WO2022215380A1 - Optical system, optical device, and method for manufacturing optical system - Google Patents

Optical system, optical device, and method for manufacturing optical system Download PDF

Info

Publication number
WO2022215380A1
WO2022215380A1 PCT/JP2022/007509 JP2022007509W WO2022215380A1 WO 2022215380 A1 WO2022215380 A1 WO 2022215380A1 JP 2022007509 W JP2022007509 W JP 2022007509W WO 2022215380 A1 WO2022215380 A1 WO 2022215380A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
infinity
lens surface
focusing
Prior art date
Application number
PCT/JP2022/007509
Other languages
French (fr)
Japanese (ja)
Inventor
壮基 原田
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2023512856A priority Critical patent/JPWO2022215380A1/ja
Priority to CN202280017700.4A priority patent/CN116964503A/en
Publication of WO2022215380A1 publication Critical patent/WO2022215380A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present invention relates to an optical system, an optical device, and a method of manufacturing an optical system.
  • Patent Literature 1 requires further improvement in optical performance.
  • An optical system has, in order from the object side, a front group, a diaphragm, and a rear group having positive refractive power, and satisfies the following formula. 0.100 ⁇ LA/LB ⁇ 0.400 however, LA: Distance on the optical axis from the most object-side lens surface of the front group to the most image-side lens surface when focusing at infinity LB: The distance from the most object-side lens surface of the rear group when focusing at infinity Distance on the optical axis to the lens surface on the image side
  • the front group, the diaphragm, and the rear group having positive refractive power are arranged in order from the object side so as to satisfy the following formula.
  • LA Distance on the optical axis from the most object-side lens surface of the front group to the most image-side lens surface when focusing at infinity
  • LB The distance from the most object-side lens surface of the rear group when focusing at infinity Distance on the optical axis to the lens surface on the image side
  • FIG. 3 is a cross-sectional view showing the lens configuration of the optical system according to the first example when focusing on infinity.
  • 4A and 4B are various aberration diagrams of the optical system according to the first embodiment, in which (a) shows when focusing at infinity, and (b) shows when focusing at a short distance.
  • FIG. 11 is a cross-sectional view showing the lens configuration of the optical system according to the second embodiment when focusing on infinity.
  • 4A and 4B are various aberration diagrams of the optical system according to the second embodiment, in which (a) shows when focusing at infinity, and (b) shows when focusing at a short distance.
  • FIG. 11 is a cross-sectional view showing the lens configuration of the optical system according to the third embodiment when focusing on infinity.
  • FIG. 12 is a cross-sectional view showing the lens configuration of the optical system according to the fourth embodiment when focusing on infinity.
  • 4A and 4B are various aberration diagrams of the optical system according to the fourth embodiment, in which (a) shows when focusing at infinity, and (b) shows when focusing at a short distance.
  • FIG. 12 is a cross-sectional view showing the lens configuration of the optical system according to the fifth embodiment when focusing on infinity.
  • 10A and 10B are various aberration diagrams of the optical system according to the fifth embodiment, in which (a) shows when focusing at infinity, and (b) shows when focusing at a short distance. It is a cross-sectional view of a camera equipped with the optical system. 4 is a flow chart for explaining a method of manufacturing the optical system;
  • the optical system OL includes, in order from the object side, a front group GA, a diaphragm S, and a rear group GB having positive refractive power. .
  • the total optical length of the optical system OL can be shortened while suppressing various aberrations.
  • the optical system OL according to this embodiment preferably satisfies the following conditional expression (1).
  • LA Distance on the optical axis from the most object side lens surface of the front group GA to the most image side lens surface when focusing on infinity
  • LB The most object side lens surface of the rear group GB when focusing on infinity to the lens surface closest to the image side on the optical axis
  • Conditional expression (1) is the length of the rear group GB of the optical system OL (the optical axis from the lens surface closest to the object side to the lens surface closest to the image side of the rear group GB) in the optical system OL when focusing on infinity. It defines the ratio of the length of the front group GA (distance on the optical axis from the lens surface closest to the object side to the lens surface closest to the image side of the front group GA) to the length of the front group GA.
  • the length of the rear group GB becomes longer than the length of the front group GA. Good field curvature and astigmatism correction can be realized in the system OL.
  • conditional expression (1) it is more desirable to set the upper limit of conditional expression (1) to 0.350, more preferably 0.320. In order to ensure the effect of conditional expression (1), it is more desirable to set the lower limit of conditional expression (1) to 0.130, more preferably 0.150.
  • optical system OL Accordingly, it is desirable that the optical system OL according to this embodiment satisfy the following conditional expression (2).
  • LAS Distance on the optical axis from the most object side lens surface of the front group GA to the stop S when focusing on infinity
  • LAB Distance from the most object side lens surface of the front group GA to the rear group GB when focusing on infinity distance on the optical axis to the lens surface closest to the image side of
  • Conditional expression (2) is the length of the optical system OL when focusing on infinity (distance on the optical axis from the most object-side lens surface of the front group GA to the most image-side lens surface of the rear group GB) It defines the ratio of the length of the front group GA to the stop S (distance on the optical axis from the lens surface of the front group GA closest to the object side to the stop S) to the .
  • the optical system closer to the object side than the stop S becomes shorter than the length of the optical system OL, so that the entrance pupil of the optical system OL approaches the object side. Field curvature, astigmatism, and distortion can be corrected.
  • conditional expression (2) it is more desirable to set the upper limit of conditional expression (2) to 0.280, more preferably 0.260. In order to ensure the effect of conditional expression (2), it is more desirable to set the lower limit of conditional expression (2) to 0.100, more preferably 0.130.
  • the rear group GB have a negative lens NR that satisfies conditional expression (3) shown below.
  • LB Distance on the optical axis from the most object-side lens surface of the rear group GB to the most image-side lens surface when focusing at infinity
  • LNRL From the image-side lens surface of the negative lens NR when focusing at infinity Distance on the optical axis to the lens surface closest to the image side in the rear group GB
  • Conditional expression (3) defines the ratio of the length (distance on the optical axis) from the image-side lens surface of the negative lens NR to the most image-side lens surface of the rear group GB with respect to the length of the rear group GB. It is.
  • the negative lens NR is arranged on the image side of the rear group GB, i.e., near the image plane I.
  • the total optical length of the optical system OL can be shortened while satisfactorily suppressing aberrations.
  • the negative lens NR preferably satisfies the following conditional expression (4).
  • R2NR Curvature radius of the image-side lens surface of the negative lens NR Bfa: Back focus of the optical system OL during focusing at infinity (air conversion length)
  • Conditional expression (4) defines the ratio of the radius of curvature of the image-side lens surface of the negative lens NR to the back focus of the optical system OL. If the negative lens NR that satisfies the conditional expression (3) and is arranged near the image plane I satisfies the conditional expression (4), it is possible to realize good correction of curvature of field, astigmatism, and distortion. . In order to ensure the effect of conditional expression (4), it is more desirable to set the upper limit of conditional expression (4) to 2.700, more preferably 2.400. In order to ensure the effect of conditional expression (4), it is more desirable to set the lower limit of conditional expression (4) to 0.850, more preferably 0.900.
  • the rear group GB have a negative lens NF that satisfies conditional expression (5) shown below.
  • Conditional expression (5) defines the ratio of the length (distance on the optical axis) from the object-side lens surface of the negative lens NF to the most image-side lens surface of the rear group GB with respect to the length of the rear group GB. It is.
  • the negative lens NF is arranged on the object side of the rear group GB, that is, near the stop S, and various aberrations such as spherical aberration, axial chromatic aberration, and curvature of field are provided. can be satisfactorily suppressed, and the total optical length of the optical system OL can be shortened.
  • the negative lens NF preferably satisfies the following conditional expression (6).
  • R1NF Curvature radius of the object-side lens surface of the negative lens NF Bfa: Back focus of the optical system OL during focusing at infinity (air conversion length)
  • Conditional expression (6) defines the ratio of the radius of curvature of the object-side lens surface of the negative lens NF to the back focus of the optical system OL.
  • the negative lens having the highest refractive power among these negative lenses is the negative lens NR.
  • the negative lens having the highest refractive power among the negative lenses is the negative lens NF.
  • the negative lens NR and the negative lens NF satisfy conditional expression (7) shown below.
  • R1NF radius of curvature of the object-side lens surface of the negative lens NF
  • R2NR radius of curvature of the image-side lens surface of the negative lens NR
  • Conditional expression (7) defines the shape factor from the object-side lens surface of the negative lens NF to the image-side lens surface of the negative lens NR. Satisfying conditional expression (7) means that the absolute values of the radii of curvature of the object-side lens surface of the negative lens NF and the image-side lens surface of the negative lens NR are close to each other. By satisfying conditional expression (7), the symmetry of the negative lens included in the rear group GB is enhanced, resulting in a balance of spherical aberration, curvature of field, axial chromatic aberration, astigmatism, distortion, and the like. good correction can be realized.
  • conditional expression (7) it is more desirable to set the upper limit of conditional expression (7) to 0.600, more preferably 0.400 and 0.200. In order to ensure the effect of conditional expression (7), it is more desirable to set the lower limit of conditional expression (7) to -0.600, more preferably -0.400 and -0.200.
  • the negative lens NR and the negative lens NF satisfy conditional expression (8) shown below.
  • fNF focal length of negative lens
  • NF focal length of negative lens
  • Conditional expression (8) defines the ratio of the focal length of the negative lens NF to the focal length of the negative lens NR.
  • the refractive power of the negative lens NF and the refractive power of the negative lens NR are close to each other. As a result, well-balanced correction of curvature of field, astigmatism, distortion, and the like can be realized.
  • the rear group GB preferably has at least two positive lenses between the negative lens NF and the negative lens NR.
  • the front group GA has at least one negative lens N1
  • the rear group GB has at least one negative lens NL on the image side of the negative lens NR.
  • Conditional expression (9) defines the ratio of the focal length of the negative lens N1 included in the front group GA to the focal length of the negative lens NL included in the rear group GB.
  • Negative lenses that satisfy the conditional expression (9), that is, negative lenses N1 and NL having similar refractive powers are placed on the object side of the negative lens NF and the image side of the negative lens NR, and the negative lenses NF and NR are sandwiched.
  • the symmetry of the negative lens becomes high, and as a result, it is possible to achieve well-balanced correction of curvature of field, astigmatism, distortion, and the like.
  • conditional expression (9) it is more desirable to set the upper limit of conditional expression (9) to 1.100, more preferably 1.000 and 0.900. In order to ensure the effect of conditional expression (9), it is more desirable to set the lower limit of conditional expression (9) to 0.330, more preferably 0.360.
  • the rear group GB has an aspherical lens in which at least one of the object-side lens surface and the image-side lens surface is formed with an aspherical surface. It is desirable to satisfy (10).
  • LASI Distance on the optical axis from the aspherical surface located closest to the image side in the rear group GB to the image plane when focused at infinity
  • LAB Lens closest to the object side in the front group GA when focused at infinity distance on the optical axis from the surface to the lens surface of the rear group GB closest to the image side
  • Conditional expression (10) defines the ratio of the length (distance on the optical axis) from the aspherical surface arranged closest to the image side to the image plane with respect to the length of the optical system OL.
  • the aspherical surface located closest to the image side in the rear group GB is located near the image plane I, so that curvature of field, astigmatism, and distortion can be reduced satisfactorily. can be corrected.
  • the rear group GB has an aspherical lens in which at least one of the object-side lens surface and the image-side lens surface is formed with an aspherical surface. It is desirable to satisfy (11).
  • LASL Distance on the optical axis from the most image-side aspherical surface in the rear group GB to the most image-side lens surface of the rear group GB when focused on infinity
  • LAB Front when focused on infinity Distance on the optical axis from the most object side lens surface of the rear group GB to the most image side lens surface of the rear group GB
  • Conditional expression (11) defines the ratio of the length (distance on the optical axis) from the aspherical surface arranged closest to the image side to the surface of the rear group GB closest to the image side with respect to the length of the optical system OL. is.
  • the aspherical surface located closest to the image side in the rear group GB is located near the image plane I, so that curvature of field, astigmatism, and distortion can be reduced satisfactorily. can be corrected.
  • optical system OL According to this embodiment satisfy the following conditional expression (12).
  • fB focal length of the rear group GB when focusing on infinity
  • f focal length of the entire optical system OL when focusing on infinity
  • Conditional expression (12) defines the ratio of the focal length of the rear group GB to the focal length of the entire system.
  • conditional expression (12) defines the ratio of the focal length of the rear group GB to the focal length of the entire system.
  • the total optical length of the optical system OL can be shortened while various aberrations such as spherical aberration, coma, curvature of field, and astigmatism are satisfactorily suppressed.
  • This camera 1 is a lens interchangeable so-called mirrorless camera that includes an optical system OL according to the present embodiment as a photographing lens 2 .
  • this camera 1 light from an unillustrated object (subject) is condensed by a photographing lens 2 and passes through an unillustrated OLPF (Optical low pass filter) on the imaging surface of the imaging unit 3. to form an image of the subject.
  • OLPF Optical low pass filter
  • a subject image is photoelectrically converted by a photoelectric conversion element provided in the imaging unit 3 to generate an image of the subject.
  • This image is displayed on an EVF (Electronic view finder) 4 provided in the camera 1 . This allows the photographer to observe the subject through the EVF4.
  • EVF Electronic view finder
  • FIG. 1 an example of a mirrorless camera has been described, but the optical system OL according to this embodiment is installed in a single-lens reflex camera that has a quick return mirror in the camera body and observes the subject through the finder optical system. Even in this case, the same effect as the camera 1 can be obtained.
  • each lens is arranged to prepare the front group GA, the diaphragm S, and the rear group GB of the optical system OL (step S100). Then, the front group GA, the diaphragm S, and the rear group GB are arranged so as to satisfy the conditions of a predetermined conditional expression (for example, conditional expression (1) described above) (step S200).
  • a predetermined conditional expression for example, conditional expression (1) described above
  • the aspherical surface has a height y in the direction perpendicular to the optical axis, and the distance along the optical axis from the tangent plane of the vertex of each aspherical surface at height y to each aspherical surface (amount of sag) is S(y), r is the radius of curvature of the reference sphere (paraxial radius of curvature), K is the conic constant, and An is the n-th order aspherical surface coefficient. . In the following examples, “en” indicates “ ⁇ 10 -n ".
  • the second-order aspheric coefficient A2 is zero.
  • FIG. 1 is a diagram showing the configuration of an optical system OL1 according to the first example.
  • This optical system OL1 is composed of, in order from the object side, a front group GA, an aperture stop S, and a rear group GB having positive refractive power.
  • the front group GA is composed of a first lens group G1 having negative refractive power
  • the rear group GB is composed of, in order from the object side, a second lens group G2 having positive refractive power and a negative refractive power.
  • a third lens group G3 is a third lens group G3.
  • the first lens group G1 is composed of, in order from the object side, a negative meniscus lens L11 having a convex surface facing the object side, a biconcave negative lens L12, and a biconvex positive lens L13.
  • the second lens group G2 includes, in order from the object side, a positive meniscus lens L21 having a convex surface facing the object side, a cemented negative lens in which a biconcave negative lens L22 and a biconvex positive lens L23 are cemented together, and a biconvex positive lens L24.
  • a cemented positive lens in which a biconvex positive lens L25 and a biconcave negative lens L26 are cemented; It is composed of a shaped aspherical positive lens L27.
  • the third lens group G3 is composed of a biconcave negative lens L31.
  • An optical filter FL is arranged between the rear group GB and the image plane I.
  • the negative meniscus lens L11 is the negative lens N1
  • the biconcave negative lens L22 is the negative lens NF
  • the biconcave negative lens L26 is the negative lens NR
  • the biconcave negative lens L31 is the negative lens NL.
  • this optical system OL1 focusing from infinity to a short distance object is performed by moving the second lens group G2 toward the object.
  • Table 1 below lists the values of the specifications of the optical system OL1.
  • f is the focal length of the entire optical system OL1
  • FNO is the F number
  • is the half angle of view [°]
  • Y is the maximum image height
  • TL is the total length
  • BF is the back Represents the focus value.
  • the total length TL indicates the distance (actual distance) on the optical axis from the lens surface (first surface) closest to the object side to the image plane I at infinity focus.
  • the back focus BF indicates the distance (actual distance and air conversion length) on the optical axis from the lens surface (21st surface) closest to the image plane to the image plane I when focusing on infinity.
  • the first column m in the lens data indicates the order (surface number) of the lens surfaces from the object side along the direction in which light rays travel
  • the second column r indicates the radius of curvature of each lens surface
  • the third column d is the distance (surface distance) on the optical axis from each optical surface to the next optical surface
  • a radius of curvature of 0.00000 indicates a plane, and the refractive index of air of 1.00000 is omitted.
  • the lens group focal length indicates the surface number of the starting surface of each lens group and the focal length.
  • the focal length f, radius of curvature r, surface spacing d, and other lengths listed in all the specifications below are generally expressed in units of "mm".
  • the same optical performance can be obtained even if the size is reduced, so the size is not limited to this. Further, the explanation of these symbols and the explanation of the specification table are the same in the following embodiments.
  • the 18th and 19th lens surfaces are formed in an aspherical shape.
  • Table 2 below shows the surface number m and the data of the aspherical surface, that is, the values of the conic constant K and the aspherical constants A4 to A12.
  • the axial air gap D7 between the first lens group G1 and the second lens group G2 and the axial air gap D19 between the second lens group G2 and the third lens group G3 are Change.
  • Table 3 below shows the variable spacing for infinity focus and short distance focus.
  • D0 indicates the distance on the optical axis from the object to the most object-side lens surface (first surface) of optical system OL1
  • indicates magnification
  • f indicates the focal length of the entire system. The description of these symbols is the same in the subsequent embodiments.
  • FIG. 2 shows spherical aberration diagrams, astigmatism diagrams, distortion aberration diagrams, magnification chromatic aberration diagrams, and coma aberration diagrams of this optical system OL1 when focusing on infinity and when focusing on a short distance.
  • FNO indicates F number
  • NA indicates numerical aperture
  • Y indicates image height.
  • the spherical aberration diagram shows the F-number or numerical aperture corresponding to the maximum aperture
  • the astigmatism diagram and the distortion diagram show the maximum image height
  • the coma aberration diagram shows the value of each image height.
  • FIG. 3 is a diagram showing the configuration of the optical system OL2 according to the second embodiment.
  • This optical system OL2 is composed of, in order from the object side, a front group GA, an aperture stop S, and a rear group GB having positive refractive power.
  • the front group GA is composed of a first lens group G1 having positive refractive power
  • the rear group GB is composed of, in order from the object side, a second lens group G2 having positive refractive power and a negative refractive power.
  • the first lens group G1 is composed of, in order from the object side, a negative meniscus lens L11 with a convex surface facing the object side, and a positive meniscus lens L12 with a convex surface facing the object side.
  • the second lens group G2 includes, in order from the object side, a cemented negative lens formed by cementing a biconcave negative lens L21 and a biconvex positive lens L22, a biconvex positive lens L23, and a positive meniscus lens L24 having a convex surface facing the object side.
  • the third lens group G3 is composed of a biconcave negative lens L31.
  • An optical filter FL is arranged between the rear group GB and the image plane I.
  • the negative meniscus lens L11 is the negative lens N1
  • the biconcave negative lens L21 is the negative lens NF
  • the negative meniscus lens L25 is the negative lens NR
  • the biconcave negative lens L31 is the negative lens NL. be.
  • this optical system OL2 focusing from infinity to a short distance object is performed by moving the second lens group G2 toward the object.
  • Table 4 lists the values of the specifications of the optical system OL2.
  • the third surface of the lens data is a virtual surface, it is not shown in the cross-sectional view of FIG.
  • the 15th and 16th lens surfaces are aspherical.
  • Table 5 below shows the surface number m and the data of the aspherical surface, that is, the values of the conic constant K and the aspherical constants A4 to A12.
  • the axial air gap D6 between the first lens group G1 and the second lens group G2 and the axial air gap D16 between the second lens group G2 and the third lens group G3 are Change.
  • Table 5 below shows the variable spacing for infinity focus and short distance focus.
  • FIG. 4 shows spherical aberration diagrams, astigmatism diagrams, distortion aberration diagrams, magnification chromatic aberration diagrams, and coma aberration diagrams of this optical system OL2 when focusing on infinity and when focusing on a short distance. From these aberration diagrams, it can be seen that the various aberrations of the optical system OL2 are well corrected.
  • FIG. 5 is a diagram showing the configuration of the optical system OL3 according to the third example.
  • This optical system OL3 is composed of, in order from the object side, a front group GA, an aperture stop S, and a rear group GB having positive refractive power.
  • the front group GA is composed of a first lens group G1 having positive refractive power
  • the rear group GB is composed of, in order from the object side, a second lens group G2 having positive refractive power and a negative refractive power.
  • the first lens group G1 is composed of, in order from the object side, a negative meniscus lens L11 with a convex surface facing the object side, and a positive meniscus lens L12 with a convex surface facing the object side.
  • the second lens group G2 includes, in order from the object side, a cemented negative lens L23 which is a cemented negative meniscus lens L21 having a concave surface facing the object side and a positive meniscus lens L22 having a convex surface facing the object side, and a biconvex positive lens L23.
  • a positive meniscus lens L24 with a convex surface facing the object side a negative meniscus lens L25 with a convex surface facing the object side, and a positive meniscus shape with a concave surface facing the object side, the lens surface on the object side and the lens surface on the image side.
  • It is composed of an aspherical positive lens L26 having an aspherical lens surface.
  • the third lens group G3 is composed of a biconcave aspherical negative lens L31 having an object-side lens surface and an image-side lens surface formed in an aspherical shape.
  • An optical filter FL is arranged between the rear group GB and the image plane I.
  • the negative meniscus lens L11 is the negative lens N1
  • the negative meniscus lens L21 is the negative lens NF
  • the negative meniscus lens L25 is the negative lens NR
  • the aspheric negative lens L31 is the negative lens NL. .
  • this optical system OL3 focusing from infinity to a short distance object is performed by moving the second lens group G2 toward the object.
  • Table 7 lists the values of the specifications of the optical system OL3. Although the third surface of the lens data is a virtual surface, it is not shown in the sectional view of FIG.
  • the 16th, 17th, 18th and 19th lens surfaces are formed in an aspherical shape.
  • Table 8 below shows the surface number m and the data of the aspherical surface, that is, the values of the conic constant K and the aspherical constants A4 to A12.
  • the axial air gap D6 between the first lens group G1 and the second lens group G2 and the axial air gap D17 between the second lens group G2 and the third lens group G3 are Change.
  • Table 9 below shows the variable spacing for infinity focus and short distance focus.
  • FIG. 6 shows spherical aberration diagrams, astigmatism diagrams, distortion aberration diagrams, lateral chromatic aberration diagrams, and coma aberration diagrams of this optical system OL3 when focusing on infinity and when focusing on a short distance. From these aberration diagrams, it can be seen that the various aberrations of the optical system OL3 are well corrected.
  • FIG. 7 is a diagram showing the configuration of the optical system OL4 according to the fourth example.
  • This optical system OL4 is composed of, in order from the object side, a front group GA, an aperture stop S, and a rear group GB having positive refractive power.
  • the front group GA is composed of a first lens group G1 having positive refractive power
  • the rear group GB is composed of, in order from the object side, a second lens group G2 having positive refractive power and a negative refractive power.
  • the first lens group G1 is composed of, in order from the object side, a negative meniscus lens L11 having a convex surface facing the object side, and a biconvex positive lens L12.
  • the second lens group G2 includes, in order from the object side, a negative meniscus lens L21 with a concave surface facing the object side, a positive meniscus lens L22 with a concave surface facing the object side, and a biconvex lens surface facing the object side. and a cemented aspherical positive lens L23 having an aspherical image-side lens surface, and a positive meniscus lens L24 having a convex surface facing the object side and a negative meniscus lens L25 having a convex surface facing the object side. It consists of a negative lens.
  • the third lens group G3 is composed of an aspherical negative lens L31 in which a resin layer provided on the object-side lens surface of the biconcave negative lens is formed into an aspherical shape.
  • An optical filter FL is arranged between the rear group GB and the image plane I.
  • the negative meniscus lens L11 is the negative lens N1
  • the negative meniscus lens L21 is the negative lens NF
  • the negative meniscus lens L25 is the negative lens NR
  • the aspheric negative lens L31 is the negative lens NL. .
  • this optical system OL4 focusing from infinity to a short distance object is performed by moving the second lens group G2 toward the object.
  • Table 10 lists the values of the specifications of the optical system OL4. Although the 3rd and 11th surfaces of the lens data are virtual surfaces, they are not shown in the cross-sectional view of FIG.
  • the 12th, 13th and 17th lens surfaces are formed in an aspherical shape.
  • Table 11 shows the surface number m and the data of the aspherical surface, that is, the values of the conic constant K and the aspherical constants A4 to A12.
  • the axial air gap D6 between the first lens group G1 and the second lens group G2 and the axial air gap D16 between the second lens group G2 and the third lens group G3 are Change.
  • Table 12 below shows the variable spacing for infinity focus and short distance focus.
  • FIG. 8 shows spherical aberration diagrams, astigmatism diagrams, distortion aberration diagrams, lateral chromatic aberration diagrams, and coma aberration diagrams of this optical system OL4 when focusing on infinity and when focusing on a short distance. From these aberration diagrams, it can be seen that the various aberrations of the optical system OL4 are well corrected.
  • FIG. 9 is a diagram showing the configuration of an optical system OL5 according to the fifth embodiment.
  • This optical system OL5 is composed of, in order from the object side, a front group GA, an aperture stop S, and a rear group GB having positive refractive power.
  • the front group GA is composed of a first lens group G1 having positive refractive power
  • the rear group GB is composed of a second lens group G2 having positive refractive power.
  • the first lens group G1 is composed of, in order from the object side, a negative meniscus lens L11 with a convex surface facing the object side, and a positive meniscus lens L12 with a convex surface facing the object side.
  • the second lens group G2 includes, in order from the object side, a negative meniscus lens L21 with a concave surface facing the object side, a positive meniscus lens L22 with a concave surface facing the object side, and a biconvex lens surface facing the object side.
  • an aspherical positive lens L23 having an aspherical lens surface on the image side
  • a cemented positive lens in which a positive meniscus lens L24 having a convex surface facing the object side and a negative meniscus lens L25 having a convex surface facing the object side are cemented together.
  • an aspherical negative lens L26 in which a resin layer provided on the object-side lens surface of the biconcave negative lens is formed into an aspherical shape.
  • An optical filter FL is arranged between the rear group GB and the image plane I.
  • the negative meniscus lens L11 is the negative lens N1
  • the negative meniscus lens L21 is the negative lens NF
  • the negative meniscus lens L25 is the negative lens NR
  • the aspheric negative lens L26 is the negative lens NL.
  • this optical system OL5 focusing from infinity to a short distance object is performed by moving the second lens group G2 toward the object.
  • Table 13 lists the values of the specifications of the optical system OL5. Although the 3rd and 11th surfaces of the lens data are virtual surfaces, they are not shown in the sectional view of FIG.
  • the 12th, 13th and 17th lens surfaces are formed in an aspherical shape.
  • Table 14 below shows the surface number m and the data of the aspherical surface, that is, the values of the conic constant K and the aspherical constants A4 to A12.
  • FIG. 10 shows spherical aberration diagrams, astigmatism diagrams, distortion aberration diagrams, magnification chromatic aberration diagrams, and coma aberration diagrams of this optical system OL5 when focusing on infinity and when focusing on a short distance. From these aberration diagrams, it can be seen that the various aberrations of the optical system OL5 are well corrected.
  • Table 16 shows the corresponding values of conditional expressions (1) to (12) in the first to fifth embodiments.
  • an optical system OL having a two-group or three-group configuration is shown, but the above configuration conditions and the like are also applicable to other group configurations such as a four-group configuration and a five-group configuration.
  • a configuration in which a lens or lens group is added closest to the object side, or a configuration in which a lens or lens group is added closest to the image side may be used.
  • a configuration is conceivable in which a lens group, which is positioned closest to the image side and has a fixed position with respect to the image plane during zooming or focusing, is added.
  • a lens group refers to a portion having at least one lens separated by an air gap that changes during zooming or focusing.
  • a lens component refers to a single lens or a cemented lens in which a plurality of lenses are cemented together.
  • a single lens group, a plurality of lens groups, or a partial lens group may be moved in the optical axis direction to serve as a focusing group for focusing from an object at infinity to an object at a short distance.
  • the focusing group can also be applied to autofocus, and is suitable for driving a motor (such as an ultrasonic motor) for autofocus.
  • a motor such as an ultrasonic motor
  • the lens group or partial lens group is moved so as to have a displacement component in the direction perpendicular to the optical axis, or rotated (oscillated) in the in-plane direction including the optical axis to correct image blur caused by camera shake. It is good also as a vibration-proof group which carries out. In particular, it is preferable to use at least part of the first lens group G1 or the second lens group G2 as a vibration reduction group.
  • the lens surface may be formed as a spherical surface, a flat surface, or an aspherical surface. If the lens surface is spherical or flat, it is preferable because it facilitates lens processing and assembly adjustment and prevents deterioration of optical performance due to errors in processing and assembly adjustment. Also, even if the image plane is deviated, there is little deterioration in rendering performance, which is preferable.
  • the lens surface is aspherical, the aspherical surface can be ground aspherical, glass-molded aspherical, which is formed into an aspherical shape from glass, or composite aspherical, which is formed into an aspherical shape from resin on the surface of glass. Any aspheric surface may be used.
  • the lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
  • GRIN lens gradient index lens
  • the aperture stop S is preferably arranged between the first lens group G1 and the second lens group G2, but a lens frame may be used instead of providing a member as the aperture stop. .
  • each lens surface may be coated with an antireflection film that has high transmittance over a wide wavelength range in order to reduce flare and ghost and achieve high contrast and high optical performance.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

Provided are an optical system having a short optical total length, an optical device, and a method for manufacturing the optical system. An optical system OL comprises, in order from the object side, a front group GA, an aperture stop S, and a back group GB having positive refractive power, and satisfies the condition of the following expression. 0.100 < LA/LB < 0.400 where LA is the distance on an optical axis from a lens surface closest to the object side to a lens surface closest to the image side in the front group GA when focusing at infinity, and LB is the distance on the optical axis from a lens surface closest to the object side to a lens surface closest to the image side in the back group GB when focusing at infinity.

Description

光学系、光学機器及び光学系の製造方法Optical system, optical equipment, and method for manufacturing optical system
 本発明は、光学系、光学機器及び光学系の製造方法に関する。 The present invention relates to an optical system, an optical device, and a method of manufacturing an optical system.
 近年、光学全長が短い光学系が求められている(例えば、特許文献1参照)。しかしながら、特許文献1は、さらなる光学性能の向上が要望されている。 In recent years, there has been a demand for an optical system with a short overall optical length (see Patent Document 1, for example). However, Patent Literature 1 requires further improvement in optical performance.
特開2013-195587号公報JP 2013-195587 A
 本発明の第一の態様に係る光学系は、物体側から順に、前群と、絞りと、正の屈折力を有する後群と、を有し、次式の条件を満足する。
0.100 < LA/LB < 0.400
 但し、
 LA:無限遠合焦時の前群の最も物体側のレンズ面から最も像側のレンズ面までの光軸上の距離
 LB:無限遠合焦時の後群の最も物体側のレンズ面から最も像側のレンズ面までの光軸上の距離
An optical system according to a first aspect of the present invention has, in order from the object side, a front group, a diaphragm, and a rear group having positive refractive power, and satisfies the following formula.
0.100 < LA/LB < 0.400
however,
LA: Distance on the optical axis from the most object-side lens surface of the front group to the most image-side lens surface when focusing at infinity LB: The distance from the most object-side lens surface of the rear group when focusing at infinity Distance on the optical axis to the lens surface on the image side
 また、本発明の第一の態様に係る光学系の製造方法は、物体側から順に、前群と、絞りと、正の屈折力を有する後群と、を次式の条件を満足するように配置する。
0.100 < LA/LB < 0.400
 但し、
 LA:無限遠合焦時の前群の最も物体側のレンズ面から最も像側のレンズ面までの光軸上の距離
 LB:無限遠合焦時の後群の最も物体側のレンズ面から最も像側のレンズ面までの光軸上の距離
Further, in the method for manufacturing an optical system according to the first aspect of the present invention, the front group, the diaphragm, and the rear group having positive refractive power are arranged in order from the object side so as to satisfy the following formula. Deploy.
0.100 < LA/LB < 0.400
however,
LA: Distance on the optical axis from the most object-side lens surface of the front group to the most image-side lens surface when focusing at infinity LB: The distance from the most object-side lens surface of the rear group when focusing at infinity Distance on the optical axis to the lens surface on the image side
第1実施例に係る光学系の無限遠合焦時のレンズ構成を示す断面図である。FIG. 3 is a cross-sectional view showing the lens configuration of the optical system according to the first example when focusing on infinity. 第1実施例に係る光学系の諸収差図であって、(a)は無限遠合焦時を示し、(b)は近距離合焦時を示す。4A and 4B are various aberration diagrams of the optical system according to the first embodiment, in which (a) shows when focusing at infinity, and (b) shows when focusing at a short distance. 第2実施例に係る光学系の無限遠合焦時のレンズ構成を示す断面図である。FIG. 11 is a cross-sectional view showing the lens configuration of the optical system according to the second embodiment when focusing on infinity. 第2実施例に係る光学系の諸収差図であって、(a)は無限遠合焦時を示し、(b)は近距離合焦時を示す。4A and 4B are various aberration diagrams of the optical system according to the second embodiment, in which (a) shows when focusing at infinity, and (b) shows when focusing at a short distance. 第3実施例に係る光学系の無限遠合焦時のレンズ構成を示す断面図である。FIG. 11 is a cross-sectional view showing the lens configuration of the optical system according to the third embodiment when focusing on infinity. 第3実施例に係る光学系の諸収差図であって、(a)は無限遠合焦時を示し、(b)は近距離合焦時を示す。3A and 3B are various aberration diagrams of the optical system according to the third embodiment, in which (a) shows when focusing at infinity and (b) shows when focusing at a short distance; 第4実施例に係る光学系の無限遠合焦時のレンズ構成を示す断面図である。FIG. 12 is a cross-sectional view showing the lens configuration of the optical system according to the fourth embodiment when focusing on infinity. 第4実施例に係る光学系の諸収差図であって、(a)は無限遠合焦時を示し、(b)は近距離合焦時を示す。4A and 4B are various aberration diagrams of the optical system according to the fourth embodiment, in which (a) shows when focusing at infinity, and (b) shows when focusing at a short distance. 第5実施例に係る光学系の無限遠合焦時のレンズ構成を示す断面図である。FIG. 12 is a cross-sectional view showing the lens configuration of the optical system according to the fifth embodiment when focusing on infinity. 第5実施例に係る光学系の諸収差図であって、(a)は無限遠合焦時を示し、(b)は近距離合焦時を示す。10A and 10B are various aberration diagrams of the optical system according to the fifth embodiment, in which (a) shows when focusing at infinity, and (b) shows when focusing at a short distance. 上記光学系を搭載するカメラの断面図である。It is a cross-sectional view of a camera equipped with the optical system. 上記光学系の製造方法を説明するためのフローチャートである。4 is a flow chart for explaining a method of manufacturing the optical system;
 以下、好ましい実施形態について図面を参照して説明する。図1に示すように、本実施形態に係る光学系OLは、物体側から順に、前群GAと、絞りSと、正の屈折力を有する後群GBと、を有して構成されている。このように構成すると、諸収差を良好に抑えつつ、光学系OLの光学全長を短くすることができる。 A preferred embodiment will be described below with reference to the drawings. As shown in FIG. 1, the optical system OL according to this embodiment includes, in order from the object side, a front group GA, a diaphragm S, and a rear group GB having positive refractive power. . With this configuration, the total optical length of the optical system OL can be shortened while suppressing various aberrations.
 このような本実施形態に係る光学系OLは、以下に示す条件式(1)を満足することが望ましい。 The optical system OL according to this embodiment preferably satisfies the following conditional expression (1).
0.100 < LA/LB < 0.400         (1)
 但し、
 LA:無限遠合焦時の前群GAの最も物体側のレンズ面から最も像側のレンズ面までの光軸上の距離
 LB:無限遠合焦時の後群GBの最も物体側のレンズ面から最も像側のレンズ面までの光軸上の距離
0.100 < LA/LB < 0.400 (1)
however,
LA: Distance on the optical axis from the most object side lens surface of the front group GA to the most image side lens surface when focusing on infinity LB: The most object side lens surface of the rear group GB when focusing on infinity to the lens surface closest to the image side on the optical axis
 条件式(1)は、無限遠合焦時の光学系OLにおける、光学系OLの後群GBの長さ(後群GBの最も物体側のレンズ面から最も像側のレンズ面までの光軸上の距離)に対する前群GAの長さ(前群GAの最も物体側のレンズ面から最も像側のレンズ面までの光軸上の距離)の比を規定するものである。この条件式(1)を満足することにより、前群GAの長さに対して後群GBの長さが長くなる、つまり絞りSより像側の光学系が長くなるため、光学全長が短い光学系OLにおいて良好な像面湾曲、非点収差の補正が実現できる。なお、条件式(1)の効果を確実なものとするために、条件式(1)の上限値を0.350、更に0.320とすることがより望ましい。また、条件式(1)の効果を確実なものとするために、条件式(1)の下限値を0.130、更に0.150とすることがより望ましい。 Conditional expression (1) is the length of the rear group GB of the optical system OL (the optical axis from the lens surface closest to the object side to the lens surface closest to the image side of the rear group GB) in the optical system OL when focusing on infinity. It defines the ratio of the length of the front group GA (distance on the optical axis from the lens surface closest to the object side to the lens surface closest to the image side of the front group GA) to the length of the front group GA. By satisfying this conditional expression (1), the length of the rear group GB becomes longer than the length of the front group GA. Good field curvature and astigmatism correction can be realized in the system OL. In order to ensure the effect of conditional expression (1), it is more desirable to set the upper limit of conditional expression (1) to 0.350, more preferably 0.320. In order to ensure the effect of conditional expression (1), it is more desirable to set the lower limit of conditional expression (1) to 0.130, more preferably 0.150.
 また、本実施形態に係る光学系OLは、以下に示す条件式(2)を満足することが望ましい。 Further, it is desirable that the optical system OL according to this embodiment satisfy the following conditional expression (2).
0.070 < LAS/LAB < 0.300       (2)
 但し、
 LAS:無限遠合焦時の前群GAの最も物体側のレンズ面から絞りSまでの光軸上の距離
 LAB:無限遠合焦時の前群GAの最も物体側のレンズ面から後群GBの最も像側のレンズ面までの光軸上の距離
0.070<LAS/LAB<0.300 (2)
however,
LAS: Distance on the optical axis from the most object side lens surface of the front group GA to the stop S when focusing on infinity LAB: Distance from the most object side lens surface of the front group GA to the rear group GB when focusing on infinity distance on the optical axis to the lens surface closest to the image side of
 条件式(2)は、無限遠合焦時の、光学系OLの長さ(前群GAの最も物体側のレンズ面から後群GBの最も像側のレンズ面までの光軸上の距離)に対する前群GAの絞りSまでの長さ(前群GAの最も物体側のレンズ面から絞りSまでの光軸上の距離)の比を規定するものである。この条件式(2)を満足することにより、光学系OLの長さに対して絞りSより物体側の光学系が短くなるため、光学系OLの入射瞳が物体側へ近づくこととなり、良好な像面湾曲、非点収差、歪曲収差の補正が実現できる。なお、条件式(2)の効果を確実なものとするために、条件式(2)の上限値を0.280、更に0.260とすることがより望ましい。また、条件式(2)の効果を確実なものとするために、条件式(2)の下限値を0.100、更に0.130とすることがより望ましい。 Conditional expression (2) is the length of the optical system OL when focusing on infinity (distance on the optical axis from the most object-side lens surface of the front group GA to the most image-side lens surface of the rear group GB) It defines the ratio of the length of the front group GA to the stop S (distance on the optical axis from the lens surface of the front group GA closest to the object side to the stop S) to the . By satisfying the conditional expression (2), the optical system closer to the object side than the stop S becomes shorter than the length of the optical system OL, so that the entrance pupil of the optical system OL approaches the object side. Field curvature, astigmatism, and distortion can be corrected. In order to ensure the effect of conditional expression (2), it is more desirable to set the upper limit of conditional expression (2) to 0.280, more preferably 0.260. In order to ensure the effect of conditional expression (2), it is more desirable to set the lower limit of conditional expression (2) to 0.100, more preferably 0.130.
 また、本実施形態に係る光学系OLにおいて、後群GBは、以下に示す条件式(3)を満足する負レンズNRを有することが望ましい。 In addition, in the optical system OL according to this embodiment, it is desirable that the rear group GB have a negative lens NR that satisfies conditional expression (3) shown below.
0.000 < LNRL/LB < 0.500       (3)
 但し、
 LB:無限遠合焦時の後群GBの最も物体側のレンズ面から最も像側のレンズ面までの光軸上の距離
 LNRL:無限遠合焦時の負レンズNRの像側のレンズ面から後群GBの最も像側のレンズ面までの光軸上の距離
0.000 < LNRL/LB < 0.500 (3)
however,
LB: Distance on the optical axis from the most object-side lens surface of the rear group GB to the most image-side lens surface when focusing at infinity LNRL: From the image-side lens surface of the negative lens NR when focusing at infinity Distance on the optical axis to the lens surface closest to the image side in the rear group GB
 条件式(3)は、後群GBの長さに対する負レンズNRの像側のレンズ面から後群GBの最も像側のレンズ面までの長さ(光軸上の距離)の比を規定するものである。この条件式(3)を満足することにより、負レンズNRが後群GBの像側、すなわち、像面Iの近くに配置されることとなり、像面湾曲、非点収差、歪曲収差などの諸収差を良好に抑えつつ、光学系OLの光学全長を短くすることができる。なお、条件式(3)の効果を確実なものとするために、条件式(3)の上限値を0.450、更に0.400、0.360、0.320とすることがより望ましい。また、条件式(3)の効果を確実なものとするために、条件式(3)の下限値を0.070、更に0.150とすることがより望ましい。 Conditional expression (3) defines the ratio of the length (distance on the optical axis) from the image-side lens surface of the negative lens NR to the most image-side lens surface of the rear group GB with respect to the length of the rear group GB. It is. By satisfying conditional expression (3), the negative lens NR is arranged on the image side of the rear group GB, i.e., near the image plane I. The total optical length of the optical system OL can be shortened while satisfactorily suppressing aberrations. In order to ensure the effect of conditional expression (3), it is more desirable to set the upper limit of conditional expression (3) to 0.450, more preferably 0.400, 0.360, and 0.320. In order to ensure the effect of conditional expression (3), it is more desirable to set the lower limit of conditional expression (3) to 0.070, more preferably 0.150.
 また、負レンズNRは、以下に示す条件式(4)を満足することが望ましい。 Also, the negative lens NR preferably satisfies the following conditional expression (4).
0.800 < R2NR/Bfa < 3.000      (4)
 但し、
 R2NR:負レンズNRの像側のレンズ面の曲率半径
 Bfa:無限遠合焦時の光学系OLのバックフォーカス(空気換算長)
0.800<R2NR/Bfa<3.000 (4)
however,
R2NR: Curvature radius of the image-side lens surface of the negative lens NR Bfa: Back focus of the optical system OL during focusing at infinity (air conversion length)
 条件式(4)は、光学系OLのバックフォーカスに対する負レンズNRの像側のレンズ面の曲率半径の比を規定するものである。条件式(3)を満足して像面Iの近くに配置された負レンズNRが条件式(4)を満足することにより、良好な像面湾曲、非点収差、歪曲収差の補正が実現できる。なお、条件式(4)の効果を確実なものとするために、条件式(4)の上限値を2.700、更に2.400とすることがより望ましい。また、条件式(4)の効果を確実なものとするために、条件式(4)の下限値を0.850、更に0.900とすることがより望ましい。 Conditional expression (4) defines the ratio of the radius of curvature of the image-side lens surface of the negative lens NR to the back focus of the optical system OL. If the negative lens NR that satisfies the conditional expression (3) and is arranged near the image plane I satisfies the conditional expression (4), it is possible to realize good correction of curvature of field, astigmatism, and distortion. . In order to ensure the effect of conditional expression (4), it is more desirable to set the upper limit of conditional expression (4) to 2.700, more preferably 2.400. In order to ensure the effect of conditional expression (4), it is more desirable to set the lower limit of conditional expression (4) to 0.850, more preferably 0.900.
 また、本実施形態に係る光学系OLにおいて、後群GBは、以下に示す条件式(5)を満足する負レンズNFを有することが望ましい。 In addition, in the optical system OL according to this embodiment, it is desirable that the rear group GB have a negative lens NF that satisfies conditional expression (5) shown below.
0.600 < LNFL/LB ≦ 1.000       (5)
 但し、
 LB:無限遠合焦時の後群GBの最も物体側のレンズ面から最も像側のレンズ面までの光軸上の距離
 LNFL:無限遠合焦時の負レンズNFの物体側のレンズ面から後群GBの最も像側のレンズ面までの光軸上の距離
0.600 < LNFL/LB ≤ 1.000 (5)
however,
LB: Distance on the optical axis from the most object side lens surface of the rear group GB to the most image side lens surface when focusing at infinity LNFL: From the object side lens surface of the negative lens NF when focusing at infinity Distance on the optical axis to the lens surface closest to the image side in the rear group GB
 条件式(5)は、後群GBの長さに対する負レンズNFの物体側のレンズ面から後群GBの最も像側のレンズ面までの長さ(光軸上の距離)の比を規定するものである。この条件式(5)を満足することにより、負レンズNFが後群GBの物体側、すなわち、絞りSの近くに配置されることとなり、球面収差、軸上色収差、像面湾曲などの諸収差を良好に抑えつつ、光学系OLの光学全長を短くすることができる。なお、条件式(5)の効果を確実なものとするために、条件式(5)の下限値を0.700、更に0.800とすることがより望ましい。 Conditional expression (5) defines the ratio of the length (distance on the optical axis) from the object-side lens surface of the negative lens NF to the most image-side lens surface of the rear group GB with respect to the length of the rear group GB. It is. By satisfying the conditional expression (5), the negative lens NF is arranged on the object side of the rear group GB, that is, near the stop S, and various aberrations such as spherical aberration, axial chromatic aberration, and curvature of field are provided. can be satisfactorily suppressed, and the total optical length of the optical system OL can be shortened. In order to ensure the effect of conditional expression (5), it is more desirable to set the lower limit of conditional expression (5) to 0.700, more preferably 0.800.
 また、負レンズNFは、以下に示す条件式(6)を満足することが望ましい。 Also, the negative lens NF preferably satisfies the following conditional expression (6).
-3.000 < R1NF/Bfa < -0.500    (6)
 但し、
 R1NF:負レンズNFの物体側のレンズ面の曲率半径
 Bfa:無限遠合焦時の光学系OLのバックフォーカス(空気換算長)
-3.000 < R1NF/Bfa < -0.500 (6)
however,
R1NF: Curvature radius of the object-side lens surface of the negative lens NF Bfa: Back focus of the optical system OL during focusing at infinity (air conversion length)
 条件式(6)は、光学系OLのバックフォーカスに対する負レンズNFの物体側のレンズ面の曲率半径の比を規定するものである。条件式(5)を満足して絞りSの近くに配置された負レンズNFが条件式(6)を満足することにより、良好な球面収差、像面湾曲、軸上色収差の補正が実現できる。なお、条件式(6)の効果を確実なものとするために、条件式(6)の上限値を-0.600、更に-0.700とすることがより望ましい。また、条件式(6)の効果を確実なものとするために、条件式(6)の下限値を-2.500、更に-2.000とすることがより望ましい。 Conditional expression (6) defines the ratio of the radius of curvature of the object-side lens surface of the negative lens NF to the back focus of the optical system OL. By satisfying the conditional expression (5) and the negative lens NF arranged near the diaphragm S and satisfying the conditional expression (6), it is possible to realize good correction of spherical aberration, curvature of field, and longitudinal chromatic aberration. In order to ensure the effect of conditional expression (6), it is more desirable to set the upper limit of conditional expression (6) to -0.600, more preferably -0.700. In order to ensure the effect of conditional expression (6), it is more desirable to set the lower limit of conditional expression (6) to -2.500, more preferably -2.000.
 以降の説明においては、後群GBに、条件式(3)及び条件式(4)を満足する負レンズが複数あるときは、それらの負レンズのうち屈折力が最も大きい負レンズを負レンズNRとする。また、後群GBに、条件式(5)及び条件式(6)を満足する負レンズが複数あるときは、それらの負レンズのうち屈折力が最も大きい負レンズを負レンズNFとする。 In the following description, when there are a plurality of negative lenses satisfying conditional expressions (3) and (4) in the rear group GB, the negative lens having the highest refractive power among these negative lenses is the negative lens NR. and When the rear group GB includes a plurality of negative lenses that satisfy the conditional expressions (5) and (6), the negative lens having the highest refractive power among the negative lenses is the negative lens NF.
 本実施形態に係る光学系OLにおいて、負レンズNR及び負レンズNFは、以下に示す条件式(7)を満足することが望ましい。 In the optical system OL according to this embodiment, it is desirable that the negative lens NR and the negative lens NF satisfy conditional expression (7) shown below.
-0.800<(R1NF+R2NR)/(R1NF-R2NR)<0.800 (7)
 但し、
 R1NF:負レンズNFの物体側のレンズ面の曲率半径
 R2NR:負レンズNRの像側のレンズ面の曲率半径
-0.800<(R1NF+R2NR)/(R1NF-R2NR)<0.800 (7)
however,
R1NF: radius of curvature of the object-side lens surface of the negative lens NF R2NR: radius of curvature of the image-side lens surface of the negative lens NR
 条件式(7)は、負レンズNFの物体側のレンズ面から負レンズNRの像側のレンズ面までのシェイプファクターを規定するものである。条件式(7)を満足することは、負レンズNFの物体側のレンズ面及び負レンズNRの像側のレンズ面の曲率半径の絶対値が近いことを表している。この条件式(7)を満足することにより、後群GBに含まれる負レンズの対称性が高くなり、その結果、球面収差、像面湾曲、軸上色収差、非点収差、歪曲収差などのバランスの良い、良好な補正が実現できる。なお、条件式(7)の効果を確実なものとするために、条件式(7)の上限値を0.600、更に0.400、0.200とすることがより望ましい。また、条件式(7)の効果を確実なものとするために、条件式(7)の下限値を-0.600、更に-0.400、-0.200とすることがより望ましい。 Conditional expression (7) defines the shape factor from the object-side lens surface of the negative lens NF to the image-side lens surface of the negative lens NR. Satisfying conditional expression (7) means that the absolute values of the radii of curvature of the object-side lens surface of the negative lens NF and the image-side lens surface of the negative lens NR are close to each other. By satisfying conditional expression (7), the symmetry of the negative lens included in the rear group GB is enhanced, resulting in a balance of spherical aberration, curvature of field, axial chromatic aberration, astigmatism, distortion, and the like. good correction can be realized. In order to ensure the effect of conditional expression (7), it is more desirable to set the upper limit of conditional expression (7) to 0.600, more preferably 0.400 and 0.200. In order to ensure the effect of conditional expression (7), it is more desirable to set the lower limit of conditional expression (7) to -0.600, more preferably -0.400 and -0.200.
 また、本実施形態に係る光学系OLにおいて、負レンズNR及び負レンズNFは、以下に示す条件式(8)を満足することが望ましい。 Also, in the optical system OL according to this embodiment, it is desirable that the negative lens NR and the negative lens NF satisfy conditional expression (8) shown below.
0.200 < fNF/fNR < 1.200       (8)
 但し、
 fNF:負レンズNFの焦点距離
 fNR:負レンズNRの焦点距離
0.200 < fNF/fNR < 1.200 (8)
however,
fNF: focal length of negative lens NF fNR: focal length of negative lens NR
 条件式(8)は、負レンズNRの焦点距離に対する負レンズNFの焦点距離の比を規定するものである。この条件式(8)を満足することにより、負レンズNFの屈折力と負レンズNRの屈折力とが近い値になるため、後群GBとして負レンズの屈折力の対称性が高くなり、その結果、像面湾曲、非点収差、歪曲収差などのバランスの良い、良好な補正が実現できる。なお、条件式(8)の効果を確実なものとするために、条件式(8)の上限値を1.000、更に0.900、0.800とすることがより望ましい。また、条件式(8)の効果を確実なものとするために、条件式(8)の下限値を0.300、更に0.400とすることがより望ましい。 Conditional expression (8) defines the ratio of the focal length of the negative lens NF to the focal length of the negative lens NR. By satisfying the conditional expression (8), the refractive power of the negative lens NF and the refractive power of the negative lens NR are close to each other. As a result, well-balanced correction of curvature of field, astigmatism, distortion, and the like can be realized. In order to ensure the effect of conditional expression (8), it is more desirable to set the upper limit of conditional expression (8) to 1.000, more preferably 0.900 and 0.800. In order to ensure the effect of conditional expression (8), it is more desirable to set the lower limit of conditional expression (8) to 0.300, more preferably 0.400.
 また、本実施形態に係る光学系OLにおいて、後群GBは、負レンズNFと負レンズNRとの間に、少なくとも2枚の正レンズを有することが望ましい。このように構成することにより、良好な収差補正を容易に行うことができる。特に、球面収差、軸上色収差、像面湾曲、非点収差などを良好に補正することができる。 Also, in the optical system OL according to this embodiment, the rear group GB preferably has at least two positive lenses between the negative lens NF and the negative lens NR. By configuring in this way, it is possible to easily perform good aberration correction. In particular, spherical aberration, axial chromatic aberration, curvature of field, astigmatism, etc. can be satisfactorily corrected.
 また、本実施形態に係る光学系OLにおいて、前群GAは、少なくとも1枚の負レンズN1を有し、後群GBは、負レンズNRの像側に少なくとも1枚の負レンズNLを有し、以下に示す条件式(9)を満足することが望ましい。 In the optical system OL according to this embodiment, the front group GA has at least one negative lens N1, and the rear group GB has at least one negative lens NL on the image side of the negative lens NR. , it is desirable to satisfy the following conditional expression (9).
0.300 < fN1/fNL < 1.200       (9)
 但し、
 fN1:負レンズN1の焦点距離
 fNL:負レンズNLの焦点距離
0.300<fN1/fNL<1.200 (9)
however,
fN1: focal length of negative lens N1 fNL: focal length of negative lens NL
 条件式(9)は、後群GBに含まれる負レンズNLの焦点距離に対する前群GAに含まれる負レンズN1の焦点距離の比を規定するものである。負レンズNFの物体側及び負レンズNRの像側に、条件式(9)を満足する負レンズ、すなわち、屈折力が近い負レンズN1,NLを配置して負レンズNF,NRを挟むことにより、光学系全体としても負レンズの対称性が高くなり、その結果、より像面湾曲、非点収差、歪曲収差などのバランス良い、良好な補正が実現できる。なお、条件式(9)の効果を確実なものとするために、条件式(9)の上限値を1.100、更に1.000、0.900とすることがより望ましい。また、条件式(9)の効果を確実なものとするために、条件式(9)の下限値を0.330、更に0.360とすることがより望ましい。 Conditional expression (9) defines the ratio of the focal length of the negative lens N1 included in the front group GA to the focal length of the negative lens NL included in the rear group GB. Negative lenses that satisfy the conditional expression (9), that is, negative lenses N1 and NL having similar refractive powers are placed on the object side of the negative lens NF and the image side of the negative lens NR, and the negative lenses NF and NR are sandwiched. In the optical system as a whole, the symmetry of the negative lens becomes high, and as a result, it is possible to achieve well-balanced correction of curvature of field, astigmatism, distortion, and the like. In order to ensure the effect of conditional expression (9), it is more desirable to set the upper limit of conditional expression (9) to 1.100, more preferably 1.000 and 0.900. In order to ensure the effect of conditional expression (9), it is more desirable to set the lower limit of conditional expression (9) to 0.330, more preferably 0.360.
 また、本実施形態に係る光学系OLにおいて、後群GBは、物体側のレンズ面及び像側のレンズ面の少なくとも一方に非球面が形成された非球面レンズを有し、以下に示す条件式(10)を満足することが望ましい。 Further, in the optical system OL according to the present embodiment, the rear group GB has an aspherical lens in which at least one of the object-side lens surface and the image-side lens surface is formed with an aspherical surface. It is desirable to satisfy (10).
0.100 < LASI/LAB < 0.600      (10)
 但し、
 LASI:無限遠合焦時の、後群GB内の最も像側に配置された非球面から像面までの光軸上の距離
 LAB:無限遠合焦時の前群GAの最も物体側のレンズ面から後群GBの最も像側のレンズ面までの光軸上の距離
0.100<LASI/LAB<0.600 (10)
however,
LASI: Distance on the optical axis from the aspherical surface located closest to the image side in the rear group GB to the image plane when focused at infinity LAB: Lens closest to the object side in the front group GA when focused at infinity distance on the optical axis from the surface to the lens surface of the rear group GB closest to the image side
 条件式(10)は、光学系OLの長さに対する最も像側に配置された非球面から像面までの長さ(光軸上の距離)の比を規定するものである。この条件式(10)を満足することにより、後群GBにおいて最も像側に配置された非球面が像面Iの近くに位置することで、像面湾曲、非点収差、歪曲収差を良好に補正できる。なお、条件式(10)の効果を確実なものとするために、条件式(10)の上限値を0.550、更に0.500とすることがより望ましい。また、条件式(10)の効果を確実なものとするために、条件式(10)の下限値を0.200、更に0.300とすることがより望ましい。 Conditional expression (10) defines the ratio of the length (distance on the optical axis) from the aspherical surface arranged closest to the image side to the image plane with respect to the length of the optical system OL. By satisfying the conditional expression (10), the aspherical surface located closest to the image side in the rear group GB is located near the image plane I, so that curvature of field, astigmatism, and distortion can be reduced satisfactorily. can be corrected. In order to ensure the effect of conditional expression (10), it is more desirable to set the upper limit of conditional expression (10) to 0.550, more preferably 0.500. In order to ensure the effect of conditional expression (10), it is more desirable to set the lower limit of conditional expression (10) to 0.200, more preferably 0.300.
 また、本実施形態に係る光学系OLにおいて、後群GBは、物体側のレンズ面及び像側のレンズ面の少なくとも一方に非球面が形成された非球面レンズを有し、以下に示す条件式(11)を満足することが望ましい。 Further, in the optical system OL according to the present embodiment, the rear group GB has an aspherical lens in which at least one of the object-side lens surface and the image-side lens surface is formed with an aspherical surface. It is desirable to satisfy (11).
0.000 ≦ LASL/LAB < 0.150      (11)
 但し、
 LASL:無限遠合焦時の、後群GB内の最も像側に配置された非球面から後群GBの最も像側のレンズ面までの光軸上の距離
 LAB:無限遠合焦時の前群GAの最も物体側のレンズ面から後群GBの最も像側のレンズ面までの光軸上の距離
0.000≦LASL/LAB<0.150 (11)
however,
LASL: Distance on the optical axis from the most image-side aspherical surface in the rear group GB to the most image-side lens surface of the rear group GB when focused on infinity LAB: Front when focused on infinity Distance on the optical axis from the most object side lens surface of the rear group GB to the most image side lens surface of the rear group GB
 条件式(11)は、光学系OLの長さに対する最も像側に配置された非球面から後群GBの最も像側の面までの長さ(光軸上の距離)の比を規定するものである。この条件式(11)を満足することにより、後群GBにおいて最も像側に配置された非球面が像面Iの近くに位置することで、像面湾曲、非点収差、歪曲収差を良好に補正できる。なお、条件式(11)の効果を確実なものとするために、条件式(11)の上限値を0.120、更に0.100とすることがより望ましい。また、条件式(11)の効果を確実なものとするために、条件式(11)の下限値を0.007とすることがより望ましい。 Conditional expression (11) defines the ratio of the length (distance on the optical axis) from the aspherical surface arranged closest to the image side to the surface of the rear group GB closest to the image side with respect to the length of the optical system OL. is. By satisfying the conditional expression (11), the aspherical surface located closest to the image side in the rear group GB is located near the image plane I, so that curvature of field, astigmatism, and distortion can be reduced satisfactorily. can be corrected. In order to ensure the effect of conditional expression (11), it is more desirable to set the upper limit of conditional expression (11) to 0.120, more preferably 0.100. In order to ensure the effect of conditional expression (11), it is more desirable to set the lower limit of conditional expression (11) to 0.007.
 また、本実施形態に係る光学系OLは、以下に示す条件式(12)を満足することが望ましい。 Further, it is desirable that the optical system OL according to this embodiment satisfy the following conditional expression (12).
0.800 < fB/f < 1.600          (12)
 但し、
 fB:無限遠合焦時の後群GBの焦点距離
 f:無限遠合焦時の光学系OLの全系の焦点距離
0.800<fB/f<1.600 (12)
however,
fB: focal length of the rear group GB when focusing on infinity f: focal length of the entire optical system OL when focusing on infinity
 条件式(12)は、全系の焦点距離に対する後群GBの焦点距離の比を規定するものである。この条件式(12)を満足することにより、球面収差、コマ収差、像面湾曲、非点収差などの諸収差を良好に抑えつつ、光学系OLの光学全長を短くすることができる。なお、条件式(12)の効果を確実なものとするために、条件式(12)の上限値を1.500、更に1.400とすることがより望ましい。また、条件式(12)の効果を確実なものとするために、条件式(12)の下限値を0.900、更に0.950とすることがより望ましい。 Conditional expression (12) defines the ratio of the focal length of the rear group GB to the focal length of the entire system. By satisfying conditional expression (12), the total optical length of the optical system OL can be shortened while various aberrations such as spherical aberration, coma, curvature of field, and astigmatism are satisfactorily suppressed. In order to ensure the effect of conditional expression (12), it is more desirable to set the upper limit of conditional expression (12) to 1.500, more preferably 1.400. In order to ensure the effect of conditional expression (12), it is more desirable to set the lower limit of conditional expression (12) to 0.900, more preferably 0.950.
 なお、以上で説明した条件及び構成は、それぞれが上述した効果を発揮するものであり、全ての条件及び構成を満たすものに限定されることはなく、いずれかの条件又は構成、或いは、いずれかの条件又は構成の組み合わせを満たすものでも、上述した効果を得ることが可能である。 In addition, the conditions and configurations described above exhibit the effects described above, and are not limited to those that satisfy all the conditions and configurations. It is possible to obtain the above-described effects even if the conditions or combinations of the above conditions are satisfied.
 次に、本実施形態に係る光学系OLを備えた光学機器であるカメラを図11に基づいて説明する。このカメラ1は、撮影レンズ2として本実施形態に係る光学系OLを備えたレンズ交換式の所謂ミラーレスカメラである。本カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、不図示のOLPF(Optical low pass filter:光学ローパスフィルタ)を介して撮像部3の撮像面上に被写体像を形成する。そして、撮像部3に設けられた光電変換素子により被写体像が光電変換されて被写体の画像が生成される。この画像は、カメラ1に設けられたEVF(Electronic view finder:電子ビューファインダ)4に表示される。これにより撮影者は、EVF4を介して被写体を観察することができる。 Next, a camera, which is an optical device equipped with the optical system OL according to this embodiment, will be described with reference to FIG. This camera 1 is a lens interchangeable so-called mirrorless camera that includes an optical system OL according to the present embodiment as a photographing lens 2 . In this camera 1, light from an unillustrated object (subject) is condensed by a photographing lens 2 and passes through an unillustrated OLPF (Optical low pass filter) on the imaging surface of the imaging unit 3. to form an image of the subject. Then, a subject image is photoelectrically converted by a photoelectric conversion element provided in the imaging unit 3 to generate an image of the subject. This image is displayed on an EVF (Electronic view finder) 4 provided in the camera 1 . This allows the photographer to observe the subject through the EVF4.
 また、撮影者によって不図示のレリーズボタンが押されると、撮像部3により光電変換された画像が不図示のメモリに記憶される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。なお、本実施形態では、ミラーレスカメラの例を説明したが、カメラ本体にクイックリターンミラーを有しファインダー光学系により被写体を観察する一眼レフタイプのカメラに本実施形態に係る光学系OLを搭載した場合でも、上記カメラ1と同様の効果を奏することができる。 Also, when a release button (not shown) is pressed by the photographer, an image photoelectrically converted by the imaging unit 3 is stored in a memory (not shown). In this manner, the photographer can photograph the subject with the camera 1. FIG. In this embodiment, an example of a mirrorless camera has been described, but the optical system OL according to this embodiment is installed in a single-lens reflex camera that has a quick return mirror in the camera body and observes the subject through the finder optical system. Even in this case, the same effect as the camera 1 can be obtained.
 以下、本実施形態に係る光学系OLの製造方法の概略を、図12を参照して説明する。 The outline of the method for manufacturing the optical system OL according to this embodiment will be described below with reference to FIG.
 まず、各レンズを配置して光学系OLの前群GA、絞りS、後群GBを準備する(ステップS100)。そして、所定の条件式(例えば、上述した条件式(1))による条件を満足するように前群GA、絞りS及び後群GBを配置する(ステップS200)。 First, each lens is arranged to prepare the front group GA, the diaphragm S, and the rear group GB of the optical system OL (step S100). Then, the front group GA, the diaphragm S, and the rear group GB are arranged so as to satisfy the conditions of a predetermined conditional expression (for example, conditional expression (1) described above) (step S200).
 以上のような構成とすると、諸収差を良好に抑えた、光学全長の短い光学系OL、この光学系OLを有する光学機器及び光学系OLの製造方法を提供することができる。 With the configuration as described above, it is possible to provide an optical system OL with a short overall optical length in which various aberrations are satisfactorily suppressed, an optical device having this optical system OL, and a method for manufacturing the optical system OL.
 以下、本願の各実施例を、図面に基づいて説明する。なお、図1、図3、図5、図7及び図9は、各実施例に係る光学系OL(OL1~OL5)の構成及び屈折力配分を示す断面図である。 Each embodiment of the present application will be described below based on the drawings. 1, 3, 5, 7 and 9 are sectional views showing the configuration and refractive power distribution of the optical system OL (OL1 to OL5) according to each embodiment.
 各実施例において、非球面は、光軸に垂直な方向の高さをyとし、高さyにおける各非球面の頂点の接平面から各非球面までの光軸に沿った距離(サグ量)をS(y)とし、基準球面の曲率半径(近軸曲率半径)をrとし、円錐定数をKとし、n次の非球面係数をAnとしたとき、以下の式(a)で表される。なお、以降の実施例において、「e-n」は「×10-n」を示す。 In each embodiment, the aspherical surface has a height y in the direction perpendicular to the optical axis, and the distance along the optical axis from the tangent plane of the vertex of each aspherical surface at height y to each aspherical surface (amount of sag) is S(y), r is the radius of curvature of the reference sphere (paraxial radius of curvature), K is the conic constant, and An is the n-th order aspherical surface coefficient. . In the following examples, "en" indicates "×10 -n ".
S(y)=(y2/r)/{1+(1-K×y2/r21/2
     +A4×y4+A6×y6+A8×y8+A10×y10+A12×y12  (a)
S(y)=(y 2 /r)/{1+(1−K×y 2 /r 2 ) 1/2 }
+A4×y4+A6× y6 +A8× y8 +A10× y10 +A12× y12 ( a)
 また、各実施例において、2次の非球面係数A2は0である。 Also, in each embodiment, the second-order aspheric coefficient A2 is zero.
 また、下記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。 In addition, each of the following examples shows one specific example of the present invention, and the present invention is not limited to these.
[第1実施例]
 図1は、第1実施例に係る光学系OL1の構成を示す図である。この光学系OL1は、物体側から順に、前群GAと、開口絞りSと、正の屈折力を有する後群GBと、から構成されている。また、前群GAは、負の屈折力を有する第1レンズ群G1で構成され、後群GBは、物体側から順に、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、から構成されている。
[First embodiment]
FIG. 1 is a diagram showing the configuration of an optical system OL1 according to the first example. This optical system OL1 is composed of, in order from the object side, a front group GA, an aperture stop S, and a rear group GB having positive refractive power. The front group GA is composed of a first lens group G1 having negative refractive power, and the rear group GB is composed of, in order from the object side, a second lens group G2 having positive refractive power and a negative refractive power. and a third lens group G3.
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11、両凹負レンズL12、及び、両凸正レンズL13で構成されている。また、第2レンズ群G2は、物体側から順に、物体側に凸面を向けた正メニスカスレンズL21、両凹負レンズL22と両凸正レンズL23とを接合した接合負レンズ、両凸正レンズL24、両凸正レンズL25と両凹負レンズL26とを接合した接合正レンズ、及び、物体側に凹面を向けた正メニスカス形状であって、物体側のレンズ面及び像側のレンズ面が非球面形状に形成された非球面正レンズL27で構成されている。また、第3レンズ群G3は、両凹負レンズL31で構成されている。また、後群GBと像面Iとの間に光学フィルターFLが配置されている。 The first lens group G1 is composed of, in order from the object side, a negative meniscus lens L11 having a convex surface facing the object side, a biconcave negative lens L12, and a biconvex positive lens L13. The second lens group G2 includes, in order from the object side, a positive meniscus lens L21 having a convex surface facing the object side, a cemented negative lens in which a biconcave negative lens L22 and a biconvex positive lens L23 are cemented together, and a biconvex positive lens L24. , a cemented positive lens in which a biconvex positive lens L25 and a biconcave negative lens L26 are cemented; It is composed of a shaped aspherical positive lens L27. The third lens group G3 is composed of a biconcave negative lens L31. An optical filter FL is arranged between the rear group GB and the image plane I.
 この光学系OL1において、負メニスカスレンズL11が負レンズN1であり、両凹負レンズL22が負レンズNFであり、両凹負レンズL26が負レンズNRであり、両凹負レンズL31が負レンズNLである。 In this optical system OL1, the negative meniscus lens L11 is the negative lens N1, the biconcave negative lens L22 is the negative lens NF, the biconcave negative lens L26 is the negative lens NR, and the biconcave negative lens L31 is the negative lens NL. is.
 また、この光学系OL1において、無限遠から近距離物体への合焦は、第2レンズ群G2を物体方向に移動させることによって行う。 Also, in this optical system OL1, focusing from infinity to a short distance object is performed by moving the second lens group G2 toward the object.
 以下の表1に、光学系OL1の諸元の値を掲げる。この表1の全体諸元において、fは光学系OL1の全系の焦点距離、FNOはFナンバー、ωは半画角[°]、Yは最大像高、TLは全長、及び、BFはバックフォーカスの値を表している。ここで、全長TLは、無限合焦時の最も物体側のレンズ面(第1面)から像面Iまでの光軸上の距離(実距離)を示している。また、バックフォーカスBFは、無限遠合焦時の最も像面側のレンズ面(第21面)から像面Iまでの光軸上の距離(実距離及び空気換算長)を示している。また、レンズデータにおける第1欄mは、光線の進行する方向に沿った物体側からのレンズ面の順序(面番号)を、第2欄rは、各レンズ面の曲率半径を、第3欄dは、各光学面から次の光学面までの光軸上の距離(面間隔)を、第4欄nd及び第5欄νdは、d線(λ=587.6nm)に対する屈折率及びアッベ数を示している。また、曲率半径0.00000は平面を示し、空気の屈折率1.00000は省略してある。なお、レンズ群焦点距離は各レンズ群の始面の面番号と焦点距離を示している。 Table 1 below lists the values of the specifications of the optical system OL1. In the overall specifications of Table 1, f is the focal length of the entire optical system OL1, FNO is the F number, ω is the half angle of view [°], Y is the maximum image height, TL is the total length, and BF is the back Represents the focus value. Here, the total length TL indicates the distance (actual distance) on the optical axis from the lens surface (first surface) closest to the object side to the image plane I at infinity focus. The back focus BF indicates the distance (actual distance and air conversion length) on the optical axis from the lens surface (21st surface) closest to the image plane to the image plane I when focusing on infinity. In addition, the first column m in the lens data indicates the order (surface number) of the lens surfaces from the object side along the direction in which light rays travel, the second column r indicates the radius of curvature of each lens surface, and the third column d is the distance (surface distance) on the optical axis from each optical surface to the next optical surface, and the fourth column nd and fifth column νd are the refractive index and Abbe number for the d-line (λ = 587.6 nm). is shown. A radius of curvature of 0.00000 indicates a plane, and the refractive index of air of 1.00000 is omitted. The lens group focal length indicates the surface number of the starting surface of each lens group and the focal length.
 ここで、以下の全ての諸元値において掲載されている焦点距離f、曲率半径r、面間隔d、その他長さの単位は一般に「mm」が使われるが、光学系は、比例拡大または比例縮小しても同等の光学性能が得られるので、これに限られるものではない。また、これらの符号の説明及び諸元表の説明は以降の実施例においても同様である。 Here, the focal length f, radius of curvature r, surface spacing d, and other lengths listed in all the specifications below are generally expressed in units of "mm". The same optical performance can be obtained even if the size is reduced, so the size is not limited to this. Further, the explanation of these symbols and the explanation of the specification table are the same in the following embodiments.
(表1)第1実施例
[全体諸元]
f         18.66
FNO        1.88
ω[°]      39.7
Y         14.50
TL        50.948
BF        14.138
BF(空気換算長)  13.593

[レンズデータ]
m    r      d    nd   νd
物面   ∞
 1    30.88470   0.800  1.51680  63.9
 2    10.13359   3.253
 3   -19.53734   0.800  1.51680  63.9
 4    61.77677   0.200
 5    28.44452   1.786  1.88300  40.7
 6   -44.24172   2.161
 7    0.00000   D7            開口絞りS
 8    25.03904   1.406  1.67790  55.4
 9    71.55004   2.029
10   -17.74480   0.800  1.73800  32.3
11    17.70671   4.036  1.72916  54.6
12   -57.28104   0.200
13    44.58187   4.546  1.77250  49.6
14   -26.47919   0.200
15    24.68842   4.741  1.77250  49.6
16   -41.92740   0.800  1.73800  32.3
17    28.22236   3.986
18*  -340.64532   1.217  1.53113  55.8
19*   -28.19344   D19
20   -49.63870   0.800  1.51680  63.9
21   102.44757  11.540
22    0.00000   1.600  1.51680  64.1
23    0.00000   0.998
像面   ∞

[レンズ群焦点距離]
 レンズ群     始面  焦点距離
第1レンズ群G1   1   -76.08
第2レンズ群G2   8    17.43
第3レンズ群G3   20   -64.58
(Table 1) First embodiment [overall specifications]
f 18.66
FNO 1.88
ω [°] 39.7
Y 14.50
TL 50.948
BF 14.138
BF (air conversion length) 13.593

[Lens data]
m r d nd νd
object ∞
1 30.88470 0.800 1.51680 63.9
2 10.13359 3.253
3 -19.53734 0.800 1.51680 63.9
4 61.77677 0.200
5 28.44452 1.786 1.88300 40.7
6 -44.24172 2.161
7 0.00000 D7 Aperture diaphragm S
8 25.03904 1.406 1.67790 55.4
9 71.55004 2.029
10 -17.74480 0.800 1.73800 32.3
11 17.70671 4.036 1.72916 54.6
12 -57.28104 0.200
13 44.58187 4.546 1.77250 49.6
14 -26.47919 0.200
15 24.68842 4.741 1.77250 49.6
16 -41.92740 0.800 1.73800 32.3
17 28.22236 3.986
18* -340.64532 1.217 1.53113 55.8
19* -28.19344 D19
20 -49.63870 0.800 1.51680 63.9
21 102.44757 11.540
22 0.00000 1.600 1.51680 64.1
23 0.00000 0.998
Image plane ∞

[Lens group focal length]
Lens group Starting surface Focal length 1st lens group G1 1 -76.08
Second lens group G2 8 17.43
3rd lens group G3 20 -64.58
 この光学系OL1において、第18面及び第19面の各レンズ面は非球面形状に形成されている。次の表2に、面番号m及び非球面のデータ、すなわち円錐定数K及び各非球面定数A4~A12の値を示す。 In this optical system OL1, the 18th and 19th lens surfaces are formed in an aspherical shape. Table 2 below shows the surface number m and the data of the aspherical surface, that is, the values of the conic constant K and the aspherical constants A4 to A12.
(表2)
[非球面データ]
第18面 K=1.00000e+00
   A4 =-1.34226e-04 A6 = 4.64940e-06 A8 =-3.86730e-08
   A10= 0.00000e+00 A12= 0.00000e+00
第19面 K=1.00000e+00
   A4 =-2.70832e-06 A6 = 5.26276e-06 A8 =-3.87365e-08
   A10= 0.00000e+00 A12= 0.00000e+00
(Table 2)
[Aspheric data]
18th surface K=1.00000e+00
A4 = -1.34226e-04 A6 = 4.64940e-06 A8 = -3.86730e-08
A10 = 0.00000e+00 A12 = 0.00000e+00
19th surface K=1.00000e+00
A4 = -2.70832e-06 A6 = 5.26276e-06 A8 = -3.87365e-08
A10 = 0.00000e+00 A12 = 0.00000e+00
 この光学系OL1において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔D7、及び、第2レンズ群G2と第3レンズ群G3との軸上空気間隔D19は、合焦に際して変化する。次の表3に、無限遠合焦時及び近距離合焦時における可変間隔を示す。なお、D0は、物体から光学系OL1の最も物体側のレンズ面(第1面)までの光軸上の距離を示し、βは倍率を示し、fは全系の焦点距離を示す。これらの符号の説明は以降の実施例においても同様である。 In this optical system OL1, the axial air gap D7 between the first lens group G1 and the second lens group G2 and the axial air gap D19 between the second lens group G2 and the third lens group G3 are Change. Table 3 below shows the variable spacing for infinity focus and short distance focus. D0 indicates the distance on the optical axis from the object to the most object-side lens surface (first surface) of optical system OL1, β indicates magnification, and f indicates the focal length of the entire system. The description of these symbols is the same in the subsequent embodiments.
(表3)
     無限遠    近距離
D0    ∞     188.54
β     -      -0.1000
f     18.66     -
D7    1.878     0.541
D19   1.170     2.508
(Table 3)
Infinity Close D0 ∞ 188.54
β - -0.1000
f 18.66 -
D7 1.878 0.541
D19 1.170 2.508
 この光学系OL1の無限遠合焦時及び近距離合焦時における球面収差図、非点収差図、歪曲収差図、倍率色収差図及びコマ収差図の諸収差図を図2に示す。各収差図において、FNOはFナンバー、NAは開口数、Yは像高をそれぞれ示す。なお、球面収差図では最大口径に対応するFナンバー又は開口数の値を示し、非点収差図及び歪曲収差図では像高の最大値をそれぞれ示し、コマ収差図では各像高の値を示す。dはd線(λ=587.6nm)、gはg線(λ=435.8nm)をそれぞれ示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。また、以降に示す各実施例の収差図においても、本実施例と同様の符号を用いる。これらの各収差図より、この光学系OL1は諸収差が良好に補正されていることがわかる。 FIG. 2 shows spherical aberration diagrams, astigmatism diagrams, distortion aberration diagrams, magnification chromatic aberration diagrams, and coma aberration diagrams of this optical system OL1 when focusing on infinity and when focusing on a short distance. In each aberration diagram, FNO indicates F number, NA indicates numerical aperture, and Y indicates image height. The spherical aberration diagram shows the F-number or numerical aperture corresponding to the maximum aperture, the astigmatism diagram and the distortion diagram show the maximum image height, and the coma aberration diagram shows the value of each image height. . d indicates the d-line (λ=587.6 nm) and g indicates the g-line (λ=435.8 nm). In the astigmatism diagrams, a solid line indicates a sagittal image plane, and a broken line indicates a meridional image plane. Further, in the aberration diagrams of each example shown below, the same reference numerals as in this example are used. From these aberration diagrams, it can be seen that the various aberrations of the optical system OL1 are well corrected.
[第2実施例]
 図3は、第2実施例に係る光学系OL2の構成を示す図である。この光学系OL2は、物体側から順に、前群GAと、開口絞りSと、正の屈折力を有する後群GBと、から構成されている。また、前群GAは、正の屈折力を有する第1レンズ群G1で構成され、後群GBは、物体側から順に、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、から構成されている。
[Second embodiment]
FIG. 3 is a diagram showing the configuration of the optical system OL2 according to the second embodiment. This optical system OL2 is composed of, in order from the object side, a front group GA, an aperture stop S, and a rear group GB having positive refractive power. The front group GA is composed of a first lens group G1 having positive refractive power, and the rear group GB is composed of, in order from the object side, a second lens group G2 having positive refractive power and a negative refractive power. and a third lens group G3.
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11、及び、物体側に凸面を向けた正メニスカスレンズL12で構成されている。また、第2レンズ群G2は、物体側から順に、両凹負レンズL21と両凸正レンズL22とを接合した接合負レンズ、両凸正レンズL23、物体側に凸面を向けた正メニスカスレンズL24と物体側に凸面を向けた負メニスカスレンズL25とを接合した接合負レンズ、及び、物体側に凹面を向けた正メニスカス形状であって、物体側のレンズ面及び像側のレンズ面が非球面形状に形成された非球面正レンズL26で構成されている。また、第3レンズ群G3は、両凹負レンズL31で構成されている。また、後群GBと像面Iとの間に光学フィルターFLが配置されている。 The first lens group G1 is composed of, in order from the object side, a negative meniscus lens L11 with a convex surface facing the object side, and a positive meniscus lens L12 with a convex surface facing the object side. The second lens group G2 includes, in order from the object side, a cemented negative lens formed by cementing a biconcave negative lens L21 and a biconvex positive lens L22, a biconvex positive lens L23, and a positive meniscus lens L24 having a convex surface facing the object side. and a negative meniscus lens L25 with a convex surface facing the object side, and a positive meniscus shape with a concave surface facing the object side, the lens surface on the object side and the lens surface on the image side being aspheric. It is composed of a shaped aspherical positive lens L26. The third lens group G3 is composed of a biconcave negative lens L31. An optical filter FL is arranged between the rear group GB and the image plane I.
 この光学系OL2において、負メニスカスレンズL11が負レンズN1であり、両凹負レンズL21が負レンズNFであり、負メニスカスレンズL25が負レンズNRであり、両凹負レンズL31が負レンズNLである。 In this optical system OL2, the negative meniscus lens L11 is the negative lens N1, the biconcave negative lens L21 is the negative lens NF, the negative meniscus lens L25 is the negative lens NR, and the biconcave negative lens L31 is the negative lens NL. be.
 また、この光学系OL2において、無限遠から近距離物体への合焦は、第2レンズ群G2を物体方向に移動させることによって行う。 Also, in this optical system OL2, focusing from infinity to a short distance object is performed by moving the second lens group G2 toward the object.
 以下の表4に、光学系OL2の諸元の値を掲げる。なお、レンズデータの第3面は仮想面であるが、図3の断面図には示されていない。 Table 4 below lists the values of the specifications of the optical system OL2. Although the third surface of the lens data is a virtual surface, it is not shown in the cross-sectional view of FIG.
(表4)第2実施例
[全体諸元]
f         24.21
FNO        1.76
ω[°]      30.5
Y         14.50
TL        50.004
BF        14.096
BF(空気換算長)  13.551

[レンズデータ]
m    r      d    nd   νd
物面   ∞
 1    26.24690   0.800  1.60311  60.7
 2    12.59482   1.700
 3    0.00000   0.400
 4    15.67302   1.691  1.80400  46.6
 5    30.29814   1.833
 6    0.00000   D6            開口絞りS
 7   -12.84018   0.800  1.73800  32.3
 8    75.53056   4.818  1.75500  52.3
 9   -16.73420   0.200
10    36.79732   4.800  1.72916  54.6
11   -47.51982   0.200
12    18.21772   3.700  1.72916  54.6
13    41.67744   2.081  1.67300  38.1
14    14.30567   3.803
15*   -60.75531   1.465  1.53110  55.9
16*   -21.32052   D16
17   -58.67999   0.800  1.75520  27.6
18   120.38649  11.496
19    0.00000   1.600  1.51680  64.1
20    0.00000   1.000
像面   ∞

[レンズ群焦点距離]
 レンズ群     始面  焦点距離
第1レンズ群G1   1   474.50
第2レンズ群G2   7    19.56
第3レンズ群G3   17   -52.14
(Table 4) Second embodiment [overall specifications]
f24.21
FNO 1.76
ω [°] 30.5
Y 14.50
TL 50.004
BF 14.096
BF (air conversion length) 13.551

[Lens data]
m r d nd νd
object ∞
1 26.24690 0.800 1.60311 60.7
2 12.59482 1.700
3 0.00000 0.400
4 15.67302 1.691 1.80400 46.6
5 30.29814 1.833
6 0.00000 D6 Aperture diaphragm S
7 -12.84018 0.800 1.73800 32.3
8 75.53056 4.818 1.75500 52.3
9 -16.73420 0.200
10 36.79732 4.800 1.72916 54.6
11 -47.51982 0.200
12 18.21772 3.700 1.72916 54.6
13 41.67744 2.081 1.67300 38.1
14 14.30567 3.803
15* -60.75531 1.465 1.53110 55.9
16* -21.32052 D16
17 -58.67999 0.800 1.75520 27.6
18 120.38649 11.496
19 0.00000 1.600 1.51680 64.1
20 0.00000 1.000
Image plane ∞

[Lens group focal length]
Lens group Starting surface Focal length 1st lens group G1 1 474.50
Second lens group G2 7 19.56
Third lens group G3 17 -52.14
 この光学系OL2において、第15面及び第16面の各レンズ面は非球面形状に形成されている。次の表5に、面番号m及び非球面のデータ、すなわち円錐定数K及び各非球面定数A4~A12の値を示す。 In this optical system OL2, the 15th and 16th lens surfaces are aspherical. Table 5 below shows the surface number m and the data of the aspherical surface, that is, the values of the conic constant K and the aspherical constants A4 to A12.
(表5)
[非球面データ]
第15面 K=1.00000e+00
   A4 =-4.27043e-05 A6 = 3.35775e-07 A8 = 1.40921e-08
   A10= 0.00000e+00 A12= 0.00000e+00
第16面 K=1.00000e+00
   A4 = 5.80487e-05 A6 = 4.09696e-07 A8 = 1.64474e-08
   A10= 0.00000e+00 A12= 0.00000e+00
(Table 5)
[Aspheric data]
15th surface K=1.00000e+00
A4 = -4.27043e-05 A6 = 3.35775e-07 A8 = 1.40921e-08
A10 = 0.00000e+00 A12 = 0.00000e+00
16th surface K=1.00000e+00
A4 = 5.80487e-05 A6 = 4.09696e-07 A8 = 1.64474e-08
A10 = 0.00000e+00 A12 = 0.00000e+00
 この光学系OL2において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔D6、及び、第2レンズ群G2と第3レンズ群G3との軸上空気間隔D16は、合焦に際して変化する。次の表5に、無限遠合焦時及び近距離合焦時における可変間隔を示す。 In this optical system OL2, the axial air gap D6 between the first lens group G1 and the second lens group G2 and the axial air gap D16 between the second lens group G2 and the third lens group G3 are Change. Table 5 below shows the variable spacing for infinity focus and short distance focus.
(表6)
     無限遠    近距離
D0    ∞     243.98
β     -      -0.1000
f     24.21     -
D6    5.818     4.309
D16   1.000     2.509
(Table 6)
Infinity Short distance D0 ∞ 243.98
β - -0.1000
f 24.21 -
D6 5.818 4.309
D16 1.000 2.509
 この光学系OL2の無限遠合焦時及び近距離合焦時における球面収差図、非点収差図、歪曲収差図、倍率色収差図及びコマ収差図の諸収差図を図4に示す。これらの各収差図より、この光学系OL2は諸収差が良好に補正されていることがわかる。 FIG. 4 shows spherical aberration diagrams, astigmatism diagrams, distortion aberration diagrams, magnification chromatic aberration diagrams, and coma aberration diagrams of this optical system OL2 when focusing on infinity and when focusing on a short distance. From these aberration diagrams, it can be seen that the various aberrations of the optical system OL2 are well corrected.
[第3実施例]
 図5は、第3実施例に係る光学系OL3の構成を示す図である。この光学系OL3は、物体側から順に、前群GAと、開口絞りSと、正の屈折力を有する後群GBと、から構成されている。また、前群GAは、正の屈折力を有する第1レンズ群G1で構成され、後群GBは、物体側から順に、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、から構成されている。
[Third embodiment]
FIG. 5 is a diagram showing the configuration of the optical system OL3 according to the third example. This optical system OL3 is composed of, in order from the object side, a front group GA, an aperture stop S, and a rear group GB having positive refractive power. The front group GA is composed of a first lens group G1 having positive refractive power, and the rear group GB is composed of, in order from the object side, a second lens group G2 having positive refractive power and a negative refractive power. and a third lens group G3.
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11、及び、物体側に凸面を向けた正メニスカスレンズL12で構成されている。また、第2レンズ群G2は、物体側から順に、物体側に凹面を向けた負メニスカスレンズL21と物体側に凸面を向けた正メニスカスレンズL22とを接合した接合負レンズ、両凸正レンズL23、物体側に凸面を向けた正メニスカスレンズL24、物体側に凸面を向けた負メニスカスレンズL25、及び、物体側に凹面を向けた正メニスカス形状であって、物体側のレンズ面及び像側のレンズ面が非球面形状に形成された非球面正レンズL26で構成されている。また、第3レンズ群G3は、両凹形状であって、物体側のレンズ面及び像側のレンズ面が非球面形状に形成された非球面負レンズL31で構成されている。また、後群GBと像面Iとの間に光学フィルターFLが配置されている。 The first lens group G1 is composed of, in order from the object side, a negative meniscus lens L11 with a convex surface facing the object side, and a positive meniscus lens L12 with a convex surface facing the object side. The second lens group G2 includes, in order from the object side, a cemented negative lens L23 which is a cemented negative meniscus lens L21 having a concave surface facing the object side and a positive meniscus lens L22 having a convex surface facing the object side, and a biconvex positive lens L23. , a positive meniscus lens L24 with a convex surface facing the object side, a negative meniscus lens L25 with a convex surface facing the object side, and a positive meniscus shape with a concave surface facing the object side, the lens surface on the object side and the lens surface on the image side. It is composed of an aspherical positive lens L26 having an aspherical lens surface. The third lens group G3 is composed of a biconcave aspherical negative lens L31 having an object-side lens surface and an image-side lens surface formed in an aspherical shape. An optical filter FL is arranged between the rear group GB and the image plane I.
 この光学系OL3において、負メニスカスレンズL11が負レンズN1であり、負メニスカスレンズL21が負レンズNFであり、負メニスカスレンズL25が負レンズNRであり、非球面負レンズL31が負レンズNLである。 In this optical system OL3, the negative meniscus lens L11 is the negative lens N1, the negative meniscus lens L21 is the negative lens NF, the negative meniscus lens L25 is the negative lens NR, and the aspheric negative lens L31 is the negative lens NL. .
 また、この光学系OL3において、無限遠から近距離物体への合焦は、第2レンズ群G2を物体方向に移動させることによって行う。 Also, in this optical system OL3, focusing from infinity to a short distance object is performed by moving the second lens group G2 toward the object.
 以下の表7に、光学系OL3の諸元の値を掲げる。なお、レンズデータの第3面は仮想面であるが、図5の断面図には示されていない。 Table 7 below lists the values of the specifications of the optical system OL3. Although the third surface of the lens data is a virtual surface, it is not shown in the sectional view of FIG.
(表7)第3実施例
[全体諸元]
f         23.99
FNO        1.74
ω[°]      30.1
Y         14.50
TL        49.992
BF        12.990
BF(空気換算長)  12.445

[レンズデータ]
m    r      d    nd   νd
物面   ∞
 1    25.94000   0.800  1.60311  60.7
 2    14.70210   2.017
 3    0.00000   0.780
 4    19.62856   1.510  1.80400  46.6
 5    40.55492   1.609
 6    0.00000   D6            開口絞りS
 7   -11.09774   0.800  1.73800  32.3
 8   -71.62023   4.000  1.75500  52.3
 9   -15.17987   0.000
10   2312.74590   3.823  1.72916  54.6
11   -26.33558   0.200
12    18.26036   5.535  1.72916  54.6
13   137.30289   0.200
14    49.24547   1.572  1.76182  26.6
15    16.62297   4.616
16*   -12.37612   0.919  1.53113  55.8
17*   -11.35573   D17
18*  -128.13552   0.800  1.64000  60.2
19*   104.42083  10.390
20    0.00000   1.600  1.51680  64.1
21    0.00000   1.000
像面   ∞

[レンズ群焦点距離]
 レンズ群     始面  焦点距離
第1レンズ群G1   1   198.61
第2レンズ群G2   7    22.16
第3レンズ群G3   18   -89.78
(Table 7) Third embodiment [overall specifications]
f23.99
FNO 1.74
ω [°] 30.1
Y 14.50
TL 49.992
BF 12.990
BF (air conversion length) 12.445

[Lens data]
m r d nd νd
object ∞
1 25.94000 0.800 1.60311 60.7
2 14.70210 2.017
3 0.00000 0.780
4 19.62856 1.510 1.80400 46.6
5 40.55492 1.609
6 0.00000 D6 Aperture diaphragm S
7 -11.09774 0.800 1.73800 32.3
8 -71.62023 4.000 1.75500 52.3
9 -15.17987 0.000
10 2312.74590 3.823 1.72916 54.6
11 -26.33558 0.200
12 18.26036 5.535 1.72916 54.6
13 137.30289 0.200
14 49.24547 1.572 1.76182 26.6
15 16.62297 4.616
16* -12.37612 0.919 1.53113 55.8
17* -11.35573 D17
18* -128.13552 0.800 1.64000 60.2
19* 104.42083 10.390
20 0.00000 1.600 1.51680 64.1
21 0.00000 1.000
Image plane ∞

[Lens group focal length]
Lens group Starting surface Focal length 1st lens group G1 1 198.61
Second lens group G2 7 22.16
3rd lens group G3 18 -89.78
 この光学系OL3において、第16面、第17面、第18面及び第19面の各レンズ面は非球面形状に形成されている。次の表8に、面番号m及び非球面のデータ、すなわち円錐定数K及び各非球面定数A4~A12の値を示す。 In this optical system OL3, the 16th, 17th, 18th and 19th lens surfaces are formed in an aspherical shape. Table 8 below shows the surface number m and the data of the aspherical surface, that is, the values of the conic constant K and the aspherical constants A4 to A12.
(表8)
[非球面データ]
第16面 K=1.00000e+00
   A4 = 3.18413e-04 A6 = 1.91924e-06 A8 =-8.92961e-09
   A10= 0.00000e+00 A12= 0.00000e+00
第17面 K=1.00000e+00
   A4 = 4.58812e-04 A6 = 7.66215e-07 A8 = 3.67698e-09
   A10= 0.00000e+00 A12= 0.00000e+00
第18面 K=1.00000e+00
   A4 =-5.32694e-07 A6 =-8.50693e-07 A8 = 4.38809e-09
   A10= 0.00000e+00 A12= 0.00000e+00
第19面 K=1.00000e+00
   A4 =-3.35211e-05 A6 = 2.16253e-07 A8 = 0.00000e+00
   A10= 0.00000e+00 A12= 0.00000e+00
(Table 8)
[Aspheric data]
16th surface K=1.00000e+00
A4 = 3.18413e-04 A6 = 1.91924e-06 A8 = -8.92961e-09
A10 = 0.00000e+00 A12 = 0.00000e+00
17th surface K=1.00000e+00
A4 = 4.58812e-04 A6 = 7.66215e-07 A8 = 3.67698e-09
A10 = 0.00000e+00 A12 = 0.00000e+00
18th surface K=1.00000e+00
A4 = -5.32694e-07 A6 = -8.50693e-07 A8 = 4.38809e-09
A10 = 0.00000e+00 A12 = 0.00000e+00
19th surface K=1.00000e+00
A4 = -3.35211e-05 A6 = 2.16253e-07 A8 = 0.00000e+00
A10 = 0.00000e+00 A12 = 0.00000e+00
 この光学系OL3において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔D6、及び、第2レンズ群G2と第3レンズ群G3との軸上空気間隔D17は、合焦に際して変化する。次の表9に、無限遠合焦時及び近距離合焦時における可変間隔を示す。 In this optical system OL3, the axial air gap D6 between the first lens group G1 and the second lens group G2 and the axial air gap D17 between the second lens group G2 and the third lens group G3 are Change. Table 9 below shows the variable spacing for infinity focus and short distance focus.
(表9)
     無限遠    近距離
D0    ∞     242.49
β     -      -0.1000
f     23.99     -
D6    6.793     4.946
D17   1.028     2.875
(Table 9)
Infinity Short distance D0 ∞ 242.49
β - -0.1000
f23.99 -
D6 6.793 4.946
D17 1.028 2.875
 この光学系OL3の無限遠合焦時及び近距離合焦時における球面収差図、非点収差図、歪曲収差図、倍率色収差図及びコマ収差図の諸収差図を図6に示す。これらの各収差図より、この光学系OL3は諸収差が良好に補正されていることがわかる。 FIG. 6 shows spherical aberration diagrams, astigmatism diagrams, distortion aberration diagrams, lateral chromatic aberration diagrams, and coma aberration diagrams of this optical system OL3 when focusing on infinity and when focusing on a short distance. From these aberration diagrams, it can be seen that the various aberrations of the optical system OL3 are well corrected.
[第4実施例]
 図7は、第4実施例に係る光学系OL4の構成を示す図である。この光学系OL4は、物体側から順に、前群GAと、開口絞りSと、正の屈折力を有する後群GBと、から構成されている。また、前群GAは、正の屈折力を有する第1レンズ群G1で構成され、後群GBは、物体側から順に、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、から構成されている。
[Fourth embodiment]
FIG. 7 is a diagram showing the configuration of the optical system OL4 according to the fourth example. This optical system OL4 is composed of, in order from the object side, a front group GA, an aperture stop S, and a rear group GB having positive refractive power. The front group GA is composed of a first lens group G1 having positive refractive power, and the rear group GB is composed of, in order from the object side, a second lens group G2 having positive refractive power and a negative refractive power. and a third lens group G3.
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11、及び、両凸正レンズL12で構成されている。また、第2レンズ群G2は、物体側から順に、物体側に凹面を向けた負メニスカスレンズL21、物体側に凹面を向けた正メニスカスレンズL22、両凸形状であって、物体側のレンズ面及び像側のレンズ面が非球面形状に形成された非球面正レンズL23、及び、物体側に凸面を向けた正メニスカスレンズL24と物体側に凸面を向けた負メニスカスレンズL25とを接合した接合負レンズで構成されている。また、第3レンズ群G3は、両凹負レンズの物体側のレンズ面に設けた樹脂層を非球面形状に形成した非球面負レンズL31で構成されている。また、後群GBと像面Iとの間に光学フィルターFLが配置されている。 The first lens group G1 is composed of, in order from the object side, a negative meniscus lens L11 having a convex surface facing the object side, and a biconvex positive lens L12. The second lens group G2 includes, in order from the object side, a negative meniscus lens L21 with a concave surface facing the object side, a positive meniscus lens L22 with a concave surface facing the object side, and a biconvex lens surface facing the object side. and a cemented aspherical positive lens L23 having an aspherical image-side lens surface, and a positive meniscus lens L24 having a convex surface facing the object side and a negative meniscus lens L25 having a convex surface facing the object side. It consists of a negative lens. The third lens group G3 is composed of an aspherical negative lens L31 in which a resin layer provided on the object-side lens surface of the biconcave negative lens is formed into an aspherical shape. An optical filter FL is arranged between the rear group GB and the image plane I.
 この光学系OL4において、負メニスカスレンズL11が負レンズN1であり、負メニスカスレンズL21が負レンズNFであり、負メニスカスレンズL25が負レンズNRであり、非球面負レンズL31が負レンズNLである。 In this optical system OL4, the negative meniscus lens L11 is the negative lens N1, the negative meniscus lens L21 is the negative lens NF, the negative meniscus lens L25 is the negative lens NR, and the aspheric negative lens L31 is the negative lens NL. .
 また、この光学系OL4において、無限遠から近距離物体への合焦は、第2レンズ群G2を物体方向に移動させることによって行う。 Also, in this optical system OL4, focusing from infinity to a short distance object is performed by moving the second lens group G2 toward the object.
 以下の表10に、光学系OL4の諸元の値を掲げる。なお、レンズデータの第3面及び第11面は仮想面であるが、図7の断面図には示されていない。 Table 10 below lists the values of the specifications of the optical system OL4. Although the 3rd and 11th surfaces of the lens data are virtual surfaces, they are not shown in the cross-sectional view of FIG.
(表10)第4実施例
[全体諸元]
f         24.64
FNO        1.75
ω[°]      30.3
Y         14.50
TL        50.000
BF        13.012
BF(空気換算長)  12.467

[レンズデータ]
m    r      d    nd   νd
物面   ∞
 1    95.72479   0.800  1.69680  55.5
 2    30.29508   3.511
 3    0.00000  -0.700
 4    26.01082   1.945  1.77250  49.6
 5   -349.67569   1.000
 6    0.00000   D6            開口絞りS
 7   -10.06582   0.800  1.72825  28.4
 8   -42.33130   0.901
 9   -35.35053   5.000  1.77250  49.6
10   -13.06203  -0.500
11    0.00000   0.600
12*   34.65982   4.800  1.69350  53.3
13*   -52.08174   0.200
14    30.12605   2.885  1.77250  49.6
15   101.41586   2.700  1.78472  25.6
16    23.50659   D16
17*  -212.49838   0.100  1.56093  36.6
18   -125.18463   1.100  1.51680  63.9
19    54.07182  10.412
20    0.00000   1.600  1.51680  63.9
21    0.00000   1.000
像面   ∞

[レンズ群焦点距離]
 レンズ群     始面  焦点距離
第1レンズ群G1   1    57.07
第2レンズ群G2   7    25.23
第3レンズ群G3   17   -84.30
(Table 10) Fourth embodiment [overall specifications]
f24.64
FNO 1.75
ω [°] 30.3
Y 14.50
TL 50.000
BF 13.012
BF (air conversion length) 12.467

[Lens data]
m r d nd νd
object ∞
1 95.72479 0.800 1.69680 55.5
2 30.29508 3.511
3 0.00000 -0.700
4 26.01082 1.945 1.77250 49.6
5 -349.67569 1.000
6 0.00000 D6 Aperture diaphragm S
7 -10.06582 0.800 1.72825 28.4
8 -42.33130 0.901
9 -35.35053 5.000 1.77250 49.6
10 -13.06203 -0.500
11 0.00000 0.600
12* 34.65982 4.800 1.69350 53.3
13* -52.08174 0.200
14 30.12605 2.885 1.77250 49.6
15 101.41586 2.700 1.78472 25.6
16 23.50659 D16
17* -212.49838 0.100 1.56093 36.6
18 -125.18463 1.100 1.51680 63.9
19 54.07182 10.412
20 0.00000 1.600 1.51680 63.9
21 0.00000 1.000
Image plane ∞

[Lens group focal length]
Lens group Starting surface Focal length 1st lens group G1 1 57.07
Second lens group G2 7 25.23
Third lens group G3 17 -84.30
 この光学系OL4において、第12面、第13面及び第17面の各レンズ面は非球面形状に形成されている。次の表11に、面番号m及び非球面のデータ、すなわち円錐定数K及び各非球面定数A4~A12の値を示す。 In this optical system OL4, the 12th, 13th and 17th lens surfaces are formed in an aspherical shape. Table 11 below shows the surface number m and the data of the aspherical surface, that is, the values of the conic constant K and the aspherical constants A4 to A12.
(表11)
[非球面データ]
第12面 K=1.00000e+00
   A4 = 2.63231e-05 A6 =-2.91715e-08 A8 = 1.91541e-10
   A10= 0.00000e+00 A12= 0.00000e+00
第13面 K=1.00000e+00
   A4 = 5.30867e-05 A6 =-5.02435e-08 A8 = 0.00000e+00
   A10= 0.00000e+00 A12= 0.00000e+00
第17面 K=1.00000e+00
   A4 = 6.34469e-06 A6 =-2.28171e-07 A8 = 1.47869e-10
   A10=-6.83855e-12 A12= 0.00000e+00
(Table 11)
[Aspheric data]
12th surface K=1.00000e+00
A4 = 2.63231e-05 A6 = -2.91715e-08 A8 = 1.91541e-10
A10 = 0.00000e+00 A12 = 0.00000e+00
13th surface K=1.00000e+00
A4 = 5.30867e-05 A6 = -5.02435e-08 A8 = 0.00000e+00
A10 = 0.00000e+00 A12 = 0.00000e+00
17th surface K=1.00000e+00
A4 = 6.34469e-06 A6 = -2.28171e-07 A8 = 1.47869e-10
A10=-6.83855e-12 A12= 0.00000e+00
 この光学系OL4において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔D6、及び、第2レンズ群G2と第3レンズ群G3との軸上空気間隔D16は、合焦に際して変化する。次の表12に、無限遠合焦時及び近距離合焦時における可変間隔を示す。 In this optical system OL4, the axial air gap D6 between the first lens group G1 and the second lens group G2 and the axial air gap D16 between the second lens group G2 and the third lens group G3 are Change. Table 12 below shows the variable spacing for infinity focus and short distance focus.
(表12)
     無限遠    近距離
D0    ∞     162.24
β     -      -0.1500
f     24.64     -
D6    7.809     4.719
D16   4.037     7.127
(Table 12)
Infinity Close D0 ∞ 162.24
β - -0.1500
f24.64 -
D6 7.809 4.719
D16 4.037 7.127
 この光学系OL4の無限遠合焦時及び近距離合焦時における球面収差図、非点収差図、歪曲収差図、倍率色収差図及びコマ収差図の諸収差図を図8に示す。これらの各収差図より、この光学系OL4は諸収差が良好に補正されていることがわかる。 FIG. 8 shows spherical aberration diagrams, astigmatism diagrams, distortion aberration diagrams, lateral chromatic aberration diagrams, and coma aberration diagrams of this optical system OL4 when focusing on infinity and when focusing on a short distance. From these aberration diagrams, it can be seen that the various aberrations of the optical system OL4 are well corrected.
[第5実施例]
 図9は、第5実施例に係る光学系OL5の構成を示す図である。この光学系OL5は、物体側から順に、前群GAと、開口絞りSと、正の屈折力を有する後群GBと、から構成されている。また、前群GAは、正の屈折力を有する第1レンズ群G1で構成され、後群GBは、正の屈折力を有する第2レンズ群G2で構成されている。
[Fifth embodiment]
FIG. 9 is a diagram showing the configuration of an optical system OL5 according to the fifth embodiment. This optical system OL5 is composed of, in order from the object side, a front group GA, an aperture stop S, and a rear group GB having positive refractive power. The front group GA is composed of a first lens group G1 having positive refractive power, and the rear group GB is composed of a second lens group G2 having positive refractive power.
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11、及び、物体側に凸面を向けた正メニスカスレンズL12で構成されている。また、第2レンズ群G2は、物体側から順に、物体側に凹面を向けた負メニスカスレンズL21、物体側に凹面を向けた正メニスカスレンズL22、両凸形状であって、物体側のレンズ面及び像側のレンズ面が非球面形状に形成された非球面正レンズL23、物体側に凸面を向けた正メニスカスレンズL24と物体側に凸面を向けた負メニスカスレンズL25とを接合した接合正レンズ、及び、両凹負レンズの物体側のレンズ面に設けた樹脂層を非球面形状に形成した非球面負レンズL26で構成されている。また、後群GBと像面Iとの間に光学フィルターFLが配置されている。 The first lens group G1 is composed of, in order from the object side, a negative meniscus lens L11 with a convex surface facing the object side, and a positive meniscus lens L12 with a convex surface facing the object side. The second lens group G2 includes, in order from the object side, a negative meniscus lens L21 with a concave surface facing the object side, a positive meniscus lens L22 with a concave surface facing the object side, and a biconvex lens surface facing the object side. and an aspherical positive lens L23 having an aspherical lens surface on the image side, and a cemented positive lens in which a positive meniscus lens L24 having a convex surface facing the object side and a negative meniscus lens L25 having a convex surface facing the object side are cemented together. , and an aspherical negative lens L26 in which a resin layer provided on the object-side lens surface of the biconcave negative lens is formed into an aspherical shape. An optical filter FL is arranged between the rear group GB and the image plane I.
 この光学系OL5において、負メニスカスレンズL11が負レンズN1であり、負メニスカスレンズL21が負レンズNFであり、負メニスカスレンズL25が負レンズNRであり、非球面負レンズL26が負レンズNLである。 In this optical system OL5, the negative meniscus lens L11 is the negative lens N1, the negative meniscus lens L21 is the negative lens NF, the negative meniscus lens L25 is the negative lens NR, and the aspheric negative lens L26 is the negative lens NL. .
 また、この光学系OL5において、無限遠から近距離物体への合焦は、第2レンズ群G2を物体方向に移動させることによって行う。 Also, in this optical system OL5, focusing from infinity to a short distance object is performed by moving the second lens group G2 toward the object.
 以下の表13に、光学系OL5の諸元の値を掲げる。なお、レンズデータの第3面及び第11面は仮想面であるが、図9の断面図には示されていない。 Table 13 below lists the values of the specifications of the optical system OL5. Although the 3rd and 11th surfaces of the lens data are virtual surfaces, they are not shown in the sectional view of FIG.
(表13)第5実施例
[全体諸元]
f         24.28
FNO        1.74
ω[°]      30.0
Y         14.50
TL        50.000
BF        13.413
BF(空気換算長)  12.868

[レンズデータ]
m    r      d    nd   νd
物面   ∞
 1    50.00000   0.800  1.69680  55.5
 2    17.24209   2.151
 3    0.00000  -0.700
 4    19.58974   2.153  1.77250  49.6
 5   205.71020   1.601
 6    0.00000   D6            開口絞りS
 7   -10.35061   0.800  1.72825  28.4
 8   -32.62394   0.335
 9   -40.55777   5.000  1.77250  49.6
10   -13.65162  -0.800
11    0.00000   0.900
12*   32.69590   4.800  1.69350  53.3
13*  -281.19271   0.259
14    21.08477   3.700  1.77250  49.6
15   152.39896   2.700  1.78472  25.6
16    22.00000   3.177
17*   280.88096   0.100  1.56093  36.6
18   -134.95915   1.100  1.51680  64.1
19    40.00000   D19
20    0.00000   1.600  1.51680  64.1
21    0.00000   1.000
像面   ∞

[レンズ群焦点距離]
 レンズ群     始面  焦点距離
第1レンズ群G1   1    93.85
第2レンズ群G2   7    28.46
(Table 13) Fifth embodiment [overall specifications]
f24.28
FNO 1.74
ω [°] 30.0
Y 14.50
TL 50.000
BF 13.413
BF (air conversion length) 12.868

[Lens data]
m r d nd νd
object ∞
1 50.00000 0.800 1.69680 55.5
2 17.24209 2.151
3 0.00000 -0.700
4 19.58974 2.153 1.77250 49.6
5 205.71020 1.601
6 0.00000 D6 Aperture diaphragm S
7 -10.35061 0.800 1.72825 28.4
8 -32.62394 0.335
9 -40.55777 5.000 1.77250 49.6
10 -13.65162 -0.800
11 0.00000 0.900
12* 32.69590 4.800 1.69350 53.3
13* -281.19271 0.259
14 21.08477 3.700 1.77250 49.6
15 152.39896 2.700 1.78472 25.6
16 22.00000 3.177
17* 280.88096 0.100 1.56093 36.6
18 -134.95915 1.100 1.51680 64.1
19 40.00000 D19
20 0.00000 1.600 1.51680 64.1
21 0.00000 1.000
Image plane ∞

[Lens group focal length]
Lens group Starting surface Focal length 1st lens group G1 1 93.85
Second lens group G2 7 28.46
 この光学系OL5において、第12面、第13面及び第17面の各レンズ面は非球面形状に形成されている。次の表14に、面番号m及び非球面のデータ、すなわち円錐定数K及び各非球面定数A4~A12の値を示す。 In this optical system OL5, the 12th, 13th and 17th lens surfaces are formed in an aspherical shape. Table 14 below shows the surface number m and the data of the aspherical surface, that is, the values of the conic constant K and the aspherical constants A4 to A12.
(表14)
[非球面データ]
第12面 K=1.00000e+00
   A4 = 2.55005e-05 A6 = 2.68082e-07 A8 =-4.15521e-09
   A10= 1.91843e-11 A12=-7.32920e-14
第13面 K=1.00000e+00
   A4 = 2.69977e-05 A6 = 2.93612e-07 A8 =-3.82736e-09
   A10= 0.00000e+00 A12= 0.00000e+00
第17面 K=1.00000e+00
   A4 =-8.70020e-05 A6 =-1.11329e-08 A8 =-4.28635e-09
   A10=-1.69867e-11 A12= 0.00000e+00
(Table 14)
[Aspheric data]
12th surface K=1.00000e+00
A4 = 2.55005e-05 A6 = 2.68082e-07 A8 = -4.15521e-09
A10 = 1.91843e-11 A12 = -7.32920e-14
13th surface K=1.00000e+00
A4 = 2.69977e-05 A6 = 2.93612e-07 A8 = -3.82736e-09
A10 = 0.00000e+00 A12 = 0.00000e+00
17th surface K=1.00000e+00
A4 = -8.70020e-05 A6 = -1.11329e-08 A8 = -4.28635e-09
A10=-1.69867e-11 A12= 0.00000e+00
 この光学系OL5において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔D6、及び、第2レンズ群G2とフィルター群FLとの軸上空気間隔D19は、合焦に際して変化する。次の表15に、無限遠合焦時及び近距離合焦時における可変間隔を示す。 In this optical system OL5, an axial air space D6 between the first lens group G1 and the second lens group G2 and an axial air space D19 between the second lens group G2 and the filter group FL change upon focusing. . Table 15 below shows the variable spacing for infinity focus and short distance focus.
(表15)
     無限遠    近距離
D0    ∞     168.61
β     -      -0.1500
f     24.28     -
D6    8.511     4.746
D19   10.813    14.578
(Table 15)
Infinity Close D0 ∞ 168.61
β - -0.1500
f24.28 -
D6 8.511 4.746
D19 10.813 14.578
 この光学系OL5の無限遠合焦時及び近距離合焦時における球面収差図、非点収差図、歪曲収差図、倍率色収差図及びコマ収差図の諸収差図を図10に示す。これらの各収差図より、この光学系OL5は諸収差が良好に補正されていることがわかる。 FIG. 10 shows spherical aberration diagrams, astigmatism diagrams, distortion aberration diagrams, magnification chromatic aberration diagrams, and coma aberration diagrams of this optical system OL5 when focusing on infinity and when focusing on a short distance. From these aberration diagrams, it can be seen that the various aberrations of the optical system OL5 are well corrected.
[条件式対応値]
 第1実施例~第5実施例における条件式(1)~(12)の対応値を以下の表16に示す。
[Value corresponding to conditional expression]
Table 16 below shows the corresponding values of conditional expressions (1) to (12) in the first to fifth embodiments.
(表16)
(1)LA/LB
(2)LAS/LAB
(3)LNRL/LB
(4)R2NR/Bfa
(5)LNFL/LB
(6)R1NF/Bfa
(7)(R1NF+R2NR)/(R1NF-R2NR)
(8)fNF/fNR
(9)fN1/fNL
(10)LASI/LAB
(11)LASL/LAB
(12)fB/f

     第1実施例 第2実施例 第3実施例 第4実施例 第5実施例
f     18.663   24.208   23.987   24.645   24.278
fB    19.882   25.239   26.058   33.313   28.463
fNR   -22.746   -33.387   -33.640   -39.597   -33.066
fNF   -11.895   -14.814   -17.895   -18.325   -21.138
fN1   -29.572   -41.054   -57.817   -63.929   -38.152
fNL   -64.585   -52.138   -89.777   -84.301   -94.584
LA     6.839    4.591    5.107    5.556    4.404
LB    25.931   23.667   23.493   22.623   22.071
LAB   36.809   35.903   37.002   36.988   36.587
LAS    9.000    6.424    6.716    6.556    6.005
LASI  15.563   15.351   12.445   13.667   14.068
LASL   1.970    1.800    0.000    1.200    1.200
Bfa   13.593   13.551   12.445   12.467   12.868
LNRL   7.173    7.068    7.363    5.237    4.377
R2NR  28.222   14.306   16.623   23.507   22.000
LNFL  22.496   23.667   23.493   22.623   22.071
R1NF  -17.745   -12.840   -11.098   -10.066   -10.351

(1)    0.264    0.194    0.217    0.246    0.200
(2)    0.245    0.179    0.182    0.177    0.164
(3)    0.277    0.299    0.313    0.231    0.198
(4)    2.076    1.056    1.336    1.886    1.710
(5)    0.868    1.000    1.000    1.000    1.000
(6)   -1.305   -0.948   -0.892   -0.807   -0.804
(7)   -0.228   -0.054   -0.199   -0.400   -0.360
(8)    0.523    0.444    0.532    0.463    0.639
(9)    0.458    0.787    0.644    0.758    0.403
(10)   0.423    0.428    0.336    0.369    0.385
(11)   0.054    0.050    0.000    0.032    0.033
(12)   1.065    1.043    1.086    1.352    1.172
(Table 16)
(1) LA/LB
(2) LAS/LAB
(3) LNRL/LB
(4) R2NR/Bfa
(5) LNFL/LB
(6) R1NF/Bfa
(7) (R1NF+R2NR)/(R1NF-R2NR)
(8) fNF/fNR
(9) fN1/fNL
(10) LASI/LAB
(11) LASL/LAB
(12) fB/f

1st embodiment 2nd embodiment 3rd embodiment 4th embodiment 5th embodiment f 18.663 24.208 23.987 24.645 24.278
fB 19.882 25.239 26.058 33.313 28.463
fNR -22.746 -33.387 -33.640 -39.597 -33.066
fNF -11.895 -14.814 -17.895 -18.325 -21.138
fN1 -29.572 -41.054 -57.817 -63.929 -38.152
fNL -64.585 -52.138 -89.777 -84.301 -94.584
LA 6.839 4.591 5.107 5.556 4.404
LB 25.931 23.667 23.493 22.623 22.071
LAB 36.809 35.903 37.002 36.988 36.587
LAS 9.000 6.424 6.716 6.556 6.005
LASI 15.563 15.351 12.445 13.667 14.068
LASL 1.970 1.800 0.000 1.200 1.200
Bfa 13.593 13.551 12.445 12.467 12.868
LNRL 7.173 7.068 7.363 5.237 4.377
R2NR 28.222 14.306 16.623 23.507 22.000
LNFL 22.496 23.667 23.493 22.623 22.071
R1NF -17.745 -12.840 -11.098 -10.066 -10.351

(1) 0.264 0.194 0.217 0.246 0.200
(2) 0.245 0.179 0.182 0.177 0.164
(3) 0.277 0.299 0.313 0.231 0.198
(4) 2.076 1.056 1.336 1.886 1.710
(5) 0.868 1.000 1.000 1.000 1.000
(6) -1.305 -0.948 -0.892 -0.807 -0.804
(7) -0.228 -0.054 -0.199 -0.400 -0.360
(8) 0.523 0.444 0.532 0.463 0.639
(9) 0.458 0.787 0.644 0.758 0.403
(10) 0.423 0.428 0.336 0.369 0.385
(11) 0.054 0.050 0.000 0.032 0.033
(12) 1.065 1.043 1.086 1.352 1.172
 また、以下に記載の内容は、光学性能を損なわない範囲で適宜採用可能である。 In addition, the contents described below can be appropriately adopted within a range that does not impair the optical performance.
 本実施形態では、2群又は3群構成の光学系OLを示したが、以上の構成条件等は、4群、5群等の他の群構成にも適用可能である。また、最も物体側にレンズまたはレンズ群を追加した構成や、最も像側にレンズまたはレンズ群を追加した構成でも構わない。具体的には、最も像側に、変倍時又は合焦時に像面に対する位置を固定されたレンズ群を追加した構成が考えられる。また、レンズ群とは、変倍時又は合焦時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。また、レンズ成分とは、単レンズ又は複数のレンズが接合された接合レンズをいう。 In this embodiment, an optical system OL having a two-group or three-group configuration is shown, but the above configuration conditions and the like are also applicable to other group configurations such as a four-group configuration and a five-group configuration. Also, a configuration in which a lens or lens group is added closest to the object side, or a configuration in which a lens or lens group is added closest to the image side may be used. Specifically, a configuration is conceivable in which a lens group, which is positioned closest to the image side and has a fixed position with respect to the image plane during zooming or focusing, is added. Also, a lens group refers to a portion having at least one lens separated by an air gap that changes during zooming or focusing. A lens component refers to a single lens or a cemented lens in which a plurality of lenses are cemented together.
 また、単独または複数のレンズ群、または部分レンズ群を光軸方向に移動させて、無限遠物体から近距離物体への合焦を行う合焦群としても良い。この場合、合焦群はオートフォーカスにも適用でき、オートフォーカス用の(超音波モータ等の)モータ駆動にも適している。特に、第2レンズ群G2を合焦群とし、その他のレンズは合焦時に像面に対する位置を固定とするのが好ましいが、光学系OL全体を光軸方向に移動させて合焦するようにしてもよい。モータにかかる負荷を考慮すると、合焦群は単レンズから構成するのが好ましい。 Also, a single lens group, a plurality of lens groups, or a partial lens group may be moved in the optical axis direction to serve as a focusing group for focusing from an object at infinity to an object at a short distance. In this case, the focusing group can also be applied to autofocus, and is suitable for driving a motor (such as an ultrasonic motor) for autofocus. In particular, it is preferable to use the second lens group G2 as the focusing group and fix the positions of the other lenses with respect to the image plane when focusing. may Considering the load on the motor, it is preferable that the focusing group consist of a single lens.
 また、レンズ群または部分レンズ群を光軸に直交方向の変位成分を持つように移動させ、または、光軸を含む面内方向に回転移動(揺動)させて、手振れによって生じる像ブレを補正する防振群としてもよい。特に、第1レンズ群G1もしくは第2レンズ群G2の少なくとも一部を防振群とするのが好ましい。 In addition, the lens group or partial lens group is moved so as to have a displacement component in the direction perpendicular to the optical axis, or rotated (oscillated) in the in-plane direction including the optical axis to correct image blur caused by camera shake. It is good also as a vibration-proof group which carries out. In particular, it is preferable to use at least part of the first lens group G1 or the second lens group G2 as a vibration reduction group.
 また、レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工及び組立調整が容易になり、加工及び組立調整の誤差による光学性能の劣化を防げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしてもよい。 Also, the lens surface may be formed as a spherical surface, a flat surface, or an aspherical surface. If the lens surface is spherical or flat, it is preferable because it facilitates lens processing and assembly adjustment and prevents deterioration of optical performance due to errors in processing and assembly adjustment. Also, even if the image plane is deviated, there is little deterioration in rendering performance, which is preferable. If the lens surface is aspherical, the aspherical surface can be ground aspherical, glass-molded aspherical, which is formed into an aspherical shape from glass, or composite aspherical, which is formed into an aspherical shape from resin on the surface of glass. Any aspheric surface may be used. Further, the lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
 開口絞りSは、第1レンズ群G1と第2レンズ群G2との間に配置されるのが好ましいが、開口絞りとしての部材を設けずに、レンズの枠でその役割を代用してもよい。 The aperture stop S is preferably arranged between the first lens group G1 and the second lens group G2, but a lens frame may be used instead of providing a member as the aperture stop. .
 さらに、各レンズ面には、フレアやゴーストを軽減し高コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施してもよい。 In addition, each lens surface may be coated with an antireflection film that has high transmittance over a wide wavelength range in order to reduce flare and ghost and achieve high contrast and high optical performance.
1 カメラ(光学機器)  OS(OS1~OS5) 光学系
GA 前群  GB 後群  S 絞り(開口絞り)
1 camera (optical device) OS (OS1 to OS5) optical system GA front group GB rear group S diaphragm (aperture diaphragm)

Claims (14)

  1.  物体側から順に、
     前群と、
     絞りと、
     正の屈折力を有する後群と、を有し、
     次式の条件を満足する光学系。
    0.100 < LA/LB < 0.400
     但し、
     LA:無限遠合焦時の前記前群の最も物体側のレンズ面から最も像側のレンズ面までの光軸上の距離
     LB:無限遠合焦時の前記後群の最も物体側のレンズ面から最も像側のレンズ面までの光軸上の距離
    From the object side,
    front group;
    Aperture and
    a rear group having positive refractive power,
    An optical system that satisfies the following conditions.
    0.100 < LA/LB < 0.400
    however,
    LA: Distance on the optical axis from the most object-side lens surface of the front group to the most image-side lens surface when focusing on infinity LB: The most object-side lens surface of the rear group when focusing on infinity to the lens surface closest to the image side on the optical axis
  2.  次式の条件を満足する請求項1に記載の光学系。
    0.070 < LAS/LAB < 0.300
     但し、
     LAS:無限遠合焦時の前記前群の最も物体側のレンズ面から前記絞りまでの光軸上の距離
     LAB:無限遠合焦時の前記前群の最も物体側のレンズ面から前記後群の最も像側のレンズ面までの光軸上の距離
    2. The optical system according to claim 1, wherein the following condition is satisfied.
    0.070<LAS/LAB<0.300
    however,
    LAS: Distance on the optical axis from the most object-side lens surface of the front group to the stop when focusing on infinity LAB: Distance from the most object-side lens surface of the front group to the rear group when focusing on infinity distance on the optical axis to the lens surface closest to the image side of
  3.  前記後群は、次式の条件を満足する負レンズNRを有する請求項1または2に記載の光学系。
    0.000 < LNRL/LB < 0.400
    0.800 < R2NR/Bfa < 3.000
     但し、
     LB:無限遠合焦時の前記後群の最も物体側のレンズ面から最も像側のレンズ面までの光軸上の距離
     LNRL:無限遠合焦時の前記負レンズNRの像側のレンズ面から前記後群の最も像側のレンズ面までの光軸上の距離
     R2NR:前記負レンズNRの像側のレンズ面の曲率半径
     Bfa:無限遠合焦時の前記光学系のバックフォーカス(空気換算長)
    3. The optical system according to claim 1, wherein said rear group has a negative lens NR satisfying the following condition.
    0.000 < LNRL/LB < 0.400
    0.800<R2NR/Bfa<3.000
    however,
    LB: distance on the optical axis from the most object-side lens surface of the rear group to the most image-side lens surface when focusing on infinity LNRL: the image-side lens surface of the negative lens NR when focusing on infinity to the lens surface of the rear group closest to the image side R2NR: the radius of curvature of the image side lens surface of the negative lens NR Bfa: the back focus of the optical system when focusing on infinity (air conversion long)
  4.  前記後群は、次式の条件を満足する負レンズNFを有する請求項1~3のいずれか一項に記載の光学系。
    0.600 < LNFL/LB < 1.000
    0.500 < (-R1NF)/Bfa < 3.000
     但し、
     LB:無限遠合焦時の前記後群の最も物体側のレンズ面から最も像側のレンズ面までの光軸上の距離
     LNFL:無限遠合焦時の前記負レンズNFの物体側のレンズ面から前記後群の最も像側のレンズ面までの光軸上の距離
     R1NF:前記負レンズNFの物体側のレンズ面の曲率半径
     Bfa:無限遠合焦時の前記光学系のバックフォーカス(空気換算長)
    The optical system according to any one of claims 1 to 3, wherein the rear group has a negative lens NF that satisfies the following condition.
    0.600 < LNFL/LB < 1.000
    0.500 < (-R1NF)/Bfa < 3.000
    however,
    LB: distance on the optical axis from the most object-side lens surface of the rear group to the most image-side lens surface when focusing on infinity LNFL: the object-side lens surface of the negative lens NF when focusing on infinity to the lens surface of the rear group closest to the image side R1NF: Radius of curvature of the object-side lens surface of the negative lens NF Bfa: Back focus of the optical system when focusing on infinity (converted to air long)
  5.  前記後群は、
     次式の条件を満足する負レンズのうち、最も屈折力が大きい負レンズである負レンズNRと、
     次式の条件を満足する負レンズのうち、最も屈折力が大きい負レンズである負レンズNFと、
     を有する請求項1~4のいずれか一項に記載の光学系。
    0.000 < LNRL/LB < 0.400
    0.800 < R2NR/Bfa < 3.000
    0.600 < LNFL/LB < 1.000
    0.500 < (-R1NF)/Bfa < 3.000
     但し、
     LB:無限遠合焦時の前記後群の最も物体側のレンズ面から最も像側のレンズ面までの光軸上の距離
     LNRL:無限遠合焦時の前記負レンズNRの像側のレンズ面から前記後群の最も像側のレンズ面までの光軸上の距離
     R2NR:前記負レンズNRの像側のレンズ面の曲率半径
     LNFL:無限遠合焦時の前記負レンズNFの物体側のレンズ面から前記後群の最も像側のレンズ面までの光軸上の距離
     R1NF:前記負レンズNFの物体側のレンズ面の曲率半径
     Bfa:無限遠合焦時の前記光学系のバックフォーカス(空気換算長)
    The rear group is
    a negative lens NR which is a negative lens having the largest refractive power among negative lenses satisfying the following condition;
    a negative lens NF which is a negative lens having the largest refractive power among the negative lenses satisfying the conditions of the following formula;
    The optical system according to any one of claims 1 to 4.
    0.000 < LNRL/LB < 0.400
    0.800<R2NR/Bfa<3.000
    0.600 < LNFL/LB < 1.000
    0.500 < (-R1NF)/Bfa < 3.000
    however,
    LB: distance on the optical axis from the most object-side lens surface of the rear group to the most image-side lens surface when focusing on infinity LNRL: the image-side lens surface of the negative lens NR when focusing on infinity to the most image-side lens surface of the rear group R2NR: radius of curvature of the image-side lens surface of the negative lens NR LNFL: object-side lens of the negative lens NF during focusing at infinity R1NF: Radius of curvature of the object-side lens surface of the negative lens NF Bfa: Back focus of the optical system when focusing on infinity (air conversion length)
  6.  次式の条件を満足する請求項5に記載の光学系。
    -0.800<(R1NF+R2NR)/(R1NF-R2NR)<0.800
     但し、
     R1NF:前記負レンズNFの物体側のレンズ面の曲率半径
     R2NR:前記負レンズNRの像側のレンズ面の曲率半径
    6. The optical system according to claim 5, which satisfies the following condition.
    -0.800<(R1NF+R2NR)/(R1NF-R2NR)<0.800
    however,
    R1NF: radius of curvature of the object-side lens surface of the negative lens NF R2NR: radius of curvature of the image-side lens surface of the negative lens NR
  7.  次式の条件を満足する請求項5または6に記載の光学系。
    0.200 < fNF/fNR < 1.200
     但し、
     fNF:前記負レンズNFの焦点距離
     fNR:前記負レンズNRの焦点距離
    7. The optical system according to claim 5, which satisfies the following condition.
    0.200 < fNF/fNR < 1.200
    however,
    fNF: focal length of the negative lens NF fNR: focal length of the negative lens NR
  8.  前記後群は、前記負レンズNFと前記負レンズNRとの間に、少なくとも2枚の正レンズを有する請求項5~7のいずれか一項に記載の光学系。 The optical system according to any one of claims 5 to 7, wherein the rear group has at least two positive lenses between the negative lens NF and the negative lens NR.
  9.  前記前群は、少なくとも1枚の負レンズN1を有し、
     前記後群は、前記負レンズNRの像側に少なくとも1枚の負レンズNLを有し、
     次式の条件を満足する請求項5~8のいずれか一項に記載の光学系。
    0.300 < fN1/fNL < 1.200
     但し、
     fN1:前記負レンズN1の焦点距離
     fNL:前記負レンズNLの焦点距離
    The front group has at least one negative lens N1,
    The rear group has at least one negative lens NL on the image side of the negative lens NR,
    9. The optical system according to any one of claims 5 to 8, which satisfies the following formula.
    0.300 < fN1/fNL < 1.200
    however,
    fN1: focal length of the negative lens N1 fNL: focal length of the negative lens NL
  10.  前記後群は、非球面レンズを有し、
     次式の条件を満足する請求項1~9のいずれか一項に記載の光学系。
    0.100 < LASI/LAB < 0.600
     但し、
     LASI:無限遠合焦時の、前記後群内の最も像側に配置された非球面から像面までの光軸上の距離
     LAB:無限遠合焦時の前記前群の最も物体側のレンズ面から前記後群の最も像側のレンズ面までの光軸上の距離
    The rear group has an aspherical lens,
    10. The optical system according to any one of claims 1 to 9, which satisfies the following conditions.
    0.100 < LASI/LAB < 0.600
    however,
    LASI: Distance on the optical axis from the aspherical surface located closest to the image side in the rear group to the image plane when focused on infinity LAB: Lens closest to the object side in the front group when focused on infinity distance on the optical axis from the surface to the lens surface of the rear group closest to the image side
  11.  前記後群は、非球面レンズを有し、
     次式の条件を満足する請求項1~10のいずれか一項に記載の光学系。
    0.000 < LASL/LAB < 0.150
     但し、
     LASL:無限遠合焦時の、前記後群内の最も像側に配置された非球面から前記後群の最も像側のレンズ面までの光軸上の距離
     LAB:無限遠合焦時の前記前群の最も物体側のレンズ面から前記後群の最も像側のレンズ面までの光軸上の距離
    The rear group has an aspherical lens,
    11. The optical system according to any one of claims 1 to 10, which satisfies the following formula.
    0.000 < LASL/LAB < 0.150
    however,
    LASL: The distance on the optical axis from the aspherical surface located closest to the image side in the rear group to the lens surface closest to the image side in the rear group when focusing on infinity LAB: Said when focusing on infinity Distance on the optical axis from the lens surface of the front group closest to the object side to the lens surface of the rear group closest to the image side
  12.  次式の条件を満足する請求項1~11のいずれか一項に記載の光学系。
    0.800 < fB/f < 1.600
     但し、
     fB:無限遠合焦時の前記後群の焦点距離
     f:無限遠合焦時の全系の焦点距離
    12. The optical system according to any one of claims 1 to 11, which satisfies the following formula.
    0.800 < fB/f < 1.600
    however,
    fB: focal length of the rear group when focused on infinity f: focal length of the entire system when focused on infinity
  13.  請求項1~12のいずれか一項に記載の光学系を有する光学機器。 An optical instrument comprising the optical system according to any one of claims 1 to 12.
  14.  物体側から順に、
     前群と、
     絞りと、
     正の屈折力を有する後群と、を次式の条件を満足するように配置する光学系の製造方法。
    0.100 < LA/LB < 0.400
     但し、
     LA:無限遠合焦時の前記前群の最も物体側のレンズ面から最も像側のレンズ面までの光軸上の距離
     LB:無限遠合焦時の前記後群の最も物体側のレンズ面から最も像側のレンズ面までの光軸上の距離
    From the object side,
    front group;
    Aperture and
    A method of manufacturing an optical system in which a rear group having a positive refractive power and a rear group are arranged so as to satisfy the following condition.
    0.100 < LA/LB < 0.400
    however,
    LA: Distance on the optical axis from the most object-side lens surface of the front group to the most image-side lens surface when focusing on infinity LB: The most object-side lens surface of the rear group when focusing on infinity to the lens surface closest to the image side on the optical axis
PCT/JP2022/007509 2021-04-09 2022-02-24 Optical system, optical device, and method for manufacturing optical system WO2022215380A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023512856A JPWO2022215380A1 (en) 2021-04-09 2022-02-24
CN202280017700.4A CN116964503A (en) 2021-04-09 2022-02-24 Optical system, optical device, and method for manufacturing optical system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021066362 2021-04-09
JP2021-066362 2021-04-09

Publications (1)

Publication Number Publication Date
WO2022215380A1 true WO2022215380A1 (en) 2022-10-13

Family

ID=83545825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007509 WO2022215380A1 (en) 2021-04-09 2022-02-24 Optical system, optical device, and method for manufacturing optical system

Country Status (3)

Country Link
JP (1) JPWO2022215380A1 (en)
CN (1) CN116964503A (en)
WO (1) WO2022215380A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012063676A (en) * 2010-09-17 2012-03-29 Fujifilm Corp Compact wide-angle lens and camera provided with the same
JP2013137377A (en) * 2011-12-28 2013-07-11 Sigma Corp Imaging optical system
JP2015034899A (en) * 2013-08-09 2015-02-19 株式会社タムロン Optical system and focusing method therefor
JP2016090725A (en) * 2014-10-31 2016-05-23 コニカミノルタ株式会社 Macro-lens, image capturing optical device, and digital device
JP2016173397A (en) * 2015-03-16 2016-09-29 富士フイルム株式会社 Imaging lens and imaging device
JP2018060003A (en) * 2016-10-04 2018-04-12 富士フイルム株式会社 Imaging lens and imaging apparatus
WO2018207238A1 (en) * 2017-05-08 2018-11-15 エスゼット ディージェイアイ テクノロジー カンパニー リミテッド Lens system, image pickup device, mobile body, and system
JP2019023693A (en) * 2017-07-24 2019-02-14 株式会社シグマ Large aperture ratio lens

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012063676A (en) * 2010-09-17 2012-03-29 Fujifilm Corp Compact wide-angle lens and camera provided with the same
JP2013137377A (en) * 2011-12-28 2013-07-11 Sigma Corp Imaging optical system
JP2015034899A (en) * 2013-08-09 2015-02-19 株式会社タムロン Optical system and focusing method therefor
JP2016090725A (en) * 2014-10-31 2016-05-23 コニカミノルタ株式会社 Macro-lens, image capturing optical device, and digital device
JP2016173397A (en) * 2015-03-16 2016-09-29 富士フイルム株式会社 Imaging lens and imaging device
JP2018060003A (en) * 2016-10-04 2018-04-12 富士フイルム株式会社 Imaging lens and imaging apparatus
WO2018207238A1 (en) * 2017-05-08 2018-11-15 エスゼット ディージェイアイ テクノロジー カンパニー リミテッド Lens system, image pickup device, mobile body, and system
JP2019023693A (en) * 2017-07-24 2019-02-14 株式会社シグマ Large aperture ratio lens

Also Published As

Publication number Publication date
CN116964503A (en) 2023-10-27
JPWO2022215380A1 (en) 2022-10-13

Similar Documents

Publication Publication Date Title
JP5104084B2 (en) Wide-angle lens, optical device, and wide-angle lens focusing method
JP5277624B2 (en) Macro lens, optical device, macro lens focusing method
JP7014253B2 (en) Variable magnification optics and optical equipment
JP6623651B2 (en) Fisheye zoom lens and optical equipment
WO2012141023A1 (en) Zoom lens, imaging apparatus, and manufacturing method for zoom lens
JP7129001B2 (en) Rear converter lens and optical equipment
JP5344291B2 (en) Zoom lens, optical device, and method of manufacturing zoom lens
JP5315755B2 (en) Optical system, optical system focusing method, and imaging apparatus having these
JP2018017857A (en) Optical system, optical instrument, and optical system manufacturing method
JP5510784B2 (en) Zoom lens, optical equipment
JP2008015433A (en) Zoom lens and optical apparatus having the same
JP7227572B2 (en) Variable magnification optical system and optical equipment
JP2024045767A (en) Optical system and optical device
JP6467804B2 (en) Zoom lens and optical apparatus
JP7254271B2 (en) Variable magnification optical system, optical equipment
JP2017156431A (en) Optical system, optical apparatus, and method for manufacturing optical system
JP2022176367A (en) Optical system and optical device
JP5212813B2 (en) Zoom lens, optical device including the same, and manufacturing method
JP6623652B2 (en) Fisheye zoom lens and optical equipment
JP5407365B2 (en) Variable magnification optical system, imaging device, and variable magnification optical system manufacturing method
JP2014074932A (en) Zoom lens system, imaging device and camera
JP6281200B2 (en) Variable magnification optical system and optical apparatus
WO2022215380A1 (en) Optical system, optical device, and method for manufacturing optical system
JP5407364B2 (en) Variable magnification optical system, imaging device, and variable magnification optical system manufacturing method
JP6938845B2 (en) Optical system and optical equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784365

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280017700.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023512856

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22784365

Country of ref document: EP

Kind code of ref document: A1