JP7171017B2 - Imaging optical system - Google Patents

Imaging optical system Download PDF

Info

Publication number
JP7171017B2
JP7171017B2 JP2018109697A JP2018109697A JP7171017B2 JP 7171017 B2 JP7171017 B2 JP 7171017B2 JP 2018109697 A JP2018109697 A JP 2018109697A JP 2018109697 A JP2018109697 A JP 2018109697A JP 7171017 B2 JP7171017 B2 JP 7171017B2
Authority
JP
Japan
Prior art keywords
lens group
infinity
lens
focal length
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018109697A
Other languages
Japanese (ja)
Other versions
JP2019211703A (en
Inventor
幸広 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sigma Inc
Original Assignee
Sigma Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sigma Inc filed Critical Sigma Inc
Priority to JP2018109697A priority Critical patent/JP7171017B2/en
Publication of JP2019211703A publication Critical patent/JP2019211703A/en
Application granted granted Critical
Publication of JP7171017B2 publication Critical patent/JP7171017B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はデジタルカメラ、ビデオカメラ等の撮像装置に用いられる、小型な、結像光学系に関するものである。 The present invention relates to a compact imaging optical system used in imaging devices such as digital cameras and video cameras.

近年、デジタルスチルカメラやビデオカメラ等の撮像装置が普及している。その中でレンズ交換式デジタルスチルカメラにおいては結像光学系と撮像素子の間にファインダー光学系へ光線を導くためのミラーが配置されていたが、撮像装置全体をより小型にするためにミラー部分を取り除き、結像光学系と撮像素子の間隔を短くした撮像装置がある。 In recent years, imaging devices such as digital still cameras and video cameras have become widespread. Among them, interchangeable lens type digital still cameras have a mirror between the image forming optical system and the image sensor to guide light rays to the viewfinder optical system. is removed and the distance between the imaging optical system and the imaging device is shortened.

その中で撮像素子は大型のものを使用しつつ撮像装置は小型化させたものが普及している。小型化された撮像装置に対して結像光学系も小型化が要求されている。撮像素子が大型化されることによりFナンバーの大きいレンズにおいても被写界深度を浅くし、背景のボカシ量を大きくする撮影が可能となっている。背景と被写体の距離が離れると背景のボカシ量が大きくなるため、撮影可能となる撮影距離は短くできることが好ましい。 Among them, a compact image pickup device using a large image pickup element is in widespread use. A downsizing of the imaging optical system is required for the downsizing of the imaging device. By increasing the size of the image pickup device, it is possible to shoot with a shallow depth of field and a large amount of blurring of the background even with a lens having a large f-number. As the distance between the background and the subject increases, the blurring amount of the background increases.

また撮像装置に広く使用される撮像素子は一般に撮像素子への入射角の大きな光に対して感度が低下するという特性を持つので、撮像素子への入射角が大きい場合、周辺光量の低下を招く。そのため、撮像素子への入射角、すなわち結像光学系からの光線射出角を抑えることにより、感度の低下を抑える必要がある。 In addition, the image sensors widely used in imaging devices generally have the characteristic of being less sensitive to light with a large angle of incidence on the image sensor. . Therefore, it is necessary to suppress the decrease in sensitivity by suppressing the angle of incidence on the imaging device, that is, the angle of emergence of light rays from the imaging optical system.

以上のことから、小型で、短い撮影距離で撮影可能な、光線射出角を抑えた、結像光学系が求められる。 In view of the above, there is a demand for an imaging optical system that is compact, capable of photographing at a short photographing distance, and that suppresses the ray exit angle.

上記に関する特許文献としては、例えば、特許文献1乃至5に開示されている。 Patent documents related to the above are disclosed in Patent Documents 1 to 5, for example.

特開2013-195587号公報JP 2013-195587 A WO2013/099211号公報WO2013/099211 特開2015-041012号公報JP 2015-041012 A 特開平06-222260号公報JP-A-06-222260 特開平09-236746号公報JP-A-09-236746

特許文献1と2は、フォーカシングに用いるレンズが周辺像高に対して大きい。そのためフォーカスレンズを動かすためのアクチュエータが大きくなる。撮像素子が大型である撮像装置において小型化が難しくなるため好ましくない。 In Patent Documents 1 and 2, the lens used for focusing is large with respect to the peripheral image height. Therefore, an actuator for moving the focus lens becomes large. This is not preferable because it is difficult to reduce the size of an imaging device having a large imaging element.

特許文献3は、フォーカシングに用いるレンズが1枚であり、撮影距離を短くした時の軸上色収差が大きくなるため好ましくない。 Japanese Patent Application Laid-Open No. 2002-200002 uses one lens for focusing, and is not preferable because longitudinal chromatic aberration increases when the photographing distance is shortened.

特許文献4と5は、大型の撮像素子に対応するイメージサークルと光学全長を短くすることでの小型化がなされている。しかし光線射出角が大きいため一般的な撮像素子に対しては不適である。 In Patent Documents 4 and 5, miniaturization is achieved by shortening the image circle corresponding to a large-sized imaging device and the overall optical length. However, it is not suitable for general imaging devices because of its large ray exit angle.

本発明はこのような状況に鑑みてなされたものであり、小型で、フォーカスレンズが軽量にすることができ、短い撮影距離で撮影可能な、光線射出角を抑えた、結像光学系を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and provides an imaging optical system that is compact, allows a focus lens to be made lightweight, enables shooting at a short shooting distance, and suppresses the light exit angle. intended to

前述の課題を解決するための第1の発明は、群G1、開口絞りS、正の屈折力を有する第2レンズ群G2、負の屈折力を有する第3レンズ群G3で構成され、無限遠物体から近距離物体への合焦の際に、前記第1レンズ群G1と前記第2レンズ群G2との間隔が縮まり、前記第2レンズ群G2と前記第3レンズ群G3との間隔が広がり、前記第2レンズ群G2が物体側へ移動する構成となっており、以下の条件式を満足することを特徴とする結像光学系。
(1) 1.40<f/f12<2.80
(2) 0.020<G3ΔPgFmax<0.300
(3) 1.80<G3nd
(4) 0.60<f1/f<6.50
(5) 2.0<LT/(Ymax)<3.10
f:無限遠合焦状態における全系の焦点距離
f12:無限遠合焦状態における前記第1レンズ群G1と前記第2レンズ群G2の合成焦点距離
G3ΔPgFmax:前記第3レンズ群G3の正レンズのうち、最も大きいΔPgFの値
ΔPgF=PgF-0.64833+0.00180νd:g、F線間での異常部分分散性
PgF=(ng-nF)/(nF-nC):g、F線間における部分分散比
ng:g線(波長λ=435.84nm)に対する屈折率
nF:F線(波長λ=486.13nm)に対する屈折率
nC:C線(波長λ=656.27nm)に対する屈折率
G3nd:前記第3レンズ群G3の正レンズのうち、最も大きいd線(波長λ=587.56)に対する屈折率
f1:前記第1レンズ群G1の焦点距離
LT:無限遠合焦状態における前記第1レンズ群G1の最も物体側の面から像面までの面間隔
Ymax:最大像高

第2の発明は、物体側から順に、正の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2、負の屈折力を有する第3レンズ群G3で構成され、無限遠物体から近距離物体への合焦の際に、前記第1レンズ群G1と前記第2レンズ群G2との間隔が縮まり、前記第2レンズ群G2と前記第3レンズ群G3との間隔が広がり、前記第2レンズ群G2が物体側へ移動する構成となっており、以下の条件式を満足することを特徴とする結像光学系。
(1) 1.40<f/f12<2.80
(2) 0.020<G3ΔPgFmax<0.300
(3) 1.80<G3nd
(4) 0.60<f1/f<6.50
(8) 0.30<|f3/f|<1.40
f:無限遠合焦状態における全系の焦点距離
f12:無限遠合焦状態における前記第1レンズ群G1と前記第2レンズ群G2の合成焦点距離
G3ΔPgFmax:前記第3レンズ群G3の正レンズのうち、最も大きいΔPgFの値
ΔPgF=PgF-0.64833+0.00180νd:g、F線間での異常部分分散性
PgF=(ng-nF)/(nF-nC):g、F線間における部分分散比
ng:g線(波長λ=435.84nm)に対する屈折率
nF:F線(波長λ=486.13nm)に対する屈折率
nC:C線(波長λ=656.27nm)に対する屈折率
G3nd:前記第3レンズ群G3の正レンズのうち、最も大きいd線(波長λ=587.56)に対する屈折率
f1:前記第1レンズ群G1の焦点距離
f3:前記第3レンズ群G3の焦点距離

第3の発明は、物体側から順に、正の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2、負の屈折力を有する第3レンズ群G3で構成され、無限遠物体から近距離物体への合焦の際に、前記第1レンズ群G1と前記第2レンズ群G2との間隔が縮まり、前記第2レンズ群G2と前記第3レンズ群G3との間隔が広がり、前記第2レンズ群G2が物体側へ移動する構成となっており、以下の条件式を満足することを特徴とする結像光学系。
(1) 1.40<f/f12<2.80
(2) 0.020<G3ΔPgFmax<0.300
(3) 1.80<G3nd
(4) 0.60<f1/f<6.50
(10) 1.60<|EXP/Ymax|<3.50
f:無限遠合焦状態における全系の焦点距離
f12:無限遠合焦状態における前記第1レンズ群G1と前記第2レンズ群G2の合成焦点距離
G3ΔPgFmax:前記第3レンズ群G3の正レンズのうち、最も大きいΔPgFの値
ΔPgF=PgF-0.64833+0.00180νd:g、F線間での異常部分分散性
PgF=(ng-nF)/(nF-nC):g、F線間における部分分散比
ng:g線(波長λ=435.84nm)に対する屈折率
nF:F線(波長λ=486.13nm)に対する屈折率
nC:C線(波長λ=656.27nm)に対する屈折率
G3nd:前記第3レンズ群G3の正レンズのうち、最も大きいd線(波長λ=587.56)に対する屈折率
f1:前記第1レンズ群G1の焦点距離
EXP :無限遠合焦状態における射出瞳位置から像面までの距離
Ymax:最大像高
A first invention for solving the above-mentioned problem is composed of a group G1, an aperture stop S, a second lens group G2 having positive refractive power, and a third lens group G3 having negative refractive power, and is configured to focus at infinity. During focusing from an object to a close object, the distance between the first lens group G1 and the second lens group G2 is reduced, and the distance between the second lens group G2 and the third lens group G3 is widened. , wherein the second lens group G2 moves toward the object side, and the following conditional expression is satisfied.
(1) 1.40<f/f12<2.80
(2) 0.020<G3ΔPgFmax<0.300
(3) 1.80<G3nd
(4) 0.60<f1/f<6.50
(5) 2.0<LT/(Ymax)<3.10
f: the focal length of the entire system when focused on infinity f12: the combined focal length of the first lens group G1 and the second lens group G2 when focused on infinity G3ΔPgFmax: the focal length of the positive lens in the third lens group G3 Among them, the largest ΔPgF value ΔPgF = PgF - 0.64833 + 0.00180νd: g, anomalous partial dispersion between F lines PgF = (ng - nF) / (nF - nC): g, partial dispersion between F lines Ratio ng: refractive index for g-line (wavelength λ = 435.84 nm) nF: refractive index for F-line (wavelength λ = 486.13 nm) nC: refractive index for C-line (wavelength λ = 656.27 nm) G3nd: the above Refractive index f1 for the largest d-line (wavelength λ=587.56) among the positive lenses in the third lens group G3: Focal length LT of the first lens group G1: The first lens group G1 in the infinity focused state distance from the surface closest to the object side to the image plane of
Ymax: Maximum image height

The second invention comprises, in order from the object side, a first lens group G1 having positive refractive power, an aperture stop S, a second lens group G2 having positive refractive power, and a third lens group G3 having negative refractive power. When focusing from an infinity object to a short distance object, the distance between the first lens group G1 and the second lens group G2 is reduced, and the second lens group G2 and the third lens group An imaging optical system characterized by having a configuration in which the distance from G3 is widened and the second lens group G2 is moved toward the object side, and which satisfies the following conditional expression.
(1) 1.40<f/f12<2.80
(2) 0.020<G3ΔPgFmax<0.300
(3) 1.80<G3nd
(4) 0.60<f1/f<6.50
(8) 0.30<|f3/f|<1.40
f: the focal length of the entire system when focused on infinity f12: the combined focal length of the first lens group G1 and the second lens group G2 when focused on infinity G3ΔPgFmax: the focal length of the positive lens in the third lens group G3 Among them, the largest ΔPgF value ΔPgF = PgF - 0.64833 + 0.00180νd: g, anomalous partial dispersion between F lines PgF = (ng - nF) / (nF - nC): g, partial dispersion between F lines Ratio ng: refractive index for g-line (wavelength λ = 435.84 nm) nF: refractive index for F-line (wavelength λ = 486.13 nm) nC: refractive index for C-line (wavelength λ = 656.27 nm) G3nd: the above Refractive index f1 for the largest d-line (wavelength λ=587.56) among the positive lenses in the third lens group G3: focal length f3 of the first lens group G1: focal length of the third lens group G3

The third invention comprises, in order from the object side, a first lens group G1 having positive refractive power, an aperture stop S, a second lens group G2 having positive refractive power, and a third lens group G3 having negative refractive power. When focusing from an infinity object to a short distance object, the distance between the first lens group G1 and the second lens group G2 is reduced, and the second lens group G2 and the third lens group An imaging optical system characterized by having a configuration in which the distance from G3 is widened and the second lens group G2 is moved toward the object side, and which satisfies the following conditional expression.
(1) 1.40<f/f12<2.80
(2) 0.020<G3ΔPgFmax<0.300
(3) 1.80<G3nd
(4) 0.60<f1/f<6.50
(10) 1.60<|EXP/Ymax|<3.50
f: the focal length of the entire system when focused on infinity f12: the combined focal length of the first lens group G1 and the second lens group G2 when focused on infinity G3ΔPgFmax: the focal length of the positive lens in the third lens group G3 Among them, the largest ΔPgF value ΔPgF = PgF - 0.64833 + 0.00180νd: g, anomalous partial dispersion between F lines PgF = (ng - nF) / (nF - nC): g, partial dispersion between F lines Ratio ng: refractive index for g-line (wavelength λ = 435.84 nm) nF: refractive index for F-line (wavelength λ = 486.13 nm) nC: refractive index for C-line (wavelength λ = 656.27 nm) G3nd: the above Refractive index f1 for the largest d-line (wavelength λ=587.56) among the positive lenses in the third lens group G3: Focal length EXP of the first lens group G1: From the exit pupil position to the image plane when in focus at infinity distance to
Ymax: Maximum image height

第4の発明は、物体側から順に、正の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2、負の屈折力を有する第3レンズ群G3で構成され、無限遠物体から近距離物体への合焦の際に、前記第1レンズ群G1と前記第2レンズ群G2との間隔が縮まり、前記第2レンズ群G2と前記第3レンズ群G3との間隔が広がり、前記第2レンズ群G2が物体側へ移動する構成となっており、以下の条件式を満足することを特徴とする結像光学系。
(1) 1.40<f/f12<2.80
(5) 2.0<LT/(Ymax)<3.10
(6) 2.00<K2<5.00
(9’) 0.67≦((D1_2)*K2)/f<1.40
f:無限遠合焦状態における全系の焦点距離
f12:無限遠合焦状態における前記第1レンズ群G1と前記第2レンズ群G2の合成焦点距離
LT:無限遠合焦状態における前記第1レンズ群G1の最も物体側の面から像面までの面間隔
Ymax:最大像高
K2:無限遠合焦状態における前記第2レンズ群G2のフォーカス敏感度
K2=|Δdef/Δx|
=|(β3^2)*(1-β2^2)|
=|((f/f12)^2)*(1-(f12/f1)^2)|
Δdef:無限遠合焦状態における微小像面移動量
Δx:無限遠合焦状態における微小フォーカスレンズ移動量
β3:無限遠合焦状態における前記第3レンズ群G3の横倍率
β2:無限遠合焦状態における前記第2レンズ群G2の横倍率
f1:前記第1レンズ群G1の焦点距離
D1_2:無限合焦状態における前記第1レンズ群G1の最も像側の面と前記第2レンズ群G2の最も物体側の面の面間隔

第5の発明は、物体側から順に、正の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2、負の屈折力を有する第3レンズ群G3で構成され、
無限遠物体から近距離物体への合焦の際に、前記第1レンズ群G1と前記第2レンズ群G2との間隔が縮まり、前記第2レンズ群G2と前記第3レンズ群G3との間隔が広がり、前記第2レンズ群G2が物体側へ移動する構成となっており、
以下の条件式を満足することを特徴とする結像光学系。
(1) 1.40<f/f12<2.80
(2) 0.020<G3ΔPgFmax<0.300
(5) 2.0<LT/(Ymax)<3.10
(6) 2.00<K2<5.00
(9) 0.50<((D1_2)*K2)/f<1.40
f:無限遠合焦状態における全系の焦点距離
f12:無限遠合焦状態における前記第1レンズ群G1と前記第2レンズ群G2の合成焦点距離
G3ΔPgFmax:前記第3レンズ群G3の正レンズのうち、最も大きいΔPgFの値
ΔPgF=PgF-0.64833+0.00180νd:g、F線間での異常部分分散性
PgF=(ng-nF)/(nF-nC):g、F線間における部分分散比
ng:g線(波長λ=435.84nm)に対する屈折率
nF:F線(波長λ=486.13nm)に対する屈折率
nC:C線(波長λ=656.27nm)に対する屈折率
G3nd:前記第3レンズ群G3の正レンズのうち、最も大きいd線(波長λ=587.56)に対する屈折率
LT:無限遠合焦状態における前記第1レンズ群G1の最も物体側の面から像面までの面間隔
Ymax:最大像高
K2:無限遠合焦状態における前記第2レンズ群G2のフォーカス敏感度
K2=|Δdef/Δx|
=|(β3^2)*(1-β2^2)|
=|((f/f12)^2)*(1-(f12/f1)^2)|
Δdef:無限遠合焦状態における微小像面移動量
Δx:無限遠合焦状態における微小フォーカスレンズ移動量
β3:無限遠合焦状態における前記第3レンズ群G3の横倍率
β2:無限遠合焦状態における前記第2レンズ群G2の横倍率
f1:前記第1レンズ群G1の焦点距離
D1_2:無限合焦状態における前記第1レンズ群G1の最も像側の面と前記第2レンズ群G2の最も物体側の面の面間隔

第6の発明は、物体側から順に、正の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2、負の屈折力を有する第3レンズ群G3で構成され、無限遠物体から近距離物体への合焦の際に、前記第1レンズ群G1と前記第2レンズ群G2との間隔が縮まり、前記第2レンズ群G2と前記第3レンズ群G3との間隔が広がり、前記第2レンズ群G2が物体側へ移動する構成となっており、以下の条件式を満足することを特徴とする結像光学系。
(1) 1.40<f/f12<2.80
(3) 1.80<G3nd
(5) 2.0<LT/(Ymax)<3.10
(6) 2.00<K2<5.00
(9) 0.50<((D1_2)*K2)/f<1.40
f:無限遠合焦状態における全系の焦点距離
f12:無限遠合焦状態における前記第1レンズ群G1と前記第2レンズ群G2の合成焦点距離
G3nd:前記第3レンズ群G3の正レンズのうち、最も大きいd線(波長λ=587.56)に対する屈折率
LT:無限遠合焦状態における前記第1レンズ群G1の最も物体側の面から像面までの面間隔
Ymax:最大像高
K2:無限遠合焦状態における前記第2レンズ群G2のフォーカス敏感度
K2=|Δdef/Δx|
=|(β3^2)*(1-β2^2)|
=|((f/f12)^2)*(1-(f12/f1)^2)|
Δdef:無限遠合焦状態における微小像面移動量
Δx:無限遠合焦状態における微小フォーカスレンズ移動量
β3:無限遠合焦状態における前記第3レンズ群G3の横倍率
β2:無限遠合焦状態における前記第2レンズ群G2の横倍率
f1:前記第1レンズ群G1の焦点距離
D1_2:無限合焦状態における前記第1レンズ群G1の最も像側の面と前記第2レンズ群G2の最も物体側の面の面間隔

第7の発明は、物体側から順に、正の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2、負の屈折力を有する第3レンズ群G3で構成され、
無限遠物体から近距離物体への合焦の際に、前記第1レンズ群G1と前記第2レンズ群G2との間隔が縮まり、前記第2レンズ群G2と前記第3レンズ群G3との間隔が広がり、前記第2レンズ群G2が物体側へ移動する構成となっており、
以下の条件式を満足することを特徴とする結像光学系。
(1) 1.40<f/f12<2.80
(5) 2.0<LT/(Ymax)<3.10
(6) 2.00<K2<5.00
(9) 0.50<((D1_2)*K2)/f<1.40
(10’) 2.14<|EXP/Ymax|<3.50
f:無限遠合焦状態における全系の焦点距離
f12:無限遠合焦状態における前記第1レンズ群G1と前記第2レンズ群G2の合成焦点距離
LT:無限遠合焦状態における前記第1レンズ群G1の最も物体側の面から像面までの面間隔
Ymax:最大像高
K2:無限遠合焦状態における前記第2レンズ群G2のフォーカス敏感度
K2=|Δdef/Δx|
=|(β3^2)*(1-β2^2)|
=|((f/f12)^2)*(1-(f12/f1)^2)|
Δdef:無限遠合焦状態における微小像面移動量
Δx:無限遠合焦状態における微小フォーカスレンズ移動量
β3:無限遠合焦状態における前記第3レンズ群G3の横倍率
β2:無限遠合焦状態における前記第2レンズ群G2の横倍率
f1:前記第1レンズ群G1の焦点距離
D1_2:無限合焦状態における前記第1レンズ群G1の最も像側の面と前記第2レンズ群G2の最も物体側の面の面間隔
EXP :無限遠合焦状態における射出瞳位置から像面までの距離
A fourth aspect of the invention comprises, in order from the object side, a first lens group G1 having positive refractive power, an aperture diaphragm S, a second lens group G2 having positive refractive power, and a third lens group G3 having negative refractive power. When focusing from an infinity object to a short distance object, the distance between the first lens group G1 and the second lens group G2 is reduced, and the second lens group G2 and the third lens group An imaging optical system characterized by having a configuration in which the distance from G3 is widened and the second lens group G2 is moved toward the object side, and which satisfies the following conditional expression.
(1) 1.40<f/f12<2.80
(5) 2.0<LT/(Ymax)<3.10
(6) 2.00<K2<5.00
(9′) 0.67≦((D1_2)*K2)/f<1.40
f: the focal length of the entire system when focused on infinity f12: the combined focal length of the first lens group G1 and the second lens group G2 when focused on infinity LT: the first lens when focused on infinity Surface distance from the surface closest to the object side of the group G1 to the image plane
Ymax: Maximum image height
K2: focus sensitivity of the second lens group G2 in the infinity focused state K2=|Δdef/Δx|
=|(β3^2)*(1-β2^2)|
=|((f/f12)^2)*(1-(f12/f1)^2)|
Δdef: Small image plane movement amount in infinity focused state Δx: Small focus lens movement amount in infinity focused state β3: Lateral magnification of the third lens group G3 in infinity focused state β2: Infinity focused state Lateral magnification f1 of the second lens group G2 at : focal length D1_2 of the first lens group G1: the most image-side surface of the first lens group G1 and the most object of the second lens group G2 in an infinite focus state Spacing of side faces

A fifth aspect of the invention comprises, in order from the object side, a first lens group G1 having positive refractive power, an aperture diaphragm S, a second lens group G2 having positive refractive power, and a third lens group G3 having negative refractive power. consists of
During focusing from an infinity object to a close object, the distance between the first lens group G1 and the second lens group G2 is reduced, and the distance between the second lens group G2 and the third lens group G3 is reduced. spreads and the second lens group G2 moves toward the object side,
An imaging optical system characterized by satisfying the following conditional expression.
(1) 1.40<f/f12<2.80
(2) 0.020<G3ΔPgFmax<0.300
(5) 2.0<LT/(Ymax)<3.10
(6) 2.00<K2<5.00
(9) 0.50<((D1_2)*K2)/f<1.40
f: the focal length of the entire system when focused on infinity f12: the combined focal length of the first lens group G1 and the second lens group G2 when focused on infinity G3ΔPgFmax: the focal length of the positive lens in the third lens group G3 Among them, the largest ΔPgF value ΔPgF = PgF - 0.64833 + 0.00180νd: g, anomalous partial dispersion between F lines PgF = (ng - nF) / (nF - nC): g, partial dispersion between F lines Ratio ng: refractive index for g-line (wavelength λ = 435.84 nm) nF: refractive index for F-line (wavelength λ = 486.13 nm) nC: refractive index for C-line (wavelength λ = 656.27 nm) G3nd: the above Refractive index LT for the largest d-line (wavelength λ=587.56) among the positive lenses in the third lens group G3: the distance from the most object-side surface of the first lens group G1 to the image plane in the infinity focused state Surface spacing
Ymax: Maximum image height
K2: focus sensitivity of the second lens group G2 in the infinity focused state K2=|Δdef/Δx|
=|(β3^2)*(1-β2^2)|
=|((f/f12)^2)*(1-(f12/f1)^2)|
Δdef: Small image plane movement amount in infinity focused state Δx: Small focus lens movement amount in infinity focused state β3: Lateral magnification of the third lens group G3 in infinity focused state β2: Infinity focused state Lateral magnification f1 of the second lens group G2 at : focal length D1_2 of the first lens group G1: the most image-side surface of the first lens group G1 and the most object of the second lens group G2 in an infinite focus state Spacing of side faces

The sixth invention comprises, in order from the object side, a first lens group G1 having positive refractive power, an aperture diaphragm S, a second lens group G2 having positive refractive power, and a third lens group G3 having negative refractive power. When focusing from an infinity object to a short distance object, the distance between the first lens group G1 and the second lens group G2 is reduced, and the second lens group G2 and the third lens group An imaging optical system characterized by having a configuration in which the distance from G3 is widened and the second lens group G2 is moved toward the object side, and which satisfies the following conditional expression.
(1) 1.40<f/f12<2.80
(3) 1.80<G3nd
(5) 2.0<LT/(Ymax)<3.10
(6) 2.00<K2<5.00
(9) 0.50<((D1_2)*K2)/f<1.40
f: the focal length of the entire system when focused on infinity f12: the combined focal length of the first lens group G1 and the second lens group G2 when focused on infinity G3nd: the focal length of the positive lens in the third lens group G3 Refractive index LT for the largest d-line (wavelength λ=587.56): Surface distance from the most object-side surface of the first lens group G1 to the image plane when in focus at infinity
Ymax: Maximum image height
K2: focus sensitivity of the second lens group G2 in the infinity focused state K2=|Δdef/Δx|
=|(β3^2)*(1-β2^2)|
=|((f/f12)^2)*(1-(f12/f1)^2)|
Δdef: Small image plane movement amount in infinity focused state Δx: Small focus lens movement amount in infinity focused state β3: Lateral magnification of the third lens group G3 in infinity focused state β2: Infinity focused state Lateral magnification f1 of the second lens group G2 at : focal length D1_2 of the first lens group G1: the most image-side surface of the first lens group G1 and the most object of the second lens group G2 in an infinite focus state Spacing of side faces

The seventh invention comprises, in order from the object side, a first lens group G1 having positive refractive power, an aperture diaphragm S, a second lens group G2 having positive refractive power, and a third lens group G3 having negative refractive power. consists of
During focusing from an infinity object to a close object, the distance between the first lens group G1 and the second lens group G2 is reduced, and the distance between the second lens group G2 and the third lens group G3 is reduced. spreads and the second lens group G2 moves toward the object side,
An imaging optical system characterized by satisfying the following conditional expression.
(1) 1.40<f/f12<2.80
(5) 2.0<LT/(Ymax)<3.10
(6) 2.00<K2<5.00
(9) 0.50<((D1_2)*K2)/f<1.40
(10′) 2.14<|EXP/Ymax|<3.50
f: the focal length of the entire system when focused on infinity f12: the combined focal length of the first lens group G1 and the second lens group G2 when focused on infinity LT: the first lens when focused on infinity Surface distance from the surface closest to the object side of the group G1 to the image plane
Ymax: Maximum image height
K2: focus sensitivity of the second lens group G2 in the infinity focused state K2=|Δdef/Δx|
=|(β3^2)*(1-β2^2)|
=|((f/f12)^2)*(1-(f12/f1)^2)|
Δdef: Small image plane movement amount in infinity focused state Δx: Small focus lens movement amount in infinity focused state β3: Lateral magnification of the third lens group G3 in infinity focused state β2: Infinity focused state Lateral magnification f1 of the second lens group G2 at : focal length D1_2 of the first lens group G1: the most image-side surface of the first lens group G1 and the most object of the second lens group G2 in an infinite focus state Surface distance EXP of the side surface: Distance from the exit pupil position to the image plane when in focus at infinity

第8の発明は、物体側から順に、正の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2、負の屈折力を有する第3レンズ群G3で構成され、無限遠物体から近距離物体への合焦の際に、前記第1レンズ群G1と前記第2レンズ群G2との間隔が縮まり、前記第2レンズ群G2と前記第3レンズ群G3との間隔が広がり、前記第2レンズ群G2が物体側へ移動する構成となっており、以下の条件式を満足することを特徴とする結像光学系。
(1) 1.40<f/f12<2.80
(2) 0.020<G3ΔPgFmax<0.300
(3) 1.80<G3nd
(5) 2.0<LT/(Ymax)<3.10
f:無限遠合焦状態における全系の焦点距離
f12:無限遠合焦状態における前記第1レンズ群G1と前記第2レンズ群G2の合成焦点距離
G3ΔPgFmax:前記第3レンズ群G3の正レンズのうち、最も大きいΔPgFの値
ΔPgF=PgF-0.64833+0.00180νd:g、F線間での異常部分分散性
PgF=(ng-nF)/(nF-nC):g、F線間における部分分散比
ng:g線(波長λ=435.84nm)に対する屈折率
nF:F線(波長λ=486.13nm)に対する屈折率
nC:C線(波長λ=656.27nm)に対する屈折率
G3nd:前記第3レンズ群G3の正レンズのうち、最も大きいd線(波長λ=587.56)に対する屈折率
LT:無限遠合焦状態における前記第1レンズ群G1の最も物体側の面から像面までの面間隔
Ymax:最大像高
The eighth invention is composed of, in order from the object side, a first lens group G1 having positive refractive power, an aperture diaphragm S, a second lens group G2 having positive refractive power, and a third lens group G3 having negative refractive power. When focusing from an infinity object to a short distance object, the distance between the first lens group G1 and the second lens group G2 is reduced, and the second lens group G2 and the third lens group An imaging optical system characterized by having a configuration in which the distance from G3 is widened and the second lens group G2 is moved toward the object side, and which satisfies the following conditional expression.
(1) 1.40<f/f12<2.80
(2) 0.020<G3ΔPgFmax<0.300
(3) 1.80<G3nd
(5) 2.0<LT/(Ymax)<3.10
f: the focal length of the entire system when focused on infinity f12: the combined focal length of the first lens group G1 and the second lens group G2 when focused on infinity G3ΔPgFmax: the focal length of the positive lens in the third lens group G3 Among them, the largest ΔPgF value ΔPgF = PgF - 0.64833 + 0.00180νd: g, anomalous partial dispersion between F lines PgF = (ng - nF) / (nF - nC): g, partial dispersion between F lines Ratio ng: refractive index for g-line (wavelength λ = 435.84 nm) nF: refractive index for F-line (wavelength λ = 486.13 nm) nC: refractive index for C-line (wavelength λ = 656.27 nm) G3nd: the above Refractive index LT for the largest d-line (wavelength λ=587.56) among the positive lenses in the third lens group G3: the distance from the most object-side surface of the first lens group G1 to the image plane in the infinity focused state Spacing
Ymax: Maximum image height

第9の発明は、物体側から順に、正の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2、負の屈折力を有する第3レンズ群G3で構成され、無限遠物体から近距離物体への合焦の際に、前記第1レンズ群G1は像面に対して固定であり、前記第3レンズ群G3は像面に対して固定であり、前記第2レンズ群G2が物体側へ移動する構成となっており、以下の条件式を満足することを特徴とする結像光学系。
(1) 1.40<f/f12<2.80
(2) 0.020<G3ΔPgFmax<0.300
(5) 2.0<LT/(Ymax)<3.10
(6) 2.00<K2<5.00
f:無限遠合焦状態における全系の焦点距離
f12:無限遠合焦状態における前記第1レンズ群G1と前記第2レンズ群G2の合成焦点距離
G3ΔPgFmax:前記第3レンズ群G3の正レンズのうち、最も大きいΔPgFの値
ΔPgF=PgF-0.64833+0.00180νd:g、F線間での異常部分分散性
PgF=(ng-nF)/(nF-nC):g、F線間における部分分散比
ng:g線(波長λ=435.84nm)に対する屈折率
nF:F線(波長λ=486.13nm)に対する屈折率
nC:C線(波長λ=656.27nm)に対する屈折率
LT:無限遠合焦状態における前記第1レンズ群G1の最も物体側の面から像面までの面間隔
Ymax:最大像高
K2:無限遠合焦状態における前記第2レンズ群G2のフォーカス敏感度
K2=|Δdef/Δx|
=|(β3^2)*(1-β2^2)|
=|((f/f12)^2)*(1-(f12/f1)^2)|
Δdef:無限遠合焦状態における微小像面移動量
Δx:無限遠合焦状態における微小フォーカスレンズ移動量
β3:無限遠合焦状態における前記第3レンズ群Gの横倍率
β2:無限遠合焦状態における前記第2レンズ群G2の横倍率
f1:前記第1レンズ群G1の焦点距離
A ninth aspect of the invention comprises, in order from the object side, a first lens group G1 having positive refractive power, an aperture stop S, a second lens group G2 having positive refractive power, and a third lens group G3 having negative refractive power. The first lens group G1 is fixed with respect to the image plane, and the third lens group G3 is fixed with respect to the image plane when focusing from an infinite object to a short distance object. , wherein the second lens group G2 moves toward the object side, and the following conditional expression is satisfied.
(1) 1.40<f/f12<2.80
(2) 0.020<G3ΔPgFmax<0.300
(5) 2.0<LT/(Ymax)<3.10
(6) 2.00<K2<5.00
f: the focal length of the entire system when focused on infinity f12: the combined focal length of the first lens group G1 and the second lens group G2 when focused on infinity G3ΔPgFmax: the focal length of the positive lens in the third lens group G3 Among them, the largest ΔPgF value ΔPgF = PgF - 0.64833 + 0.00180νd: g, anomalous partial dispersion between F lines PgF = (ng - nF) / (nF - nC): g, partial dispersion between F lines Ratio ng: refractive index for g-line (wavelength λ = 435.84 nm) nF: refractive index for F-line (wavelength λ = 486.13 nm) nC: refractive index for C-line (wavelength λ = 656.27 nm) LT: infinity Surface distance from the most object side surface of the first lens group G1 to the image plane in the in-focus state
Ymax: Maximum image height
K2: focus sensitivity of the second lens group G2 in the infinity focused state K2=|Δdef/Δx|
=|(β3^2)*(1-β2^2)|
=|((f/f12)^2)*(1-(f12/f1)^2)|
Δdef: Small image plane movement amount in infinity focused state Δx: Small focus lens movement amount in infinity focused state β3: Lateral magnification of the third lens group G3 in infinity focused state β2: Infinity focused lateral magnification f1 of the second lens group G2 in the state: focal length of the first lens group G1

10の発明は、以下の条件を満足することを特徴とする第2の発明に記載の結像光学系。
(2) 0.020<G3ΔPgFmax<0.300
G3ΔPgFmax:前記第3レンズ群G3の正レンズのうち、最も大きいΔPgFの値
ΔPgF=PgF-0.64833+0.00180νd:g、F線間での異常部分分散性
PgF=(ng-nF)/(nF-nC):g、F線間における部分分散比
ng:g線(波長λ=435.84nm)に対する屈折率
nF:F線(波長λ=486.13nm)に対する屈折率
nC:C線(波長λ=656.27nm)に対する屈折率
G3nd:前記第3レンズ群G3の正レンズのうち、最も大きいd線(波長λ=587.56)に対する屈折率
A tenth invention is an imaging optical system according to the second invention, characterized by satisfying the following conditions.
(2) 0.020<G3ΔPgFmax<0.300
G3ΔPgFmax: the largest value of ΔPgF among the positive lenses in the third lens group G3 ΔPgF=PgF−0.64833+0.00180νd: g, abnormal partial dispersion between F lines PgF=(ng−nF)/(nF) -nC): g, partial dispersion ratio between F lines ng: refractive index for g line (wavelength λ = 435.84 nm) nF: refractive index for F line (wavelength λ = 486.13 nm) nC: C line (wavelength λ = 656.27 nm): refractive index for the largest d-line (wavelength λ = 587.56) among the positive lenses in the third lens group G3

11の発明は、以下の条件を満足することを特徴とする第2の発明、第4の発明、第5の発明のいずれかに記載の結像光学系。
(3) 1.80<G3nd
G3nd:前記第3レンズ群G3の正レンズのうち、最も大きいd線(波長λ=587.56)に対する屈折率
An eleventh invention is an imaging optical system according to any one of the second invention, the fourth invention, and the fifth invention, which satisfies the following conditions.
(3) 1.80<G3nd
G3nd: Refractive index for the largest d-line (wavelength λ=587.56) among the positive lenses in the third lens group G3

12の発明は、以下の条件を満足することを特徴とする第2の発明乃至第6の発明のいずれかに記載の結像光学系。
(4) 0.60<f1/f<6.50
f:無限遠合焦状態における全系の焦点距離
f1:前記第1レンズ群G1の焦点距離
A twelfth invention is an imaging optical system according to any one of the second to sixth inventions, characterized by satisfying the following conditions.
(4) 0.60<f1/f<6.50
f: focal length of the entire system when in focus at infinity f1: focal length of the first lens group G1

13の発明は、以下の条件を満足することを特徴とする第1の発明、第3の発明、第7の発明、第8の発明のいずれかに記載の結像光学系。
(6) 2.00<K2<5.00
K2:無限遠合焦状態における前記第2レンズ群G2のフォーカス敏感度
K2=|Δdef/Δx|
=|(β3^2)*(1-β2^2)|
=|((f/f12)^2)*(1-(f12/f1)^2)|
Δdef:無限遠合焦状態における微小像面移動量
Δx:無限遠合焦状態における微小フォーカスレンズ移動量
β3:無限遠合焦状態における前記第3レンズ群Gの横倍率
β2:無限遠合焦状態における前記第2レンズ群G2の横倍率
f:無限遠合焦状態における全系の焦点距離
f12:無限遠合焦状態における前記第1レンズ群G1と前記第2レンズ群G2の合成焦f1:前記第1レンズ群G1の焦点距離
A thirteenth invention is an imaging optical system according to any one of the first invention, the third invention, the seventh invention, and the eighth invention, which satisfies the following conditions.
(6) 2.00<K2<5.00
K2: focus sensitivity of the second lens group G2 in the infinity focused state K2=|Δdef/Δx|
=|(β3^2)*(1-β2^2)|
=|((f/f12)^2)*(1-(f12/f1)^2)|
Δdef: Small image plane movement amount in infinity focused state Δx: Small focus lens movement amount in infinity focused state β3: Lateral magnification of the third lens group G3 in infinity focused state β2: Infinity focused Lateral magnification f of the second lens group G2 in the state: focal length f12 of the entire system in the infinity focused state: combined focus f1 of the first lens group G1 and the second lens group G2 in the infinity focused state: Focal length of the first lens group G1

14の発明は、以下の条件を満足することを特徴とする第1の発明乃至第9の発明のいずれかに記載の結像光学系。
(7) 0.30<f2/f<0.95
f2:前記第2レンズ群G2の焦点距離
f:無限遠合焦状態における全系の焦点距離
A fourteenth invention is an imaging optical system according to any one of the first to ninth inventions, wherein the following conditions are satisfied.
(7) 0.30<f2/f<0.95
f2: focal length of the second lens group G2 f: focal length of the entire system when in focus at infinity

15の発明は、以下の条件を満足することを特徴とする第1の発明乃至第10の発明のいずれかに記載の結像光学系。
(8) 0.30<|f3/f|<1.40
f3:前記第3レンズ群G3の焦点距離
f:無限遠合焦状態における全系の焦点距離
A fifteenth invention is an imaging optical system according to any one of the first to tenth inventions, wherein the following conditions are satisfied.
(8) 0.30<|f3/f|<1.40
f3: focal length of the third lens group G3 f: focal length of the entire system when in focus at infinity

16の発明は、以下の条件を満足することを特徴とする第1の発明、第3の発明、第4の発明、第7の発明乃至第11の発明のいずれかに記載の結像光学系。
(9) 0.50<((D1_2)*K2)/f<1.40
D1_2:無限合焦状態における前記第1レンズ群G1の最も像側の面と前記第2レンズ群G2の最も物体側の面の面間隔
K2:無限遠合焦状態における前記第2レンズ群G2のフォーカス敏感度
K2=|Δdef/Δx|
=|(β3^2)*(1-β2^2)|
=|((f/f12)^2)*(1-(f12/f1)^2)|
Δdef:無限遠合焦状態における微小像面移動量
Δx:無限遠合焦状態における微小フォーカスレンズ移動量
β3:無限遠合焦状態における前記第3レンズ群Gの横倍率
β2:無限遠合焦状態における前記第2レンズ群G2の横倍率
f:無限遠合焦状態における全系の焦点距離
f1:前記第1レンズ群G1の焦点距離
f12:無限遠合焦状態における前記第1レンズ群G1と前記第2レンズ群G2の合成焦点距離
A sixteenth invention is an imaging optical system according to any one of the first invention, the third invention, the fourth invention, the seventh invention to the eleventh invention, wherein the following conditions are satisfied: system.
(9) 0.50<((D1_2)*K2)/f<1.40
D1_2: Surface distance between the surface closest to the image side of the first lens group G1 and the surface closest to the object side of the second lens group G2 in the infinity focused state K2: Distance of the second lens group G2 in the infinity focused state Focus sensitivity K2=|Δdef/Δx|
=|(β3^2)*(1-β2^2)|
=|((f/f12)^2)*(1-(f12/f1)^2)|
Δdef: Small image plane movement amount in infinity focused state Δx: Small focus lens movement amount in infinity focused state β3: Lateral magnification of the third lens group G3 in infinity focused state β2: Infinity focused Lateral magnification f of the second lens group G2 in the state: focal length f1 of the entire system in the infinity focused state: focal length f12 of the first lens group G1: the first lens group G1 in the infinity focused state Composite focal length of the second lens group G2

17の発明は、無限遠物体から近距離物体への合焦の際に、前記第1レンズ群G1は像面に対して固定であり、前記第3レンズ群G3は像面に対して固定である構成となることを特徴とする第1の発明乃至第3の発明、第5の発明乃至第12の発明のいずれかに記載の結像光学系。 In a seventeenth aspect of the invention, the first lens group G1 is fixed with respect to the image plane and the third lens group G3 is fixed with respect to the image plane when focusing from an infinity object to a short distance object. The imaging optical system according to any one of the first to third inventions and the fifth to twelfth inventions, characterized in that it has a configuration as follows.

18の発明は、前記開口絞りSは前記第1レンズ群G1の像側に隣接し合焦の際に光軸方向に固定とすることを特徴とする第1の発明乃至第13の発明のいずれかに記載の結像光学系。 An eighteenth invention is characterized in that the aperture stop S is adjacent to the image side of the first lens group G1 and is fixed in the optical axis direction during focusing. An imaging optical system according to any one of the above.

第19の発明は、以下の条件式を満足することを特徴とする第1の発明乃至第14の発明のいずれかに記載の結像光学系。
(10) 1.60<|EXP/Ymax|<3.50
EXP :無限遠合焦状態における射出瞳位置から像面までの距離
Ymax:最大像高
A nineteenth invention is an imaging optical system according to any one of the first to fourteenth inventions, wherein the following conditional expression is satisfied.
(10) 1.60<|EXP/Ymax|<3.50
EXP: Distance from the exit pupil position to the image plane when in focus at infinity
Ymax: Maximum image height

20の発明は、前記第1レンズ群G1は物体側より順に正レンズL1、負レンズL2からなり、全体で正の屈折力を有することを特徴とする第1の発明乃至第15の発明のいずれかに記載の結像光学系。 A twentieth invention is characterized in that the first lens group G1 consists of a positive lens L1 and a negative lens L2 in order from the object side, and has a positive refractive power as a whole. An imaging optical system according to any one of the above.

21の発明は、前記第2レンズ群G2は物体側より順に負レンズL3、正レンズL4、正レンズL5からなり、全体で正の屈折力を有することを特徴とする第1の発明乃至第16の発明のいずれかに記載の結像光学系。 A twenty -first invention is characterized in that the second lens group G2 consists of a negative lens L3, a positive lens L4, and a positive lens L5 in order from the object side, and has a positive refractive power as a whole. 16. An imaging optical system according to any one of the 16 inventions.

22の発明は、前記第3レンズ群G3は物体側より順に負レンズL6、負レンズL7、正レンズL8からなり、全体で負の屈折力を有することを特徴とする第1の発明乃至第17の発明のいずれかに記載の結像光学系。 A twenty -second invention is characterized in that the third lens group G3 consists of a negative lens L6, a negative lens L7 and a positive lens L8 in order from the object side, and has negative refractive power as a whole. 17. An imaging optical system according to any one of 17 inventions.

本発明は、小型で、フォーカスレンズが軽量にすることができ、短い撮影距離で撮影可能な、光線射出角を抑えた、結像光学系を提供することが可能となる。 The present invention makes it possible to provide an image-forming optical system that is compact, has a lightweight focus lens, is capable of photographing at a short photographing distance, and has a suppressed ray exit angle.

本発明の実施例1に係る無限遠合焦時のレンズ構成図である。FIG. 2 is a lens configuration diagram when focusing on infinity according to Example 1 of the present invention; 本発明の実施例1に係る無限遠合焦時の縦収差図である。FIG. 4 is a longitudinal aberration diagram when focusing on infinity according to Example 1 of the present invention; 本発明の実施例1に係る無限遠合焦時の横収差図である。FIG. 4 is a lateral aberration diagram during focusing at infinity according to Example 1 of the present invention; 本発明の実施例1に係る撮影距離240mmにおける縦収差図である。4 is a longitudinal aberration diagram at a shooting distance of 240 mm according to Example 1 of the present invention; FIG. 本発明の実施例1に係る撮影距離240mmにおける横収差図である。4 is a lateral aberration diagram at a shooting distance of 240 mm according to Example 1 of the present invention; FIG. 本発明の実施例2に係る無限遠合焦時のレンズ構成図である。FIG. 10 is a lens configuration diagram when focusing on infinity according to Example 2 of the present invention; 本発明の実施例2に係る無限遠合焦時の縦収差図である。FIG. 10 is a longitudinal aberration diagram when focusing on infinity according to Example 2 of the present invention; 本発明の実施例2に係る無限遠合焦時の横収差図である。FIG. 10 is a lateral aberration diagram when focusing on infinity according to Example 2 of the present invention; 本発明の実施例2に係る撮影距離240mmにおける縦収差図である。FIG. 10 is a longitudinal aberration diagram at a shooting distance of 240 mm according to Example 2 of the present invention; 本発明の実施例2に係る撮影距離240mmにおける横収差図である。FIG. 10 is a lateral aberration diagram at a shooting distance of 240 mm according to Example 2 of the present invention; 本発明の実施例3に係る無限遠合焦時のレンズ構成図である。It is a lens configuration diagram at the time of infinity focusing according to Example 3 of the present invention. 本発明の実施例3に係る無限遠合焦時の縦収差図である。FIG. 10 is a longitudinal aberration diagram during focusing at infinity according to Example 3 of the present invention; 本発明の実施例3に係る無限遠合焦時の横収差図である。FIG. 11 is a lateral aberration diagram at the time of focusing at infinity according to Example 3 of the present invention; 本発明の実施例3に係る撮影距離200mmにおける縦収差図である。FIG. 10 is a longitudinal aberration diagram at a shooting distance of 200 mm according to Example 3 of the present invention; 本発明の実施例3に係る撮影距離200mmにおける横収差図である。It is a lateral aberration diagram at a shooting distance of 200 mm according to Example 3 of the present invention. 本発明の実施例4に係る無限遠合焦時のレンズ構成図である。FIG. 11 is a lens configuration diagram when focusing on infinity according to Example 4 of the present invention; 本発明の実施例4に係る無限遠合焦時の縦収差図である。FIG. 11 is a longitudinal aberration diagram during focusing at infinity according to Example 4 of the present invention; 本発明の実施例4に係る無限遠合焦時の横収差図である。FIG. 11 is a lateral aberration diagram during focusing at infinity according to Example 4 of the present invention; 本発明の実施例4に係る撮影距離220mmにおける縦収差図である。FIG. 11 is a longitudinal aberration diagram at a shooting distance of 220 mm according to Example 4 of the present invention; 本発明の実施例4に係る撮影距離220mmにおける横収差図である。FIG. 10 is a lateral aberration diagram at a shooting distance of 220 mm according to Example 4 of the present invention; 本発明の実施例5に係る無限遠合焦時のレンズ構成図である。FIG. 11 is a lens configuration diagram when focusing on infinity according to Example 5 of the present invention; 本発明の実施例5に係る無限遠合焦時の縦収差図である。FIG. 11 is a longitudinal aberration diagram during focusing at infinity according to Example 5 of the present invention; 本発明の実施例5に係る無限遠合焦時の横収差図である。FIG. 11 is a lateral aberration diagram at the time of focusing on infinity according to Example 5 of the present invention; 本発明の実施例5に係る撮影距離210mmにおける縦収差図である。FIG. 10 is a longitudinal aberration diagram at a shooting distance of 210 mm according to Example 5 of the present invention; 本発明の実施例5に係る撮影距離210mmにおける横収差図である。FIG. 11 is a lateral aberration diagram at a shooting distance of 210 mm according to Example 5 of the present invention; 本発明の実施例6に係る無限遠合焦時のレンズ構成図である。FIG. 11 is a lens configuration diagram when focusing on infinity according to Example 6 of the present invention; 本発明の実施例6に係る無限遠合焦時の縦収差図である。FIG. 12 is a longitudinal aberration diagram during focusing at infinity according to Example 6 of the present invention; 本発明の実施例6に係る無限遠合焦時の横収差図である。FIG. 11 is a lateral aberration diagram during focusing at infinity according to Example 6 of the present invention; 本発明の実施例6に係る撮影距離260mmにおける縦収差図である。FIG. 10 is a longitudinal aberration diagram at a shooting distance of 260 mm according to Example 6 of the present invention; 本発明の実施例6に係る撮影距離260mmにおける横収差図である。FIG. 11 is a lateral aberration diagram at a shooting distance of 260 mm according to Example 6 of the present invention; 本発明の実施例7に係る無限遠合焦時のレンズ構成図である。FIG. 11 is a lens configuration diagram when focusing on infinity according to Example 7 of the present invention; 本発明の実施例7に係る無限遠合焦時の縦収差図である。FIG. 12 is a longitudinal aberration diagram during focusing at infinity according to Example 7 of the present invention; 本発明の実施例7に係る無限遠合焦時の横収差図である。FIG. 11 is a lateral aberration diagram at the time of focusing on infinity according to Example 7 of the present invention; 本発明の実施例7に係る撮影距離260mmにおける縦収差図である。FIG. 11 is a longitudinal aberration diagram at a shooting distance of 260 mm according to Example 7 of the present invention; 本発明の実施例7に係る撮影距離260mmにおける横収差図である。FIG. 11 is a lateral aberration diagram at a shooting distance of 260 mm according to Example 7 of the present invention; 本発明の実施例8に係る無限遠合焦時のレンズ構成図である。FIG. 12 is a lens configuration diagram when focusing on infinity according to Example 8 of the present invention; 本発明の実施例8に係る無限遠合焦時の縦収差図である。FIG. 12 is a longitudinal aberration diagram when focusing on infinity according to Example 8 of the present invention; 本発明の実施例8に係る無限遠合焦時の横収差図である。FIG. 12 is a lateral aberration diagram during focusing at infinity according to Example 8 of the present invention; 本発明の実施例8に係る撮影距離290mmにおける縦収差図である。FIG. 12 is a longitudinal aberration diagram at a shooting distance of 290 mm according to Example 8 of the present invention; 本発明の実施例8に係る撮影距離290mmにおける横収差図である。FIG. 12 is a lateral aberration diagram at a shooting distance of 290 mm according to Example 8 of the present invention; 本発明の実施例9に係る無限遠合焦時のレンズ構成図である。FIG. 20 is a lens configuration diagram when focusing on infinity according to Example 9 of the present invention; 本発明の実施例9に係る無限遠合焦時の縦収差図である。FIG. 12 is a longitudinal aberration diagram at the time of focusing at infinity according to Example 9 of the present invention; 本発明の実施例9に係る無限遠合焦時の横収差図である。FIG. 12 is a lateral aberration diagram at the time of focusing at infinity according to Example 9 of the present invention; 本発明の実施例9に係る撮影距離240mmにおける縦収差図である。FIG. 12 is a longitudinal aberration diagram at a shooting distance of 240 mm according to Example 9 of the present invention; 本発明の実施例9に係る撮影距離240mmにおける横収差図である。FIG. 12 is a lateral aberration diagram at a shooting distance of 240 mm according to Example 9 of the present invention; 本発明の実施例9に係る撮影距離150mmにおける縦収差図である。FIG. 12 is a longitudinal aberration diagram at a shooting distance of 150 mm according to Example 9 of the present invention; 本発明の実施例9に係る撮影距離150mmにおける横収差図である。FIG. 20 is a lateral aberration diagram at a shooting distance of 150 mm according to Example 9 of the present invention; 本発明の実施例10に係る無限遠合焦時のレンズ構成図である。FIG. 20 is a lens configuration diagram when focusing on infinity according to Example 10 of the present invention; 本発明の実施例10に係る無限遠合焦時の縦収差図である。FIG. 20 is a longitudinal aberration diagram when focusing on infinity according to Example 10 of the present invention; 本発明の実施例10に係る無限遠合焦時の横収差図である。FIG. 20 is a lateral aberration diagram at the time of focusing at infinity according to Example 10 of the present invention; 本発明の実施例10に係る撮影距離290mmにおける縦収差図である。FIG. 12 is a longitudinal aberration diagram at a shooting distance of 290 mm according to Example 10 of the present invention; 本発明の実施例10に係る撮影距離290mmにおける横収差図である。FIG. 11 is a lateral aberration diagram at a shooting distance of 290 mm according to Example 10 of the present invention;

物体側から順に、正の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2、負の屈折力を有する第3レンズ群G3で構成され、無限遠物体から近距離物体への合焦の際に、前記第1レンズ群G1と前記レンズ群G2との間隔が縮まり、前記第2レンズ群G2と前記第3レンズ群G3との間隔が広がり、前記第2レンズ群G2が物体側へ移動する構成とする。 It consists of, in order from the object side, a first lens group G1 with positive refractive power, an aperture stop S, a second lens group G2 with positive refractive power, and a third lens group G3 with negative refractive power. During focusing from an object to a close object, the distance between the first lens group G1 and the lens group G2 is reduced, the distance between the second lens group G2 and the third lens group G3 is increased, and the distance between the second lens group G2 and the third lens group G3 is increased. The second lens group G2 is configured to move toward the object side.

正の屈折力を有する第1レンズ群G1とすることで、全系のレンズを小型にするために像側のレンズを通過する光束径を小さくすることができる。 By using the first lens group G1 having a positive refractive power, it is possible to reduce the diameter of the light beam passing through the lens on the image side in order to reduce the size of the entire system.

開口絞りSを第1レンズ群G1と第2レンズ群G2の間に配置することで射出瞳位置を物体側に寄せることができ、光線射出角を小さくすることができる。 By arranging the aperture stop S between the first lens group G1 and the second lens group G2, the exit pupil position can be brought closer to the object side, and the light exit angle can be reduced.

正の屈折力を有する第2レンズ群G2とし、後述の条件を満たすことでフォーカス時の収差補正とレンズ全系の小型化を行うことができる。 By using the second lens group G2 having a positive refractive power and satisfying the conditions described later, it is possible to correct aberrations during focusing and reduce the size of the entire lens system.

負の屈折力を有する第3レンズ群G3とし、後述の条件を満たすことでイメージサークルを大きくすること、レンズ全系の小型化すること、収差補正のバランスをとることができる。 By using the third lens group G3 having negative refractive power and satisfying the conditions described later, it is possible to achieve a balance between enlarging the image circle, miniaturizing the entire lens system, and correcting aberrations.

また本発明は無限遠物体から近距離物体への合焦の際に、前記第2レンズ群G2と第3レンズ群G3との間隔が広がる構成とすることにより、レンズの移動量を小さくすることができる。 Further, according to the present invention, the distance between the second lens group G2 and the third lens group G3 is widened when focusing from an object at infinity to an object at a short distance, thereby reducing the amount of lens movement. can be done.

以下の条件式を満足するよう構成されている。
(1) 1.40<f/f12<2.80
(2) 0.020<G3ΔPgFmax<0.300
(3) 1.80<G3nd
(4) 0.60<f1/f<6.50
f:無限遠合焦状態における全系の焦点距離
f12:無限遠合焦状態における前記第1レンズ群G1と前記第2レンズ群G2の合成焦点距離
G3ΔPgFmax:前記第3レンズ群G3の正レンズのうち、最も大きいΔPgFの値
ΔPgF=PgF-0.64833+0.00180νd:g、F線間での異常部分分散性
PgF=(ng-nF)/(nF-nC):g、F線間における部分分散比
ng:g線(波長λ=435.84nm)に対する屈折率
nF:F線(波長λ=486.13nm)に対する屈折率
nC:C線(波長λ=656.27nm)に対する屈折率
G3nd:前記第3レンズ群G3の正レンズのうち、最も大きいd線(波長λ=587.56)に対する屈折率
f1:前記第1レンズ群G1の焦点距離
It is configured to satisfy the following conditional expressions.
(1) 1.40<f/f12<2.80
(2) 0.020<G3ΔPgFmax<0.300
(3) 1.80<G3nd
(4) 0.60<f1/f<6.50
f: the focal length of the entire system when focused on infinity f12: the combined focal length of the first lens group G1 and the second lens group G2 when focused on infinity G3ΔPgFmax: the focal length of the positive lens in the third lens group G3 Among them, the largest ΔPgF value ΔPgF = PgF - 0.64833 + 0.00180νd: g, anomalous partial dispersion between F lines PgF = (ng - nF) / (nF - nC): g, partial dispersion between F lines Ratio ng: refractive index for g-line (wavelength λ = 435.84 nm) nF: refractive index for F-line (wavelength λ = 486.13 nm) nC: refractive index for C-line (wavelength λ = 656.27 nm) G3nd: the above Refractive index f1 for the largest d-line (wavelength λ=587.56) among the positive lenses in the third lens group G3: Focal length of the first lens group G1

無限遠物体から近距離物体への合焦の際に、第2レンズ群G2と第3レンズ群G3との間隔が広がる構成とし、条件式(1)と合わせることで、フォーカス時のレンズの移動量の小さいフォーカス方式をとることができる。そのため全系の小型化、短い撮影距離での撮影を可能にすることができ、条件式(2)と合わせることで、倍率色収差を良好に補正することができる。 The distance between the second lens group G2 and the third lens group G3 is widened when focusing from an infinity object to a close object. A small amount of focus can be used. Therefore, it is possible to reduce the size of the entire system and to photograph at a short photographing distance. Combined with conditional expression (2), it is possible to satisfactorily correct lateral chromatic aberration.

条件式(1)は、イメージサークルを大きくすることと、レンズ全系の小型化と、収差補正のバランスの好ましい条件として、前記第3レンズ群G3の横倍率を規定するものである。 Conditional expression (1) defines the lateral magnification of the third lens group G3 as a favorable condition for balancing the enlargement of the image circle, the miniaturization of the entire lens system, and the correction of aberrations.

条件式(1)の上限を超えて第3レンズ群G3の横倍率が大きくなると、第1レンズ群G1と第2レンズ群G2の合成系の残存収差が拡大されるため好ましくない。条件式(1)の下限を超えて第3レンズ群G3の横倍率が小さくなると、イメージサークルが小さくなり、合わせてフォーカス時のレンズの移動量が大きくなるため、レンズ全系の小型化が難しくなる。フォーカス時のレンズの移動量のみを小さくすると撮影距離が長くなるため好ましくない。 If the lateral magnification of the third lens group G3 exceeds the upper limit of conditional expression (1), the residual aberration of the combined system of the first lens group G1 and the second lens group G2 will increase, which is not preferable. If the lateral magnification of the third lens group G3 becomes smaller than the lower limit of conditional expression (1), the image circle becomes smaller and the amount of movement of the lens during focusing becomes larger, making it difficult to reduce the size of the entire lens system. Become. Reducing only the amount of movement of the lens during focusing is not preferable because the photographing distance becomes longer.

なお条件式(1)について、望ましくはその下限値を1.55に、また上限値を2.50に規定することで、前述の効果をより確実にすることができる。 By setting the lower limit to 1.55 and the upper limit to 2.50 for conditional expression (1), the above effects can be more reliably achieved.

条件式(2)は、倍率の色収差の補正の好ましい条件として、第3レンズ群G3の正レンズに用いる媒質の異常部分分散性を規定するものである。 Conditional expression (2) defines the anomalous partial dispersion of the medium used for the positive lens of the third lens group G3 as a preferable condition for correcting lateral chromatic aberration.

本発明の第3レンズ群G3を通る光束は、軸上光束は第3レンズ群G3の中心近傍を、軸外光束は第3レンズ群G3の周縁近傍を通る。第3レンズ群G3内の像面に近いレンズほど軸上光束と軸外光束の通過点の乖離が顕著である。そのため媒質の条件によって軸外光束による倍率色収差の補正を別に行うことが可能となる。 Of the light beams passing through the third lens group G3 of the present invention, the axial light beam passes near the center of the third lens group G3, and the off-axis light beam passes near the periphery of the third lens group G3. The closer the lens in the third lens group G3 is to the image plane, the greater the divergence between the passage points of the axial light flux and the off-axis light flux. Therefore, it is possible to separately correct the chromatic aberration of magnification due to the off-axis light flux depending on the conditions of the medium.

条件式(2)の上限を超え異常部分分散性が大きくなると、g線の色収差がアンダーに大きくなるため倍率色収差の補正が困難となる。条件式(2)の下限を超え異常部分分散性が小さくなると、特にg線の色収差がオーバーに大きくなるため倍率色収差の補正が困難となる。 If the upper limit of conditional expression (2) is exceeded and the abnormal partial dispersion increases, the chromatic aberration of the g-line becomes too large, making it difficult to correct the chromatic aberration of magnification. If the lower limit of conditional expression (2) is exceeded and the abnormal partial dispersion becomes small, the chromatic aberration of the g-line becomes excessively large, making it difficult to correct the chromatic aberration of magnification.

なお条件式(2)について、望ましくはその下限値を0.025に、また上限値を0.100に規定することで、前述の効果をより確実にすることができる。 By setting the lower limit to 0.025 and the upper limit to 0.100 for conditional expression (2), the above effect can be more reliably achieved.

条件式(3)は、非点収差の補正の好ましい条件として、第3レンズ群G3の正レンズの屈折率を規定するものである。 Conditional expression (3) defines the refractive index of the positive lens in the third lens group G3 as a preferable condition for correcting astigmatism.

条件式(3)の下限を超え前記G3ndが小さくなると、前記G3の屈折力を得るには曲率半径を小さくしなければならず、非点収差の発生が大きくなり好ましくない。 If the lower limit of conditional expression (3) is exceeded and G3nd becomes small, the radius of curvature must be made small in order to obtain the refractive power of G3, which is undesirable because astigmatism will increase.

なお条件式(3)について、望ましくはその下限値を1.90に規定することで、前述の効果をより確実にすることができる。 By setting the lower limit of conditional expression (3) to 1.90, the above effect can be more reliably obtained.

条件式(4)は、レンズ全系の小型化と収差補正の好ましい条件として、第1レンズ群G1と全系の焦点距離の比を規定するものである。 Conditional expression (4) defines the ratio of the focal lengths of the first lens group G1 and the entire system as preferable conditions for downsizing the entire lens system and correcting aberrations.

条件式(4)の上限を超え第1レンズ群G1の屈折力が小さくなるとレンズ全系の小型化が難しくなる。条件式(4)の下限を超え第1レンズ群G1の屈折力が大きくなると第2レンズ群G2との収差補正のバランスが崩れるため好ましくない。 When the upper limit of conditional expression (4) is exceeded and the refractive power of the first lens group G1 becomes small, it becomes difficult to reduce the size of the entire lens system. If the lower limit of conditional expression (4) is exceeded and the refractive power of the first lens group G1 increases, the balance of aberration correction with the second lens group G2 will be lost, which is not preferable.

なお条件式(4)について、望ましくはその下限値を0.95に、また上限値を4.50に規定することで、前述の効果をより確実にすることができる。 By setting the lower limit to 0.95 and the upper limit to 4.50 for conditional expression (4), the above effects can be more reliably achieved.

また本発明は以下の条件式を満足するよう構成されている。
(5) 2.00<LT/(Ymax)<3.10
LT:無限遠合焦状態における前記第1レンズ群G1の最も物体側の面から像面までの面間隔
Ymax:最大像高
Further, the present invention is constructed so as to satisfy the following conditional expressions.
(5) 2.00<LT/(Ymax)<3.10
LT: Surface distance from the surface closest to the object side of the first lens group G1 to the image plane when in focus at infinity
Ymax: Maximum image height

条件式(5)は、レンズ全系の小型化と収差補正のバランスの好ましい条件として、レンズ全系の長さと最大像高の関係を規定するものである。 Conditional expression (5) prescribes the relationship between the length of the entire lens system and the maximum image height as a preferable condition for balancing the compactness of the entire lens system and correction of aberrations.

条件式(5)の上限を超える場合はイメージサークルの1.5倍を超え、イメージサークルに対して小型化しているとは言えず、本発明の目的を達成することができない。条件式(5)の下限を超える場合はレンズ全系が小さくなり、各群の屈折力が大きくなることによる収差発生量が大きくなるため良好な収差補正が困難となる。 If the upper limit of conditional expression (5) is exceeded, it exceeds 1.5 times the image circle, and it cannot be said that the size is reduced with respect to the image circle, and the object of the present invention cannot be achieved. If the lower limit of conditional expression (5) is exceeded, the size of the entire lens system becomes small and the refractive power of each group increases, resulting in an increase in the amount of aberration produced, making it difficult to perform good aberration correction.

なお条件式(5)について、望ましくはその下限値を2.45に、また上限値を3.05に規定することで、前述の効果をより確実にすることができる。 By setting the lower limit to 2.45 and the upper limit to 3.05 for conditional expression (5), the above effect can be more reliably achieved.

また本発明は以下の条件式を満足するよう構成されている。
(6) 2.00<K2<5.00
K2:無限遠合焦状態における前記第2レンズ群G2のフォーカス敏感度
K2=|Δdef/Δx|
=|(β3^2)*(1-β2^2)|
=|((f/f12)^2)*(1-(f12/f1)^2)|
Δdef:無限遠合焦状態における微小像面移動量
Δx:無限遠合焦状態における微小フォーカスレンズ移動量
β3:無限遠合焦状態における前記第3レンズ群Gの横倍率
β2:無限遠合焦状態における前記第2レンズ群G2の横倍率
f:無限遠合焦状態における全系の焦点距離
f12:無限遠合焦
Further, the present invention is constructed so as to satisfy the following conditional expressions.
(6) 2.00<K2<5.00
K2: focus sensitivity of the second lens group G2 in the infinity focused state K2=|Δdef/Δx|
=|(β3^2)*(1-β2^2)|
=|((f/f12)^2)*(1-(f12/f1)^2)|
Δdef: Small image plane movement amount in infinity focused state Δx: Small focus lens movement amount in infinity focused state β3: Lateral magnification of the third lens group G3 in infinity focused state β2: Infinity focused lateral magnification of the second lens group G2 in the state f: focal length of the entire system in the infinity focused state f12: infinity focused

条件式(6)は、レンズ全系の小型化と収差補正のバランスの好ましい条件として、第2レンズ群のフォーカス敏感度を規定するものである。 Conditional expression (6) prescribes the focus sensitivity of the second lens group as a favorable condition for the balance between downsizing of the entire lens system and correction of aberrations.

条件式(6)の上限を超え各群の屈折力が大きくなると収差発生量が大きくなるため良好な収差補正が困難となる。またフォーカス敏感度が高くなることで合焦時に必要な駆動精度を満たすことが難しくなる。条件式(6)の下限を超え第2レンズ群G2の移動量が大きくなるとレンズ全系の小型化が難しくなる。 If the upper limit of conditional expression (6) is exceeded and the refracting power of each group increases, the amount of aberrations generated increases, making it difficult to correct aberrations satisfactorily. In addition, as the focus sensitivity increases, it becomes difficult to satisfy the drive accuracy required for focusing. When the lower limit of conditional expression (6) is exceeded and the amount of movement of the second lens group G2 increases, it becomes difficult to reduce the size of the entire lens system.

なお条件式(6)について、望ましくはその下限値を2.30に、また上限値を4.80に規定することで、前述の効果をより確実にすることができる。 By setting the lower limit to 2.30 and the upper limit to 4.80 for conditional expression (6), the above effects can be more reliably achieved.

また本発明は以下の条件式を満足するよう構成されている。
(7) 0.30<f2/f<0.95
f2:前記第2レンズ群G2の焦点距離
f:無限遠合焦状態における全系の焦点距離
Further, the present invention is constructed so as to satisfy the following conditional expressions.
(7) 0.30<f2/f<0.95
f2: focal length of the second lens group G2
f: focal length of the entire system when in focus at infinity

条件式(7)は、レンズ全系の小型化と短い撮影距離での撮影を可能にすることと収差補正の好ましい条件として、第2レンズ群G2と全系の焦点距離の比を規定するものである。 Conditional expression (7) defines the ratio of the focal lengths of the second lens group G2 and the entire system as a preferable condition for making the entire lens system compact and capable of photographing at a short shooting distance, and for correcting aberrations. is.

条件式(7)の上限を超え第2レンズ群G2の屈折力が小さくなるとフォーカス敏感度が小さくなり、レンズ全系の小型化と短い撮影距離での撮影を行う事の両立が難しくなる。条件式(7)の下限を超え第2レンズ群G2の屈折力が大きくなるとフォーカス時の収差変動が大きくなり、第2レンズ群G2との収差補正のバランスが崩れるため好ましくない。 When the upper limit of conditional expression (7) is exceeded and the refractive power of the second lens group G2 becomes small, the focus sensitivity becomes small, making it difficult to achieve both miniaturization of the entire lens system and photography at a short shooting distance. If the lower limit of conditional expression (7) is exceeded and the refractive power of the second lens group G2 increases, aberration fluctuations during focusing will increase, and the balance of aberration correction with the second lens group G2 will be lost, which is not preferable.

なお条件式(7)について、望ましくはその下限値を0.35に、また上限値を0.70に規定することで、前述の効果をより確実にすることができる。 By setting the lower limit to 0.35 and the upper limit to 0.70 for conditional expression (7), the above effects can be more reliably achieved.

また本発明は以下の条件式を満足するよう構成されている。
(8) 0.30<|f3/f|<1.40
f3:前記第3レンズ群G3の焦点距離
f:無限遠合焦状態における全系の焦点距離
Further, the present invention is constructed so as to satisfy the following conditional expressions.
(8) 0.30<|f3/f|<1.40
f3: focal length of the third lens group G3 f: focal length of the entire system when in focus at infinity

条件式(8)は、イメージサークルを大きくすることとレンズ全系の小型化と収差補正の好ましい条件として、第3レンズ群G3と全系の焦点距離の比を規定するものである。 Conditional expression (8) defines the ratio of the focal lengths of the third lens group G3 and the entire system as preferable conditions for enlarging the image circle, miniaturizing the entire lens system, and correcting aberrations.

条件式(8)の上限を超え第3レンズ群G3の屈折力が小さくなると横倍率が小さくなり、そのためイメージサークルを大きくすることとレンズ全系の小型化の両立が難しくなる。条件式(8)の下限を超える場合は第1レンズ群G1と第2レンズ群G2で発生する収差を著しく拡大させ収差補正のバランスが崩れるため好ましくない。 If the upper limit of conditional expression (8) is exceeded and the refracting power of the third lens group G3 becomes small, the lateral magnification becomes small. Exceeding the lower limit of conditional expression (8) is not preferable because the aberrations generated in the first lens group G1 and the second lens group G2 are remarkably magnified and the balance of aberration correction is lost.

なお条件式(8)について、望ましくはその下限値を0.45に、また上限値を1.30に規定することで、前述の効果をより確実にすることができる。 By setting the lower limit to 0.45 and the upper limit to 1.30 for conditional expression (8), the above effects can be more reliably obtained.

また本発明は以下の条件式を満足するよう構成されている。
(9) 0.50<((D1_2)*K2)/f<1.40
D1_2:無限合焦状態における前記第1レンズ群G1の最も像側の面と前記第2レンズ群G2の最も物体側の面の面間隔
K2:無限遠合焦状態における前記第2レンズ群G2のフォーカス敏感度
K2=|Δdef/Δx|
=|(β3^2)*(1-β2^2)|
=|((f/f12)^2)*(1-(f12/f1)^2)|
Δdef:無限遠合焦状態における微小像面移動量
Δx:無限遠合焦状態における微小フォーカスレンズ移動量
β3:無限遠合焦状態における前記第3レンズ群Gの横倍率
β2:無限遠合焦状態における前記第2レンズ群G2の横倍率
f:無限遠合焦状態における全系の焦点距離
f1:前記第1レンズ群G1の焦点距離
f12:無限遠合焦状態における前記第1レンズ群G1と前記第2レンズ群G2の合成焦点距離
Further, the present invention is constructed so as to satisfy the following conditional expressions.
(9) 0.50<((D1_2)*K2)/f<1.40
D1_2: Surface distance between the most image side surface of the first lens group G1 and the most object side surface of the second lens group G2 in the infinity focused state K2: Distance of the second lens group G2 in the infinity focused state Focus sensitivity K2=|Δdef/Δx|
=|(β3^2)*(1-β2^2)|
=|((f/f12)^2)*(1-(f12/f1)^2)|
Δdef: Small image plane movement amount in infinity focused state Δx: Small focus lens movement amount in infinity focused state β3: Lateral magnification of the third lens group G3 in infinity focused state β2: Infinity focused Lateral magnification f of the second lens group G2 in the state: focal length f1 of the entire system in the infinity focused state: focal length f12 of the first lens group G1: the first lens group G1 in the infinity focused state Composite focal length of the second lens group G2

条件式(9)は、レンズ全系の小型化と、短い撮影距離での撮影を可能にすること、収差補正のバランスの好ましい条件として、第1レンズG1と第2レンズ群G2の間隔とフォーカス敏感度の関係を規定するものである。 Conditional expression (9) satisfies a favorable balance between downsizing of the entire lens system, enabling shooting at a short shooting distance, and aberration correction. It defines the sensitivity relationship.

条件式(9)の上限を超え第1レンズG1と第2レンズ群G2の間隔が大きくなるとレンズ全系の小型化が難しくなる。条件式(9)の下限を超え第1レンズG1と第2レンズ群G2の間隔が小さくなると短い撮影距離での合焦状態において第1レンズ群G1や開口絞りSに干渉する。よって、短い撮影距離での撮影ができなくなるため好ましくない。 If the upper limit of conditional expression (9) is exceeded and the distance between the first lens G1 and the second lens group G2 increases, it becomes difficult to reduce the size of the entire lens system. If the lower limit of conditional expression (9) is exceeded and the distance between the first lens group G1 and the second lens group G2 becomes small, it interferes with the first lens group G1 and the aperture diaphragm S in the in-focus state at a short shooting distance. Therefore, it becomes impossible to shoot at a short shooting distance, which is not preferable.

なお条件式(9)について、望ましくはその下限値を0.60に、また上限値を1.25に規定することで、前述の効果をより確実にすることができる。 By setting the lower limit to 0.60 and the upper limit to 1.25 for conditional expression (9), the above effect can be more reliably achieved.

また本発明は無限遠物体から近距離物体への合焦の際に、前記第1レンズ群G1は像面に対して固定であり、前記第3レンズ群G3は像面に対して固定である構成となっている。 Further, according to the present invention, the first lens group G1 is fixed with respect to the image plane and the third lens group G3 is fixed with respect to the image plane during focusing from an infinity object to a close object. It is configured.

外観の構造に関連する第1レンズ群G1を像面に対して固定とすることで、フォーカス時に動くレンズ群を軽量化することができる。そのためフォーカス用のアクチュエータが小型となり製品の大きさを小型化することができる。 By fixing the first lens group G1 related to the appearance structure with respect to the image plane, the weight of the lens group that moves during focusing can be reduced. Therefore, the focus actuator can be made smaller, and the size of the product can be reduced.

全系の中でも最もレンズ系の大きいレンズ群である第3レンズ群G3を像面に対し固定することで、フォーカス時のレンズの移動量を小さくでき、フォーカス群を軽量化することができる。そのため全系の小型化、短い撮影距離での撮影を可能にすることができる。 By fixing the third lens group G3, which is the largest lens group in the entire system, with respect to the image plane, the amount of movement of the lens during focusing can be reduced, and the weight of the focus group can be reduced. Therefore, it is possible to reduce the size of the entire system and to shoot at a short shooting distance.

横倍率の大きい第3レンズ群G3をフォーカス時に固定とすることで、フォーカス敏感度を大きくすることができる。その為、近距離物体に合焦するためのフォーカス群の移動量が小さくなり短い撮影距離での撮影が可能となる。 Focus sensitivity can be increased by fixing the third lens group G3, which has a large lateral magnification, during focusing. Therefore, the amount of movement of the focus group for focusing on a short-distance object becomes small, and photography at a short photography distance becomes possible.

また本発明は無限遠物体から近距離物体への合焦の際に、第1レンズ群G1は像面に対して固定であり、第3レンズ群G3は像面に対して固定である構成をとる。 In addition, the present invention employs a configuration in which the first lens group G1 is fixed with respect to the image plane and the third lens group G3 is fixed with respect to the image plane when focusing from an infinity object to a short distance object. Take.

効果については前述のとおりであり、この構成をとることでフォーカス時のレンズの移動量の小さいフォーカス方式をとることが効率的に可能となり、レンズ全系の小型化と、短い撮影距離での撮影を可能にすることができる。 The effect is as described above, and by adopting this configuration, it is possible to efficiently adopt a focusing method with a small amount of movement of the lens during focusing, making the entire lens system compact and shooting at a short shooting distance. can make it possible.

また本発明は開口絞りSは第1レンズ群G1の像側に隣接し合焦の際に光軸方向に固定とする In the present invention, the aperture diaphragm S is adjacent to the image side of the first lens group G1 and is fixed in the optical axis direction during focusing.

開口絞りSは第1レンズ群G1の像側に隣接し合焦の際に光軸方向に固定とすることで、フォーカス時に動く機構の軽量化ができる。そのためフォーカス用のアクチュエータが小型となり製品の大きさを小型化することができる。また光量調整等に利用する絞り機構とするには第1レンズ群G1の像側に配置することがレンズ全系の小型化のためには望ましい。 The aperture diaphragm S is adjacent to the image side of the first lens group G1 and is fixed in the optical axis direction during focusing, so that the weight of the mechanism that moves during focusing can be reduced. Therefore, the focus actuator can be made smaller, and the size of the product can be reduced. In order to reduce the size of the entire lens system, it is desirable to dispose the diaphragm mechanism on the image side of the first lens group G1 in order to use it for adjusting the amount of light.

また本発明は以下の条件式を満足するよう構成されている。
(10) 1.60<|EXP/Ymax|<3.50
EXP :無限遠合焦状態における射出瞳位置から像面までの距離
Ymax:最大像高
Further, the present invention is constructed so as to satisfy the following conditional expressions.
(10) 1.60<|EXP/Ymax|<3.50
EXP: Distance from the exit pupil position to the image plane when in focus at infinity
Ymax: Maximum image height

条件式(10)はイメージサークル周縁に至る光線射出角の好ましい条件として、射出瞳位置と最大像高の比を規定するものである。 Conditional expression (10) defines the ratio of the exit pupil position to the maximum image height as a preferable condition for the ray exit angle reaching the edge of the image circle.

条件式(10)の上限を超え、前記EXPが大きくなるとレンズ全系の長さや像側に配置されるレンズの径が大型化されるため、レンズ全系の小型化が難しくなる。条件式(10)の下限を超え、前記EXPが小さくなると光線射出角が像面に対して急な角度で至る。デジタルスチルカメラ等に使用される撮像素子を利用した場合にイメージサークル周縁での感度低下を招き周辺光量が著しく低下するため好ましくない。 When the upper limit of conditional expression (10) is exceeded and EXP increases, the length of the entire lens system and the diameter of the lens arranged on the image side are increased, making it difficult to reduce the size of the entire lens system. When the lower limit of conditional expression (10) is exceeded and the EXP becomes small, the ray exit angle reaches a steep angle with respect to the image plane. When an image sensor used in a digital still camera or the like is used, the sensitivity at the edge of the image circle is lowered, and the amount of peripheral light is remarkably lowered, which is not preferable.

なお条件式(10)について、望ましくはその下限値を1.80に、また上限値を2.80に限定することで、前述の効果をより確実にすることができる。 By restricting the lower limit to 1.80 and the upper limit to 2.80 for conditional expression (10), the above effect can be more reliably achieved.

また本発明は、第1レンズ群G1は物体側より順に正レンズL1、負レンズL2からなり、全体で正の屈折力を有する構成をとる In the present invention, the first lens group G1 consists of a positive lens L1 and a negative lens L2 in order from the object side, and has a positive refractive power as a whole.

第1レンズ群G1の構成を物体側より順に正レンズL1、負レンズL2とし全体で正の屈折力を有することにより、正レンズL1で光束を小さくすることができレンズ全系の小型化に寄与する。その後の負レンズL2により軸上のマージナル光線の光軸に対する光線角度を緩くすることで第2レンズ群G2との収差補正のバランスをとることができる。この時収差補正に利用する面を増やすため正レンズL1と負レンズL2は接合しないことが望ましく、製造誤差感度の低減のために正レンズL1は物体側に凸面を向けた凸メニスカスレンズ、負レンズL2は物体側に凸面を向けた凹メニスカスレンズであることが望ましい。また光量調整等に利用する絞り機構は第1レンズ群G1の像側に配置することがレンズ全系の小型化のためには望ましい。 The first lens group G1 is composed of a positive lens L1 and a negative lens L2 in order from the object side, and has a positive refractive power as a whole. As a result, the positive lens L1 can reduce the luminous flux, contributing to the miniaturization of the entire lens system. do. Aberration correction with the second lens group G2 can be balanced by softening the ray angle of the axial marginal ray with respect to the optical axis by the subsequent negative lens L2. At this time, it is desirable not to cement the positive lens L1 and the negative lens L2 in order to increase the number of surfaces used for aberration correction. L2 is preferably a concave meniscus lens with a convex surface facing the object side. In order to reduce the size of the entire lens system, it is desirable to dispose the aperture mechanism used for adjusting the amount of light, etc., on the image side of the first lens group G1.

第1レンズ群G1に非球面を用いることがより望ましい。これにより球面収差とコマ収差の補正を適切に行う事できる。正レンズL1に両面非球面を用いるのが収差補正に最も有効である。 It is more desirable to use an aspherical surface for the first lens group G1. This makes it possible to appropriately correct spherical aberration and coma. The most effective way to correct aberrations is to use aspherical surfaces on both sides of the positive lens L1.

また本発明は、第2レンズ群G2は物体側より順に負レンズL3、正レンズL4、正レンズL5からなり、全体で正の屈折力を有する構成をとる In the present invention, the second lens group G2 consists of a negative lens L3, a positive lens L4, and a positive lens L5 in order from the object side, and has a positive refractive power as a whole.

第2レンズ群G2の構成を物体側より順に負レンズL3、正レンズL4、正レンズL5とし全体で正の屈折力を有することにより、フォーカス敏感度を大きくすること、フォーカスレンズとしての軽量化と、製造誤差感度の低減ができる。第1レンズ群G1との収差バランスのために第2レンズ群には負レンズ1枚が必要になるが、周縁部でレンズ厚が厚くなる負レンズL3は光束径の小さい位置に配置することになる。また射出瞳位置を物体側に寄せるため、負レンズL3はより物体側に配置することが望ましい。この負レンズL3の色収差の補正のため正レンズL4を隣接させることが望ましく、さらにこの隣接する正レンズL4との間の製造誤差感度の低減のため負レンズL3と正レンズL4は接合することが望ましい。さらに像面側に正レンズL5を配置することで第1レンズ群G1と対称系の光学系となり収差補正のバランスがとれる。この時、前記接合レンズ、つまりは負レンズL3と正レンズL4からなる接合レンズは、像面側に隣接する正レンズL5との間の製造誤差感度の低減のため物体側に凹面を向けたメニスカス形状となることが望ましい。 The second lens group G2 is composed of a negative lens L3, a positive lens L4, and a positive lens L5 in order from the object side, and has a positive refractive power as a whole. , the manufacturing error sensitivity can be reduced. One negative lens is required in the second lens group for aberration balance with the first lens group G1, but the negative lens L3, which is thicker at the periphery, is placed at a position where the light beam diameter is small. Become. In order to move the exit pupil position toward the object side, it is desirable to dispose the negative lens L3 closer to the object side. In order to correct the chromatic aberration of the negative lens L3, it is desirable to place the positive lens L4 adjacent to the positive lens L4, and furthermore, to reduce the manufacturing error sensitivity between the adjacent positive lens L4, the negative lens L3 and the positive lens L4 can be cemented. desirable. Further, by arranging the positive lens L5 on the image plane side, the optical system becomes symmetrical with the first lens group G1, and the aberration correction can be balanced. At this time, the cemented lens, that is, the cemented lens composed of the negative lens L3 and the positive lens L4 is a meniscus lens with a concave surface facing the object side in order to reduce the manufacturing error sensitivity between the positive lens L5 adjacent to the image plane side. A shape is desirable.

以上のことから、第2レンズ群G2の構成から収差補正と製造誤差感度の低減の効果を有することによりフォーカス敏感度を大きくする事の両立が可能となる。 As described above, the second lens group G2 has the effect of correcting aberrations and reducing the sensitivity to manufacturing errors, thereby making it possible to increase the focus sensitivity.

正レンズL5は軸外光線が光軸から離れた位置を通るためレンズ径が大きくなりやすい。そのため低比重の材質を用いることが望ましい。 The positive lens L5 tends to have a large lens diameter because off-axis rays pass through a position away from the optical axis. Therefore, it is desirable to use a material with a low specific gravity.

また、第2レンズ群G2に非球面を用いることがより望ましい。これによりフォーカシング時の球面収差と非点収差の補正を適切に行う事できる。正レンズL5に両面非球面を用いるのが収差補正に最も有効である。 Further, it is more desirable to use an aspherical surface for the second lens group G2. This makes it possible to appropriately correct spherical aberration and astigmatism during focusing. The most effective way to correct aberrations is to use aspherical surfaces on both sides of the positive lens L5.

また本発明は、第3レンズ群G3は物体側より順に負レンズL6、負レンズL7、正レンズL8からなり、全体で負の屈折力を有する構成をとる In the present invention, the third lens group G3 consists of a negative lens L6, a negative lens L7, and a positive lens L8 in order from the object side, and has a negative refractive power as a whole.

第3レンズ群G3の構成を物体側より順に負レンズL6、負レンズL7、正レンズL8とし全体で負の屈折力を有することにより、イメージサークルを大きくすることとレンズ全系の小型化の両立ができる。負レンズL6はレンズ径を正レンズL5と同等とすることで軸外光束の上側のマージナル光線が光軸に対して略平行になり第2レンズ群G2との製造誤差感度を下げることとフォーカス時の収差変動の低減の両立ができる。またイメージサークルの拡張のための強い負の屈折力とフォーカス時の収差変動の低減のために物体側に凸面を向けた凹メニスカスレンズであることが望ましい。負レンズL7は非点収差の補正に利用し、軸上光線高の低くなる像面に近い位置に配置し、物体側に凹面を向ける凹メニスカスレンズであることが望ましい。正レンズL8は高屈折率、高分散、異常部分分散性の高い媒質を用いることが望ましい。軸外の倍率色収差補正と非点収差の補正と歪曲収差の補正に利用するため像面に近いほうが望ましい。 The third lens group G3 consists of a negative lens L6, a negative lens L7, and a positive lens L8 in order from the object side, and has a negative refractive power as a whole. can be done. By setting the lens diameter of the negative lens L6 to be the same as that of the positive lens L5, the marginal ray on the upper side of the off-axis light beam becomes substantially parallel to the optical axis, thereby reducing the manufacturing error sensitivity with the second lens group G2 and during focusing. It is possible to achieve both reduction of aberration fluctuations. In addition, it is desirable that the lens be a concave meniscus lens with a convex surface facing the object side in order to have a strong negative refractive power for expanding the image circle and to reduce aberration fluctuations during focusing. The negative lens L7 is used for correcting astigmatism, is arranged at a position close to the image plane where the axial ray height is low, and is desirably a concave meniscus lens with a concave surface facing the object side. It is desirable to use a medium with a high refractive index, high dispersion, and high anomalous partial dispersion for the positive lens L8. Since it is used for correction of off-axis chromatic aberration of magnification, correction of astigmatism, and correction of distortion, it is desirable that it be close to the image plane.

次に、本発明の結像光学系に係る実施例のレンズ構成について説明する。
なお、以下の説明ではレンズ構成を物体側から像側の順番で記載する。
Next, a description will be given of the lens construction of an embodiment of the imaging optical system of the present invention.
In the following description, lens configurations are described in order from the object side to the image side.

[面データ]において、面番号は物体側から数えたレンズ面または開口絞りの番号、rは各レンズ面の曲率半径、dは各レンズ面の間隔、ndはd線(波長587.56nm)に対する屈折率、vdはd線に対するアッベ数、PgFはg線とF線間の部分分散比、有効径はレンズ有効径を示している。 In [Surface data], the surface number is the number of the lens surface or aperture stop counted from the object side, r is the radius of curvature of each lens surface, d is the distance between each lens surface, and nd is for the d-line (wavelength 587.56 nm). The refractive index, vd is the Abbe number for the d-line, PgF is the partial dispersion ratio between the g-line and the F-line, and the effective diameter is the lens effective diameter.

面番号に付した*(アスタリスク)は、そのレンズ面形状が非球面であることを示している。また、BFはバックフォーカスを表している。 An asterisk (*) attached to the surface number indicates that the lens surface shape is aspheric. Also, BF represents back focus.

面番号に付した(絞り)は、その位置に開口絞りが位置していることを示している。平面または開口絞りに対する曲率半径には∞(無限大)を記入している。 The (diaphragm) attached to the surface number indicates that the aperture diaphragm is located at that position. ∞ (infinity) is entered for the radius of curvature for a plane or aperture stop.

[非球面データ]には、[面データ]において*を付したレンズ面の非球面形状を与える各係数の値を示している。非球面の形状は、下記の式で表される。以下の式において、光軸に直交する方向への光軸からの変位をy、非球面と光軸の交点から光軸方向への変位(サグ量)をz、基準球面の曲率半径をr、コーニック係数をKで表している。また、4、6、8、10、12、14、16、18、20次の非球面係数をそれぞれA4、A6、A8、A10、A12、A14、A16、A18、A20で表している。

Figure 0007171017000001
[Aspheric surface data] shows the value of each coefficient that gives the aspheric shape of the lens surface marked with * in [Surface data]. The shape of the aspheric surface is represented by the following formula. In the following formula, y is the displacement from the optical axis in the direction orthogonal to the optical axis, z is the displacement (sag amount) in the optical axis direction from the intersection of the aspherical surface and the optical axis, r is the radius of curvature of the reference spherical surface, K represents the conic coefficient. 4th, 6th, 8th, 10th, 12th, 14th, 16th, 18th and 20th aspheric coefficients are represented by A4, A6, A8, A10, A12, A14, A16, A18 and A20, respectively.
Figure 0007171017000001

[各種データ]には、無限遠合焦時における焦点距離等の値を示している。 [Various data] shows values such as the focal length at the time of focusing at infinity.

[可変間隔データ]には、各撮影距離状態における可変間隔及びBFの値を示している。 [Variable interval data] shows the variable interval and BF values in each photographing distance state.

[レンズ群データ]には、各レンズ群を構成する最も物体側のレンズ面番号及びレンズ群全体の合成焦点距離を示している。 [Lens group data] shows the lens surface number closest to the object side constituting each lens group and the combined focal length of the entire lens group.

尚、以下の全ての諸元の値において、記載している焦点距離f、曲率半径r、レンズ面間隔d、その他の長さの単位は特記のない限りミリメートル(mm)を使用するが、光学系では比例拡大と比例縮小とにおいても同様の光学性能が得られるので、これに限られるものではない。 In addition, in the values of all the specifications below, unless otherwise specified, millimeters (mm) are used for the focal length f, radius of curvature r, distance between lens surfaces d, and other lengths. The system is not limited to this because the same optical performance can be obtained in both proportional enlargement and proportional reduction.

図1は、本発明の実施例1に係る結像光学系の無限遠合焦時のレンズ構成図である。 FIG. 1 is a lens configuration diagram of an imaging optical system according to Example 1 of the present invention when focusing on infinity.

物体側から順に、正の屈折力を有する第1レンズ群G1は、両面非球面である物体側に凸面を向けた正メニスカスレンズL1、物体側に凸面を向けた負メニスカスレンズL2からなり、開口絞りSは第1レンズ群G1の像側に隣接し、正の屈折力を有する第2レンズ群G2は、両凹レンズL3と両凸レンズL4からなる接合レンズと、両面非球面である両凸レンズL5とからなり、負の屈折力を有する第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズL6と、物体側に凹面を向けた負メニスカスレンズL7と、両凸レンズL8とからなり、無限遠物体から近距離物体への合焦の際に、第1レンズ群G1と開口絞りSと第3レンズ群G3は像面に対し固定であり、前記第2レンズ群G2が物体側へ移動する。 In order from the object side, the first lens group G1 having positive refractive power is composed of a positive meniscus lens L1 having a convex surface facing the object side and having aspherical surfaces on both sides, and a negative meniscus lens L2 having a convex surface facing the object side. The diaphragm S is adjacent to the image side of the first lens group G1, and the second lens group G2 having positive refractive power includes a cemented lens composed of a biconcave lens L3 and a biconvex lens L4, and a biconvex lens L5 having aspherical surfaces on both sides. The third lens group G3 having negative refractive power consists of a negative meniscus lens L6 with a convex surface facing the object side, a negative meniscus lens L7 with a concave surface facing the object side, and a biconvex lens L8. When focusing from a distant object to a close object, the first lens group G1, the aperture diaphragm S and the third lens group G3 are fixed with respect to the image plane, and the second lens group G2 moves toward the object side. .

第3レンズ群G3と像面の間に平行平面板であるフィルターFが配置されている。このフィルターFの光軸上の位置は第3レンズ群G3と像面の間ではどこであっても収差に影響を与えない。 A filter F, which is a plane-parallel plate, is arranged between the third lens group G3 and the image plane. The position of the filter F on the optical axis does not affect aberrations anywhere between the third lens group G3 and the image plane.

続いて、以下に実施例1に係る結像光学系の諸元値を示す。
数値実施例1
単位:mm
[面データ]
面番号 r d nd vd PgF 有効径
物面 ∞ (d0)
1* 23.3681 3.7585 1.77250 49.50 0.5519 20.01
2* 144.1153 0.3080 18.30
3 45.1236 0.8000 1.51742 52.15 0.5589 16.74
4 16.3472 4.6499 14.58
5(絞り) ∞ (d5) 12.90
6 -12.2130 0.8000 1.69895 30.05 0.6028 12.85
7 55.6607 4.2213 1.87070 40.73 0.5682 14.54
8 -18.8353 0.1500 15.60
9* 37.4761 4.7493 1.58913 61.25 0.5373 17.90
10* -23.9712 (d10) 18.50
11 109.6497 0.9857 1.67300 38.26 0.5757 18.97
12 21.1832 8.7012 19.20
13 -19.7354 0.8000 1.75211 25.05 0.6191 21.87
14 -29.9543 0.1500 23.66
15 95.8651 2.5968 1.98612 16.48 0.6656 28.20
16 -580.7065 16.3216 28.72
17 ∞ 2.5000 1.51633 64.14 0.5353
18 ∞ (BF)
像面 ∞

[非球面データ]
1面 2面
K 0.7548 0.0000
A4 -1.0943E-05 -2.3116E-06
A6 -9.0526E-08 1.4773E-07
A8 3.3856E-09 -4.0502E-09
A10 -6.8374E-11 7.7863E-11
A12 7.5676E-13 -9.6225E-13
A14 -4.8496E-15 6.3690E-15
A16 1.5425E-17 -2.0898E-17
A18 -1.8709E-20 2.6920E-20
A20 0.0000E+00 0.0000E+00

9面 10面
K -2.3178 -2.6500
A4 -2.4796E-06 -4.7357E-06
A6 -9.6746E-09 1.5970E-08
A8 -5.6804E-10 3.7484E-10
A10 3.7440E-11 -1.2512E-11
A12 -7.5858E-13 2.6612E-13
A14 7.5576E-15 -3.0274E-15
A16 -3.5787E-17 1.8357E-17
A18 6.4474E-20 -4.2619E-20
A20 0.0000E+00 0.0000E+00

[各種データ]
INF 240
焦点距離 43.93 36.81
Fナンバー 2.90 3.02
全画角2ω 51.10 49.90
像高Y 21.63 21.63
レンズ全長 63.57 63.57

[可変間隔データ]
INF 240
d0 ∞ 172.6297
d5 8.3114 4.8314
d10 1.7666 5.2466
BF 2.0000 2.0000

[レンズ群データ]
群 始面 焦点距離
G1 1 98.79
G2 6 22.68
G3 11 -39.36
G12 1 24.39
G23 6 54.90
Next, the specification values of the imaging optical system according to Example 1 are shown below.
Numerical example 1
Unit: mm
[Surface data]
Surface number rd nd vd PgF Effective diameter Object surface ∞ (d0)
1* 23.3681 3.7585 1.77250 49.50 0.5519 20.01
2* 144.1153 0.3080 18.30
3 45.1236 0.8000 1.51742 52.15 0.5589 16.74
4 16.3472 4.6499 14.58
5 (Aperture) ∞ (d5) 12.90
6 -12.2130 0.8000 1.69895 30.05 0.6028 12.85
7 55.6607 4.2213 1.87070 40.73 0.5682 14.54
8 -18.8353 0.1500 15.60
9* 37.4761 4.7493 1.58913 61.25 0.5373 17.90
10* -23.9712 (d10) 18.50
11 109.6497 0.9857 1.67300 38.26 0.5757 18.97
12 21.1832 8.7012 19.20
13 -19.7354 0.8000 1.75211 25.05 0.6191 21.87
14 -29.9543 0.1500 23.66
15 95.8651 2.5968 1.98612 16.48 0.6656 28.20
16 -580.7065 16.3216 28.72
17∞ 2.5000 1.51633 64.14 0.5353
18∞ (BF)
Image plane ∞

[Aspheric data]
1 side 2 sides
K 0.7548 0.0000
A4 -1.0943E-05 -2.3116E-06
A6-9.0526E-08 1.4773E-07
A8 3.3856E-09 -4.0502E-09
A10 -6.8374E-11 7.7863E-11
A12 7.5676E-13 -9.6225E-13
A14 -4.8496E-15 6.3690E-15
A16 1.5425E-17 -2.0898E-17
A18 -1.8709E-20 2.6920E-20
A20 0.0000E+00 0.0000E+00

9 sides 10 sides
K -2.3178 -2.6500
A4 -2.4796E-06 -4.7357E-06
A6 -9.6746E-09 1.5970E-08
A8 -5.6804E-10 3.7484E-10
A10 3.7440E-11 -1.2512E-11
A12 -7.5858E-13 2.6612E-13
A14 7.5576E-15 -3.0274E-15
A16 -3.5787E-17 1.8357E-17
A18 6.4474E-20 -4.2619E-20
A20 0.0000E+00 0.0000E+00

[Various data]
INF 240
Focal length 43.93 36.81
F number 2.90 3.02
Full angle of view 2ω 51.10 49.90
Image height Y 21.63 21.63
Total lens length 63.57 63.57

[Variable interval data]
INF 240
d0 ∞ 172.6297
d5 8.3114 4.8314
d10 1.7666 5.2466
BF 2.0000 2.0000

[Lens group data]
Group Starting surface Focal length
G1 1 98.79
G26 22.68
G3 11 -39.36
G12 1 24.39
G23 6 54.90

図6は、本発明の実施例2に係る結像光学系の無限遠合焦時のレンズ構成図である。
物体側から順に、正の屈折力を有する第1レンズ群G1は、物体側に凸面を向けた正メニスカスレンズL1、物体側の面が非球面であり物体側に凸面を向けた負メニスカス形状の樹脂等を材質としたレンズと物体側に凸面を向けた負メニスカスレンズからなる接合レンズL2からなり、開口絞りSは第1レンズ群G1の像側に隣接し、正の屈折力を有する第2レンズ群G2は、両凹レンズL3と両凸レンズL4からなる接合レンズと、両面非球面である両凸レンズL5とからなり、負の屈折力を有する第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズL6と、物体側に凹面を向けた負メニスカスレンズL7と、両凸レンズL8とからなり、無限遠物体から近距離物体への合焦の際に、第1レンズ群G1と開口絞りSと第3レンズ群G3は像面に対し固定であり、前記第2レンズ群G2が物体側へ移動する。
FIG. 6 is a lens configuration diagram of the imaging optical system according to Example 2 of the present invention when focusing on infinity.
The first lens group G1 having positive refractive power, in order from the object side, comprises a positive meniscus lens L1 with a convex surface facing the object side, and a negative meniscus lens L1 with an aspheric surface on the object side and a convex surface on the object side. It consists of a cemented lens L2 composed of a lens made of resin or the like and a negative meniscus lens having a convex surface facing the object side. The lens group G2 is composed of a cemented lens composed of a biconcave lens L3 and a biconvex lens L4, and a biconvex lens L5 having aspherical surfaces on both sides. The third lens group G3 having negative refractive power has a convex surface facing the object side. It consists of a negative meniscus lens L6, a negative meniscus lens L7 having a concave surface facing the object side, and a biconvex lens L8. and the third lens group G3 are fixed with respect to the image plane, and the second lens group G2 moves toward the object side.

第3レンズ群G3と像面の間に平行平面板であるフィルターFが配置されている。このフィルターFの光軸上の位置は第3レンズ群G3と像面の間ではどこであっても収差に影響を与えない。 A filter F, which is a plane-parallel plate, is arranged between the third lens group G3 and the image plane. The position of the filter F on the optical axis does not affect aberrations anywhere between the third lens group G3 and the image plane.

続いて、以下に実施例2に係る結像光学系の諸元値を示す。
数値実施例2
単位:mm
[面データ]
面番号 r d nd vd PgF 有効径
物面 ∞ (d0)
1 25.0272 3.6286 1.77250 49.62 0.5503 19.60
2 148.6155 0.1500 17.88
3* 44.5784 0.1188 1.51840 52.10 0.5538 16.79
4 35.9682 0.8000 1.51742 52.15 0.5589 16.45
5 18.3624 3.6611 14.90
6(絞り) ∞ (d6) 13.28
7 -11.8564 0.8000 1.69895 30.05 0.6028 13.05
8 74.0878 4.2582 1.87070 40.73 0.5682 14.70
9 -17.7220 0.1500 15.70
10* 43.7832 4.3575 1.58913 61.25 0.5373 18.00
11* -26.0653 (d11) 18.57
12 100.0000 0.8000 1.64769 33.84 0.5923 19.27
13 22.6971 9.6164 19.38
14 -20.0973 0.8000 1.67270 32.17 0.5962 22.62
15 -33.0792 0.1500 24.58
16 120.8436 2.5285 1.98612 16.48 0.6656 28.58
17 -317.4586 16.1672 29.10
18 ∞ 2.5000 1.51633 64.14 0.5353
19 ∞ (BF)
像面 ∞

[非球面データ]
3面 10面 11面
K -0.5947 -4.1801 -2.6057
A4 -3.1404E-06 3.2870E-07 -3.7190E-06
A6 -1.9502E-07 -1.7897E-08 1.2815E-08
A8 8.0064E-09 -4.0774E-09 -1.3261E-09
A10 -1.4668E-10 1.6733E-10 1.5502E-11
A12 1.2804E-12 -3.0256E-12 2.6614E-13
A14 -4.1538E-15 2.8060E-14 -7.3721E-15
A16 0.0000E+00 -1.3039E-16 5.6089E-17
A18 0.0000E+00 2.4152E-19 -1.3703E-19
A20 0.0000E+00 0.0000E+00 0.0000E+00

[各種データ]
INF 240
焦点距離 44.27 37.14
Fナンバー 2.90 3.00
全画角2ω 50.75 49.99
像高Y 21.63 21.63
レンズ全長 63.57 63.57

[可変間隔データ]
INF 240
d0 ∞ 174.9301
d6 9.4838 5.6659
d11 1.6000 5.4179
BF 2.0000 2.0000

[レンズ群データ]
群 始面 焦点距離
G1 1 89.60
G2 7 24.41
G3 12 -43.26
G12 1 25.50
G23 7 58.75
Next, the specification values of the imaging optical system according to Example 2 are shown below.
Numerical example 2
Unit: mm
[Surface data]
Surface number rd nd vd PgF Effective diameter Object surface ∞ (d0)
1 25.0272 3.6286 1.77250 49.62 0.5503 19.60
2 148.6155 0.1500 17.88
3* 44.5784 0.1188 1.51840 52.10 0.5538 16.79
4 35.9682 0.8000 1.51742 52.15 0.5589 16.45
5 18.3624 3.6611 14.90
6 (Aperture) ∞ (d6) 13.28
7 -11.8564 0.8000 1.69895 30.05 0.6028 13.05
8 74.0878 4.2582 1.87070 40.73 0.5682 14.70
9 -17.7220 0.1500 15.70
10* 43.7832 4.3575 1.58913 61.25 0.5373 18.00
11* -26.0653 (d11) 18.57
12 100.0000 0.8000 1.64769 33.84 0.5923 19.27
13 22.6971 9.6164 19.38
14 -20.0973 0.8000 1.67270 32.17 0.5962 22.62
15 -33.0792 0.1500 24.58
16 120.8436 2.5285 1.98612 16.48 0.6656 28.58
17 -317.4586 16.1672 29.10
18 ∞ 2.5000 1.51633 64.14 0.5353
19∞ (BF)
Image plane ∞

[Aspheric data]
3 sides 10 sides 11 sides
K -0.5947 -4.1801 -2.6057
A4 -3.1404E-06 3.2870E-07 -3.7190E-06
A6 -1.9502E-07 -1.7897E-08 1.2815E-08
A8 8.0064E-09 -4.0774E-09 -1.3261E-09
A10 -1.4668E-10 1.6733E-10 1.5502E-11
A12 1.2804E-12 -3.0256E-12 2.6614E-13
A14 -4.1538E-15 2.8060E-14 -7.3721E-15
A16 0.0000E+00 -1.3039E-16 5.6089E-17
A18 0.0000E+00 2.4152E-19 -1.3703E-19
A20 0.0000E+00 0.0000E+00 0.0000E+00

[Various data]
INF 240
Focal length 44.27 37.14
F number 2.90 3.00
Full angle of view 2ω 50.75 49.99
Image height Y 21.63 21.63
Overall lens length 63.57 63.57

[Variable interval data]
INF 240
d0 ∞ 174.9301
d6 9.4838 5.6659
d11 1.6000 5.4179
BF 2.0000 2.0000

[Lens group data]
Group Starting surface Focal length
G1 1 89.60
G2 7 24.41
G3 12 -43.26
G12 1 25.50
G23 7 58.75

図11は、本発明の実施例3に係る結像光学系の無限遠合焦時のレンズ構成図である。
物体側から順に、正の屈折力を有する第1レンズ群G1は、両面非球面である物体側に凸面を向けた正メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2とからなり、開口絞りSは第1レンズ群G1の像側に隣接し、正の屈折力を有する第2レンズ群G2は、両凹レンズL3と両凸レンズL4からなる接合レンズと、両面非球面である両凸レンズL5とからなり、負の屈折力を有する第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズL6と、物体側に凹面を向けた負メニスカスレンズL7と、物体側に凹面を向けた正メニスカスレンズL8とからなり、無限遠物体から近距離物体への合焦の際に、第1レンズ群G1と開口絞りSと第3レンズ群G3は像面に対し固定であり、前記第2レンズ群G2が物体側へ移動する。
FIG. 11 is a lens configuration diagram of the imaging optical system according to Example 3 of the present invention when focusing on infinity.
In order from the object side, the first lens group G1 having positive refractive power is composed of a positive meniscus lens L1 having aspherical surfaces on both sides and having a convex surface facing the object side, and a negative meniscus lens L2 having a convex surface facing the object side. , the aperture diaphragm S is adjacent to the image side of the first lens group G1, and the second lens group G2 having positive refractive power includes a cemented lens composed of a biconcave lens L3 and a biconvex lens L4, and a biconvex lens having aspherical surfaces on both sides. A third lens group G3 having a negative refractive power is composed of a negative meniscus lens L6 having a convex surface facing the object side, a negative meniscus lens L7 having a concave surface facing the object side, and a concave surface facing the object side. The first lens group G1, the aperture diaphragm S, and the third lens group G3 are fixed with respect to the image plane when focusing from an infinity object to a short distance object. The second lens group G2 moves to the object side.

第3レンズ群G3と像面の間に平行平面板であるフィルターFが配置されている。このフィルターFの光軸上の位置は第3レンズ群G3と像面の間ではどこであっても収差に影響を与えない。 A filter F, which is a plane-parallel plate, is arranged between the third lens group G3 and the image plane. The position of the filter F on the optical axis does not affect aberrations anywhere between the third lens group G3 and the image plane.

続いて、以下に実施例3に係る結像光学系の諸元値を示す。
数値実施例3
単位:mm
[面データ]
面番号 r d nd vd PgF 有効径
物面 ∞ (d0)
1* 40.0578 1.9199 1.72903 54.04 0.5446 17.97
2* 1035.9646 0.1500 17.19
3 35.3446 0.8000 1.51823 58.96 0.5441 15.51
4 21.8772 3.9211 14.20
5(絞り) ∞ (d5) 11.81
6 -11.9037 0.8000 1.69895 30.05 0.6028 12.14
7 33.6044 4.8000 1.87070 40.73 0.5682 14.18
8 -18.2410 0.1500 15.40
9* 38.2460 4.6535 1.58913 61.25 0.5373 17.60
10* -23.7324 (d10) 18.30
11 36.1340 0.8000 1.51742 52.15 0.5589 19.30
12 17.4730 6.9149 19.08
13 -18.7936 0.8000 1.64769 33.84 0.5923 19.93
14 -52.5631 0.1500 22.15
15 -160.7300 1.9252 1.92286 20.88 0.6388 23.30
16 -65.0696 15.3702 24.11
17 ∞ 2.5000 1.51633 64.14 0.5353
18 ∞ (BF)
像面 ∞

[非球面データ]
1面 2面
K 2.2440 0.0000
A4 -4.7931E-06 3.5362E-06
A6 -1.1561E-06 -1.2927E-06
A8 3.9457E-08 5.9642E-08
A10 -5.1536E-10 -1.1713E-09
A12 -3.6010E-14 8.3976E-12
A14 7.2185E-14 4.6761E-14
A16 -7.2860E-16 -1.0681E-15
A18 2.3716E-18 4.6152E-18
A20 0.0000E+00 0.0000E+00

9面 10面
K -3.5035 -2.7645
A4 -5.9110E-06 -6.8076E-06
A6 -2.5290E-09 1.9360E-08
A8 3.4621E-10 3.2163E-10
A10 4.9236E-13 1.3592E-12
A12 0.0000E+00 1.9007E-15
A14 0.0000E+00 0.0000E+00
A16 0.0000E+00 0.0000E+00
A18 0.0000E+00 0.0000E+00
A20 0.0000E+00 0.0000E+00

[各種データ]
INF 200
焦点距離 37.01 31.09
Fナンバー 2.90 3.02
全画角2ω 59.14 58.03
像高Y 21.63 21.63
レンズ全長 57.27 57.27

[可変間隔データ]
INF 200
d0 ∞ 142.7325
d5 8.0119 4.7646
d10 1.6000 4.8473
BF 2.0000 2.0000

[レンズ群データ]
群 始面 焦点距離
G1 1 110.04
G2 6 21.04
G3 11 -34.64
G12 1 21.48
G23 6 45.56
Next, the specification values of the imaging optical system according to Example 3 are shown below.
Numerical example 3
Unit: mm
[Surface data]
Surface number rd nd vd PgF Effective diameter Object surface ∞ (d0)
1* 40.0578 1.9199 1.72903 54.04 0.5446 17.97
2* 1035.9646 0.1500 17.19
3 35.3446 0.8000 1.51823 58.96 0.5441 15.51
4 21.8772 3.9211 14.20
5 (Aperture) ∞ (d5) 11.81
6 -11.9037 0.8000 1.69895 30.05 0.6028 12.14
7 33.6044 4.8000 1.87070 40.73 0.5682 14.18
8 -18.2410 0.1500 15.40
9* 38.2460 4.6535 1.58913 61.25 0.5373 17.60
10* -23.7324 (d10) 18.30
11 36.1340 0.8000 1.51742 52.15 0.5589 19.30
12 17.4730 6.9149 19.08
13 -18.7936 0.8000 1.64769 33.84 0.5923 19.93
14 -52.5631 0.1500 22.15
15 -160.7300 1.9252 1.92286 20.88 0.6388 23.30
16 -65.0696 15.3702 24.11
17∞ 2.5000 1.51633 64.14 0.5353
18∞ (BF)
Image plane ∞

[Aspheric data]
1 side 2 sides
K 2.2440 0.0000
A4 -4.7931E-06 3.5362E-06
A6 -1.1561E-06 -1.2927E-06
A8 3.9457E-08 5.9642E-08
A10 -5.1536E-10 -1.1713E-09
A12 -3.6010E-14 8.3976E-12
A14 7.2185E-14 4.6761E-14
A16 -7.2860E-16 -1.0681E-15
A18 2.3716E-18 4.6152E-18
A20 0.0000E+00 0.0000E+00

9 sides 10 sides
K -3.5035 -2.7645
A4 -5.9110E-06 -6.8076E-06
A6 -2.5290E-09 1.9360E-08
A8 3.4621E-10 3.2163E-10
A10 4.9236E-13 1.3592E-12
A12 0.0000E+00 1.9007E-15
A14 0.0000E+00 0.0000E+00
A16 0.0000E+00 0.0000E+00
A18 0.0000E+00 0.0000E+00
A20 0.0000E+00 0.0000E+00

[Various data]
INF 200
Focal length 37.01 31.09
F number 2.90 3.02
Full angle of view 2ω 59.14 58.03
Image height Y 21.63 21.63
Overall lens length 57.27 57.27

[Variable interval data]
INF 200
d0 ∞ 142.7325
d5 8.0119 4.7646
d10 1.6000 4.8473
BF 2.0000 2.0000

[Lens group data]
Group Starting surface Focal length
G1 1 110.04
G2 6 21.04
G3 11 -34.64
G12 1 21.48
G23 6 45.56

図16は、本発明の実施例4に係る結像光学系の無限遠合焦時のレンズ構成図である。
物体側から順に、正の屈折力を有する第1レンズ群G1は、両面非球面である物体側に凸面を向けた正メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2とからなり、開口絞りSは第1レンズ群G1の像側に隣接し、正の屈折力を有する第2レンズ群G2は、両凹レンズL3と両凸レンズL4からなる接合レンズと、両面非球面である両凸レンズL5とからなり、負の屈折力を有する第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズL6と、物体側に凹面を向けた負メニスカスレンズL7と、物体側に凹面を向けた正メニスカスレンズL8とからなり、無限遠物体から近距離物体への合焦の際に、第1レンズ群G1と開口絞りSと第3レンズ群G3は像面に対し固定であり、前記第2レンズ群G2が物体側へ移動する。
FIG. 16 is a lens configuration diagram of the imaging optical system according to Example 4 of the present invention when focusing on infinity.
In order from the object side, the first lens group G1 having positive refractive power is composed of a positive meniscus lens L1 having aspherical surfaces on both sides and having a convex surface facing the object side, and a negative meniscus lens L2 having a convex surface facing the object side. , the aperture diaphragm S is adjacent to the image side of the first lens group G1, and the second lens group G2 having positive refractive power includes a cemented lens composed of a biconcave lens L3 and a biconvex lens L4, and a biconvex lens having aspherical surfaces on both sides. A third lens group G3 having a negative refractive power includes a negative meniscus lens L6 having a convex surface facing the object side, a negative meniscus lens L7 having a concave surface facing the object side, and a concave surface facing the object side. The first lens group G1, the aperture stop S, and the third lens group G3 are fixed with respect to the image plane when focusing from an infinity object to a short distance object. The second lens group G2 moves to the object side.

第3レンズ群G3と像面の間に平行平面板であるフィルターFが配置されている。このフィルターFの光軸上の位置は第3レンズ群G3と像面の間ではどこであっても収差に影響を与えない。 A filter F, which is a plane-parallel plate, is arranged between the third lens group G3 and the image plane. The position of the filter F on the optical axis does not affect aberrations anywhere between the third lens group G3 and the image plane.

続いて、以下に実施例4に係る結像光学系の諸元値を示す。
数値実施例4
単位:mm
[面データ]
面番号 r d nd vd PgF 有効径
物面 ∞ (d0)
1* 27.9565 2.1228 1.85135 40.10 0.5694 20.03
2* 68.1371 0.1500 19.12
3 19.1686 0.8000 1.55298 55.07 0.5447 16.74
4 13.0798 5.4212 15.00
5(絞り) ∞ (d5) 12.38
6 -12.8045 0.8000 1.69895 30.05 0.6028 12.61
7 26.7275 4.8000 1.87070 40.73 0.5682 14.71
8 -20.8226 0.1500 15.80
9* 42.5418 4.5045 1.58913 61.25 0.5373 17.90
10 -24.4535 (d10) 18.54
11 34.5567 1.4070 1.67300 38.26 0.5757 19.43
12 18.8436 10.2837 19.10
13 -17.0132 0.8000 1.75211 25.05 0.6191 21.82
14 -32.5270 0.1500 24.42
15 -626.8220 2.9061 1.98612 16.48 0.6656 27.60
16 -60.7974 14.8183 28.43
17 ∞ 2.5000 1.51633 64.14 0.5353
18 ∞ (BF)
像面 ∞

[非球面データ]
1面 2面
K 1.4127 0.0000
A4 -1.6186E-05 -1.0510E-05
A6 -9.2237E-08 1.9241E-08
A8 1.9145E-09 2.9174E-09
A10 2.2312E-11 -2.4662E-11
A12 -6.4984E-13 -2.1752E-13
A14 3.6410E-15 2.6677E-15
A16 0.0000E+00 0.0000E+00
A18 0.0000E+00 0.0000E+00
A20 0.0000E+00 0.0000E+00

9面 10面
K -4.3611 -2.2863
A4 -4.9661E-06 -7.4309E-06
A6 5.1598E-09 2.2351E-08
A8 -3.8894E-10 -1.5640E-10
A10 4.9734E-12 2.4462E-12
A12 0.0000E+00 1.5323E-14
A14 0.0000E+00 0.0000E+00
A16 0.0000E+00 0.0000E+00
A18 0.0000E+00 0.0000E+00
A20 0.0000E+00 0.0000E+00

[各種データ]
INF 220
焦点距離 40.00 34.53
Fナンバー 2.90 3.08
全画角2ω 55.84 53.58
像高Y 21.63 21.63
レンズ全長 63.57 63.57

[可変間隔データ]
INF 220
d0 ∞ 156.4295
d5 8.3569 4.4610
d10 1.6000 5.4959
BF 2.0000 2.0000

[レンズ群データ]
群 始面 焦点距離
G1 1 154.41
G2 6 23.51
G3 11 -48.02
G12 1 24.61
G23 6 43.75
Next, the specification values of the imaging optical system according to Example 4 are shown below.
Numerical example 4
Unit: mm
[Surface data]
Surface number rd nd vd PgF Effective diameter Object surface ∞ (d0)
1* 27.9565 2.1228 1.85135 40.10 0.5694 20.03
2* 68.1371 0.1500 19.12
3 19.1686 0.8000 1.55298 55.07 0.5447 16.74
4 13.0798 5.4212 15.00
5 (Aperture) ∞ (d5) 12.38
6 -12.8045 0.8000 1.69895 30.05 0.6028 12.61
7 26.7275 4.8000 1.87070 40.73 0.5682 14.71
8 -20.8226 0.1500 15.80
9* 42.5418 4.5045 1.58913 61.25 0.5373 17.90
10 -24.4535 (d10) 18.54
11 34.5567 1.4070 1.67300 38.26 0.5757 19.43
12 18.8436 10.2837 19.10
13 -17.0132 0.8000 1.75211 25.05 0.6191 21.82
14 -32.5270 0.1500 24.42
15 -626.8220 2.9061 1.98612 16.48 0.6656 27.60
16 -60.7974 14.8183 28.43
17∞ 2.5000 1.51633 64.14 0.5353
18∞ (BF)
Image plane ∞

[Aspheric data]
1 side 2 sides
K 1.4127 0.0000
A4 -1.6186E-05 -1.0510E-05
A6 -9.2237E-08 1.9241E-08
A8 1.9145E-09 2.9174E-09
A10 2.2312E-11 -2.4662E-11
A12 -6.4984E-13 -2.1752E-13
A14 3.6410E-15 2.6677E-15
A16 0.0000E+00 0.0000E+00
A18 0.0000E+00 0.0000E+00
A20 0.0000E+00 0.0000E+00

9 sides 10 sides
K -4.3611 -2.2863
A4 -4.9661E-06 -7.4309E-06
A6 5.1598E-09 2.2351E-08
A8 -3.8894E-10 -1.5640E-10
A10 4.9734E-12 2.4462E-12
A12 0.0000E+00 1.5323E-14
A14 0.0000E+00 0.0000E+00
A16 0.0000E+00 0.0000E+00
A18 0.0000E+00 0.0000E+00
A20 0.0000E+00 0.0000E+00

[Various data]
INF 220
Focal length 40.00 34.53
F number 2.90 3.08
Full angle of view 2ω 55.84 53.58
Image height Y 21.63 21.63
Total lens length 63.57 63.57

[Variable interval data]
INF 220
d0 ∞ 156.4295
d5 8.3569 4.4610
d10 1.6000 5.4959
BF 2.0000 2.0000

[Lens group data]
Group Starting surface Focal length
G1 1 154.41
G26 23.51
G3 11 -48.02
G12 1 24.61
G23 6 43.75

図21は、本発明の実施例5に係る結像光学系の無限遠合焦時のレンズ構成図である。
物体側から順に、正の屈折力を有する第1レンズ群G1は、両面非球面である物体側に凸面を向けた正メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2とからなり、開口絞りSは第1レンズ群G1の像側に隣接し、正の屈折力を有する第2レンズ群G2は、両凹レンズL3と両凸レンズL4からなる接合レンズと、両面非球面である両凸レンズL5とからなり、負の屈折力を有する第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズL6と、物体側に凹面を向けた負メニスカスレンズL7と、両凸レンズL8とからなり、無限遠物体から近距離物体への合焦の際に、第1レンズ群G1と開口絞りSと第3レンズ群G3は像面に対し固定であり、前記第2レンズ群G2が物体側へ移動する。
FIG. 21 is a lens configuration diagram of the imaging optical system according to Example 5 of the present invention when focusing on infinity.
In order from the object side, the first lens group G1 having positive refractive power is composed of a positive meniscus lens L1 having aspherical surfaces on both sides and having a convex surface facing the object side, and a negative meniscus lens L2 having a convex surface facing the object side. , the aperture diaphragm S is adjacent to the image side of the first lens group G1, and the second lens group G2 having positive refractive power includes a cemented lens composed of a biconcave lens L3 and a biconvex lens L4, and a biconvex lens having aspherical surfaces on both sides. The third lens group G3 having negative refractive power consists of a negative meniscus lens L6 with a convex surface facing the object side, a negative meniscus lens L7 with a concave surface facing the object side, and a biconvex lens L8. , the first lens group G1, the aperture stop S and the third lens group G3 are fixed with respect to the image plane, and the second lens group G2 is directed toward the object side when focusing from an infinite object to a short distance object. Moving.

第3レンズ群G3と像面の間に平行平面板であるフィルターFが配置されている。このフィルターFの光軸上の位置は第3レンズ群G3と像面の間ではどこであっても収差に影響を与えない。 A filter F, which is a plane-parallel plate, is arranged between the third lens group G3 and the image plane. The position of the filter F on the optical axis does not affect aberrations anywhere between the third lens group G3 and the image plane.

続いて、以下に実施例5に係る結像光学系の諸元値を示す。
数値実施例5
単位:mm
[面データ]
面番号 r d nd vd PgF 有効径
物面 ∞ (d0)
1* 21.0823 3.4782 1.76802 49.24 0.5515 21.16
2* 99.2280 0.1608 20.07
3 47.5622 0.8000 1.51742 52.15 0.5589 18.94
4 19.4504 4.4894 16.80
5(絞り) ∞ (d5) 14.80
6 -15.0441 0.8000 1.69895 30.05 0.6028 14.30
7 21.1179 4.7971 1.87070 40.73 0.5682 15.72
8 -26.2651 0.1870 16.20
9* 45.2265 4.2577 1.58913 61.25 0.5373 17.80
10* -27.0031 (d10) 18.39
11 1450.3022 1.3351 1.67300 38.26 0.5757 19.13
12 25.6487 8.1008 19.40
13 -17.7190 0.8004 1.75211 25.05 0.6191 21.66
14 -51.2250 0.1502 25.06
15 1000.0000 4.3333 1.98612 16.48 0.6656 28.40
16 -42.8968 14.0137 29.54
17 ∞ 2.5000 1.51633 64.14 0.5353
18 ∞ (BF)
像面 ∞

[非球面データ]
1面 2面
K 0.6876 12.9030
A4 -1.3213E-05 -9.8307E-07
A6 3.2013E-07 1.2898E-07
A8 -1.8639E-08 -8.8793E-09
A10 5.2041E-10 3.1773E-10
A12 -8.2976E-12 -6.4386E-12
A14 7.5237E-14 7.2797E-14
A16 -3.6261E-16 -4.3185E-16
A18 7.1284E-19 1.0386E-18
A20 0.0000E+00 0.0000E+00

9面 10面
K -2.4143 -4.0616
A4 -5.0885E-06 -6.7662E-06
A6 -1.4701E-08 3.9183E-08
A8 -1.9852E-09 2.3073E-08
A10 9.1678E-11 -1.2237E-09
A12 -1.1699E-12 2.9740E-11
A14 2.3893E-15 -3.7929E-13
A16 5.7896E-17 2.4731E-15
A18 -3.1362E-19 -6.4997E-18
A20 0.0000E+00 0.0000E+00

[各種データ]
INF 210
焦点距離 50.72 34.65
Fナンバー 2.90 2.98
全画角2ω 44.98 44.39
像高Y 21.63 21.63
レンズ全長 64.52 64.52

[可変間隔データ]
INF 210
d0 ∞ 144.4762
d5 10.6925 5.0552
d10 1.6281 7.2654
BF 2.0000 2.0000

[レンズ群データ]
群 始面 焦点距離
G1 1 65.48
G2 6 26.88
G3 11 -38.63
G12 1 27.64
G23 6 107.03
Next, the specification values of the imaging optical system according to Example 5 are shown below.
Numerical example 5
Unit: mm
[Surface data]
Surface number rd nd vd PgF Effective diameter Object surface ∞ (d0)
1* 21.0823 3.4782 1.76802 49.24 0.5515 21.16
2* 99.2280 0.1608 20.07
3 47.5622 0.8000 1.51742 52.15 0.5589 18.94
4 19.4504 4.4894 16.80
5 (Aperture) ∞ (d5) 14.80
6 -15.0441 0.8000 1.69895 30.05 0.6028 14.30
7 21.1179 4.7971 1.87070 40.73 0.5682 15.72
8 -26.2651 0.1870 16.20
9* 45.2265 4.2577 1.58913 61.25 0.5373 17.80
10* -27.0031 (d10) 18.39
11 1450.3022 1.3351 1.67300 38.26 0.5757 19.13
12 25.6487 8.1008 19.40
13 -17.7190 0.8004 1.75211 25.05 0.6191 21.66
14 -51.2250 0.1502 25.06
15 1000.0000 4.3333 1.98612 16.48 0.6656 28.40
16 -42.8968 14.0137 29.54
17∞ 2.5000 1.51633 64.14 0.5353
18∞ (BF)
Image plane ∞

[Aspheric Data]
1 side 2 sides
K 0.6876 12.9030
A4 -1.3213E-05 -9.8307E-07
A6 3.2013E-07 1.2898E-07
A8 -1.8639E-08 -8.8793E-09
A10 5.2041E-10 3.1773E-10
A12 -8.2976E-12 -6.4386E-12
A14 7.5237E-14 7.2797E-14
A16 -3.6261E-16 -4.3185E-16
A18 7.1284E-19 1.0386E-18
A20 0.0000E+00 0.0000E+00

9 sides 10 sides
K -2.4143 -4.0616
A4 -5.0885E-06 -6.7662E-06
A6 -1.4701E-08 3.9183E-08
A8 -1.9852E-09 2.3073E-08
A10 9.1678E-11 -1.2237E-09
A12 -1.1699E-12 2.9740E-11
A14 2.3893E-15 -3.7929E-13
A16 5.7896E-17 2.4731E-15
A18 -3.1362E-19 -6.4997E-18
A20 0.0000E+00 0.0000E+00

[Various data]
INF 210
Focal length 50.72 34.65
F number 2.90 2.98
Full angle of view 2ω 44.98 44.39
Image height Y 21.63 21.63
Total lens length 64.52 64.52

[Variable interval data]
INF 210
d0 ∞ 144.4762
d5 10.6925 5.0552
d10 1.6281 7.2654
BF 2.0000 2.0000

[Lens group data]
Group Starting surface Focal length
G1 1 65.48
G26 26.88
G3 11 -38.63
G12 1 27.64
G23 6 107.03

図26は、本発明の実施例6に係る結像光学系の無限遠合焦時のレンズ構成図である。
物体側から順に、正の屈折力を有する第1レンズ群G1は、両面非球面である物体側に凸面を向けた正メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2とからなり、開口絞りSは第1レンズ群G1の像側に隣接し、正の屈折力を有する第2レンズ群G2は、両凹レンズL3と両凸レンズL4からなる接合レンズと、両面非球面である両凸レンズL5とからなり、負の屈折力を有する第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズL6と、物体側に凹面を向けた負メニスカスレンズL7と、両凸レンズL8からなり、無限遠物体から近距離物体への合焦の際に、第1レンズ群G1と開口絞りSと第3レンズ群G3は像面に対し固定であり、前記第2レンズ群G2が物体側へ移動する。
FIG. 26 is a lens configuration diagram of the imaging optical system according to Example 6 of the present invention when focusing on infinity.
In order from the object side, the first lens group G1 having positive refractive power is composed of a positive meniscus lens L1 having aspherical surfaces on both sides and having a convex surface facing the object side, and a negative meniscus lens L2 having a convex surface facing the object side. , the aperture diaphragm S is adjacent to the image side of the first lens group G1, and the second lens group G2 having positive refractive power includes a cemented lens composed of a biconcave lens L3 and a biconvex lens L4, and a biconvex lens having aspherical surfaces on both sides. L5, and the third lens group G3 having negative refractive power is composed of a negative meniscus lens L6 with a convex surface facing the object side, a negative meniscus lens L7 with a concave surface facing the object side, and a biconvex lens L8, When focusing from an infinity object to a close object, the first lens group G1, the aperture diaphragm S and the third lens group G3 are fixed with respect to the image plane, and the second lens group G2 moves toward the object side. do.

第3レンズ群G3と像面の間に平行平面板であるフィルターFが配置されている。このフィルターFの光軸上の位置は第3レンズ群G3と像面の間ではどこであっても収差に影響を与えない。 A filter F, which is a plane-parallel plate, is arranged between the third lens group G3 and the image plane. The position of the filter F on the optical axis does not affect aberrations anywhere between the third lens group G3 and the image plane.

続いて、以下に実施例6に係る結像光学系の諸元値を示す。
数値実施例6
単位:mm
[面データ]
面番号 r d nd vd PgF 有効径
物面 ∞ (d0)
1* 21.0987 3.3398 1.77250 49.50 0.5519 19.88
2* 54.6445 0.7934 18.16
3 29.1842 0.8000 1.48749 70.44 0.5306 16.60
4 17.2858 3.6525 15.68
5(絞り) ∞ (d5) 15.00
6 -13.4041 0.8000 1.69895 30.05 0.6028 14.41
7 30.1667 4.7697 1.87070 40.73 0.5682 16.18
8 -20.0313 0.1500 16.80
9* 26.9679 4.4763 1.58913 61.25 0.5373 17.80
10* -37.7416 (d10) 18.16
11 138.9423 0.8000 1.95375 32.32 0.5901 18.22
12 22.4583 10.0862 18.00
13 -16.4066 0.8000 1.70154 41.15 0.5769 21.66
14 -29.7489 0.1500 24.39
15 178.9531 3.4842 1.98612 16.48 0.6656 29.30
16 -81.0895 15.1006 30.05
17 ∞ 2.5000 1.51633 64.14 0.5353
18 ∞ (BF)
像面 ∞

[非球面データ]
1面 2面
K 2.1022 10.6169
A4 -1.5287E-05 7.0189E-06
A6 -2.1976E-07 1.8322E-07
A8 -4.4936E-10 -1.5319E-08
A10 2.1212E-10 7.5207E-10
A12 -6.3286E-12 -1.7441E-11
A14 8.8011E-14 2.2713E-13
A16 -6.0800E-16 -1.5745E-15
A18 1.7022E-18 4.6288E-18
A20 0.0000E+00 0.0000E+00

9面 10面
K -2.1665 -4.9007
A4 5.0447E-06 4.5712E-06
A6 -1.3519E-08 1.2052E-08
A8 2.6215E-09 3.3008E-09
A10 -7.1467E-11 -8.7446E-11
A12 7.7627E-13 9.2023E-13
A14 -3.2966E-15 -3.7697E-15
A16 0.0000E+00 0.0000E+00
A18 0.0000E+00 0.0000E+00
A20 0.0000E+00 0.0000E+00

[各種データ]
INF 260
焦点距離 51.30 40.89
Fナンバー 2.90 2.94
全画角2ω 44.52 44.28
像高Y 21.63 21.63
レンズ全長 64.57 64.57

[可変間隔データ]
INF 260
d0 ∞ 195.4280
d5 9.2671 6.2340
d10 1.6000 4.6331
BF 2.0000 2.0000

[レンズ群データ]
群 始面 焦点距離
G1 1 73.81
G2 6 22.28
G3 11 -29.05
G12 1 23.90
G23 6 102.38
Next, the specification values of the imaging optical system according to Example 6 are shown below.
Numerical example 6
Unit: mm
[Surface data]
Surface number rd nd vd PgF Effective diameter Object surface ∞ (d0)
1* 21.0987 3.3398 1.77250 49.50 0.5519 19.88
2* 54.6445 0.7934 18.16
3 29.1842 0.8000 1.48749 70.44 0.5306 16.60
4 17.2858 3.6525 15.68
5 (Aperture) ∞ (d5) 15.00
6 -13.4041 0.8000 1.69895 30.05 0.6028 14.41
7 30.1667 4.7697 1.87070 40.73 0.5682 16.18
8 -20.0313 0.1500 16.80
9* 26.9679 4.4763 1.58913 61.25 0.5373 17.80
10* -37.7416 (d10) 18.16
11 138.9423 0.8000 1.95375 32.32 0.5901 18.22
12 22.4583 10.0862 18.00
13 -16.4066 0.8000 1.70154 41.15 0.5769 21.66
14 -29.7489 0.1500 24.39
15 178.9531 3.4842 1.98612 16.48 0.6656 29.30
16 -81.0895 15.1006 30.05
17∞ 2.5000 1.51633 64.14 0.5353
18∞ (BF)
Image plane ∞

[Aspheric data]
1 side 2 sides
K 2.1022 10.6169
A4 -1.5287E-05 7.0189E-06
A6 -2.1976E-07 1.8322E-07
A8 -4.4936E-10 -1.5319E-08
A10 2.1212E-10 7.5207E-10
A12 -6.3286E-12 -1.7441E-11
A14 8.8011E-14 2.2713E-13
A16 -6.0800E-16 -1.5745E-15
A18 1.7022E-18 4.6288E-18
A20 0.0000E+00 0.0000E+00

9 sides 10 sides
K -2.1665 -4.9007
A4 5.0447E-06 4.5712E-06
A6 -1.3519E-08 1.2052E-08
A8 2.6215E-09 3.3008E-09
A10 -7.1467E-11 -8.7446E-11
A12 7.7627E-13 9.2023E-13
A14 -3.2966E-15 -3.7697E-15
A16 0.0000E+00 0.0000E+00
A18 0.0000E+00 0.0000E+00
A20 0.0000E+00 0.0000E+00

[Various data]
INF 260
Focal length 51.30 40.89
F number 2.90 2.94
Full angle of view 2ω 44.52 44.28
Image height Y 21.63 21.63
Total lens length 64.57 64.57

[Variable interval data]
INF 260
d0 ∞ 195.4280
d5 9.2671 6.2340
d10 1.6000 4.6331
BF 2.0000 2.0000

[Lens group data]
Group Starting surface Focal length
G1 1 73.81
G2 6 22.28
G3 11 -29.05
G12 1 23.90
G23 6 102.38

図31は、本発明の実施例7に係る結像光学系の無限遠合焦時のレンズ構成図である。
物体側から順に、正の屈折力を有する第1レンズ群G1は、両面非球面である物体側に凸面を向けた正メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2とからなり、開口絞りSは第1レンズ群G1の像側に隣接し、正の屈折力を有する第2レンズ群G2は、両凹レンズL3と両凸レンズL4からなる接合レンズと、両面非球面である両凸レンズL5とからなりと、負の屈折力を有する第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズL6と、物体側に凹面を向けた負メニスカスレンズL7と、両凸レンズL8とからなり、無限遠物体から近距離物体への合焦の際に、第1レンズ群G1と開口絞りSと第3レンズ群G3は像面に対し固定であり、前記第2レンズ群G2が物体側へ移動する。
FIG. 31 is a lens configuration diagram of the imaging optical system according to Example 7 of the present invention when focusing on infinity.
In order from the object side, the first lens group G1 having positive refractive power is composed of a positive meniscus lens L1 having aspherical surfaces on both sides and having a convex surface facing the object side, and a negative meniscus lens L2 having a convex surface facing the object side. , the aperture diaphragm S is adjacent to the image side of the first lens group G1, and the second lens group G2 having positive refractive power includes a cemented lens composed of a biconcave lens L3 and a biconvex lens L4, and a biconvex lens having aspherical surfaces on both sides. The third lens group G3 having a negative refractive power is composed of a negative meniscus lens L6 having a convex surface facing the object side, a negative meniscus lens L7 having a concave surface facing the object side, and a biconvex lens L8. Thus, when focusing from an infinite object to a close object, the first lens group G1, the aperture diaphragm S and the third lens group G3 are fixed with respect to the image plane, and the second lens group G2 is on the object side. move to

第3レンズ群G3と像面の間に平行平面板であるフィルターFが配置されている。このフィルターFの光軸上の位置は第3レンズ群G3と像面の間ではどこであっても収差に影響を与えない。 A filter F, which is a plane-parallel plate, is arranged between the third lens group G3 and the image plane. The position of the filter F on the optical axis does not affect aberrations anywhere between the third lens group G3 and the image plane.

続いて、以下に実施例7に係る結像光学系の諸元値を示す。
数値実施例7
単位:mm
[面データ]
面番号 r d nd vd PgF 有効径
物面 ∞ (d0)
1* 20.6620 3.1514 1.85135 40.10 0.5694 19.63
2* 47.5814 0.4460 17.95
3 23.7152 0.8000 1.67300 38.26 0.5757 16.60
4 15.8076 3.7525 15.65
5(絞り) ∞ (d5) 15.03
6 -13.7424 0.8000 1.69895 30.05 0.6028 14.56
7 33.2777 4.8000 1.87070 40.73 0.5682 16.30
8 -19.2935 0.1895 17.00
9* 23.9858 4.5111 1.58913 61.25 0.5373 17.50
10* -45.1305 (d10) 17.74
11 141.4802 0.8000 1.95375 32.32 0.5901 17.66
12 21.0998 10.5351 17.50
13 -17.0176 0.8000 1.83400 37.35 0.5789 21.74
14 -28.6516 0.1500 24.22
15 208.3778 3.5796 1.98612 16.48 0.6656 29.20
16 -72.4839 14.9309 30.01
17 ∞ 2.5000 1.51633 64.14 0.5353
18 ∞ (BF)
像面 ∞

[非球面データ]
1面 2面
K 2.0719 11.2100
A4 -1.8102E-05 2.1864E-06
A6 -2.5741E-07 -6.4336E-08
A8 5.6331E-10 -2.6344E-09
A10 1.5449E-10 3.4042E-10
A12 -4.5910E-12 -8.8147E-12
A14 6.3669E-14 1.1928E-13
A16 -4.4851E-16 -8.4905E-16
A18 1.3183E-18 2.6669E-18
A20 0.0000E+00 0.0000E+00

9面 10面
K -1.8995 -5.1449
A4 8.2067E-06 8.1730E-06
A6 -1.1855E-08 7.2803E-09
A8 2.6173E-09 2.4921E-09
A10 -7.3732E-11 -7.1060E-11
A12 8.0300E-13 7.6064E-13
A14 -3.4811E-15 -3.2809E-15
A16 0.0000E+00 0.0000E+00
A18 0.0000E+00 0.0000E+00
A20 0.0000E+00 0.0000E+00

[各種データ]
INF 260
焦点距離 51.21 40.91
Fナンバー 2.90 2.95
全画角2ω 44.59 44.29
像高Y 21.63 21.63
レンズ全長 64.39 64.39

[可変間隔データ]
INF 260
d0 ∞ 195.6050
d5 9.0455 6.3188
d10 1.6000 4.3267
BF 2.0000 2.0000

[レンズ群データ]
群 始面 焦点距離
G1 1 79.67
G2 6 21.04
G3 11 -27.24
G12 1 22.82
G23 6 93.77
Next, the specification values of the imaging optical system according to Example 7 are shown below.
Numerical example 7
Unit: mm
[Surface data]
Surface number rd nd vd PgF Effective diameter Object surface ∞ (d0)
1* 20.6620 3.1514 1.85135 40.10 0.5694 19.63
2* 47.5814 0.4460 17.95
3 23.7152 0.8000 1.67300 38.26 0.5757 16.60
4 15.8076 3.7525 15.65
5 (Aperture) ∞ (d5) 15.03
6 -13.7424 0.8000 1.69895 30.05 0.6028 14.56
7 33.2777 4.8000 1.87070 40.73 0.5682 16.30
8 -19.2935 0.1895 17.00
9* 23.9858 4.5111 1.58913 61.25 0.5373 17.50
10* -45.1305 (d10) 17.74
11 141.4802 0.8000 1.95375 32.32 0.5901 17.66
12 21.0998 10.5351 17.50
13 -17.0176 0.8000 1.83400 37.35 0.5789 21.74
14 -28.6516 0.1500 24.22
15 208.3778 3.5796 1.98612 16.48 0.6656 29.20
16 -72.4839 14.9309 30.01
17∞ 2.5000 1.51633 64.14 0.5353
18∞ (BF)
Image plane ∞

[Aspheric data]
1 side 2 sides
K 2.0719 11.2100
A4 -1.8102E-05 2.1864E-06
A6 -2.5741E-07 -6.4336E-08
A8 5.6331E-10 -2.6344E-09
A10 1.5449E-10 3.4042E-10
A12 -4.5910E-12 -8.8147E-12
A14 6.3669E-14 1.1928E-13
A16 -4.4851E-16 -8.4905E-16
A18 1.3183E-18 2.6669E-18
A20 0.0000E+00 0.0000E+00

9 sides 10 sides
K -1.8995 -5.1449
A4 8.2067E-06 8.1730E-06
A6-1.1855E-08 7.2803E-09
A8 2.6173E-09 2.4921E-09
A10 -7.3732E-11 -7.1060E-11
A12 8.0300E-13 7.6064E-13
A14 -3.4811E-15 -3.2809E-15
A16 0.0000E+00 0.0000E+00
A18 0.0000E+00 0.0000E+00
A20 0.0000E+00 0.0000E+00

[Various data]
INF 260
Focal length 51.21 40.91
F number 2.90 2.95
Full angle of view 2ω 44.59 44.29
Image height Y 21.63 21.63
Total lens length 64.39 64.39

[Variable interval data]
INF 260
d0 ∞ 195.6050
d5 9.0455 6.3188
d10 1.6000 4.3267
BF 2.0000 2.0000

[Lens group data]
Group Starting surface Focal length
G1 1 79.67
G2 6 21.04
G3 11 -27.24
G12 1 22.82
G23 6 93.77

図36は、本発明の実施例8に係る結像光学系の無限遠合焦時のレンズ構成図である。
物体側から順に、正の屈折力を有する第1レンズ群G1は、両面非球面である物体側に凸面を向けた正メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2とからなり、開口絞りSは第1レンズ群G1の像側に隣接し、正の屈折力を有する第2レンズ群G2は、両凹レンズL3と両凸レンズL4とからなる接合レンズと、両面非球面である両凸レンズL5とからなり、負の屈折力を有する第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズL6と、物体側に凹面を向けた負メニスカスレンズL7と、両凸レンズL8とからなり、無限遠物体から近距離物体への合焦の際に、第1レンズ群G1と開口絞りSと第3レンズ群G3は像面に対し固定であり、前記第2レンズ群G2が物体側へ移動する。
FIG. 36 is a lens configuration diagram of the imaging optical system according to Example 8 of the present invention when focusing on infinity.
In order from the object side, the first lens group G1 having positive refractive power is composed of a positive meniscus lens L1 having aspherical surfaces on both sides and having a convex surface facing the object side, and a negative meniscus lens L2 having a convex surface facing the object side. , the aperture diaphragm S is adjacent to the image side of the first lens group G1, and the second lens group G2 having positive refractive power includes a cemented lens composed of a biconcave lens L3 and a biconvex lens L4, and a double-sided aspherical surface. A third lens group G3 having a negative refractive power, consisting of a convex lens L5, comprises a negative meniscus lens L6 having a convex surface facing the object side, a negative meniscus lens L7 having a concave surface facing the object side, and a biconvex lens L8. Thus, when focusing from an infinite object to a close object, the first lens group G1, the aperture diaphragm S and the third lens group G3 are fixed with respect to the image plane, and the second lens group G2 is on the object side. Move to

第3レンズ群G3と像面の間に平行平面板であるフィルターFが配置されている。このフィルターFの光軸上の位置は第3レンズ群G3と像面の間ではどこであっても収差に影響を与えない。 A filter F, which is a plane-parallel plate, is arranged between the third lens group G3 and the image plane. The position of the filter F on the optical axis does not affect aberrations anywhere between the third lens group G3 and the image plane.

続いて、以下に実施例8に係る結像光学系の諸元値を示す。
数値実施例8
単位:mm
[面データ]
面番号 r d nd vd PgF 有効径
物面 ∞ (d0)
1* 19.2943 4.3849 1.77250 49.50 0.5519 21.91
2* 83.4557 0.4474 20.13
3 37.3406 0.8000 1.64769 33.84 0.5923 18.60
4 17.8608 3.9704 17.25
5(絞り) ∞ (d5) 16.38
6 -17.4689 0.8000 1.67270 32.17 0.5962 15.46
7 18.5228 4.7563 1.87070 40.73 0.5682 16.88
8 -37.3036 0.1500 17.20
9* 61.4797 3.6234 1.58913 61.25 0.5373 17.10
10* -27.3796 (d10) 17.71
11 108.5223 0.8000 1.88300 40.81 0.5654 18.75
12 28.8108 8.2602 18.80
13 -17.3629 0.8000 1.83400 37.35 0.5789 21.12
14 -33.0352 0.1500 23.51
15 159.5584 2.9136 1.98612 16.48 0.6656 27.52
16 -112.0386 15.6000 28.23
17 ∞ 2.5000 1.51633 64.14 0.5353
18 ∞ (BF)
像面 ∞

[非球面データ]
1面 2面
K 1.2865 3.6433
A4 -2.2596E-05 4.5240E-06
A6 -9.5381E-08 4.9414E-08
A8 -9.9329E-10 1.1435E-09
A10 6.9611E-11 -2.6295E-11
A12 -1.8807E-12 1.4369E-13
A14 2.3787E-14 4.2434E-15
A16 -1.4812E-16 -6.1675E-17
A18 3.6682E-19 2.5658E-19
A20 0.0000E+00 0.0000E+00

9面 10面
K -12.4781 -3.2159
A4 -6.8969E-06 -4.7966E-06
A6 -2.7438E-08 2.8670E-08
A8 -1.6769E-09 2.9749E-09
A10 1.8763E-11 -1.0572E-10
A12 8.9135E-14 1.3762E-12
A14 -1.0850E-15 -5.7279E-15
A16 0.0000E+00 0.0000E+00
A18 0.0000E+00 0.0000E+00
A20 0.0000E+00 0.0000E+00

[各種データ]
INF 290
焦点距離 58.00 44.21
Fナンバー 2.90 2.95
全画角2ω 39.82 39.34
像高Y 21.63 21.63
レンズ全長 64.57 64.57

[可変間隔データ]
INF 290
d0 ∞ 225.4298
d5 11.0138 5.9218
d10 1.6000 6.6920
BF 2.0000 2.0000

[レンズ群データ]
群 始面 焦点距離
G1 1 63.49
G2 6 32.00
G3 11 -33.78
G12 1 31.29
G23 6 440.27
Next, the specification values of the imaging optical system according to Example 8 are shown below.
Numerical example 8
Unit: mm
[Surface data]
Surface number rd nd vd PgF Effective diameter Object surface ∞ (d0)
1* 19.2943 4.3849 1.77250 49.50 0.5519 21.91
2* 83.4557 0.4474 20.13
3 37.3406 0.8000 1.64769 33.84 0.5923 18.60
4 17.8608 3.9704 17.25
5 (Aperture) ∞ (d5) 16.38
6 -17.4689 0.8000 1.67270 32.17 0.5962 15.46
7 18.5228 4.7563 1.87070 40.73 0.5682 16.88
8 -37.3036 0.1500 17.20
9* 61.4797 3.6234 1.58913 61.25 0.5373 17.10
10* -27.3796 (d10) 17.71
11 108.5223 0.8000 1.88300 40.81 0.5654 18.75
12 28.8108 8.2602 18.80
13 -17.3629 0.8000 1.83400 37.35 0.5789 21.12
14 -33.0352 0.1500 23.51
15 159.5584 2.9136 1.98612 16.48 0.6656 27.52
16 -112.0386 15.6000 28.23
17∞ 2.5000 1.51633 64.14 0.5353
18∞ (BF)
Image plane ∞

[Aspheric data]
1 side 2 sides
K 1.2865 3.6433
A4 -2.2596E-05 4.5240E-06
A6 -9.5381E-08 4.9414E-08
A8-9.9329E-10 1.1435E-09
A10 6.9611E-11 -2.6295E-11
A12 -1.8807E-12 1.4369E-13
A14 2.3787E-14 4.2434E-15
A16 -1.4812E-16 -6.1675E-17
A18 3.6682E-19 2.5658E-19
A20 0.0000E+00 0.0000E+00

9 sides 10 sides
K -12.4781 -3.2159
A4 -6.8969E-06 -4.7966E-06
A6 -2.7438E-08 2.8670E-08
A8 -1.6769E-09 2.9749E-09
A10 1.8763E-11 -1.0572E-10
A12 8.9135E-14 1.3762E-12
A14 -1.0850E-15 -5.7279E-15
A16 0.0000E+00 0.0000E+00
A18 0.0000E+00 0.0000E+00
A20 0.0000E+00 0.0000E+00

[Various data]
INF 290
Focal length 58.00 44.21
F number 2.90 2.95
Full angle of view 2ω 39.82 39.34
Image height Y 21.63 21.63
Total lens length 64.57 64.57

[Variable interval data]
INF 290
d0 ∞ 225.4298
d5 11.0138 5.9218
d10 1.6000 6.6920
BF 2.0000 2.0000

[Lens group data]
Group Starting surface Focal length
G1 1 63.49
G26 32.00
G3 11 -33.78
G12 1 31.29
G23 6 440.27

図41は、本発明の実施例9に係る結像光学系の無限遠合焦時のレンズ構成図である。
物体側から順に、正の屈折力を有する第1レンズ群G1は、両面非球面である物体側に凸面を向けた正メニスカスレンズL1、物体側に凸面を向けた負メニスカスレンズL2からなり、開口絞りSは第1レンズ群G1の像側に隣接し、正の屈折力を有する第2レンズ群G2は、両凹レンズL3と両凸レンズL4からなる接合レンズと、両面非球面である両凸レンズL5とからなり、負の屈折力を有する第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズL6と、物体側に凹面を向けた負メニスカスレンズL7と、両凸レンズL8とからなり、無限遠物体から近距離物体への合焦の際に、第3レンズ群G3は像面に対し固定であり、前記第1レンズ群G1と開口絞りSと第2レンズ群G2が一体で物体側へ移動するとともに第2レンズ群が更に物体側へ移動する。
FIG. 41 is a lens configuration diagram of the imaging optical system according to Example 9 of the present invention when focusing on infinity.
In order from the object side, the first lens group G1 having positive refractive power is composed of a positive meniscus lens L1 having a convex surface facing the object side and having aspherical surfaces on both sides, and a negative meniscus lens L2 having a convex surface facing the object side. The diaphragm S is adjacent to the image side of the first lens group G1, and the second lens group G2 having positive refractive power includes a cemented lens composed of a biconcave lens L3 and a biconvex lens L4, and a biconvex lens L5 having aspherical surfaces on both sides. The third lens group G3 having negative refractive power consists of a negative meniscus lens L6 with a convex surface facing the object side, a negative meniscus lens L7 with a concave surface facing the object side, and a biconvex lens L8. When focusing from a distant object to a close object, the third lens group G3 is fixed with respect to the image plane, and the first lens group G1, the aperture diaphragm S, and the second lens group G2 are integrated to the object side. As it moves, the second lens group moves further toward the object side.

第1レンズ群G1と開口絞りSと第2レンズ群G2を一体で移動するための動力はトルクの大きなアクチュエータを使用しても良く、もしくはアクチュエータに依らない機械的な繰り出し機構として近接撮影専用のレンズ系としても良いが、第2レンズ群G2の駆動に関しては光軸方向に微小駆動が可能となるように小型のアクチュエータを用いることが望ましい。この時第2レンズ群G2が物体側へ移動することで更に近距離の物体への合焦が可能となる。 The power for integrally moving the first lens group G1, the aperture diaphragm S, and the second lens group G2 may be an actuator with a large torque, or a mechanical extension mechanism that does not depend on an actuator, which is exclusively used for close-up photography. Although a lens system may be used, it is desirable to use a compact actuator for driving the second lens group G2 so as to enable minute driving in the optical axis direction. At this time, by moving the second lens group G2 toward the object side, it becomes possible to focus on an object at a closer distance.

第3レンズ群G3と像面の間に平行平面板であるフィルターFが配置されている。このフィルターFの光軸上の位置は第3レンズ群G3と像面の間ではどこであっても収差に影響を与えない。 A filter F, which is a plane-parallel plate, is arranged between the third lens group G3 and the image plane. The position of the filter F on the optical axis does not affect aberrations anywhere between the third lens group G3 and the image plane.

続いて、以下に実施例9に係る結像光学系の諸元値を示す。
数値実施例9
単位:mm
[面データ]
面番号 r d nd vd PgF 有効径
物面 ∞ (d0)
1* 23.3681 3.7585 1.77250 49.50 0.5519 20.01
2* 144.1153 0.3080 18.30
3 45.1236 0.8000 1.51742 52.15 0.5589 16.74
4 16.3472 4.6499 14.58
5(絞り) ∞ (d5) 12.90
6 -12.2130 0.8000 1.69895 30.05 0.6028 12.85
7 55.6607 4.2213 1.87070 40.73 0.5682 14.54
8 -18.8353 0.1500 15.60
9* 37.4761 4.7493 1.58913 61.25 0.5373 17.90
10* -23.9712 (d10) 18.50
11 109.6497 0.9857 1.67300 38.26 0.5757 18.97
12 21.1832 8.7012 19.20
13 -19.7354 0.8000 1.75211 25.05 0.6191 21.87
14 -29.9543 0.1500 23.66
15 95.8651 2.5968 1.98612 16.48 0.6656 28.20
16 -580.7065 16.3216 28.72
17 ∞ 2.5000 1.51633 64.14 0.5353
18 ∞ (BF)
像面 ∞



[非球面データ]
1面 2面
K 0.7548 0.0000
A4 -1.0943E-05 -2.3116E-06
A6 -9.0526E-08 1.4773E-07
A8 3.3856E-09 -4.0502E-09
A10 -6.8374E-11 7.7863E-11
A12 7.5676E-13 -9.6225E-13
A14 -4.8496E-15 6.3690E-15
A16 1.5425E-17 -2.0898E-17
A18 -1.8709E-20 2.6920E-20
A20 0.0000E+00 0.0000E+00

9面 10面
K -2.3178 -2.6500
A4 -2.4796E-06 -4.7357E-06
A6 -9.6746E-09 1.5970E-08
A8 -5.6804E-10 3.7484E-10
A10 3.7440E-11 -1.2512E-11
A12 -7.5858E-13 2.6612E-13
A14 7.5576E-15 -3.0274E-15
A16 -3.5787E-17 1.8357E-17
A18 6.4474E-20 -4.2619E-20
A20 0.0000E+00 0.0000E+00

[各種データ]
INF 240 150
焦点距離 43.93 37.82 32.28
Fナンバー 2.90 3.07 3.26
全画角2ω 51.10 48.96 46.43
像高Y 21.63 21.63 21.63
レンズ全長 63.57 67.10 67.10

[可変間隔データ]
INF 240 150
d0 ∞ 168.8040 85.1913
d5 8.3114 8.3114 4.8314
d10 1.7666 5.2940 8.7740
BF 2.0000 2.0000 2.0000

[レンズ群データ]
群 始面 焦点距離
G1 1 98.79
G2 6 22.68
G3 11 -39.36
G12 1 24.39
G23 6 54.90
Next, the specification values of the imaging optical system according to Example 9 are shown below.
Numerical example 9
Unit: mm
[Surface data]
Surface number rd nd vd PgF Effective diameter Object surface ∞ (d0)
1* 23.3681 3.7585 1.77250 49.50 0.5519 20.01
2* 144.1153 0.3080 18.30
3 45.1236 0.8000 1.51742 52.15 0.5589 16.74
4 16.3472 4.6499 14.58
5 (Aperture) ∞ (d5) 12.90
6 -12.2130 0.8000 1.69895 30.05 0.6028 12.85
7 55.6607 4.2213 1.87070 40.73 0.5682 14.54
8 -18.8353 0.1500 15.60
9* 37.4761 4.7493 1.58913 61.25 0.5373 17.90
10* -23.9712 (d10) 18.50
11 109.6497 0.9857 1.67300 38.26 0.5757 18.97
12 21.1832 8.7012 19.20
13 -19.7354 0.8000 1.75211 25.05 0.6191 21.87
14 -29.9543 0.1500 23.66
15 95.8651 2.5968 1.98612 16.48 0.6656 28.20
16 -580.7065 16.3216 28.72
17∞ 2.5000 1.51633 64.14 0.5353
18∞ (BF)
Image plane ∞



[Aspheric data]
1 side 2 sides
K 0.7548 0.0000
A4 -1.0943E-05 -2.3116E-06
A6-9.0526E-08 1.4773E-07
A8 3.3856E-09 -4.0502E-09
A10 -6.8374E-11 7.7863E-11
A12 7.5676E-13 -9.6225E-13
A14 -4.8496E-15 6.3690E-15
A16 1.5425E-17 -2.0898E-17
A18 -1.8709E-20 2.6920E-20
A20 0.0000E+00 0.0000E+00

9 sides 10 sides
K -2.3178 -2.6500
A4 -2.4796E-06 -4.7357E-06
A6 -9.6746E-09 1.5970E-08
A8 -5.6804E-10 3.7484E-10
A10 3.7440E-11 -1.2512E-11
A12 -7.5858E-13 2.6612E-13
A14 7.5576E-15 -3.0274E-15
A16 -3.5787E-17 1.8357E-17
A18 6.4474E-20 -4.2619E-20
A20 0.0000E+00 0.0000E+00

[Various data]
INF 240 150
Focal length 43.93 37.82 32.28
F number 2.90 3.07 3.26
Full angle of view 2ω 51.10 48.96 46.43
Image height Y 21.63 21.63 21.63
Overall lens length 63.57 67.10 67.10

[Variable interval data]
INF 240 150
d0 ∞ 168.8040 85.1913
d5 8.3114 8.3114 4.8314
d10 1.7666 5.2940 8.7740
BF 2.0000 2.0000 2.0000

[Lens group data]
Group Starting surface Focal length
G1 1 98.79
G26 22.68
G3 11 -39.36
G12 1 24.39
G23 6 54.90

図46は、本発明の実施例10に係る結像光学系の無限遠合焦時のレンズ構成図である。
物体側から順に、正の屈折力を有する第1レンズ群G1は、両面非球面である物体側に凸面を向けた正メニスカスレンズL1、物体側に凸面を向けた負メニスカスレンズL2からなり、開口絞りSは第1レンズ群G1の像側に隣接し、正の屈折力を有する第2レンズ群G2は、両凹レンズL3と両凸レンズL4とからなる接合レンズと、両面非球面である両凸レンズL5とからなり、負の屈折力を有する第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズL6と、物体側に凹面を向けた負メニスカスレンズL7と、両凸レンズL8とからなり、無限遠物体から近距離物体への合焦の際に、前記第1レンズ群G1と前記第2レンズ群G2との間隔が縮まり、前記第2レンズ群G2と前記第3レンズ群G3との間隔が広がり、第1レンズ群G1と開口絞りSと第2レンズ群G2と第3レンズ群G3が別々に物体側へ移動する。
FIG. 46 is a lens configuration diagram of the imaging optical system according to Example 10 of the present invention when focusing on infinity.
In order from the object side, the first lens group G1 having positive refractive power is composed of a positive meniscus lens L1 having a convex surface facing the object side and having aspherical surfaces on both sides, and a negative meniscus lens L2 having a convex surface facing the object side. The diaphragm S is adjacent to the image side of the first lens group G1, and the second lens group G2 having positive refractive power includes a cemented lens composed of a biconcave lens L3 and a biconvex lens L4, and a biconvex lens L5 having aspherical surfaces on both sides. The third lens group G3 having negative refractive power consists of a negative meniscus lens L6 with a convex surface facing the object side, a negative meniscus lens L7 with a concave surface facing the object side, and a biconvex lens L8, During focusing from an infinity object to a close object, the distance between the first lens group G1 and the second lens group G2 is reduced, and the distance between the second lens group G2 and the third lens group G3 is reduced. expands, and the first lens group G1, the aperture stop S, the second lens group G2, and the third lens group G3 move separately toward the object side.

第1レンズ群G1と第2レンズ群G2との間隔が縮まることで光学全長の増大が抑えられ、第2レンズ群G2と第3レンズ群G3の間隔が広がることで非点収差の補正を適切に行うことが可能となり像面湾曲の補正が良好となる。 By reducing the distance between the first lens group G1 and the second lens group G2, an increase in the total optical length can be suppressed, and by increasing the distance between the second lens group G2 and the third lens group G3, astigmatism can be corrected appropriately. As a result, the curvature of field can be effectively corrected.

各レンズ群を移動するための動力はトルクの大きなアクチュエータを使用しても良いが、第2レンズ群G2の駆動に関しては光軸方向に微小駆動が可能となるように小型のアクチュエータを用いることが望ましい。 Although an actuator with a large torque may be used as the power for moving each lens group, a small actuator may be used for driving the second lens group G2 so as to enable minute driving in the direction of the optical axis. desirable.

第3レンズ群G3と像面の間に平行平面板であるフィルターFが配置されている。このフィルターFの光軸上の位置は第3レンズ群G3と像面の間ではどこであっても収差に影響を与えない。 A filter F, which is a plane-parallel plate, is arranged between the third lens group G3 and the image plane. The position of the filter F on the optical axis does not affect aberrations anywhere between the third lens group G3 and the image plane.

続いて、以下に実施例10に係る結像光学系の諸元値を示す。
数値実施例10
単位:mm
[面データ]
面番号 r d nd vd PgF 有効径
物面 ∞ (d0)
1* 23.3681 3.7585 1.77250 49.50 0.5519 20.01
2* 144.1153 0.3080 18.30
3 45.1236 0.8000 1.51742 52.15 0.5589 16.74
4 16.3472 4.6499 14.58
5(絞り) ∞ (d5) 12.90
6 -12.2130 0.8000 1.69895 30.05 0.6028 12.85
7 55.6607 4.2213 1.87070 40.73 0.5682 14.54
8 -18.8353 0.1500 15.60
9* 37.4761 4.7493 1.58913 61.25 0.5373 17.90
10* -23.9712 (d10) 18.50
11 109.6497 0.9857 1.67300 38.26 0.5757 18.97
12 21.1832 8.7012 19.20
13 -19.7354 0.8000 1.75211 25.05 0.6191 21.87
14 -29.9543 0.1500 23.66
15 95.8651 2.5968 1.98612 16.48 0.6656 28.20
16 -580.7065 (d16) 28.72
17 ∞ 2.5000 1.51633 64.14 0.5353
18 ∞ (BF)
像面 ∞

[非球面データ]
1面 2面
K 0.7548 0.0000
A4 -1.0943E-05 -2.3116E-06
A6 -9.0526E-08 1.4773E-07
A8 3.3856E-09 -4.0502E-09
A10 -6.8374E-11 7.7863E-11
A12 7.5676E-13 -9.6225E-13
A14 -4.8496E-15 6.3690E-15
A16 1.5425E-17 -2.0898E-17
A18 -1.8709E-20 2.6920E-20
A20 0.0000E+00 0.0000E+00

9面 10面
K -2.3178 -2.6500
A4 -2.4796E-06 -4.7357E-06
A6 -9.6746E-09 1.5970E-08
A8 -5.6804E-10 3.7484E-10
A10 3.7440E-11 -1.2512E-11
A12 -7.5858E-13 2.6612E-13
A14 7.5576E-15 -3.0274E-15
A16 -3.5787E-17 1.8357E-17
A18 6.4474E-20 -4.2619E-20
A20 0.0000E+00 0.0000E+00

[各種データ]
INF 240
焦点距離 43.93 38.38
Fナンバー 2.90 3.18
全画角2ω 51.10 48.07
像高Y 21.63 21.63
レンズ全長 63.57 66.23

[可変間隔データ]
INF 240
d0 ∞ 169.9704
d5 8.3114 4.8314
d10 1.7666 4.2180
d16 16.3216 20.0097
BF 2.0000 2.0000

[レンズ群データ]
群 始面 焦点距離
G1 1 98.79
G2 6 22.68
G3 11 -39.36
G12 1 24.39
G23 6 54.90
Next, the specification values of the imaging optical system according to Example 10 are shown below.
Numerical Example 10
Unit: mm
[Surface data]
Surface number rd nd vd PgF Effective diameter Object surface ∞ (d0)
1* 23.3681 3.7585 1.77250 49.50 0.5519 20.01
2* 144.1153 0.3080 18.30
3 45.1236 0.8000 1.51742 52.15 0.5589 16.74
4 16.3472 4.6499 14.58
5 (Aperture) ∞ (d5) 12.90
6 -12.2130 0.8000 1.69895 30.05 0.6028 12.85
7 55.6607 4.2213 1.87070 40.73 0.5682 14.54
8 -18.8353 0.1500 15.60
9* 37.4761 4.7493 1.58913 61.25 0.5373 17.90
10* -23.9712 (d10) 18.50
11 109.6497 0.9857 1.67300 38.26 0.5757 18.97
12 21.1832 8.7012 19.20
13 -19.7354 0.8000 1.75211 25.05 0.6191 21.87
14 -29.9543 0.1500 23.66
15 95.8651 2.5968 1.98612 16.48 0.6656 28.20
16 -580.7065 (d16) 28.72
17∞ 2.5000 1.51633 64.14 0.5353
18∞ (BF)
Image plane ∞

[Aspheric Data]
1 side 2 sides
K 0.7548 0.0000
A4 -1.0943E-05 -2.3116E-06
A6-9.0526E-08 1.4773E-07
A8 3.3856E-09 -4.0502E-09
A10 -6.8374E-11 7.7863E-11
A12 7.5676E-13 -9.6225E-13
A14 -4.8496E-15 6.3690E-15
A16 1.5425E-17 -2.0898E-17
A18 -1.8709E-20 2.6920E-20
A20 0.0000E+00 0.0000E+00

9 sides 10 sides
K -2.3178 -2.6500
A4 -2.4796E-06 -4.7357E-06
A6 -9.6746E-09 1.5970E-08
A8 -5.6804E-10 3.7484E-10
A10 3.7440E-11 -1.2512E-11
A12 -7.5858E-13 2.6612E-13
A14 7.5576E-15 -3.0274E-15
A16 -3.5787E-17 1.8357E-17
A18 6.4474E-20 -4.2619E-20
A20 0.0000E+00 0.0000E+00

[Various data]
INF 240
Focal length 43.93 38.38
F number 2.90 3.18
Full angle of view 2ω 51.10 48.07
Image height Y 21.63 21.63
Total lens length 63.57 66.23

[Variable interval data]
INF 240
d0 ∞ 169.9704
d5 8.3114 4.8314
d10 1.7666 4.2180
d16 16.3216 20.0097
BF 2.0000 2.0000

[Lens group data]
Group Starting surface Focal length
G1 1 98.79
G26 22.68
G3 11 -39.36
G12 1 24.39
G23 6 54.90

以上に上記の各実施例に対応する条件式対応値を示す。
条件式/実施例 EX1 EX2 EX3 EX4 EX5
1.40<f/f12<2.80 1.80 1.74 1.72 1.63 1.84
0.020<G3ΔPgFmax<0.300 0.047 0.047 0.028 0.047 0.047
1.80<G3nd 1.99 1.99 1.92 1.99 1.99
0.60<f1/f<6.50 2.25 2.02 2.97 3.86 1.29
2.00<LT/(Ymax)<3.10 2.94 2.94 2.65 2.94 2.98
2.00<K2<5.00 3.05 2.77 2.85 2.57 2.77
0.30<f2/f<0.95 0.52 0.55 0.57 0.59 0.53
0.30<|f3/f|<1.40 0.90 0.98 0.94 1.20 0.76
0.50<((D1_2)*K2)/f<1.40 0.90 0.82 0.92 0.89 0.83
1.60<EXP/Ymax<3.50 2.43 2.55 2.14 2.49 2.51

条件式/実施例 EX6 EX7 EX8 EX9 EX10
1.40<f/f12<2.80 2.15 2.24 1.85 1.80 1.80
0.020<G3ΔPgFmax<0.300 0.047 0.047 0.047 0.047 0.047
1.80<G3nd 1.99 1.99 1.99 1.99 1.99
0.60<f1/f<6.50 1.44 1.56 1.09 2.25 2.25
2.00<LT/(Ymax)<3.10 2.99 2.98 2.99 2.94 2.94
2.00<K2<5.00 4.12 4.62 2.60 3.05 3.05
0.30<f2/f<0.95 0.43 0.41 0.55 0.52 0.52
0.30<|f3/f|<1.40 0.57 0.53 0.58 0.90 0.90
0.50<((D1_2)*K2)/f<1.40 1.04 1.16 0.67 0.90 0.90
1.60<EXP/Ymax<3.50 2.40 2.40 2.19 2.43 2.43
The values corresponding to the conditional expressions corresponding to the above embodiments are shown above.
Conditional expression/Example EX1 EX2 EX3 EX4 EX5
1.40<f/f12<2.80 1.80 1.74 1.72 1.63 1.84
0.020<G3ΔPgFmax<0.300 0.047 0.047 0.028 0.047 0.047
1.80<G3nd 1.99 1.99 1.92 1.99 1.99
0.60<f1/f<6.50 2.25 2.02 2.97 3.86 1.29
2.00<LT/(Ymax)<3.10 2.94 2.94 2.65 2.94 2.98
2.00<K2<5.00 3.05 2.77 2.85 2.57 2.77
0.30<f2/f<0.95 0.52 0.55 0.57 0.59 0.53
0.30<|f3/f|<1.40 0.90 0.98 0.94 1.20 0.76
0.50<((D1_2)*K2)/f<1.40 0.90 0.82 0.92 0.89 0.83
1.60<EXP/Ymax<3.50 2.43 2.55 2.14 2.49 2.51

Conditional expression/Example EX6 EX7 EX8 EX9 EX10
1.40<f/f12<2.80 2.15 2.24 1.85 1.80 1.80
0.020<G3ΔPgFmax<0.300 0.047 0.047 0.047 0.047 0.047
1.80<G3nd 1.99 1.99 1.99 1.99 1.99
0.60<f1/f<6.50 1.44 1.56 1.09 2.25 2.25
2.00<LT/(Ymax)<3.10 2.99 2.98 2.99 2.94 2.94
2.00<K2<5.00 4.12 4.62 2.60 3.05 3.05
0.30<f2/f<0.95 0.43 0.41 0.55 0.52 0.52
0.30<|f3/f|<1.40 0.57 0.53 0.58 0.90 0.90
0.50<((D1_2)*K2)/f<1.40 1.04 1.16 0.67 0.90 0.90
1.60<EXP/Ymax<3.50 2.40 2.40 2.19 2.43 2.43

G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
I 像面
F フィルタ
S 開口絞り
G1 1st lens group G2 2nd lens group G3 3rd lens group I Image plane F Filter S Aperture stop

Claims (22)

物体側から順に、正の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2、負の屈折力を有する第3レンズ群G3で構成され、
無限遠物体から近距離物体への合焦の際に、前記第1レンズ群G1と前記第2レンズ群G2との間隔が縮まり、前記第2レンズ群G2と前記第3レンズ群G3との間隔が広がり、前記第2レンズ群G2が物体側へ移動する構成となっており、
以下の条件式を満足することを特徴とする結像光学系。
(1) 1.40<f/f12<2.80
(2) 0.020<G3ΔPgFmax<0.300
(3) 1.80<G3nd
(4) 0.60<f1/f<6.50
(5) 2.0<LT/(Ymax)<3.10
f:無限遠合焦状態における全系の焦点距離
f12:無限遠合焦状態における前記第1レンズ群G1と前記第2レンズ群G2の合成焦点距離
G3ΔPgFmax:前記第3レンズ群G3の正レンズのうち、最も大きいΔPgFの値
ΔPgF=PgF-0.64833+0.00180νd:g、F線間での異常部分分散性
PgF=(ng-nF)/(nF-nC):g、F線間における部分分散比
ng:g線(波長λ=435.84nm)に対する屈折率
nF:F線(波長λ=486.13nm)に対する屈折率
nC:C線(波長λ=656.27nm)に対する屈折率
G3nd:前記第3レンズ群G3の正レンズのうち、最も大きいd線(波長λ=587.56)に対する屈折率
f1:前記第1レンズ群G1の焦点距離
LT:無限遠合焦状態における前記第1レンズ群G1の最も物体側の面から像面までの面間隔
Ymax:最大像高
Consists of, in order from the object side, a first lens group G1 having positive refractive power, an aperture stop S, a second lens group G2 having positive refractive power, and a third lens group G3 having negative refractive power,
During focusing from an infinity object to a close object, the distance between the first lens group G1 and the second lens group G2 is reduced, and the distance between the second lens group G2 and the third lens group G3 is reduced. spreads and the second lens group G2 moves toward the object side,
An imaging optical system characterized by satisfying the following conditional expression.
(1) 1.40<f/f12<2.80
(2) 0.020<G3ΔPgFmax<0.300
(3) 1.80<G3nd
(4) 0.60<f1/f<6.50
(5) 2.0<LT/(Ymax)<3.10
f: the focal length of the entire system when focused on infinity f12: the combined focal length of the first lens group G1 and the second lens group G2 when focused on infinity G3ΔPgFmax: the focal length of the positive lens in the third lens group G3 Among them, the largest ΔPgF value ΔPgF = PgF - 0.64833 + 0.00180νd: g, anomalous partial dispersion between F lines PgF = (ng - nF) / (nF - nC): g, partial dispersion between F lines Ratio ng: refractive index for g-line (wavelength λ = 435.84 nm) nF: refractive index for F-line (wavelength λ = 486.13 nm) nC: refractive index for C-line (wavelength λ = 656.27 nm) G3nd: the above Refractive index f1 for the largest d-line (wavelength λ=587.56) among the positive lenses in the third lens group G3: Focal length LT of the first lens group G1: The first lens group G1 in the infinity focused state distance from the surface closest to the object side to the image plane of
Ymax: Maximum image height
物体側から順に、正の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2、負の屈折力を有する第3レンズ群G3で構成され、
無限遠物体から近距離物体への合焦の際に、前記第1レンズ群G1と前記第2レンズ群G2との間隔が縮まり、前記第2レンズ群G2と前記第3レンズ群G3との間隔が広がり、前記第2レンズ群G2が物体側へ移動する構成となっており、
以下の条件式を満足することを特徴とする結像光学系。
(1) 1.40<f/f12<2.80
(2) 0.020<G3ΔPgFmax<0.300
(3) 1.80<G3nd
(4) 0.60<f1/f<6.50
(8) 0.30<|f3/f|<1.40
f:無限遠合焦状態における全系の焦点距離
f12:無限遠合焦状態における前記第1レンズ群G1と前記第2レンズ群G2の合成焦点距離
G3ΔPgFmax:前記第3レンズ群G3の正レンズのうち、最も大きいΔPgFの値
ΔPgF=PgF-0.64833+0.00180νd:g、F線間での異常部分分散性
PgF=(ng-nF)/(nF-nC):g、F線間における部分分散比
ng:g線(波長λ=435.84nm)に対する屈折率
nF:F線(波長λ=486.13nm)に対する屈折率
nC:C線(波長λ=656.27nm)に対する屈折率
G3nd:前記第3レンズ群G3の正レンズのうち、最も大きいd線(波長λ=587.56)に対する屈折率
f1:前記第1レンズ群G1の焦点距離
f3:前記第3レンズ群G3の焦点距離
Consists of, in order from the object side, a first lens group G1 having positive refractive power, an aperture stop S, a second lens group G2 having positive refractive power, and a third lens group G3 having negative refractive power,
During focusing from an infinity object to a close object, the distance between the first lens group G1 and the second lens group G2 is reduced, and the distance between the second lens group G2 and the third lens group G3 is reduced. spreads and the second lens group G2 moves toward the object side,
An imaging optical system characterized by satisfying the following conditional expression.
(1) 1.40<f/f12<2.80
(2) 0.020<G3ΔPgFmax<0.300
(3) 1.80<G3nd
(4) 0.60<f1/f<6.50
(8) 0.30<|f3/f|<1.40
f: the focal length of the entire system when focused on infinity f12: the combined focal length of the first lens group G1 and the second lens group G2 when focused on infinity G3ΔPgFmax: the focal length of the positive lens in the third lens group G3 Among them, the largest ΔPgF value ΔPgF = PgF - 0.64833 + 0.00180νd: g, anomalous partial dispersion between F lines PgF = (ng - nF) / (nF - nC): g, partial dispersion between F lines Ratio ng: refractive index for g-line (wavelength λ = 435.84 nm) nF: refractive index for F-line (wavelength λ = 486.13 nm) nC: refractive index for C-line (wavelength λ = 656.27 nm) G3nd: the above Refractive index f1 for the largest d-line (wavelength λ=587.56) among the positive lenses in the third lens group G3: focal length f3 of the first lens group G1: focal length of the third lens group G3
物体側から順に、正の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2、負の屈折力を有する第3レンズ群G3で構成され、
無限遠物体から近距離物体への合焦の際に、前記第1レンズ群G1と前記第2レンズ群G2との間隔が縮まり、前記第2レンズ群G2と前記第3レンズ群G3との間隔が広がり、前記第2レンズ群G2が物体側へ移動する構成となっており、
以下の条件式を満足することを特徴とする結像光学系。
(1) 1.40<f/f12<2.80
(2) 0.020<G3ΔPgFmax<0.300
(3) 1.80<G3nd
(4) 0.60<f1/f<6.50
(10) 1.60<|EXP/Ymax|<3.50
f:無限遠合焦状態における全系の焦点距離
f12:無限遠合焦状態における前記第1レンズ群G1と前記第2レンズ群G2の合成焦点距離
G3ΔPgFmax:前記第3レンズ群G3の正レンズのうち、最も大きいΔPgFの値
ΔPgF=PgF-0.64833+0.00180νd:g、F線間での異常部分分散性
PgF=(ng-nF)/(nF-nC):g、F線間における部分分散比
ng:g線(波長λ=435.84nm)に対する屈折率
nF:F線(波長λ=486.13nm)に対する屈折率
nC:C線(波長λ=656.27nm)に対する屈折率
G3nd:前記第3レンズ群G3の正レンズのうち、最も大きいd線(波長λ=587.56)に対する屈折率
f1:前記第1レンズ群G1の焦点距離
EXP :無限遠合焦状態における射出瞳位置から像面までの距離
Ymax:最大像高
Consists of, in order from the object side, a first lens group G1 having positive refractive power, an aperture stop S, a second lens group G2 having positive refractive power, and a third lens group G3 having negative refractive power,
During focusing from an infinity object to a close object, the distance between the first lens group G1 and the second lens group G2 is reduced, and the distance between the second lens group G2 and the third lens group G3 is reduced. spreads and the second lens group G2 moves toward the object side,
An imaging optical system characterized by satisfying the following conditional expression.
(1) 1.40<f/f12<2.80
(2) 0.020<G3ΔPgFmax<0.300
(3) 1.80<G3nd
(4) 0.60<f1/f<6.50
(10) 1.60<|EXP/Ymax|<3.50
f: the focal length of the entire system when focused on infinity f12: the combined focal length of the first lens group G1 and the second lens group G2 when focused on infinity G3ΔPgFmax: the focal length of the positive lens in the third lens group G3 Among them, the largest ΔPgF value ΔPgF = PgF - 0.64833 + 0.00180νd: g, anomalous partial dispersion between F lines PgF = (ng - nF) / (nF - nC): g, partial dispersion between F lines Ratio ng: refractive index for g-line (wavelength λ = 435.84 nm) nF: refractive index for F-line (wavelength λ = 486.13 nm) nC: refractive index for C-line (wavelength λ = 656.27 nm) G3nd: the above Refractive index f1 for the largest d-line (wavelength λ=587.56) among the positive lenses in the third lens group G3: Focal length EXP of the first lens group G1: From the exit pupil position to the image plane when in focus at infinity distance to
Ymax: Maximum image height
物体側から順に、正の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2、負の屈折力を有する第3レンズ群G3で構成され、
無限遠物体から近距離物体への合焦の際に、前記第1レンズ群G1と前記第2レンズ群G2との間隔が縮まり、前記第2レンズ群G2と前記第3レンズ群G3との間隔が広がり、前記第2レンズ群G2が物体側へ移動する構成となっており、
以下の条件式を満足することを特徴とする結像光学系。
(1) 1.40<f/f12<2.80
(5) 2.0<LT/(Ymax)<3.10
(6) 2.00<K2<5.00
(9’) 0.67≦((D1_2)*K2)/f<1.40
f:無限遠合焦状態における全系の焦点距離
f12:無限遠合焦状態における前記第1レンズ群G1と前記第2レンズ群G2の合成焦点距離
LT:無限遠合焦状態における前記第1レンズ群G1の最も物体側の面から像面までの面間隔
Ymax:最大像高
K2:無限遠合焦状態における前記第2レンズ群G2のフォーカス敏感度
K2=|Δdef/Δx|
=|(β3^2)*(1-β2^2)|
=|((f/f12)^2)*(1-(f12/f1)^2)|
Δdef:無限遠合焦状態における微小像面移動量
Δx:無限遠合焦状態における微小フォーカスレンズ移動量
β3:無限遠合焦状態における前記第3レンズ群Gの横倍率
β2:無限遠合焦状態における前記第2レンズ群G2の横倍率
f1:前記第1レンズ群G1の焦点距離
D1_2:無限合焦状態における前記第1レンズ群G1の最も像側の面と前記第2レンズ群G2の最も物体側の面の面間隔
Consists of, in order from the object side, a first lens group G1 having positive refractive power, an aperture stop S, a second lens group G2 having positive refractive power, and a third lens group G3 having negative refractive power,
When focusing from an infinite object to a close object, the distance between the first lens group G1 and the second lens group G2 is reduced, and the distance between the second lens group G2 and the third lens group G3 is reduced. spreads and the second lens group G2 moves toward the object side,
An imaging optical system characterized by satisfying the following conditional expression.
(1) 1.40<f/f12<2.80
(5) 2.0<LT/(Ymax)<3.10
(6) 2.00<K2<5.00
(9′) 0.67≦((D1_2)*K2)/f<1.40
f: the focal length of the entire system when focused on infinity f12: the combined focal length of the first lens group G1 and the second lens group G2 when focused on infinity LT: the first lens when focused on infinity Surface distance from the surface closest to the object side of the group G1 to the image plane
Ymax: Maximum image height
K2: focus sensitivity of the second lens group G2 in the infinity focused state K2=|Δdef/Δx|
=|(β3^2)*(1-β2^2)|
=|((f/f12)^2)*(1-(f12/f1)^2)|
Δdef: Small image plane movement amount in infinity focused state Δx: Small focus lens movement amount in infinity focused state β3: Lateral magnification of the third lens group G3 in infinity focused state β2: Infinity focused lateral magnification f1 of the second lens group G2 in the state: focal length D1_2 of the first lens group G1: the surface of the first lens group G1 closest to the image side and the surface of the second lens group G2 closest to the image in the infinite focus state Surface spacing on the object side
物体側から順に、正の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2、負の屈折力を有する第3レンズ群G3で構成され、
無限遠物体から近距離物体への合焦の際に、前記第1レンズ群G1と前記第2レンズ群G2との間隔が縮まり、前記第2レンズ群G2と前記第3レンズ群G3との間隔が広がり、前記第2レンズ群G2が物体側へ移動する構成となっており、
以下の条件式を満足することを特徴とする結像光学系。
(1) 1.40<f/f12<2.80
(2) 0.020<G3ΔPgFmax<0.300
(5) 2.0<LT/(Ymax)<3.10
(6) 2.00<K2<5.00
(9) 0.50<((D1_2)*K2)/f<1.40
f:無限遠合焦状態における全系の焦点距離
f12:無限遠合焦状態における前記第1レンズ群G1と前記第2レンズ群G2の合成焦点距離
G3ΔPgFmax:前記第3レンズ群G3の正レンズのうち、最も大きいΔPgFの値
ΔPgF=PgF-0.64833+0.00180νd:g、F線間での異常部分分散性
PgF=(ng-nF)/(nF-nC):g、F線間における部分分散比
ng:g線(波長λ=435.84nm)に対する屈折率
nF:F線(波長λ=486.13nm)に対する屈折率
nC:C線(波長λ=656.27nm)に対する屈折率
G3nd:前記第3レンズ群G3の正レンズのうち、最も大きいd線(波長λ=587.56)に対する屈折率
LT:無限遠合焦状態における前記第1レンズ群G1の最も物体側の面から像面までの面間隔
Ymax:最大像高
K2:無限遠合焦状態における前記第2レンズ群G2のフォーカス敏感度
K2=|Δdef/Δx|
=|(β3^2)*(1-β2^2)|
=|((f/f12)^2)*(1-(f12/f1)^2)|
Δdef:無限遠合焦状態における微小像面移動量
Δx:無限遠合焦状態における微小フォーカスレンズ移動量
β3:無限遠合焦状態における前記第3レンズ群G3の横倍率
β2:無限遠合焦状態における前記第2レンズ群G2の横倍率
f1:前記第1レンズ群G1の焦点距離
D1_2:無限合焦状態における前記第1レンズ群G1の最も像側の面と前記第2レンズ群G2の最も物体側の面の面間隔
Consists of, in order from the object side, a first lens group G1 having positive refractive power, an aperture stop S, a second lens group G2 having positive refractive power, and a third lens group G3 having negative refractive power,
During focusing from an infinity object to a close object, the distance between the first lens group G1 and the second lens group G2 is reduced, and the distance between the second lens group G2 and the third lens group G3 is reduced. spreads and the second lens group G2 moves toward the object side,
An imaging optical system characterized by satisfying the following conditional expression.
(1) 1.40<f/f12<2.80
(2) 0.020<G3ΔPgFmax<0.300
(5) 2.0<LT/(Ymax)<3.10
(6) 2.00<K2<5.00
(9) 0.50<((D1_2)*K2)/f<1.40
f: the focal length of the entire system when focused on infinity f12: the combined focal length of the first lens group G1 and the second lens group G2 when focused on infinity G3ΔPgFmax: the focal length of the positive lens in the third lens group G3 Among them, the largest ΔPgF value ΔPgF = PgF - 0.64833 + 0.00180νd: g, anomalous partial dispersion between F lines PgF = (ng - nF) / (nF - nC): g, partial dispersion between F lines Ratio ng: refractive index for g-line (wavelength λ = 435.84 nm) nF: refractive index for F-line (wavelength λ = 486.13 nm) nC: refractive index for C-line (wavelength λ = 656.27 nm) G3nd: the above Refractive index LT for the largest d-line (wavelength λ=587.56) among the positive lenses in the third lens group G3: the distance from the most object-side surface of the first lens group G1 to the image plane in the infinity focused state Spacing
Ymax: Maximum image height
K2: focus sensitivity of the second lens group G2 in the infinity focused state K2=|Δdef/Δx|
=|(β3^2)*(1-β2^2)|
=|((f/f12)^2)*(1-(f12/f1)^2)|
Δdef: Small image plane movement amount in infinity focused state Δx: Small focus lens movement amount in infinity focused state β3: Lateral magnification of the third lens group G3 in infinity focused state β2: Infinity focused state Lateral magnification f1 of the second lens group G2 at : focal length D1_2 of the first lens group G1: the most image-side surface of the first lens group G1 and the most object of the second lens group G2 in an infinite focus state Spacing of side faces
物体側から順に、正の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2、負の屈折力を有する第3レンズ群G3で構成され、
無限遠物体から近距離物体への合焦の際に、前記第1レンズ群G1と前記第2レンズ群G2との間隔が縮まり、前記第2レンズ群G2と前記第3レンズ群G3との間隔が広がり、前記第2レンズ群G2が物体側へ移動する構成となっており、
以下の条件式を満足することを特徴とする結像光学系。
(1) 1.40<f/f12<2.80
(3) 1.80<G3nd
(5) 2.0<LT/(Ymax)<3.10
(6) 2.00<K2<5.00
(9) 0.50<((D1_2)*K2)/f<1.40
f:無限遠合焦状態における全系の焦点距離
f12:無限遠合焦状態における前記第1レンズ群G1と前記第2レンズ群G2の合成焦点距離
G3nd:前記第3レンズ群G3の正レンズのうち、最も大きいd線(波長λ=587.56)に対する屈折率
LT:無限遠合焦状態における前記第1レンズ群G1の最も物体側の面から像面までの面間隔
Ymax:最大像高
K2:無限遠合焦状態における前記第2レンズ群G2のフォーカス敏感度
K2=|Δdef/Δx|
=|(β3^2)*(1-β2^2)|
=|((f/f12)^2)*(1-(f12/f1)^2)|
Δdef:無限遠合焦状態における微小像面移動量
Δx:無限遠合焦状態における微小フォーカスレンズ移動量
β3:無限遠合焦状態における前記第3レンズ群Gの横倍率
β2:無限遠合焦状態における前記第2レンズ群G2の横倍率
f1:前記第1レンズ群G1の焦点距離
D1_2:無限合焦状態における前記第1レンズ群G1の最も像側の面と前記第2レンズ群G2の最も物体側の面の面間隔
Consists of, in order from the object side, a first lens group G1 having positive refractive power, an aperture stop S, a second lens group G2 having positive refractive power, and a third lens group G3 having negative refractive power,
During focusing from an infinity object to a close object, the distance between the first lens group G1 and the second lens group G2 is reduced, and the distance between the second lens group G2 and the third lens group G3 is reduced. spreads and the second lens group G2 moves toward the object side,
An imaging optical system characterized by satisfying the following conditional expression.
(1) 1.40<f/f12<2.80
(3) 1.80<G3nd
(5) 2.0<LT/(Ymax)<3.10
(6) 2.00<K2<5.00
(9) 0.50<((D1_2)*K2)/f<1.40
f: the focal length of the entire system when focused on infinity f12: the combined focal length of the first lens group G1 and the second lens group G2 when focused on infinity G3nd: the focal length of the positive lens in the third lens group G3 Refractive index LT for the largest d-line (wavelength λ=587.56): Surface distance from the most object-side surface of the first lens group G1 to the image plane when in focus at infinity
Ymax: Maximum image height
K2: focus sensitivity of the second lens group G2 in the infinity focused state K2=|Δdef/Δx|
=|(β3^2)*(1-β2^2)|
=|((f/f12)^2)*(1-(f12/f1)^2)|
Δdef: Small image plane movement amount in infinity focused state Δx: Small focus lens movement amount in infinity focused state β3: Lateral magnification of the third lens group G3 in infinity focused state β2: Infinity focused lateral magnification f1 of the second lens group G2 in the state: focal length D1_2 of the first lens group G1: the surface of the first lens group G1 closest to the image side and the surface of the second lens group G2 closest to the image in the infinite focus state Spacing of the surface on the object side
物体側から順に、正の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2、負の屈折力を有する第3レンズ群G3で構成され、
無限遠物体から近距離物体への合焦の際に、前記第1レンズ群G1と前記第2レンズ群G2との間隔が縮まり、前記第2レンズ群G2と前記第3レンズ群G3との間隔が広がり、前記第2レンズ群G2が物体側へ移動する構成となっており、
以下の条件式を満足することを特徴とする結像光学系。
(1) 1.40<f/f12<2.80
(5) 2.0<LT/(Ymax)<3.10
(6) 2.00<K2<5.00
(9) 0.50<((D1_2)*K2)/f<1.40
(10’) 2.14<|EXP/Ymax|<3.50
f:無限遠合焦状態における全系の焦点距離
f12:無限遠合焦状態における前記第1レンズ群G1と前記第2レンズ群G2の合成焦点距離
LT:無限遠合焦状態における前記第1レンズ群G1の最も物体側の面から像面までの面間隔
Ymax:最大像高
K2:無限遠合焦状態における前記第2レンズ群G2のフォーカス敏感度
K2=|Δdef/Δx|
=|(β3^2)*(1-β2^2)|
=|((f/f12)^2)*(1-(f12/f1)^2)|
Δdef:無限遠合焦状態における微小像面移動量
Δx:無限遠合焦状態における微小フォーカスレンズ移動量
β3:無限遠合焦状態における前記第3レンズ群G3の横倍率
β2:無限遠合焦状態における前記第2レンズ群G2の横倍率
f1:前記第1レンズ群G1の焦点距離
D1_2:無限合焦状態における前記第1レンズ群G1の最も像側の面と前記第2レンズ群G2の最も物体側の面の面間隔
EXP :無限遠合焦状態における射出瞳位置から像面までの距離
Consists of, in order from the object side, a first lens group G1 having positive refractive power, an aperture stop S, a second lens group G2 having positive refractive power, and a third lens group G3 having negative refractive power,
During focusing from an infinity object to a close object, the distance between the first lens group G1 and the second lens group G2 is reduced, and the distance between the second lens group G2 and the third lens group G3 is reduced. spreads and the second lens group G2 moves toward the object side,
An imaging optical system characterized by satisfying the following conditional expression.
(1) 1.40<f/f12<2.80
(5) 2.0<LT/(Ymax)<3.10
(6) 2.00<K2<5.00
(9) 0.50<((D1_2)*K2)/f<1.40
(10′) 2.14<|EXP/Ymax|<3.50
f: the focal length of the entire system when focused on infinity f12: the combined focal length of the first lens group G1 and the second lens group G2 when focused on infinity LT: the first lens when focused on infinity Surface distance from the surface closest to the object side of the group G1 to the image plane
Ymax: Maximum image height
K2: focus sensitivity of the second lens group G2 in the infinity focused state K2=|Δdef/Δx|
=|(β3^2)*(1-β2^2)|
=|((f/f12)^2)*(1-(f12/f1)^2)|
Δdef: Small image plane movement amount in infinity focused state Δx: Small focus lens movement amount in infinity focused state β3: Lateral magnification of the third lens group G3 in infinity focused state β2: Infinity focused state Lateral magnification f1 of the second lens group G2 at : focal length D1_2 of the first lens group G1: the most image-side surface of the first lens group G1 and the most object of the second lens group G2 in an infinite focus state Surface distance EXP of the side surface: Distance from the exit pupil position to the image plane when in focus at infinity
物体側から順に、正の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2、負の屈折力を有する第3レンズ群G3で構成され、
無限遠物体から近距離物体への合焦の際に、前記第1レンズ群G1と前記第2レンズ群G2との間隔が縮まり、前記第2レンズ群G2と前記第3レンズ群G3との間隔が広がり、前記第2レンズ群G2が物体側へ移動する構成となっており、
以下の条件式を満足することを特徴とする結像光学系。
(1) 1.40<f/f12<2.80
(2) 0.020<G3ΔPgFmax<0.300
(3) 1.80<G3nd
(5) 2.0<LT/(Ymax)<3.10
f:無限遠合焦状態における全系の焦点距離
f12:無限遠合焦状態における前記第1レンズ群G1と前記第2レンズ群G2の合成焦点距離
G3ΔPgFmax:前記第3レンズ群G3の正レンズのうち、最も大きいΔPgFの値
ΔPgF=PgF-0.64833+0.00180νd:g、F線間での異常部分分散性
PgF=(ng-nF)/(nF-nC):g、F線間における部分分散比
ng:g線(波長λ=435.84nm)に対する屈折率
nF:F線(波長λ=486.13nm)に対する屈折率
nC:C線(波長λ=656.27nm)に対する屈折率
G3nd:前記第3レンズ群G3の正レンズのうち、最も大きいd線(波長λ=587.56)に対する屈折率
LT:無限遠合焦状態における前記第1レンズ群G1の最も物体側の面から像面までの面間隔
Ymax:最大像高
Consists of, in order from the object side, a first lens group G1 having positive refractive power, an aperture stop S, a second lens group G2 having positive refractive power, and a third lens group G3 having negative refractive power,
When focusing from an infinite object to a close object, the distance between the first lens group G1 and the second lens group G2 is reduced, and the distance between the second lens group G2 and the third lens group G3 is reduced. spreads and the second lens group G2 moves toward the object side,
An imaging optical system characterized by satisfying the following conditional expression.
(1) 1.40<f/f12<2.80
(2) 0.020<G3ΔPgFmax<0.300
(3) 1.80<G3nd
(5) 2.0<LT/(Ymax)<3.10
f: the focal length of the entire system when focused on infinity f12: the combined focal length of the first lens group G1 and the second lens group G2 when focused on infinity G3ΔPgFmax: the focal length of the positive lens in the third lens group G3 Among them, the largest ΔPgF value ΔPgF = PgF - 0.64833 + 0.00180νd: g, anomalous partial dispersion between F lines PgF = (ng - nF) / (nF - nC): g, partial dispersion between F lines Ratio ng: refractive index for g-line (wavelength λ = 435.84 nm) nF: refractive index for F-line (wavelength λ = 486.13 nm) nC: refractive index for C-line (wavelength λ = 656.27 nm) G3nd: the above Refractive index LT for the largest d-line (wavelength λ=587.56) among the positive lenses in the third lens group G3: the distance from the most object-side surface of the first lens group G1 to the image plane in the infinity focused state Spacing
Ymax: Maximum image height
物体側から順に、正の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2、負の屈折力を有する第3レンズ群G3で構成され、
無限遠物体から近距離物体への合焦の際に、前記第1レンズ群G1は像面に対して固定であり、前記第3レンズ群G3は像面に対して固定であり、前記第2レンズ群G2が物体側へ移動する構成となっており、
以下の条件式を満足することを特徴とする結像光学系。
(1) 1.40<f/f12<2.80
(2) 0.020<G3ΔPgFmax<0.300
(5) 2.0<LT/(Ymax)<3.10
(6) 2.00<K2<5.00
f:無限遠合焦状態における全系の焦点距離
f12:無限遠合焦状態における前記第1レンズ群G1と前記第2レンズ群G2の合成焦点距離
G3ΔPgFmax:前記第3レンズ群G3の正レンズのうち、最も大きいΔPgFの値
ΔPgF=PgF-0.64833+0.00180νd:g、F線間での異常部分分散性
PgF=(ng-nF)/(nF-nC):g、F線間における部分分散比
ng:g線(波長λ=435.84nm)に対する屈折率
nF:F線(波長λ=486.13nm)に対する屈折率
nC:C線(波長λ=656.27nm)に対する屈折率
LT:無限遠合焦状態における前記第1レンズ群G1の最も物体側の面から像面までの面間隔
Ymax:最大像高
K2:無限遠合焦状態における前記第2レンズ群G2のフォーカス敏感度
K2=|Δdef/Δx|
=|(β3^2)*(1-β2^2)|
=|((f/f12)^2)*(1-(f12/f1)^2)|
Δdef:無限遠合焦状態における微小像面移動量
Δx:無限遠合焦状態における微小フォーカスレンズ移動量
β3:無限遠合焦状態における前記第3レンズ群G3の横倍率
β2:無限遠合焦状態における前記第2レンズ群G2の横倍率
f1:前記第1レンズ群G1の焦点距離
Consists of, in order from the object side, a first lens group G1 having positive refractive power, an aperture stop S, a second lens group G2 having positive refractive power, and a third lens group G3 having negative refractive power,
During focusing from an infinity object to a close object, the first lens group G1 is fixed with respect to the image plane, the third lens group G3 is fixed with respect to the image plane, and the second lens group G3 is fixed with respect to the image plane. The lens group G2 is configured to move toward the object side,
An imaging optical system characterized by satisfying the following conditional expression.
(1) 1.40<f/f12<2.80
(2) 0.020<G3ΔPgFmax<0.300
(5) 2.0<LT/(Ymax)<3.10
(6) 2.00<K2<5.00
f: the focal length of the entire system when focused on infinity f12: the combined focal length of the first lens group G1 and the second lens group G2 when focused on infinity G3ΔPgFmax: the focal length of the positive lens in the third lens group G3 Among them, the largest ΔPgF value ΔPgF = PgF - 0.64833 + 0.00180νd: g, anomalous partial dispersion between F lines PgF = (ng - nF) / (nF - nC): g, partial dispersion between F lines Ratio ng: refractive index for g-line (wavelength λ = 435.84 nm) nF: refractive index for F-line (wavelength λ = 486.13 nm) nC: refractive index for C-line (wavelength λ = 656.27 nm) LT: infinity Surface distance from the most object side surface of the first lens group G1 to the image plane in the in-focus state
Ymax: Maximum image height
K2: focus sensitivity of the second lens group G2 in the infinity focused state K2=|Δdef/Δx|
=|(β3^2)*(1-β2^2)|
=|((f/f12)^2)*(1-(f12/f1)^2)|
Δdef: Small image plane movement amount in infinity focused state Δx: Small focus lens movement amount in infinity focused state β3: Lateral magnification of the third lens group G3 in infinity focused state β2: Infinity focused state lateral magnification f1 of the second lens group G2 at: focal length of the first lens group G1
以下の条件を満足することを特徴とする請求項4、請求項6、請求項7のいずれかに記載の結像光学系。
(2) 0.020<G3ΔPgFmax<0.300
G3ΔPgFmax:前記第3レンズ群G3の正レンズのうち、最も大きいΔPgFの値
ΔPgF=PgF-0.64833+0.00180νd:g、F線間での異常部分分散性
PgF=(ng-nF)/(nF-nC):g、F線間における部分分散比
ng:g線(波長λ=435.84nm)に対する屈折率
nF:F線(波長λ=486.13nm)に対する屈折率
nC:C線(波長λ=656.27nm)に対する屈折率
G3nd:前記第3レンズ群G3の正レンズのうち、最も大きいd線(波長λ=587.56)に対する屈折率
8. An imaging optical system according to claim 4, wherein the following conditions are satisfied.
(2) 0.020<G3ΔPgFmax<0.300
G3ΔPgFmax: the largest value of ΔPgF among the positive lenses in the third lens group G3 ΔPgF=PgF−0.64833+0.00180νd: g, abnormal partial dispersion between F lines PgF=(ng−nF)/(nF) -nC): g, partial dispersion ratio between F lines ng: refractive index for g line (wavelength λ = 435.84 nm) nF: refractive index for F line (wavelength λ = 486.13 nm) nC: C line (wavelength λ = 656.27 nm): refractive index for the largest d-line (wavelength λ = 587.56) among the positive lenses in the third lens group G3
以下の条件を満足することを特徴とする請求項4、請求項5、請求項7、請求項9、請求項10のいずれかに記載の結像光学系。
(3) 1.80<G3nd
G3nd:前記第3レンズ群G3の正レンズのうち、最も大きいd線(波長λ=587.56)に対する屈折率
11. An imaging optical system according to any one of claims 4, 5, 7, 9 and 10, wherein the following conditions are satisfied.
(3) 1.80<G3nd
G3nd: Refractive index for the largest d-line (wavelength λ=587.56) among the positive lenses in the third lens group G3
以下の条件を満足することを特徴とする請求項4乃至請求項11のいずれかに記載の結像光学系。
(4) 0.60<f1/f<6.50
f:無限遠合焦状態における全系の焦点距離
f1:前記第1レンズ群G1の焦点距離
12. The imaging optical system according to any one of claims 4 to 11, wherein the following conditions are satisfied.
(4) 0.60<f1/f<6.50
f: focal length of the entire system when in focus at infinity f1: focal length of the first lens group G1
以下の条件を満足することを特徴とする請求項1乃至請求項3、請求項8のいずれかに記載の結像光学系。
(6) 2.00<K2<5.00
K2:無限遠合焦状態における前記第2レンズ群G2のフォーカス敏感度
K2=|Δdef/Δx|
=|(β3^2)*(1-β2^2)|
=|((f/f12)^2)*(1-(f12/f1)^2)|
Δdef:無限遠合焦状態における微小像面移動量
Δx:無限遠合焦状態における微小フォーカスレンズ移動量
β3:無限遠合焦状態における前記第3レンズ群G3の横倍率
β2:無限遠合焦状態における前記第2レンズ群G2の横倍率
f:無限遠合焦状態における全系の焦点距離
f12:無限遠合焦状態における前記第1レンズ群G1と前記第2レンズ群G2の合成焦f1:前記第1レンズ群G1の焦点距離
9. An imaging optical system according to claim 1, wherein the following conditions are satisfied.
(6) 2.00<K2<5.00
K2: focus sensitivity of the second lens group G2 in the infinity focused state K2=|Δdef/Δx|
=|(β3^2)*(1-β2^2)|
=|((f/f12)^2)*(1-(f12/f1)^2)|
Δdef: Small image plane movement amount in infinity focused state Δx: Small focus lens movement amount in infinity focused state β3: Lateral magnification of the third lens group G3 in infinity focused state β2: Infinity focused state Lateral magnification f of the second lens group G2 in the above: focal length f12 of the entire system in the infinity focused state: combined focus f1 of the first lens group G1 and the second lens group G2 in the infinity focused state: Focal length of the first lens group G1
以下の条件を満足することを特徴とする請求項1乃至請求項13のいずれかに記載の結像光学系。
(7) 0.30<f2/f<0.95
f2:前記第2レンズ群G2の焦点距離
f:無限遠合焦状態における全系の焦点距離
14. The imaging optical system according to any one of claims 1 to 13, wherein the following conditions are satisfied.
(7) 0.30<f2/f<0.95
f2: focal length of the second lens group G2 f: focal length of the entire system when in focus at infinity
以下の条件を満足することを特徴とする請求項1、請求項3乃至請求項14のいずれかに記載の結像光学系。
(8) 0.30<|f3/f|<1.40
f3:前記第3レンズ群G3の焦点距離
f:無限遠合焦状態における全系の焦点距離
15. The imaging optical system according to any one of claims 1 and 3 to 14, wherein the following conditions are satisfied.
(8) 0.30<|f3/f|<1.40
f3: focal length of the third lens group G3 f: focal length of the entire system when in focus at infinity
以下の条件を満足することを特徴とする請求項1乃至請求項3、請求項8、請求項9、請求項12乃至請求項15のいずれかに記載の結像光学系。
(9) 0.50<((D1_2)*K2)/f<1.40
D1_2:無限合焦状態における前記第1レンズ群G1の最も像側の面と前記第2レンズ群G2の最も物体側の面の面間隔
K2:無限遠合焦状態における前記第2レンズ群G2のフォーカス敏感度
K2=|Δdef/Δx|
=|(β3^2)*(1-β2^2)|
=|((f/f12)^2)*(1-(f12/f1)^2)|
Δdef:無限遠合焦状態における微小像面移動量
Δx:無限遠合焦状態における微小フォーカスレンズ移動量
β3:無限遠合焦状態における前記第3レンズ群G3の横倍率
β2:無限遠合焦状態における前記第2レンズ群G2の横倍率
f:無限遠合焦状態における全系の焦点距離
f1:前記第1レンズ群G1の焦点距離
f12:無限遠合焦状態における前記第1レンズ群G1と前記第2レンズ群G2の合成焦点距離
16. An imaging optical system according to any one of claims 1 to 3, 8, 9, and 12 to 15, which satisfies the following conditions.
(9) 0.50<((D1_2)*K2)/f<1.40
D1_2: Surface distance between the surface closest to the image side of the first lens group G1 and the surface closest to the object side of the second lens group G2 in the infinity focused state K2: Distance of the second lens group G2 in the infinity focused state Focus sensitivity K2=|Δdef/Δx|
=|(β3^2)*(1-β2^2)|
=|((f/f12)^2)*(1-(f12/f1)^2)|
Δdef: Small image plane movement amount in infinity focused state Δx: Small focus lens movement amount in infinity focused state β3: Lateral magnification of the third lens group G3 in infinity focused state β2: Infinity focused state Lateral magnification f of the second lens group G2 at : focal length f1 of the entire system in an infinity focused state: focal length f12 of the first lens group G1: the first lens group G1 and the Combined focal length of the second lens group G2
無限遠物体から近距離物体への合焦の際に、前記第1レンズ群G1は像面に対して固定であり、前記第3レンズ群G3は像面に対して固定である構成となることを特徴とする請求項1乃至請求項8、請求項10乃至請求項16のいずれかに記載の結像光学系。 The first lens group G1 is fixed with respect to the image plane and the third lens group G3 is fixed with respect to the image plane when focusing from an object at infinity to a close object. 17. The imaging optical system according to any one of claims 1 to 8 and claims 10 to 16, characterized by: 前記開口絞りSは前記第1レンズ群G1の像側に隣接し合焦の際に光軸方向に固定とすること
を特徴とする請求項1乃至請求項17のいずれかに記載の結像光学系。
18. The imaging optics according to any one of claims 1 to 17, wherein said aperture stop S is adjacent to said first lens group G1 on the image side and is fixed in the optical axis direction during focusing. system.
以下の条件式を満足することを特徴とする請求項1、請求項2、請求項4乃至請求項6、請求項8乃至請求項18のいずれかに記載の結像光学系。
(10) 1.60<|EXP/Ymax|<3.50
EXP :無限遠合焦状態における射出瞳位置から像面までの距離
Ymax:最大像高
19. An imaging optical system according to any one of claims 1, 2, 4 to 6, and 8 to 18, wherein the following conditional expression is satisfied.
(10) 1.60<|EXP/Ymax|<3.50
EXP: Distance from the exit pupil position to the image plane when in focus at infinity
Ymax: Maximum image height
前記第1レンズ群G1は物体側より順に正レンズL1、負レンズL2からなり、全体で正の屈折力を有することを特徴とする請求項1乃至請求項19のいずれかに記載の結像光学系。 20. The imaging optics according to claim 1, wherein the first lens group G1 comprises a positive lens L1 and a negative lens L2 in order from the object side, and has a positive refractive power as a whole. system. 前記第2レンズ群G2は物体側より順に負レンズL3、正レンズL4、正レンズL5からなり、全体で正の屈折力を有することを特徴とする請求項1乃至20のいずれかに記載の結像光学系。 21. A lens system according to any one of claims 1 to 20, wherein said second lens group G2 consists of a negative lens L3, a positive lens L4, and a positive lens L5 in order from the object side, and has a positive refractive power as a whole. image optics. 前記第3レンズ群G3は物体側より順に負レンズL6、負レンズL7、正レンズL8からなり、全体で負の屈折力を有することを特徴とする請求項1乃至21のいずれかに記載の結像光学系。 22. A lens system according to any one of claims 1 to 21, wherein said third lens group G3 consists of a negative lens L6, a negative lens L7 and a positive lens L8 in order from the object side, and has a negative refractive power as a whole. image optics.
JP2018109697A 2018-06-07 2018-06-07 Imaging optical system Active JP7171017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018109697A JP7171017B2 (en) 2018-06-07 2018-06-07 Imaging optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018109697A JP7171017B2 (en) 2018-06-07 2018-06-07 Imaging optical system

Publications (2)

Publication Number Publication Date
JP2019211703A JP2019211703A (en) 2019-12-12
JP7171017B2 true JP7171017B2 (en) 2022-11-15

Family

ID=68846748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018109697A Active JP7171017B2 (en) 2018-06-07 2018-06-07 Imaging optical system

Country Status (1)

Country Link
JP (1) JP7171017B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112019006924T5 (en) 2019-02-26 2021-11-04 Ngk Insulators, Ltd. Sensor element and gas sensor
JP7289707B2 (en) * 2019-04-11 2023-06-12 キヤノン株式会社 Imaging optical system and imaging device
JP7098564B2 (en) * 2019-04-17 2022-07-11 富士フイルム株式会社 Imaging lens and imaging device
CN115480367B (en) * 2022-08-16 2024-03-15 福建福光股份有限公司 One hundred million-pixel large-depth-of-field optical system and imaging method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013061547A (en) 2011-09-14 2013-04-04 Ricoh Co Ltd Image forming lens, photographic lens unit, and imaging apparatus
JP2013195587A (en) 2012-03-16 2013-09-30 Ricoh Co Ltd Imaging lens system, image capturing device, and information device
US20140313395A1 (en) 2013-04-19 2014-10-23 Samsung Electronics Co., Ltd. Wide-angle lens system and imaging apparatus employing the same
WO2018088038A1 (en) 2016-11-08 2018-05-17 ソニー株式会社 Image pickup lens and image pickup device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013061547A (en) 2011-09-14 2013-04-04 Ricoh Co Ltd Image forming lens, photographic lens unit, and imaging apparatus
JP2013195587A (en) 2012-03-16 2013-09-30 Ricoh Co Ltd Imaging lens system, image capturing device, and information device
US20140313395A1 (en) 2013-04-19 2014-10-23 Samsung Electronics Co., Ltd. Wide-angle lens system and imaging apparatus employing the same
WO2018088038A1 (en) 2016-11-08 2018-05-17 ソニー株式会社 Image pickup lens and image pickup device

Also Published As

Publication number Publication date
JP2019211703A (en) 2019-12-12

Similar Documents

Publication Publication Date Title
US10215972B2 (en) Optical system and image pickup apparatus including the same
JP4881035B2 (en) Zoom lens and imaging apparatus having the same
US8730593B2 (en) Image pickup optical system and image pickup apparatus having the same
JP5388446B2 (en) Optical system and optical apparatus having the same
JP5634220B2 (en) Zoom lens and imaging apparatus having the same
JP5202004B2 (en) Bonded lens, optical system having the same, and method of manufacturing cemented lens
JP7171017B2 (en) Imaging optical system
JP6392148B2 (en) Imaging lens and imaging apparatus
JP4794915B2 (en) Zoom lens and imaging apparatus having the same
JP5777655B2 (en) Zoom lens and imaging apparatus having the same
JP6622486B2 (en) Imaging optical system and imaging apparatus having the same
JP6253379B2 (en) Optical system and imaging apparatus having the same
US11372201B2 (en) Optical system and imaging apparatus having the same
JP5395495B2 (en) Variable magnification optical system
JP5433958B2 (en) Zoom lens and optical apparatus provided with the same
JP6322969B2 (en) Large aperture lens with anti-vibration function
JP5919518B2 (en) Zoom lens system, imaging device and camera
JP2018072367A (en) Zoom lens and imaging apparatus having the same
JP2017219649A (en) Imaging optical system and optical apparatus including the same
JP6164894B2 (en) Zoom lens and imaging apparatus having the same
JP2019152691A (en) Image capturing lens and image capturing device
JP5059210B2 (en) Zoom lens and imaging apparatus having the same
JP6635250B2 (en) Imaging optical system and imaging apparatus having the same
CN111552056A (en) Imaging lens and imaging device
JP2014202806A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221026

R150 Certificate of patent or registration of utility model

Ref document number: 7171017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150