WO2022215528A1 - Resin composition and elastomer material comprising said resin composition - Google Patents

Resin composition and elastomer material comprising said resin composition Download PDF

Info

Publication number
WO2022215528A1
WO2022215528A1 PCT/JP2022/013628 JP2022013628W WO2022215528A1 WO 2022215528 A1 WO2022215528 A1 WO 2022215528A1 JP 2022013628 W JP2022013628 W JP 2022013628W WO 2022215528 A1 WO2022215528 A1 WO 2022215528A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
silica particles
multilayer graphene
weight
loss tangent
Prior art date
Application number
PCT/JP2022/013628
Other languages
French (fr)
Japanese (ja)
Inventor
文雄 浅井
敬和 竹岡
隆広 関
Original Assignee
ユニチカ株式会社
国立大学法人東海国立大学機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニチカ株式会社, 国立大学法人東海国立大学機構 filed Critical ユニチカ株式会社
Priority to JP2023512926A priority Critical patent/JPWO2022215528A1/ja
Publication of WO2022215528A1 publication Critical patent/WO2022215528A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F292/00Macromolecular compounds obtained by polymerising monomers on to inorganic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters

Definitions

  • the present invention comprises a resin composition that has excellent mechanical properties such as extensibility and toughness and can be suitably used as an elastomer material that exhibits excellent dielectric properties such as a high dielectric constant, and the resin composition. It relates to elastomeric materials.
  • the size of the communication device can be further reduced by increasing the dielectric constant of the antenna substrate incorporated in the communication device.
  • the dielectric constant indicates the degree of polarization inside the dielectric. The higher the dielectric constant of the antenna substrate, the shorter the wavelength of the signal propagating through the circuit formed on the substrate, and the higher the frequency of the signal. In other words, by using a substrate with a high dielectric constant, it is possible to reduce the size of the circuit and the size of the communication device by increasing the frequency.
  • a high dielectric ceramic substrate is known as a substrate with a high dielectric constant.
  • ceramics are not suitable for complex-shaped antennas because they have very poor workability.
  • Elastomer materials typified by rubber, are used in automobiles, industrial products, and living materials because of their excellent flexibility and toughness, their ability to conform to complex shapes, and their durability against large deformations, in addition to their workability. It is widely used as a component of many products.
  • Patent Document 1 discloses a highly dielectric elastomer composition obtained by blending an elastomer with a highly dielectric ceramic powder. Since most of the constituent components of the highly dielectric elastomer composition are inorganic substances, it is difficult to utilize the excellent mechanical properties such as flexibility of the elastomer.
  • the present invention solves the above problems, and in particular, has excellent mechanical properties such as elongation and toughness, and has excellent properties such as a sufficiently high relative permittivity and a sufficiently low dielectric loss tangent.
  • An object of the present invention is to provide a resin composition that can be suitably used as an elastomer material exhibiting dielectric properties, and an elastomer material comprising the resin composition.
  • the present inventors have achieved the above object by providing a resin composition containing a polyacrylate resin, silica particles and multilayer graphene, wherein the total amount of the polyacrylate resin, silica particles and multilayer graphene is: The content of the silica particles is 8 to 62% by weight, The content of the multilayer graphene is 1 to 8% by weight, The total content of the silica particles and the multilayer graphene is 15 to 62% by weight, The inventors have found that the above resin composition can achieve the above-described characteristics, and have reached the present invention.
  • the present invention provides a novel resin composition.
  • the resin composition of the invention is particularly suitable as an elastomer material.
  • Elastomer materials made from the resin composition of the present invention are excellent in dielectric properties such as a high dielectric constant and a low rate of change in dielectric loss tangent, and are excellent in mechanical properties such as extensibility and toughness.
  • FIG. 1 is a stress/strain curve of the resin composition obtained in Example 1; 4 is a stress/strain curve of the resin composition obtained in Example 2.
  • FIG. 4 is a stress/strain curve of the resin composition obtained in Example 3.
  • 4 is a stress/strain curve of the resin composition obtained in Comparative Example 1.
  • the resin composition of the present invention contains at least a polyacrylate resin, silica particles and multilayer graphene.
  • the polyacrylate resin contained in the resin composition will be described.
  • the polyacrylate resin preferably contains an acrylate monomer (A) represented by the following general formula (1) as a monomer unit.
  • R 0 represents a hydrogen atom, a methyl group or an ethyl group, preferably a hydrogen atom or a methyl group, more preferably a methyl group.
  • R 1 represents a hydrogen atom or a methyl group, preferably a methyl group.
  • n represents an integer of 1-9, preferably 1-5, more preferably 1-3, even more preferably 1-2, most preferably 2;
  • the acrylate monomer (A) represented by the general formula (1) can be made into an acrylate resin by thermal polymerization or photopolymerization.
  • acrylate monomers represented by formula (1) include 2-methoxyethyl acrylate, 2-methoxyethyl methacrylate, diethylene glycol monomethyl ether acrylate, diethylene glycol monomethyl ether methacrylate, triethylene glycol monomethyl ether acrylate, and triethylene glycol monomethyl.
  • 2-methoxyethyl acrylate, 2-methoxyethyl methacrylate, and diethylene glycol monomethyl are preferred from the viewpoint of the dispersibility of silica particles and the physical properties of the resulting resin composition (especially the viewpoint of further improvement in mechanical properties and dielectric properties).
  • Ether acrylate diethylene glycol monomethyl ether methacrylate, triethylene glycol monomethyl ether acrylate, triethylene glycol monomethyl ether methacrylate, more preferably 2-methoxyethyl acrylate, diethylene glycol monomethyl ether acrylate, diethylene glycol monomethyl ether methacrylate, triethylene glycol monomethyl ether methacrylate, and more More preferred are 2-methoxyethyl acrylate and diethylene glycol monomethyl ether methacrylate. Most preferred is diethylene glycol monomethyl ether methacrylate.
  • the acrylate monomer represented by formula (1) may be used alone or in combination as long as the effects of the present invention are not impaired.
  • the content of the acrylate monomer (A) is not particularly limited. or more), and from the viewpoint of further improving mechanical properties and dielectric properties, it is preferably 50 mol% or more, more preferably 70 mol% or more, still more preferably 90 mol% or more, and fully preferably 99 mol% Above, more preferably 100 mol %.
  • the content of 100 mol % means that the polyacrylate resin contains the acrylate monomer (A) alone as a monomer unit.
  • bifunctional or higher functional acrylate monomer may be used as a monomer unit as a cross-linking agent.
  • bifunctional acrylate monomers include ethylene glycol diacrylate, EO-modified bisphenol A diacrylate, 1,4-butanediol diacrylate, diethylene glycol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, and trimethylol.
  • Trifunctional acrylate monomers such as propane diacrylate and polyethylene glycol diacrylate (polyethylene glycol chain molecular weight of 100 to 10000), trimethylolpropane triacrylate, pentaerythritol triacrylate and the like, and pentaerythritol tetraacrylate as tetrafunctional or higher acrylate monomers , dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, tripentaerythritol octaacrylate, tetrapentaerythritol decaacrylate, pentapentaerythritol dodecaacrylate and the like.
  • a bifunctional acrylate monomer more preferably ethylene glycol diacrylate, 1,4-butanediol diacrylate, diethylene glycol diacrylate, more preferably diethylene glycol diacrylate.
  • Bifunctional or higher functional acrylates may be used alone or in combination as long as the effects of the present invention are not impaired.
  • the resulting acrylate resin when using an acrylate monomer in which R 1 is a hydrogen atom, the resulting acrylate resin has a glass transition point that is significantly below zero and has high viscosity, making handling difficult. It is preferred to use a difunctional or higher acrylate monomer as a cross-linking agent.
  • the difunctional or higher acrylate monomer is less than 5 mol%, preferably less than 2 mol%, more preferably less than 1 mol%, even more preferably less than 0.6 mol%, relative to 100 mol% of all monomer units.
  • a range of amounts may be included in the resin composition.
  • the content of the above bifunctional or higher acrylates is 5 mol % or more, the tensile elongation at break of the elastomer material is remarkably lowered.
  • the polyacrylate resin contained in the resin composition of the present invention may contain a silane coupling agent represented by the following general formula (2) as a monomer unit.
  • R2 represents a hydrogen atom or a methyl group, preferably a methyl group.
  • R 3 represents a methoxy or ethoxy group, preferably a methoxy group.
  • R 4 represents a methyl, methoxy or ethoxy group, preferably a methyl or methoxy group.
  • silane coupling agent represented by formula (2) examples include 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, and 3-methacryloxypropylmethyldimethoxysilane. roxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane and the like. 3-methacryloxypropylmethyldimethoxysilane or 3-methacryloxypropyltrimethoxysilane is preferred, and 3-methacryloxypropyltrimethoxysilane is more preferred, because of high improvement in mechanical properties.
  • the silane coupling agent represented by formula (2) may be used alone or in combination as long as the effects of the present invention are not impaired.
  • the surface coverage ratio of the silane coupling agent to silica particles is 0.005-0.080, preferably 0.006-0.076, more preferably 0.007-0. 080, and more preferably in the range of 0.010 to 0.075.
  • the surface coverage ratio is a value obtained by the following formula.
  • [Surface coverage ratio] [amount of silane coupling agent contained in resin composition (g)] ⁇ [minimum coating area of silane coupling agent ( m / g)] ⁇ [silica particles contained in the resin composition The sum of the surface areas (m 2 ) of
  • the “minimum coating area of the silane coupling agent (m 2 /g)” means that when 1 g of the silane coupling agent reacts, adsorbs, etc. on the surface of a material such as silica, the run coupling agent covers the surface.
  • the minimum coverage area of each silane coupling agent can be calculated as follows.
  • Si(O) 3 obtained by hydrolysis of trialkoxysilane has one spherical Si atom with a radius of 2.10 ⁇ , three spherical O atoms with a radius of 1.52 ⁇ , and the Si—O bond distance Assuming 1.51 ⁇ and a tetrahedral angle of 109.5°, and further assuming that all three O atoms in the model react with the silanol groups on the silica surface, the minimum that three O atoms can cover Calculate circular area.
  • the coverage area per molecule is 1.3 ⁇ 10 ⁇ 19 m 2 /molecule, which is multiplied by Avogadro’s constant of 6.0 ⁇ 10 23 molecules/mol to convert to 7.8 ⁇ 10 4 m per mole. 2 /mol.
  • the minimum coverage area of each coupling agent is the value obtained by dividing the coverage area value per mole by the molecular weight of each silane coupling agent.
  • silane coupling agents For commercially available silane coupling agents, the characteristic values are indicated and described, and in the present invention, the values indicated and described by the distributor may be used.
  • the sum of the surface area (m 2 ) of the silica particles is “the surface area (m 2 ) of the silica particles obtained from the average particle diameter” ⁇ "addition amount of silica particles (g) ⁇ “density of silica particles (g /cm 3 )” ⁇ “Volume of silica particles (m 3 ) obtained from the average particle diameter”.
  • the polyacrylate resin is a resin containing an acrylate monomer component as a monomer unit, such as the compounds represented by the above formulas (1) and (2).
  • a compound containing a group is meant.
  • the polyacrylate resin in the resin composition of the present invention is a different acrylate monomer than the acrylate monomer components represented by the general formulas (1) and (2), as long as it does not impair the effects of the present invention.
  • alkyl acrylates such as butyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, n-nonyl acrylate and isononyl acrylate; methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate , n-butyl (meth)acrylate, isobutyl (meth)acrylate, t-butyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate, heptyl (meth)acrylate, n-octyl (meth)acrylate, isooctyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, nonyl (meth)acrylate, isononyl (meth)acrylate, n-decyl
  • maleimide group such as (meth) acrylolyloxyethylhe
  • N-hydroxyalkyl (meth)acrylamide such as N-hydroxyethyl (meth)acrylamide; N,N-dimethylaminoethyl (meth)acrylamide, N,N-dimethylaminopropyl (meth)acrylamide, N,N- Dimethyl (meth)acrylamide, N,N-diethyl (meth)acrylamide, N,N-di-n-propyl (meth)acrylamide, N,N-diisopropyl (meth)acrylamide, N,N-di-n-butyl ( N,N-dialkyl (meth)acrylamide of meth)acrylamide and N,N-dihexyl (meth)acrylamide may be combined, and a different silane other than the silane coupling agent (B) represented by the general formula (2) may be used.
  • B silane coupling agent represented by the general formula (2)
  • Coupling agents such as 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxy Silane coupling agents having an epoxy group such as silane and 3-glycidoxypropyltriethoxysilane; 3-isocyanatopropylmethyldimethoxysilane, 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropylmethyldiethoxysilane, 3-isocyanate Silane carbons with isocyanate groups such as propyltriethoxysilane Pulling agent; having an amino group such as N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane,
  • silica particles are an important component for enabling the resin composition of the present invention to be used as an elastomer material and for improving the toughness of the resin composition.
  • the absence of silica particles results in a brittle material that cannot withstand large deformations.
  • the coexistence of silica particles and multi-layer graphene improves the dispersibility of multi-layer graphene in the acrylate monomer, making it possible to add more multi-layer graphene.
  • coexistence of silica particles and multilayer graphene makes it possible to suppress an increase in dielectric loss tangent due to an increase in multilayer graphene.
  • the shape of the silica particles used in the present invention is not particularly limited as long as it does not impair the effects of the present invention, but from the viewpoint of dispersibility in acrylate monomers (especially from the viewpoint of further improving mechanical properties and dielectric properties) It is preferably "spherical".
  • spherical refers to a true sphere, a substantially spherical shape, or a spheroid, excluding rod-like and plate-like shapes, and may have uneven surfaces.
  • Spherical silica particles are silica particles having such a “spherical” shape.
  • spherical silica particles known ones such as powdered spherical silica particles, colloidal silica (silica sol), etc. can be used, and various known ones having different average particle sizes are known. and is commercially available.
  • the silica particles used in the present invention have an average particle size of less than 10 ⁇ m, and from the viewpoint of further improving mechanical properties and dielectric properties, are preferably less than 5 ⁇ m, more preferably less than 1 ⁇ m, even more preferably less than 500 nm, and most preferably less than 500 nm. Preferably less than 200 nm, most preferably less than 150 nm.
  • the silica particles may generally have an average particle size of 10 nm or more. In the present invention, the average particle size is represented by a mode size measured with a centrifugal sedimentation particle size distribution analyzer.
  • the content of the silica particles is (usually 8 to 62% by weight) relative to the total amount of the polyacrylate resin, silica particles and multilayer graphene, and from the viewpoint of further improving mechanical properties and dielectric properties, preferably 9-60% by weight, more preferably 10-58% by weight, even more preferably 11-56% by weight, fully preferably 12-54% by weight, more preferably 15-50% by weight, most preferably 15% by weight
  • the lower the silica particle content the smaller the reinforcement effect of the polymer material due to the silica particle filling, resulting in an elastomer material inferior in tensile rupture stress and tensile rupture strain.
  • the silica particle content is too high. In this case, it becomes difficult to uniformly disperse the silica particles in the acrylate monomer.
  • the multilayer graphene used in the present invention is a plate-like filler in which about 2 to 20 pieces of graphene are stacked to form a layer, and has a thickness of several nanometers to several tens of nanometers and a width of several microns to several tens of microns.
  • the thickness may be, for example, 1-90 nm, especially 1-20 nm.
  • the width may be, for example, 1-80 ⁇ m, especially 10-50 ⁇ m.
  • Such multilayer graphene is commercially available, for example, from Fujifilm Wako Pure Chemical Industries, Ltd., Tokyo Kasei Co., Ltd., and the like. They can be appropriately used in the present invention.
  • the content of the multilayer graphene is usually 1 to 8% by weight with respect to the total amount of the polyacrylate resin, silica particles and multilayer graphene, and from the viewpoint of further improving mechanical properties and dielectric properties, preferably 1 .5 to 8 wt%, more preferably 2 to 8 wt%, even more preferably 2 to 7.5 wt%, fully preferably 2.5 to 7.5 wt%, more fully preferably 3 to 7 .5% by weight.
  • the content of multilayer graphene decreases, the effect of increasing the dielectric constant due to multilayer graphene decreases. If the content of multi-layer graphene is too high, the dispersion containing acrylate monomers, silica particles and multi-layer graphene becomes too viscous and loses fluidity, making processing difficult.
  • the resin composition of the present invention is obtained by polymerizing a dispersion containing at least the acrylate monomer (A) represented by general formula (1), silica particles, and multilayer graphene.
  • the total content of silica particles and multi-layer graphene is usually 15 to 62% by weight based on the total amount of polyacrylate resin, silica particles and multi-layer graphene, further improving mechanical properties and dielectric properties. From the viewpoint of, preferably 15 to 60% by weight, more preferably 20 to 59% by weight, even more preferably 24 to 58% by weight, even more preferably 25 to 58% by weight, fully preferably 25 to 50% by weight, More preferably, a content of 25-40% by weight is used. If the amount is too large, the fluidity will be lost, making it difficult to obtain a sheet. If the amount is too small, the fluidity will increase, making it difficult to form a sheet. If the total amount is too small, the mechanical properties (especially tensile breaking stress) may deteriorate.
  • the acrylate monomer (A) is usually 38 to 85% by weight with respect to the total amount of the polyacrylate resin, silica particles and multilayer graphene, and from the viewpoint of further improving mechanical properties and dielectric properties, preferably 40 to 85 wt%, more preferably 41 to 80 wt%, even more preferably 42 to 76 wt%, even more preferably 42 to 75 wt%, fully preferably 50 to 75 wt%, more fully preferably 60 to A content of 75% by weight is used.
  • the content of the acrylate monomer (A) may also represent the content of the polyacrylate resin in the resulting polyacrylate resin composition.
  • thermal polymerization with a thermal polymerization initiator thermal polymerization initiator
  • photopolymerization with active energy ray irradiation such as ultraviolet rays with a photopolymerization initiator, etc.
  • other methods can be used as long as the effects of the present invention are not impaired.
  • Polymerization methods may also be used.
  • the thermal polymerization initiator is not particularly limited in structure as long as it generates radicals by heating and is used to initiate polymerization of the polymerizable functional groups in the resin composition.
  • the thermal polymerization initiator is not particularly limited in structure as long as it generates radicals by heating and is used to initiate polymerization of the polymerizable functional groups in the resin composition.
  • the amount of the thermal polymerization initiator to be added is 0.001 parts by mass or more, preferably 0.01 parts by mass or more, more preferably 0.1 parts by mass or more with respect to 100 parts by weight of the acrylic monomer component. It is no more than 5 parts by mass, more preferably no more than 3 parts by mass.
  • thermal polymerization initiators may be used alone or in combination of two or more.
  • the "acryloyl monomer component” means a compound containing an acryloyl group or a methacryloyl group, and in addition to the component represented by the above formula (1), other appropriately used acryloyl groups and methacryloyl groups Contains a compound component containing
  • the photopolymerization initiator is not particularly limited in its structure as long as it generates radicals upon irradiation with ultraviolet rays and is used to initiate polymerization of the polymerizable functional groups in the resin composition.
  • the photopolymerization initiator it is preferable to use an initiator that absorbs light at a wavelength of 360 nm to 470 nm. is mentioned. By using these initiators, polymerization efficiently progresses to the inside of the resin composition, so that the mechanical strength is improved and the amount of residual components such as initiators and monomers is reduced.
  • Photopolymerization initiators such as 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, ethyl(2,4,6-trimethylbenzoyl)phenylphosphine oxide, bis(2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 2,4-diethylthioxanthone, 2-isopropylthioxanthone, oligo(2-hydroxy-2-methyl-1-(4-(1-methylvinyl)phenyl)propanone), 2-benzyl-2-dimethyl amino-1-(4-morpholinophenyl)-butanone-1,2-dimethylamino-2-(4-methyl-benzyl)-1-(4-morpholin-4-yl-phenyl)-butan-1-one, 2-[4-(methylthiobenzoyl)]-2-(4-morpholinyl)propane, 2-hydroxy-1- ⁇ 4-[4-(2-hydroxy-2-methyl-propion
  • the amount of the photopolymerization initiator added is 0.001 parts by mass or more, preferably 0.01 parts by mass or more, more preferably 0.1 parts by mass or more with respect to 100 parts by weight of the acrylic monomer component. It is no more than 5 parts by mass, more preferably no more than 3 parts by mass. These photopolymerization initiators may be used alone or in combination of two or more.
  • a chain transfer agent may also be used in the polymerization reaction.
  • Chain transfer agents include, for example, mercaptocarboxylic acids such as mercaptoacetic acid and 3-mercaptopropionic acid; , methoxybutyl 3-mercaptopropionate, stearyl 3-mercaptopropionate, trimethylolpropane tris (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptopropionate), dipentaerythritol hexakis (3-mercapto mercaptocarboxylic acid esters such as propionate); alkyl mercaptans such as ethyl mercaptan, t-butyl mercaptan, n-dodecyl mercaptan, and 1,2-dimercaptoethane; 2-mercaptoethanol, 4-mercapto-1-butanol mercapto alcohols such as; benzenethiol, m
  • the amount of the chain transfer agent to be added is 0.001 parts by mass or more, preferably 0.01 parts by mass or more, more preferably 0.1 parts by mass or more with respect to 100 parts by weight of the acrylic monomer component. parts or less, preferably 5 parts by mass or less, more preferably 3 parts by mass or less. These may be used alone or in combination of two or more.
  • the silica particles When powdered silica particles are used as the silica particles, it is preferable to first disperse the silica particles in the acrylate monomer (A).
  • the method for dispersing the silica particles in the acrylate monomer (A) is not particularly limited as long as it does not impair the effects of the present invention.
  • colloidal silica silica (silica sol) is used as the silica particles
  • an organic solvent that is compatible with the acrylic monomer component, such as alcohols, ketones, esters, and glycol ethers.
  • Alcohol-based solvents such as methanol, ethanol, isopropyl alcohol, butyl alcohol, and n-propyl alcohol
  • ketone-based organic solvents such as methyl ethyl ketone and methyl isobutyl ketone, are exemplified for ease of solvent removal.
  • Colloidal silica (silica sol) dispersed in isopropyl alcohol or methyl ethyl ketone is preferred.
  • a preferred method for producing the resin composition of the present invention is to prepare a dispersion by mixing and dispersing predetermined amounts of silica particles and multilayer graphene in an acrylate monomer (A) represented by general formula (1), and If necessary, a polymerization initiator, other acrylic monomers and desired additives are mixed and dispersed, and the resulting dispersion is polymerized.
  • the desired additives include plasticizers, surfactants, dispersants, antioxidants, ultraviolet absorbers, fluorescent agents, cross-linking agents, organic solvents, etc.
  • the effect of the present invention can be obtained. It can be added and used as long as it does not damage it.
  • the content of the acrylate monomer (A) in the dispersion liquid is the content of the acrylate monomer (A) with respect to the above-mentioned "total amount of polyacrylate resin, silica particles and multilayer graphene". It may be applied as the content of the acrylate monomer (A) with respect to the "total amount of graphene”.
  • the acrylate monomer corresponds to the above-mentioned "acrylate monomer component".
  • the content of silica particles in the dispersion liquid is the content of silica particles relative to the above-mentioned "total amount of polyacrylate resin, silica particles and multilayer graphene" relative to “total amount of acrylate monomer, silica particles and multilayer graphene". It may be applied as a content of silica particles.
  • the content of multi-layer graphene in the dispersion liquid is the content of multi-layer graphene relative to the above-mentioned "total amount of polyacrylate resin, silica particles and multi-layer graphene" relative to “total amount of acrylate monomer, silica particles and multi-layer graphene". It may be applied as content of multilayer graphene.
  • the total content of silica particles and multi-layer graphene in the dispersion liquid is the total content of silica particles and multi-layer graphene with respect to the above-mentioned "total amount of polyacrylate resin, silica particles and multi-layer graphene", and "acrylate monomer, silica particles and the total amount of multilayer graphene".
  • the resin composition of the present invention can be suitably used as an elastomer material.
  • the term "elastomer material” means a polymer material or polymer resin composition having such rubber elasticity that it undergoes a large change in shape under a relatively small external force and quickly returns to its original shape when the external force is removed. and is a material that can be used as a constituent material for members that require rubber elasticity.
  • the polyacrylate resin contained in the resin composition of the present invention generally exhibits rubber elasticity.
  • Elastomer materials made of the resin composition of the present invention are excellent in dielectric properties, particularly high relative permittivity and low rate of change in dielectric loss tangent, and are excellent in elongation and toughness, especially tensile breaking stress, Excellent mechanical properties such as tensile breaking strain.
  • the terms "relative permittivity” and “dielectric loss tangent” refer to characteristics evaluated by relative permittivity and dielectric loss tangent obtained using a 1 mm thick sheet made of the resin composition of the present invention.
  • the value obtained by the method described in the following examples is used for the dielectric constant.
  • a higher dielectric constant indicates a higher degree of polarization inside the dielectric.
  • the elastomer comprising the composition of the present invention usually has a dielectric constant of 7 or more, preferably 7.5 or more, more preferably 7.8 or more, even more preferably 8.0 or more, and fully preferably 10.0 or greater.
  • the rate of change in the dielectric loss tangent obtained by the following formula is usually 60% or less, preferably 45% or less, more preferably 30% or less, and still more preferably 25% or less. preferably 20% or less, more preferably 15% or less, most preferably 10% or less.
  • [Change rate of dielectric loss tangent] [[Dielectric loss tangent of resin composition] ⁇ [Dielectric loss tangent of polyacrylate resin] -1] ⁇ 100
  • the elastomer material made of the resin composition of the present invention is also excellent in elongation, toughness, etc., and is excellent in mechanical properties such as tensile breaking stress and tensile breaking strain.
  • mechanical properties such as tensile breaking stress and tensile breaking strain mean the tensile breaking stress and tensile breaking strain obtained based on the stress/strain curve obtained according to JIS K7161-2. More specifically, it is described in the examples below.
  • the elastomer material made of the resin composition of the present invention has a tensile breaking stress of 2.0 MPa or more, preferably 2.3 MPa or more, and more preferably 2.5 MPa or more.
  • the elastomer material made of the resin composition of the present invention has a tensile strain at break of 350% or more, preferably 400% or more, more preferably 450% or more.
  • the resin composition of the present invention can be suitably used as an elastomer material with a high dielectric constant.
  • the resin composition of the present invention is molded or processed into films, sheets, coating agents, adhesives, adhesives, etc., and can be suitably used, for example, as the following materials: (i) Materials for antenna substrates adapted to automobiles, railways, aircraft, home appliances/OA equipment, construction machinery, wearable devices, etc.; (ii) encapsulating materials for packages that require miniaturization and thinning, including optical transceivers; and (iii) printed wiring board materials.
  • the resin composition of the present invention when used as a package sealing material, it can be applied to applications such as Wifi modules, optical communication modules, millimeter wave radars, and electromagnetic wave shields.
  • the package may be a package for electronic/electrical equipment.
  • the resin composition of the present invention when used as a printed wiring board material, it can be applied to smartphones, car navigation systems, power devices, and the like.
  • mechanical properties are used as a concept including extensibility and toughness.
  • Extensibility is the property of exhibiting a sufficiently large tensile strain at break. The higher the tensile strain at break, the better the extensibility.
  • Toughness is a property that simultaneously exhibits a sufficiently large tensile stress at break and tensile strain at break. The higher the tensile stress at break and the tensile strain at break, the better the toughness.
  • Dielectric properties are properties that exhibit a sufficiently high dielectric constant and a sufficiently low dielectric loss tangent. Note that the dielectric loss tangent value varies greatly depending on the monomer composition of the polyacrylate resin.
  • the dielectric loss tangent of a given resin composition is the dielectric loss tangent of a resin composition (for example, a simple “polyacrylate resin”) having the same composition as the resin composition except that it does not contain silica particles and multilayer graphene. is significant. Therefore, in the present invention, the dielectric loss tangent of the resin composition is represented by the rate of change from the dielectric loss tangent of the polyacrylate resin, as described above. Therefore, the lower the dielectric loss tangent of the resin composition, the smaller the change rate of the dielectric loss tangent of the resin composition. The lower the dielectric loss tangent of the resin composition, the better, and the smaller the change rate of the dielectric loss tangent of the resin composition, the better.
  • a No. 7 dumbbell test piece (JISK7161-2) was prepared from a resin composition sheet with a thickness of 1 mm using a punching die.
  • a tensile tester (EZ-LX) manufactured by Shimadzu Corporation, under a standard environment (temperature 23 ⁇ 2 ° C, air, humidity (50 ⁇ 10%)
  • strain 0.1 mm / up to 0.3% After the strain was 0.3%, the tensile speed was 50 mm/min.
  • Tensile breaking stress was evaluated according to the following criteria. ⁇ : 2.5 MPa ⁇ tensile breaking stress (excellent); ⁇ : 2.0 MPa ⁇ tensile breaking stress ⁇ 2.5 MPa (good: practically no problem); x: Tensile breaking stress ⁇ 2.0 MPa (practically problematic).
  • Change rate of dielectric loss tangent ⁇ 10% (excellent); ⁇ : 10% ⁇ change rate of dielectric loss tangent ⁇ 25% (good); ⁇ : 25% ⁇ change rate of dielectric loss tangent ⁇ 60% (no practical problem) x: 60% ⁇ change rate of dielectric loss tangent (problematic in practice).
  • Example 1 Diethylene glycol monomethyl ether methacrylate (MEO2MA, manufactured by Aldrich) 3386 parts by mass, spherical silica particles with an average particle size of 110 nm (Silbol 110, manufactured by Fuji Chemical Co., Ltd.) 1056 parts by mass, thickness 6-8 nm, width 25 ⁇ m multilayer graphene (graphene nanoplates 360 parts by mass of Rett, manufactured by Tokyo Chemical Industry Co., Ltd.) was placed in a test tube and dispersed with an ultrasonic homogenizer (UP200St, manufactured by Hielscher) at 5° C. for 20 minutes.
  • MEO2MA Diethylene glycol monomethyl ether methacrylate
  • FIG. 1 shows the results of values close to the average value in the stress/strain curve chart obtained from the five test pieces.
  • the fluidity of the dispersion before polymerization the mechanical properties (tensile breaking stress, tensile breaking strain) obtained from the stress/strain curve, the relative permittivity, the dielectric loss tangent and the rate of change of the dielectric loss tangent are measured and evaluated. It is shown in Table 1 collectively.
  • Examples 2-5, Comparative Examples 1-10 A sheet was produced and evaluated in the same manner as in Example 1, except that the filling amounts of silica particles and multilayer graphene were changed to those shown in Table 1.
  • the resin compositions obtained in Examples 1 to 5 had excellent mechanical properties such as high tensile breaking stress and tensile breaking strain and high toughness. Moreover, the relative permittivity was 7.0 or more, and the rate of change of the dielectric loss tangent showed a small value or a negative value, indicating excellent dielectric properties.
  • the resin composition of Comparative Example 3 did not contain silica particles, had a very low content of multilayer graphene, and was a fragile material with low tensile breaking stress and tensile breaking strain. Moreover, it was a material with a low dielectric constant and poor dielectric properties.
  • the resin compositions of Comparative Examples 4 to 6 had a small amount of multi-layered graphene filled, and were materials with low dielectric constant values and poor dielectric properties.
  • the resin composition of Comparative Example 7 was a fragile material with a low total content of silica particles and multilayer graphene and a low tensile breaking stress.
  • the resin composition of the present invention is useful for applications such as antenna substrate materials, packaging sealing materials for electronic and electrical equipment, and printed wiring board materials.

Abstract

The present invention provides a resin composition which can be used suitably as an elastomer material that has excellent mechanical properties with respect to stretchability and toughness and also has excellent dielectric properties with respect to a sufficiently larger dielectric constant, a sufficiently smaller dielectric tangent and the like. The present invention relates to a resin composition comprising a polyacrylate resin, silica particles and multilayer graphene, in which the content of the silica particles is 8 to 62% by weight, the content of the multilayer graphene is 1 to 8% by weight and the total content of the silica particles and the multilayer graphene is 15 to 62% by weight each relative to the total amount of the polyacrylate resin, the silica particles and the multilayer graphene.

Description

樹脂組成物および該樹脂組成物からなるエラストマー材料Resin composition and elastomer material comprising said resin composition
 本発明は、伸張性および靭性に優れた機械的特性を有し、高い比誘電率等の優れた誘電特性を示すエラストマー材料として好適に使用することができる樹脂組成物および該樹脂組成物からなるエラストマー材料に関する。 The present invention comprises a resin composition that has excellent mechanical properties such as extensibility and toughness and can be suitably used as an elastomer material that exhibits excellent dielectric properties such as a high dielectric constant, and the resin composition. It relates to elastomeric materials.
 近年、スマートフォン、R F I D 等に用いるパッチアンテナ、ミリ波レーダなどのレンズアンテナ等の普及、また、またそれらアンテナ技術を利用したウェアラブルデバイスの開発進展に伴い、通信機の一層の小型化が望まれている。通信機の大きさは、通信機内部に組み込まれたアンテナ基板の比誘電率が高くなると、より一層の小型化が図れる。比誘電率は、誘電体内部の分極の程度を示し、アンテナ基板の比誘電率が高いほど、基板上に形成された回路を伝播する信号の波長は短くなり、信号は高周波化する。つまり、比誘電率の高い基板を使用することで、高周波化による回路の縮小および通信機の小型化が図れる。 In recent years, with the spread of patch antennas for smartphones, RFID, etc., and lens antennas for millimeter-wave radar, etc., and with the development progress of wearable devices using these antenna technologies, further miniaturization of communication equipment is required. Desired. The size of the communication device can be further reduced by increasing the dielectric constant of the antenna substrate incorporated in the communication device. The dielectric constant indicates the degree of polarization inside the dielectric. The higher the dielectric constant of the antenna substrate, the shorter the wavelength of the signal propagating through the circuit formed on the substrate, and the higher the frequency of the signal. In other words, by using a substrate with a high dielectric constant, it is possible to reduce the size of the circuit and the size of the communication device by increasing the frequency.
 比誘電率の高い基板として、高誘電性セラミックス基板が知られている。しかし、セラミックスは加工性が非常に悪いため、複雑形状のアンテナ用としては適していない。 A high dielectric ceramic substrate is known as a substrate with a high dielectric constant. However, ceramics are not suitable for complex-shaped antennas because they have very poor workability.
 ゴムに代表されるエラストマー材料は、その加工性に加えて、優れた柔軟性と靭性から複雑な形状に対する追従性や大きな変形に対する耐久性を有することなどから、自動車、工業製品、生活資材に至る数多くの製品の構成部材として広く使用されている。 Elastomer materials, typified by rubber, are used in automobiles, industrial products, and living materials because of their excellent flexibility and toughness, their ability to conform to complex shapes, and their durability against large deformations, in addition to their workability. It is widely used as a component of many products.
 例えば、特許文献1には、エラストマーに高誘電性セラミックス粉末を配合してなる高誘電性エラストマー組成物が開示されているが、高誘電性セラミックス粉末をエラストマーに対して重量比で4倍以上配合する必要があり、高誘電性エラストマー組成物の構成成分の大部分が無機物であることから、エラストマーが有する柔軟性をはじめとする優れた力学特性を利用することは困難である。 For example, Patent Document 1 discloses a highly dielectric elastomer composition obtained by blending an elastomer with a highly dielectric ceramic powder. Since most of the constituent components of the highly dielectric elastomer composition are inorganic substances, it is difficult to utilize the excellent mechanical properties such as flexibility of the elastomer.
特開2005-187551JP 2005-187551
 本発明は、上記の問題点を解決するものであって、特に、伸張性および靭性に優れた機械的特性を有し、より十分に高い比誘電率およびより十分に低い誘電正接等に関する優れた誘電特性を示すエラストマー材料として好適に使用することができる樹脂組成物および該樹脂組成物からなるエラストマー材料を提供することを目的とするものである。 The present invention solves the above problems, and in particular, has excellent mechanical properties such as elongation and toughness, and has excellent properties such as a sufficiently high relative permittivity and a sufficiently low dielectric loss tangent. An object of the present invention is to provide a resin composition that can be suitably used as an elastomer material exhibiting dielectric properties, and an elastomer material comprising the resin composition.
 本発明者らは、上記目的を、ポリアクリレート樹脂、シリカ粒子および多層グラフェンを含有する樹脂組成物であって、ポリアクリレート樹脂、シリカ粒子および多層グラフェンの合計量に対して、
 前記シリカ粒子の含有量が8~62重量%であり、
 前記多層グラフェンの含有量が1~8重量%であり、
 前記シリカ粒子と前記多層グラフェンの合計含有量が15~62重量%である、
ことを特徴とする、上記樹脂組成物により達成できることを見出し本発明に到達した。
The present inventors have achieved the above object by providing a resin composition containing a polyacrylate resin, silica particles and multilayer graphene, wherein the total amount of the polyacrylate resin, silica particles and multilayer graphene is:
The content of the silica particles is 8 to 62% by weight,
The content of the multilayer graphene is 1 to 8% by weight,
The total content of the silica particles and the multilayer graphene is 15 to 62% by weight,
The inventors have found that the above resin composition can achieve the above-described characteristics, and have reached the present invention.
 本発明は、新規な樹脂組成物を提供した。
 本発明の樹脂組成物は、エラストマー材料として特に適している。
 本発明の樹脂組成物からなるエラストマー材料は、高い比誘電率、低い誘電正接の変化率等の誘電特性に優れ、かつ伸張性および靭性等の機械的特性に優れている。
The present invention provides a novel resin composition.
The resin composition of the invention is particularly suitable as an elastomer material.
Elastomer materials made from the resin composition of the present invention are excellent in dielectric properties such as a high dielectric constant and a low rate of change in dielectric loss tangent, and are excellent in mechanical properties such as extensibility and toughness.
実施例1で得られた樹脂組成物の応力/ひずみ曲線。1 is a stress/strain curve of the resin composition obtained in Example 1; 実施例2で得られた樹脂組成物の応力/ひずみ曲線。4 is a stress/strain curve of the resin composition obtained in Example 2. FIG. 実施例3で得られた樹脂組成物の応力/ひずみ曲線。4 is a stress/strain curve of the resin composition obtained in Example 3. FIG. 実施例4で得られた樹脂組成物の応力/ひずみ曲線。The stress/strain curve of the resin composition obtained in Example 4. 実施例5で得られた樹脂組成物の応力/ひずみ曲線。The stress/strain curve of the resin composition obtained in Example 5. 比較例1で得られた樹脂組成物の応力/ひずみ曲線。4 is a stress/strain curve of the resin composition obtained in Comparative Example 1. FIG. 比較例2で得られた樹脂組成物の応力/ひずみ曲線。The stress/strain curve of the resin composition obtained in Comparative Example 2. 比較例3で得られた樹脂組成物の応力/ひずみ曲線。The stress/strain curve of the resin composition obtained in Comparative Example 3. 比較例4で得られた樹脂組成物の応力/ひずみ曲線。The stress/strain curve of the resin composition obtained in Comparative Example 4. 比較例5で得られた樹脂組成物の応力/ひずみ曲線。The stress/strain curve of the resin composition obtained in Comparative Example 5. 比較例6で得られた樹脂組成物の応力/ひずみ曲線。The stress/strain curve of the resin composition obtained in Comparative Example 6. 比較例7で得られた樹脂組成物の応力/ひずみ曲線。The stress/strain curve of the resin composition obtained in Comparative Example 7.
 以下、本発明を詳細に説明する。
 本発明の樹脂組成物は、少なくとも、ポリアクリレート樹脂とシリカ粒子と多層グラフェンを含有するものである。
The present invention will be described in detail below.
The resin composition of the present invention contains at least a polyacrylate resin, silica particles and multilayer graphene.
 まず、前記樹脂組成物に含まれるポリアクリレート樹脂について説明する。
 前記ポリアクリレート樹脂は、機械的特性および誘電特性のさらなる向上の観点から、下記一般式(1)で示されるアクリレートモノマー(A)を、モノマーユニットとして含有することが好ましい。
Figure JPOXMLDOC01-appb-C000003
First, the polyacrylate resin contained in the resin composition will be described.
From the viewpoint of further improving mechanical properties and dielectric properties, the polyacrylate resin preferably contains an acrylate monomer (A) represented by the following general formula (1) as a monomer unit.
Figure JPOXMLDOC01-appb-C000003
 式(1)中、Rは、水素原子、メチル基またはエチル基、好ましくは水素原子またはメチル基、より好ましくはメチル基を表す。Rは水素原子またはメチル基、好ましくはメチル基を表す。nは1~9、好ましくは1~5、より好ましくは1~3、さらにより好ましくは1~2、最も好ましくは2の整数を表す。 In formula (1), R 0 represents a hydrogen atom, a methyl group or an ethyl group, preferably a hydrogen atom or a methyl group, more preferably a methyl group. R 1 represents a hydrogen atom or a methyl group, preferably a methyl group. n represents an integer of 1-9, preferably 1-5, more preferably 1-3, even more preferably 1-2, most preferably 2;
 上記一般式(1)で表されるアクリレートモノマー(A)は、熱重合または光重合によりアクリレート樹脂とすることができる。 The acrylate monomer (A) represented by the general formula (1) can be made into an acrylate resin by thermal polymerization or photopolymerization.
 一般式(1)で示されるアクリレートモノマーの具体例として、例えば、2-メトキシエチルアクリレート、2-メトキシエチルメタクリレート、ジエチレングリコールモノメチルエーテルアクリレート、ジエチレングリコールモノメチルエーテルメタクリレート、トリエチレングリコールモノメチルエーテルアクリレート、トリエチレングリコールモノメチルエーテルメタクリレート、ポリエチレングリコールモノメチルエーテルメタクリレート(数平均分子量300)、ポリエチレングリコールモノメチルエーテルメタクリレート(数平均分子量1100)が挙げられる。シリカ粒子の分散性および得られる樹脂組成物の物理的特性の観点(特に機械的特性および誘電特性のさらなる向上の観点)から、好ましくは、2-メトキシエチルアクリレート、2-メトキシエチルメタクリレート、ジエチレングリコールモノメチルエーテルアクリレート、ジエチレングリコールモノメチルエーテルメタクリレート、トリエチレングリコールモノメチルエーテルアクリレート、トリエチレングリコールモノメチルエーテルメタクリレート、より好ましくは、2-メトキシエチルアクリレート、ジエチレングリコールモノメチルエーテルアクリレート、ジエチレングリコールモノメチルエーテルメタクリレート、トリエチレングリコールモノメチルエーテルメタクリレート、さらにより好ましくは2-メトキシエチルアクリレート、ジエチレングリコールモノメチルエーテルメタクリレートである。最も好ましくは、ジエチレングリコールモノメチルエーテルメタクリレートである。一般式(1)で示されるアクリレートモノマーは、本発明の効果を損なわない範囲であれば、単独で用いてもよいし、複数種を併用してもよい。 Specific examples of acrylate monomers represented by formula (1) include 2-methoxyethyl acrylate, 2-methoxyethyl methacrylate, diethylene glycol monomethyl ether acrylate, diethylene glycol monomethyl ether methacrylate, triethylene glycol monomethyl ether acrylate, and triethylene glycol monomethyl. Ether methacrylate, polyethylene glycol monomethyl ether methacrylate (number average molecular weight: 300), polyethylene glycol monomethyl ether methacrylate (number average molecular weight: 1,100). 2-methoxyethyl acrylate, 2-methoxyethyl methacrylate, and diethylene glycol monomethyl are preferred from the viewpoint of the dispersibility of silica particles and the physical properties of the resulting resin composition (especially the viewpoint of further improvement in mechanical properties and dielectric properties). Ether acrylate, diethylene glycol monomethyl ether methacrylate, triethylene glycol monomethyl ether acrylate, triethylene glycol monomethyl ether methacrylate, more preferably 2-methoxyethyl acrylate, diethylene glycol monomethyl ether acrylate, diethylene glycol monomethyl ether methacrylate, triethylene glycol monomethyl ether methacrylate, and more More preferred are 2-methoxyethyl acrylate and diethylene glycol monomethyl ether methacrylate. Most preferred is diethylene glycol monomethyl ether methacrylate. The acrylate monomer represented by formula (1) may be used alone or in combination as long as the effects of the present invention are not impaired.
 本発明の樹脂組成物に含まれるポリアクリレート樹脂において、アクリレートモノマー(A)の含有量は、特に限定されず、例えば、全モノマーユニット100モル%に対して、1モル%以上(特に10モル%以上)であってよく、機械的特性および誘電特性のさらなる向上の観点から、好ましくは50モル%以上、より好ましくは70モル%以上、さらに好ましくは90モル%以上、十分に好ましくは99モル%以上、より十分に好ましくは100モル%である。当該含有量100モル%は、ポリアクリレート樹脂がモノマーユニットとしてアクリレートモノマー(A)を単独で含むことを意味する。 In the polyacrylate resin contained in the resin composition of the present invention, the content of the acrylate monomer (A) is not particularly limited. or more), and from the viewpoint of further improving mechanical properties and dielectric properties, it is preferably 50 mol% or more, more preferably 70 mol% or more, still more preferably 90 mol% or more, and fully preferably 99 mol% Above, more preferably 100 mol %. The content of 100 mol % means that the polyacrylate resin contains the acrylate monomer (A) alone as a monomer unit.
 本発明の樹脂組成物に含まれる前記ポリアクリレート樹脂は、架橋剤として二官能以上のアクリレートモノマーをモノマーユニットとして用いてもよい。例えば、二官能アクリレートモノマーとして、エチレングリコールジアクリレート、EO変性ビスフェノールAジアクリレート、1,4-ブタンジオールジアクリレート、ジエチレングリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、トリメチロールプロパンジアクリレート、ポリエチレングリコールジアクリレート(ポリエチレングリコール鎖の分子量100~10000)など、三官能アクリレートモノマーとして、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレートなど、四官能以上のアクリレートモノマーとして、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、トリペンタエリスリトールオクタアクリレート、テトラペンタエリスリトールデカアクリレート、ペンタペンタエリスリトールドデカアクリレートなどが挙げられる。シリカ粒子の分散性および得られる樹脂組成物の物理的特性の観点(特に機械的特性および誘電特性のさらなる向上の観点)から、好ましくは、二官能アクリレートモノマー、より好ましくは、エチレングリコールジアクリレート、1,4-ブタンジオールジアクリレート、ジエチレングリコールジアクリレート、さらに好ましくは、ジエチレングリコールジアクリレートである。二官能以上のアクリレート類は、本発明の効果を損なわない範囲であれば、単独で用いてもよいし、複数種を併用してもよい。 In the polyacrylate resin contained in the resin composition of the present invention, a bifunctional or higher functional acrylate monomer may be used as a monomer unit as a cross-linking agent. For example, bifunctional acrylate monomers include ethylene glycol diacrylate, EO-modified bisphenol A diacrylate, 1,4-butanediol diacrylate, diethylene glycol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, and trimethylol. Trifunctional acrylate monomers such as propane diacrylate and polyethylene glycol diacrylate (polyethylene glycol chain molecular weight of 100 to 10000), trimethylolpropane triacrylate, pentaerythritol triacrylate and the like, and pentaerythritol tetraacrylate as tetrafunctional or higher acrylate monomers , dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, tripentaerythritol octaacrylate, tetrapentaerythritol decaacrylate, pentapentaerythritol dodecaacrylate and the like. From the viewpoint of the dispersibility of silica particles and the physical properties of the resulting resin composition (especially the viewpoint of further improving mechanical properties and dielectric properties), preferably a bifunctional acrylate monomer, more preferably ethylene glycol diacrylate, 1,4-butanediol diacrylate, diethylene glycol diacrylate, more preferably diethylene glycol diacrylate. Bifunctional or higher functional acrylates may be used alone or in combination as long as the effects of the present invention are not impaired.
 上記一般式(1)において、Rが水素原子であるアクリレートモノマーを使用する場合、得られるアクリレート樹脂が、ガラス転移点が零度を大きく下回る高粘着性となり、取り扱いが難しくなるとの理由から、前記二官能以上のアクリレートモノマーを架橋剤として使用することが好ましい。 In the general formula (1) above, when using an acrylate monomer in which R 1 is a hydrogen atom, the resulting acrylate resin has a glass transition point that is significantly below zero and has high viscosity, making handling difficult. It is preferred to use a difunctional or higher acrylate monomer as a cross-linking agent.
 前記二官能以上のアクリレートモノマーは、全モノマーユニット100モル%に対して、5モル%未満、好ましくは2モル%未満、より好ましくは1モル%未満、さらにより好ましくは0.6モル%未満の範囲になる量が樹脂組成物に含有されてもよい。前記二官能以上のアクリレート類が5モル%以上の場合、エラストマー材料の引張破断伸度が著しく低下する。 The difunctional or higher acrylate monomer is less than 5 mol%, preferably less than 2 mol%, more preferably less than 1 mol%, even more preferably less than 0.6 mol%, relative to 100 mol% of all monomer units. A range of amounts may be included in the resin composition. When the content of the above bifunctional or higher acrylates is 5 mol % or more, the tensile elongation at break of the elastomer material is remarkably lowered.
 本発明の樹脂組成物に含まれる前記ポリアクリレート樹脂は、下記一般式(2)で示されるシランカップリング剤をモノマーユニットとして含有してもよい。
Figure JPOXMLDOC01-appb-C000004
The polyacrylate resin contained in the resin composition of the present invention may contain a silane coupling agent represented by the following general formula (2) as a monomer unit.
Figure JPOXMLDOC01-appb-C000004
 式(2)中、Rは、水素原子またはメチル基、好ましくはメチル基を表す。Rは、メトキシ基またはエトキシ基、好ましくはメトキシ基を表す。Rは、メチル基、メトキシ基またはエトキシ基、好ましくはメチル基またはメトキシ基を表す。 In formula (2), R2 represents a hydrogen atom or a methyl group, preferably a methyl group. R 3 represents a methoxy or ethoxy group, preferably a methoxy group. R 4 represents a methyl, methoxy or ethoxy group, preferably a methyl or methoxy group.
 一般式(2)で示されるシランカップリング剤の具体例として、例えば、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシランなどが挙げられる。機械的特性の向上の高さから、好ましくは3-メタクリロキシプロピルメチルジメトキシシランまたは3-メタクリロキシプロピルトリメトキシシラン、より好ましくは3-メタクリロキシプロピルトリメトキシシランである。一般式(2)で示されるシランカップリング剤は、本発明の効果を損なわない範囲であれば、単独で用いてもよいし、複数種を併用してもよい。 Specific examples of the silane coupling agent represented by formula (2) include 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, and 3-methacryloxypropylmethyldimethoxysilane. roxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane and the like. 3-methacryloxypropylmethyldimethoxysilane or 3-methacryloxypropyltrimethoxysilane is preferred, and 3-methacryloxypropyltrimethoxysilane is more preferred, because of high improvement in mechanical properties. The silane coupling agent represented by formula (2) may be used alone or in combination as long as the effects of the present invention are not impaired.
 前記シランカップリング剤は、使用する場合、シランカップリング剤のシリカ粒子に対する表面被覆比が0.005~0.080、好ましくは0.006~0.076、より好ましくは0.007~0.080、さらにより好ましくは0.010~0.075の範囲になる量が樹脂組成物に含有されるようにすればよい。 When the silane coupling agent is used, the surface coverage ratio of the silane coupling agent to silica particles is 0.005-0.080, preferably 0.006-0.076, more preferably 0.007-0. 080, and more preferably in the range of 0.010 to 0.075.
 ここで、表面被覆比は下記式で得られる値である。
[表面被覆比]=[樹脂組成物に含まれるシランカップリング剤の量(g)]×[シランカップリング剤の最小被覆面積(m/g)]÷[樹脂組成物に含まれるシリカ粒子の表面積(m)の和]
Here, the surface coverage ratio is a value obtained by the following formula.
[Surface coverage ratio] = [amount of silane coupling agent contained in resin composition (g)] × [minimum coating area of silane coupling agent ( m / g)] ÷ [silica particles contained in the resin composition The sum of the surface areas (m 2 ) of
 「シランカップリング剤の最小被覆面積(m/g)」とは、シランカップリング剤1gがシリカ等の材料表面上にて反応、吸着等したときに、ランカップリング剤がその表面を被覆する面積を意味しており、通常、各シランカップリング剤の最小被覆面積は以下のようにして計算することができる。すなわち、トリアルコキシシランが加水分解して得られるSi(O) を半径2.10Åの球形からなるSi原子1個と半径1.52Åの球形からなるO原子3個、Si-Oの結合距離1.51Å、四面体角109.5°と仮定し、更にはシリカ表面のシラノール基とモデル中の3個のO原子が全て反応するとして、3個のO原子が被覆することができる最小の円形面積を計算する。その結果、1分子当たりの被覆面積は1.3×10-19/分子、これにアボガドロ定数6.0×1023分子/モルを掛けてモル当たりに換算すると7.8×10/モルとなる。各カップリング剤の最小被覆面積は、1モル当たりの被覆面積値を各シランカップリング剤の分子量で割ることにより得られる値をいう。 The “minimum coating area of the silane coupling agent (m 2 /g)” means that when 1 g of the silane coupling agent reacts, adsorbs, etc. on the surface of a material such as silica, the run coupling agent covers the surface. In general, the minimum coverage area of each silane coupling agent can be calculated as follows. That is, Si(O) 3 obtained by hydrolysis of trialkoxysilane has one spherical Si atom with a radius of 2.10 Å, three spherical O atoms with a radius of 1.52 Å, and the Si—O bond distance Assuming 1.51 Å and a tetrahedral angle of 109.5°, and further assuming that all three O atoms in the model react with the silanol groups on the silica surface, the minimum that three O atoms can cover Calculate circular area. As a result, the coverage area per molecule is 1.3×10 −19 m 2 /molecule, which is multiplied by Avogadro’s constant of 6.0×10 23 molecules/mol to convert to 7.8×10 4 m per mole. 2 /mol. The minimum coverage area of each coupling agent is the value obtained by dividing the coverage area value per mole by the molecular weight of each silane coupling agent.
 市販されているシランカップリング剤については、その特性値が表示記載されており、本発明においては、販売元が表示記載している値を使用するようにすればよい。 For commercially available silane coupling agents, the characteristic values are indicated and described, and in the present invention, the values indicated and described by the distributor may be used.
 また、「シリカ粒子の表面積(m)の和」は、「平均粒子径から求めたシリカ粒子の表面積(m)」×「シリカ粒子の添加量(g)÷「シリカ粒子の密度(g/cm)」÷「平均粒子径から求めたシリカ粒子の体積(m)」を計算することにより得られる値である。 In addition, "the sum of the surface area (m 2 ) of the silica particles" is "the surface area (m 2 ) of the silica particles obtained from the average particle diameter" × "addition amount of silica particles (g) ÷ "density of silica particles (g /cm 3 )”÷“Volume of silica particles (m 3 ) obtained from the average particle diameter”.
 本発明においてポリアクリレート樹脂とは、上記式(1)、(2)で表される化合物等、アクリレートモノマー成分をモノマーユニットとして含有する樹脂であり、「アクリレートモノマー成分」とは、アクリロイル基、メタクリロイル基を含む化合物を意味している。
 本発明の樹脂組成物中のポリアクリレート樹脂は、本発明の効果を損なわない範囲であれば、一般式(1)、(2)で示されるアクリレートモノマー成分の他に異なるアクリレートモノマー、例えば、n-ブチルアクリレート、n-へキシルアクリレート、2-エチルヘキシルアクリレート、n-オクチルアクリレート、n-ノニルアクリレートおよびイソノニルアクリレート等のアルキルアクリレート;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、n-デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート等のアルキル(メタ)アクリレート;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、8-ヒドロキシオクチル(メタ)アクリレート、ポリアルキレングリコール(メタ)アクリレート等の水酸基を有するアクリレート;トリメチロールプロパンモノ(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、ペンタエリスリトールのモノ(メタ)アクリレート、ジトリメチロールプロパンモノ(メタ)アクリレート及びジペンタエリスリトールモノ(メタ)アクリレート等のポリオールのモノ(メタ)アクリレート;シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート等の脂環式基を有する(メタ)アクリレート;グリシジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、(2-メチル-2-エチル-1,3-ジオキソラン-4-イル)メチル(メタ)アクリレート、シクロヘキサンスピロ-2-(1,3-ジオキソラン-4-イル)メチル(メタ)アクリレート、3-エチル-3-オキセタニルメチル(メタ)アクリレート等の環状エーテル基を有する(メタ)アクリレート;ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、o-フェニルフェノキシ(メタ)アクリレート及びp-クミルフェノールエチレン(メタ)アクリレート等の芳香族単官能(メタ)アクリレート;(メタ)アクリロリルオキシエチルヘキサヒドロフタルイミド等のマレイミド基を有する単官能(メタ)アクリレート;N-メチル(メタ)アクリルアミド、N-n-プロピル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-n-ブチル(メタ)アクリルアミド、N-sec-ブチル(メタ)アクリルアミド、N-t-ブチル(メタ)アクリルアミド、N-n-ヘキシル(メタ)アクリルアミド等のN-アルキル(メタ)アクリルアミド;N-ヒドロキシエチル(メタ)アクリルアミド等のN-ヒドロキシアルキル(メタ)アクリルアミド;N,N-ジメチルアミノエチル(メタ)アクリルアミド、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N,N-ジ-n-プロピル(メタ)アクリルアミド、N,N-ジイソプロピル(メタ)アクリルアミド、N,N-ジ-n-ブチル(メタ)アクリルアミド及びN,N-ジヘキシル(メタ)アクリルアミドのN,N-ジアルキル(メタ)アクリルアミド等を組み合わせてもよく、一般式(2)で示されるシランカップリング剤(B)の他に異なるシランカップリング剤、例えば、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン等のエポキシ基を有するシランカップリング剤;3-イソシアネートプロピルメチルジメトキシシラン、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルメチルジエトキシシラン、3-イソシアネートプロピルトリエトキシシラン等のイソシアネート基を有するシランカップリング剤;N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン等のアミノ基を有するシランカップリング剤等を組み合わせてもよい。
In the present invention, the polyacrylate resin is a resin containing an acrylate monomer component as a monomer unit, such as the compounds represented by the above formulas (1) and (2). A compound containing a group is meant.
The polyacrylate resin in the resin composition of the present invention is a different acrylate monomer than the acrylate monomer components represented by the general formulas (1) and (2), as long as it does not impair the effects of the present invention. - alkyl acrylates such as butyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, n-nonyl acrylate and isononyl acrylate; methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate , n-butyl (meth)acrylate, isobutyl (meth)acrylate, t-butyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate, heptyl (meth)acrylate, n-octyl (meth)acrylate, isooctyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, nonyl (meth)acrylate, isononyl (meth)acrylate, n-decyl (meth)acrylate, isodecyl (meth)acrylate, lauryl (meth)acrylate, stearyl (meth)acrylate , Alkyl (meth)acrylates such as isostearyl (meth)acrylate; 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate , 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, acrylates having a hydroxyl group such as polyalkylene glycol (meth) acrylate; trimethylolpropane mono (meth) acrylate, glycerin mono (meth) acrylate, penta Polyol mono(meth)acrylates such as erythritol mono(meth)acrylate, ditrimethylolpropane mono(meth)acrylate and dipentaerythritol mono(meth)acrylate; cyclohexyl (meth)acrylate, isobornyl (meth)acrylate, dicyclopenta (meth)acrylates having an alicyclic group such as nyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentanyloxyethyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate; glycidyl (meth)acrylate; ) acrylate, tetrahydrofurfuryl (meth)acrylate, (2-methyl-2-ethyl-1 ,3-dioxolan-4-yl)methyl (meth)acrylate, cyclohexanespiro-2-(1,3-dioxolan-4-yl)methyl (meth)acrylate, 3-ethyl-3-oxetanylmethyl (meth)acrylate, etc. (Meth) acrylates having a cyclic ether group of; benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, o-phenylphenoxy (meth) acrylate and p-cumylphenol ethylene (meth) acrylate and other aromatic monofunctional ( meth) acrylate; monofunctional (meth) acrylate having a maleimide group such as (meth) acrylolyloxyethylhexahydrophthalimide; N-methyl (meth) acrylamide, Nn-propyl (meth) acrylamide, N-isopropyl ( N-alkyl (meth)acrylamide, Nn-butyl (meth)acrylamide, N-sec-butyl (meth)acrylamide, Nt-butyl (meth)acrylamide, Nn-hexyl (meth)acrylamide, etc. ) acrylamide; N-hydroxyalkyl (meth)acrylamide such as N-hydroxyethyl (meth)acrylamide; N,N-dimethylaminoethyl (meth)acrylamide, N,N-dimethylaminopropyl (meth)acrylamide, N,N- Dimethyl (meth)acrylamide, N,N-diethyl (meth)acrylamide, N,N-di-n-propyl (meth)acrylamide, N,N-diisopropyl (meth)acrylamide, N,N-di-n-butyl ( N,N-dialkyl (meth)acrylamide of meth)acrylamide and N,N-dihexyl (meth)acrylamide may be combined, and a different silane other than the silane coupling agent (B) represented by the general formula (2) may be used. Coupling agents such as 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxy Silane coupling agents having an epoxy group such as silane and 3-glycidoxypropyltriethoxysilane; 3-isocyanatopropylmethyldimethoxysilane, 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropylmethyldiethoxysilane, 3-isocyanate Silane carbons with isocyanate groups such as propyltriethoxysilane Pulling agent; having an amino group such as N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, etc. A silane coupling agent or the like may be used in combination.
 次に、本発明で使用するシリカ粒子について説明する。
 本発明においてシリカ粒子は、本発明の樹脂組成物をエラストマー材料として使用できるようにするため、また樹脂組成物の強靭性向上のために重要な構成要素である。シリカ粒子を含有させないと、大きな変形に耐えられない脆弱な材料となる。また、シリカ粒子と多層グラフェンを共存させることで、アクリレートモノマーへの多層グラフェンの分散性が向上し、より多くの多層グラフェンの添加が可能になる。さらに、シリカ粒子と多層グラフェンを共存させることで、多層グラフェンの増加による誘電正接の上昇を抑制することが可能になる。
Next, the silica particles used in the present invention will be explained.
In the present invention, silica particles are an important component for enabling the resin composition of the present invention to be used as an elastomer material and for improving the toughness of the resin composition. The absence of silica particles results in a brittle material that cannot withstand large deformations. In addition, the coexistence of silica particles and multi-layer graphene improves the dispersibility of multi-layer graphene in the acrylate monomer, making it possible to add more multi-layer graphene. Furthermore, coexistence of silica particles and multilayer graphene makes it possible to suppress an increase in dielectric loss tangent due to an increase in multilayer graphene.
 本発明で使用するシリカ粒子の形状は、本発明の効果を損なわない範囲であれば特に限定されないが、アクリレートモノマーへの分散性の観点(特に機械的特性および誘電特性のさらなる向上の観点)から「球状」であることが好ましい。 The shape of the silica particles used in the present invention is not particularly limited as long as it does not impair the effects of the present invention, but from the viewpoint of dispersibility in acrylate monomers (especially from the viewpoint of further improving mechanical properties and dielectric properties) It is preferably "spherical".
 本発明において、「球状」とは、棒状、板状のものを除き、真球、略球状、回転楕円体である場合をいい、表面に凹凸があるものでもよい。「球状シリカ粒子」とは、そのような「球状」の形状をしたシリカ粒子である。 In the present invention, the term "spherical" refers to a true sphere, a substantially spherical shape, or a spheroid, excluding rod-like and plate-like shapes, and may have uneven surfaces. "Spherical silica particles" are silica particles having such a "spherical" shape.
 このような球状シリカ粒子としては、公知のもの、例えば、粉末状の球状シリカ粒子、コロイダルシリカ(シリカゾル)等を使用することができ、異なる平均粒子径を有する種々の公知のものが知られており、市販もされている。 As such spherical silica particles, known ones such as powdered spherical silica particles, colloidal silica (silica sol), etc. can be used, and various known ones having different average particle sizes are known. and is commercially available.
 本発明で使用するシリカ粒子は、平均粒子径が10μm未満であり、機械的特性および誘電特性のさらなる向上の観点から、好ましくは5μm未満、より好ましくは1μm未満、さらにより好ましくは500nm未満、最も好ましくは200nm未満、さらに最も好ましくは150nm以下である。シリカ粒子の平均粒子径は通常、10nm以上であってもよい。本発明において平均粒子径とは、遠心沈降式粒子径分布測定装置により測定したモード径で表している。 The silica particles used in the present invention have an average particle size of less than 10 μm, and from the viewpoint of further improving mechanical properties and dielectric properties, are preferably less than 5 μm, more preferably less than 1 μm, even more preferably less than 500 nm, and most preferably less than 500 nm. Preferably less than 200 nm, most preferably less than 150 nm. The silica particles may generally have an average particle size of 10 nm or more. In the present invention, the average particle size is represented by a mode size measured with a centrifugal sedimentation particle size distribution analyzer.
 前記シリカ粒子の含有量は、ポリアクリレート樹脂、シリカ粒子および多層グラフェンの合計量に対して(通常は、8~62重量%であり、機械的特性および誘電特性のさらなる向上の観点から、好ましくは9~60重量%、より好ましくは10~58重量%、さらにより好ましくは11~56重量%、十分に好ましくは12~54重量%、より十分に好ましくは15~50重量%、最も好ましくは15~40重量%である。シリカ粒子の含有量が少ない程、シリカ粒子充填によるポリマー材料の補強効果が小さく、引張破断応力、引張破断ひずみに劣るエラストマー材料となる。シリカ粒子の含有量が多すぎる場合、シリカ粒子のアクリレートモノマーへの均一分散が困難になる。 The content of the silica particles is (usually 8 to 62% by weight) relative to the total amount of the polyacrylate resin, silica particles and multilayer graphene, and from the viewpoint of further improving mechanical properties and dielectric properties, preferably 9-60% by weight, more preferably 10-58% by weight, even more preferably 11-56% by weight, fully preferably 12-54% by weight, more preferably 15-50% by weight, most preferably 15% by weight The lower the silica particle content, the smaller the reinforcement effect of the polymer material due to the silica particle filling, resulting in an elastomer material inferior in tensile rupture stress and tensile rupture strain.The silica particle content is too high. In this case, it becomes difficult to uniformly disperse the silica particles in the acrylate monomer.
 次に、本発明で使用する多層グラフェンについて説明する。
 本発明で使用する多層グラフェンとは、2~20個程度のグラフェンが重なって層状になった板状フィラーであり、厚みは数nm~数十nm、幅は数μm~数十μmである。厚みは、例えば、1~90nm、特に1~20nmであってもよい。幅は、例えば、1~80μm、特に10~50μmであってもよい。そのような多層グラフェンは、市販されており、例えば、富士フィルム和光純薬株式会社、東京化成株式会社等から入手可能である。本発明においてはそれらを適宜使用することができる。
Next, multilayer graphene used in the present invention will be described.
The multilayer graphene used in the present invention is a plate-like filler in which about 2 to 20 pieces of graphene are stacked to form a layer, and has a thickness of several nanometers to several tens of nanometers and a width of several microns to several tens of microns. The thickness may be, for example, 1-90 nm, especially 1-20 nm. The width may be, for example, 1-80 μm, especially 10-50 μm. Such multilayer graphene is commercially available, for example, from Fujifilm Wako Pure Chemical Industries, Ltd., Tokyo Kasei Co., Ltd., and the like. They can be appropriately used in the present invention.
 前記多層グラフェンの含有量は、ポリアクリレート樹脂、シリカ粒子および多層グラフェンの合計量に対して通常は、1~8重量%であり、機械的特性および誘電特性のさらなる向上の観点から、好ましくは1.5~8重量%、より好ましくは2~8重量%、さらにより好ましくは2~7.5重量%、十分に好ましくは2.5~7.5重量%、より十分に好ましくは3~7.5重量%である。多層グラフェンの含有量が少ないほど、多層グラフェンによる比誘電率の上昇効果が小さくなる。多層グラフェンの含有量が多すぎる場合、アクリレートモノマーとシリカ粒子と多層グラフェンを含む分散液の粘度が高くなり、流動性を失うため加工が困難となる。 The content of the multilayer graphene is usually 1 to 8% by weight with respect to the total amount of the polyacrylate resin, silica particles and multilayer graphene, and from the viewpoint of further improving mechanical properties and dielectric properties, preferably 1 .5 to 8 wt%, more preferably 2 to 8 wt%, even more preferably 2 to 7.5 wt%, fully preferably 2.5 to 7.5 wt%, more fully preferably 3 to 7 .5% by weight. As the content of multilayer graphene decreases, the effect of increasing the dielectric constant due to multilayer graphene decreases. If the content of multi-layer graphene is too high, the dispersion containing acrylate monomers, silica particles and multi-layer graphene becomes too viscous and loses fluidity, making processing difficult.
 本発明の樹脂組成物は、少なくとも一般式(1)で表されるアクリレートモノマー(A)、シリカ粒子、多層グラフェンを含む分散液を重合することにより得られる。 The resin composition of the present invention is obtained by polymerizing a dispersion containing at least the acrylate monomer (A) represented by general formula (1), silica particles, and multilayer graphene.
 この際、シリカ粒子と多層グラフェンは、その合計含有量がポリアクリレート樹脂、シリカ粒子および多層グラフェンの合計量に対して通常は、15~62重量%であり、機械的特性および誘電特性のさらなる向上の観点から、好ましくは15~60重量%、より好ましくは20~59重量%、さらにより好ましくは24~58重量%、よりさらに好ましく25~58重量%、十分に好ましくは25~50重量%、より十分に好ましくは25~40重量%の含有量となるように使用する。その量が多すぎると、流動性がなくなりシートを得ることが困難となり、また、その量が少なすぎても流動性が大きくなりシートを形成することが困難となる。当該合計量が少なすぎると、機械的特性(特に引張破断応力)が低下することがある。 At this time, the total content of silica particles and multi-layer graphene is usually 15 to 62% by weight based on the total amount of polyacrylate resin, silica particles and multi-layer graphene, further improving mechanical properties and dielectric properties. From the viewpoint of, preferably 15 to 60% by weight, more preferably 20 to 59% by weight, even more preferably 24 to 58% by weight, even more preferably 25 to 58% by weight, fully preferably 25 to 50% by weight, More preferably, a content of 25-40% by weight is used. If the amount is too large, the fluidity will be lost, making it difficult to obtain a sheet. If the amount is too small, the fluidity will increase, making it difficult to form a sheet. If the total amount is too small, the mechanical properties (especially tensile breaking stress) may deteriorate.
 アクリレートモノマー(A)は、ポリアクリレート樹脂、シリカ粒子および多層グラフェンの合計量に対して通常は、38~85重量%であり、機械的特性および誘電特性のさらなる向上の観点から、好ましくは40~85重量%、より好ましくは41~80重量%、さらにより好ましくは42~76重量%、よりさらに好ましくは42~75重量%、十分に好ましくは50~75重量%、より十分に好ましくは60~75重量%の含有量になるように使用される。また、アクリレートモノマー(A)の含有量は、得られるポリアクリレート樹脂組成物中のポリアクリレート樹脂の含有量をも表していてもよい。 The acrylate monomer (A) is usually 38 to 85% by weight with respect to the total amount of the polyacrylate resin, silica particles and multilayer graphene, and from the viewpoint of further improving mechanical properties and dielectric properties, preferably 40 to 85 wt%, more preferably 41 to 80 wt%, even more preferably 42 to 76 wt%, even more preferably 42 to 75 wt%, fully preferably 50 to 75 wt%, more fully preferably 60 to A content of 75% by weight is used. The content of the acrylate monomer (A) may also represent the content of the polyacrylate resin in the resulting polyacrylate resin composition.
 重合方法としては、熱重合開始剤による熱重合、光重合開始剤による紫外線等の活性エネルギー線照射を伴う光重合などを用いることができ、本発明の効果を損なわない範囲であれば、その他の重合方法を用いても良い。 As the polymerization method, thermal polymerization with a thermal polymerization initiator, photopolymerization with active energy ray irradiation such as ultraviolet rays with a photopolymerization initiator, etc. can be used, and other methods can be used as long as the effects of the present invention are not impaired. Polymerization methods may also be used.
<熱重合開始剤>
 熱重合開始剤としては、加熱によってラジカルを発生し、樹脂組成物中の重合性官能基の重合を開始させるために用いられものであれば特にその構造が限定されるものではない。例えば、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、1,1’-アゾビス(シクロヘキサン1-カルボニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2,4-ジメチル-4-メトキシバレロニトリル)、ジメチル2,2’-アゾビス(2-メチルプロピオネート)、4,4’-アゾビス(4-シアノバレリック酸)、2,2’-アゾビス(2-ヒドロキシメチルプロピオニトリル)、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、過酸化ベンゾイル、t-ブチルパーベンゾエイト、クメンヒドロパーオキシド、ジイソプロピルパーオキシジカーボネート、ジ-n-プロピルパーオキシジカーボネート、ジ(2-エトキシエチル)パーオキシジカーボネート、t-ブチルパーオキシ2-エチルヘキサノエート、t-ブチルパーオキシネオデカノエート、t-ブチルパーオキシビバレート、(3,5,5-トリメチルヘキサノイル)パーオキシド、ジプロピオニルパーオキシド、ジアセチルパーオキシド等が挙げられ、反応性から2,2‘-アゾイソブチロニトリル(AIBN)が好ましい。熱重合開始剤の添加量は、アクリルモノマー成分100重量部に対して、0.001質量部以上、好ましくは0.01質量部以上、より好ましくは0.1質量部以上であり、また、7質量部以下、好ましくは5質量部以下、より好ましくは3質量部以下である。これらの熱重合開始剤は単独で用いてもよく、2種以上を併用してもよい。なお、本発明において「アクリルモノマー成分」とは、アクリロイル基、メタクリロイル基を含む化合物を意味しており、上記式(1)で表される成分に加え、その他適宜使用されるアクリロイル基、メタクリロイル基を含む化合物成分を含む。
<Thermal polymerization initiator>
The thermal polymerization initiator is not particularly limited in structure as long as it generates radicals by heating and is used to initiate polymerization of the polymerizable functional groups in the resin composition. For example, 2,2'-azobisisobutyronitrile, 2,2'-azobis (2-methylbutyronitrile), 1,1'-azobis (cyclohexane 1-carbonitrile), 2,2'-azobis ( 2,4-dimethylvaleronitrile), 2,2′-azobis(2,4-dimethyl-4-methoxyvaleronitrile), dimethyl 2,2′-azobis(2-methylpropionate), 4,4′- Azobis(4-cyanovaleric acid), 2,2'-azobis(2-hydroxymethylpropionitrile), 2,2'-azobis[2-(2-imidazolin-2-yl)propane], benzoyl peroxide , t-butyl perbenzoate, cumene hydroperoxide, diisopropyl peroxydicarbonate, di-n-propyl peroxydicarbonate, di(2-ethoxyethyl) peroxydicarbonate, t-butyl peroxy 2-ethylhexa noate, t-butylperoxyneodecanoate, t-butylperoxybivalate, (3,5,5-trimethylhexanoyl) peroxide, dipropionyl peroxide, diacetyl peroxide, etc., and from the reactivity 2,2'-Azoisobutyronitrile (AIBN) is preferred. The amount of the thermal polymerization initiator to be added is 0.001 parts by mass or more, preferably 0.01 parts by mass or more, more preferably 0.1 parts by mass or more with respect to 100 parts by weight of the acrylic monomer component. It is no more than 5 parts by mass, more preferably no more than 3 parts by mass. These thermal polymerization initiators may be used alone or in combination of two or more. In the present invention, the "acryloyl monomer component" means a compound containing an acryloyl group or a methacryloyl group, and in addition to the component represented by the above formula (1), other appropriately used acryloyl groups and methacryloyl groups Contains a compound component containing
 <光重合開始剤>
 光重合開始剤は、紫外線照射によりラジカルが発生し、樹脂組成物中の重合性官能基の重合を開始させるために用いられものであれば特にその構造が限定されるものではない。光重合開始剤としては、波長360nmから470nmの光吸収をもつ開始剤を使用することが好ましく、例えば、アシルフォスフィンオキサイド系、αアミノアセトフェノン系、ベンゾフェノン系、カンファーキノン系およびチオキサントン系の開始剤が挙げられる。これらの開始剤を使用することにより、樹脂組成物内部まで重合が効率良く進行するため力学的強度が向上し、開始剤やモノマー等の残留成分量が低減される。光重合開始剤として、例えば、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、エチル(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキシド、2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン、オリゴ(2-ヒドロキシ-2-メチル-1-(4-(1-メチルビニル)フェニル)プロパノン)、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1,2-ジメチルアミノ-2-(4-メチル-ベンジル)-1-(4-モルホリン-4-イル-フェニル)-ブタン-1-オン、2-[4-(メチルチオベンゾイル)]-2-(4-モルホリニル)プロパン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、[4-[4-メチルフェニル]チオ]フェニル]フェニルメタノン、4-(ジメチルアミノ)安息香酸エチル、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、4,4’-ビス-(ジメチルアミノ)ベンゾフェノン、4,4’-ジエチルアミノベンゾフェノン、1-[4-(4-ベンゾイルフェニルスルファニル)フェニル]-2-メチル-2-[(4-メチルフェニル)スルフォニル]プロパン-1-オン、(メチルイミノ)ジエタン-2,1-ジイル(4-ジメチルアミベンゾエ-ト)、フェニル(2,4,6-トリメチルベンゾイル)ホスフィン酸リチウム、ビス(4-メトキシベンゾイル)ジエチルゲルマニウム等が挙げられ、反応性から2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、エチル(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキシド、フェニル(2,4,6-トリメチルベンゾイル)ホスフィン酸リチウム、ビス(4-メトキシベンゾイル)ジエチルゲルマニウムが好ましく、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイドがより好ましい。光重合開始剤の添加量は、アクリルモノマー成分100重量部に対して、0.001質量部以上、好ましくは0.01質量部以上、より好ましくは0.1質量部以上であり、また、7質量部以下、好ましくは5質量部以下、より好ましくは3質量部以下である。これらの光重合開始剤は単独で用いてもよく、2種以上を併用してもよい。
<Photoinitiator>
The photopolymerization initiator is not particularly limited in its structure as long as it generates radicals upon irradiation with ultraviolet rays and is used to initiate polymerization of the polymerizable functional groups in the resin composition. As the photopolymerization initiator, it is preferable to use an initiator that absorbs light at a wavelength of 360 nm to 470 nm. is mentioned. By using these initiators, polymerization efficiently progresses to the inside of the resin composition, so that the mechanical strength is improved and the amount of residual components such as initiators and monomers is reduced. Photopolymerization initiators such as 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, ethyl(2,4,6-trimethylbenzoyl)phenylphosphine oxide, bis(2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 2,4-diethylthioxanthone, 2-isopropylthioxanthone, oligo(2-hydroxy-2-methyl-1-(4-(1-methylvinyl)phenyl)propanone), 2-benzyl-2-dimethyl amino-1-(4-morpholinophenyl)-butanone-1,2-dimethylamino-2-(4-methyl-benzyl)-1-(4-morpholin-4-yl-phenyl)-butan-1-one, 2-[4-(methylthiobenzoyl)]-2-(4-morpholinyl)propane, 2-hydroxy-1-{4-[4-(2-hydroxy-2-methyl-propionyl)-benzyl]phenyl}-2 -methyl-propan-1-one, 1-hydroxycyclohexylphenyl ketone, [4-[4-methylphenyl]thio]phenyl]phenylmethanone, 4-(dimethylamino)ethyl benzoate, 1-[4-(2 -hydroxyethoxy)phenyl]-2-hydroxy-2-methyl-1-propan-1-one, 4,4′-bis-(dimethylamino)benzophenone, 4,4′-diethylaminobenzophenone, 1-[4-( 4-benzoylphenylsulfanyl)phenyl]-2-methyl-2-[(4-methylphenyl)sulfonyl]propan-1-one, (methylimino)diethane-2,1-diyl(4-dimethylamibenzoate) , phenyl (2,4,6-trimethylbenzoyl) lithium phosphinate, bis (4-methoxybenzoyl) diethyl germanium, and the like, and from the reactivity, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, ethyl ( 2,4,6-trimethylbenzoyl)phenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, lithium phenyl(2,4,6-trimethylbenzoyl)phosphinate, bis(4-methoxy benzoyl)diethylgermanium is preferred, and 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide is more preferred. The amount of the photopolymerization initiator added is 0.001 parts by mass or more, preferably 0.01 parts by mass or more, more preferably 0.1 parts by mass or more with respect to 100 parts by weight of the acrylic monomer component. It is no more than 5 parts by mass, more preferably no more than 3 parts by mass. These photopolymerization initiators may be used alone or in combination of two or more.
 また、重合反応において、連鎖移動剤を使用してもよい。連鎖移動剤としては、例えば、メルカプト酢酸、3-メルカプトプロピオン酸等のメルカプトカルボン酸類;メルカプト酢酸メチル、3-メルカプトプロピオン酸メチル、3-メルカプトプロピオン酸2-エチルヘキシル、3-メルカプトプロピオン酸n-オクチル、3-メルカプトプロピオン酸メトキシブチル、3-メルカプトプロピオン酸ステアリル、トリメチロールプロパントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)等のメルカプトカルボン酸エステル類;エチルメルカプタン、t-ブチルメルカプタン、n-ドデシルメルカプタン、1,2-ジメルカプトエタン等のアルキルメルカプタン類;2-メルカプトエタノール、4-メルカプト-1-ブタノール等のメルカプトアルコール類;ベンゼンチオール、m-トルエンチオール、p-トルエンチオール、2-ナフタレンチオール等の芳香族メルカプタン類;トリス〔(3-メルカプトプロピオニロキシ)-エチル〕イソシアヌレート等のメルカプトイソシアヌレート類;2-ヒドロキシエチルジスルフィド、テトラエチルチウラムジスルフィド等のジスルフィド類;ベンジルジエチルジチオカルバメート等のジチオカルバメート類;α-メチルスチレンダイマー等の単量体ダイマー類;四臭化炭素等のハロゲン化アルキル類等が挙げられる。連鎖移動剤の添加量は、アクリルモノマー成分100重量部に対して、0.001質量部以上、好ましくは0.01質量部以上、より好ましくは0.1質量部以上であり、また、7質量部以下、好ましくは5質量部以下、より好ましくは3質量部以下である。これらは単独で用いても、2種以上を併用してもよい。 A chain transfer agent may also be used in the polymerization reaction. Chain transfer agents include, for example, mercaptocarboxylic acids such as mercaptoacetic acid and 3-mercaptopropionic acid; , methoxybutyl 3-mercaptopropionate, stearyl 3-mercaptopropionate, trimethylolpropane tris (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptopropionate), dipentaerythritol hexakis (3-mercapto mercaptocarboxylic acid esters such as propionate); alkyl mercaptans such as ethyl mercaptan, t-butyl mercaptan, n-dodecyl mercaptan, and 1,2-dimercaptoethane; 2-mercaptoethanol, 4-mercapto-1-butanol mercapto alcohols such as; benzenethiol, m-toluenethiol, p-toluenethiol, 2-naphthalenethiol and other aromatic mercaptans; tris[(3-mercaptopropionyloxy)-ethyl]isocyanurate and other mercaptoisocyanurates disulfides such as 2-hydroxyethyl disulfide and tetraethylthiuram disulfide; dithiocarbamates such as benzyldiethyldithiocarbamate; monomer dimers such as α-methylstyrene dimer; alkyl halides such as carbon tetrabromide, etc. is mentioned. The amount of the chain transfer agent to be added is 0.001 parts by mass or more, preferably 0.01 parts by mass or more, more preferably 0.1 parts by mass or more with respect to 100 parts by weight of the acrylic monomer component. parts or less, preferably 5 parts by mass or less, more preferably 3 parts by mass or less. These may be used alone or in combination of two or more.
 シリカ粒子として、粉末状のシリカ粒子を用いる場合、まず、シリカ粒子をアクリレートモノマー(A)に分散させることが好ましい。シリカ粒子のアクリレートモノマー(A)への分散方法は、本発明の効果を損なわない範囲であれば、特に限定されないが、分散効果の高さから超音波処理による方法が好ましい。 When powdered silica particles are used as the silica particles, it is preferable to first disperse the silica particles in the acrylate monomer (A). The method for dispersing the silica particles in the acrylate monomer (A) is not particularly limited as long as it does not impair the effects of the present invention.
 シリカ粒子として、コロイダルシリカ(シリカゾル)を用いる場合、有機溶媒としては、前記アクリルモノマー成分と相溶するものを用いることが好ましく、例えば、アルコール類、ケトン類、エステル類、グリコールエーテル類が挙げられる。脱溶媒のしやすさから、メタノール、エタノール、イソプロピルアルコール、ブチルアルコール、n-プロピルアルコール等のアルコール系、メチルエチルケトン、メチルイソブチルケトン等のケトン系の有機溶媒が挙げられ、具体的には、メタノール、イソプロピルアルコールあるいはメチルエチルケトンに分散されたコロイダルシリカ(シリカゾル)が好ましい。 When colloidal silica (silica sol) is used as the silica particles, it is preferable to use an organic solvent that is compatible with the acrylic monomer component, such as alcohols, ketones, esters, and glycol ethers. . Alcohol-based solvents such as methanol, ethanol, isopropyl alcohol, butyl alcohol, and n-propyl alcohol, and ketone-based organic solvents such as methyl ethyl ketone and methyl isobutyl ketone, are exemplified for ease of solvent removal. Colloidal silica (silica sol) dispersed in isopropyl alcohol or methyl ethyl ketone is preferred.
 本発明の樹脂組成物の好ましい製造方法は、所定量のシリカ粒子と多層グラフェンを、一般式(1)で表されるアクリレートモノマー(A)に混合分散させた分散液を作製し、該分散液に必要により重合開始剤、その他のアクリルモノマー、所望の添加剤を混合分散させ、得られた分散液を重合することからなる。該所望の添加剤としては、例えば、可塑剤、界面活性剤、分散剤、酸化防止剤、紫外線吸収剤、蛍光剤、架橋剤、有機溶剤等が挙げられ、目的に応じ、本発明の効果を損なわない範囲で添加使用することができる。 A preferred method for producing the resin composition of the present invention is to prepare a dispersion by mixing and dispersing predetermined amounts of silica particles and multilayer graphene in an acrylate monomer (A) represented by general formula (1), and If necessary, a polymerization initiator, other acrylic monomers and desired additives are mixed and dispersed, and the resulting dispersion is polymerized. Examples of the desired additives include plasticizers, surfactants, dispersants, antioxidants, ultraviolet absorbers, fluorescent agents, cross-linking agents, organic solvents, etc. Depending on the purpose, the effect of the present invention can be obtained. It can be added and used as long as it does not damage it.
 分散液中のアクリレートモノマー(A)の含有量は、前記された「ポリアクリレート樹脂、シリカ粒子および多層グラフェンの合計量」に対するアクリレートモノマー(A)の含有量を、「アクリレートモノマー、シリカ粒子および多層グラフェンの合計量」に対するアクリレートモノマー(A)の含有量として適用されてもよい。なお、アクリレートモノマーは、前記した「アクリレートモノマー成分」に対応する。 The content of the acrylate monomer (A) in the dispersion liquid is the content of the acrylate monomer (A) with respect to the above-mentioned "total amount of polyacrylate resin, silica particles and multilayer graphene". It may be applied as the content of the acrylate monomer (A) with respect to the "total amount of graphene". The acrylate monomer corresponds to the above-mentioned "acrylate monomer component".
 分散液中のシリカ粒子の含有量は、前記された「ポリアクリレート樹脂、シリカ粒子および多層グラフェンの合計量」に対するシリカ粒子の含有量を、「アクリレートモノマー、シリカ粒子および多層グラフェンの合計量」に対するシリカ粒子の含有量として適用されてもよい。 The content of silica particles in the dispersion liquid is the content of silica particles relative to the above-mentioned "total amount of polyacrylate resin, silica particles and multilayer graphene" relative to "total amount of acrylate monomer, silica particles and multilayer graphene". It may be applied as a content of silica particles.
 分散液中の多層グラフェンの含有量は、前記された「ポリアクリレート樹脂、シリカ粒子および多層グラフェンの合計量」に対する多層グラフェンの含有量を、「アクリレートモノマー、シリカ粒子および多層グラフェンの合計量」に対する多層グラフェンの含有量として適用されてもよい。 The content of multi-layer graphene in the dispersion liquid is the content of multi-layer graphene relative to the above-mentioned "total amount of polyacrylate resin, silica particles and multi-layer graphene" relative to "total amount of acrylate monomer, silica particles and multi-layer graphene". It may be applied as content of multilayer graphene.
 分散液中のシリカ粒子および多層グラフェンの合計含有量は、前記された「ポリアクリレート樹脂、シリカ粒子および多層グラフェンの合計量」に対するシリカ粒子および多層グラフェンの合計含有量を、「アクリレートモノマー、シリカ粒子および多層グラフェンの合計量」に対するシリカ粒子および多層グラフェンの合計含有量として適用されてもよい。 The total content of silica particles and multi-layer graphene in the dispersion liquid is the total content of silica particles and multi-layer graphene with respect to the above-mentioned "total amount of polyacrylate resin, silica particles and multi-layer graphene", and "acrylate monomer, silica particles and the total amount of multilayer graphene".
 本発明の樹脂組成物は、エラストマー材料として好適に使用できる。本明細書中、エラストマー材料は、比較的小さな外力によって大きな形状変化を生じ、外力を除荷した際には元の形状にすみやかに戻るようなゴム弾性を有するポリマー材料またはポリマー樹脂組成物という意味であり、ゴム弾性が要求される部材の構成材料として使用され得る材料である。本発明の樹脂組成物に含まれるポリアクリレート樹脂は一般にゴム弾性を発揮する。
 本発明の樹脂組成物からなるエラストマー材料は、誘電特性、中でも、比誘電率の高さ、誘電正接の変化率の低さに優れており、かつ伸張性および靭性等、特に、引張破断応力、引張破断ひずみ等の機械的特性に優れている。
The resin composition of the present invention can be suitably used as an elastomer material. As used herein, the term "elastomer material" means a polymer material or polymer resin composition having such rubber elasticity that it undergoes a large change in shape under a relatively small external force and quickly returns to its original shape when the external force is removed. and is a material that can be used as a constituent material for members that require rubber elasticity. The polyacrylate resin contained in the resin composition of the present invention generally exhibits rubber elasticity.
Elastomer materials made of the resin composition of the present invention are excellent in dielectric properties, particularly high relative permittivity and low rate of change in dielectric loss tangent, and are excellent in elongation and toughness, especially tensile breaking stress, Excellent mechanical properties such as tensile breaking strain.
 本発明において、「比誘電率」と「誘電正接」は、本発明の樹脂組成物からなる厚さ1mmのシートを使用して求められる比誘電率と誘電正接により評価される特性を意味している。より具体的には、比誘電率は、下記実施例中に記載された方法により得られる値を使用している。比誘電率は、その値が大きい程、誘電体内部の分極の程度が大きいことを示す。本発明の組成物からなるエラストマーは、該比誘電率が通常、7以上であり、好ましくは7.5以上、より好ましくは7.8以上、さらにより好ましくは8.0以上、十分に好ましくは10.0以上を有することができる。 In the present invention, the terms "relative permittivity" and "dielectric loss tangent" refer to characteristics evaluated by relative permittivity and dielectric loss tangent obtained using a 1 mm thick sheet made of the resin composition of the present invention. there is More specifically, the value obtained by the method described in the following examples is used for the dielectric constant. A higher dielectric constant indicates a higher degree of polarization inside the dielectric. The elastomer comprising the composition of the present invention usually has a dielectric constant of 7 or more, preferably 7.5 or more, more preferably 7.8 or more, even more preferably 8.0 or more, and fully preferably 10.0 or greater.
 一方、誘電正接は、その値が小さいほど、誘電体内部での電気エネルギー損失が小さいことを示す。本発明の組成物からなるエラストマーは、下記式で求める該誘電正接の変化率が通常、60%以下であり、好ましくは45%以下、より好ましくは30%以下、さらに好ましくは25%以下、十分に好ましくは20%以下、より十分に好ましくは15%以下、最も好ましくは10%以下である。
[誘電正接の変化率]=[[樹脂組成物の誘電正接]÷[ポリアクリレート樹脂の誘電正接]-1]×100
On the other hand, the smaller the value of the dielectric loss tangent, the smaller the electrical energy loss inside the dielectric. In the elastomer made of the composition of the present invention, the rate of change in the dielectric loss tangent obtained by the following formula is usually 60% or less, preferably 45% or less, more preferably 30% or less, and still more preferably 25% or less. preferably 20% or less, more preferably 15% or less, most preferably 10% or less.
[Change rate of dielectric loss tangent] = [[Dielectric loss tangent of resin composition] ÷ [Dielectric loss tangent of polyacrylate resin] -1] × 100
 本発明の樹脂組成物からなるエラストマー材料は、また伸張性および靭性等に優れ、引張破断応力、引張破断ひずみ等の機械的特性に優れている。 The elastomer material made of the resin composition of the present invention is also excellent in elongation, toughness, etc., and is excellent in mechanical properties such as tensile breaking stress and tensile breaking strain.
 本発明において、引張破断応力、引張破断ひずみ等の機械的特性は、JIS K7161-2に準じて得られる応力/ひずみ曲線に基づき得られる引張破断応力、引張破断ひずみを意味している。より具体的には、下記実施例中に記載している。 In the present invention, mechanical properties such as tensile breaking stress and tensile breaking strain mean the tensile breaking stress and tensile breaking strain obtained based on the stress/strain curve obtained according to JIS K7161-2. More specifically, it is described in the examples below.
 本発明の樹脂組成物からなるエラストマー材料は、引張破断応力として、2.0MPa以上、好ましくは2.3MPa以上、さらに好ましくは2.5MPa以上を有する。 The elastomer material made of the resin composition of the present invention has a tensile breaking stress of 2.0 MPa or more, preferably 2.3 MPa or more, and more preferably 2.5 MPa or more.
 本発明の樹脂組成物からなるエラストマー材料は、引張破断ひずみとして、350%以上、好ましくは400%以上、より好ましくは450%以上を有する。 The elastomer material made of the resin composition of the present invention has a tensile strain at break of 350% or more, preferably 400% or more, more preferably 450% or more.
 本発明の樹脂組成物は、高い比誘電率のエラストマー材料として好適に使用できる。本発明の樹脂組成物は、フィルム、シート、コーティング剤、粘着剤、接着剤などに成形または加工され、例えば、以下の材料として好適に利用することができる:
(i)自動車、鉄道、航空機、家電・OA機器、建築機械、ウェアラブルデバイスなどに適応されるアンテナ基板用材料;
(ii)光トランシーバーをはじめとする小型薄型化が必要とされるパッケージの封止材料;および
(iii)プリント配線板材料。
The resin composition of the present invention can be suitably used as an elastomer material with a high dielectric constant. The resin composition of the present invention is molded or processed into films, sheets, coating agents, adhesives, adhesives, etc., and can be suitably used, for example, as the following materials:
(i) Materials for antenna substrates adapted to automobiles, railways, aircraft, home appliances/OA equipment, construction machinery, wearable devices, etc.;
(ii) encapsulating materials for packages that require miniaturization and thinning, including optical transceivers; and (iii) printed wiring board materials.
 例えば、本発明の樹脂組成物をパッケージの封止材料として使用する場合、Wifiモジュール、光通信モジュール、ミリ波レーダ、電磁波シールドなどの用途に適応できる。なお、パッケージは、電子・電気機器用パッケージであってもよい。
 また例えば、本発明の樹脂組成物をプリント配線板材料として使用する場合、スマートフォン、カーナビ、パワーデバイスなどに適応できる。
For example, when the resin composition of the present invention is used as a package sealing material, it can be applied to applications such as Wifi modules, optical communication modules, millimeter wave radars, and electromagnetic wave shields. Note that the package may be a package for electronic/electrical equipment.
Further, for example, when the resin composition of the present invention is used as a printed wiring board material, it can be applied to smartphones, car navigation systems, power devices, and the like.
 本明細書中、機械的特性は、伸張性および靭性を包含する概念で用いている。
 伸張性は、より十分に大きな引張破断ひずみを示す特性のことである。引張破断ひずみが大きいほど、伸張性は好ましい。
 靭性は、より十分に大きな引張破断応力と引張破断ひずみを同時に示す特性のことである。引張破断応力と引張破断ひずみが大きいほど、靭性は好ましい。
 誘電特性は、より十分に高い比誘電率およびより十分に低い誘電正接を示す特性のことである。なお、誘電正接の値は、ポリアクリレート樹脂のモノマー組成によって、大きく変化する。このため、所定の樹脂組成物における誘電正接は、シリカ粒子および多層グラフェンを含有しないこと以外、当該樹脂組成物と同様の組成を有する樹脂組成物(例えば、単なる「ポリアクリレート樹脂」)の誘電正接を基準に表すことが有意である。従って、本発明において、樹脂組成物の誘電正接は、上記したように、ポリアクリレート樹脂の誘電正接からの変化率によって表される。よって、樹脂組成物の誘電正接が低いほど、樹脂組成物の誘電正接の変化率は小さい。樹脂組成物の誘電正接は低いほど好ましく、また、樹脂組成物の誘電正接の変化率は小さいほど好ましい。
In this specification, mechanical properties are used as a concept including extensibility and toughness.
Extensibility is the property of exhibiting a sufficiently large tensile strain at break. The higher the tensile strain at break, the better the extensibility.
Toughness is a property that simultaneously exhibits a sufficiently large tensile stress at break and tensile strain at break. The higher the tensile stress at break and the tensile strain at break, the better the toughness.
Dielectric properties are properties that exhibit a sufficiently high dielectric constant and a sufficiently low dielectric loss tangent. Note that the dielectric loss tangent value varies greatly depending on the monomer composition of the polyacrylate resin. Therefore, the dielectric loss tangent of a given resin composition is the dielectric loss tangent of a resin composition (for example, a simple “polyacrylate resin”) having the same composition as the resin composition except that it does not contain silica particles and multilayer graphene. is significant. Therefore, in the present invention, the dielectric loss tangent of the resin composition is represented by the rate of change from the dielectric loss tangent of the polyacrylate resin, as described above. Therefore, the lower the dielectric loss tangent of the resin composition, the smaller the change rate of the dielectric loss tangent of the resin composition. The lower the dielectric loss tangent of the resin composition, the better, and the smaller the change rate of the dielectric loss tangent of the resin composition, the better.
 以下、実施例により本発明を具体的に説明する。
 実施例中の各特性値の測定、評価方法は以下のように行った。
(1)樹脂組成物中のシリカ粒子の重量%および多層グラフェンの重量%
 アクリレートモノマーとシリカ粒子と多層グラフェンの総量に対する、シリカ粒子または多層グラフェンの仕込み量から、樹脂組成物中のシリカ粒子と多層グラフェンの重量%を計算した。
EXAMPLES The present invention will be specifically described below with reference to examples.
The measurement and evaluation methods of each characteristic value in the examples were performed as follows.
(1) Weight % of silica particles and weight % of multilayer graphene in the resin composition
The weight % of the silica particles and multilayer graphene in the resin composition was calculated from the charged amount of silica particles or multilayer graphene with respect to the total amount of acrylate monomer, silica particles and multilayer graphene.
(2)重合前の分散液の流動性
 シリカ粒子と多層グラフェンをアクリレートモノマー中に分散させた分散液を、60度に傾けたガラス板に滴下して、滴下後の液滴の流れから流動性を評価した。
◎:液滴が流れ、流動性が高い
×:液滴が流れず、流動性が低い
(2) Fluidity of dispersion liquid before polymerization A dispersion liquid in which silica particles and multi-layered graphene are dispersed in an acrylate monomer is dropped onto a glass plate tilted at 60 degrees. evaluated.
◎: Droplets flow and fluidity is high ×: Liquid droplets do not flow and fluidity is low
(3)機械的特性
 JIS K7161-2に準じて、応力/ひずみ曲線を得、引張破断応力、引張破断ひずみを測定した。
(3) Mechanical Properties According to JIS K7161-2, a stress/strain curve was obtained to measure tensile breaking stress and tensile breaking strain.
 引張試験は、厚さ1mmの樹脂組成物のシートから、打ち抜き型を用いて7号ダンベル試験片(JISK7161-2)を作製した。島津製作所社製、引張試験機(EZ-LX)を用いて、標準環境(温度23±2℃、空気中、湿度(50±10%))下、ひずみ0.3%までは0.1mm/minの引張速度にて行い、ひずみ0.3%以降は50mm/minの引張速度にて行った。 For the tensile test, a No. 7 dumbbell test piece (JISK7161-2) was prepared from a resin composition sheet with a thickness of 1 mm using a punching die. Using a tensile tester (EZ-LX) manufactured by Shimadzu Corporation, under a standard environment (temperature 23 ± 2 ° C, air, humidity (50 ± 10%)), strain 0.1 mm / up to 0.3% After the strain was 0.3%, the tensile speed was 50 mm/min.
(3-1)引張破断応力
 下記の基準で、引張破断応力を評価した。
◎:2.5MPa≦引張破断応力(優良);
○:2.0MPa≦引張破断応力<2.5MPa(良:実用上問題なし);
×:引張破断応力<2.0MPa(実用上問題あり)。
(3-1) Tensile breaking stress Tensile breaking stress was evaluated according to the following criteria.
◎: 2.5 MPa ≤ tensile breaking stress (excellent);
○: 2.0 MPa ≤ tensile breaking stress < 2.5 MPa (good: practically no problem);
x: Tensile breaking stress <2.0 MPa (practically problematic).
(3-2)引張破断ひずみ
 下記の基準で、引張破断ひずみを評価した。
◎:450%≦引張破断ひずみ(優良);
○:350%≦引張破断ひずみ<450%(良:実用上問題なし);
×:引張破断ひずみ<350%(実用上問題あり)。
(3-2) Tensile Breaking Strain Tensile breaking strain was evaluated according to the following criteria.
◎: 450% ≤ tensile breaking strain (excellent);
○: 350% ≤ tensile breaking strain < 450% (good: practically no problem);
x: Tensile strain at break <350% (practically problematic).
(4)比誘電率および誘電正接
 厚み約1mmの樹脂組成物のシートを試験片とし、誘電材料テスト・フィクスチャ16453Aを備えたインピーダンス・アナライザE4991B(Keysight Technologies社製)を用いて、測定温度25℃の条件で10MHzにおける比誘電率および誘電正接を測定した。
 上記の測定条件において得られた比誘電率を下記の基準で評価した。
◎:比誘電率≧10.0(優良);
○:10.0>比誘電率≧7.0(良:実用上問題なし);
×:7.0>比誘電率(実用上問題あり)。
(4) Relative permittivity and dielectric loss tangent A sheet of a resin composition having a thickness of about 1 mm was used as a test piece, and an impedance analyzer E4991B (manufactured by Keysight Technologies) equipped with a dielectric material test fixture 16453A was used to measure the temperature at 25. °C, the dielectric constant and dielectric loss tangent at 10 MHz were measured.
The dielectric constant obtained under the above measurement conditions was evaluated according to the following criteria.
◎: dielectric constant ≥ 10.0 (excellent);
○: 10.0> relative dielectric constant ≥ 7.0 (good: no practical problem);
x: 7.0>relative dielectric constant (problematic in practice).
(5)誘電正接の変化率
 上記にて測定した周波数10MHzにおける誘電正接の値を用いて、次の式に従って誘電正接の変化率を求めた。
[誘電正接の変化率(%)]=[[樹脂組成物の誘電正接]÷[ポリアクリレート樹脂の誘電正接]-1]×100
 下記の基準で、誘電正接の変化率を評価した。
◎:誘電正接の変化率≦10%(優良);
○:10%<誘電正接の変化率≦25%(良);
△:25%<誘電正接の変化率≦60%(実用上問題なし)
×:60%<誘電正接の変化率(実用上問題あり)。
(5) Rate of change in dielectric loss tangent Using the value of dielectric loss tangent at a frequency of 10 MHz measured above, the rate of change in dielectric loss tangent was obtained according to the following equation.
[Dielectric loss tangent change rate (%)] = [[Dielectric loss tangent of resin composition] ÷ [Dielectric loss tangent of polyacrylate resin] -1] × 100
The rate of change in dielectric loss tangent was evaluated according to the following criteria.
◎: Change rate of dielectric loss tangent ≤ 10% (excellent);
○: 10% < change rate of dielectric loss tangent ≤ 25% (good);
△: 25% < change rate of dielectric loss tangent ≤ 60% (no practical problem)
x: 60% <change rate of dielectric loss tangent (problematic in practice).
(6)総合評価
 上記した流動性、引張破断応力、引張破断ひずみ、比誘電率および誘電正接の変化率に関する評価結果を総合的に評価した。詳しくは、これらの評価結果のうち、最低の評価結果を総合評価の結果として用いた。
(6) Comprehensive Evaluation The evaluation results regarding the fluidity, the tensile breaking stress, the tensile breaking strain, the dielectric constant and the change rate of the dielectric loss tangent were comprehensively evaluated. Specifically, among these evaluation results, the lowest evaluation result was used as the comprehensive evaluation result.
 実施例1
 ジエチレングリコールモノメチルエーテルメタクリレート(MEO2MA、アルドリッチ社製)3386質量部、平均粒径110nmの球状シリカ粒子(Silbol 110、富士化学社製)1056質量部、厚さ6-8nm、幅25μm多層グラフェン(グラフェンナノプレートレット、東京化成社製)360質量部を試験管に仕込み、超音波ホモジナイザー(UP200St、ヒールッシャー社製)にて5℃で20分間かけて分散させた。
 次に、重合開始剤として、2,2’-アゾビスイソブチロニトリル(関東化学社製)4.43質量部を加え、混合した。
 その後、得られた分散液を、FEP(テトラフルオロエチレンとヘキサフルオロプロピレンの共重合体)シートを張り付けたガラス板2枚で挟んだ厚み1mmの型枠に注入し、70℃のオーブンで15時間加熱し、厚み1mmのシートを得た。
Example 1
Diethylene glycol monomethyl ether methacrylate (MEO2MA, manufactured by Aldrich) 3386 parts by mass, spherical silica particles with an average particle size of 110 nm (Silbol 110, manufactured by Fuji Chemical Co., Ltd.) 1056 parts by mass, thickness 6-8 nm, width 25 μm multilayer graphene (graphene nanoplates 360 parts by mass of Rett, manufactured by Tokyo Chemical Industry Co., Ltd.) was placed in a test tube and dispersed with an ultrasonic homogenizer (UP200St, manufactured by Hielscher) at 5° C. for 20 minutes.
Next, 4.43 parts by mass of 2,2'-azobisisobutyronitrile (manufactured by Kanto Kagaku Co., Ltd.) was added as a polymerization initiator and mixed.
After that, the resulting dispersion is poured into a mold with a thickness of 1 mm sandwiched between two glass plates to which FEP (tetrafluoroethylene-hexafluoropropylene copolymer) sheets are attached, and placed in an oven at 70° C. for 15 hours. It was heated to obtain a sheet with a thickness of 1 mm.
 厚み1mmのシートを使用して、引張試験を行った。引張試験は5点の試験片で行い、その平均値を表1中に示した。また、5点の試験片で得られた応力/ひずみ曲線チャートのうち、平均値に近い値の結果を図1に示す。 A tensile test was performed using a sheet with a thickness of 1 mm. Tensile tests were performed on 5 test pieces, and the average values are shown in Table 1. FIG. 1 shows the results of values close to the average value in the stress/strain curve chart obtained from the five test pieces.
 また、重合前の分散液の流動性、応力/ひずみ曲線から得られる機械的特性(引張破断応力、引張破断ひずみ)、比誘電率、誘電正接および誘電正接の変化率の測定結果・評価結果をまとめて表1に示した。 In addition, the fluidity of the dispersion before polymerization, the mechanical properties (tensile breaking stress, tensile breaking strain) obtained from the stress/strain curve, the relative permittivity, the dielectric loss tangent and the rate of change of the dielectric loss tangent are measured and evaluated. It is shown in Table 1 collectively.
 実施例2~5、比較例1~10
 シリカ粒子と多層グラフェンの充填量を表1に示すものになるように変更した以外は、実施例1と同様にしてシートを作製し評価した。
Examples 2-5, Comparative Examples 1-10
A sheet was produced and evaluated in the same manner as in Example 1, except that the filling amounts of silica particles and multilayer graphene were changed to those shown in Table 1.
 実施例2~5、比較例1~7で得られた各シートを使用して得られた応力/ひずみ曲線を図2~12に示す。
 結果を実施例1と同様に表1中に合わせて示した。
The stress/strain curves obtained using the sheets obtained in Examples 2-5 and Comparative Examples 1-7 are shown in FIGS.
The results are also shown in Table 1 in the same manner as in Example 1.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1から明らかなように、実施例1~5で得られた樹脂組成物は、引張破断応力および引張破断ひずみの大きい、高靭性の優れた機械的特性を有するものであった。また、比誘電率は7.0以上であり、誘電正接の変化率はいずれも小さな値または負の値を示し、誘電特性に優れるものであった。 As is clear from Table 1, the resin compositions obtained in Examples 1 to 5 had excellent mechanical properties such as high tensile breaking stress and tensile breaking strain and high toughness. Moreover, the relative permittivity was 7.0 or more, and the rate of change of the dielectric loss tangent showed a small value or a negative value, indicating excellent dielectric properties.
 一方、比較例1~2の樹脂組成物は、シリカ粒子を含有していないため、引張破断応力の小さい、脆弱な材料であった。また、誘電正接の変化率が大きく、誘電特性に劣る材料であった。 On the other hand, since the resin compositions of Comparative Examples 1 and 2 did not contain silica particles, they were fragile materials with low tensile breaking stress. In addition, the rate of change in dielectric loss tangent was large, and the material was inferior in dielectric properties.
 比較例3の樹脂組成物は、シリカ粒子を含有しておらず、また多層グラフェンの含有量も非常に低く、引張破断応力および引張破断ひずみの小さい、脆弱な材料であった。また、比誘電率が低く、誘電特性に劣る材料であった。 The resin composition of Comparative Example 3 did not contain silica particles, had a very low content of multilayer graphene, and was a fragile material with low tensile breaking stress and tensile breaking strain. Moreover, it was a material with a low dielectric constant and poor dielectric properties.
 比較例4~6の樹脂組成物は、多層グラフェンの充填量が少なく、比誘電率の値が小さい誘電特性に劣る材料であった。 The resin compositions of Comparative Examples 4 to 6 had a small amount of multi-layered graphene filled, and were materials with low dielectric constant values and poor dielectric properties.
 比較例7の樹脂組成物は、シリカ粒子と多層グラフェンの合計含有量が少なく、引張破断応力の小さい、脆弱な材料であった。 The resin composition of Comparative Example 7 was a fragile material with a low total content of silica particles and multilayer graphene and a low tensile breaking stress.
 比較例8~9ではアクリレートモノマー(A)にシリカ粒子と多層グラフェンを分散する際に、分散液が高粘度になり、分散が困難になったため、樹脂組成物を得ることができなかった。多層グラフェンの充填量が多すぎたためと考えられる。 In Comparative Examples 8 and 9, when the silica particles and multi-layered graphene were dispersed in the acrylate monomer (A), the dispersion became highly viscous, making it difficult to disperse, and a resin composition could not be obtained. This is probably because the filling amount of multilayer graphene was too large.
 比較例10ではアクリレートモノマー(A)にシリカ粒子を分散する際に、分散液が高粘度になり、分散が困難になったため、樹脂組成物を得ることができなかった。シリカ粒子の充填量が多すぎたためと考えられる。 In Comparative Example 10, when dispersing the silica particles in the acrylate monomer (A), the dispersion became highly viscous, making it difficult to disperse, and a resin composition could not be obtained. This is probably because the amount of silica particles to be filled was too large.
 本発明の樹脂組成物は、アンテナ基板用材料、電子・電気機器用)パッケージの封止材料およびプリント配線板材料等の用途で有用である。 The resin composition of the present invention is useful for applications such as antenna substrate materials, packaging sealing materials for electronic and electrical equipment, and printed wiring board materials.

Claims (17)

  1.  ポリアクリレート樹脂、シリカ粒子および多層グラフェンを含有する樹脂組成物であって、ポリアクリレート樹脂、シリカ粒子および多層グラフェンの合計量に対して、
     前記シリカ粒子の含有量が8~62重量%であり、
     前記多層グラフェンの含有量が1~8重量%であり、
     前記シリカ粒子と前記多層グラフェンの合計含有量が15~62重量%であることを特徴とする、上記樹脂組成物。
    A resin composition containing a polyacrylate resin, silica particles and multilayer graphene, wherein the total amount of the polyacrylate resin, silica particles and multilayer graphene is
    The content of the silica particles is 8 to 62% by weight,
    The content of the multilayer graphene is 1 to 8% by weight,
    The above resin composition, wherein the total content of the silica particles and the multilayer graphene is 15 to 62% by weight.
  2.  前記樹脂組成物からなる厚さ1mmのシートを使用して求められる周波数10MHzにおける比誘電率が7以上である、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein a relative dielectric constant at a frequency of 10 MHz obtained using a sheet of the resin composition having a thickness of 1 mm is 7 or more.
  3.  前記樹脂組成物からなる厚さ1mmのシートを使用して下記式(1):
    [誘電正接の変化率(%)]=[[樹脂組成物の誘電正接]÷[ポリアクリレート樹脂の誘電正接]-1]×100 (1)
    から求められる周波数10MHzにおける誘電正接の変化率が60%以下である、請求項1または2に記載の樹脂組成物。
    Using a 1 mm thick sheet made of the resin composition, the following formula (1):
    [Dielectric loss tangent change rate (%)] = [[Dielectric loss tangent of resin composition] ÷ [Dielectric loss tangent of polyacrylate resin] - 1] × 100 (1)
    3. The resin composition according to claim 1, wherein the rate of change in dielectric loss tangent at a frequency of 10 MHz obtained from is 60% or less.
  4.  前記誘電正接の変化率が25%以下である、請求項3に記載の樹脂組成物。 The resin composition according to claim 3, wherein the change rate of the dielectric loss tangent is 25% or less.
  5.  前記ポリアクリレート樹脂が、少なくとも、下記一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、Rは、水素原子、メチル基またはエチル基を表す;Rは水素原子またはメチル基を表す;nは1~9の整数を表す。]で示されるアクリレートモノマー(A)をモノマーユニットとして含有する、請求項1~4のいずれかに記載の樹脂組成物。
    The polyacrylate resin has at least the following general formula (1):
    Figure JPOXMLDOC01-appb-C000001
    [In formula (1), R 0 represents a hydrogen atom, a methyl group or an ethyl group; R 1 represents a hydrogen atom or a methyl group; n represents an integer of 1 to 9; 5. The resin composition according to any one of claims 1 to 4, which contains an acrylate monomer (A) represented by ] as a monomer unit.
  6.  前記シリカ粒子の含有量が9~60重量%である、請求項1~5のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 5, wherein the content of said silica particles is 9 to 60% by weight.
  7.  Rがメチル基である、請求項5に記載の樹脂組成物。 6. The resin composition of claim 5, wherein R0 is a methyl group.
  8.  ポリアクリレート樹脂、シリカ粒子および多層グラフェンを含有する樹脂組成物からなるエラストマー材料であって、ポリアクリレート樹脂、シリカ粒子および多層グラフェンの合計量に対して、
     前記シリカ粒子の含有量が8~62重量%であり、
     前記多層グラフェンの含有量が1~8重量%であり、
     前記シリカ粒子と前記多層グラフェンの合計含有量が15~62重量%であることを特徴とする、上記エラストマー材料。
    An elastomeric material comprising a resin composition containing a polyacrylate resin, silica particles and multilayer graphene, wherein the total amount of the polyacrylate resin, silica particles and multilayer graphene is:
    The content of the silica particles is 8 to 62% by weight,
    The content of the multilayer graphene is 1 to 8% by weight,
    The above elastomer material, wherein the total content of the silica particles and the multilayer graphene is 15-62% by weight.
  9.  前記樹脂組成物からなる厚さ1mmのシートを使用して求められる周波数10MHzにおける比誘電率が7以上である、請求項8に記載のエラストマー材料。 The elastomer material according to claim 8, wherein the dielectric constant at a frequency of 10 MHz obtained using a sheet of the resin composition having a thickness of 1 mm is 7 or more.
  10.  前記樹脂組成物からなる厚さ1mmのシートを使用して下記式(1):
    [誘電正接の変化率(%)]=[[樹脂組成物の誘電正接]÷[ポリアクリレート樹脂の誘電正接]-1]×100 (1)
    から求められる周波数10MHzにおける誘電正接の変化率が60%以下である、請求項8または9に記載のエラストマー材料。
    Using a 1 mm thick sheet made of the resin composition, the following formula (1):
    [Dielectric loss tangent change rate (%)] = [[Dielectric loss tangent of resin composition] ÷ [Dielectric loss tangent of polyacrylate resin] - 1] × 100 (1)
    10. The elastomer material according to claim 8 or 9, wherein the rate of change of dielectric loss tangent at a frequency of 10 MHz obtained from is 60% or less.
  11.  前記誘電正接の変化率が25%以下である、請求項10に記載のエラストマー材料。 The elastomer material according to claim 10, wherein the rate of change of the dielectric loss tangent is 25% or less.
  12.  前記ポリアクリレート樹脂が、少なくとも、
    下記一般式(1):
    Figure JPOXMLDOC01-appb-C000002
    [式(1)中、Rは、水素原子、メチル基またはエチル基を表す;Rは水素原子またはメチル基を表す;nは1~9の整数を表す。]で示されるアクリレートモノマー(A)をモノマーユニットとして含有する、請求項8~11のいずれかに記載のエラストマー材料。
    The polyacrylate resin contains at least
    The following general formula (1):
    Figure JPOXMLDOC01-appb-C000002
    [In formula (1), R 0 represents a hydrogen atom, a methyl group or an ethyl group; R 1 represents a hydrogen atom or a methyl group; n represents an integer of 1 to 9; ] as a monomer unit, the elastomer material according to any one of claims 8 to 11.
  13.  前記シリカ粒子の含有量が9~60重量%である、請求項8~12のいずれかに記載のエラストマー材料。 The elastomer material according to any one of claims 8 to 12, wherein the content of said silica particles is 9 to 60% by weight.
  14.  Rがメチル基である、請求項12に記載のエラストマー材料。 13. The elastomeric material of claim 12, wherein R0 is a methyl group.
  15.  引張破断応力として、少なくとも2.0MPa有する、請求項8~14のいずれかに記載のエラストマー材料。 The elastomer material according to any one of claims 8 to 14, which has a tensile breaking stress of at least 2.0 MPa.
  16.  引張破断ひずみとして、少なくとも350%を示す、請求項8~15のいずれかに記載のエラストマー材料。 The elastomeric material according to any one of claims 8 to 15, which exhibits a tensile breaking strain of at least 350%.
  17.  アクリレートモノマー、シリカ粒子および多層グラフェンを含有する分散液であって、アクリレートモノマー、シリカ粒子および多層グラフェンの合計量に対して、
     前記シリカ粒子の含有量が8~62重量%であり、
     前記多層グラフェンの含有量が1~8重量%であり、
     前記シリカ粒子と前記多層グラフェンの合計含有量が15~62重量%であることを特徴とする、上記分散液。
    A dispersion containing acrylate monomers, silica particles and multilayer graphene, wherein, relative to the total amount of acrylate monomers, silica particles and multilayer graphene,
    The content of the silica particles is 8 to 62% by weight,
    The content of the multilayer graphene is 1 to 8% by weight,
    The above dispersion, wherein the total content of the silica particles and the multilayer graphene is 15 to 62% by weight.
PCT/JP2022/013628 2021-04-05 2022-03-23 Resin composition and elastomer material comprising said resin composition WO2022215528A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023512926A JPWO2022215528A1 (en) 2021-04-05 2022-03-23

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021064209 2021-04-05
JP2021-064209 2021-04-05

Publications (1)

Publication Number Publication Date
WO2022215528A1 true WO2022215528A1 (en) 2022-10-13

Family

ID=83545378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013628 WO2022215528A1 (en) 2021-04-05 2022-03-23 Resin composition and elastomer material comprising said resin composition

Country Status (2)

Country Link
JP (1) JPWO2022215528A1 (en)
WO (1) WO2022215528A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006082902A1 (en) * 2005-02-03 2006-08-10 Asahi Kasei Chemicals Corporation Resin composition for electronic and electric components for high-frequency applications and its molded product
KR20090115517A (en) * 2008-05-02 2009-11-05 엘에스엠트론 주식회사 Anisotropic Conductive Film Having A Optimum Elastic Restitution Property And Circuit Board Using The Same
CN108659237A (en) * 2018-05-22 2018-10-16 中南林业科技大学 A kind of electric conductivity with thermal tuning nanofiber composite hydrogel and its preparation method and application
WO2020020334A1 (en) * 2018-07-27 2020-01-30 杭州蓉阳电子科技有限公司 Conductive adhesive, raw material composition, electronic element, and preparation method and application
CN110938894A (en) * 2019-11-05 2020-03-31 东华大学 Anti-freezing self-repairing conductive nano composite hydrogel fiber and preparation method thereof
JP2021031660A (en) * 2019-08-29 2021-03-01 Eneos株式会社 Elastomer composition for actuator, actuator member, and actuator element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006082902A1 (en) * 2005-02-03 2006-08-10 Asahi Kasei Chemicals Corporation Resin composition for electronic and electric components for high-frequency applications and its molded product
KR20090115517A (en) * 2008-05-02 2009-11-05 엘에스엠트론 주식회사 Anisotropic Conductive Film Having A Optimum Elastic Restitution Property And Circuit Board Using The Same
CN108659237A (en) * 2018-05-22 2018-10-16 中南林业科技大学 A kind of electric conductivity with thermal tuning nanofiber composite hydrogel and its preparation method and application
WO2020020334A1 (en) * 2018-07-27 2020-01-30 杭州蓉阳电子科技有限公司 Conductive adhesive, raw material composition, electronic element, and preparation method and application
JP2021031660A (en) * 2019-08-29 2021-03-01 Eneos株式会社 Elastomer composition for actuator, actuator member, and actuator element
CN110938894A (en) * 2019-11-05 2020-03-31 东华大学 Anti-freezing self-repairing conductive nano composite hydrogel fiber and preparation method thereof

Also Published As

Publication number Publication date
JPWO2022215528A1 (en) 2022-10-13

Similar Documents

Publication Publication Date Title
KR101285652B1 (en) Active energy ray-curable composition
TWI695049B (en) Adhesive film and optical member comprising the same
CN108350107B (en) Photocurable and thermocurable resin composition and dry film solder resist
JP2008514753A (en) Curable composition, cured composition and articles derived therefrom
JP2015521226A (en) Triple-curing, sometimes transparent adhesive
JP2010132755A (en) Ionizing radiation-curable re-releasable adhesive composition
JP2014074158A (en) Active energy ray-curable resin composition and coating agent composition obtained using the same
JP2014181252A (en) Carboxylic acid polymer composition
EP4056610A1 (en) Curable composition and article
JP2021169613A (en) Curable composition, cured article and laminate
JP6031195B2 (en) Photocurable resin composition and cured film thereof
WO2022181446A1 (en) Composition containing (meth)acrylamide compound and compound having polyoxyalkylene chain
JP6381354B2 (en) Active energy ray-curable resin composition and coating agent composition
WO2022181454A1 (en) Composition containing compound having polyoxyalkylene chain and compound having poly(meth)acrylate chain
JP6301123B2 (en) Acrylic resin composition, acrylic pressure-sensitive adhesive, pressure-sensitive adhesive sheet, double-sided pressure-sensitive adhesive sheet, pressure-sensitive adhesive for transparent electrode, touch panel and image display device, and method for producing pressure-sensitive adhesive layer-containing laminate
WO2022215528A1 (en) Resin composition and elastomer material comprising said resin composition
JP2009102542A (en) Resin composition, self-adhesive sheet, and its application
JP6461927B2 (en) Photocurable resin composition for adhesive film and adhesive film
JP6701690B2 (en) Coating agent composition for coating glass substrate
JP2014201709A (en) Acrylic resin composition, acrylic adhesive, adhesive sheet, double-sided adhesive sheet, adhesive for transparent electrode, touch panel and image display device, and production method of adhesive layer-containing laminate
JP2022147535A (en) Resin composition and elastomer material comprising the same
JP6965188B2 (en) Active energy ray-curable composition
JP2013237835A (en) Activation energy curable water-based emulsion composition, production method thereof, cured coating film forming method, and hard coat forming agent
JP2017179002A (en) Curable resin composition, cured product and resin sheet
EP4056609A1 (en) Composition containing compound having polyoxyalkylene chain

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784513

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023512926

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22784513

Country of ref document: EP

Kind code of ref document: A1