WO2022215638A1 - Microscope and observation method - Google Patents
Microscope and observation method Download PDFInfo
- Publication number
- WO2022215638A1 WO2022215638A1 PCT/JP2022/016356 JP2022016356W WO2022215638A1 WO 2022215638 A1 WO2022215638 A1 WO 2022215638A1 JP 2022016356 W JP2022016356 W JP 2022016356W WO 2022215638 A1 WO2022215638 A1 WO 2022215638A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- probe
- light
- sample
- microscope
- tip
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 10
- 239000000523 sample Substances 0.000 claims abstract description 210
- 230000005684 electric field Effects 0.000 claims abstract description 30
- 238000005259 measurement Methods 0.000 claims abstract description 25
- 239000011248 coating agent Substances 0.000 claims description 16
- 229910003460 diamond Inorganic materials 0.000 claims description 16
- 239000010432 diamond Substances 0.000 claims description 16
- 238000000576 coating method Methods 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 15
- 239000002184 metal Substances 0.000 claims description 15
- 230000005641 tunneling Effects 0.000 claims description 9
- 239000000243 solution Substances 0.000 description 31
- 150000002500 ions Chemical class 0.000 description 25
- 230000004048 modification Effects 0.000 description 19
- 238000012986 modification Methods 0.000 description 19
- 238000010586 diagram Methods 0.000 description 15
- 239000007788 liquid Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 238000001069 Raman spectroscopy Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000005284 excitation Effects 0.000 description 4
- 239000003431 cross linking reagent Substances 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 150000001718 carbodiimides Chemical class 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000004971 Cross linker Substances 0.000 description 1
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 1
- 229910013292 LiNiO Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- HWLDNSXPUQTBOD-UHFFFAOYSA-N platinum-iridium alloy Chemical compound [Ir].[Pt] HWLDNSXPUQTBOD-UHFFFAOYSA-N 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q30/00—Auxiliary means serving to assist or improve the scanning probe techniques or apparatus, e.g. display or data processing devices
- G01Q30/08—Means for establishing or regulating a desired environmental condition within a sample chamber
- G01Q30/12—Fluid environment
- G01Q30/14—Liquid environment
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q60/00—Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
- G01Q60/10—STM [Scanning Tunnelling Microscopy] or apparatus therefor, e.g. STM probes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q60/00—Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
- G01Q60/10—STM [Scanning Tunnelling Microscopy] or apparatus therefor, e.g. STM probes
- G01Q60/16—Probes, their manufacture, or their related instrumentation, e.g. holders
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q60/00—Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
- G01Q60/44—SICM [Scanning Ion-Conductance Microscopy] or apparatus therefor, e.g. SICM probes
Definitions
- the present invention relates to microscopes and observation methods.
- Patent Document 1 discloses a method for measuring a sample surface placed in a liquid using a scanning probe microscope having a scanning tunneling microscope function and an atomic force microscope function; A cantilever having a conductive probe that probes a surface and an electrode electrically connected to the probe, the cantilever being covered with an insulator except for the tip of the probe and the electrode. wherein the cantilever is excited at the resonance frequency, and either the current flowing between the probe and the sample or the amplitude is controlled to a predetermined state while the other is monitored.
- a measurement method using a scanning probe microscope is disclosed.
- a microscope comprises a probe, a first light output unit that outputs a first pulsed light to the tip of the probe, a sample to be observed, and a solution in which the sample is immersed. and a measurement unit for measuring a tunnel current flowing between the probe and the sample due to the electric field generated by the first light.
- An observation method is an observation method for observing the sample immersed in the solution using a probe and a first light output unit that outputs a first pulsed light, disposing the tip of the probe near the sample; outputting the first light to the tip of the probe; measuring a tunneling current flowing between the probe and the sample due to the electric field generated by the first light.
- FIG. 12 is a diagram showing an example of a technique for fixing diamond particles to a pipette in modification 10; Enlarged view showing the vicinity of the tip of the probe in modified example 11
- FIG. 1 A first embodiment of a microscope according to the present invention will be described below with reference to FIGS. 1 to 7.
- FIG. 1 A first embodiment of a microscope according to the present invention will be described below with reference to FIGS. 1 to 7.
- FIG. 1 A first embodiment of a microscope according to the present invention will be described below with reference to FIGS. 1 to 7.
- FIG. 1 A first embodiment of a microscope according to the present invention will be described below with reference to FIGS. 1 to 7.
- FIG. 1 is a schematic configuration diagram of a microscope T.
- the microscope T contains a pump light output section 2 that outputs a pump light 21, a probe light output section 3 that outputs a probe light 31, a probe 30, a measurement section 6, and a sample 90 observed by the microscope T.
- a sample table 91 is provided.
- the pump light 21 is also referred to as "second light”
- the pump light output section 2 is also referred to as “second light output section”
- the probe light 31 is also referred to as “first light”
- the probe light output section 3 is referred to as "first light”. It is also called a "first optical output section”.
- a terahertz electric field is used for the probe light 31 in this embodiment.
- the sample table 91 has a solution reservoir 92 which is a depression.
- Solution reservoir 92 is filled with solution 80 .
- a sample 90 to be observed is arranged in a solution reservoir 92 on a sample stage 91 . That is, sample 90 is immersed in solution 80 .
- Solution 80 is, for example, physiological saline, and sample 90 is, for example, microorganisms, cells, compounds, metals, and the like.
- the tip of the probe 30 is arranged close to the sample 90 and the tip of the probe 30 is immersed in the solution 80 .
- the probe 30 is made of, for example, tungsten, nickel, or platinum iridium, and is processed so that the tip becomes thinner. No special treatment is applied to the side surface of the probe 30 . That is, the probe 30 is not provided with an insulating coating or the like.
- FIG. 2 is an enlarged view showing the vicinity of the tip of the probe 30.
- the reference numeral 80 indicates an empty space for convenience of drawing, but it is intended to indicate that the probe 30 and the sample 90 are present in the solution 80.
- FIG. The tip of the probe 30 and the sample 90 are arranged very close, for example, at a distance of several nanometers, and the spot diameters of the pump light 21 and the probe light 31, which are large compared to this distance, are very large. Therefore, not only the tip of the probe 30 but also the solution 80 existing around the probe 30 is irradiated with the pump light 21 and the probe light 31 .
- the total current I ALL is the sum of the tunnel current I T flowing between the sample 90 and the probe 30 and the ion current II generated by the electric field generated by the pump light 21 and the probe light 31 acting on the solution 80. .
- the ion current II can be ignored because the ions do not move for the reason described later. Therefore, since the total current I ALL is the tunnel current I T , the tunnel current I T can be accurately measured. Returning to FIG. 1, the description continues.
- the pump light output unit 2 irradiates the tip of the probe 30 with pulsed pump light 21 .
- the probe light output unit 3 irradiates the tip of the probe 30 with pulsed probe light 31 .
- An instantaneous electric field (voltage) is generated by irradiation of each of the pump light 21 and the probe light 31 .
- CEP (Carrier Envelope Phase)-controlled pump light 21 is emitted to generate a desired electric field, the sample 90 is controlled, and the probe light 31 can be used to measure the change.
- CEP Carrier Envelope Phase
- the pump light output unit 2 outputs a THz pulse having a period of 1 picosecond and a width of about 1 picosecond, which is obtained by irradiating a LiNiO 3 crystal with an IR pulse light having a wavelength of 1034 nm and a width of 300 femtoseconds.
- the spot diameter of the pump light 21 in this embodiment is about 1 millimeter.
- the pump light 21 has its CEP controlled and is output with a constant phase.
- the measurement unit 6 detects and records the electrons entering and exiting the sample 90, which serves as the counter electrode of the probe 30 in this embodiment, as the total current I ALL . Whether the electrons flow from the probe 30 toward the sample 90 or from the sample 90 toward the probe 30 depends on the direction of the instantaneous electric field.
- the measurement unit 6 measures at least the tunnel current I T that flows between the probe 30 and the sample 90 due to the electric field generated by the probe light 31 .
- the pump light output section 2 includes a first light source 22 and a first modulation section 23 .
- the probe light output section 3 includes a second light source 32 , a second modulation section 33 and a delay adjustment section 34 .
- the measurement unit 6 includes a current preamplifier 61 , a lock-in amplifier 62 and a storage device 63 .
- the first light source 22 of the pump light output unit 2 outputs pulsed laser light of about one cycle or less than one cycle at predetermined time intervals.
- the first light source 22 is, for example, a combination of a light source that outputs a pulsed laser with a pulse width of about 1 femtosecond and a LiNbO 3 crystal.
- the first modulation section 23 adjusts the phase of the laser light output by the first light source 22 for the purpose of controlling the direction of the electric field. The configuration of the first modulating section 23 will be described later.
- the pump light output unit 2 outputs laser light output by the first light source 22 and modulated by the first modulation unit 23 .
- the configuration of the second light source 32 of the probe light output section 3 is the same as that of the first light source 22 .
- the second modulation section 33 adjusts the phase of the laser light output from the second light source 32 and performs modulation for lock-in detection by the lock-in amplifier 62, for example, on-off modulation.
- the second modulating section 33 has an optical chopper in addition to the configuration of the first modulating section 23 .
- the second modulation section 33 outputs the reference signal to the lock-in amplifier 62 at the timing when the light passes through the optical chopper.
- the delay adjustment unit 34 is a device that adjusts the output timing of the laser light output from the probe light output unit 3.
- the optical path OP of the laser light including the mirror, the piezo element that drives the mirror, and the piezo element. Realized by combination with a controller.
- the delay adjustment unit 34 By using the delay adjustment unit 34, the time difference between the timing at which the sample 90 is irradiated with the pump light 21 and the timing at which the probe light 31 is irradiated to the sample 90 can be freely adjusted.
- a current preamplifier 61 of the measurement unit 6 detects electrons entering and exiting the sample 90 as a total current I ALL and outputs it to the lock-in amplifier 62 .
- the lock-in amplifier 62 operates based on the reference signal output from the second modulation section 33 , detects the modulation frequency component of the total current I ALL , and outputs it to the storage device 63 .
- a storage device 63 is a non-volatile storage device such as a flash memory, and records the signal output by the lock-in amplifier 62 .
- FIG. 4 is a diagram showing the configuration of the first modulating section 23.
- Reference characters OP indicated by hatching in FIG. 4 indicate optical paths of the pump light 21 .
- a first lens 121 and a second lens 122 are arranged facing each other in the optical path OP. By passing the pump light 21 through the first lens 121 and the second lens 122, the pump light 21 can be controlled to a desired CEP.
- the materials of the first lens 121 and the second lens 122 may both have transparency to the pump light 21, and the higher the transparency, the better.
- the shapes of the first lens 121 and the second lens 122 are preferably the same, and a spherical lens or a cylindrical lens can be selected according to the desired CEP aspect.
- the first lens 121 and the second lens 122 each have at least one entrance surface and one exit surface.
- the exit surface 121b of the first lens 121 and the entrance surface 122a of the second lens 122 are arranged to face each other.
- FIG. 4 which is a specific example of the arrangement of spherical lenses
- the first lens 121 and the second lens 122 are arranged such that the exit surface 121b of the first lens 121 and the entrance surface 122a of the second lens 122 are arranged. They are arranged so that THz waves are transmitted from the entrance surface 121a of the first lens 121 to the exit surface 121b and then transmitted from the entrance surface 122a of the second lens 122 to the exit surface 122b.
- THz waves are transmitted from the entrance surface 121a of the first lens 121 to the exit surface 121b and then transmitted from the entrance surface 122a of the second lens 122 to the exit surface 122b.
- the second modulation section 33 has a configuration for performing modulation for lock-in detection, for example, a configuration in which an optical chopper is added.
- FIG. 5 is a schematic diagram of pump light 21 and probe light 31.
- FIG. The upper part of FIG. 5 shows the timing of the pump light 21 and the probe light 31 that irradiate the probe 30, and the probe light 31 is irradiated after the pump light 21 is irradiated. After a while, the pump light 21 is applied again. The time from the irradiation of the pump light 21 to the irradiation of the probe light 31 is the aforementioned delay time.
- the lower part of FIG. 5 shows main waveforms of the pump light 21 and the probe light 31.
- the horizontal axis represents time
- the vertical axis represents the distance between the probe 30 and the sample 90 due to the irradiated pump light 21 and probe light 31.
- times t1 to t5 are, for example, about 1 picosecond.
- the lower part of FIG. 5 merely shows the main waveforms, and does not completely become zero before time t1 or after time t5.
- the integral value of the electric field from time t1 to t2 is area A1
- the integral value of the electric field from time t2 to t4 is area A2
- the integral value of the electric field from time t4 to t5 is area A3
- the sum of A1 and A3 is It has a relationship approximately equal to A2. Therefore, since the integral value of the electric field from time t1 to t5 is almost zero, ions in the region of the solution 80 irradiated with the pump light 21 and the probe light 31 start moving at time t1, but return to normal at time t5. position.
- the time period during which the electric field is applied is very short, and the generated electric field is strong only directly under the probe 30 due to the effect of probe enhancement, so that the effect is limited to a narrow range in both the time domain and the space domain. do not have. That is, the ion current II can be ignored regardless of whether the pump light 21 or the probe light 31 is applied.
- FIG. 6 is a schematic configuration diagram of a comparative microscope, which is a comparative example, and corresponds to FIG. 1 of the present invention.
- the structure of the sample stage 91 is the same as in FIG. 1, and the sample 90 immersed in the solution 80 is arranged in the solution reservoir 92 .
- the tip of the conventional probe Z is placed close to the sample 90 and the tip of the conventional probe Z is immersed in the solution 80 .
- a predetermined constant voltage is applied to the conventional probe Z from the applying section 7 .
- the side surface of the probe Z is insulated.
- the measurement unit 6 detects the electrons flowing into the sample 90, which conventionally serves as the counter electrode of the probe Z, as the total current I ALL using the current preamplifier 61 .
- FIG. 7 is an enlarged view showing the vicinity of the tip of the conventional probe Z.
- a voltage is applied to the conventional probe Z, but the side surface of the conventional probe Z is coated with an insulating coating agent, and only the tip of the conventional probe Z is exposed from the insulating coating.
- the measuring unit 6 measures the total current IALL including this tunnel current IT . .
- the voltage is constantly applied to the conventional probe Z from the application unit 7. Therefore, even if the conventional probe Z and the sample 90 are separated from each other to some extent, the sample 90 is exposed to the liquid 80 via the solution 80.
- An ion current II flows.
- the total current I ALL measured by the measurement unit 6 is the sum of the tunnel current I T and the ion current II.
- the tunnel current IT is very small compared to the ion current II , and even if the tunnel current IT is generated, it is very difficult to detect it if it is smaller than the fluctuation width of the ion current II .
- the microscope T includes a probe 30, a probe light output unit 3 that outputs a probe light 31 that is a pulsed first light to the tip of the probe 30, a sample 90 to be observed, and a sample 90 that is immersed. and a measuring unit 6 for measuring a tunneling current I T flowing between the probe 30 and the sample 90 due to the electric field generated by the probe light 31 .
- a voltage is constantly applied to the probe 30, but the microscope T measures the tunneling current I T caused by the pulsed probe light 31. can perform STM measurements with little noise.
- a terahertz electric field is used for the probe light 31, which is the first light, and the time width is 1 picosecond or less. Therefore, the movement of ions contained in the solution 80 is small, and the adverse effect of the ion current II on the measurement of the tunnel current IT can be suppressed.
- the first light has a substantially zero integral value of the electric field generated by one pulse. Therefore, the movement of ions contained in the solution 80 is suppressed, and the ion current II can be ignored.
- the microscope T includes a pump light output unit 2 that outputs a pump light 21, which is a pulsed second light, to the tip of the probe 30; and a delay adjustment unit 34 that adjusts the delay time, which is the difference from the timing at which the signal is received.
- the delay adjuster 34 changes the delay time in a plurality of ways. Therefore, it is possible to measure the dynamics of a sample 90 immersed in the solution 80, such as a cell.
- both the pump light 21 and the probe light 31 are applied to the probe 30 .
- only the probe light 31 may be irradiated without irradiating the pump light 21 .
- the dynamics of the sample 90 cannot be measured, but the characteristics of the sample 90 in liquid can be measured with a simpler configuration than the above-described embodiment.
- the probe 30 may be made of a material that does not reflect light, such as gold or silver. In this case, since the light is easily reflected, the probe 30 is less likely to absorb heat, and the influence of heat such as thermal expansion of the probe can be reduced.
- both the pump light 21 and the probe light 31 generated substantially zero integral values of electric fields.
- at least one of the pump light 21 and the probe light 31 does not have to have an integral value of the generated electric field that is substantially zero.
- the ions in the solution 80 move little by little and the ion current II cannot be ignored. This effect can be reduced by shortening the time of .
- the times t1 to t5 may be set to 100 femtoseconds, which is 1 picosecond or less.
- both the pump light 21 and the probe light 31 were CEP controlled.
- controlling the CEP of the pump light 21 is not an essential configuration.
- the pump light 21 may be a normal ultrashort pulse whose phase is not controlled.
- the pump light 21 to be emitted is not limited to one cycle or less, and may include a plurality of cycles.
- the pulse time of the pump light 21 and the probe light 31, that is, the time from t1 to t5 in FIG. 5, is about 1 picosecond.
- the pulse time is not limited to this, and may be shorter than 1 picosecond or longer than 1 picosecond.
- the pulse duration may be in macroseconds, nanoseconds or femtoseconds, depending on the phenomenon being measured.
- the pump light output section 2 was equipped with a first light source 22, the probe light output section 3 with a second light source 32, and the microscope T with a total of two light sources.
- the microscope T may be configured with only one light source.
- the laser light output from the common light source is split into two by a beam splitter, and the two are input to the first modulating section 23 and the second modulating section 33, respectively.
- one laser beam may be input to the delay adjustment unit 34 before being input to the second modulation unit 33 and the output of the delay adjustment unit 34 may be input to the second modulation unit 33 .
- the sample stage 91 has the solution reservoir 92 in the above-described embodiment, it is not essential for the sample stage 91 to have the solution reservoir 92 .
- a container containing the solution 80 and the sample 90 may be placed on the sample table 91 .
- the configuration of the first modulating section 23 may be as follows. That is, the first modulating section 23 may be a combination of a half-wave plate and a wire grid polarizer. In this case, the light output from the first light source 22 is input to the half-wave plate, and the output is input to the wire grid polarizer. In this configuration, the phase of the pump light 21 can be freely set by rotating the half-wave plate.
- the probe 30 described above may be configured as a part of the ion conductance microscope, specifically as a metal coating covering the tip of the pipette 811 with which the probe 30 constitutes the ion conductance microscope.
- FIG. 8 is a schematic diagram of the microscope T2 in the tenth modification. However, in FIG. 9, the pump light output section 2, the probe light output section 3, and the measurement section 6, which are common to FIG. 1, are omitted.
- Microscope T2 also functions as an ion conductance microscope.
- the microscope T2 further includes a pipette 811, a first electrode 812, a second electrode 814, and ancillary devices (not shown) in addition to the pump light output section 2, the probe light output section 3, and the measurement section 6 described above. Prepare.
- Microscope T2 has two modes of operation: ion conduction mode and tunneling mode.
- a pipette 811 is a hollow pipette made of glass and arranged on an XYZ stage (not shown). The inside of the pipette 811 is filled with the solution 80 and the first electrode 812 is inserted inside the pipette 811 . A constant voltage is applied to the second electrode 814 in the ion conduction mode, and current flows between the first electrode 812 and the second electrode 814 through the solution 80 . Since the magnitude of this current depends on the distance between the pipette 811 and the sample 90, the surface shape of the sample 90 can be measured with high accuracy. In the ion conduction mode, the pump light output section 2, the probe light output section 3, and the measurement section 6 do not operate.
- FIG. 8 The lower part of FIG. 8 is a conceptual diagram showing the tip of the pipette 811.
- the tip of pipette 811 has a diameter of several nanometers to several hundreds of nanometers, for example, 100 nm, and diamond particles 8112 are fixed by cross-linking agent 8111 .
- Various cross-linking agents 8111 can be used.
- diamond particles 8112 can be fixed to pipette 811 by the method shown in FIG.
- the diamond particles contain diamond nitrogen-vacancy centers, which are a type of lattice defect. Diamond nitrogen-vacancy centers are also called nitrogen-vacancy centers or NV centers. In this modification, diamond nitrogen-vacancy centers are referred to as "diamond NV".
- the tip of the pipette 811 is coated with a metal coating 8112A.
- the metal coating 8112A may be applied not only to the tip of the pipette 811, but also to the side of the pipette 811 and the area near the tip.
- the metal coating 8112A may not be applied to some areas of the tip of the pipette 811 .
- This metal coating 8112A is, for example, gold, silver, and platinum. This metal coating 8112A can be applied to pipette 811 by any method.
- FIG. 9 is a diagram showing an example of a technique for fixing the diamond particles 8112 to the pipette 811.
- FIG. 9 there is a metal coating 8112A, eg gold, between the diamond particle 8112 and the pipette 811.
- the diamond is bound with a carbodiimide crosslinker 8113 and the pipette 811 tip is bound with an amino-terminated alkanethiol 8115 .
- Diamond particles 8112 are fixed to pipette 811 by binding carbodiimide cross-linking agent 8113 and amino-terminated alkanethiol 8115 .
- the tunnel current flowing between the tip of the pipette 811 and the sample 90 due to the electric field generated by the probe light 31 is measured.
- measurement unit 6 is connected to sample 90 and metal coating 8112A to measure the tunnel current flowing between the tip of pipette 811 and sample 90 . According to this configuration, it is possible to measure the tunneling current in the liquid using part of the configuration of the ion conductance microscope.
- a function as a Raman spectroscopic microscope may be further added in Modified Example 10.
- the pump light 21 or the probe light 31 may be used as excitation light for causing Raman scattering or Rayleigh scattering. Scattered light is detected by a detector (not shown).
- the pipette 811 described above the scattered light is enhanced by the effect of enhancing the probe, making detection easier and enabling observation in a short period of time. Diamond NV also makes it possible to obtain information such as local temperature and local electromagnetic field.
- FIG. 10 is an enlarged view showing the vicinity of the tip portion of the probe 30 in the eleventh modification. That is, in the above-described embodiment, a diamond probe including an NV center coated with a metal coating C may be used as the probe 30 . In this case, excitation light for exciting NV centers, such as probe light 31, is applied from above to a position of the diamond probe not covered with the metal coating C, for example. Fluorescence from the NV center is also extracted from above. However, the excitation light for exciting this NV center does not have to be CEP-controlled. By using this probe 30, the spatial resolution of the STM can be improved.
- this probe may be used to construct a Raman spectroscopic microscope.
- the pump light 21 is used as excitation light for causing Raman scattering or Rayleigh scattering, and the range indicated by the dashed line in FIG. 10 is irradiated.
- Raman spectroscopy with a spatial resolution higher than that of Modification 10 is obtained.
- the entire periphery of the tip of the probe 30 is covered with the metal coating C, but only a predetermined angular range of the probe 30 may be covered with the metal coating C.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
This microscope comprises: a probe; a first light output unit that outputs pulsed first light to the distal end of the probe; a sample platform that retains a sample being observed and a solution in which the sample is immersed; and a measurement unit that measures the tunnel current flowing between the probe and the sample, the tunnel current being caused by an electrical field produced by the first light.
Description
本発明は、顕微鏡、観察方法に関する。
The present invention relates to microscopes and observation methods.
走査プローブ顕微鏡は高い分解能を有し、様々な分野で利用されている。しかしその液中での測定には課題がある。特許文献1には、走査型トンネル顕微鏡機能及び原子間力顕微鏡機能を有する走査型プローブ顕微鏡を用いて、液中に置いた試料表面を測定する方法であって;該走査型プローブ顕微鏡は、試料表面を探触する導電性探針、及び、この探針と電気的に接続された電極を有するカンチレバーであって、該探針先端部及び電極部を除いて絶縁体に覆われているカンチレバーを有し、上記カンチレバーを共振周波数で励振するとともに、探針-試料間に流れる電流又は振幅のいずれか一方を所定の状態となるようにコントロールしながら、他の一方をモニターすることを特徴とする走査型プローブ顕微鏡を用いた測定方法が開示されている。
Scanning probe microscopes have high resolution and are used in various fields. However, the measurement in the liquid has a problem. Patent Document 1 discloses a method for measuring a sample surface placed in a liquid using a scanning probe microscope having a scanning tunneling microscope function and an atomic force microscope function; A cantilever having a conductive probe that probes a surface and an electrode electrically connected to the probe, the cantilever being covered with an insulator except for the tip of the probe and the electrode. wherein the cantilever is excited at the resonance frequency, and either the current flowing between the probe and the sample or the amplitude is controlled to a predetermined state while the other is monitored. A measurement method using a scanning probe microscope is disclosed.
特許文献1に記載されている発明では、液中でのSTM測定に改善の余地がある。
In the invention described in Patent Document 1, there is room for improvement in STM measurement in liquid.
本発明の第1の態様による顕微鏡は、探針と、パルス状の第1光を前記探針の先端に出力する第1光出力部と、観察対象の試料、および前記試料が浸される溶液を保持する試料台と、前記第1光により生じる電場に起因して前記探針および前記試料の間に流れるトンネル電流を測定する計測部とを備える。
本発明の第2の態様による観察方法は、探針、およびパルス状の第1光を出力する第1光出力部を用いて前記溶液に浸された前記試料を観察する観察方法であって、前記探針の先端を前記試料の近傍に配することと、前記第1光を前記探針の先端に出力することと、
前記第1光により生じる電場に起因して前記探針および前記試料の間に流れるトンネル電流を測定することとを含む。 A microscope according to a first aspect of the present invention comprises a probe, a first light output unit that outputs a first pulsed light to the tip of the probe, a sample to be observed, and a solution in which the sample is immersed. and a measurement unit for measuring a tunnel current flowing between the probe and the sample due to the electric field generated by the first light.
An observation method according to a second aspect of the present invention is an observation method for observing the sample immersed in the solution using a probe and a first light output unit that outputs a first pulsed light, disposing the tip of the probe near the sample; outputting the first light to the tip of the probe;
measuring a tunneling current flowing between the probe and the sample due to the electric field generated by the first light.
本発明の第2の態様による観察方法は、探針、およびパルス状の第1光を出力する第1光出力部を用いて前記溶液に浸された前記試料を観察する観察方法であって、前記探針の先端を前記試料の近傍に配することと、前記第1光を前記探針の先端に出力することと、
前記第1光により生じる電場に起因して前記探針および前記試料の間に流れるトンネル電流を測定することとを含む。 A microscope according to a first aspect of the present invention comprises a probe, a first light output unit that outputs a first pulsed light to the tip of the probe, a sample to be observed, and a solution in which the sample is immersed. and a measurement unit for measuring a tunnel current flowing between the probe and the sample due to the electric field generated by the first light.
An observation method according to a second aspect of the present invention is an observation method for observing the sample immersed in the solution using a probe and a first light output unit that outputs a first pulsed light, disposing the tip of the probe near the sample; outputting the first light to the tip of the probe;
measuring a tunneling current flowing between the probe and the sample due to the electric field generated by the first light.
本発明によれば、液中でノイズの少ないSTM測定ができる。
According to the present invention, it is possible to perform STM measurement with little noise in a liquid.
―第1の実施の形態―
以下、図1~図7を参照して、本発明に係る顕微鏡の第1の実施の形態を説明する。 -First Embodiment-
A first embodiment of a microscope according to the present invention will be described below with reference to FIGS. 1 to 7. FIG.
以下、図1~図7を参照して、本発明に係る顕微鏡の第1の実施の形態を説明する。 -First Embodiment-
A first embodiment of a microscope according to the present invention will be described below with reference to FIGS. 1 to 7. FIG.
(構成)
図1は、顕微鏡Tの概要構成図である。顕微鏡Tは、ポンプ光21を出力するポンプ光出力部2と、プローブ光31を出力するプローブ光出力部3と、探針30と、計測部6と、顕微鏡Tが観察する試料90が収められる試料台91と、を備える。なお以下では、ポンプ光21を「第2光」とも呼び、ポンプ光出力部2を「第2光出力部」とも呼び、プローブ光31を「第1光」とも呼び、プローブ光出力部3を「第1光出力部」とも呼ぶ。後述するように、本実施の形態ではプローブ光31にテラヘルツ電場を用いる。 (Constitution)
FIG. 1 is a schematic configuration diagram of a microscope T. As shown in FIG. The microscope T contains a pumplight output section 2 that outputs a pump light 21, a probe light output section 3 that outputs a probe light 31, a probe 30, a measurement section 6, and a sample 90 observed by the microscope T. A sample table 91 is provided. In the following, the pump light 21 is also referred to as "second light", the pump light output section 2 is also referred to as "second light output section", the probe light 31 is also referred to as "first light", and the probe light output section 3 is referred to as "first light". It is also called a "first optical output section". As will be described later, a terahertz electric field is used for the probe light 31 in this embodiment.
図1は、顕微鏡Tの概要構成図である。顕微鏡Tは、ポンプ光21を出力するポンプ光出力部2と、プローブ光31を出力するプローブ光出力部3と、探針30と、計測部6と、顕微鏡Tが観察する試料90が収められる試料台91と、を備える。なお以下では、ポンプ光21を「第2光」とも呼び、ポンプ光出力部2を「第2光出力部」とも呼び、プローブ光31を「第1光」とも呼び、プローブ光出力部3を「第1光出力部」とも呼ぶ。後述するように、本実施の形態ではプローブ光31にテラヘルツ電場を用いる。 (Constitution)
FIG. 1 is a schematic configuration diagram of a microscope T. As shown in FIG. The microscope T contains a pump
試料台91は、窪みである溶液溜め92を有する。溶液溜め92には溶液80が満たされる。観察対象である試料90は、試料台91の溶液溜め92の中に配される。すなわち試料90は、溶液80に浸されている。溶液80はたとえば生理食塩水であり、試料90はたとえば微生物、細胞、化合物、および金属などである。
The sample table 91 has a solution reservoir 92 which is a depression. Solution reservoir 92 is filled with solution 80 . A sample 90 to be observed is arranged in a solution reservoir 92 on a sample stage 91 . That is, sample 90 is immersed in solution 80 . Solution 80 is, for example, physiological saline, and sample 90 is, for example, microorganisms, cells, compounds, metals, and the like.
探針30は、先端が試料90に近接して配され、探針30の先端部は溶液80に浸される。探針30はたとえば、タングステン、ニッケル、白金イリジウムのいずれかを用いて作成され、先端ほど細くなるように加工される。探針30の側面には特段の処理は施されていない。すなわち探針30には絶縁コートなどは施されていない。
The tip of the probe 30 is arranged close to the sample 90 and the tip of the probe 30 is immersed in the solution 80 . The probe 30 is made of, for example, tungsten, nickel, or platinum iridium, and is processed so that the tip becomes thinner. No special treatment is applied to the side surface of the probe 30 . That is, the probe 30 is not provided with an insulating coating or the like.
図2は、探針30の先端部付近を示す拡大図である。なお図2では作図の都合により何もない空間を符号80が指しているが、探針30や試料90が溶液80の液中に存在していることを示すことを意図している。探針30の先端部と試料90とは非常に近接して、たとえば数ナノメートル程度の距離に配され、この距離に比較して大きいポンプ光21およびプローブ光31のスポット径は非常に大きい。そのため、ポンプ光21およびプローブ光31は、探針30の先端だけでなく探針30の周囲に存在する溶液80にも照射される。全電流IALLは、試料90と探針30との間に流れるトンネル電流ITと、ポンプ光21やプローブ光31により生じた電界が溶液80に作用して生じるイオン電流IIの和である。ただし本実施の形態では、後述する理由によりイオンは移動しないのでイオン電流IIは無視できる。そのため、全電流IALLがトンネル電流ITなので、トンネル電流ITを精度よく測定できる。図1に戻って説明を続ける。
FIG. 2 is an enlarged view showing the vicinity of the tip of the probe 30. As shown in FIG. In FIG. 2, the reference numeral 80 indicates an empty space for convenience of drawing, but it is intended to indicate that the probe 30 and the sample 90 are present in the solution 80. FIG. The tip of the probe 30 and the sample 90 are arranged very close, for example, at a distance of several nanometers, and the spot diameters of the pump light 21 and the probe light 31, which are large compared to this distance, are very large. Therefore, not only the tip of the probe 30 but also the solution 80 existing around the probe 30 is irradiated with the pump light 21 and the probe light 31 . The total current I ALL is the sum of the tunnel current I T flowing between the sample 90 and the probe 30 and the ion current II generated by the electric field generated by the pump light 21 and the probe light 31 acting on the solution 80. . However, in this embodiment, the ion current II can be ignored because the ions do not move for the reason described later. Therefore, since the total current I ALL is the tunnel current I T , the tunnel current I T can be accurately measured. Returning to FIG. 1, the description continues.
ポンプ光出力部2は、探針30の先端部にパルス状のポンプ光21を照射する。プローブ光出力部3は、探針30の先端部にパルス状のプローブ光31を照射する。ポンプ光21およびプローブ光31のそれぞれが照射されることにより、瞬時電場(電圧)が発生する。本実施の形態では、CEP(Carrier Envelope Phase)制御したポンプ光21を照射して所望の電場を生成して試料90を制御し、その変化をプローブ光31を用いて測定できる。ポンプ光出力部2およびプローブ光出力部3の詳細な構成は後述する。
The pump light output unit 2 irradiates the tip of the probe 30 with pulsed pump light 21 . The probe light output unit 3 irradiates the tip of the probe 30 with pulsed probe light 31 . An instantaneous electric field (voltage) is generated by irradiation of each of the pump light 21 and the probe light 31 . In this embodiment, CEP (Carrier Envelope Phase)-controlled pump light 21 is emitted to generate a desired electric field, the sample 90 is controlled, and the probe light 31 can be used to measure the change. Detailed configurations of the pump light output section 2 and the probe light output section 3 will be described later.
ポンプ光出力部2は、たとえば波長1034ナノメートル、300フェムト秒幅のIRパルス光をLiNiO3結晶に照射して得られる、1周期であり幅が約1ピコ秒のTHzパルスを出力する。本実施の形態におけるポンプ光21のスポット径は約1ミリメートルである。ポンプ光21はCEPが制御され、一定の位相で出力される。
The pump light output unit 2 outputs a THz pulse having a period of 1 picosecond and a width of about 1 picosecond, which is obtained by irradiating a LiNiO 3 crystal with an IR pulse light having a wavelength of 1034 nm and a width of 300 femtoseconds. The spot diameter of the pump light 21 in this embodiment is about 1 millimeter. The pump light 21 has its CEP controlled and is output with a constant phase.
計測部6は、本実施の形態において探針30の対向電極としての役割を担う試料90に出入りする電子を、全電流IALLとして検出し記録。なお電子が探針30から試料90に向かって流れるか、試料90から探針30に向かって流れるかは、瞬時電場の方向による。計測部6は少なくとも、プローブ光31により生じる電場に起因して探針30および試料90の間に流れるトンネル電流ITを測定する。
The measurement unit 6 detects and records the electrons entering and exiting the sample 90, which serves as the counter electrode of the probe 30 in this embodiment, as the total current I ALL . Whether the electrons flow from the probe 30 toward the sample 90 or from the sample 90 toward the probe 30 depends on the direction of the instantaneous electric field. The measurement unit 6 measures at least the tunnel current I T that flows between the probe 30 and the sample 90 due to the electric field generated by the probe light 31 .
図3は、ポンプ光出力部2、プローブ光出力部3、および計測部6の機能構成図である。ポンプ光出力部2は、第1光源22と、第1変調部23とを備える。プローブ光出力部3は、第2光源32と、第2変調部33と、遅延調整部34とを備える。計測部6は、電流プリアンプ61と、ロックインアンプ62と、記憶装置63とを備える。
3 is a functional configuration diagram of the pump light output section 2, the probe light output section 3, and the measurement section 6. FIG. The pump light output section 2 includes a first light source 22 and a first modulation section 23 . The probe light output section 3 includes a second light source 32 , a second modulation section 33 and a delay adjustment section 34 . The measurement unit 6 includes a current preamplifier 61 , a lock-in amplifier 62 and a storage device 63 .
ポンプ光出力部2の第1光源22は、所定の時間間隔で1周期程度、または1周期未満のパルス状のレーザ光を出力する。第1光源22はたとえば、パルス幅が1フェムト秒程度のパルスレーザを出力する光源と、LiNbO3結晶との組合せである。第1変調部23は、電場の方向を制御することを目的として第1光源22が出力するレーザ光の位相を調整する。第1変調部23の構成は後述する。ポンプ光出力部2は、第1光源22が出力し第1変調部23が変調したレーザ光を出力する。
The first light source 22 of the pump light output unit 2 outputs pulsed laser light of about one cycle or less than one cycle at predetermined time intervals. The first light source 22 is, for example, a combination of a light source that outputs a pulsed laser with a pulse width of about 1 femtosecond and a LiNbO 3 crystal. The first modulation section 23 adjusts the phase of the laser light output by the first light source 22 for the purpose of controlling the direction of the electric field. The configuration of the first modulating section 23 will be described later. The pump light output unit 2 outputs laser light output by the first light source 22 and modulated by the first modulation unit 23 .
プローブ光出力部3の第2光源32の構成は第1光源22と同様である。第2変調部33は、第2光源32が出力するレーザ光の位相を調整し、かつロックインアンプ62によるロックイン検出のための変調、たとえばオンオフ変調を行う。たとえば第2変調部33は、第1変調部23の構成に加えてさらに光チョッパを備える。第2変調部33は、光チョッパを光が通過するタイミングで参照信号をロックインアンプ62に出力する。遅延調整部34は、プローブ光出力部3から出力されるレーザ光の出力タイミングを調整する装置であり、たとえばミラーを含むレーザ光の光路OPと、このミラーを駆動するピエゾ素子と、ピエゾ素子のコントローラとの組合せにより実現される。遅延調整部34を用いることで、ポンプ光21が試料90に照射されるタイミングと、プローブ光31が試料90に照射されるタイミングとの時間差を自由に調整できる。
The configuration of the second light source 32 of the probe light output section 3 is the same as that of the first light source 22 . The second modulation section 33 adjusts the phase of the laser light output from the second light source 32 and performs modulation for lock-in detection by the lock-in amplifier 62, for example, on-off modulation. For example, the second modulating section 33 has an optical chopper in addition to the configuration of the first modulating section 23 . The second modulation section 33 outputs the reference signal to the lock-in amplifier 62 at the timing when the light passes through the optical chopper. The delay adjustment unit 34 is a device that adjusts the output timing of the laser light output from the probe light output unit 3. For example, the optical path OP of the laser light including the mirror, the piezo element that drives the mirror, and the piezo element. Realized by combination with a controller. By using the delay adjustment unit 34, the time difference between the timing at which the sample 90 is irradiated with the pump light 21 and the timing at which the probe light 31 is irradiated to the sample 90 can be freely adjusted.
計測部6の電流プリアンプ61は、試料90に出入りする電子を全電流IALLとして検出し、ロックインアンプ62に出力する。ロックインアンプ62は、第2変調部33から出力される参照信号に基づき動作し、全電流IALLの変調周波数成分を検出して記憶装置63に出力する。記憶装置63は不揮発性の記憶装置、たとえばフラッシュメモリであり、ロックインアンプ62が出力する信号を記録する。
A current preamplifier 61 of the measurement unit 6 detects electrons entering and exiting the sample 90 as a total current I ALL and outputs it to the lock-in amplifier 62 . The lock-in amplifier 62 operates based on the reference signal output from the second modulation section 33 , detects the modulation frequency component of the total current I ALL , and outputs it to the storage device 63 . A storage device 63 is a non-volatile storage device such as a flash memory, and records the signal output by the lock-in amplifier 62 .
図4は、第1変調部23の構成を示す図である。図4においてハッチングで示す符号OPはポンプ光21の光路を示している。図4に示すように、第一のレンズ121と第二のレンズ122とが光路OPに互いに対向して配置される。ポンプ光21を第一のレンズ121と第二のレンズ122とを透過させることにより、ポンプ光21を所望のCEPに制御できる。
FIG. 4 is a diagram showing the configuration of the first modulating section 23. As shown in FIG. Reference characters OP indicated by hatching in FIG. 4 indicate optical paths of the pump light 21 . As shown in FIG. 4, a first lens 121 and a second lens 122 are arranged facing each other in the optical path OP. By passing the pump light 21 through the first lens 121 and the second lens 122, the pump light 21 can be controlled to a desired CEP.
第一のレンズ121と第二のレンズ122の材料は、いずれもポンプ光21に対する透過性を備えるものであればよく、透過性が高いものほど好ましい。第一のレンズ121と第二のレンズ122との形状は同じであることが好ましく、所望のCEPの態様に応じて、球面レンズや円柱レンズを選択できる。変調部3Bに、第一および第二のレンズとして球面レンズが配置される場合、cosin型(φcep=0)のポンプ光21を反転cosin型(φcep=π)のものに変換できる。一方、第一および第二のレンズとして円柱レンズが配置される場合は、cosin型のポンプ光21をsin型(φcep=π/2)のものに変換できる。ポンプ光21の位相を制御することにより、電場の方向を制御することができる。
The materials of the first lens 121 and the second lens 122 may both have transparency to the pump light 21, and the higher the transparency, the better. The shapes of the first lens 121 and the second lens 122 are preferably the same, and a spherical lens or a cylindrical lens can be selected according to the desired CEP aspect. When spherical lenses are arranged as the first and second lenses in the modulation section 3B, the pump light 21 of the cosine type (φcep=0) can be converted into that of the inverted cosine type (φcep=π). On the other hand, when cylindrical lenses are arranged as the first and second lenses, the cosine type pump light 21 can be converted into sin type (φcep=π/2). By controlling the phase of the pump light 21, the direction of the electric field can be controlled.
そしてポンプ光21を第一のレンズ121と第二のレンズ122とを透過させるか否かにより、ポンプ光21の位相を切り替えることができる。たとえばcosin型(φcep=0)のポンプ光21をそのまま出力するか、1組のレンズを透過させて反転cosin型(φcep=π)として出力するか、またはφcep=π/2として出力するかなどを切り替える。
The phase of the pump light 21 can be switched by whether or not the pump light 21 is transmitted through the first lens 121 and the second lens 122 . For example, whether the cosine-type (φcep=0) pump light 21 is output as it is, whether it is output as an inverted cosin-type (φcep=π) by passing through a set of lenses, or whether it is output as φcep=π/2. switch.
第一のレンズ121と第二のレンズ122とは、それぞれ少なくとも一つの入射面と出射面とを有する。第一のレンズ121の出射面121bと第二のレンズ122の入射面122aとを対向させて配置させる。球面レンズを配置する態様の具体例である図4では、第一のレンズ121と第二のレンズ122とを、第一のレンズ121の出射面121bと第二のレンズ122の入射面122aとを対向させ、THz波が第一のレンズ121の入射面121aから出射面121bへと透過後、第二のレンズ122の入射面122aから出射面122bへと透過するように配置される。円柱レンズを用いる場合も同じ要領で配置することが好ましい。
The first lens 121 and the second lens 122 each have at least one entrance surface and one exit surface. The exit surface 121b of the first lens 121 and the entrance surface 122a of the second lens 122 are arranged to face each other. In FIG. 4, which is a specific example of the arrangement of spherical lenses, the first lens 121 and the second lens 122 are arranged such that the exit surface 121b of the first lens 121 and the entrance surface 122a of the second lens 122 are arranged. They are arranged so that THz waves are transmitted from the entrance surface 121a of the first lens 121 to the exit surface 121b and then transmitted from the entrance surface 122a of the second lens 122 to the exit surface 122b. When using a cylindrical lens, it is preferable to arrange them in the same way.
なお、第2変調部33は、図4に示した第1変調部23の構成に加えて、ロックイン検出のための変調を行う構成、たとえば光チョッパを追加した構成を有する。
In addition to the configuration of the first modulation section 23 shown in FIG. 4, the second modulation section 33 has a configuration for performing modulation for lock-in detection, for example, a configuration in which an optical chopper is added.
図5は、ポンプ光21およびプローブ光31の概略図である。図5の上部は、探針30に照射されるポンプ光21およびプローブ光31のタイミングを示しており、ポンプ光21が照射されてからプローブ光31が照射される。その後、しばらくの時間をおいて再びポンプ光21が照射される。ポンプ光21が照射されてからプローブ光31が照射されるまでの時間が、前述の遅延時間である。
FIG. 5 is a schematic diagram of pump light 21 and probe light 31. FIG. The upper part of FIG. 5 shows the timing of the pump light 21 and the probe light 31 that irradiate the probe 30, and the probe light 31 is irradiated after the pump light 21 is irradiated. After a while, the pump light 21 is applied again. The time from the irradiation of the pump light 21 to the irradiation of the probe light 31 is the aforementioned delay time.
図5の下部は、ポンプ光21およびプローブ光31の主要な波形を示しており、横軸が時間、縦軸が照射されるポンプ光21およびプローブ光31により探針30と試料90との間に印加される電場を示す。図5に示す例では、時刻t1まではゼロであり時刻t1から時刻t2にかけてマイナスになり、その後時刻t3にプラスのピークを迎えて時刻t4にゼロまで減少する。そして時刻t4から時刻t5まではマイナスとなり、その後はゼロである。なお時刻t1~t5はたとえば、1ピコ秒程度である。また図5の下部は、あくまで主要な波形を示しているにすぎず、時刻t1の前や時刻t5のあとに完全にゼロになるわけではない。
The lower part of FIG. 5 shows main waveforms of the pump light 21 and the probe light 31. The horizontal axis represents time, and the vertical axis represents the distance between the probe 30 and the sample 90 due to the irradiated pump light 21 and probe light 31. shows the electric field applied to In the example shown in FIG. 5, it is zero until time t1, becomes negative from time t1 to time t2, reaches a positive peak at time t3, and decreases to zero at time t4. It is negative from time t4 to time t5, and is zero thereafter. Note that times t1 to t5 are, for example, about 1 picosecond. Also, the lower part of FIG. 5 merely shows the main waveforms, and does not completely become zero before time t1 or after time t5.
このとき、時刻t1~t2の電場の積分値を面積A1、時刻t2~t4の電場の積分値を面積A2、時刻t4~t5の電場の積分値を面積A3とすると、A1とA3の和がA2におおよそ等しい関係を有する。そのため、時刻t1~t5を総合した電場の積分値はほぼゼロとなるので、ポンプ光21およびプローブ光31が照射された溶液80の領域におけるイオンは、時刻t1に動き始めても時刻t5には元の位置に戻る。また、電場が印加される時間が非常に短く、かつ生成される電場は、探針増強の効果により探針30の直下だけが強いので、時間領域と空間領域の両方で狭い範囲にしか影響がない。すなわちポンプ光21およびプローブ光31のいずれが照射される場合でも、イオン電流IIの存在を無視できる。
At this time, if the integral value of the electric field from time t1 to t2 is area A1, the integral value of the electric field from time t2 to t4 is area A2, and the integral value of the electric field from time t4 to t5 is area A3, the sum of A1 and A3 is It has a relationship approximately equal to A2. Therefore, since the integral value of the electric field from time t1 to t5 is almost zero, ions in the region of the solution 80 irradiated with the pump light 21 and the probe light 31 start moving at time t1, but return to normal at time t5. position. In addition, the time period during which the electric field is applied is very short, and the generated electric field is strong only directly under the probe 30 due to the effect of probe enhancement, so that the effect is limited to a narrow range in both the time domain and the space domain. do not have. That is, the ion current II can be ignored regardless of whether the pump light 21 or the probe light 31 is applied.
(比較例)
図6は、比較例である比較例顕微鏡の概要構成図であり、本発明の図1に対応する。試料台91の構成は図1と同様であり、溶液溜め92の中に、溶液80に浸された試料90が配される。従来探針Zは、先端が試料90に近接して配され、従来探針Zの先端部は溶液80に浸される。従来探針Zには印加部7から所定の定電圧が印加される。従来探針Zの側面には絶縁加工が施されている。計測部6は、従来探針Zの対向電極としての役割を担う試料90に流れ込む電子を、電流プリアンプ61を用いて全電流IALLとして検出する。 (Comparative example)
FIG. 6 is a schematic configuration diagram of a comparative microscope, which is a comparative example, and corresponds to FIG. 1 of the present invention. The structure of thesample stage 91 is the same as in FIG. 1, and the sample 90 immersed in the solution 80 is arranged in the solution reservoir 92 . The tip of the conventional probe Z is placed close to the sample 90 and the tip of the conventional probe Z is immersed in the solution 80 . A predetermined constant voltage is applied to the conventional probe Z from the applying section 7 . Conventionally, the side surface of the probe Z is insulated. The measurement unit 6 detects the electrons flowing into the sample 90, which conventionally serves as the counter electrode of the probe Z, as the total current I ALL using the current preamplifier 61 .
図6は、比較例である比較例顕微鏡の概要構成図であり、本発明の図1に対応する。試料台91の構成は図1と同様であり、溶液溜め92の中に、溶液80に浸された試料90が配される。従来探針Zは、先端が試料90に近接して配され、従来探針Zの先端部は溶液80に浸される。従来探針Zには印加部7から所定の定電圧が印加される。従来探針Zの側面には絶縁加工が施されている。計測部6は、従来探針Zの対向電極としての役割を担う試料90に流れ込む電子を、電流プリアンプ61を用いて全電流IALLとして検出する。 (Comparative example)
FIG. 6 is a schematic configuration diagram of a comparative microscope, which is a comparative example, and corresponds to FIG. 1 of the present invention. The structure of the
図7は、従来探針Zの先端部付近を示す拡大図である。なお図7に示す範囲は、全て溶液80の液中である。従来探針Zには電圧が印加されているが、従来探針Zの側面は絶縁性のコーティング剤が塗布され、従来探針Zの先端だけが絶縁コートから露出している。従来探針Zが試料90に十分に近づくと、従来探針Zと試料90との間にトンネル電流ITが流れるので、このトンネル電流ITを含む全電流IALLを計測部6が測定する。
FIG. 7 is an enlarged view showing the vicinity of the tip of the conventional probe Z. FIG. Note that the range shown in FIG. 7 is all in the solution 80 . A voltage is applied to the conventional probe Z, but the side surface of the conventional probe Z is coated with an insulating coating agent, and only the tip of the conventional probe Z is exposed from the insulating coating. When the conventional probe Z comes close enough to the sample 90, a tunnel current IT flows between the conventional probe Z and the sample 90, so the measuring unit 6 measures the total current IALL including this tunnel current IT . .
前述のように、従来探針Zには印加部7から電圧が常時印加されているので、従来探針Zと試料90との距離がある程度離れていても、試料90には溶液80を介してイオン電流IIが流れる。計測部6が測定する全電流IALLは、トンネル電流ITとイオン電流IIとの和である。トンネル電流ITはイオン電流IIに比べて非常に小さく、トンネル電流ITが発生してもイオン電流IIの変動幅よりも小さければ検出は非常に困難である。
As described above, the voltage is constantly applied to the conventional probe Z from the application unit 7. Therefore, even if the conventional probe Z and the sample 90 are separated from each other to some extent, the sample 90 is exposed to the liquid 80 via the solution 80. An ion current II flows. The total current I ALL measured by the measurement unit 6 is the sum of the tunnel current I T and the ion current II. The tunnel current IT is very small compared to the ion current II , and even if the tunnel current IT is generated, it is very difficult to detect it if it is smaller than the fluctuation width of the ion current II .
その一方で本発明では、探針30に定常的に印加している電圧は存在せず、ポンプ光21およびプローブ光31が非常に短い時間に照射されるだけなので、イオン電流IIの存在は無視できる。そのため、本発明では従来技術のようにトンネル電流ITの測定の困難さが存在せず、液中でもノイズの少ないSTM(Scanning Tunneling Microscope)測定が実現できる。
On the other hand, in the present invention, there is no voltage constantly applied to the probe 30, and the pump light 21 and the probe light 31 are irradiated only for a very short period of time. can be ignored. Therefore, in the present invention, there is no difficulty in measuring the tunnel current IT as in the prior art, and STM (Scanning Tunneling Microscope) measurement with little noise even in liquid can be realized.
上述した第1の実施の形態によれば、次の作用効果が得られる。
(1)顕微鏡Tは、探針30と、パルス状の第1光であるプローブ光31を探針30の先端に出力するプローブ光出力部3と、観察対象の試料90、および試料90が浸される溶液80を保持する試料台91と、プローブ光31により生じる電場に起因して探針30および試料90の間に流れるトンネル電流ITを測定する計測部6とを備える。図6や図7に示した従来技術では定常的には探針30に電圧を印加していたが、顕微鏡Tはパルス状のプローブ光31に起因するトンネル電流ITを測定するので、液中でノイズの少ないSTM測定ができる。 According to the first embodiment described above, the following effects are obtained.
(1) The microscope T includes aprobe 30, a probe light output unit 3 that outputs a probe light 31 that is a pulsed first light to the tip of the probe 30, a sample 90 to be observed, and a sample 90 that is immersed. and a measuring unit 6 for measuring a tunneling current I T flowing between the probe 30 and the sample 90 due to the electric field generated by the probe light 31 . In the prior art shown in FIGS. 6 and 7, a voltage is constantly applied to the probe 30, but the microscope T measures the tunneling current I T caused by the pulsed probe light 31. can perform STM measurements with little noise.
(1)顕微鏡Tは、探針30と、パルス状の第1光であるプローブ光31を探針30の先端に出力するプローブ光出力部3と、観察対象の試料90、および試料90が浸される溶液80を保持する試料台91と、プローブ光31により生じる電場に起因して探針30および試料90の間に流れるトンネル電流ITを測定する計測部6とを備える。図6や図7に示した従来技術では定常的には探針30に電圧を印加していたが、顕微鏡Tはパルス状のプローブ光31に起因するトンネル電流ITを測定するので、液中でノイズの少ないSTM測定ができる。 According to the first embodiment described above, the following effects are obtained.
(1) The microscope T includes a
(2)第1光であるプローブ光31にテラヘルツ電場を用いており、時間幅が1ピコ秒以下である。そのため、溶液80に含まれるイオンの移動が少なく、トンネル電流ITの測定におけるイオン電流IIの悪影響を抑制できる。
(2) A terahertz electric field is used for the probe light 31, which is the first light, and the time width is 1 picosecond or less. Therefore, the movement of ions contained in the solution 80 is small, and the adverse effect of the ion current II on the measurement of the tunnel current IT can be suppressed.
(3)第1光は、1つのパルスにより生成する電場の積分値が略ゼロである。そのため溶液80に含まれるイオンの移動が抑制され、イオン電流IIを無視できる。
(3) The first light has a substantially zero integral value of the electric field generated by one pulse. Therefore, the movement of ions contained in the solution 80 is suppressed, and the ion current II can be ignored.
(4)顕微鏡Tは、パルス状の第2光であるポンプ光21を探針30の先端に出力するポンプ光出力部2と、第1光が照射されるタイミングと、第2光が照射されるタイミングとの差である遅延時間を調整する遅延調整部34とを備える。遅延調整部34は、遅延時間を複数とおりに変化させる。そのため、溶液80に浸されている試料90、たとえば細胞のダイナミクスを測定できる。
(4) The microscope T includes a pump light output unit 2 that outputs a pump light 21, which is a pulsed second light, to the tip of the probe 30; and a delay adjustment unit 34 that adjusts the delay time, which is the difference from the timing at which the signal is received. The delay adjuster 34 changes the delay time in a plurality of ways. Therefore, it is possible to measure the dynamics of a sample 90 immersed in the solution 80, such as a cell.
(変形例1)
上述した実施の形態では、ポンプ光21とプローブ光31の両方が探針30に照射された。しかしポンプ光21を照射することなくプローブ光31のみを照射してもよい。この場合には、試料90のダイナミクスを測定できないが、上述した実施の形態よりも簡素な構成で液中の試料90の特性を計測できる。 (Modification 1)
In the embodiment described above, both thepump light 21 and the probe light 31 are applied to the probe 30 . However, only the probe light 31 may be irradiated without irradiating the pump light 21 . In this case, the dynamics of the sample 90 cannot be measured, but the characteristics of the sample 90 in liquid can be measured with a simpler configuration than the above-described embodiment.
上述した実施の形態では、ポンプ光21とプローブ光31の両方が探針30に照射された。しかしポンプ光21を照射することなくプローブ光31のみを照射してもよい。この場合には、試料90のダイナミクスを測定できないが、上述した実施の形態よりも簡素な構成で液中の試料90の特性を計測できる。 (Modification 1)
In the embodiment described above, both the
(変形例2)
上述した実施の形態において、探針30に金や銀などの光が反射しない素材を用いてもよい。この場合は光が反射されやすいので探針30が熱を吸収しにくくなり、探針の熱膨張など熱の影響を受けにくくすることができる。 (Modification 2)
In the above-described embodiment, theprobe 30 may be made of a material that does not reflect light, such as gold or silver. In this case, since the light is easily reflected, the probe 30 is less likely to absorb heat, and the influence of heat such as thermal expansion of the probe can be reduced.
上述した実施の形態において、探針30に金や銀などの光が反射しない素材を用いてもよい。この場合は光が反射されやすいので探針30が熱を吸収しにくくなり、探針の熱膨張など熱の影響を受けにくくすることができる。 (Modification 2)
In the above-described embodiment, the
(変形例3)
上述した実施の形態では、ポンプ光21およびプローブ光31の両方とも、生成する電場の積分値が略ゼロであった。しかし、ポンプ光21およびプローブ光31の少なくとも一方は、生成する電場の積分値が略ゼロでなくてもよい。この場合は、溶液80中のイオンが少しずつ移動してイオン電流IIが無視できなくなることも考えられるが、ポンプ光21およびプローブ光31の照射時間、すなわち図5における時刻t1~t5の間の時間を短くすることで、この影響を低減できる。たとえば時刻t1~t5が1ピコ秒以下の100フェムト秒などにしてもよい。 (Modification 3)
In the embodiment described above, both thepump light 21 and the probe light 31 generated substantially zero integral values of electric fields. However, at least one of the pump light 21 and the probe light 31 does not have to have an integral value of the generated electric field that is substantially zero. In this case, it is conceivable that the ions in the solution 80 move little by little and the ion current II cannot be ignored. This effect can be reduced by shortening the time of . For example, the times t1 to t5 may be set to 100 femtoseconds, which is 1 picosecond or less.
上述した実施の形態では、ポンプ光21およびプローブ光31の両方とも、生成する電場の積分値が略ゼロであった。しかし、ポンプ光21およびプローブ光31の少なくとも一方は、生成する電場の積分値が略ゼロでなくてもよい。この場合は、溶液80中のイオンが少しずつ移動してイオン電流IIが無視できなくなることも考えられるが、ポンプ光21およびプローブ光31の照射時間、すなわち図5における時刻t1~t5の間の時間を短くすることで、この影響を低減できる。たとえば時刻t1~t5が1ピコ秒以下の100フェムト秒などにしてもよい。 (Modification 3)
In the embodiment described above, both the
(変形例4)
上述した実施の形態では、ポンプ光21およびプローブ光31の両方ともCEPが制御された。しかしポンプ光21のCEPを制御することは必須の構成ではない。たとえばポンプ光21は位相が制御されていない通常の超短パルスであってもよく、この場合は試料90に何らかの影響を与え、この影響によるダイナミクスをプローブ光31により観察することになる。また、ポンプ光21のCEPを制御しない場合には、照射するポンプ光21は1周期以下に限定されず、複数の周期が含まれてもよい。 (Modification 4)
In the embodiments described above, both thepump light 21 and the probe light 31 were CEP controlled. However, controlling the CEP of the pump light 21 is not an essential configuration. For example, the pump light 21 may be a normal ultrashort pulse whose phase is not controlled. Moreover, when the CEP of the pump light 21 is not controlled, the pump light 21 to be emitted is not limited to one cycle or less, and may include a plurality of cycles.
上述した実施の形態では、ポンプ光21およびプローブ光31の両方ともCEPが制御された。しかしポンプ光21のCEPを制御することは必須の構成ではない。たとえばポンプ光21は位相が制御されていない通常の超短パルスであってもよく、この場合は試料90に何らかの影響を与え、この影響によるダイナミクスをプローブ光31により観察することになる。また、ポンプ光21のCEPを制御しない場合には、照射するポンプ光21は1周期以下に限定されず、複数の周期が含まれてもよい。 (Modification 4)
In the embodiments described above, both the
(変形例5)
上述した実施の形態では、ポンプ光21およびプローブ光31のパルス時間、すなわち図5における時刻t1~t5の時間を1ピコ秒程度と説明した。しかしパルス時間はこれに限定されず、1ピコ秒よりも短くてもよいし1ピコ秒よりも長くてもよい。たとえば測定する現象にあわせて、パルス時間がマクロ秒単位、ナノ秒単位、フェムト秒単位であってもよい。 (Modification 5)
In the above-described embodiment, the pulse time of thepump light 21 and the probe light 31, that is, the time from t1 to t5 in FIG. 5, is about 1 picosecond. However, the pulse time is not limited to this, and may be shorter than 1 picosecond or longer than 1 picosecond. For example, the pulse duration may be in macroseconds, nanoseconds or femtoseconds, depending on the phenomenon being measured.
上述した実施の形態では、ポンプ光21およびプローブ光31のパルス時間、すなわち図5における時刻t1~t5の時間を1ピコ秒程度と説明した。しかしパルス時間はこれに限定されず、1ピコ秒よりも短くてもよいし1ピコ秒よりも長くてもよい。たとえば測定する現象にあわせて、パルス時間がマクロ秒単位、ナノ秒単位、フェムト秒単位であってもよい。 (Modification 5)
In the above-described embodiment, the pulse time of the
(変形例6)
上述した実施の形態では、ポンプ光出力部2が第1光源22を備え、プローブ光出力部3が第2光源32を備え、顕微鏡Tは合計で2つの光源を備えた。しかし顕微鏡Tは光源を1つのみ備える構成でもよい。この場合には、共通の光源から出力するレーザ光をビームスプリッタで2つに分けて、この2つをそれぞれ第1変調部23および第2変調部33に入力すればよい。なお、一方のレーザ光を第2変調部33に入力する前に遅延調整部34に入力し、遅延調整部34の出力を第2変調部33に入力してもよい。 (Modification 6)
In the embodiments described above, the pumplight output section 2 was equipped with a first light source 22, the probe light output section 3 with a second light source 32, and the microscope T with a total of two light sources. However, the microscope T may be configured with only one light source. In this case, the laser light output from the common light source is split into two by a beam splitter, and the two are input to the first modulating section 23 and the second modulating section 33, respectively. Note that one laser beam may be input to the delay adjustment unit 34 before being input to the second modulation unit 33 and the output of the delay adjustment unit 34 may be input to the second modulation unit 33 .
上述した実施の形態では、ポンプ光出力部2が第1光源22を備え、プローブ光出力部3が第2光源32を備え、顕微鏡Tは合計で2つの光源を備えた。しかし顕微鏡Tは光源を1つのみ備える構成でもよい。この場合には、共通の光源から出力するレーザ光をビームスプリッタで2つに分けて、この2つをそれぞれ第1変調部23および第2変調部33に入力すればよい。なお、一方のレーザ光を第2変調部33に入力する前に遅延調整部34に入力し、遅延調整部34の出力を第2変調部33に入力してもよい。 (Modification 6)
In the embodiments described above, the pump
(変形例7)
上述した実施の形態では、試料台91は溶液溜め92を有したが、試料台91が溶液溜め92を有することは必須の構成ではない。試料台91が溶液溜め92を有する代わりに、溶液80および試料90を入れた容器を試料台91に配置してもよい。 (Modification 7)
Although thesample stage 91 has the solution reservoir 92 in the above-described embodiment, it is not essential for the sample stage 91 to have the solution reservoir 92 . Instead of the sample table 91 having the solution reservoir 92 , a container containing the solution 80 and the sample 90 may be placed on the sample table 91 .
上述した実施の形態では、試料台91は溶液溜め92を有したが、試料台91が溶液溜め92を有することは必須の構成ではない。試料台91が溶液溜め92を有する代わりに、溶液80および試料90を入れた容器を試料台91に配置してもよい。 (Modification 7)
Although the
(変形例8)
上述した実施の形態では、イオン電流IIは無視した。しかし、探針30と試料90との間に印加される電場波形を正確に求め、電場が溶液80のイオンに与える影響、すなわちイオン電流IIの大きさを算出し、より精密にトンネル電流ITを算出してもよい。電場の波形を正確に求めることで、物理的な情報の詳細な評価や、時間分解測定が精密に行える。 (Modification 8)
In the embodiment described above, the ion current II was neglected. However, the waveform of the electric field applied between theprobe 30 and the sample 90 is accurately obtained, the effect of the electric field on the ions in the solution 80, that is, the magnitude of the ion current II is calculated, and the tunnel current I T may be calculated. Accurately obtaining the waveform of the electric field enables detailed evaluation of physical information and precise time-resolved measurement.
上述した実施の形態では、イオン電流IIは無視した。しかし、探針30と試料90との間に印加される電場波形を正確に求め、電場が溶液80のイオンに与える影響、すなわちイオン電流IIの大きさを算出し、より精密にトンネル電流ITを算出してもよい。電場の波形を正確に求めることで、物理的な情報の詳細な評価や、時間分解測定が精密に行える。 (Modification 8)
In the embodiment described above, the ion current II was neglected. However, the waveform of the electric field applied between the
(変形例9)
第1変調部23の構成は、次のものでもよい。すなわち第1変調部23は、1/2波長板とワイヤグリッド偏光子との組み合わせであってもよい。この場合は、第1光源22から出力される光を1/2波長板に入力し、その出力をワイヤグリッド偏光子に入力する。この構成では、1/2波長板を回転させることにより、ポンプ光21の位相を自由に設定できる。 (Modification 9)
The configuration of thefirst modulating section 23 may be as follows. That is, the first modulating section 23 may be a combination of a half-wave plate and a wire grid polarizer. In this case, the light output from the first light source 22 is input to the half-wave plate, and the output is input to the wire grid polarizer. In this configuration, the phase of the pump light 21 can be freely set by rotating the half-wave plate.
第1変調部23の構成は、次のものでもよい。すなわち第1変調部23は、1/2波長板とワイヤグリッド偏光子との組み合わせであってもよい。この場合は、第1光源22から出力される光を1/2波長板に入力し、その出力をワイヤグリッド偏光子に入力する。この構成では、1/2波長板を回転させることにより、ポンプ光21の位相を自由に設定できる。 (Modification 9)
The configuration of the
(変形例10)
上述した探針30は、イオンコンダクタンス顕微鏡の一部、具体的には、探針30がイオンコンダクタンス顕微鏡を構成するピペット811の先端を覆う金属コーティングとして構成されてもよい。図8は、変形例10における顕微鏡T2の概略図である。ただし図9では図1と共通するポンプ光出力部2、プローブ光出力部3、および計測部6は省略している。顕微鏡T2は、イオンコンダクタンス顕微鏡としても機能する。顕微鏡T2は、上述したポンプ光出力部2、プローブ光出力部3、および計測部6に加えて、ピペット811と、第1電極812と、第2電極814と、不図示の付帯装置とをさらに備える。顕微鏡T2は、イオン伝導モードおよびトンネルモードの2つの動作モードを有する。 (Modification 10)
Theprobe 30 described above may be configured as a part of the ion conductance microscope, specifically as a metal coating covering the tip of the pipette 811 with which the probe 30 constitutes the ion conductance microscope. FIG. 8 is a schematic diagram of the microscope T2 in the tenth modification. However, in FIG. 9, the pump light output section 2, the probe light output section 3, and the measurement section 6, which are common to FIG. 1, are omitted. Microscope T2 also functions as an ion conductance microscope. The microscope T2 further includes a pipette 811, a first electrode 812, a second electrode 814, and ancillary devices (not shown) in addition to the pump light output section 2, the probe light output section 3, and the measurement section 6 described above. Prepare. Microscope T2 has two modes of operation: ion conduction mode and tunneling mode.
上述した探針30は、イオンコンダクタンス顕微鏡の一部、具体的には、探針30がイオンコンダクタンス顕微鏡を構成するピペット811の先端を覆う金属コーティングとして構成されてもよい。図8は、変形例10における顕微鏡T2の概略図である。ただし図9では図1と共通するポンプ光出力部2、プローブ光出力部3、および計測部6は省略している。顕微鏡T2は、イオンコンダクタンス顕微鏡としても機能する。顕微鏡T2は、上述したポンプ光出力部2、プローブ光出力部3、および計測部6に加えて、ピペット811と、第1電極812と、第2電極814と、不図示の付帯装置とをさらに備える。顕微鏡T2は、イオン伝導モードおよびトンネルモードの2つの動作モードを有する。 (Modification 10)
The
ピペット811はガラス製の中空ピペットであり、不図示のXYZステージに配されている。ピペット811の内部は、溶液80で満たされ、ピペット811の内部には第1電極812が挿入される。イオン伝導モードでは第2電極814には定電圧が印加されており、溶液80を介して第1電極812および第2電極814の間に電流が流れる。この電流の大きさは、ピペット811と試料90との間の距離に依存するので、試料90の表面形状を高精度に計測することができる。イオン伝導モードでは、ポンプ光出力部2、プローブ光出力部3、および計測部6は動作しない。
A pipette 811 is a hollow pipette made of glass and arranged on an XYZ stage (not shown). The inside of the pipette 811 is filled with the solution 80 and the first electrode 812 is inserted inside the pipette 811 . A constant voltage is applied to the second electrode 814 in the ion conduction mode, and current flows between the first electrode 812 and the second electrode 814 through the solution 80 . Since the magnitude of this current depends on the distance between the pipette 811 and the sample 90, the surface shape of the sample 90 can be measured with high accuracy. In the ion conduction mode, the pump light output section 2, the probe light output section 3, and the measurement section 6 do not operate.
トンネルモードでは、第2電極814への定電圧の印加は行われず、ピペット811の先端へのポンプ光21およびプローブ光31の照射が行われる。すなわち本変形例ではピペット811が実施の形態における探針30の役割を果たす。ピペット811の先端の拡大図を図8の下部に示す。
In the tunnel mode, a constant voltage is not applied to the second electrode 814, and the tip of the pipette 811 is irradiated with the pump light 21 and the probe light 31. That is, in this modified example, the pipette 811 functions as the probe 30 in the embodiment. An enlarged view of the tip of pipette 811 is shown at the bottom of FIG.
図8の下部はピペット811の先端を示す概念図である。ピペット811の先端部は直径が数ナノm~数100nm程度、たとえば100nmであり、架橋剤8111によりダイヤモンド粒子8112が固定される。架橋剤8111は様々なものが使用できるが、たとえば図9に示す手法でダイヤモンド粒子8112をピペット811に固定できる。このダイヤモンド粒子は、格子欠陥の一種であるダイヤモンド窒素-空孔中心(Diamond Nitrogen Vacancy Center)を含む。ダイヤモンド窒素-空孔中心は、窒素-空孔中心やNVセンターとも呼ばれる。本変形例では、ダイヤモンド窒素-空孔中心を「ダイヤモンドNV」と呼ぶ。
The lower part of FIG. 8 is a conceptual diagram showing the tip of the pipette 811. The tip of pipette 811 has a diameter of several nanometers to several hundreds of nanometers, for example, 100 nm, and diamond particles 8112 are fixed by cross-linking agent 8111 . Various cross-linking agents 8111 can be used. For example, diamond particles 8112 can be fixed to pipette 811 by the method shown in FIG. The diamond particles contain diamond nitrogen-vacancy centers, which are a type of lattice defect. Diamond nitrogen-vacancy centers are also called nitrogen-vacancy centers or NV centers. In this modification, diamond nitrogen-vacancy centers are referred to as "diamond NV".
ピペット811の先端部分には、金属コーティング8112Aが付されている。金属コーティング8112Aは、ピペット811の先端だけでなくピペット811の側面であって先端に近い領域にも付されてもよい。金属コーティング8112Aはピペット811の先端部の一部の領域には付されていなくてもよい。この金属コーティング8112Aはたとえば、金、銀、およびプラチナなどである。この金属コーティング8112Aは任意の方法でピペット811に塗布できる。
The tip of the pipette 811 is coated with a metal coating 8112A. The metal coating 8112A may be applied not only to the tip of the pipette 811, but also to the side of the pipette 811 and the area near the tip. The metal coating 8112A may not be applied to some areas of the tip of the pipette 811 . This metal coating 8112A is, for example, gold, silver, and platinum. This metal coating 8112A can be applied to pipette 811 by any method.
図9はダイヤモンド粒子8112をピペット811に固定する手法の一例を示す図である。図9に示すように、ダイヤモンド粒子8112とピペット811との間に金属コーティング8112A、たとえば金が存在する。この場合は、ダイヤモンドにカルボジイミド架橋剤8113を結合させ、ピペット811の先端にアミノ末端アルカンチオール8115を結合させる。そしてカルボジイミド架橋剤8113とアミノ末端アルカンチオール8115とを結合させることで、ピペット811にダイヤモンド粒子8112を固定する。
FIG. 9 is a diagram showing an example of a technique for fixing the diamond particles 8112 to the pipette 811. FIG. As shown in FIG. 9, there is a metal coating 8112A, eg gold, between the diamond particle 8112 and the pipette 811. In this case, the diamond is bound with a carbodiimide crosslinker 8113 and the pipette 811 tip is bound with an amino-terminated alkanethiol 8115 . Diamond particles 8112 are fixed to pipette 811 by binding carbodiimide cross-linking agent 8113 and amino-terminated alkanethiol 8115 .
本変形例では、プローブ光31により生じる電場に起因して、ピペット811の先端および試料90の間に流れるトンネル電流を測定する。なお本変形例では、計測部6は試料90および金属コーティング8112Aと接続されることで、ピペット811の先端と試料90との間に流れるトンネル電流を測定する。この構成によれば、イオンコンダクタンス顕微鏡の構成の一部を利用して液中でトンネル電流を測定できる。
In this modified example, the tunnel current flowing between the tip of the pipette 811 and the sample 90 due to the electric field generated by the probe light 31 is measured. In this modified example, measurement unit 6 is connected to sample 90 and metal coating 8112A to measure the tunnel current flowing between the tip of pipette 811 and sample 90 . According to this configuration, it is possible to measure the tunneling current in the liquid using part of the configuration of the ion conductance microscope.
なお変形例10においてラマン分光顕微鏡としての機能をさらに追加してもよい。この場合には、ポンプ光21またはプローブ光31をラマン散乱やレイリー散乱を生じさせるための励起光として利用してもよい。散乱光は不図示の検出器により検出される。また、上述したピペット811を用いることで、探針増強の効果により散乱光が増強されて検出が容易になり、短時間での観察を可能とする。また、ダイヤモンドNVにより、局所温度や局所電磁場などの情報を得ることが可能になる。
It should be noted that a function as a Raman spectroscopic microscope may be further added in Modified Example 10. In this case, the pump light 21 or the probe light 31 may be used as excitation light for causing Raman scattering or Rayleigh scattering. Scattered light is detected by a detector (not shown). In addition, by using the pipette 811 described above, the scattered light is enhanced by the effect of enhancing the probe, making detection easier and enabling observation in a short period of time. Diamond NV also makes it possible to obtain information such as local temperature and local electromagnetic field.
(変形例11)
図10は、変形例11における探針30の先端部付近を示す拡大図である。すなわち上述した実施の形態において、探針30としてNVセンターを含むダイヤモンド探針に金属コーティングCを施したものを用いてもよい。この場合には、ダイヤモンド探針の金属コーティングCで覆われていない位置にNVセンターを励起するための励起光、たとえばプローブ光31を、たとえば上方から照射する。また、NVセンターからの蛍光を同じく上方より取り出す。ただし、このNVセンターを励起するための励起光は、CEP制御されていなくてもよい。この探針30を用いることで、STMとしての空間分解能を向上することができる。 (Modification 11)
FIG. 10 is an enlarged view showing the vicinity of the tip portion of theprobe 30 in the eleventh modification. That is, in the above-described embodiment, a diamond probe including an NV center coated with a metal coating C may be used as the probe 30 . In this case, excitation light for exciting NV centers, such as probe light 31, is applied from above to a position of the diamond probe not covered with the metal coating C, for example. Fluorescence from the NV center is also extracted from above. However, the excitation light for exciting this NV center does not have to be CEP-controlled. By using this probe 30, the spatial resolution of the STM can be improved.
図10は、変形例11における探針30の先端部付近を示す拡大図である。すなわち上述した実施の形態において、探針30としてNVセンターを含むダイヤモンド探針に金属コーティングCを施したものを用いてもよい。この場合には、ダイヤモンド探針の金属コーティングCで覆われていない位置にNVセンターを励起するための励起光、たとえばプローブ光31を、たとえば上方から照射する。また、NVセンターからの蛍光を同じく上方より取り出す。ただし、このNVセンターを励起するための励起光は、CEP制御されていなくてもよい。この探針30を用いることで、STMとしての空間分解能を向上することができる。 (Modification 11)
FIG. 10 is an enlarged view showing the vicinity of the tip portion of the
さらにこの探針を用いてラマン分光顕微鏡を構成してもよい。ラマン分光顕微鏡を構成する場合には、たとえばポンプ光21をラマン散乱やレイリー散乱を生じさせるための励起光として利用し、図10の破線で示す範囲に照射する。これにより、変形例10よりも高い空間分解能を有するラマン分光が得られる。なお図10において探針30の先端は全周が金属コーティングCにより覆われているが、探針30の所定の角度範囲のみが金属コーティングCにより覆われてもよい。
Furthermore, this probe may be used to construct a Raman spectroscopic microscope. When constructing a Raman spectroscopic microscope, for example, the pump light 21 is used as excitation light for causing Raman scattering or Rayleigh scattering, and the range indicated by the dashed line in FIG. 10 is irradiated. As a result, Raman spectroscopy with a spatial resolution higher than that of Modification 10 is obtained. In FIG. 10, the entire periphery of the tip of the probe 30 is covered with the metal coating C, but only a predetermined angular range of the probe 30 may be covered with the metal coating C.
(変形例12)
上述した実施の形態では、試料90は液体である溶液80に浸されていた。しかし上述した実施の形態ではSTM測定が容易ではない環境として試料90が溶液80に浸された状態を示したにすぎず、真空中や大気中において上述した実施の形態に示した構成による測定を行ってもよい。 (Modification 12)
In the embodiment described above, thesample 90 was immersed in the liquid solution 80 . However, in the above-described embodiment, only the state in which the sample 90 is immersed in the solution 80 is shown as an environment in which the STM measurement is not easy. you can go
上述した実施の形態では、試料90は液体である溶液80に浸されていた。しかし上述した実施の形態ではSTM測定が容易ではない環境として試料90が溶液80に浸された状態を示したにすぎず、真空中や大気中において上述した実施の形態に示した構成による測定を行ってもよい。 (Modification 12)
In the embodiment described above, the
上述した各実施の形態および変形例は、それぞれ組み合わせてもよい。上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
Each of the above-described embodiments and modifications may be combined. Although various embodiments and modifications have been described above, the present invention is not limited to these contents. Other aspects conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention.
T、T2…顕微鏡
2…ポンプ光出力部
3…プローブ光出力部
3B…変調部
6…計測部
21…ポンプ光
22…第1光源
23…第1変調部
30…探針
31…プローブ光
32…第2光源
33…第2変調部
34…遅延調整部
80…溶液
90…試料
91…試料台 T, T2...Microscope 2...Pump light output section 3...Probe light output section 3B...Modulation section 6...Measurement section 21...Pump light 22...First light source 23...First modulation section 30...Probe 31...Probe light 32... Second light source 33 Second modulation section 34 Delay adjustment section 80 Solution 90 Sample 91 Sample stage
2…ポンプ光出力部
3…プローブ光出力部
3B…変調部
6…計測部
21…ポンプ光
22…第1光源
23…第1変調部
30…探針
31…プローブ光
32…第2光源
33…第2変調部
34…遅延調整部
80…溶液
90…試料
91…試料台 T, T2...
Claims (8)
- 探針と、
パルス状の第1光を前記探針の先端に出力する第1光出力部と、
観察対象の試料、および前記試料が浸される溶液を保持する試料台と、
前記第1光により生じる電場に起因して、前記探針および前記試料の間に流れるトンネル電流を測定する計測部とを備える、顕微鏡。 a probe;
a first light output unit that outputs a pulsed first light to the tip of the probe;
a sample table holding a sample to be observed and a solution in which the sample is immersed;
and a measurement unit that measures a tunneling current flowing between the probe and the sample due to the electric field generated by the first light. - 請求項1に記載の顕微鏡において、
前記第1光は、時間幅が10ナノ秒以下である、顕微鏡。 A microscope according to claim 1, wherein
The microscope, wherein the first light has a duration of 10 nanoseconds or less. - 請求項1または請求項2に記載の顕微鏡において、
前記第1光は、1つのパルスにより生成する電場の積分値が略ゼロである、顕微鏡。 In the microscope according to claim 1 or claim 2,
The microscope, wherein the first light has a substantially zero integral value of an electric field generated by one pulse. - 請求項1から請求項3までのいずれか一項に記載の顕微鏡において、
パルス状であり前記試料を励起する第2光を前記探針の先端に出力する第2光出力部と、
前記第1光が照射されるタイミングと、前記第2光が照射されるタイミングとの差である遅延時間を調整する遅延調整部とをさらに備え、
前記遅延調整部は、前記遅延時間を複数とおりに変化させる、顕微鏡。 In the microscope according to any one of claims 1 to 3,
a second light output unit that outputs a pulsed second light that excites the sample to the tip of the probe;
a delay adjustment unit that adjusts a delay time that is the difference between the timing at which the first light is emitted and the timing at which the second light is emitted;
The microscope, wherein the delay adjuster changes the delay time in a plurality of ways. - 請求項4に記載の顕微鏡において、
前記第1光および前記第2光のそれぞれは、時間幅が10ナノ秒以下である、顕微鏡。 A microscope according to claim 4,
The microscope, wherein each of the first light and the second light has a time width of 10 nanoseconds or less. - 請求項1に記載の顕微鏡において、
前記探針は、イオンコンダクタンス顕微鏡を構成するピペットの先端を覆う金属コーティングである、顕微鏡。 A microscope according to claim 1, wherein
The microscope, wherein the probe is a metal coating covering the tip of a pipette constituting an ion conductance microscope. - 請求項1に記載の顕微鏡において、
前記探針は、NVセンターを含むダイヤモンドに金属がコーティングされる、顕微鏡。 A microscope according to claim 1, wherein
The microscope, wherein the probe is a metal-coated diamond containing NV centers. - 探針、およびパルス状の第1光を出力する第1光出力部を用いて溶液に浸された試料を観察する観察方法であって、
前記探針の先端を前記試料の近傍に配することと、
前記第1光を前記探針の先端に出力することと、
前記第1光により生じる電場に起因して前記探針および前記試料の間に流れるトンネル電流を測定することとを含む、観察方法。
An observation method for observing a sample immersed in a solution using a probe and a first light output unit that outputs a first pulsed light,
disposing the tip of the probe near the sample;
outputting the first light to the tip of the probe;
and measuring a tunneling current flowing between the probe and the sample due to the electric field generated by the first light.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-065086 | 2021-04-07 | ||
JP2021065086 | 2021-04-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022215638A1 true WO2022215638A1 (en) | 2022-10-13 |
Family
ID=83546089
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/016356 WO2022215638A1 (en) | 2021-04-07 | 2022-03-30 | Microscope and observation method |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022215638A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6621079B1 (en) * | 1999-07-02 | 2003-09-16 | University Of Virginia Patent Foundation | Apparatus and method for a near field scanning optical microscope in aqueous solution |
WO2007036614A1 (en) * | 2005-09-30 | 2007-04-05 | Oulun Yliopisto | Measuring system |
JP2015529328A (en) * | 2012-08-22 | 2015-10-05 | プレジデント アンド フェローズ オブ ハーバード カレッジ | Nanoscale scanning sensor |
JP2019039706A (en) * | 2017-08-23 | 2019-03-14 | 浜松ホトニクス株式会社 | Tunnel current control device and tunnel current control method |
JP2020027091A (en) * | 2018-08-17 | 2020-02-20 | Gセラノスティックス株式会社 | Measurement device, method for measuring near-field |
CN111650404A (en) * | 2020-06-12 | 2020-09-11 | 中国科学院长春光学精密机械与物理研究所 | Light-induced STM dynamic response detection system and method |
-
2022
- 2022-03-30 WO PCT/JP2022/016356 patent/WO2022215638A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6621079B1 (en) * | 1999-07-02 | 2003-09-16 | University Of Virginia Patent Foundation | Apparatus and method for a near field scanning optical microscope in aqueous solution |
WO2007036614A1 (en) * | 2005-09-30 | 2007-04-05 | Oulun Yliopisto | Measuring system |
JP2015529328A (en) * | 2012-08-22 | 2015-10-05 | プレジデント アンド フェローズ オブ ハーバード カレッジ | Nanoscale scanning sensor |
JP2019039706A (en) * | 2017-08-23 | 2019-03-14 | 浜松ホトニクス株式会社 | Tunnel current control device and tunnel current control method |
JP2020027091A (en) * | 2018-08-17 | 2020-02-20 | Gセラノスティックス株式会社 | Measurement device, method for measuring near-field |
CN111650404A (en) * | 2020-06-12 | 2020-09-11 | 中国科学院长春光学精密机械与物理研究所 | Light-induced STM dynamic response detection system and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4941753A (en) | Absorption microscopy and/or spectroscopy with scanning tunneling microscopy control | |
JP4709059B2 (en) | Inspection apparatus and inspection method | |
JP5828359B2 (en) | Mechanical detection of Raman resonance | |
Staleva et al. | Vibrational Dynamics of Silver Nanocubes and Nanowires Studied by Single‐Particle Transient Absorption Spectroscopy | |
JP5940603B2 (en) | Tuning fork-based near-field probe for spectroscopic measurement, near-field microscope using the same, and spectroscopic analysis method using near-field microscope | |
US9423416B2 (en) | Scanning probe microscope and measuring method using same | |
CN113533294B (en) | Time domain, space domain and spectrum domain single molecule characterization device based on nanometer gap electrode pair | |
JP4631704B2 (en) | Method and apparatus for measuring electric field distribution of semiconductor device | |
WO2014016952A1 (en) | Holder for probe microscope, probe microscope and specimen measurement method | |
JP6322295B2 (en) | Scanning probe microscope and its sample holder | |
WO2022215638A1 (en) | Microscope and observation method | |
JP5820886B2 (en) | Scanning probe microscope | |
JP7134476B2 (en) | Measuring device, near-field measuring method | |
Bonse et al. | Time-resolved microscopy of fs-laser-induced heat flows in glasses | |
JP7129099B2 (en) | Scanning probe microscope, measurement method | |
Schade et al. | THz near-field imaging of biological tissues employing synchrotron radiation | |
JP3628640B2 (en) | Physical property measuring device | |
JP2022107068A (en) | Observation system and observation method | |
JP3866225B2 (en) | Surface micro-area atomic emission spectrometer | |
JP3145329B2 (en) | Local exploration microscope | |
US20240345129A1 (en) | Decoupled optical force nanoscopy | |
Rai et al. | Physics and instrumentation of photothermal and photoacoustic spectroscopy of solids | |
JP2020153669A (en) | Microscope device | |
JPH06221923A (en) | Spectrophotometric equipment | |
EP2641303B1 (en) | Method and device for sensing a carrier envelope characteristic of laser pulses, and applications thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22784622 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22784622 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
NENP | Non-entry into the national phase |
Ref country code: JP |