よりパッド12の方に突出する。よって、押部16から上面12aに力が加わらないまたは力が小さいとき(点押し構造のとき)に押部16が上面12aに接する面積は、パッド12の平面面積の1/4以下が好ましく、1/16以下がより好ましい。 The central portion of the surface 16d of the pressing portion 16 facing the upper surface 12a of the pad 12 protrudes toward the pad 12 from the peripheral edge portion 64. As shown in FIG. Therefore, when no force is applied from the pressing portion 16 to the upper surface 12a or when the force is small (in the point pressing structure), the area of the pressing portion 16 in contact with the upper surface 12a is preferably 1/4 or less of the planar area of the pad 12. 1/16 or less is more preferable.
[セパレータ:パッド12と14の相互干渉防止]
 次にセパレータについて説明する。図7(a)から図7(c)は、実施例1におけるモジュールの断面図である。上の押部16の幅が狭く、下の押部18の幅が大きい場合について説明する。押部16の当接面積は小さく点押し構造であり、押部18の当接面積は大きく面押し構造である。図7(a)は、パッド12の下面12bとパッド14の上面14aが接触している。二つのパッド12および14が接触していると、矢印82のように、パッド12と14の振動が互いに干渉する。なお、この構造であると、図7(b)よりも、検出精度がやや落ちるものの、バイタル振動の検出は可能である。
[Separator: Prevention of mutual interference between pads 12 and 14]
Next, the separator will be explained. 7A to 7C are sectional views of the module in Example 1. FIG. A case where the width of the upper pressing portion 16 is narrow and the width of the lower pressing portion 18 is large will be described. The pressing portion 16 has a small contact area and has a point pressing structure, and the pressing portion 18 has a large contact area and has a surface pressing structure. In FIG. 7A, the lower surface 12b of the pad 12 and the upper surface 14a of the pad 14 are in contact. When two pads 12 and 14 are in contact, the vibrations of pads 12 and 14 interfere with each other, arrow 82 . With this structure, the detection accuracy is slightly lower than that of FIG. 7B, but it is possible to detect vital vibrations.
 他方、図7(b)は、セパレータ50により二つのパッド12および14が離間している状態を示している。セパレータ50は、パッド12の下面12bとパッド14の上面14aとの間に位置し、その周縁部に設けられる。また、セパレータ50は、下面12bおよび上面14aに接して設けられている。パッド12および14の周縁部は板バネ性が低いため、セパレータ50を介してパッド12および14に相互に振動が伝わりにくい。また、パッド12と14はお互いに面押ししているとも言え、パッド12と14の間に振動の伝搬を抑制している。さらに、パッド12の下面12bとパッド14の上面14aとは接触しておらず、離間している。これにより、パッド12と14の振動の干渉をさらに抑制できる。よって、図7(a)の構造に比べると、バイタル信号の検出精度が向上する。なお、セパレータ50は、下面12bおよび上面14aの周縁部にリング状に設けられていてもよいし、下面12bおよび上面14aの4つの角部に独立して設けられていてもよい。なお、下面12bと上面14aの大きさが異なる場合、セパレータ50は、下面12bおよび上面14aの少なくとも一方の面の周縁部に設けられていればよい。このセパレータの技術思想は、全実施例に適用される。 On the other hand, FIG. 7(b) shows a state in which the two pads 12 and 14 are separated by the separator 50. FIG. The separator 50 is positioned between the lower surface 12b of the pad 12 and the upper surface 14a of the pad 14 and provided on the peripheral edge thereof. Moreover, the separator 50 is provided in contact with the lower surface 12b and the upper surface 14a. Since the peripheral portions of the pads 12 and 14 have a low leaf spring property, the vibrations are less likely to be transmitted to the pads 12 and 14 through the separator 50 . Moreover, it can be said that the pads 12 and 14 are pressed against each other, and the propagation of vibration between the pads 12 and 14 is suppressed. Furthermore, the lower surface 12b of the pad 12 and the upper surface 14a of the pad 14 are not in contact with each other and are separated from each other. Thereby, the interference of the vibrations of the pads 12 and 14 can be further suppressed. Therefore, compared with the structure of FIG. 7A, the detection accuracy of vital signals is improved. The separators 50 may be provided in a ring shape on the peripheral edges of the lower surface 12b and the upper surface 14a, or may be independently provided at four corners of the lower surface 12b and the upper surface 14a. If the lower surface 12b and the upper surface 14a have different sizes, the separator 50 may be provided on the peripheral edge of at least one of the lower surface 12b and the upper surface 14a. This technical idea of the separator is applied to all the embodiments.
[筐体:内蔵部品の破壊防止と側面からのノイズ侵入防止]
 図7(c)に示すように、筐体52は、内壁でパッド12および14を囲っている。筐体52は、上板52a、下板52bおよび側板52cを有している。パッド12および14の平面形状により、筐体52の形状も変化する。例えば、パッド12および14の平面形状が円形状であれば筐体52の形状は円柱状であり、パッド12および14の平面形状は多角形状であれば筐体52の形状は角柱状である。上板52aの下面は押部16に接する。下板52bの上面は押部18に接する。上板52aおよび下板52bは、平板状である。
[Case: Prevention of destruction of built-in parts and prevention of noise intrusion from the side]
As shown in FIG. 7(c), the housing 52 surrounds the pads 12 and 14 with inner walls. The housing 52 has an upper plate 52a, a lower plate 52b and side plates 52c. The planar shape of the pads 12 and 14 also changes the shape of the housing 52 . For example, if the planar shapes of the pads 12 and 14 are circular, the housing 52 has a cylindrical shape, and if the planar shapes of the pads 12 and 14 are polygonal, the housing 52 has a prismatic shape. The lower surface of the upper plate 52 a contacts the pressing portion 16 . The upper surface of the lower plate 52b contacts the pressing portion 18. As shown in FIG. The upper plate 52a and the lower plate 52b are flat plates.
 側板52cは、上板52aの周囲と下板52bの周囲とを接続して箱を形成している。この筐体52は、パッド12および14を囲み、パッド12および14の側面または外周から離れて設けられている。側板52cとパッド12および14との間は空気等からなる空隙53である。側板52cは、パッド12および14を囲むリング状の板でもよいし、複数のZ方向に延伸する板で連結されていてもよい。例えば筐体52が6面体であれば、側板52cは4枚の板である。また図1に示すチューブ26および27が、側板52cに設けられた孔を通じて外部に引き出されている。なお、筐体52内は空気で充填される例を説明したが、筐体52内は流体でよい、つまり空気以外のガスや液体でもよい。 The side plate 52c forms a box by connecting the periphery of the upper plate 52a and the periphery of the lower plate 52b. The housing 52 surrounds the pads 12 and 14 and is provided away from the sides or perimeters of the pads 12 and 14 . Between the side plate 52c and the pads 12 and 14 is a gap 53 made of air or the like. The side plate 52c may be a ring-shaped plate surrounding the pads 12 and 14, or may be connected by a plurality of plates extending in the Z direction. For example, if the housing 52 is a hexahedron, the side plates 52c are four plates. Also, the tubes 26 and 27 shown in FIG. 1 are pulled out to the outside through holes provided in the side plate 52c. Although an example in which the inside of the housing 52 is filled with air has been described, the inside of the housing 52 may be filled with fluid, that is, gas or liquid other than air.
 このように、筐体52は、パッド12および14を囲み、押部16と18とを接続する。この構造で、モジュール10に人体の体重が過度に加わってもパッド12および14等は破壊されない。さらに、側板52cの外から伝わる振動は、パッド12および14の周囲が内壁に触れていないので、側板52cからパッド12および14への振動侵入も抑制できる。筐体52の側面は、お互いが面押し構造に近いため、外からの大きなノイズ振動が伝搬しにくいためと考える。またSケースでは、押部16はバイタル振動を大きな振動でパッド12に伝え、側板52cを介してバイタル振動が下板52bに伝わる。下板52bにはこのバイタル振動と、他の小さなノイズが侵入する。しかし押部18が面押しであり、パッド14への振動の伝搬を抑制している。よってパッド12とパッド14の圧力差が生じ、差圧センサ20によりバイタル振動を検出できる。Nケースの場合では、上板52aと下板52bに外乱振動が伝わる。しかし、差圧センサ20がパッド12とパッド14の圧力差を検出する。このため、外乱振動は差圧センサ20に検出されにくく、出力信号のプリアンプによる飽和を抑制しながらバイタル振動の検出が可能となる。 Thus, the housing 52 surrounds the pads 12 and 14 and connects the pressing portions 16 and 18. With this construction, the pads 12, 14, etc. will not break even if the module 10 is subjected to excessive body weight. Further, since the periphery of the pads 12 and 14 does not touch the inner wall, the vibration transmitted from the outside of the side plate 52c can be suppressed from entering the pads 12 and 14 from the side plate 52c. It is considered that the side faces of the housing 52 are close to each other in a pressing structure, so that large noise vibrations from the outside are difficult to propagate. In the S case, the pressing portion 16 transmits vital vibrations to the pad 12 with a large vibration, and the vital vibrations are transmitted to the lower plate 52b via the side plate 52c. This vital vibration and other small noises enter the lower plate 52b. However, the pressing portion 18 is a surface pressing, which suppresses the propagation of vibration to the pad 14 . Therefore, a pressure difference is generated between the pads 12 and 14, and the differential pressure sensor 20 can detect vital vibration. In case N, disturbance vibration is transmitted to the upper plate 52a and the lower plate 52b. However, differential pressure sensor 20 detects the pressure difference between pads 12 and 14 . Therefore, disturbance vibration is less likely to be detected by the differential pressure sensor 20, and vital vibration can be detected while suppressing saturation of the output signal by the preamplifier.
 筐体52は、パッド12および14より硬い材料からなり、例えばアクリルなどの硬質樹脂または金属を主材料とする。上板52aを除いて、下板52bおよび側板52cは、一体に成形されていてもよい。上板52aは、パッキンのついた蓋でもよい。また上板52a、下板52bおよび側板52cは、別々の部材であり、接合剤等により接合されていてもよい。上板52aと押部16は、一体に形成されていてもよいし、別々の部材であり接合剤等により接合されていてもよい。下板52bと押部18は、一体に形成されていてもよいし、別々の部材であり接合剤等により接合されていてもよい。押部16および18が第1押部および第2押部にそれぞれ対応し、筐体52が支持部材に対応してもよい。押部16と上板52aが第1押部に対応し、押部18と下板52bが第2押部に対応し、側板52cが支持部材に対応してもよい。ここでは、セパレータ50と筐体52について説明したが、このセパレータ50または筐体52の技術思想は、全ての実施例に採用可能である。 The housing 52 is made of a harder material than the pads 12 and 14, and is mainly made of hard resin such as acrylic or metal. Except for the upper plate 52a, the lower plate 52b and the side plates 52c may be integrally molded. The top plate 52a may be a lid with a packing. The upper plate 52a, the lower plate 52b, and the side plate 52c may be separate members, and may be joined with a jointing agent or the like. The upper plate 52a and the pressing portion 16 may be integrally formed, or may be separate members that are joined by a bonding agent or the like. The lower plate 52b and the pressing portion 18 may be integrally formed, or may be separate members that are joined by a jointing agent or the like. The pressing portions 16 and 18 may correspond to the first pressing portion and the second pressing portion, respectively, and the housing 52 may correspond to the support member. The pressing portion 16 and the upper plate 52a may correspond to the first pressing portion, the pressing portion 18 and the lower plate 52b may correspond to the second pressing portion, and the side plate 52c may correspond to the supporting member. Although the separator 50 and the housing 52 have been described here, the technical concept of the separator 50 or the housing 52 can be applied to all embodiments.
[軸芯部材54と板状部材55]
 図8(a)から図9(b)は、実施例1における別の例を示す図である。図8(a)に示すように、板状部材55は、上板52aに対しパッド12と反対の側に設けられ、上板52aから離れて設けられている。軸芯部材54は、板状部材55の中央部と上板52aの中央部を接続する。軸芯部材54を平面方向でカットした面積(以下平面面積)は板状部材55の平面面積より小さい。板状部材55には、人体60の荷重が加わる。板状部材55と人体60との間にはクッション材が設けられていてもよい。軸芯部材54は人体60の振動を上板52aの中央部に伝達する。人体60のバイタル振動源は小さい範囲である。人体60の着座位置がX方向およびY方向にずれても、バイタル振動源からのバイタル振動は板状部材55から軸芯部材54を介し上板52aに伝達する。これは、上皿はかりの動作原理と類似である。例えば、測定物が上皿の中心からずれても、重さは変わらない。
[Axis core member 54 and plate member 55]
FIGS. 8(a) to 9(b) are diagrams showing another example of the first embodiment. As shown in FIG. 8A, the plate-like member 55 is provided on the side of the top plate 52a opposite to the pad 12 and is spaced apart from the top plate 52a. The shaft core member 54 connects the central portion of the plate member 55 and the central portion of the upper plate 52a. The area obtained by cutting the axial core member 54 in the plane direction (hereinafter referred to as plane area) is smaller than the plane area of the plate member 55 . A load of the human body 60 is applied to the plate member 55 . A cushion material may be provided between the plate member 55 and the human body 60 . The shaft core member 54 transmits the vibration of the human body 60 to the central portion of the upper plate 52a. The sources of vital vibrations of the human body 60 are small areas. Even if the seating position of the human body 60 deviates in the X and Y directions, the vital vibration from the vital vibration source is transmitted from the plate-like member 55 to the upper plate 52a via the shaft core member . This is analogous to the principle of operation of a top plate scale. For example, even if the object to be measured deviates from the center of the upper plate, the weight does not change.
 軸芯は、読んで字の如く、中心に位置する軸を意味し、ここでは、上皿となる板状部材55のほぼ中心に配置された軸のことを言う。人体の臀部の位置または血管の位置が板状部材55の中心からずれた場合にあっても、バイタル振動は板状部材55を伝搬し軸芯部材54を介して振動板である上板52aの中央部に伝搬する。よって、バイタル振動源が板状部材55の中心から多少ずれた場合にも、バイタル振動はパッド12へと伝わる。 The axis, as the name suggests, means the axis located in the center, and here, it refers to the axis that is arranged approximately in the center of the plate-like member 55 that serves as the upper plate. Even if the position of the buttocks of the human body or the position of the blood vessel deviates from the center of the plate-like member 55, the vital vibration propagates through the plate-like member 55 and passes through the shaft core member 54 to the upper plate 52a, which is a diaphragm. Propagate to the central part. Therefore, even if the vital vibration source is slightly displaced from the center of the plate member 55 , the vital vibration is transmitted to the pad 12 .
 上板52aの中央部は板バネ性が高いため、振動は押部16からパッド12に伝達される。人体60の着座位置がずれてもバイタル信号をパッド12に伝えるためには、軸芯部材54の平面面積は板状部材55の平面形状の1/4以下が好ましく、1/10以下がより好ましい。板状部材55、軸芯部材54および上板52aは一体に形成されていてもよいし、別々の部材であり、接着剤等により接合されていてもよい。  Since the central part of the upper plate 52a has a high leaf spring property, the vibration is transmitted from the pressing part 16 to the pad 12. In order to transmit vital signals to the pad 12 even if the seating position of the human body 60 is shifted, the planar area of the axial core member 54 is preferably 1/4 or less, more preferably 1/10 or less, of the planar shape of the plate member 55. . The plate-like member 55, the shaft core member 54 and the upper plate 52a may be integrally formed, or may be separate members joined by an adhesive or the like.
[凸状の押部16]
 パッド12の上面12aは平坦面であり、パッド12の上面12aに対向する押部16の下に向かった面16dは中央部が周縁部より下に突出するように湾曲している。パッド12に振動が加わらないとき、押部16が上面12aに接する面積が小さい。振動が大きくなると押部16が、パッド12に入り込み、上面12aに接する面積が大きくなる。その後振動が小さくなると、元に戻り、押部16が上面12aに接する面積が小さくなる。
[Convex pressing part 16]
The upper surface 12a of the pad 12 is a flat surface, and the downward surface 16d of the pressing portion 16 facing the upper surface 12a of the pad 12 is curved so that the central portion protrudes below the peripheral portion. When the pad 12 is not subjected to vibration, the pressing portion 16 has a small contact area with the upper surface 12a. As the vibration increases, the pressing portion 16 enters the pad 12 and the area in contact with the upper surface 12a increases. After that, when the vibration becomes smaller, it returns to the original state, and the area of the pressing portion 16 in contact with the upper surface 12a becomes smaller.
 外乱振動のないSケースの場合、軸芯部材54を介して押部16に伝わったバイタル振動は、押部16がパッド12の面を、点押し構造で押すことになる。その結果、パッド12の上面12aの中央部は上下に大きく振動する。一方、下板52bは、押部18が面押し構造のため、パッド14への振動伝搬が抑制される。さらに、差圧センサ20はパッド12とパッド14の圧力差を検出するため、バイタル振動を検出することができる。 In the case of the S case without external vibration, the vital vibration transmitted to the pressing portion 16 via the shaft core member 54 causes the pressing portion 16 to press the surface of the pad 12 with a point pressing structure. As a result, the central portion of the upper surface 12a of the pad 12 vibrates greatly in the vertical direction. On the other hand, since the pressing portion 18 of the lower plate 52b has a surface pressing structure, vibration propagation to the pad 14 is suppressed. Furthermore, since the differential pressure sensor 20 detects the pressure difference between the pads 12 and 14, it can detect vital vibrations.
 一方、Nケースの場合、外乱振動のような大きな振動は下板52bから侵入する。筐体52の側板52cは、やや外側に凸に変形して、上板52aが押部16を押し、押部16は、パッド12に沈む。これにより押部16は面押し構造に変化する。なお、外乱振動は、板状部材55にも回り込むため、押部16をより扁平させる。またパッド14は、最初から押部18が面押し構造である。よって外乱振動のような大きな力は、パッド12および14に伝わる。差圧センサ20がパッド12と14の圧力差を検出することにより、パッド12と14に伝わった振動をある程度キャンセルできる。よって外乱振動による差圧センサ20の出力信号は小さくなり。プリアンプの飽和を抑制できる。よって、外乱振動に重畳されたバイタル振動の検出精度を向上できる。 On the other hand, in the case of N case, large vibration such as disturbance vibration enters from the lower plate 52b. The side plate 52 c of the housing 52 deforms slightly outward, the upper plate 52 a pushes the pressing portion 16 , and the pressing portion 16 sinks into the pad 12 . As a result, the pressing portion 16 changes to a surface pressing structure. Since the disturbance vibration also wraps around the plate member 55, the pressing portion 16 is made flatter. Further, the pad 14 has a pressing portion 18 having a surface pressing structure from the beginning. Therefore, large forces such as disturbance vibrations are transmitted to pads 12 and 14 . By detecting the pressure difference between the pads 12 and 14 with the differential pressure sensor 20, the vibration transmitted to the pads 12 and 14 can be canceled to some extent. Therefore, the output signal of the differential pressure sensor 20 becomes smaller due to the disturbance vibration. Saturation of the preamplifier can be suppressed. Therefore, it is possible to improve the detection accuracy of the vital vibration superimposed on the disturbance vibration.
 図8(b)に示すように、パッド12と14との間の周縁部にセパレータ50が設けられている。セパレータ50を設けることで、パッド12と14との振動の干渉を抑制、さらに検出精度を向上できる。その他の構成は図8(a)と同じであり説明を省略する。なお、図8(a)および図8(b)において、押部16が下板52b上に、押部18が上板52aに当接されていてもよい。要するに、押部16、18、パッド12、14およびセパレータ50の構成は、上下逆でもよい。 As shown in FIG. 8(b), a separator 50 is provided on the peripheral portion between the pads 12 and 14. As shown in FIG. By providing the separator 50, vibration interference between the pads 12 and 14 can be suppressed, and detection accuracy can be improved. Other configurations are the same as those in FIG. 8A, and descriptions thereof are omitted. 8A and 8B, the pressing portion 16 may be in contact with the lower plate 52b, and the pressing portion 18 may be in contact with the upper plate 52a. In short, the configurations of the pressing portions 16, 18, the pads 12, 14, and the separator 50 may be upside down.
 図9(a)および図9(b)では、パッド14および12はそれぞれ第1部材および第2部材に対応する。パッド14の下面14bおよび上面14aはそれぞれ互いに対向する第1面および第2面に対応する。パッド12の下面12bおよび上面12aはそれぞれ互いに対向する第3面および第4面に対応する。下板52bは第1押部に対応する。押部16および上板52aは第2押部に対応する。  In Figures 9(a) and 9(b), the pads 14 and 12 correspond to the first member and the second member, respectively. The lower surface 14b and the upper surface 14a of the pad 14 respectively correspond to the first and second surfaces facing each other. Lower surface 12b and upper surface 12a of pad 12 correspond to third and fourth surfaces facing each other, respectively. The lower plate 52b corresponds to the first pressing portion. The pressing portion 16 and the upper plate 52a correspond to the second pressing portion.
[湾曲パッド14]
 図9(a)に示すように、押部16は幅が広くパッド12の上面12aの中央部から周縁部にかけて設けられている。つまり押部16は面押し構造となる。パッド14の下面14bは中央部が周縁部より下板52bの方に突出する。つまり押部18は点押し構造となる。このように、下板52bの内側の面は平坦面であり、パッド14の下面14bが突出している。この構造により、パッド12側は、面押し構造で、パッド14は、点押し構造となる。図6(a)および図6(b)では、押部16が点押しから面押しに変わったが、図9(a)では、パッド14の中央部が下板52bに接触しており、点押しから面押し構造に変わる。
[Curved pad 14]
As shown in FIG. 9(a), the pressing portion 16 is wide and provided from the central portion to the peripheral portion of the upper surface 12a of the pad 12. As shown in FIG. That is, the pressing portion 16 has a surface pressing structure. The central portion of the lower surface 14b of the pad 14 protrudes toward the lower plate 52b from the peripheral portion. That is, the pressing portion 18 has a point pressing structure. Thus, the inner surface of the lower plate 52b is flat, and the lower surface 14b of the pad 14 protrudes. With this structure, the pad 12 side has a surface pressing structure, and the pad 14 has a point pressing structure. 6(a) and 6(b), the pressing part 16 is changed from point pressing to surface pressing, but in FIG. Change from push to face push structure.
 よって、Sケースのような外乱振動が加わらない状況では、バイタル振動は、板状部材55、軸芯部材54、上板52a、押部16、パッド12の周縁(側壁)部、を介してパッド14に伝わる。下板52bが点押し構造であるため、バイタル振動のような小さな振動でも振動はパッド14側へ伝わる。(図9(b)ではセパレータも媒介する)
よって下のパッド14は、大きく振動し、上のパッド12はその振動を抑制される。結局、パッド12と14の圧力差を検出すると、バイタル振動が検出できる。
Therefore, in a situation such as the S case where external vibration is not applied, vital vibration is transmitted through the plate-like member 55, the shaft core member 54, the upper plate 52a, the pressing portion 16, and the peripheral edge (side wall) portion of the pad 12. 14 is transmitted. Since the lower plate 52b has a point pressing structure, even a small vibration such as a vital vibration is transmitted to the pad 14 side. (The separator is also mediated in FIG. 9(b))
Therefore, the lower pad 14 vibrates greatly, and the upper pad 12 is suppressed from vibrating. After all, detecting the pressure difference between the pads 12 and 14 allows detection of vital vibrations.
 一方、Nケースの場合で、外乱振動のような大きな振動が加わると、下板52bとパッド14とは面押し構造となり、さらに上板52a、押部16およびパッド12は面押し構造となる。その結果、外乱振動のパッド12および14への伝搬が抑制される。さらに、差圧センサ20によりパッド12および14の圧力差を検出すると、外乱振動による出力信号は小さくなり、バイタル振動の検出精度を向上させることができる。 On the other hand, in the case of the N case, when large vibration such as external vibration is applied, the lower plate 52b and the pad 14 have a surface pressing structure, and the upper plate 52a, the pressing portion 16 and the pad 12 have a surface pressing structure. As a result, propagation of disturbance vibration to pads 12 and 14 is suppressed. Furthermore, when the pressure difference between the pads 12 and 14 is detected by the differential pressure sensor 20, the output signal due to disturbance vibration is reduced, and the detection accuracy of vital vibration can be improved.
 図9(b)に示すように、パッド12と14との間の周縁部にセパレータ50が設けられている。セパレータ50を設けることで、パッド12と14との振動の干渉を抑制できる。セパレータ50の原理および効果は、前述のとおりである。その他の構成は図9(a)と同じであり説明を省略する。なお、図9(a)では、パッド12の上面12aが上板52a側に突出し、パッド14の下面14bは平坦であり、パッド14と下板52bとの間に図9(a)の押部16と同様の構造の押部18を設けてもよく、図9(b)のようにセパレータ50を設けてもよい。要するに、押部16、18、パッド12、14及びセパレータ50の構成は、上下逆でもよい。 As shown in FIG. 9(b), a separator 50 is provided on the peripheral portion between the pads 12 and 14. As shown in FIG. By providing the separator 50, vibration interference between the pads 12 and 14 can be suppressed. The principle and effect of separator 50 are as described above. Other configurations are the same as those in FIG. 9A, and descriptions thereof are omitted. 9A, the upper surface 12a of the pad 12 protrudes toward the upper plate 52a, the lower surface 14b of the pad 14 is flat, and the pressing portion shown in FIG. 9A is provided between the pad 14 and the lower plate 52b. A pressing portion 18 having a structure similar to that of 16 may be provided, or a separator 50 may be provided as shown in FIG. 9(b). In short, the configurations of the pressing portions 16, 18, the pads 12, 14, and the separator 50 may be upside down.
 パッド12および14に使用する材料の弾性率は、2MPa~5000MPaの材料が好ましい。例えば、パッド12および14の材料は、ポリエチレン樹脂(弾性率:1080MPa)である。押部16、18、セパレータ50、筐体52、軸芯部材54および板状部材56に使用する材料の弾性率はパッド12および14に使用する材料の弾性率より大きいことが好ましいく、例えば2MPa~10000MPaが好ましい。以下の実施例においても同じである。例えば、押部16、18、セパレータ50、筐体52、軸芯部材54および板状部材56の材質は、アクリル樹脂(3000MPa)である。 The elastic modulus of the material used for the pads 12 and 14 is preferably 2 MPa to 5000 MPa. For example, the material of pads 12 and 14 is polyethylene resin (modulus of elasticity: 1080 MPa). The elastic modulus of the material used for the pressing portions 16, 18, the separator 50, the housing 52, the shaft core member 54 and the plate-like member 56 is preferably larger than the elastic modulus of the material used for the pads 12 and 14, for example 2 MPa. ~10000 MPa is preferred. The same applies to the following examples. For example, the material of the pressing portions 16 and 18, the separator 50, the housing 52, the shaft core member 54 and the plate member 56 is acrylic resin (3000 MPa).
[押部16aおよび16bを有する構造]
 図10は、実施例2に係るモジュールの断面図である。図11(a)から図11(d)は、実施例2に係るモジュールの平面図である。図11(a)は、板状部材55と軸芯部材54を図示している。図11(b)は、パッド12、押部16a、16bおよび側板52cを図示している。図11(c)は、パッド12、14、セパレータ50および側板52cを図示している。図11(d)は、パッド14、押部18および下板52bを図示している。実施例2では、パッド12および14はそれぞれ第1部材および第2部材に対応する。パッド12の上面12aおよび下面12bはそれぞれ互いに対向する第1面および第2面に対応する。パッド14の上面14aおよび下面14bはそれぞれ互いに対向する第3面および第4面に対応する。上板52aは第3部材に対応する。押部16aおよび16bはそれぞれ第1押部および第2押部に対応する。押部18と下板52bは第3押部に対応する。側板52cは支持部材に対応する。
[Structure having pressing portions 16a and 16b]
FIG. 10 is a cross-sectional view of a module according to Example 2. FIG. 11(a) to 11(d) are plan views of a module according to Example 2. FIG. FIG. 11(a) illustrates the plate member 55 and the shaft member 54. FIG. FIG. 11(b) illustrates the pad 12, the pressing portions 16a and 16b, and the side plate 52c. FIG. 11(c) illustrates pads 12, 14, separator 50 and side plate 52c. FIG. 11(d) illustrates the pad 14, the pressing portion 18 and the lower plate 52b. In Example 2, pads 12 and 14 correspond to the first and second members, respectively. The upper surface 12a and the lower surface 12b of the pad 12 respectively correspond to the first and second surfaces facing each other. Upper surface 14a and lower surface 14b of pad 14 correspond to third and fourth surfaces facing each other, respectively. The upper plate 52a corresponds to the third member. The pressing portions 16a and 16b correspond to the first pressing portion and the second pressing portion, respectively. The pressing portion 18 and the lower plate 52b correspond to the third pressing portion. The side plate 52c corresponds to the support member.
 図10から図11(d)に示すように、上板52aとパッド12の間に二つの押部16aおよび16bが設けられている。押部16aはパッド12の上面12aの中央部に位置する。押部16aは上板52aに接し、固定されている。押部16aからパッド12の方向に力が加わらないまたは力が小さいとき(Sケースのとき)には、押部16aと上面12aとは接していない。Nケースのように力が大きくなると、ある時点で押部16aは、押部16bとともに上面12aに接する。力が小さくなると、押部16aと上面12aとは離れ、元に戻る。押部16bは、上面12aと上板52aとの間で、の上面12aの周縁部に位置し、力の大きさによらず上面12aおよび上板52aに常に接する。押部16bはパッド12の4隅に設けられている。押部16bは、上面12aの周縁部に設けられていれば、リング状でもよいし、上面12aの一対の対向する辺に設けられていてもよい。セパレータ50は、パッド12の下面12bおよびパッド14の上面12aの4隅に設けられている。セパレータ50は、下面12bおよび上面14aの周縁部に設けられていれば、リング状でもよいし、上面12aの対向する2辺に沿って設けられていてもよい。その他の構成は実施例1の図8(b)と同じであり説明を省略する。 As shown in FIGS. 10 to 11(d), two pressing portions 16a and 16b are provided between the upper plate 52a and the pad 12. As shown in FIGS. The pressing portion 16a is located in the central portion of the upper surface 12a of the pad 12. As shown in FIG. The pressing portion 16a is in contact with and fixed to the upper plate 52a. When no force is applied from the pressing portion 16a to the pad 12 or when the force is small (in case S), the pressing portion 16a and the upper surface 12a are not in contact with each other. When the force increases as in case N, the pressing portion 16a and the pressing portion 16b come into contact with the upper surface 12a at a certain point. When the force is reduced, the pressing portion 16a and the upper surface 12a are separated and returned to their original state. The pressing portion 16b is located between the upper surface 12a and the upper plate 52a, at the peripheral portion of the upper surface 12a, and is always in contact with the upper surface 12a and the upper plate 52a regardless of the magnitude of the force. The pressing portions 16 b are provided at the four corners of the pad 12 . As long as the pressing portion 16b is provided on the peripheral portion of the upper surface 12a, the pressing portion 16b may be ring-shaped, or may be provided on a pair of opposing sides of the upper surface 12a. The separators 50 are provided at four corners of the lower surface 12b of the pad 12 and the upper surface 12a of the pad 14. As shown in FIG. As long as the separator 50 is provided on the periphery of the lower surface 12b and the upper surface 14a, the separator 50 may be ring-shaped, or may be provided along two opposite sides of the upper surface 12a. Other configurations are the same as those in FIG.
 実施例2のモジュールの動作について説明する。まず、Sケースの場合であり、モジュール10に外乱振動が加わらず、モジュール10に人体60からバイタル振動が加わる場合について説明する。セパレータ50を固定端と考えると、バイタル振動は、板状部材55、軸芯部材54および上板52aに伝達する。軸芯部材54が上板52aの中央部に当接している。軸芯部材54は点押し構造を構成し、バイタル振動は上板52aに伝わる。そして押部16bはパッド12の上面12aの周縁部に設けられている。このため、押部16bは面押し構造である。よって、パッド12の振動が抑えられて、上板52aから押部16bに伝達する振動はパッド12には伝わりにくい。押部16aはパッド12に接していないため、バイタル振動は押部16aを介してもパッド12に伝達され難い。バイタル振動は、上板52aから側板52c、下板52bおよび押部18を介しパッド14に伝達される。パッド14側の押部18の当接面積は、パッド12側の押部16bの当接面積より小さく、パッド12とパッド14とに伝達されるバイタル振動には、差が出てくる。よって差圧センサ20でパッド12と14の圧力差を検出すると、若干小さくはなるがバイタル振動を検出できる。 The operation of the module of Example 2 will be explained. First, the S case, in which the module 10 is not subjected to external vibrations and the module 10 is subjected to vital vibrations from the human body 60, will be described. Considering the separator 50 as a fixed end, the vital vibration is transmitted to the plate-like member 55, the axial core member 54 and the upper plate 52a. The shaft core member 54 is in contact with the central portion of the upper plate 52a. The shaft core member 54 constitutes a point pressing structure, and the vital vibration is transmitted to the upper plate 52a. The pressing portion 16b is provided on the peripheral portion of the upper surface 12a of the pad 12. As shown in FIG. Therefore, the pressing portion 16b has a surface pressing structure. Therefore, the vibration of the pad 12 is suppressed, and the vibration transmitted from the upper plate 52 a to the pressing portion 16 b is less likely to be transmitted to the pad 12 . Since the pressing portion 16a is not in contact with the pad 12, the vital vibration is hardly transmitted to the pad 12 even through the pressing portion 16a. The vital vibration is transmitted from the upper plate 52a to the pad 14 via the side plate 52c, the lower plate 52b and the pressing portion 18. As shown in FIG. The contact area of the pressing portion 18 on the pad 14 side is smaller than the contact area of the pressing portion 16b on the pad 12 side, and the vital vibrations transmitted to the pads 12 and 14 are different. Therefore, when the pressure difference between the pads 12 and 14 is detected by the differential pressure sensor 20, the vital vibration can be detected, although the difference is slightly reduced.
 次に、Nケースの場合では、モジュール10に外乱振動のような外乱振動が加わる場合について説明する。この大きな振動が板状部材55に加わると、板状部材55から伝わった外乱振動により、上板52aが下に凸に変形する。このため、二つの押部16aおよび16bはともに上面12aに接する。なお、押部16bが扁平に変形してもよい。よって、筐体52に伝達された外乱振動は、押部16aおよび16bとパッド12とを面押し構造に変化させる。さらに、下から加わる大きな外乱振動は、面押し構造の押部16aからパッド12に伝達し、押部18からパッド14に伝達する。押部16aと押部16bの当接面積の合計と押部18の当接面積をある程度同じに設定することで、パッド12と14の圧力変化を同程度の大きさにできる。これにより、外乱振動は差圧センサ20によりある程度キャンセルされ差圧センサ20の出力信号を小さくできる。よって、プリアンプの飽和が抑制され、外乱振動に重畳したバイタル振動を検出できる。なお、図10において、図10の押部18と同じ形状の押部16がパッド12と上板52aとの間に設けられ、図10の押部16aと同じ形状の押部が下板52bに当接しパッド14から離間し、図10の押部16bと同じ形状の押部が下板52bとパッド14に当接していてもよい。要するに、押部16a、16b、18、パッド12、14およびセパレータ50の構成を上下逆の配置にしてもよい。 Next, in the case of the N case, the case where external vibration such as external vibration is applied to the module 10 will be described. When this large vibration is applied to the plate-like member 55, the disturbance vibration transmitted from the plate-like member 55 causes the upper plate 52a to be deformed downwardly. Therefore, the two pressing portions 16a and 16b are both in contact with the upper surface 12a. Note that the pressing portion 16b may be deformed flat. Therefore, the external vibration transmitted to the housing 52 causes the pressing portions 16a and 16b and the pad 12 to change into a surface pressing structure. Furthermore, a large external vibration applied from below is transmitted from the pressing portion 16 a of the surface pressing structure to the pad 12 and from the pressing portion 18 to the pad 14 . By setting the sum of the contact areas of the pressing portions 16a and 16b to be the same as the contact area of the pressing portion 18 to some extent, the pressure changes of the pads 12 and 14 can be made approximately the same. As a result, the disturbance vibration is canceled by the differential pressure sensor 20 to some extent, and the output signal of the differential pressure sensor 20 can be reduced. Therefore, the saturation of the preamplifier is suppressed, and the vital vibration superimposed on the disturbance vibration can be detected. 10, a pressing portion 16 having the same shape as the pressing portion 18 in FIG. 10 is provided between the pad 12 and the upper plate 52a, and a pressing portion having the same shape as the pressing portion 16a in FIG. 10 is provided on the lower plate 52b. A pressing portion having the same shape as the pressing portion 16b shown in FIG. In short, the pressing portions 16a, 16b, 18, the pads 12, 14, and the separator 50 may be arranged upside down.
[実験1]
 実施例2のモジュールを用いバイタル振動および外乱振動による空間11および13の圧力の変化を検出した。パッド12および14の材料はポリエチレンである。その他の部材は、アクリル板をカットし作製した。カットした部材に瞬間接着剤を0.1mmの厚みになるように塗布し、その後部材を接合した。
[Experiment 1]
Using the module of Example 2, changes in pressure in spaces 11 and 13 due to vital vibration and disturbance vibration were detected. The material of pads 12 and 14 is polyethylene. Other members were made by cutting an acrylic plate. An instant adhesive was applied to the cut members so as to have a thickness of 0.1 mm, and then the members were joined.
 各部材の寸法は以下である。
板状部材55:X×Y×Z=55mm×55mm×2mm
軸芯部材54:X×Y×Z=15mm×15mm×1mm
上板52a:X×Y×Z=55mm×55mm×1mm
下板52b:X×Y×Z=55mm×55mm×3mm
側板52c:X、Y=55mm(幅)×5mm(厚さ)、Z=21.6mm
 側板52cの1面にチューブ26および27用の孔(X、Y×Z=8mm×15mm)を形成
 上板52a、下板52bおよび側板52cは厚さ0.1mmの接着剤を用い接着した。
押部16a:X×Y×Z=15mm×15mm×1mm
押部16b:X×Y×Z=5mm×5mm×2mm
押部18:X×Y×Z=25mm×25mm×1mm
セパレータ50:X×Y×Z=5mm×5mm×2mm
パッド12、14:X×Y×Z=40mm×40mm×8mm、肉厚は1mm
The dimensions of each member are as follows.
Plate member 55: X x Y x Z = 55 mm x 55 mm x 2 mm
Axial core member 54: X x Y x Z = 15 mm x 15 mm x 1 mm
Upper plate 52a: X×Y×Z=55 mm×55 mm×1 mm
Lower plate 52b: X×Y×Z=55 mm×55 mm×3 mm
Side plate 52c: X, Y=55 mm (width)×5 mm (thickness), Z=21.6 mm
Holes (X, Y×Z=8 mm×15 mm) for Tubes 26 and 27 are Formed on One Surface of Side Plate 52c The upper plate 52a, the lower plate 52b and the side plate 52c are bonded using an adhesive having a thickness of 0.1 mm.
Pressing portion 16a: X×Y×Z=15 mm×15 mm×1 mm
Pushing portion 16b: X×Y×Z=5 mm×5 mm×2 mm
Pressing portion 18: X x Y x Z = 25 mm x 25 mm x 1 mm
Separator 50: X x Y x Z = 5 mm x 5 mm x 2 mm
Pads 12, 14: X x Y x Z = 40 mm x 40 mm x 8 mm, thickness is 1 mm
 シートに採用されるウレタン材料を用意し、X×Y×Z=300mm×300mm×60mmの座布団形状とし、その座布団の中央部にザグリを設け、ザグリ内に作成したモジュール10を設置した。座布団と同じ材料のウレタンを用い、ザグリの上に蓋をした。蓋の上面を指で軽く押すことによりバイタル信号に相当する弱い振動を蓋に加えた。蓋を手で強く叩くことにより外乱振動に相当する強い振動を蓋に加えた。そしてパッド12および14の空間11および13の圧力を検出器により検出した。 A urethane material used for the sheet was prepared, and it was made into a cushion shape of X x Y x Z = 300 mm x 300 mm x 60 mm, a counterbore was provided in the center of the cushion, and the created module 10 was installed in the counterbore. Using the same urethane material as the floor cushion, the countersunk was covered with a lid. A weak vibration corresponding to a vital signal was applied to the lid by lightly pressing the top surface of the lid with a finger. A strong vibration equivalent to the disturbance vibration was applied to the lid by striking the lid with a hand. The pressure in spaces 11 and 13 of pads 12 and 14 was detected by a detector.
 図12は、実験1における時間に対する検出器の出力信号を示す図である。図12において、期間70は、バイタル信号に相当する振動を加えた期間であり、期間71は外乱振動に相当する振動を加えた期間である。図12に示すように、期間70では、パッド14からの出力信号はパッド12からの出力信号より大きい。これにより、差圧センサ20を用い、パッド12と14の圧力変化をキャンセルしても、バイタル振動の検出が可能と考えられる。期間71では、パッド12と14からの出力信号はほぼ同じ大きさである。これにより、差圧センサ20を用い、パッド12と14の圧力変化をキャンセルすれば、外乱振動をキャンセルできると考えられる。この点について以下で説明する。 FIG. 12 is a diagram showing the output signal of the detector against time in Experiment 1. In FIG. 12, a period 70 is a period in which the vibration corresponding to the vital signal is applied, and a period 71 is a period in which the vibration corresponding to the disturbance vibration is applied. As shown in FIG. 12, during period 70 the output signal from pad 14 is greater than the output signal from pad 12 . Therefore, even if the differential pressure sensor 20 is used to cancel pressure changes in the pads 12 and 14, it is considered possible to detect vital vibrations. During period 71, the output signals from pads 12 and 14 are approximately the same magnitude. Therefore, it is considered that the disturbance vibration can be canceled by using the differential pressure sensor 20 to cancel the pressure change of the pads 12 and 14 . This point will be explained below.
 実施例2によれば、押部16aは、上面12aと上板52a(第3部材)との間に位置し、上面12aの中央部に位置する。上板52aからパッド12の方向に力が加わらないまたは力が小さいとき、つまりSケースにおいて、押部16aは、パッド12に接しない。しかし、Nケースにおいて、力が大きくなるとパッド12に接する。押部16b(第3押部)は、上面12aと上板52aとの間に位置し、上面12aの周縁部に位置し、上面12aおよび上板52aに接する。上面12aと上板52aとの間は押部16aを介し振動が伝達可能である。押部18は、下面14bの少なくとも中央部に接する。つまりパッド12とパッド14は、それぞれ面押し構造となり、ロードノイズなどの外乱振動は、その振動が小さくされてパッド12と14に伝わる。これにより、外乱振動は差圧センサ20においてある程度キャンセルされ、差圧センサ20の出力信号が小さくなり、外乱振動に重畳するバイタル振動を検出することが可能となる。 According to the second embodiment, the pressing portion 16a is positioned between the upper surface 12a and the upper plate 52a (third member), and is positioned in the center of the upper surface 12a. When no force is applied from the upper plate 52a toward the pad 12 or the force is small, that is, in the S case, the pressing portion 16a does not come into contact with the pad 12. FIG. However, in the N case, the greater the force, the more it touches the pad 12 . The pressing portion 16b (third pressing portion) is positioned between the upper surface 12a and the upper plate 52a, is positioned on the peripheral edge of the upper surface 12a, and contacts the upper surface 12a and the upper plate 52a. Vibration can be transmitted between the upper surface 12a and the upper plate 52a via the pressing portion 16a. The pressing portion 18 contacts at least the central portion of the lower surface 14b. That is, the pads 12 and 14 each have a surface pressing structure, and external vibration such as road noise is transmitted to the pads 12 and 14 with the vibration reduced. As a result, the disturbance vibration is canceled in the differential pressure sensor 20 to some extent, the output signal of the differential pressure sensor 20 becomes small, and the vital vibration superimposed on the disturbance vibration can be detected.
[実施例2の変形例1]
 図13(a)は、実施例2の変形例1におけるモジュールの断面図である。図13(a)に示すように、Sケースにおいて、モジュールにバイタル振動のような力が加わらないときまたは力が小さいとき、押部16aは上板52aに接していない。Nケースにおいて、力が大きくなると、上板52aが変形し、押部16aが上板52aに接する。再度、力が小さくなると、押部16aが上板52aから離れ、元に戻る。
[Modification 1 of Embodiment 2]
FIG. 13A is a cross-sectional view of a module in Modification 1 of Embodiment 2. FIG. As shown in FIG. 13(a), in the S case, when no force such as vital vibration is applied to the module or when the force is small, the pressing portion 16a is not in contact with the upper plate 52a. In case N, when the force increases, the upper plate 52a deforms and the pressing portion 16a comes into contact with the upper plate 52a. When the force is reduced again, the pressing portion 16a is separated from the upper plate 52a and returns.
 Sケースにおいて、モジュールにバイタル振動のような小さい振動が加わる場合は、軸芯部材54を介してバイタル振動が上板52aに伝わっても、パッド12の中央は上板52aに当接していない。押部16bからパッドには振動があまり伝わらない。そして、振動は、側板52c、下板52bおよび押部18を介して主にパッド14に伝わる。よってパッド12と14には圧力の差が生じ、差圧センサ20によりバイタル振動が検出できる。 In the S case, when a small vibration such as vital vibration is applied to the module, even if the vital vibration is transmitted to the upper plate 52a through the shaft core member 54, the center of the pad 12 is not in contact with the upper plate 52a. Vibration is hardly transmitted from the pressing portion 16b to the pad. The vibration is transmitted mainly to the pad 14 via the side plate 52c, the lower plate 52b and the pressing portion 18. As shown in FIG. Therefore, a pressure difference is generated between the pads 12 and 14, and the differential pressure sensor 20 can detect vital vibration.
 Nケースにおいて、モジュールにロードノイズのような大きな外乱振動が加わる場合、上板52aが変形して、押部16aは上板52aに接する。つまり押部16aは面押し構造となる。そしてパッド14と押部18の両方が面押し構造なので、外乱振動は、抑制されてパッド12および14に伝わる。パッド12と14の圧力差を検出すれば、外乱振動の信号は差圧センサ20によりある程度キャンセルされる。このため差圧センサ20の出力信号は小さくなり、プリアンプの出力は非飽和となる。よって、外乱振動に重畳するバイタル振動を検出できる。なお、その他の構成は実施例2と同じであり説明を省略する。 In case N, when a large external vibration such as road noise is applied to the module, the upper plate 52a is deformed and the pressing portion 16a comes into contact with the upper plate 52a. That is, the pressing portion 16a has a surface pressing structure. Since both the pad 14 and the pressing portion 18 have a surface-pressing structure, disturbance vibration is suppressed and transmitted to the pads 12 and 14 . If the pressure difference between the pads 12 and 14 is detected, the signal of disturbance vibration is canceled to some extent by the differential pressure sensor 20 . Therefore, the output signal of the differential pressure sensor 20 becomes small, and the output of the preamplifier becomes non-saturated. Therefore, the vital vibration superimposed on the disturbance vibration can be detected. Other configurations are the same as those of the second embodiment, and description thereof is omitted.
 続いて、実施例2およびその変形例1と逆の関係で、押部16aは、上板52aに当接し、パッド12から離間していてもよい。なお、図13(a)の押部18と同じ形状の押部16がパッド12と上板52aとの間に設けられ、図13(a)の押部16aと同じ形状の押部がパッド14に当接し、下板52bから離間し、押部16bと同じ形状の押部がパッド14と下板52bに当接していてもよい。要するに、押部16a、16b、18、パッド12、14およびセパレータ50の構成を上下逆の配置にしてもよい。 Subsequently, the pressing portion 16a may contact the upper plate 52a and be spaced apart from the pad 12 in a relationship opposite to that of the second embodiment and its first modification. A pressing portion 16 having the same shape as the pressing portion 18 in FIG. 13A is provided between the pad 12 and the upper plate 52a, and a pressing portion having the same shape as the pressing portion 16a in FIG. A pressing portion having the same shape as the pressing portion 16b may be in contact with the pad 14 and the lower plate 52b. In short, the pressing portions 16a, 16b, 18, the pads 12, 14, and the separator 50 may be arranged upside down.
[実施例2の変形例2]
 図13(b)は、実施例2の変形例2におけるモジュールの断面図である。図13(b)に示すように、Sケースにおいて、上板52aからパッド12の方向に力が加わらない、または力が小さいとき、押部16aがパッド12の上面12aに接する面積は小さく、または離間しており、押部16aは点押し構造となる。Nケースにおいて、力が大きくなると押部16aが上面12aに接する面積が大きくなる。押部16aは面押し構造となる。また、力が小さくなると、押部16aが上面12aに接する面積が小さくなり、元に戻る。図13(b)において、Sケースのときは、バイタル振動は、主にパッド14に伝わり、Nケースのときは、外乱振動はパッド12と14の両方に伝わる。
[Modification 2 of Embodiment 2]
FIG. 13(b) is a cross-sectional view of a module in Modification 2 of Embodiment 2. FIG. As shown in FIG. 13(b), in the S case, when no force is applied from the upper plate 52a to the pad 12 or the force is small, the contact area of the pressing portion 16a with the upper surface 12a of the pad 12 is small, or It is spaced apart, and the pressing portion 16a has a point pressing structure. In case N, as the force increases, the area of contact between the pressing portion 16a and the upper surface 12a increases. The pressing portion 16a has a surface pressing structure. Further, when the force is reduced, the contact area of the pressing portion 16a with the upper surface 12a is reduced, and the original state is restored. In FIG. 13(b), the vital vibration is transmitted mainly to the pad 14 in the S case, and the disturbance vibration is transmitted to both the pads 12 and 14 in the N case.
 Sケースのとき、バイタル振動は板状部材55、軸芯部材54および上板52aに伝達する。軸芯部材54が上板52aの中央部に当接しており、軸芯部材54は点押し構造を構成し、バイタル振動は上板52aに伝わる。押部16bがパッド12の周縁部および筐体52に接し、押部16aはパッド12には非接触、若しくは弱く接触されている。押部16bからパッド12へはバイタル振動があまり伝わらない。バイタル振動は、側板52c、下板52bおよび押部18を介してパッド14へと伝わる。よって二つのパッド12および14の圧力差が生じ、差圧センサ20が圧力差を検出すると、バイタル振動が検出される。 In case S, the vital vibration is transmitted to the plate-shaped member 55, the shaft core member 54 and the upper plate 52a. The shaft core member 54 is in contact with the central portion of the upper plate 52a, the shaft core member 54 constitutes a point pressing structure, and the vital vibration is transmitted to the upper plate 52a. The pressing portion 16b is in contact with the peripheral portion of the pad 12 and the housing 52, and the pressing portion 16a is not in contact with the pad 12 or is in weak contact therewith. Not much vital vibration is transmitted from the pressing portion 16b to the pad 12. - 特許庁The vital vibration is transmitted to the pad 14 via the side plate 52c, the lower plate 52b and the pressing portion 18. As shown in FIG. Therefore, a pressure difference is generated between the two pads 12 and 14, and when the differential pressure sensor 20 detects the pressure difference, vital vibration is detected.
 一方、Nケースにおいて、モジュールに外乱振動が加わるときには、押部16aの下部がパッド12に接し、もしくは強く接する。すると二つのパッド12と押部16aの当接面積と、パッド14と18の接地面積と、が近づく。パッド12および14に伝わる外乱振動は、押部16aと18ともに面押し構造である。このため、パッド12および14に伝わる振動が抑制される。差圧センサ20が二つのパッド12と14との圧力差を検出することで、外乱振動に相当する差圧センサ20の出力信号をさらに小さくできる。よって、外乱振動に重畳するバイタル振動の検出可能となる。なお、図13(b)において、図13(b)の押部18と同じ形状の押部16がパッド12と上板52aとの間に設けられ、図13(b)の押部16aと同じ形状の押部が下板52bに接し、図13(b)の押部16bと同じ形状の押部がパッド14と下板52bとに接してもよい。要するに、押部16a、16b、18、パッド12、14およびセパレータ50の構成を上下逆の配置としてもよい。 On the other hand, in the N case, when external vibration is applied to the module, the lower part of the pressing portion 16a contacts or strongly contacts the pad 12. Then, the contact area between the two pads 12 and the pressing portion 16a and the contact area between the pads 14 and 18 become close to each other. The external vibration transmitted to the pads 12 and 14 has a surface pressing structure for both the pressing portions 16a and 18. FIG. Therefore, vibration transmitted to the pads 12 and 14 is suppressed. Since the differential pressure sensor 20 detects the pressure difference between the two pads 12 and 14, the output signal of the differential pressure sensor 20 corresponding to disturbance vibration can be further reduced. Therefore, it becomes possible to detect the vital vibration superimposed on the disturbance vibration. 13(b), a pressing portion 16 having the same shape as the pressing portion 18 in FIG. 13(b) is provided between the pad 12 and the upper plate 52a, and is the same as the pressing portion 16a in FIG. A shaped pressing portion may contact the lower plate 52b, and a pressing portion having the same shape as the pressing portion 16b in FIG. 13(b) may contact the pad 14 and the lower plate 52b. In short, the pressing portions 16a, 16b, 18, the pads 12, 14, and the separator 50 may be arranged upside down.
[実施例2の変形例3]
[筐体の下板52bを省略する構造]
 図14は、実施例2の変形例3におけるモジュールの断面図である。図14に示すように、筐体52は下板52bを備えておらず、側板52cの下端から外側に下板52dが設けられている。実施例2の変形例3では、下板52bを設けないため、押部18は筐体52に支持されない。モジュールは、シートクッションの凹部に埋め込まれるため、押部18は底部となるウレタン等のシートクッション44(図3参照)に支持される。
[Modification 3 of Embodiment 2]
[Structure in which the lower plate 52b of the housing is omitted]
14 is a cross-sectional view of a module in Modification 3 of Embodiment 2. FIG. As shown in FIG. 14, the housing 52 does not have a lower plate 52b, and has a lower plate 52d extending outward from the lower ends of the side plates 52c. In Modified Example 3 of Example 2, the pressing portion 18 is not supported by the housing 52 because the lower plate 52b is not provided. Since the module is embedded in the concave portion of the seat cushion, the pressing portion 18 is supported by the seat cushion 44 (see FIG. 3) made of urethane or the like, which is the bottom portion.
 板状部材55から下方が、図3、図22(a)および図22(b)のように、全てシートに埋め込まれる。シートには、このモジュールが入る凹部が形成され、モジュールは凹部内に搭載される。そのシートの上には、凹部も含めてシートの蓋が設けられる。そのシートの上にドライバーや搭乗者が座る。この構成は、全ての実施例に適用してもよい。 The portion below the plate member 55 is entirely embedded in the sheet as shown in FIGS. 3, 22(a) and 22(b). The seat is formed with a recess into which this module is received, and the module is mounted within the recess. A lid of the sheet is provided on the sheet, including the recess. Drivers and passengers sit on the seats. This configuration may be applied to all embodiments.
 Sケースにおいて、主に搭乗者のバイタル振動が板状部材55、軸芯部材54を介して上板52aへ伝わる。押部16aは、パッド12と当接し固定されるが、押部16aの上面は上板52aから離間している。一方、押部16bは、パッド12の4つの角部に当接、またはリング状に当接している。よってパッド12では、押部16aおよび16bは面押し構造となり、パッド12へのバイタル振動の伝搬は抑制される。バイタル振動は、側板52cを下へと伝わる。押部18は、シートの凹部、つまり発泡性樹脂の底面で支持されている。よってバイタル振動は側板52cから発泡性樹脂を介し押部18に伝わり、押部18はパッド14を押す。このように、パッド12に伝搬されるバイタル振動は抑制され、押部18が下面14bの中央部に当接するため、パッド14にバイタル振動が伝搬する。よって二つのパッド12と14には圧力差が発生し、差圧センサ20によりバイタル振動を検出できる。 In the S case, mainly the passenger's vital vibration is transmitted to the upper plate 52a via the plate-like member 55 and the shaft core member 54. The pressing portion 16a abuts and is fixed to the pad 12, but the upper surface of the pressing portion 16a is separated from the upper plate 52a. On the other hand, the pressing portion 16b is in contact with the four corners of the pad 12 or in a ring shape. Therefore, in the pad 12, the pressing portions 16a and 16b have a surface pressing structure, and propagation of vital vibration to the pad 12 is suppressed. The vital vibration is transmitted downward through the side plate 52c. The pressing portion 18 is supported by the recessed portion of the sheet, that is, the bottom surface of the foaming resin. Therefore, the vital vibration is transmitted from the side plate 52c to the pressing portion 18 through the foamed resin, and the pressing portion 18 presses the pad 14. As shown in FIG. In this manner, the vital vibration transmitted to the pad 12 is suppressed, and the pressing portion 18 abuts the central portion of the lower surface 14 b , so the vital vibration is transmitted to the pad 14 . Therefore, a pressure difference is generated between the two pads 12 and 14, and the differential pressure sensor 20 can detect vital vibration.
 一方、Nケースの場合、外乱振動はモジュールに下と上から加わる。このとき、振動が大きいことから、押部16aは上板52aに当接し、周縁部を押す押部16bと押部16aとはともに面押し構造となる。また、発泡性樹脂の底面で支持されている押部18は面押し構造である。二つのパッド12と押部16aおよび16bの当接面積と、パッド14と押部18との当接面積が近づくため、パッド12および14の両方に入る振動は、ともに抑制される。パッド12と14との圧力差は小さくなる。差圧センサ20の出力信号は小さくなり、プリアンプの出力信号は飽和しない。外乱振動にはバイタル振動が重畳しており、そのバイタル振動は、図2に示す信号処理により、バイタル信号として検出できる。なお、人体からのバイタル振動を上板52aに伝えるため、板状部材55と軸芯部材54を備えることが好ましい。また、図14の押部18と同じ形状の押部16がパッド12と上板52aとの間に設けられ、図14の押部16aおよび16bと同じ形状の押部が下面14b下に接して設けられていてもよい。要するに、押部16a、16b、18、パッド12、14およびセパレータ50の構成を上下逆の配置にしてもよい。 On the other hand, in the N case, external vibrations are applied to the module from below and above. At this time, since the vibration is large, the pressing portion 16a abuts against the upper plate 52a, and both the pressing portion 16b and the pressing portion 16a that press the peripheral portion have a surface pressing structure. Further, the pressing portion 18 supported by the bottom surface of the foamed resin has a surface pressing structure. Since the contact area between the two pads 12 and the pressing portions 16a and 16b and the contact area between the pad 14 and the pressing portion 18 are close to each other, the vibrations entering both the pads 12 and 14 are suppressed. The pressure difference between pads 12 and 14 is reduced. The output signal of the differential pressure sensor 20 becomes smaller and the output signal of the preamplifier does not saturate. Vital vibration is superimposed on the disturbance vibration, and the vital vibration can be detected as a vital signal by the signal processing shown in FIG. In order to transmit vital vibrations from the human body to the upper plate 52a, it is preferable to include the plate-like member 55 and the shaft core member 54. As shown in FIG. A pressing portion 16 having the same shape as the pressing portion 18 in FIG. 14 is provided between the pad 12 and the upper plate 52a, and pressing portions having the same shape as the pressing portions 16a and 16b in FIG. may be provided. In short, the pressing portions 16a, 16b, 18, the pads 12, 14, and the separator 50 may be arranged upside down.
 図15は、実施例3に係るモジュールの断面図である。図16(a)から図16(d)は、実施例3に係るモジュールの平面図である。図16(a)は、上板52aおよび板状部材56を図示している。図16(b)は、パッド12、押部16a、16bおよび側板52cを図示している。図16(c)は、パッド12、14および側板52cを図示している。図16(d)は、パッド14、押部18および下板52bを図示している。実施例3では、パッド12および14はそれぞれ第1部材および第2部材に対応する。パッド12の上面12aおよび下面12bはそれぞれ互いに対向する第1面および第2面に対応する。パッド14の上面14aおよび下面14bはそれぞれ互いに対向する第3面および第4面に対応する。押部16aおよび板状部材56は第1押部に対応する。押部18および下板52bは第2押部に対応する。押部16bおよび上板52aは第2押部に対応する。第3押部に対応する側板52cは支持部材に対応する。 FIG. 15 is a cross-sectional view of a module according to Example 3. FIG. 16(a) to 16(d) are plan views of a module according to Example 3. FIG. FIG. 16(a) illustrates the upper plate 52a and the plate member 56. FIG. FIG. 16(b) illustrates the pad 12, the pressing portions 16a and 16b, and the side plate 52c. FIG. 16(c) illustrates pads 12, 14 and side plate 52c. FIG. 16(d) illustrates the pad 14, the pressing portion 18 and the lower plate 52b. In Example 3, pads 12 and 14 correspond to the first and second members, respectively. The upper surface 12a and the lower surface 12b of the pad 12 respectively correspond to the first and second surfaces facing each other. Upper surface 14a and lower surface 14b of pad 14 correspond to third and fourth surfaces facing each other, respectively. The pressing portion 16a and the plate member 56 correspond to the first pressing portion. The pressing portion 18 and the lower plate 52b correspond to the second pressing portion. The pressing portion 16b and the upper plate 52a correspond to the second pressing portion. The side plate 52c corresponding to the third pressing portion corresponds to the supporting member.
 図15から図16(d)に示すように、板状部材55および軸芯部材54は設けられていない。上板52aの中央部に開口57が設けられている。開口57内に板状部材56が設けられている。上板52aと板状部材56の周囲は離れている。板状部材56とパッド12との間に押部16aが設けられている。押部16aからパッド12の方向に加わる力によらず、押部16aと上面12aとは接しており、押部16aと板状部材56も接している。押部16bは、上面12aと上板52aとの間における上面12aの周縁部に位置し、上面12aおよび上板52aに接し、押部16aから離間している。押部16bはパッド12の4隅に設けられている。押部16bは上面12aの周縁部に設けられていれば、4つの角部にそれぞれ設けてもよいし、リング状に設けてもよい。さらには、上面12aの対向する一対の辺に設けられていてもよい。パッド12の下面12bとパッド14の上面14aとは接触している。押部18は、パッド14と下板52bとの間に設けられ、パッド14および下板52bと接している。その他の構成は、実施例2と同じであり説明を省略する。  As shown in Figs. 15 to 16(d), the plate member 55 and the shaft core member 54 are not provided. An opening 57 is provided in the central portion of the upper plate 52a. A plate member 56 is provided in the opening 57 . The peripheries of the upper plate 52a and the plate-like member 56 are separated. A pressing portion 16 a is provided between the plate member 56 and the pad 12 . The pressing portion 16a and the upper surface 12a are in contact with each other, and the pressing portion 16a and the plate-like member 56 are also in contact with each other, regardless of the force applied from the pressing portion 16a toward the pad 12 . The pressing portion 16b is located on the peripheral edge portion of the upper surface 12a between the upper surface 12a and the upper plate 52a, is in contact with the upper surface 12a and the upper plate 52a, and is separated from the pressing portion 16a. The pressing portions 16 b are provided at the four corners of the pad 12 . As long as the pressing portion 16b is provided on the peripheral portion of the upper surface 12a, it may be provided at each of the four corners, or may be provided in a ring shape. Furthermore, they may be provided on a pair of opposing sides of the upper surface 12a. The lower surface 12b of the pad 12 and the upper surface 14a of the pad 14 are in contact with each other. The pressing portion 18 is provided between the pad 14 and the lower plate 52b and is in contact with the pad 14 and the lower plate 52b. Other configurations are the same as those of the second embodiment, and description thereof is omitted.
 実施例3のモジュールの動作について説明する。まず、Sケースにおいて、モジュール10に人体60からバイタル振動が伝達される場合について説明する。押部16bでパッド12の周縁部を保持しているので、パッド12への振動の伝搬を抑制しているように見えるが、実際は、板状部材56は上板52aから独立しているので、押部16aと押部16bは、別々に動く。バイタル振動は板状部材56、押部16aからパッド12の上面12aの中央部に伝わる。押部16aは点押し構造となる。上面12aの中央部は板ばね性が高いため、バイタル振動により空間11内の圧力は敏感に変化する。押部16bはパッド12の周縁部に接するため、押部16bからパッド12に振動は伝わり難い。 The operation of the module of Example 3 will be explained. First, in case S, the case where vital vibration is transmitted from the human body 60 to the module 10 will be described. Since the pressing portion 16b holds the peripheral portion of the pad 12, it seems that the propagation of vibration to the pad 12 is suppressed. The pressing portion 16a and the pressing portion 16b move separately. The vital vibration is transmitted to the central portion of the upper surface 12a of the pad 12 from the plate member 56 and the pressing portion 16a. The pressing portion 16a has a point pressing structure. Since the central portion of the upper surface 12a has high leaf spring properties, the pressure in the space 11 changes sensitively due to vital vibrations. Since the pressing portion 16b is in contact with the peripheral portion of the pad 12, vibration is less likely to be transmitted from the pressing portion 16b to the pad 12. FIG.
 一方、パッド12が押されるとパッド14は押部18に押されるが、押部18は下面14bの中央部から周縁部64に接するため、パッド14の応答性を抑制して、空間13内の圧力は敏感には変化しない。よって、パッド12と14内の圧力差が生じるため、差圧センサ20により、バイタル振動を検出できる。 On the other hand, when the pad 12 is pushed, the pad 14 is pushed by the pushing portion 18, but since the pushing portion 18 is in contact with the peripheral portion 64 from the central portion of the lower surface 14b, the responsiveness of the pad 14 is suppressed and the space 13 is filled. Pressure does not change sensitively. Therefore, since a pressure difference occurs between the pads 12 and 14, the differential pressure sensor 20 can detect vital vibrations.
 次に、Nケースにおいて、モジュール10に外乱振動が伝達される場合について説明する。大きな外乱振動がモジュールに加わると、この外乱振動は、下から下板52bに伝搬し、押部18はパッド14を面押し構造で押す。一方、上板52aでは、側板52cおよびシートの周囲から外乱振動が加わる。押部16aと押部16bは面押し構造となる。よってパッド12と14には、外乱振動の伝搬が抑制される。パッド12と14の圧力差は小さく、差圧センサ20の出力信号は小さくなる。よってプリアンプの出力信号は飽和せず、外乱振動に重畳するバイタル振動を検出することができる。 Next, a case where disturbance vibration is transmitted to the module 10 in case N will be described. When a large external vibration is applied to the module, this external vibration is propagated from below to the lower plate 52b, and the pressing portion 18 presses the pad 14 with a surface pressing structure. On the other hand, in the upper plate 52a, external vibration is applied from the side plate 52c and the periphery of the seat. The pressing portion 16a and the pressing portion 16b have a surface pressing structure. Therefore, the pads 12 and 14 are prevented from propagating disturbance vibrations. The pressure difference between pads 12 and 14 is small, and the output signal of differential pressure sensor 20 is small. Therefore, the output signal of the preamplifier is not saturated, and vital vibration superimposed on disturbance vibration can be detected.
[実験2]
 実施例3のモジュールを用いバイタル振動および外乱振動による空間11および13の圧力の変化を検出した。パッド12および14の材料はポリエチレンである。その他の部材は、アクリル板をカットし作製した。カットした部材に瞬間接着剤を0.1mmの厚みになるように塗布し、その後部材を接合した。
[Experiment 2]
Using the module of Example 3, changes in pressure in spaces 11 and 13 due to vital vibration and disturbance vibration were detected. The material of pads 12 and 14 is polyethylene. Other members were made by cutting an acrylic plate. An instant adhesive was applied to the cut members so as to have a thickness of 0.1 mm, and then the members were joined.
 各部材の寸法は以下である。
板状部材56:直径φ=25mm、Z=3mm
上板52a:X×Y×Z=55mm×55mm×3mm
 開口57:直径φ=30mm
下板52b:X×Y×Z=55mm×55mm×3mm
側板52c:X、Y=55mm(幅)×5mm(厚さ)、Z=19.5mm
 側板52cの1面にチューブ26および27用の孔(X、Y×Z=8mm×15mm)を形成
 上板52a、下板52bおよび側板52cは厚さ0.1mmの接着剤を用い接着した。
押部16a:直径φ=15mm、Z=2mm
押部16b:X×Y×Z=5mm×5mm×2mm
押部18:X×Y×Z=25mm×25mm×1mm
パッド12、14:X×Y×Z=40mm×40mm×8mm、肉厚は1mm
The dimensions of each member are as follows.
Plate member 56: Diameter φ=25 mm, Z=3 mm
Upper plate 52a: X×Y×Z=55 mm×55 mm×3 mm
Aperture 57: Diameter φ=30 mm
Lower plate 52b: X×Y×Z=55 mm×55 mm×3 mm
Side plate 52c: X, Y=55 mm (width)×5 mm (thickness), Z=19.5 mm
Holes (X, Y×Z=8 mm×15 mm) for Tubes 26 and 27 are Formed on One Surface of Side Plate 52c The upper plate 52a, the lower plate 52b and the side plate 52c are bonded using an adhesive having a thickness of 0.1 mm.
Pressing portion 16a: Diameter φ=15 mm, Z=2 mm
Pushing portion 16b: X×Y×Z=5 mm×5 mm×2 mm
Pressing portion 18: X x Y x Z = 25 mm x 25 mm x 1 mm
Pads 12, 14: X x Y x Z = 40 mm x 40 mm x 8 mm, thickness is 1 mm
 ウレタンを材料とするX×Y×Z=300mm×300mm×60mmの座布団の中央部にザグリを設け、ザグリ内に作成したモジュール10を設置した。座布団と同じ材料のウレタンを用いザグリに蓋をした。バイタル振動として、蓋の上面を指で軽く押すことによりバイタル信号に相当する弱い振動を蓋に加えた。外乱振動として、蓋を手で強く叩くことにより外乱振動に相当する強い振動を蓋に加えた。パッド12および14の空間11および13の圧力を検出器により検出した。 A counterbore was provided in the center of a floor cushion of X x Y x Z = 300 mm x 300 mm x 60 mm made of urethane, and the created module 10 was installed in the counterbore. The counterbore is covered with urethane, which is the same material as the cushion. As the vital vibration, a weak vibration corresponding to a vital signal was applied to the lid by lightly pressing the upper surface of the lid with a finger. As disturbance vibration, strong vibration corresponding to disturbance vibration was applied to the lid by hitting the lid strongly with a hand. The pressure in spaces 11 and 13 of pads 12 and 14 was detected by a detector.
 図17は、実験2の結果を示し、時間に対する検出器の出力信号を示す図である。図17に示すように、Sケースであり、バイタル信号などの小さい振動が生じる期間70では、パッド12からの出力信号はパッド14からの出力信号より大きい。これにより、差圧センサ20を用い、パッド12と14の圧力変化をキャンセルしても、バイタル振動の検出が可能と考えられる。期間71では、パッド12と14の出力信号に違いはあるが全域に渡りほぼ同じ大きさである。これにより、差圧センサ20を用い、パッド12と14の圧力変化を検出すると、パッド12と14の圧力はある程度キャンセルされて、外乱振動に相当する出力信号を小さくできる。よってこの外乱振動に重畳されているバイタル振動を検出することができる。 FIG. 17 shows the results of Experiment 2 and shows the output signal of the detector against time. As shown in FIG. 17, the output signal from the pad 12 is larger than the output signal from the pad 14 in the period 70, which is the S case and a small vibration such as a vital signal occurs. Therefore, even if the differential pressure sensor 20 is used to cancel pressure changes in the pads 12 and 14, it is considered possible to detect vital vibrations. In the period 71, the output signals of the pads 12 and 14 are different, but have substantially the same magnitude over the entire area. As a result, when the differential pressure sensor 20 is used to detect the pressure changes of the pads 12 and 14, the pressures of the pads 12 and 14 are canceled to some extent, and the output signal corresponding to the disturbance vibration can be reduced. Therefore, the vital vibration superimposed on this disturbance vibration can be detected.
 実施例3によれば、押部16aは、パッド12の上面12aの中央部に接する。押部18はパッド14の下面14bの少なくとも中央部に接し、押部18が下面14bに接する面積は押部16aが上面12aに接する面積より大きい。これにより、バイタル振動は主にパッド12に伝わる。押部18が下面14bに接する面積は押部16aが上面12aに接する面積の2倍以上が好ましく、4倍以上がより好ましい。押部16aが上面12aに接する面積は、パッド12の平面面積の1/3以下が好ましく、1/32~1/8の範囲内であることがより好ましい。押部16aおよび板状部材56と、押部16bおよび上板52aとはお互いに独立して動く。 According to the third embodiment, the pressing portion 16a is in contact with the central portion of the upper surface 12a of the pad 12. The pressing portion 18 contacts at least the central portion of the lower surface 14b of the pad 14, and the area of contact of the pressing portion 18 with the lower surface 14b is larger than the area of contact of the pressing portion 16a with the upper surface 12a. Vital vibrations are thus transmitted mainly to the pad 12 . The area of the pressing portion 18 in contact with the lower surface 14b is preferably twice or more, more preferably 4 times or more, the area of the pressing portion 16a in contact with the upper surface 12a. The area of the pressing portion 16a in contact with the upper surface 12a is preferably 1/3 or less of the planar area of the pad 12, and more preferably within the range of 1/32 to 1/8. The pressing portion 16a and the plate-like member 56 and the pressing portion 16b and the upper plate 52a move independently of each other.
 また、パッド12の下面12bとパッド14の上面14aとは接触する。これにより、外乱振動がモジュールに加わったとき、振動がパッド12と14の両方に伝わりやすくなる。 Also, the lower surface 12b of the pad 12 and the upper surface 14a of the pad 14 are in contact with each other. As a result, when external vibrations are applied to the module, the vibrations are easily transmitted to both the pads 12 and 14 .
 上板52aの上面と板状部材56の上面とは、同じ平面上に位置してもよいし、板状部材56の上面は上板52aの上面より上に位置した方がよいが、下に位置してもよい。板状部材56と押部16aとは一体に成形されていてもよいし、別々に形成され接着剤等により接合されていてもよい。上板52aと押部16bとは一体に成形されていてもよいし、別々に形成され接着剤等により接合されていてもよい。なお、上板52a、板状部材56、押部16aおよび押部16bをパッド14の下面14b側に、下板52bおよび押部18をパッド12の上面12aに配置してもよい。要するに、押部16a、16b、18、パッド12、14、セパレータ50、上板52a、板状部材56および下板52bの構成を上下逆に配置してもよい。 The upper surface of the upper plate 52a and the upper surface of the plate-like member 56 may be positioned on the same plane. may be located. The plate member 56 and the pressing portion 16a may be integrally formed, or may be formed separately and joined by an adhesive or the like. The upper plate 52a and the pressing portion 16b may be integrally molded, or may be formed separately and joined by an adhesive or the like. The upper plate 52a, the plate member 56, the pressing portions 16a and 16b may be arranged on the lower surface 14b side of the pad 14, and the lower plate 52b and the pressing portion 18 may be arranged on the upper surface 12a of the pad 12. In short, the pressing portions 16a, 16b, 18, the pads 12, 14, the separator 50, the upper plate 52a, the plate member 56 and the lower plate 52b may be arranged upside down.
[パッドが一つの構造:筐体で外乱振動を抑制する]
 図18(a)は、実施例4に係るモジュールの断面図、図18(b)および図18(c)は、実施例4に係るモジュールの平面図である。図18(b)は、上板52aおよび押部16を図示している。図18(c)は、パッド12、押部16および側板52cを図示している。実施例4では、パッド12は部材に対応する。パッド12の上面12aおよび下面12bはそれぞれ互いに対向する第1面および第2面に対応する。押部16および下板52bはそれぞれ第1押部および第2押部に対応する。側板52cおよび上板52aは筐体に対応する。
[Single pad structure: Suppresses external vibration with the housing]
18A is a cross-sectional view of a module according to Example 4, and FIGS. 18B and 18C are plan views of the module according to Example 4. FIG. FIG. 18(b) illustrates the upper plate 52a and the pressing portion 16. FIG. FIG. 18(c) illustrates the pad 12, the pressing portion 16 and the side plate 52c. In Example 4, the pad 12 corresponds to the member. The upper surface 12a and the lower surface 12b of the pad 12 respectively correspond to the first and second surfaces facing each other. The pressing portion 16 and the lower plate 52b correspond to the first pressing portion and the second pressing portion, respectively. The side plate 52c and the top plate 52a correspond to the housing.
 図18(a)から図18(c)に示すように、1個のパッド12が設けられている。押部16はパッド12の上面12aの中央部に接している。上板52aの中央部には開口57が設けられている。押部16は開口57を通過し、板状部材55の中央部に接しているまたは固定されている。パッド12の下面12bは下板52bに接している。側板52cは、上板52aの周囲および下板52bの周囲を接続し、パッド12を囲み、パッド12から離れている。パッド12内の空間11はチューブ26を介しセンサ20aに接続されている。センサ20aは空間11の圧力を検出する。その他の構成は実施例1と同じであり説明を省略する。 As shown in FIGS. 18(a) to 18(c), one pad 12 is provided. The pressing portion 16 is in contact with the central portion of the upper surface 12 a of the pad 12 . An opening 57 is provided in the central portion of the upper plate 52a. The pressing portion 16 passes through the opening 57 and is in contact with or fixed to the central portion of the plate-like member 55 . The lower surface 12b of the pad 12 is in contact with the lower plate 52b. The side plate 52c connects the periphery of the upper plate 52a and the periphery of the lower plate 52b, surrounds the pad 12, and is separated from the pad 12. As shown in FIG. The space 11 within the pad 12 is connected via a tube 26 to the sensor 20a. Sensor 20 a detects the pressure in space 11 . Other configurations are the same as those of the first embodiment, and description thereof is omitted.
 実施例4では、押部16はパッド12の上面12aの中央部に接している。これにより、バイタル振動が押部16よりパッド12に伝わると、センサ20aは精度よくバイタル振動を検出できる。なお、筐体52は、剛体であることが好ましい。また筐体52は一般には6面体で、それぞれの面は、各周縁部を支持している。よってお互いが面押し構造となり、両者の効果でロードノイズ等の外乱振動のパッド12への侵入を抑制できる。よって、Sケースにおいてバイタル振動がほとんどのときも、Nケースにおいてバイタル振動に外乱振動が加わった時も、外乱振動のパッド12への伝搬を大きく抑制できている。よってバイタル振動を検出できる。 In Example 4, the pressing portion 16 is in contact with the central portion of the upper surface 12 a of the pad 12 . As a result, when vital vibration is transmitted from the pressing portion 16 to the pad 12, the sensor 20a can accurately detect the vital vibration. Note that the housing 52 is preferably a rigid body. The housing 52 is also generally hexahedral, with each face supporting a respective peripheral edge. Therefore, both of them form a surface-pressing structure, and the effect of both can suppress the intrusion of external vibration such as road noise into the pad 12 . Therefore, in the S case, when most of the vital vibrations occur, and in the N case, when external vibrations are added to the vital vibrations, the propagation of the disturbance vibrations to the pad 12 can be greatly suppressed. Therefore, vital vibration can be detected.
 押部16が上面12aに接する面積はパッド12の平面面積の1/4以下が好ましく、1/16以下がより好ましい。筐体52がパッド12を囲むため、外乱振動はパッド12に伝わり難い。 The area of the pressing portion 16 in contact with the upper surface 12a is preferably 1/4 or less of the planar area of the pad 12, more preferably 1/16 or less. Since the housing 52 surrounds the pads 12 , external vibrations are less likely to be transmitted to the pads 12 .
[実験3]
 実施例4のモジュールを用いバイタル振動および外乱振動による空間11および13の圧力の変化を検出した。パッド12の材料はポリエチレンである。その他の部材は、アクリル板をカットし作製した。カットした部材に瞬間接着剤を0.1mmの厚みになるように塗布し、その後部材を接合した。
[Experiment 3]
Using the module of Example 4, changes in pressure in spaces 11 and 13 due to vital vibration and disturbance vibration were detected. The material of pad 12 is polyethylene. Other members were made by cutting an acrylic plate. An instant adhesive was applied to the cut members so as to have a thickness of 0.1 mm, and then the members were joined.
 各部材の寸法は以下である。
板状部材55:直径φ=25mm、Z=3mm
上板52a:X×Y×Z=55mm×55mm×3mm
 開口57:直径φ=30mm
下板52b:X×Y×Z=55mm×55mm×3mm
側板52c:X、Y=55mm(幅)×5mm(厚さ)、Z=3mm
 側板52cの1面にチューブ26用の孔(X、Y×Z=8mm×15mm×3mm)を形成
 上板52a、下板52bおよび側板52cは厚さ0.1mmの接着剤を用い接着した。
押部16a:直径φ=15mm、Z=2mm
パッド12:X×Y×Z=40mm×40mm×8mm、肉厚は1mm
The dimensions of each member are as follows.
Plate member 55: Diameter φ=25 mm, Z=3 mm
Upper plate 52a: X×Y×Z=55 mm×55 mm×3 mm
Aperture 57: Diameter φ=30 mm
Lower plate 52b: X×Y×Z=55 mm×55 mm×3 mm
Side plate 52c: X, Y=55 mm (width)×5 mm (thickness), Z=3 mm
A hole (X, Y×Z=8 mm×15 mm×3 mm) for the tube 26 is formed in one surface of the side plate 52c.
Pressing portion 16a: Diameter φ=15 mm, Z=2 mm
Pad 12: X x Y x Z = 40 mm x 40 mm x 8 mm, thickness is 1 mm
 ウレタンを材料とするX×Y×Z=300mm×300mm×60mmの座布団の中央部にザグリを設け、ザグリ内に作成したモジュール10を設置した。実施例4のモジュールを車両のカーシート内に設置し、カーシートに着座した搭乗者のバイタル信号を検出した。 A counterbore was provided in the center of a floor cushion of X x Y x Z = 300 mm x 300 mm x 60 mm made of urethane, and the created module 10 was installed in the counterbore. The module of Example 4 was installed in the car seat of the vehicle, and the vital signals of the passenger seated in the car seat were detected.
 図19(a)は、実験3における時間に対するセンサ20aの出力信号を示す図、図19(b)は、図19(a)の期間72の出力信号をフーリエ変換処理したスペクトルを示す図である。図19(a)において、期間72はフラットな路面を車両が通過した期間、期間73は、工事跡が残った凹凸が多い路面を車両が通過した期間である。期間73では出力信号のノイズが大きいが期間72では出力信号のノイズが小さい。図19(b)に示すように、期間72の出力信号をフーリエ変換すると呼吸に相当する信号のピーク74と脈拍に相当する信号のピーク75が得られる。期間73では、呼吸および脈拍に相当するピークは観察されなかった。このように、路面状態に依存するものの呼吸および脈拍に相当するバイタル信号を検出することができる。また、路面状態(例えば、轍や工事跡、ひび割れ、自然の起伏、舗装されているか否など)をモニタリングすることもできる。 FIG. 19(a) is a diagram showing the output signal of the sensor 20a with respect to time in Experiment 3, and FIG. 19(b) is a diagram showing a spectrum obtained by Fourier transforming the output signal in period 72 of FIG. 19(a). . In FIG. 19A, a period 72 is a period during which the vehicle passes through a flat road surface, and a period 73 is a period during which the vehicle passes over an uneven road surface with traces of construction. During the period 73, the noise of the output signal is large, but during the period 72, the noise of the output signal is small. As shown in FIG. 19(b), when the output signal in the period 72 is Fourier transformed, a peak 74 of the signal corresponding to respiration and a peak 75 of the signal corresponding to the pulse are obtained. In period 73, peaks corresponding to respiration and pulse were not observed. In this way, it is possible to detect vital signals corresponding to respiration and pulse, which depend on road surface conditions. It can also monitor road surface conditions (eg, ruts, construction marks, cracks, natural undulations, whether it is paved, etc.).
 実施例4によれば、側板52cおよび上板52a(筐体)は、下板52b(第2押部)とともにパッド12を囲み、パッド12から離れて囲んでいる。さらに上板52aに開口57が設けられ、開口57の側面と押部16は離れている。これにより、側板52cおよび上板52aからなる筐体52の部分は、外乱振動がパッド12に伝わることを抑制する。よって、バイタル振動の検出精度を向上できる。 According to the fourth embodiment, the side plate 52c and the upper plate 52a (housing) surround the pad 12 together with the lower plate 52b (second pressing portion) and surround the pad 12 apart from it. Further, an opening 57 is provided in the upper plate 52a, and the side surface of the opening 57 and the pressing portion 16 are separated. As a result, the portion of the housing 52 made up of the side plate 52c and the upper plate 52a suppresses the transmission of external vibrations to the pad 12. As shown in FIG. Therefore, detection accuracy of vital vibration can be improved.
 筐体52の上板52a(部分)は、パッド12の上面12aから離れて設けられ、押部16が貫通する開口57を有する。これより、筐体52はパッド12を上方から囲むことができるため、バイタル振動の検出精度をより向上できる。 The upper plate 52a (part) of the housing 52 is provided apart from the upper surface 12a of the pad 12 and has an opening 57 through which the pressing portion 16 penetrates. Since the housing 52 can surround the pad 12 from above, the detection accuracy of vital vibration can be further improved.
[実施例4の変形例1]
 図20は、実施例4の変形例1におけるモジュールの断面図である。図20に示すように、下面12bと下板52bとの間に押部18が設けられている。押部18はパッド12と下板52bに接する。実施例4の変形例1では、押部18と下板52bとが第2押部に対応する。押部18が下面12bに接する面積は、押部16が上面12aに接する面積より小さいことが好ましく、2倍以上が好ましく、4倍以上がより好ましい。
[Modification 1 of Embodiment 4]
20 is a cross-sectional view of a module in Modification 1 of Embodiment 4. FIG. As shown in FIG. 20, a pressing portion 18 is provided between the lower surface 12b and the lower plate 52b. The pressing portion 18 contacts the pad 12 and the lower plate 52b. In Modification 1 of Embodiment 4, the pressing portion 18 and the lower plate 52b correspond to the second pressing portion. The area of the pressing portion 18 in contact with the lower surface 12b is preferably smaller than the area of the pressing portion 16 in contact with the upper surface 12a, preferably twice or more, and more preferably four times or more.
[重なる2つのパッドの水平配置構造]
 実施例5は、モジュールの設置に関する例である。図21(a)は、比較例5におけるモジュールの断面図、図21(b)は、実施例5におけるモジュールの断面図である。図21(a)および図21(b)は、下方向が重力の方向、すなわち鉛直方向で、パッド12および14の中心線67である。
[Horizontal arrangement structure of two overlapping pads]
Example 5 is an example regarding module installation. 21(a) is a cross-sectional view of the module in Comparative Example 5, and FIG. 21(b) is a cross-sectional view of the module in Example 5. FIG. 21(a) and 21(b), the downward direction is the direction of gravity, the vertical direction, and is the centerline 67 of pads 12 and 14. FIG.
図21(a)に示すように、比較例5では、パッド12の上面12a、下面12b、パッド14の上面14aおよび下面14bが鉛直方向に対し傾いている。押部16からパッド12への力68の方向は、パッド12の中心を押し、上面12aおよび下面12bの法線方向Z方向に対し傾く。これにより、力68は-Z方向の分力68aとX方向の分力68bに分割される。バイタル振動を検出するために、できるだけ、パッド12および14の中心を押すことが好ましいことは、既に述べたとおりである。しかし力68は、パッド12の中心を起点にして傾いているため、有効に働く分力は、分力68aとなり、その力が弱められてしまう。 As shown in FIG. 21A, in Comparative Example 5, the upper surface 12a and the lower surface 12b of the pad 12, and the upper surface 14a and the lower surface 14b of the pad 14 are inclined with respect to the vertical direction. The direction of the force 68 from the pressing portion 16 to the pad 12 presses the center of the pad 12 and is inclined with respect to the normal direction Z direction of the upper surface 12a and the lower surface 12b. As a result, the force 68 is divided into a force component 68a in the -Z direction and a force component 68b in the X direction. As already mentioned, it is preferable to press the center of pads 12 and 14 as much as possible in order to detect vital vibrations. However, since the force 68 is inclined with the center of the pad 12 as the starting point, the force component 68a that effectively acts is weakened.
 図21(b)に示すように、実施例5では、パッド12の上面12a、下面12b、パッド14の上面14aおよび下面14bが鉛直方向に対し略直交で、水平に配置している。パッド12および14へ効率よく力を加えるには、加える力の方向がパッド12および14の面と垂直であることが好ましい。 As shown in FIG. 21(b), in Example 5, the upper surface 12a and the lower surface 12b of the pad 12, and the upper surface 14a and the lower surface 14b of the pad 14 are substantially orthogonal to the vertical direction and arranged horizontally. In order to efficiently apply force to pads 12 and 14, the direction of applied force is preferably perpendicular to the surfaces of pads 12 and 14. FIG.
 図22(a)および図22(b)は、実施例5におけるモジュールを設置したカーシートの断面図である。図22(a)はカーシート41を左右方向に切断した断面図、図22(b)はカーシート41を前後方向に切断した図である。図22(a)および図22(b)に示すように、カーシート41のシートクッション44の上面は、後ろに向かうにしたがい下方向になるように傾斜している。これは、車両が正面から衝突したときに搭乗者を保護するためである。パッド12および14の上面および下面を鉛直方向に対し略直交するようにモジュール10を水平に設置する。これにより、搭乗者のバイタル振動は、パッド12および14の面に対して垂直に加わり、検出精度が向上する。なお、鉛直方向に対し略直交するとは、鉛直方向に直交する水平面に対し、±10°または±5°程度の傾斜を許容する。 FIGS. 22(a) and 22(b) are cross-sectional views of a car seat in which the module in Example 5 is installed. FIG. 22(a) is a cross-sectional view of the car seat 41 cut in the left-right direction, and FIG. 22(b) is a view of the car seat 41 cut in the front-rear direction. As shown in FIGS. 22(a) and 22(b), the upper surface of the seat cushion 44 of the car seat 41 is inclined downward toward the rear. This is to protect passengers in the event of a head-on collision of the vehicle. The module 10 is installed horizontally so that the top and bottom surfaces of the pads 12 and 14 are substantially perpendicular to the vertical direction. As a result, the passenger's vital vibrations are applied perpendicularly to the surfaces of the pads 12 and 14, improving detection accuracy. It should be noted that the term “substantially perpendicular to the vertical direction” means that an inclination of about ±10° or ±5° is allowed with respect to a horizontal plane perpendicular to the vertical direction.
[人感センサ]
 実施例6は、例えば、米40kgなどの物が助手席または運転席に置いてあるときに、物が人か荷物かを判定する着座判定装置の例である。米が置いてあるときにシートベルトが未着用との警報が鳴ることを抑制できる。また、自動運転を行っているときに、搭乗者が搭乗していないにもかかわらず、エンジンがスタートしまうことを抑制できる。実施例1~5のモジュールを図3または図22(a)および図22(b)のようにカーシートに設置し、図2の処理部34は、カーシート41に搭乗者が着座しているか否かを判定してもよい。さらには、車両の室内に温度センサが設置することで、以下のような判定およびアラームの通知が可能となる。例えば、判定装置は、実施例6の人感センサを用い人間が車両の室内にいるか判定する。判定装置は、車両の室内に人間がいると判定し、車両の室内の室温が例えば20℃を超え、かつ車両がある所定の時間を超えて停車していた場合、アラームを通知する。判定装置は、車両外にアラームを音で通知してもよいし、BLE(Bluetooth(登録商標) Low Energy)などの無線通信手段を用い、運転者の携帯機器にアラームを通知してもよい。
[Human sensor]
Embodiment 6 is an example of a seating determination device that determines whether an object such as 40 kg of rice is placed on the front passenger seat or the driver's seat, whether the object is a person or luggage. It is possible to suppress the sounding of the alarm that the seat belt is not fastened when rice is placed. In addition, it is possible to prevent the engine from starting even when no passenger is on board during automatic driving. The modules of Examples 1 to 5 are installed in a car seat as shown in FIG. 3 or FIGS. It may be determined whether Furthermore, by installing a temperature sensor in the interior of the vehicle, it is possible to make the following determinations and alarm notifications. For example, the determination device uses the human sensor of the sixth embodiment to determine whether a person is inside the vehicle. The determination device determines that there is a person inside the vehicle, and issues an alarm when the room temperature of the vehicle exceeds, for example, 20° C. and the vehicle has been parked for longer than a predetermined period of time. The determination device may notify the alarm outside the vehicle by sound, or may notify the alarm to the driver's portable device using wireless communication means such as BLE (Bluetooth (registered trademark) Low Energy).
[実験4]
 車両の後部座席に、ウレタンで作製した座布団内に実施例3の実験2で用いたモジュールを配置した。座布団上に搭乗者が着座した場合と40kgの米を置いた場合について差圧センサ20の出力信号を取得した。搭乗者の胸部からレファレンス用のバイタル信号を取得した。搭乗者のバイタル信号の取得時は車両を時速40kmで走行し、米を置いた場合の信号は車両を時速20kmで走行して取得した。サンプリング周波数は133.3Hz、フーリエ変換のブロックは2048個、演算方法は30秒平均、上限周波数は0.5Hzである。少し詳細に説明すると、サンプリング周波数を133.3Hz、フーリエ変換のブロックを2048とした場合、計測時間は15.4秒になる。呼吸数は個人差が大きく、15.4秒では計測時間が短すぎるため、30秒間の平均で解析した。また、上限周波数を0.5Hzに設定したので、1分間の最大呼吸数は30回を上限とし、0.5Hz以上のスペクトル成分は呼吸と見なさないように設定した。
[Experiment 4]
The module used in Experiment 2 of Example 3 was placed in a cushion made of urethane on the rear seat of the vehicle. The output signal of the differential pressure sensor 20 was acquired when the passenger sat on the cushion and when 40 kg of rice was placed. Reference vital signs were acquired from the passenger's chest. The vehicle was driven at a speed of 40 km/h when acquiring the passenger's vital signs, and the vehicle was driven at a speed of 20 km/h when the rice was placed. The sampling frequency is 133.3 Hz, the number of Fourier transform blocks is 2048, the calculation method is 30-second average, and the upper limit frequency is 0.5 Hz. More specifically, when the sampling frequency is 133.3 Hz and the number of Fourier transform blocks is 2048, the measurement time is 15.4 seconds. Respiration rate varies greatly among individuals, and the measurement time of 15.4 seconds is too short, so the average of 30 seconds was analyzed. In addition, since the upper limit frequency was set to 0.5 Hz, the maximum number of breaths per minute was set to 30 times, and spectral components above 0.5 Hz were set not to be regarded as respirations.
 図23(a)から図23(d)は、実験4における時間に対する差圧センサの出力信号を示す図である。図23(a)および図23(b)における実線は搭乗者(人体)が着座したときの差圧センサ20の出力信号を示す。レファレンス信号refは差圧センサ20の出力信号の取得と同時に測定し、搭乗者の胸部から取得したレファレンス用のバイタル信号である。出力信号の取得は図23(a)と図23(b)の2回行った。図23(c)および図23(d)における実線は座布団に米40kgを置いたときの出力信号を示す。レファレンス信号refは一緒に搭乗した搭乗者の胸部から取得したレファレンス用のバイタル信号である。出力信号の取得は図23(c)と図23(d)の2回行った。 FIGS. 23(a) to 23(d) are diagrams showing the output signal of the differential pressure sensor with respect to time in Experiment 4. FIG. Solid lines in FIGS. 23(a) and 23(b) indicate the output signal of the differential pressure sensor 20 when the passenger (human body) is seated. The reference signal ref is a reference vital signal that is measured simultaneously with the acquisition of the output signal of the differential pressure sensor 20 and acquired from the chest of the passenger. Acquisition of the output signal was performed twice in FIGS. 23(a) and 23(b). Solid lines in FIGS. 23(c) and 23(d) indicate the output signal when 40 kg of rice is placed on the cushion. The reference signal ref is a reference vital signal obtained from the chest of the passenger who boarded together. Acquisition of the output signal was performed twice as shown in FIGS. 23(c) and 23(d).
 図23(a)および図23(b)に示すように、人体では、差圧センサ20の出力信号はrefと同じ傾向を示す。一方、図23(c)および図23(d)に示すように、米では、差圧センサ20の出力信号はrefとは関係しない動きを示す。 As shown in FIGS. 23(a) and 23(b), in the human body, the output signal of the differential pressure sensor 20 shows the same tendency as ref. On the other hand, as shown in FIGS. 23(c) and 23(d), with rice, the output signal of the differential pressure sensor 20 exhibits movements that are not related to ref.
 図23(a)から図23(d)において、期間76を7分割した7つの区間に分割した。各区間は2048点のデータが含まれる。各区間についてフーリエ変換しスペクトル解析を行った。これにより、図23(a)から図23(d)について、各々7個のスペクトルを取得した。 In FIGS. 23(a) to 23(d), the period 76 is divided into 7 sections. Each section contains 2048 points of data. Fourier transform was performed for each interval and spectral analysis was performed. As a result, seven spectra were obtained for each of FIGS. 23(a) to 23(d).
 図24(a)から図24(g)は、実験4における人体1回目で、図23(a)のスペクトル解析の結果を示す図である。図25(a)から図25(g)は、人体2回目で、図23(b)のスペクトル解析の結果を示す図である。実線は差圧センサ20の出力信号のスペクトルであり、点線はレファレンス信号refのスペクトルである。図24(a)~図25(g)に示すように、レファレンス信号のスペクトルにおいてでは矢印58のように0.2~0.3Hz付近に呼吸成分におけるピークが観察される。図24(a)、図24(b)、図24(d)~図24(g)、図25(a)~図25(c)、図25(e)および図25(f)では、差圧センサ20の出力信号のスペクトルにおいて、レファレンス信号refの矢印58の近傍に呼吸成分と考えられるピークが観察できる。 FIGS. 24(a) to 24(g) are diagrams showing the results of the spectrum analysis of FIG. 23(a) for the first human body in Experiment 4. FIG. FIGS. 25(a) to 25(g) are diagrams showing the results of the spectrum analysis of FIG. 23(b) for the second time on the human body. The solid line is the spectrum of the output signal of the differential pressure sensor 20, and the dotted line is the spectrum of the reference signal ref. As shown in FIGS. 24(a) to 25(g), in the spectrum of the reference signal, a peak in the respiratory component is observed near 0.2 to 0.3 Hz as indicated by arrow 58. FIG. 24(a), 24(b), 24(d)-24(g), 25(a)-25(c), 25(e) and 25(f), the difference In the spectrum of the output signal of the pressure sensor 20, a peak considered to be a respiratory component can be observed in the vicinity of the arrow 58 of the reference signal ref.
 図26(a)から図26(g)は、実験4における米1回目で、図23(c)のスペクトル解析の結果を示す図である。図27(a)から図27(g)は、米2回目で、図23(d)のスペクトル解析の結果を示す図である。実線は差圧センサ20の出力信号のスペクトルであり、点線はレファレンス信号refのスペクトルである。図26(a)~図27(g)に示すように、レファレンス信号のスペクトルにおいてでは矢印58のように0.2~0.3Hz付近に呼吸成分におけるピークが観察される。しかし、差圧センサ20の出力信号のスペクトルにおいて、レファレンス信号refの矢印58の近傍に呼吸成分と考えられるピークは観察できない。 FIGS. 26(a) to 26(g) show the results of the spectral analysis of FIG. 23(c) for the first rice in Experiment 4. FIG. FIG. 27(a) to FIG. 27(g) are diagrams showing the results of the spectral analysis of FIG. 23(d) for the second rice. The solid line is the spectrum of the output signal of the differential pressure sensor 20, and the dotted line is the spectrum of the reference signal ref. As shown in FIGS. 26(a) to 27(g), in the spectrum of the reference signal, a peak in the respiratory component is observed near 0.2 to 0.3 Hz as indicated by arrow 58. FIG. However, in the spectrum of the output signal of the differential pressure sensor 20, no peak that is considered to be a respiratory component can be observed in the vicinity of the arrow 58 of the reference signal ref.
 処理部34がソフトウエアと協働し、搭乗者がカーシート41に着座したか否か判定する判定部として機能するフローの例を説明する。図28(a)および図28(b)は、実施例6における処理部の処理を示すフローチャートである。図28(a)に示すように、処理部34は所定期間差圧センサ20の出力信号を取得する(ステップS10)。処理部34は、取得した出力信号をフーリエ変換する(ステップS12)。処理部34は、フーリエ変換したスペクトルの特定の周波数範囲(例えば0.2Hz~0.5Hz)にピークがあるか否か判定する(ステップS14)。Yesのとき、処理部34は、カーシート41に搭乗者が着座していると判定する(ステップS16)。Noのとき、処理部34は、カーシート41に搭乗者が着座していないと判定する(ステップS18)。その後終了する。このように、処理部34は搭乗者がカーシート41に着座しているか否か判定できる。 An example of a flow in which the processing unit 34 cooperates with software and functions as a determination unit that determines whether or not the passenger is seated in the car seat 41 will be described. 28(a) and 28(b) are flowcharts showing the processing of the processing unit in the sixth embodiment. As shown in FIG. 28(a), the processing unit 34 acquires the output signal of the differential pressure sensor 20 for a predetermined period (step S10). The processing unit 34 Fourier-transforms the acquired output signal (step S12). The processing unit 34 determines whether or not there is a peak in a specific frequency range (for example, 0.2 Hz to 0.5 Hz) in the Fourier-transformed spectrum (step S14). When Yes, the processing unit 34 determines that the passenger is seated in the car seat 41 (step S16). When No, the processing unit 34 determines that the passenger is not seated in the car seat 41 (step S18). Then exit. Thus, the processing unit 34 can determine whether or not the passenger is seated in the car seat 41 .
 図28(b)に示すように、処理部34は、i=0およびj=0に設定する(ステップS20)。処理部34は、i=i+1に設定する(ステップS22)。処理部34は図28(a)と同様にステップS10、S12およびS14を行う。ステップS14において、Yesのとき、処理部34は、j=j+1に設定する(ステップS24)。Noのとき、処理部34はステップS24を行わない。処理部34は、i=nか判定する(ステップS26)。nは2以上の自然数であり予め設定しておく。NoのときステップS22に戻る。Yesのとき、処理部34はj/n>kか判定する(ステップS28)。kは0より大きく1より小さい値である。Yesのとき、処理部34は、カーシート41に搭乗者が着座していると判定する(ステップS30)。Noのとき、処理部34は、カーシート41に搭乗者が着座していないと判定する(ステップS32)。その後終了する。 As shown in FIG. 28(b), the processing unit 34 sets i=0 and j=0 (step S20). The processing unit 34 sets i=i+1 (step S22). The processing unit 34 performs steps S10, S12 and S14 as in FIG. 28(a). When Yes in step S14, the processing unit 34 sets j=j+1 (step S24). When No, the processing unit 34 does not perform step S24. The processing unit 34 determines whether i=n (step S26). n is a natural number of 2 or more and is set in advance. If No, the process returns to step S22. When Yes, the processing unit 34 determines whether j/n>k (step S28). k is a value greater than 0 and less than 1; When Yes, the processing unit 34 determines that the passenger is seated in the car seat 41 (step S30). When No, the processing unit 34 determines that the passenger is not seated in the car seat 41 (step S32). Then exit.
 図24(a)から図25(g)のように、搭乗者がカーシート41に着座していても、特定の周波数範囲にピークが生じない場合もある。図28(b)では、異なるn個の期間において呼吸成分のピークの有無を判定し、ピークが存在する割合j/nがあらかじめ定めた割合kより大きいとき搭乗者がカーシート41に着座していると判定する。これにより、より正確に、搭乗者がカーシート41に着座しているか判定できる。なお、nおよびkは状況により代えてもよい。例えば車両が停止している場合、外乱振動が小さい。そこで、nを小さく、kを大きくする。例えば車両が速く走行している場合、外乱振動が大きい。そこで、nを大きく、kを小さくする。 As shown in FIGS. 24(a) to 25(g), even if the passenger is seated in the car seat 41, there are cases where no peak occurs in a specific frequency range. In FIG. 28(b), the presence or absence of a respiratory component peak is determined in n different periods, and when the ratio j/n of peaks is greater than a predetermined ratio k, the passenger is seated in the car seat 41. determine that there is This makes it possible to more accurately determine whether the passenger is seated in the car seat 41 . Note that n and k may be changed depending on the situation. For example, when the vehicle is stopped, the disturbance vibration is small. Therefore, n is made small and k is made large. For example, when the vehicle is running fast, the disturbance vibration is large. Therefore, n is increased and k is decreased.
 実施例6によれば、パッド12、14、押部16および18を備えるモジュールを車両のカーシート41に設け、判定部は、差圧センサ20の出力に基づき、搭乗者がシートに着座しているか否かを判定する。これにより、搭乗者がカーシート41に着座しているか否かを精度よく判定できる。モジュール10は、車両の運転席、助手席または後部座席に設けることができる。 According to the sixth embodiment, a module including pads 12 and 14 and pressing portions 16 and 18 is provided in a car seat 41 of a vehicle, and the determination portion determines whether the passenger is seated on the seat based on the output of the differential pressure sensor 20. determine whether or not there is This makes it possible to accurately determine whether or not the passenger is seated on the car seat 41 . The module 10 can be installed in the driver's seat, passenger's seat or rear seat of the vehicle.
 被験者がシートに着席する場合、バイタル等の振動源としては臀部が最もふさわしい。そこで、図4のように、パッド12および14は被験者の臀部など荷重がかかる人体部位に(例えば右臀部または左臀部)に重なるように設けられることが好ましい。パッド12および14は、被験者の大腿部等のバイタル等の振動源に重なるように設けられていればよい。 When the subject sits on the seat, the buttocks are the most suitable source of vibration such as vital signs. Therefore, as shown in FIG. 4, it is preferable that the pads 12 and 14 are provided so as to overlap the human body part (for example, the right buttock or the left buttock) to which a load is applied, such as the buttocks of the subject. The pads 12 and 14 may be provided so as to overlap the vibration source such as the vitals of the subject's thighs.
 図29は、実施例6における検知方法を示すフローチャートである。図29に示すように、実施例1~3およびその変形例のモジュールを四輪車のシートに埋め込んで用意する(ステップS40)。このとき、パッド12および14の少なくとも一方のパッドは、パッドに当接する押部により、パッドに伝わる振動を調整される(ステップS42)。搭乗者のバイタル振動はパッド12または14に主に伝搬するように配置されていてもよい。差圧センサ20がパッド12内の気体の圧力とパッド14内の気体の圧力との差を検出する(ステップS44)。処理部34は、パッド12と14の圧力差を解析する(ステップS46)。処理部34は、搭乗者のバイタル振動の状態を判断する(ステップS48)。ステップS48では、シートの上に載せられた物が、人か荷物かを判断してもよい。 FIG. 29 is a flow chart showing the detection method in the sixth embodiment. As shown in FIG. 29, the modules of Examples 1 to 3 and their modifications are prepared by being embedded in the seat of a four-wheeled vehicle (step S40). At this time, at least one of the pads 12 and 14 adjusts the vibration transmitted to the pad by the pressing portion that abuts on the pad (step S42). The pad 12 or 14 may be arranged so that the vital vibrations of the occupant are primarily transmitted. The differential pressure sensor 20 detects the difference between the gas pressure in the pad 12 and the gas pressure in the pad 14 (step S44). The processing unit 34 analyzes the pressure difference between the pads 12 and 14 (step S46). The processing unit 34 determines the state of vital vibration of the passenger (step S48). In step S48, it may be determined whether the object placed on the sheet is a person or a load.
 実施例6では、搭乗者のバイタル振動を検出し、パイタル振動の状態を判断する例を説明したが、ドライブノイズの振動または車両の駆動用モータの振動を検出し、ドライブノイズの状態または駆動用モータの状態を判断してもよい。 In the sixth embodiment, the vital vibration of the passenger is detected and the state of the vital vibration is determined. The state of the motor may be determined.
 国際公開第2020/158952号において、圧電素子の代わりに、静電容量センサ、エレクトレットコンデンサマイク、ピエゾ抵抗センサまたは差動トランス等を用いてもよい。 In International Publication No. 2020/158952, a capacitance sensor, an electret condenser microphone, a piezoresistive sensor, a differential transformer, or the like may be used instead of the piezoelectric element.
 またここまでの説明からわかるように、実施例1~6では、処理部34がパッド12および14から検出する振動として、主にバイタル振動を説明した。しかしながら、図12、図17および図19(a)を用い説明した通り、ロードノイズの飽和が抑制されるためロードノイズが検出されている。よって、処理部34はロードノイズを検出して、ロードノイズを演算処理してもよい。車両の制御装置は、このロードノイズの振動から、車両の燃費を判断したり、車両の速度を制御してもよい。さらには、処理部34は車両駆動用モータの振動を検出してもよい。例えば、処理部34は、車輪駆動用のモータの異常音を抽出し、車両の制御装置は異常音が検知された場合、車両を減速させる、または停車させるように制御してもよい。 Also, as can be seen from the description so far, in Examples 1 to 6, vital vibration was mainly described as the vibration detected by the processing unit 34 from the pads 12 and 14 . However, as described with reference to FIGS. 12, 17 and 19A, road noise is detected because the saturation of the road noise is suppressed. Therefore, the processing unit 34 may detect road noise and perform arithmetic processing on the road noise. The vehicle control device may determine the fuel consumption of the vehicle or control the speed of the vehicle from the vibration of this road noise. Furthermore, the processing unit 34 may detect vibration of the vehicle drive motor. For example, the processing unit 34 may extract an abnormal sound of the motor for driving the wheels, and the control device of the vehicle may control the vehicle to decelerate or stop when the abnormal sound is detected.
 また、処理部34が検出したロードノイズから、車両の制御装置は運転者に現在の路面状況または燃費を通知したり、ナビゲーションシステムと連動して別ルートを案内するなどしてもよい。さらに車両の制御装置は、検出したロードノイズ情報をクラウドに蓄積してもよい。車両の制御装置は、クラウドから入手した推定される路面を走行した場合の燃費または運転による疲労度合いを運転者に通知してもよし、それに応じた走行ルートを運転者に提案したり、事故防止のためのアナウンスをするなどしてもよい。 Also, based on the road noise detected by the processing unit 34, the vehicle control device may notify the driver of the current road surface condition or fuel consumption, or may guide the driver to another route in conjunction with the navigation system. Furthermore, the vehicle control device may store the detected road noise information in the cloud. The vehicle control device may notify the driver of the fuel consumption or the degree of fatigue due to driving when traveling on the estimated road surface obtained from the cloud, propose a driving route according to it, and prevent accidents. You may make an announcement for
 以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various modifications and variations can be made within the scope of the gist of the present invention described in the scope of claims. Change is possible.
なお、以上の説明に関して更に以下の特徴を開示する。
(特徴1)
 互いに対向する第1面および第2面を有し、気体が充填される袋状の第1部材と、
 互いに対向する第3面および第4面を有し、前記第3面は前記第2面に対向し、気体が充填される袋状の第2部材と、
 前記第1部材と前記第2部材との積層方向からみて前記第1面の中央部に位置し、前記第1面の方向に力が加わらない時または前記力が小さい時前記第1面に接さず前記力が大きくなると前記第1面に接する、または、前記力が加わらない時または前記力が小さい時前記第1面に接する面積が小さく前記力が大きくなると前記第1面に接する面積が大きくなる第1押部と、
 前記第4面の少なくとも中央部に接する第2押部と、
を備えるモジュールと、
 前記第1部材内の気体圧力と前記第2部材内の気体圧力との差を検出する検出器と、
を備える生体情報検出装置。
(特徴2)
 前記第1押部の前記第1面に対向する面は中央部が周縁部より前記第1面の方に突出する特徴1に記載の生体情報検出装置。
(特徴3)
 前記第1面は中央部が周縁部に対し前記第1押部の方に突出する特徴1に記載の生体情報検出装置。
(特徴4)
 前記第2面と前記第3面とは接触する特徴1から3のいずれか一項に記載の生体情報検出装置。
(特徴5)
 前記モジュールは、前記第2面と前記第3面との間に前記第2面および前記第3面の周縁部に接して設けられたセパレータを備え、
 前記セパレータにより前記第2面と前記第3面は離間される特徴1から4のいずれか一項に記載の生体情報検出装置。
(特徴6)
 前記モジュールは、前記第1部材および前記第2部材を囲み、前記第1押部と前記第2押部とを連結する支持部材を備える特徴1から5のいずれか一項に記載の生体情報検出装置。
(特徴7)
 前記モジュールは、
 前記第1押部に対し前記第1部材と反対の側に前記第1押部から離れて設けられた板状部材と、
 前記板状部材の中央部と前記第1押部の中央部とを接続し、平面面積が前記板状部材の平面面積より小さい軸芯部材と、
を備える特徴1から6のいずれか一項に記載の生体情報検出装置。
(特徴8)
 互いに対向する第1面および第2面を有し、気体が充填される袋状の第1部材と、
 互いに対向する第3面および第4面を有し、前記第3面は前記第2面に対向し、気体が充填される袋状の第2部材と、
 前記第1部材に対し前記第2部材と反対の側に前記第1面から離れて設けられた第3部材と、
 前記第1面と前記第3部材との間の前記第1面の中央部に位置し、前記第3部材から前記第1面の方向に力が加わらない時または前記力が小さい時、前記第1部材および前記第3部材のいずれか一方の部材に接さず、前記力が大きくなると前記一方の部材に接する、または、前記力が加わらない時または前記力が小さい時前記一方の部材に接する面積が小さく、前記力が大きくなると前記一方の部材に接する面積が大きくなる第1押部と、
 前記第4面の少なくとも中央部に接する第2押部と、
 前記第1面と前記第3部材との間の前記第1面の周縁部に位置し、前記力によらず前記第1面および前記第3部材に接する第3押部と、
を備えるモジュールと、
 前記第1部材内の気体圧力と前記第2部材内の気体圧力との差を検出する検出器と、
を備える生体情報検出装置。
(特徴9)
 前記モジュールは、前記第1部材および前記第2部材を囲み、前記第3部材と前記第2押部とを接続する支持部材を備える特徴8に記載の生体情報検出装置。
(特徴10)
 前記モジュールは、前記第2面と前記第3面との間に前記第2面および前記第3面の周縁部に接して設けられたセパレータを備え、
 前記セパレータにより前記第2面と前記第3面は離間される特徴8または9に記載の生体情報検出装置。
(特徴11)
 前記モジュールは、
 前記第3部材に対し前記第1部材と反対の側に前記第3部材から離れて設けられた板状部材と、
 前記板状部材の中央部と前記第3部材の中央部を接続する軸芯部材と、
を備える特徴8から10のいずれか一項に記載の生体情報検出装置。
(特徴12)
 互いに対向する第1面および第2面を有し、気体が充填される袋状の第1部材と、
 互いに対向する第3面および第4面を有し、前記第3面は前記第2面に対向し、気体が充填される袋状の第2部材と、
 前記第1面の中央部に接する第1押部と、
 前記第4面の少なくとも中央部に接し、前記第4面に接する面積は前記第1押部が前記第1面に接する面積より大きい第2押部と、
 前記第1面の周縁部に接する第3押部と、
 前記第1部材および前記第2部材を囲み、前記第2押部と前記第3押部とを連結する支持部材と、
を備えるモジュールと、
 前記第1部材内の気体圧力と前記第2部材内の気体圧力との差を検出する検出器と、
を備える生体情報検出装置。
(特徴13)
 前記第1押部は、前記第3押部から離間する特徴12に記載の生体情報検出装置。
(特徴14)
 前記第2面と前記第3面は接触する特徴12または13に記載の生体情報検出装置。
(特徴15)
 互いに対向する第1面および第2面を有し、気体が充填される袋状の部材と、
 前記第1面の中央部に接する第1押部と、
 前記第2面の少なくとも中央部に接する第2押部と、
 前記第2押部に接続し、前記部材から離れて囲み、前記第1押部から離れている筐体と、
を備えるモジュールと、
 前記部材内の気体圧力を検出する検出器と、
を備える生体情報検出装置。
(特徴16)
 前記筐体は、前記部材に対し前記第2押部と反対の側に前記第1面から離れて設けられ、前記第1押部が貫通する開口を有する部分を備える特徴15に記載の生体情報検出装置。
(特徴17)
 前記モジュールは、前記部材に対し前記第2押部と反対の側に前記第1面から離れて設けられ、中央部に前記第1押部が接する板状部材を備える特徴15または16に記載の生体情報検出装置。
(特徴18)
 互いに対向する第1面および第2面を有し、気体が充填される袋状の第1部材と、
 互いに対向する第3面および第4面を有し、前記第3面は前記第2面に対向し、気体が充填される袋状の第2部材と、
 前記第1面の少なくとも中央部に接する第1押部と、
 前記第4面の少なくとも中央部に接する第2押部と、
 前記第2面と前記第3面との間に前記第2面および前記第3面の周縁部に接して設けられたセパレータと、
を備え、前記セパレータにより前記第2面と前記第3面とが離間されるモジュールと、
 前記第1部材内の気体圧力と前記第2部材内の気体圧力との差を検出する検出器と、
を備える生体情報検出装置。
(特徴19)
 互いに対向する第1面および第2面を有し、気体が充填される袋状の第1部材と、
 互いに対向する第3面および第4面を有し、前記第3面は前記第2面に対向し、気体が充填される袋状の第2部材と、
 前記第1面の少なくとも中央部に接する第1押部と、
 前記第4面の少なくとも中央部に接する第2押部と、
 前記第1押部に対し前記第1部材と反対の側に前記第1押部から離れて設けられた板状部材と、
 前記板状部材の中央部と前記第1押部の中央部を接続し、平面面積が前記板状部材の平面面積より小さい軸芯部材と、
を備えるモジュールと、
 前記第1部材内の気体圧力と前記第2部材内の気体圧力との差を検出する検出器と、
を備える生体情報検出装置。
(特徴20)
 前記第1面、前記第2面、前記第3面および前記第4面は鉛直方向に対し略直交する方向に配置される特徴1から14のいずれか一項に記載の生体情報検出装置。
(特徴21)
 互いに対向する第1面および第2面を有し、気体が充填される袋状の第1部材と、
 互いに対向する第3面および第4面を有し、前記第3面は前記第2面に対向し、気体が充填される袋状の第2部材と、
 前記第1面の少なくとも中央部に接する第1押部と、
 前記第4面の少なくとも中央部に接する第2押部と、
を備えるモジュールと、
 前記第1部材内の気体圧力と前記第2部材内の気体圧力との差を検出する検出器と、
を備え、
 前記第1面、前記第2面、前記第3面および前記第4面は鉛直方向に対し略直交する方向に配置される生体情報検出装置。
(特徴22)
 前記第2面と前記第3面は接触する特徴21に記載の生体情報検出装置。
(特徴23)
 前記モジュールは、車両のシート内に設置される特徴21または22に記載の生体情報検出装置。
(特徴24)
 特徴1から14、18から23のいずれか一項に記載の生体情報検出装置と、
 前記検出器の出力に基づき、前記モジュールが設けられた車両のシートに搭乗者が着座しているか否かを判定する判定部と、
を備える着座判定装置。
(特徴25)
 互いに対向する第1面および第2面を有し、気体が充填される袋状の第1部材と、
 互いに対向する第3面および第4面を有し、前記第3面は前記第2面に対向し、気体が充填される袋状の第2部材と、
 前記第1面の少なくとも中央部に接する第1押部と、
 前記第4面の少なくとも中央部に接する第2押部と、
を備え、車両のシートに設けられたモジュールと、
 前記第1部材内の気体圧力と前記第2部材内の気体圧力との差を検出する検出器と、
 前記検出器の出力に基づき、搭乗者が前記シートに着座しているか否かを判定する判定部と、
を備える着座判定装置。
(特徴26)
 気体が充填される袋状の第1部材と、前記第1部材の下に重ねられ、気体が充填される袋状の第2部材と、前記第1部材の上面に当接する第1押部と、前記第2部材の下面と当接する第2押部と、前記第1部材と連通した第1チューブと、前記第2部材と連通した第2チューブと、前記第1チューブおよび前記第2チューブを介して、前記第1部材内の気体の圧力と前記第2部材内の気体の圧力との差を検出する差圧センサと、を有するモジュールのうち、少なくとも前記第1部材、前記第2部材、前記第1押部および前記第2押部をシートに埋め込んで用意し、
 前記第1部材および前記第2部材の少なくとも一方の部材は、前記第1押部および前記第2押部のうち前記少なくとも一方の部材に当接する押部により、前記少なくとも一方の部材に伝わる振動を調整し、
 前記第1部材内の気体の圧力と前記第2部材内の気体の圧力との差を検出する検知方法。
(特徴27)
 前記モジュールは、四輪車のシートに埋め込まれ、搭乗者のバイタル振動、ドライブノイズの振動または駆動用モータの振動が前記第1部材および前記第2部材のいずれかも一方の部材に主に伝搬するように配置され、前記第1部材内の気体の圧力と前記第2部材内の気体の圧力との差を解析することで、前記搭乗者のバイタル振動の状態、ドライブノイズの状態または駆動用モータの状態を判断する特徴26に記載の検知方法。
(特徴28)
 前記モジュールは、四輪車のシートに埋め込まれ、前記シートの上に載せられた物が、人か荷物かを判断する特徴27に記載の検知方法。
In addition, the following features are further disclosed with respect to the above description.
(Feature 1)
a bag-shaped first member having a first surface and a second surface facing each other and filled with gas;
a bag-shaped second member having a third surface and a fourth surface facing each other, the third surface facing the second surface, and filled with a gas;
It is positioned at the center of the first surface when viewed from the lamination direction of the first member and the second member, and is in contact with the first surface when no force is applied in the direction of the first surface or when the force is small. However, when the force is not applied or when the force is small, the area in contact with the first surface is small, and when the force is large, the area in contact with the first surface is reduced. an enlarged first pressing portion;
a second pressing portion in contact with at least a central portion of the fourth surface;
a module comprising
a detector that detects the difference between the gas pressure in the first member and the gas pressure in the second member;
A biological information detection device comprising:
(Feature 2)
The biological information detection device according to feature 1, wherein the surface of the first pressing portion facing the first surface has a central portion that protrudes toward the first surface from a peripheral portion.
(Feature 3)
The biological information detection device according to feature 1, wherein the first surface has a central portion that protrudes toward the first pressing portion with respect to the peripheral portion.
(Feature 4)
4. The biological information detection device according to any one of features 1 to 3, wherein the second surface and the third surface are in contact with each other.
(Feature 5)
the module comprises a separator provided between the second surface and the third surface in contact with the peripheral edges of the second surface and the third surface;
5. The biometric information detecting device according to any one of features 1 to 4, wherein the second surface and the third surface are separated by the separator.
(Feature 6)
6. The biological information detection according to any one of features 1 to 5, wherein the module includes a support member that surrounds the first member and the second member and connects the first pressing portion and the second pressing portion. Device.
(Feature 7)
The module is
a plate-shaped member provided away from the first pressing portion on a side opposite to the first member with respect to the first pressing portion;
an axial core member connecting the central portion of the plate-like member and the central portion of the first pressing portion and having a plane area smaller than that of the plate-like member;
The biological information detection device according to any one of features 1 to 6, comprising:
(Feature 8)
a bag-shaped first member having a first surface and a second surface facing each other and filled with gas;
a bag-shaped second member having a third surface and a fourth surface facing each other, the third surface facing the second surface, and filled with a gas;
a third member provided away from the first surface on the side opposite to the second member with respect to the first member;
Positioned in the center of the first surface between the first surface and the third member, when no force is applied from the third member in the direction of the first surface or when the force is small, the first It does not touch either one of the first member and the third member, but touches the one member when the force increases, or touches the one member when the force is not applied or when the force is small. a first pressing portion having a small area and having a larger area in contact with the one member as the force increases;
a second pressing portion in contact with at least a central portion of the fourth surface;
a third pressing portion located at the peripheral edge of the first surface between the first surface and the third member and in contact with the first surface and the third member without the force;
a module comprising
a detector that detects the difference between the gas pressure in the first member and the gas pressure in the second member;
A biological information detection device comprising:
(Feature 9)
The biological information detection device according to feature 8, wherein the module includes a support member that surrounds the first member and the second member and connects the third member and the second pressing portion.
(Feature 10)
the module comprises a separator provided between the second surface and the third surface in contact with the peripheral edges of the second surface and the third surface;
10. The biological information detection device according to feature 8 or 9, wherein the second surface and the third surface are separated by the separator.
(Feature 11)
The module is
a plate-shaped member provided away from the third member on the side opposite to the first member with respect to the third member;
a shaft core member that connects the central portion of the plate member and the central portion of the third member;
The biological information detection device according to any one of features 8 to 10, comprising:
(Feature 12)
a bag-shaped first member having a first surface and a second surface facing each other and filled with gas;
a bag-shaped second member having a third surface and a fourth surface facing each other, the third surface facing the second surface, and filled with a gas;
a first pressing portion in contact with the central portion of the first surface;
a second pressing portion that is in contact with at least a central portion of the fourth surface and has an area in contact with the fourth surface that is larger than an area in which the first pressing portion is in contact with the first surface;
a third pressing portion in contact with the peripheral portion of the first surface;
a support member that surrounds the first member and the second member and connects the second pressing portion and the third pressing portion;
a module comprising
a detector that detects the difference between the gas pressure in the first member and the gas pressure in the second member;
A biological information detection device comprising:
(Feature 13)
13. The biological information detection device according to feature 12, wherein the first pressing portion is separated from the third pressing portion.
(Feature 14)
14. The biological information detection device according to feature 12 or 13, wherein the second surface and the third surface are in contact with each other.
(Feature 15)
a bag-shaped member having a first surface and a second surface facing each other and filled with gas;
a first pressing portion in contact with the central portion of the first surface;
a second pressing portion in contact with at least a central portion of the second surface;
a housing connected to said second pusher, surrounding said member away from said member and spaced from said first pusher;
a module comprising
a detector for detecting gas pressure within the member;
A biological information detection device comprising:
(Feature 16)
16. Biometric information according to feature 15, wherein the housing is provided on a side of the member opposite to the second pressing portion, away from the first surface, and has a portion having an opening through which the first pressing portion passes. detection device.
(Feature 17)
17. According to feature 15 or 16, the module includes a plate-like member provided on the side of the member opposite to the second pressing portion, away from the first surface, and having a center portion in contact with the first pressing portion. Biometric information detection device.
(Feature 18)
a bag-shaped first member having a first surface and a second surface facing each other and filled with gas;
a bag-shaped second member having a third surface and a fourth surface facing each other, the third surface facing the second surface, and filled with a gas;
a first pressing portion in contact with at least a central portion of the first surface;
a second pressing portion in contact with at least a central portion of the fourth surface;
a separator provided between the second surface and the third surface in contact with peripheral edge portions of the second surface and the third surface;
wherein the second surface and the third surface are separated by the separator; and
a detector that detects the difference between the gas pressure in the first member and the gas pressure in the second member;
A biological information detection device comprising:
(Feature 19)
a bag-shaped first member having a first surface and a second surface facing each other and filled with gas;
a bag-shaped second member having a third surface and a fourth surface facing each other, the third surface facing the second surface, and filled with a gas;
a first pressing portion in contact with at least a central portion of the first surface;
a second pressing portion in contact with at least a central portion of the fourth surface;
a plate-shaped member provided away from the first pressing portion on a side opposite to the first member with respect to the first pressing portion;
an axial core member connecting the central portion of the plate-like member and the central portion of the first pressing portion and having a plane area smaller than that of the plate-like member;
a module comprising
a detector that detects the difference between the gas pressure in the first member and the gas pressure in the second member;
A biological information detection device comprising:
(Feature 20)
15. The biological information detection device according to any one of features 1 to 14, wherein the first surface, the second surface, the third surface, and the fourth surface are arranged in a direction substantially perpendicular to the vertical direction.
(Feature 21)
a bag-shaped first member having a first surface and a second surface facing each other and filled with gas;
a bag-shaped second member having a third surface and a fourth surface facing each other, the third surface facing the second surface, and filled with a gas;
a first pressing portion in contact with at least a central portion of the first surface;
a second pressing portion in contact with at least a central portion of the fourth surface;
a module comprising
a detector that detects the difference between the gas pressure in the first member and the gas pressure in the second member;
with
The biological information detecting device, wherein the first surface, the second surface, the third surface and the fourth surface are arranged in a direction substantially orthogonal to a vertical direction.
(Feature 22)
22. The biological information detection device according to feature 21, wherein the second surface and the third surface are in contact with each other.
(Feature 23)
23. The biometric information detection device according to feature 21 or 22, wherein the module is installed in a seat of a vehicle.
(Feature 24)
the biological information detection device according to any one of features 1 to 14 and 18 to 23;
a determination unit that determines, based on the output of the detector, whether or not an occupant is seated in the vehicle seat provided with the module;
A seating determination device.
(Feature 25)
a bag-shaped first member having a first surface and a second surface facing each other and filled with gas;
a bag-shaped second member having a third surface and a fourth surface facing each other, the third surface facing the second surface, and filled with a gas;
a first pressing portion in contact with at least a central portion of the first surface;
a second pressing portion in contact with at least a central portion of the fourth surface;
a module provided in the vehicle seat, comprising
a detector that detects the difference between the gas pressure in the first member and the gas pressure in the second member;
a determination unit that determines whether or not the passenger is seated on the seat based on the output of the detector;
A seating determination device.
(Feature 26)
a first bag-shaped member filled with gas; a second bag-shaped member placed under the first member and filled with gas; and a first pressing portion abutting on an upper surface of the first member. , a second pressing portion that abuts on the lower surface of the second member, a first tube that communicates with the first member, a second tube that communicates with the second member, and the first tube and the second tube. and a differential pressure sensor that detects a difference between the gas pressure in the first member and the gas pressure in the second member via at least the first member, the second member, preparing the first pressing portion and the second pressing portion by embedding them in a sheet;
At least one of the first member and the second member absorbs vibration transmitted to the at least one member by a pressing portion that abuts on at least one of the first pressing portion and the second pressing portion. adjust and
A sensing method for detecting a difference between the gas pressure in the first member and the gas pressure in the second member.
(Feature 27)
The module is embedded in the seat of a four-wheeled vehicle, and the vital vibration of the passenger, the vibration of the drive noise, or the vibration of the drive motor mainly propagates to either one of the first member and the second member. By analyzing the difference between the pressure of the gas in the first member and the pressure of the gas in the second member, the state of vital vibration of the passenger, the state of drive noise, or the drive motor 27. The sensing method of feature 26 for determining the state of the
(Feature 28)
28. The sensing method of feature 27, wherein the module is embedded in a seat of a four-wheeled vehicle and determines whether an object placed on the seat is a person or a package.
 10 モジュール
 11、13、21、23 空間
 12、14 パッド
 12a、14a 上面
 12b、14b 下面
 16、16a、16b、18 押部
 20 差圧センサ
 22 筐体
 24 振動膜
 25 センサ素子
 41 カーシート
 52 筐体
 52a 上板
 52b 下板
 52c 側板
 54 軸芯部材
 55、56 板状部材
 57 開口
REFERENCE SIGNS LIST 10 module 11, 13, 21, 23 space 12, 14 pad 12a, 14a upper surface 12b, 14b lower surface 16, 16a, 16b, 18 pressing portion 20 differential pressure sensor 22 housing 24 diaphragm 25 sensor element 41 car seat 52 housing 52a Upper plate 52b Lower plate 52c Side plate 54 Axial member 55, 56 Plate member 57 Opening

Claims (17)

  1.  互いに対向する第1面および第2面を有し、気体が充填される袋状の第1部材と、
     互いに対向する第3面および第4面を有し、前記第3面は前記第2面に対向し、気体が充填される袋状の第2部材と、
     前記第1部材と前記第2部材との積層方向からみて前記第1面の中央部に位置する第1押部と、
     前記第4面の少なくとも中央部に接する第2押部と、
    を備えるモジュールと、
     前記第1部材内の気体圧力と前記第2部材内の気体圧力との差を検出する検出器と、
    を備え、
     前記第1面と、前記第1押部のうち前記第1面に対向する第5面と、の距離は、周縁部から中央部に向かうに従い近くなり、
     前記第1面と前記第5面との間は振動が伝達可能である生体情報検出装置。
    a bag-shaped first member having a first surface and a second surface facing each other and filled with gas;
    a bag-shaped second member having a third surface and a fourth surface facing each other, the third surface facing the second surface, and filled with a gas;
    a first pressing portion located in the central portion of the first surface when viewed from the stacking direction of the first member and the second member;
    a second pressing portion in contact with at least a central portion of the fourth surface;
    a module comprising
    a detector that detects the difference between the gas pressure in the first member and the gas pressure in the second member;
    with
    The distance between the first surface and the fifth surface of the first pressing portion facing the first surface decreases from the peripheral portion toward the central portion,
    A biological information detection device, wherein vibration can be transmitted between the first surface and the fifth surface.
  2.  前記第1押部の前記第1面に対向する面は中央部が周縁部より前記第1面の方に突出する請求項1に記載の生体情報検出装置。 The biological information detection device according to claim 1, wherein the surface of the first pressing portion facing the first surface projects toward the first surface from the peripheral portion at the central portion thereof.
  3.  前記第1面は中央部が周縁部に対し前記第1押部の方に突出する請求項1に記載の生体情報検出装置。 The biological information detection device according to claim 1, wherein the first surface has a central portion that protrudes toward the first pressing portion with respect to the peripheral portion.
  4.  前記第2面と前記第3面とは接触する請求項1から3のいずれか一項に記載の生体情報検出装置。 The biological information detection device according to any one of claims 1 to 3, wherein the second surface and the third surface are in contact with each other.
  5.  前記モジュールは、前記第2面と前記第3面との間に前記第2面および前記第3面の周縁部に接して設けられたセパレータを備え、
     前記セパレータにより前記第2面と前記第3面は離間される請求項1から3のいずれか一項に記載の生体情報検出装置。
    the module comprises a separator provided between the second surface and the third surface in contact with the peripheral edges of the second surface and the third surface;
    The biological information detecting device according to any one of claims 1 to 3, wherein the second surface and the third surface are separated from each other by the separator.
  6.  前記モジュールは、前記第1部材および前記第2部材を囲み、前記第1押部と前記第2押部とを連結する支持部材を備える請求項1から3のいずれか一項に記載の生体情報検出装置。 4. The biological information according to any one of claims 1 to 3, wherein the module includes a support member that surrounds the first member and the second member and connects the first pressing portion and the second pressing portion. detection device.
  7.  前記モジュールは、
     前記第1押部に対し前記第1部材と反対の側に前記第1押部から離れて設けられた板状部材と、
     前記板状部材の中央部と前記第1押部の中央部とを接続し、平面面積が前記板状部材の平面面積より小さい軸芯部材と、
    を備える請求項1から3のいずれか一項に記載の生体情報検出装置。
    The module is
    a plate-shaped member provided away from the first pressing portion on a side opposite to the first member with respect to the first pressing portion;
    an axial core member connecting the central portion of the plate-like member and the central portion of the first pressing portion and having a plane area smaller than that of the plate-like member;
    The biological information detecting device according to any one of claims 1 to 3, comprising:
  8.  前記第1面、前記第2面、前記第3面および前記第4面は鉛直方向に対し略直交する方向に配置される請求項1から3のいずれか一項に記載の生体情報検出装置。 The biological information detecting device according to any one of claims 1 to 3, wherein the first surface, the second surface, the third surface and the fourth surface are arranged in a direction substantially perpendicular to the vertical direction.
  9.  前記モジュールは、
     前記第1押部に対し前記第1部材と反対の側に設けられた第3部材と、
     前記第1面と前記第3部材との間の前記第1面の周縁部に位置し、前記第1面および前記第3部材に接する第3押部と、
    を備え、
     前記第1面と前記第3部材との間は前記第1押部を介し振動が伝達可能である請求項1に記載の生体情報検出装置。
    The module is
    a third member provided on the side opposite to the first member with respect to the first pressing portion;
    a third pressing portion positioned at the peripheral edge portion of the first surface between the first surface and the third member and in contact with the first surface and the third member;
    with
    2. The biological information detecting device according to claim 1, wherein vibration can be transmitted between said first surface and said third member via said first pressing portion.
  10.  前記モジュールは、前記第1部材および前記第2部材を囲み、前記第3部材と前記第2押部とを接続する支持部材を備える請求項9に記載の生体情報検出装置。 The biological information detection device according to claim 9, wherein the module includes a support member that surrounds the first member and the second member and connects the third member and the second pressing portion.
  11.  前記モジュールは、前記第2面と前記第3面との間に前記第2面および前記第3面の周縁部に接して設けられたセパレータを備え、
     前記セパレータにより前記第2面と前記第3面は離間される請求項9または10に記載の生体情報検出装置。
    the module comprises a separator provided between the second surface and the third surface in contact with the peripheral edges of the second surface and the third surface;
    The biological information detecting device according to claim 9 or 10, wherein the second surface and the third surface are separated by the separator.
  12.  前記モジュールは、
     前記第3部材に対し前記第1部材と反対の側に前記第3部材から離れて設けられた板状部材と、
     前記板状部材の中央部と前記第3部材の中央部を接続する軸芯部材と、
    を備える請求項9または10に記載の生体情報検出装置。
    The module is
    a plate-shaped member provided away from the third member on the side opposite to the first member with respect to the third member;
    a shaft core member that connects the central portion of the plate member and the central portion of the third member;
    The biological information detection device according to claim 9 or 10, comprising:
  13.  互いに対向する第1面および第2面を有し、気体が充填される袋状の第1部材と、
     互いに対向する第3面および第4面を有し、前記第3面は前記第2面に対向し、気体が充填される袋状の第2部材と、
     前記第1面の少なくとも中央部に接する第1押部と、
     前記第4面の少なくとも中央部に接する第2押部と、
     前記第1押部に対し前記第1部材と反対の側に前記第1押部から離れて設けられた板状部材と、
     前記板状部材の中央部と前記第1押部の中央部を接続し、平面面積が前記板状部材の平面面積より小さい軸芯部材と、
    を備えるモジュールと、
     前記第1部材内の気体圧力と前記第2部材内の気体圧力との差を検出する検出器と、
    を備える生体情報検出装置。
    a bag-shaped first member having a first surface and a second surface facing each other and filled with gas;
    a bag-shaped second member having a third surface and a fourth surface facing each other, the third surface facing the second surface, and filled with a gas;
    a first pressing portion in contact with at least a central portion of the first surface;
    a second pressing portion in contact with at least a central portion of the fourth surface;
    a plate-shaped member provided away from the first pressing portion on a side opposite to the first member with respect to the first pressing portion;
    an axial core member connecting the central portion of the plate-like member and the central portion of the first pressing portion and having a plane area smaller than that of the plate-like member;
    a module comprising
    a detector that detects the difference between the gas pressure in the first member and the gas pressure in the second member;
    A biological information detection device comprising:
  14.  互いに対向する第1面および第2面を有し、気体が充填される袋状の第1部材と、
     互いに対向する第3面および第4面を有し、前記第3面は前記第2面に対向し、気体が充填される袋状の第2部材と、
     前記第1面の少なくとも中央部に接する第1押部と、
     前記第4面の少なくとも中央部に接する第2押部と、
    を備えるモジュールと、
     前記第1部材内の気体圧力と前記第2部材内の気体圧力との差を検出する検出器と、
    を備え、
     前記第1面、前記第2面、前記第3面および前記第4面は鉛直方向に対し略直交する方向に配置される生体情報検出装置。
    a bag-shaped first member having a first surface and a second surface facing each other and filled with gas;
    a bag-shaped second member having a third surface and a fourth surface facing each other, the third surface facing the second surface, and filled with a gas;
    a first pressing portion in contact with at least a central portion of the first surface;
    a second pressing portion in contact with at least a central portion of the fourth surface;
    a module comprising
    a detector that detects the difference between the gas pressure in the first member and the gas pressure in the second member;
    with
    The biological information detecting device, wherein the first surface, the second surface, the third surface and the fourth surface are arranged in a direction substantially orthogonal to a vertical direction.
  15.  前記第2面と前記第3面は接触する請求項14に記載の生体情報検出装置。 The biological information detecting device according to claim 14, wherein the second surface and the third surface are in contact with each other.
  16.  前記モジュールは、車両のシート内に設置される請求項14または15に記載の生体情報検出装置。 The biological information detection device according to claim 14 or 15, wherein the module is installed inside a seat of a vehicle.
  17.  請求項1、13および14のいずれか一項に記載の生体情報検出装置と、
     前記検出器の出力に基づき、前記モジュールが設けられた車両のシートに搭乗者が着座しているか否かを判定する判定部と、
    を備える着座判定装置。
     
    a biological information detection device according to any one of claims 1, 13 and 14;
    a determination unit that determines, based on the output of the detector, whether or not an occupant is seated in the vehicle seat provided with the module;
    A seating determination device.
PCT/JP2022/016498 2021-04-05 2022-03-31 Biological information detection device and seating assessment device WO2022215645A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023512995A JPWO2022215645A1 (en) 2021-04-05 2022-03-31

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-064473 2021-04-05
JP2021064473 2021-04-05

Publications (1)

Publication Number Publication Date
WO2022215645A1 true WO2022215645A1 (en) 2022-10-13

Family

ID=83546109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016498 WO2022215645A1 (en) 2021-04-05 2022-03-31 Biological information detection device and seating assessment device

Country Status (2)

Country Link
JP (1) JPWO2022215645A1 (en)
WO (1) WO2022215645A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006218068A (en) * 2005-02-10 2006-08-24 Yokogawa Electric Corp Bioinformation detecting apparatus
JP2009082585A (en) * 2007-10-02 2009-04-23 Paramount Bed Co Ltd Living body information collecting apparatus
JP2017038872A (en) * 2015-08-21 2017-02-23 トヨタ自動車株式会社 Vehicle seat
JP2018047862A (en) * 2016-09-23 2018-03-29 トヨタ自動車株式会社 Vehicle seat
US10562412B1 (en) * 2016-03-24 2020-02-18 Xsensor Technology Corporation Intelligent seat systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006218068A (en) * 2005-02-10 2006-08-24 Yokogawa Electric Corp Bioinformation detecting apparatus
JP2009082585A (en) * 2007-10-02 2009-04-23 Paramount Bed Co Ltd Living body information collecting apparatus
JP2017038872A (en) * 2015-08-21 2017-02-23 トヨタ自動車株式会社 Vehicle seat
US10562412B1 (en) * 2016-03-24 2020-02-18 Xsensor Technology Corporation Intelligent seat systems
JP2018047862A (en) * 2016-09-23 2018-03-29 トヨタ自動車株式会社 Vehicle seat

Also Published As

Publication number Publication date
JPWO2022215645A1 (en) 2022-10-13

Similar Documents

Publication Publication Date Title
JP4900650B2 (en) Biological information pressure sensor and biological information pressure detection device
US20150265200A1 (en) Safety belt arrangements and methods for determining information with respect to the cardiac and/or respiratory activity of a user of a safety belt
US6271760B1 (en) Human body sensor for seat
JP4958154B2 (en) Motorcycle
JP2018047862A (en) Vehicle seat
JP2015053994A (en) Seat device
JP2001260698A (en) Cardiac respiratory detecting device
US11553864B2 (en) Biological sensor and vehicle seat
JP5887875B2 (en) Biological information detection device
JP2007061490A (en) Occupant condition detecting device
JP5992291B2 (en) Biological information detection device
JP4595666B2 (en) Vehicle safety system
WO2022215645A1 (en) Biological information detection device and seating assessment device
JP2012170471A (en) Vibration sensor
JP6072534B2 (en) Biological information measuring panel and biological information measuring method
JP5890161B2 (en) Seat device
EP0930032B1 (en) Seat
JPH07244168A (en) Vibration detection device and human body detection apparatus utilizing it
JP7087460B2 (en) Biometric information detection sensor
JP6617591B2 (en) Biological information detection device
WO2023166774A1 (en) Sheet with sensor
JP7093922B2 (en) Biometric information detector
JP5761039B2 (en) Vehicle seat
WO2023166787A1 (en) Sensor-equipped seat
WO2021014884A1 (en) Occupant sensing device and seat

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784629

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023512995

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22784629

Country of ref document: EP

Kind code of ref document: A1