WO2022215141A1 - 端末、無線通信方法及び基地局 - Google Patents

端末、無線通信方法及び基地局 Download PDF

Info

Publication number
WO2022215141A1
WO2022215141A1 PCT/JP2021/014548 JP2021014548W WO2022215141A1 WO 2022215141 A1 WO2022215141 A1 WO 2022215141A1 JP 2021014548 W JP2021014548 W JP 2021014548W WO 2022215141 A1 WO2022215141 A1 WO 2022215141A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
tci
coreset
mac
pdsch
Prior art date
Application number
PCT/JP2021/014548
Other languages
English (en)
French (fr)
Inventor
祐輝 松村
聡 永田
ウェイチー スン
ジン ワン
ラン チン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2021/014548 priority Critical patent/WO2022215141A1/ja
Priority to CN202180096279.6A priority patent/CN117044342A/zh
Publication of WO2022215141A1 publication Critical patent/WO2022215141A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • 3GPP Rel. 10-14 LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • LTE successor systems for example, 5th generation mobile communication system (5G), 5G+ (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel. 15 and later
  • 5G 5th generation mobile communication system
  • 5G+ 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • NR New Radio
  • TRP transmission/reception point
  • UE User Equipment
  • repeated transmission eg, repetition
  • a predetermined channel eg, PDCCH
  • PDCCH Physical Downlink Control Channel
  • the present disclosure provides a terminal, a wireless communication method, and a base station that can appropriately perform communication even when scheduling is performed using PDCCH/DCI repeatedly transmitted from one or more TRPs.
  • One of the purposes is to
  • a terminal includes a receiver that receives a MAC CE that includes information about activation of a transmission configuration indicator (TCI) state of a physical shared channel, and application of a different control resource set pool index is supported.
  • TCI transmission configuration indicator
  • communication can be performed appropriately even when scheduling is performed using PDCCH/DCI repeatedly transmitted from one or more TRPs.
  • FIGS. 1A-1D are diagrams illustrating an example of a multi-TRP scenario.
  • FIG. 2 is a diagram illustrating an example of scheduling PDSCH by PDCCH repetition.
  • FIG. 3 is a diagram showing an example of a MAC CE used for TCI state activation.
  • FIG. 4 is a diagram for explaining TCI states applied to PDSCH scheduled by PDCCH repetition.
  • 5A to 5C are diagrams showing an example of MAC CE according to the first aspect.
  • 6A to 6C are diagrams showing an example of MAC CE according to the second aspect.
  • 7A and 7B are diagrams illustrating an example of mapping between TCI codepoints and TCI state IDs according to the second aspect.
  • 8A-8C are diagrams showing an example of MAC CE according to the third aspect.
  • FIG. 9A and 9B are diagrams showing other examples of MAC CE according to Variation 1.
  • FIG. FIG. 10 is a diagram illustrating an example of TCI states applied to the PDSCH according to Variation 2.
  • FIG. 11 is a diagram for explaining scheduling offsets between PDCCH repetition and PDSCH.
  • FIG. 12 is a diagram for explaining the default TCI/QCL applied to the PDSCH according to the fourth example.
  • FIG. 13 is a diagram for explaining the default TCI/QCL applied to the PDSCH according to the fourth example.
  • FIG. 14 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment;
  • FIG. 15 is a diagram illustrating an example of the configuration of a base station according to one embodiment.
  • FIG. 16 is a diagram illustrating an example of the configuration of a user terminal according to one embodiment.
  • FIG. 17 is a diagram illustrating an example of hardware configurations of a base station and a user terminal according to one embodiment.
  • Multi-TRP In NR, one or more transmission/reception points (TRP) (multi-TRP) uses one or more panels (multi-panel) to perform DL transmission to the UE. It is It is also being considered for UEs to perform UL transmissions on one or more TRPs.
  • TRP transmission/reception points
  • a plurality of TRPs may correspond to the same cell identifier (cell identifier (ID)) or may correspond to different cell IDs.
  • the cell ID may be a physical cell ID or a virtual cell ID.
  • FIGS 1A-1D are diagrams showing an example of a multi-TRP scenario.
  • each TRP is assumed to be capable of transmitting four different beams, but is not limited to this.
  • FIG. 1A shows an example of a case (which may also be called single mode, single TRP, etc.) in which only one TRP (TRP1 in this example) of multi-TRPs transmits to the UE.
  • TRP1 transmits both control signals (PDCCH) and data signals (PDSCH) to the UE.
  • PDCCH control signals
  • PDSCH data signals
  • FIG. 1B shows a case where only one TRP (TRP1 in this example) of the multi-TRPs transmits control signals to the UE, and the multi-TRP transmits data signals (may be called single master mode).
  • TRP1 TRP1 in this example
  • DCI downlink control information
  • FIG. 1C shows an example of a case (which may be called a master-slave mode) in which each of the multi-TRPs transmits part of the control signal to the UE and the multi-TRP transmits the data signal.
  • Part 1 of the control signal (DCI) may be transmitted in TRP1
  • part 2 of the control signal (DCI) may be transmitted in TRP2.
  • Part two of the control signal may depend on part one.
  • the UE receives each PDSCH transmitted from the multi-TRP based on these DCI parts.
  • FIG. 1D shows an example of a case (which may be called multi-master mode) in which each of the multi-TRPs transmits separate control signals to the UE and the multi-TRPs transmit data signals.
  • a first control signal (DCI) may be transmitted in TRP1
  • a second control signal (DCI) may be transmitted in TRP2.
  • the UE receives each PDSCH transmitted from the multi-TRP based on these DCIs.
  • the DCI is a single DCI (S-DCI, single PDCCH). Also, when multiple PDSCHs from multiple TRPs as shown in FIG. 1D are scheduled using multiple DCIs, these multiple DCIs are called multiple DCIs (M-DCI, multiple PDCCH (multiple PDCCH)). may be
  • a different code word (CW) and a different layer may be transmitted from each TRP of the multi-TRP.
  • NJT non-coherent joint transmission
  • TRP1 modulate-maps the first codeword and layer-maps the first number of layers (eg, 2 layers) with the first precoding to transmit the first PDSCH.
  • TRP2 also modulates and layer-maps the second codeword to transmit a second PDSCH with a second number of layers (eg, 2 layers) with a second precoding.
  • multiple PDSCHs to be NCJTed may be defined as partially or completely overlapping in at least one of the time and frequency domains. That is, the first PDSCH from the first TRP and the second PDSCH from the second TRP may overlap at least one of time and frequency resources.
  • first PDSCH and second PDSCH are not quasi-co-located (QCL).
  • Reception of multiple PDSCHs may be translated as simultaneous reception of PDSCHs that are not of a certain QCL type (eg, QCL type D).
  • PDSCH transport block (TB) or codeword (CW) repetition across multi-TRPs.
  • repetition schemes URLLC schemes, eg schemes 1, 2a, 2b, 3, 4
  • SDM space division multiplexed
  • FDM frequency division multiplexed
  • RV redundancy version
  • the RVs may be the same or different for the multi-TRPs.
  • multiple PDSCHs from multiple TRPs are time division multiplexed (TDM).
  • TDM time division multiplexed
  • multiple PDSCHs from multiple TRPs are transmitted within one slot.
  • multiple PDSCHs from multiple TRPs are transmitted in different slots.
  • NCJT using multi-TRP/panel may use high rank.
  • single DCI single PDCCH, e.g., FIG. 1B
  • multi-DCI multiple PDCCH, e.g. , FIG. 1D
  • the maximum number of TRPs may be two for both single DCI and multi-DCI.
  • TCI codepoint within the DCI may correspond to one or two TCI states.
  • the size of the field for TCI status is specified in Rel. 15 may be the same.
  • PDCCH/DCI repetition (PDCCH/DCI repetition) Rel. 17 and later, it is also assumed that repetition transmission (PDCCH repetition) is applied to PDCCH (or DCI) transmitted from one or more TRPs.
  • PDCCH or DCI
  • multiple PDCCHs (or DCIs) transmitted from one or more TRPs may be used to schedule or transmit/receive instructions for one or more signals/channels.
  • PDCCH/DCI to which repeated transmission is applied may be called multi-PDCCH/multi-DCI.
  • Repeated transmission of PDCCH may be read as repeated PDCCH, multiple transmission of PDCCH, multiple PDCCH transmission, or multiple PDCCH transmission.
  • Multi-PDCCH/multi-DCI may be transmitted from different TRPs, respectively.
  • Different TRPs may correspond to, for example, different CORESET pool indexes (hereinafter also referred to as CORESET pool IDs).
  • the multiple PDCCH/DCI may be multiplexed by time multiplexing (TDM)/frequency multiplexing (FDM)/spatial multiplexing (SDM). For example, when PDCCH repetition (TDM PDCCH repetition) is performed using time multiplexing, PDCCHs transmitted from different TRPs are assigned to different time regions.
  • TDM time multiplexing
  • FDM frequency multiplexing
  • SDM spatial multiplexing
  • FIG. 2 shows an example of scheduling one PDSCH (for example, the same PDSCH) by repeatedly transmitting the PDCCH.
  • PDCCH#1 is used for transmission of DCI#1 and corresponds to the first CORESET pool ID (here, #0).
  • PDCCH#2 is used for transmission of DCI#2 and corresponds to the second CORESET pool ID (here, #1).
  • the number of repetitions (or repetition factor) of PDCCH is 2 here, the number of repetitions may be 3 or more.
  • the content of DCI (for example, DCI payload/coded bits/number of CCEs) transmitted on each PDCCH may have the same configuration. Note that the encoding/rate matching of each DCI may be controlled based on each iteration.
  • Each PDCCH (eg, PDCCH #1, PDCCH #2) that is repeatedly transmitted may be called a PDCCH candidate (eg, PDCCH candidates).
  • PDCCH candidate eg, PDCCH candidates.
  • Each PDCCH candidate is explicitly associated (or linked) and the UE may know the PDCCH candidate's link (or associated PDCCH candidate) before performing the decoding process.
  • multiple (for example, two) search space set associations may be configured by higher layer signaling/MAC CE.
  • the two search space sets may correspond to CORESETs respectively corresponding to each repetition transmission.
  • the CORESET utilized for PDCCH repetition may correspond to the two CORESETs associated with the two linked search space sets.
  • two PDCCH candidates of two service paces may be linked to have the same aggregation (AL) and the same candidate index.
  • the two linked search space sets may consist of the same number of candidates for each AL. That is, the two linked PDCCH candidates for PDCCH repetition may be two PDCCH candidates with the same aggregation level (AL) and the same index in the two linked search space sets.
  • TCI state activation by MAC CE In existing systems (eg, prior to Rel. 16), if a CORESET pool ID is configured, PDSCH TCI state activation is activated per CORESET pool ID (eg, TRP). That is, the MAC CE used for notification of TCI state activation is associated with a CORESET pool ID (eg, TRP) (see FIG. 3).
  • the mapping between the activated TCI state and the codepoint of the TCI state field contained in the DCI specified by MAC CE is applied to the PDSCH scheduled so that the CORESET pool ID is 1.
  • the mapping between the activated TCI states and the codepoints of the field for the TCI state in the DCI indicated by the MAC CE may be applied to the PDSCH scheduled with a CORESET pool ID of 1.
  • the mapping between the activated TCI states and the codepoints of the field for the TCI state in DCI indicated by MAC CE may be applied to the PDSCH scheduled with CORESET pool ID equal to 0.
  • TCI status lists (here, two TCI status lists) are set for each CORESET pool ID.
  • two linked PDCCH candidates for PDCCH repetition may be transmitted using two CORESETs with different CORESET pool IDs, respectively. Conceivable. For example, it is also assumed that PDCCH #1 corresponds to the first CORESET pool ID and PDCCH #2 corresponds to the second CORESET pool ID.
  • the problem is how the UE assumes/interprets the mapping between the codepoints of the DCI TCI state field and the activated TCI states.
  • the problem is how the UE judges/determines the TCI state to be applied to the PDSCH based on the codepoint of the TCI state field of the DCI.
  • the TCI state/QCL to be applied to the PDSCH (e.g., the question is how to control the default TCI state/default QCL).
  • the present inventors have studied a control method when a shared channel (for example, PDCCH/PUSCH) is scheduled by PDCCH (or multiple PDCCH/DCI) to which repeated transmission is applied, and the present embodiment conceived.
  • a shared channel for example, PDCCH/PUSCH
  • PDCCH or multiple PDCCH/DCI
  • One aspect of the present disclosure is that when one physical shared channel (e.g., PDSCH/PUSCH) is scheduled with multiple PDCCHs/DCIs that support different CORESET pool ID application, the UE uses at least one of the multiple DCIs.
  • the TCI state corresponding to the physical shared channel is determined based on the field related to the TCI state (TCI state field) included in one.
  • A/B and “at least one of A and B” may be read interchangeably.
  • cell, serving cell, CC, carrier, BWP, DL BWP, UL BWP, active DL BWP, active UL BWP, band may be read interchangeably.
  • index, ID, indicator, and resource ID may be read interchangeably.
  • supporting, controlling, controllable, operating, and capable of operating may be read interchangeably.
  • configure, activate, update, indicate, enable, specify, and select may be read interchangeably.
  • higher layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • RRC, RRC signaling, RRC parameters, higher layers, higher layer parameters, RRC information elements (IEs), RRC messages may be read interchangeably.
  • Broadcast information includes, for example, Master Information Block (MIB), System Information Block (SIB), Remaining Minimum System Information (RMSI), and other system information ( It may be Other System Information (OSI).
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Remaining Minimum System Information
  • OSI System Information
  • MAC CE and activation/deactivation commands may be read interchangeably.
  • pool, set, group, list, and candidate may be read interchangeably.
  • DMRS Downlink Reference Signal
  • DMRS port Downlink Reference Signal
  • antenna port may be read interchangeably.
  • SpCell In the present disclosure, special cells, SpCell, PCell, and PSCell may be read interchangeably.
  • beams, spatial domain filters, spatial settings, TCI states, TCI assumptions, QCL assumptions, QCL parameters, pseudo collocations, spatial domain receive filters, UE spatial domain receive filters, UE receive beams, DL beams, DL receive beams, DL precoding, DL precoder, DL-RS, TCI state/QCL assumed QCL type D RS, TCI state/QCL assumed QCL type A RS, spatial relations, spatial domain transmit filter, UE spatial domain transmit filter, UE Transmit beam, UL beam, UL transmit beam, UL precoding, UL precoder, and PL-RS may be interchanged.
  • QCL type X-RS, DL-RS associated with QCL type X, DL-RS with QCL type X, source of DL-RS, SSB, CSI-RS, SRS may be read interchangeably. good.
  • TRP ID TRP related ID
  • CORESET pool ID position of one TCI state of two TCI states corresponding to one codepoint of a field in DCI (ordinal number, first TCI state or second TCI state ) and TRP may be read interchangeably.
  • TRP transmission point
  • panel DMRS port group
  • CORESET pool one of two TCI states associated with one codepoint of the TCI field may be read interchangeably.
  • the DCI content (for example, DCI payload/coded bits/number of CCEs) transmitted in each PDCCH is the same.
  • the code point of the TCI field of DCI transmitted on the first PDCCH and the code point of the TCI field of DCI transmitted on the second PDCCH may be set to be the same. Note that the present embodiment is not limited to this, and may be applied when DCI code points are different.
  • the first aspect is that if one physical shared channel schedule is supported by multiple PDCCHs (or PDCCH candidates) corresponding to different CORESET pool IDs, the UE uses one PDCCH candidate for the PDSCH (or CORESET pool ID) to determine the TCI status. Alternatively, the UE determines the PDSCH TCI status based on the MAC CE corresponding to a particular CORESET pool ID.
  • PDCCH (or PDCCH candidate) may be read as DCI (or DCI candidate).
  • the physical shared channel will be described by taking the PDSCH as an example, but it may be similarly applied to the PUSCH.
  • the UE may receive information regarding activation/deactivation of TCI states.
  • Information regarding the activation of TCI states may be received by the MAC CE.
  • MAC CE is used for notification of activation of TCI states for PDSCH in existing systems (eg, Rel.16) (eg, TCI States Activation/Deactivation for UE-specific PDSCH MAC CE) good too.
  • FIG. 5A and 5B show an example of a MAC CE used for notification of activation of the TCI state.
  • FIG. 5A also shows the case where TCI states #0, #10, #12, and #13 are activated. Note that the activated TCI state is an example and is not limited to this.
  • FIG. 5B also shows the case where TCI states #1, #3, #4 and #5 are activated. Note that the activated TCI state is an example and is not limited to this.
  • FIG. 5C shows a case where one PDSCH is scheduled by PDCCH#1/DCI#1 (corresponding to CORESET pool ID#0) and PDCCH#2/DCI#2 (corresponding to CORESET pool ID#1). showing.
  • 0 for example, “000”
  • a codepoint for the TCI status field included in the DCI may be referred to as a TCI codepoint.
  • one (or a specific) PDCCH candidate out of multiple PDCCH candidates may be referenced when mapping the TCI state activated by MAC CE to the TCI codepoint in DCI.
  • At least one of the following options 1-1 to 1-6 may be applied to one PDCCH candidate (also referred to as a reference PDCCH candidate or reference PDCCH) among a plurality of PDCCH candidates.
  • the PDCCH candidate corresponding to the first CORESET pool index (eg #0) or the first CORESET pool ID may be referenced. Referencing the first CORESET pool ID may mean that the TCI state of the PDSCH associated with the first CORESET pool index is selected.
  • the MAC corresponding to the first CORESET pool index (#0) A TCI state activated at the CE may apply. That is, the UE may assume that the MAC CE activated TCI state corresponding to the first CORESET pool index (#0) is mapped to a DCI TCI codepoint.
  • TCI state #0 whose activation is indicated by the MAC CE (see FIG. 6A) corresponding to the first CORESET pool index (#0) is mapped to TCI codepoint "000", and TCI state #10 is mapped to TCI codepoint "000". It may be mapped to codepoint "001".
  • the UE may apply TCI state #0 to the PDSCH.
  • a PDCCH candidate corresponding to a second CORESET pool index (eg, #1) or a second CORESET pool ID may be referenced.
  • the MAC corresponding to the second CORESET pool index (#1) A TCI state activated at the CE may apply. That is, the UE may assume that the TCI state activated in MAC CE corresponding to the second CORESET pool index (#1) is mapped to a TCI codepoint.
  • TCI state #1 whose activation is indicated by the MAC CE (see FIG. 6B) corresponding to the second CORESET pool index (#1) is mapped to TCI codepoint "000", and TCI state #3 is mapped to TCI codepoint "000". It may be mapped to codepoint "001". For example, if 0 (“000”) is specified as the TCI codepoint, the UE may apply TCI state #1 to the PDSCH.
  • the first PDCCH candidate (or PDCCH candidate of the first PDCCH monitoring occasion) may be referred to.
  • First may mean that it is transmitted earliest (or received first by the UE) in the time domain, or it may mean that the index of the monitoring occasion is the smallest.
  • Last may mean the latest to be transmitted (or the last to be received by the UE) in the time domain, or it may mean that the index of the monitoring occasion is the largest.
  • the UE may determine the TCI state of PDSCH using MAC CE that specifies the CORESET pool ID corresponding to the first PDCCH candidate (or the last PDCCH candidate). For example, the UE may assume that the TCI states activated in that MAC CE are mapped to the TCI codepoints contained in the DCI.
  • the PDCCH candidate for the CORESET with the lowest CORESET ID may be consulted.
  • the PDCCH candidate for the CORESET with the highest CORESET ID may be referenced.
  • the UE may determine the PDSCH TCI status using the MAC CE that specifies the CORESET pool ID that is set to the CORESET with the lowest (or highest) index. For example, the UE may assume that the TCI states activated in that MAC CE are mapped to the TCI codepoints contained in the DCI.
  • the PDCCH candidate of the CORESET with the lowest search space set ID may be consulted.
  • the PDCCH candidate of the CORESET with the highest search space set ID may be referenced.
  • the UE may determine the PDSCH TCI status using the MAC CE that specifies the CORESET pool ID corresponding to the lowest (or highest) indexed search space set. For example, the UE may assume that the TCI states activated in that MAC CE are mapped to the TCI codepoints contained in the DCI.
  • a method for determining reference PDCCH candidates may be configured in the UE from the base station. For example, multiple options from Option 1-1 to Option 1-5 are supported, and which option to apply may be set/indicated semi-statically or dynamically by higher layer signaling/MAC CE/DCI .
  • one of the linked PDCCH candidates is referenced only if the CORESET pool with the same CORESET pool ID as the reference PDCCH candidate in the mapping between TCI codepoints contained in DCI and activated TCI states. It may mean that the MAC CE for TCI state activation set in the ID is applied.
  • the rules for determining criteria for TCI status indication may be consistent with the rules for determining criteria for timing offset/HARQ codebook/DAI/PUCCH resource determination. Alternatively, the rules for determining criteria for TCI status indication may differ from the rules for determining criteria for timing offset/HARQ codebook/DAI/PUCCH resource determination.
  • one (or a specific) PDCCH candidate among a plurality of PDCCH candidates is referenced to map the TCI state to be activated and the TCI codepoint.
  • a second aspect is that if multiple PDCCHs (or PDCCH candidates) corresponding to different CORESET pool IDs support scheduling of one physical shared channel, the UE considers MAC CEs corresponding to each CORESET pool ID. to determine the TCI status.
  • the UE maps between the TCI state activated by MAC CE and the TCI codepoints of DCI with a new rule different from the existing system. may be interpreted.
  • the UE may specify that both the MAC CE activated TCI state corresponding to the first CORESET pool ID and the MAC CE activated TCI state corresponding to the second CORESET pool ID have a TCI code It may be assumed to be mapped to points.
  • the UE may receive information regarding activation/deactivation of TCI states.
  • Information regarding the activation of TCI states may be received by the MAC CE.
  • MAC CE is used for notification of activation of TCI states for PDSCH in existing systems (eg, Rel.16) (eg, TCI States Activation/Deactivation for UE-specific PDSCH MAC CE) good too.
  • FIG. 6A and 6B show an example of a MAC CE used for notification of activation of the TCI state.
  • FIG. 6A shows the case where CORESET pool ID #0 is specified.
  • FIG. 6A also shows the case where TCI states #0, #10, #12 and #13 are activated. Note that the activated TCI state is an example and is not limited to this.
  • FIG. 6B shows a case where CORESET pool ID #1 is specified.
  • FIG. 6B also shows the case where TCI states #1, #3, #4, and #5 are activated. Note that the activated TCI state is an example and is not limited to this.
  • FIG. 6C shows a case where one PDSCH is scheduled by PDCCH#1/DCI#1 (corresponding to CORESET pool ID#0) and PDCCH#2/DCI#2 (corresponding to CORESET pool ID#1). showing.
  • multiple MAC CEs each corresponding to a different CORESET pool ID may be considered when mapping the TCI state activated by the MAC CE to the TCI codepoints in the DCI. At least one of the following options 2-1 to 2-2 may be applied as the mapping rule.
  • TCI codepoints may be mapped to the first activated TCI state in order of CORESET pool ID, and the same CORESET pool ID may be mapped in order of TCI state ID.
  • the 1st to (x+1)th TCI states in which the TCI state field (Ti field) of the MAC CE with the first CORESET pool ID (#0) is set to '1' is the TCI codepoint value May be mapped from 0 to x.
  • the first to y-th TCI states in which the TCI state field (Ti field) of the MAC CE set with the second CORESET pool ID (#1) is set to '1' are set to the TCI codepoint values x+1 to x+y. may be mapped.
  • TCI states #0, #10, #12, and #13 activated in the MAC CE corresponding to the first CORESET pool ID are TCI codepoints 0, 1, 2, and 3. Each is mapped (see FIG. 7A).
  • TCI states #1, #3, #4, #5 activated on the MAC CE corresponding to the second CORESET pool ID are mapped to TCI codepoints 4, 5, 6, 7 respectively.
  • FIG. 7A assumes that the number of TCI states activated on the MAC CE corresponding to the first CORESET pool ID and the number of TCI states activated on the MAC CE corresponding to the second CORESET pool ID are the same. shown, but not limited to this.
  • TCI codepoints may be mapped to activated TCI states in order of TCI state ID.
  • the MAC CE with the first CORESET pool ID (#0) set has a TCI state with the TCI state field set to '1' and the MAC CE with the second CORESET pool ID (#1) set
  • a TCI state with its TCI state field set to '1' may be mapped to TCI codepoint values 0 through x.
  • TCI states #1, #3, #4, #5, and so on are mapped to TCI codepoints 0-7, respectively, in order of TCI state ID (see FIG. 7B).
  • FIG. 7B assumes that the number of TCI states activated on the MAC CE corresponding to the first CORESET pool ID and the number of TCI states activated on the MAC CE corresponding to the second CORESET pool ID are the same. shown, but not limited to this.
  • the size of the TCI status field may be set to 3 bits.
  • the maximum total number of TCI states activated by MAC CE for the first CORESET pool ID and the second CORESET pool ID may be eight.
  • a size larger than 3 bits may be applied to the size of the TCI status field.
  • the maximum number of TCI states activated by each MAC CE corresponding to each CORESET pool ID may be eight.
  • the maximum total number of TCI states activated by MAC CE for the first CORESET pool ID and the second CORESET pool ID is set to 8, and for each CORESET pool ID, a maximum of 4 activated TCI A state may be selected from MAC CE. For example, if the number of activated TCI states in the MAC CE of the first CORESET pool ID #0/#1 is greater than 4, the first (or last) four TCIs with the TCI state field set to 1 A state may be mapped to a DCI TCI codepoint.
  • the existing system rule that the 8 activated TCI states by MAC CE are mapped to the TCI codepoints of DCI may apply.
  • the TCI states activated respectively in MAC CEs with different CORESET pool IDs are mapped to TCI codepoints. This allows the activated TCI states corresponding to different CORESET pool IDs to be specified in the DCI, so that the TCI states to be applied to the PDSCH can be flexibly set.
  • a third aspect is that when scheduling of one physical shared channel is supported by multiple PDCCHs (or PDCCH candidates) corresponding to different CORESET pool IDs, the UE does not support MAC CEs that do not correspond to CORESET pool IDs (or MAC CEs that do not contain a CORESET pool ID field) are considered to determine the TCI state.
  • the UE may apply the new MAC CE activated TCI state for PDSCHs scheduled on PDCCH repetitions with two different CORESET pool IDs.
  • a new MAC CE may be defined/configured separately from existing system MAC CEs (eg, MAC CEs with a CORESET pool ID field).
  • a new MAC CE may have a configuration that does not include a field that specifies the CORESET pool ID.
  • the UE may assume that for PDSCHs scheduled on PDCCH repetitions with two different CORESET pool IDs, the new MAC CE activated TCI states are mapped to TCI codepoints.
  • the UE may receive information regarding activation/deactivation of TCI states.
  • Information regarding the activation of TCI states may be received by the MAC CE.
  • UE uses MAC CE (e.g., TCI States Activation/Deactivation for UE-specific PDSCH MAC CE) used for notification of activation of TCI states for PDSCH in existing systems (e.g., Rel.16) and new MAC Both CEs may be envisioned.
  • a new MAC CE eg, Enhanced TCI States Activation/Deactivation for UE-specific PDSCH MAC CE
  • predetermined conditions eg, when set by higher layer signaling
  • FIGS. 8A and 8B show an example of MAC CE used for notification of TCI state activation.
  • FIG. 8A shows a MAC CE that includes a field that notifies the CORESET pool ID. Also, the field may set the first CORESET pool ID or the second CORESET pool ID.
  • FIG. 8B shows an example of the new MAC CE.
  • the new MAC CE may have a configuration that does not include a field that notifies the CORESET pool ID.
  • FIG. 8B also shows the case where TCI states #6, #8, #10 and #11 are activated. Note that the activated TCI state is an example and is not limited to this.
  • FIG. 8C shows a case where one PDSCH is scheduled by PDCCH#1/DCI#1 (corresponding to CORESET pool index #0) and PDCCH#2/DCI#2 (corresponding to CORESET pool index #1). showing.
  • 0 eg, “000”
  • 0 eg, “000”
  • the UE may control reception of the PDSCH taking into account the TCI state activated by the new MAC CE (see FIG. 8B). For example, the UE may assume that the TCI states activated in the new MAC CE are mapped to DCI TCI codepoints.
  • the UE may assume that TCI states #6, #8, #10, #11... activated with the new MAC CE are mapped to TCI codepoints respectively. .
  • TCI state #6 is mapped to TCI codepoint 0
  • TCI state #6 is mapped to TCI codepoint 0
  • TCI states #8, #10, #11 . 3 . . . and TCI state #6 may be mapped to TCI codepoint 0.
  • the UE may apply TCI state #6 to the PDSCH.
  • the MAC CE shown in FIG. 8A may be applied.
  • Rel. MAC CE for TCI state activation extended from 16 is selectively applied to PDSCH scheduled by two PDCCH candidates linked in two CORESETs with different CORESET pool IDs It may be configured to be
  • a new MAC CE is used to activate the TCI state (or to activate the TCI mapping between states and TCI codepoints) can be performed. It is possible to flexibly set the TCI state applied to the PDSCH.
  • a new MAC CE activates the TCI state of the PDSCH scheduled by the PDCCH repetitions of the PDCCH candidates linked in two CORESETs with different CORESET pool IDs and the TCI state activation corresponding to a specific CORESET pool ID. It may be used with
  • the UE may assume only a new MAC CE and not an existing MAC CE for TCI state activation.
  • FIG. 9A shows the case where TCI states #6, #8, #10 and #11 are activated. Note that the activated TCI state is an example and is not limited to this.
  • a PDSCH is scheduled by two linked PDCCH candidates in two CORESETs with different CORESET pool IDs (see FIG. 9B).
  • TCI states #6, #8, #10, #11... activated with a new MAC CE are TCI codepoints 0, 1, 2, 3... It may be assumed that each is mapped.
  • the UE may apply TCI state #6 to the PDSCH.
  • a PDSCH is scheduled with a PDCH that does not repeat (or has no links with other PDCCH candidates), or a PDSCH is scheduled with multiple PDCCH candidates to which the same CORESET pool index is applied.
  • TCI state for PDSCH of single TRP e.g., TCI state for PDSCH for S-TRP
  • TCI state for PDSCH of multi-DCI based multi-TRP e.g., TCI state for PDSCH or M-DCI M-TRP
  • the TCI state for single TRP PDSCH may be selected for PDSCHs scheduled by PDCCHs associated with different CORESET pool IDs (eg, linked PDCCH, repeating PDCCH) (see FIG. 10). ).
  • the offset between the PDCCH / DCI and the PDSCH scheduled by the PDCCH / DCI is a predetermined value (eg, timeDurationForQCL) If smaller than, We describe the TCI state/QCL assumptions that apply to the PDSCH.
  • the offset between PDCCH/DCI and PDSCH is smaller than a predetermined value (eg, timeDurationForQCL), a CORESET having a different CORESET pool ID is set, and a predetermined upper layer parameter is set. If so, a given QCL may be applied for the PDSCH.
  • the predetermined higher layer parameter may be an upper layer parameter (eg enableDefaultTCIStatePerCoresetPoolIndex-r16) that sets the default TCI state per CORESET pool index.
  • an upper layer parameter that sets the default TCI state for each CORESET pool index is set, and if the offset between DCI and PDSCH is smaller than a predetermined value, the CORESET corresponding to the DCI (or PDCCH)
  • a default QCL to be applied to the PDSCH is determined considering the pool ID. That is, the default QCL applied to PDSCH is determined based on the CORESET pool ID corresponding to the PDCCH/DCI that schedules the PDSCH.
  • FIG. 11 shows an example of scheduling one PDSCH (for example, the same PDSCH) by repeatedly transmitting the PDCCH.
  • PDCCH#1/DCI#1 corresponds to the first CORESET pool ID (here, #0)
  • PDCCH#2/DCI#2 corresponds to the second CORESET pool ID (here, #1). indicates when Although the number of repetitions (or repetition factor) of PDCCH is 2 here, the number of repetitions may be 3 or more.
  • At least one (or all) of the repeatedly transmitted PDCCH / DCI and the scheduling offset between the PDSCH is a predetermined value (eg, timeDurationForQCL), if the default QCL to be applied to the PDSCH (or The problem is how to determine the default beam).
  • a predetermined value eg, timeDurationForQCL
  • the scheduling offset between at least one (or all) of PDCCH/DCI that is repeatedly transmitted and the PDSCH is smaller than a predetermined value
  • the following Alt. 4-1 to Alt. At least one of 4-3 may be applied.
  • the offset between at least one PDCCH/DCI and PDSCH is smaller than a predetermined value (assumed scheduling offset #1), and between a plurality of PDCCH/DCI and PDSCH is less than a predetermined value (scheduling offset assumption #2).
  • Alt. 4-1 does not set the default TCI state for each CORESET pool ID when the scheduling offset between at least one (or all) of the repeatedly transmitted PDCCH/DCI and the PDSCH is smaller than a predetermined value.
  • Alt. 4-2/4-3 is the default TCI state for each CORESET pool ID when at least one (or all) of the repeatedly transmitted PDCCH/DCI and the scheduling offset between the PDSCH is less than a predetermined value. Control to make settings.
  • the UE sets the default TCI state for each CORESET pool index if multiple (e.g., two) PDCCH candidates for PDCCH repetition (e.g., linked PDCCH candidates) are configured in two CORESETs with different CORESET pool IDs. It may not be assumed that the predetermined upper layer parameter to be set (eg enableDefaultTCIStatePerCoresetPoolIndex-r16) is set (see FIG. 12). In other words, if multiple linked PDCCH candidates for PDCCH repetition are sent in two CORESETs with different CORESET pool IDs, the UE may assume that the default TCI state is not set for each CORESET pool index. good.
  • multiple PDCCH candidates for PDCCH repetition e.g., linked PDCCH candidates
  • the UE may assume that the default TCI state is not set for each CORESET pool index. good.
  • the UE may consider the CORESET pool ID regardless (or consider the CORESET pool ID). not), the QCL of the CORESET with the smallest CORESET ID among the CORESETs of the latest slot (for example, latest slot) whose CORESET was monitored may be used as the PDSCH default QCL.
  • the PDSCH default TCI state/QCL may be determined based on the smallest CORESET ID in the latest CORESET monitoring slot without considering the CORESET pool ID.
  • the UE may apply a UE operation when a predetermined upper layer parameter (eg enableDefaultTCIStatePerCoresetPoolIndex-r16) is not set in an existing system (eg Rel.16).
  • a predetermined upper layer parameter eg enableDefaultTCIStatePerCoresetPoolIndex-r16
  • the UE shall, in the most recent slot in which one or more CORESETs in the serving cell's active BWP are being monitored by the UE, Regarding the QCL parameters used for the PDCCH pseudo-co-location indication (eg, PDCCH quasi co-location indication), it may be assumed that the PDSCH DM-RS port of the serving cell is pseudo-colocated with the RS (the UE may assume that the DM-RS ports of PDSCH of a serving cell are quasi co-located with the RS(s) with respect to the QCL parameter(s) used for PDCCH quasi co-location indication of the CORESET associated with a monitored search space with the lowest controlResourceSetId in the latest slot in which one or more CORESETs within the active BWP of the serving cell are monitored by the UE.).
  • the QCL parameters used for the PDCCH pseudo-co-location indication eg, PDCCH quasi co-location indication
  • the UE sets the default TCI state for each CORESET pool index if multiple (e.g., two) PDCCH candidates for PDCCH repetition (e.g., linked PDCCH candidates) are configured in two CORESETs with different CORESET pool IDs. Setting certain higher layer parameters to be set may be supported (see FIG. 13). In other words, if multiple linked PDCCH candidates for PDCCH repetition are sent in two CORESETs with different CORESET pool IDs, the UE assumes that setting the default TCI state per CORESET pool index is supported. You may
  • a predetermined upper layer parameter for setting the default TCI state for each CORESET pool index may be, for example, enableDefaultTCIStatePerCoresetPoolIndex-r16, or may be a new upper layer parameter.
  • the UE refers to one (or a specific) PDCCH candidate among the linked PDCCH candidates for the PDSCH scheduled by the linked PDCCH candidates in two CORESETs with different CORESET pool IDs.
  • a default QCL/default beam may be determined.
  • One PDCCH candidate out of a plurality of PDCCH candidates may also be referred to as reference PDCCH, even if at least one of the following options 4-2-1 ⁇ ⁇ option 4-2-6 is applied good.
  • the most recent slot may be the most recent slot monitored for a CORESET (eg, the CORESET corresponding to CORESET pool ID #0).
  • a PDCCH candidate corresponding to a second CORESET pool index (eg, #1) or a second CORESET pool ID may be referenced.
  • the most recent slot may be the most recent slot monitored for a CORESET (eg, the CORESET corresponding to CORESET pool ID #1).
  • the first PDCCH candidate (or PDCCH candidate of the first PDCCH monitoring occasion) may be referred to.
  • First may mean that it is transmitted earliest (or received first by the UE) in the time domain, or it may mean that the index of the monitoring occasion is the smallest.
  • Last may mean the latest to be transmitted (or the last to be received by the UE) in the time domain, or it may mean that the index of the monitoring occasion is the largest.
  • the PDCCH candidate for the CORESET with the lowest CORESET ID may be consulted.
  • the PDCCH candidate for the CORESET with the highest CORESET ID may be referenced.
  • CORESET pool ID 0 corresponding to the PDCCH candidate for the CORESET with the lowest (or highest) CORESET ID.
  • CORESET pool ID 1 corresponding to the PDCCH candidate for the CORESET with the lowest (or highest) CORESET ID.
  • the PDCCH candidate of the CORESET with the lowest search space set ID may be consulted.
  • the PDCCH candidate of the CORESET with the highest search space set ID may be referenced.
  • CORESET pool ID 0 corresponding to the PDCCH candidate for the CORESET with the lowest (or highest) search space set ID.
  • CORESET pool ID 1 corresponding to the PDCCH candidate for the CORESET with the lowest (or highest) search space set ID.
  • a method for determining reference PDCCH candidates may be configured in the UE from the base station. For example, multiple options from option 4-2-1 to option 4-2-5 are supported, and which option to apply is semi-statically or dynamically set/instructed by higher layer signaling/MAC CE/DCI may be
  • the default QCL is determined with reference to one of the linked PDCCH candidates, considering the CORESET pool ID corresponding to that referenced PDCCH candidate, the most recent slot (e.g. slot), the QCL of the CORESET with the smallest CORESET ID among the CORESETs of the relevant CORESET pool ID is determined as the PDSCH default QCL.
  • the UE indicates that one or more CORESETs associated with the same CORESET pool ID as the "reference PDCCH candidate" between two linked PDCCH candidates that schedule the PDSCH in the serving cell's active BWP are monitored by the UE.
  • the monitor with the smallest CORESET ID With respect to the QCL parameter used for the PDCCH pseudo collocation indication for the CORESET associated with the search space that is associated with the search space, the PDSCH DM-RS ports scheduled by the two linked PDCCH candidates associated with different CORESET pool IDs are pseudo RS.
  • the UE may assume that they are co-located (the UE may assume that the DM-RS ports of PDSCH scheduled by two linked PDCCH candidates associated with different CORESETPoolID are quasi co-located with the RS(s) with respect to the QCL parameter (s) used for PDCCH quasi co-location indication of the CORESET associated with a monitored search space with the lowest controlResourceSetId among CORESETs, which are configured with the same value of CORESETPoolIndex as the “reference PDCCH candidate” between the two linked PDCCH candidates scheduling that PDSCH, in the latest slot in which one or more CORESETs associated with the same value of CORESETPoolIndex as the "reference PDCCH candidate" between the two linked PDCCH candidates scheduling that PDSCH within the active BWP of the serving cell are monitored by the UE.).
  • the rules for determining criteria for TCI status indication may be consistent with the rules for determining criteria for timing offset/HARQ codebook/DAI/PUCCH resource determination. Alternatively, the rules for determining criteria for TCI status indication may differ from the rules for determining criteria for timing offset/HARQ codebook/DAI/PUCCH resource determination.
  • the UE sets the default TCI state for each CORESET pool index if multiple (e.g., two) PDCCH candidates for PDCCH repetition (e.g., linked PDCCH candidates) are configured in two CORESETs with different CORESET pool IDs. Setting certain higher layer parameters to be set may be supported (see FIG. 13). In other words, if multiple linked PDCCH candidates for PDCCH repetition are sent in two CORESETs with different CORESET pool IDs, the UE assumes that setting the default TCI state per CORESET pool index is supported. You may
  • a predetermined upper layer parameter for setting the default TCI state for each CORESET pool index may be, for example, enableDefaultTCIStatePerCoresetPoolIndex-r16, or may be a new upper layer parameter.
  • the UE determines the QCL/default beam based on the CORESET with the lowest ID among the CORESETs configured for PDCCH repetition and linked with another CORESET with a different CORESET pool ID (or The TCI state/QCL corresponding to the CORESET may be applied as the default QCL/default beam).
  • the UE may apply the TCI state/QCL corresponding to the CORESET having the smallest ID among the CORESET corresponding to the PDCCH #1 and the CORESET corresponding to the PDCCH #2 as the default QCL/default beam of the PDSCH. .
  • the UE is configured to link with another CORESET having a different CORESET pool ID for PDCCH repetition in the active BWP of the serving cell, the latest slot being monitored by the UE.
  • the CORESET associated with the monitored search space with the lowest CORESET ID e.g., lowest controlResourceSetID
  • the CORESET associated with the monitored search space with the lowest CORESET ID e.g., lowest controlResourceSetID
  • the CORESET associated with the monitored search space with the lowest CORESET ID e.g., lowest controlResourceSetID
  • QCL parameters used for PDCCH pseudo-co-location indication e.g., PDCCH quasi co-location indication
  • the UE may assume that the DM-RS ports of PDSCH scheduled by two linked PDCCH candidates associated with different CORESETPoolID are quasi co-located with the RS(s) with respect to the QCL parameter(s) used for PDCCH quasi co-location indication of the CORESET associated with a monitored search
  • the UE monitors the latest slot (eg, latest slot), the QCL of the CORESET with the smallest CORESET ID may be used as the PDSCH default QCL.
  • the most recent slot may be the most recent slot monitored for a CORESET (eg, the CORESET corresponding to CORESET pool ID #0/#1).
  • UE capability information In the above first to fourth aspects, the following UE capabilities may be set. Note that the UE capabilities below may be read as parameters (eg, higher layer parameters) set in the UE from the network (eg, base station).
  • UE capability information regarding whether to support multi-TRP (eg, M-TRP) PDCCH repetition may be defined.
  • UE capability information may be defined as to whether or not to support multi-TRP PDCCH repetition using two CORESET linked PDCCH candidates with different CORESET pool IDs.
  • the UE capability information on whether to support default QCL/default beam for PDSCH scheduled by PDCCH repetitions in two CORESETs with different CORESET pool IDs. may be defined.
  • the first to fourth aspects may be configured to be applied to a UE that supports/reports at least one of the UE capabilities described above.
  • the first to fourth aspects may be configured to be applied to the UE for which the corresponding higher layer parameters are set by the network.
  • wireless communication system A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
  • communication is performed using any one of the radio communication methods according to the above embodiments of the present disclosure or a combination thereof.
  • FIG. 14 is a diagram showing an example of a schematic configuration of a wireless communication system according to one embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by the Third Generation Partnership Project (3GPP). .
  • LTE Long Term Evolution
  • 5G NR 5th generation mobile communication system New Radio
  • 3GPP Third Generation Partnership Project
  • the wireless communication system 1 may also support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • RATs Radio Access Technologies
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)), etc.
  • RATs Radio Access Technologies
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)), etc.
  • LTE Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC NR-E -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN).
  • the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) in which both MN and SN are NR base stations (gNB) )) may be supported.
  • dual connectivity NR-NR Dual Connectivity (NN-DC) in which both MN and SN are NR base stations (gNB)
  • gNB NR base stations
  • a wireless communication system 1 includes a base station 11 forming a macrocell C1 with a relatively wide coverage, and base stations 12 (12a-12c) arranged in the macrocell C1 and forming a small cell C2 narrower than the macrocell C1. You may prepare.
  • a user terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminals 20 are not limited to the embodiment shown in the figure.
  • the base stations 11 and 12 are collectively referred to as the base station 10 when not distinguished.
  • the user terminal 20 may connect to at least one of the multiple base stations 10 .
  • the user terminal 20 may utilize at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • Each CC may be included in at least one of the first frequency band (Frequency Range 1 (FR1)) and the second frequency band (Frequency Range 2 (FR2)).
  • Macrocell C1 may be included in FR1, and small cell C2 may be included in FR2.
  • FR1 may be a frequency band below 6 GHz (sub-6 GHz)
  • FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
  • the user terminal 20 may communicate using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • a plurality of base stations 10 may be connected by wire (for example, an optical fiber conforming to Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, an optical fiber conforming to Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between the base stations 11 and 12, the base station 11 corresponding to the upper station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to the relay station (relay) is an IAB Also called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 directly or via another base station 10 .
  • the core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal compatible with at least one of communication schemes such as LTE, LTE-A, and 5G.
  • a radio access scheme based on orthogonal frequency division multiplexing may be used.
  • OFDM orthogonal frequency division multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a radio access method may be called a waveform.
  • other radio access schemes for example, other single-carrier transmission schemes and other multi-carrier transmission schemes
  • the UL and DL radio access schemes may be used as the UL and DL radio access schemes.
  • a downlink shared channel Physical Downlink Shared Channel (PDSCH)
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • an uplink shared channel (PUSCH) shared by each user terminal 20 an uplink control channel (PUCCH), a random access channel (Physical Random Access Channel (PRACH)) or the like may be used.
  • PUSCH uplink shared channel
  • PUCCH uplink control channel
  • PRACH Physical Random Access Channel
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH.
  • User data, higher layer control information, and the like may be transmitted by PUSCH.
  • a Master Information Block (MIB) may be transmitted by the PBCH.
  • Lower layer control information may be transmitted by the PDCCH.
  • the lower layer control information may include, for example, downlink control information (DCI) including scheduling information for at least one of PDSCH and PUSCH.
  • DCI downlink control information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • PDSCH may be replaced with DL data
  • PUSCH may be replaced with UL data.
  • a control resource set (CControl Resource SET (CORESET)) and a search space (search space) may be used for PDCCH detection.
  • CORESET corresponds to a resource searching for DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates.
  • a CORESET may be associated with one or more search spaces. The UE may monitor CORESETs associated with certain search spaces based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set. Note that “search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. in the present disclosure may be read interchangeably.
  • PUCCH channel state information
  • acknowledgment information for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.
  • SR scheduling request
  • a random access preamble for connection establishment with a cell may be transmitted by the PRACH.
  • downlink, uplink, etc. may be expressed without adding "link”.
  • various channels may be expressed without adding "Physical" to the head.
  • synchronization signals SS
  • downlink reference signals DL-RS
  • the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DeModulation Reference Signal (DMRS)), Positioning Reference Signal (PRS)), Phase Tracking Reference Signal (PTRS)), etc.
  • CRS cell-specific reference signal
  • CSI-RS channel state information reference signal
  • DMRS Demodulation reference signal
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • a signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called SS/PBCH block, SS Block (SSB), and so on.
  • SS, SSB, etc. may also be referred to as reference signals.
  • DMRS may also be called a user terminal-specific reference signal (UE-specific reference signal).
  • FIG. 15 is a diagram illustrating an example of the configuration of a base station according to one embodiment.
  • the base station 10 comprises a control section 110 , a transmission/reception section 120 , a transmission/reception antenna 130 and a transmission line interface 140 .
  • One or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission line interface 140 may be provided.
  • this example mainly shows the functional blocks that characterize the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 110 controls the base station 10 as a whole.
  • the control unit 110 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (eg, resource allocation, mapping), and the like.
  • the control unit 110 may control transmission/reception, measurement, etc. using the transmission/reception unit 120 , the transmission/reception antenna 130 and the transmission line interface 140 .
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, etc., and transfer them to the transmission/reception unit 120 .
  • the control unit 110 may perform call processing (setup, release, etc.) of communication channels, state management of the base station 10, management of radio resources, and the like.
  • the transmitting/receiving section 120 may include a baseband section 121 , a radio frequency (RF) section 122 and a measuring section 123 .
  • the baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212 .
  • the transmitting/receiving unit 120 is configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure. be able to.
  • the transmission/reception unit 120 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit.
  • the transmission section may be composed of the transmission processing section 1211 and the RF section 122 .
  • the receiving section may be composed of a reception processing section 1212 , an RF section 122 and a measurement section 123 .
  • the transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitting/receiving unit 120 may transmit the above-described downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmitting/receiving unit 120 may receive the above-described uplink channel, uplink reference signal, and the like.
  • the transmitting/receiving unit 120 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
  • digital beamforming eg, precoding
  • analog beamforming eg, phase rotation
  • the transmission/reception unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control for example, HARQ retransmission control
  • the transmission/reception unit 120 (transmission processing unit 1211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (DFT) on the bit string to be transmitted. Processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, transmission processing such as digital-to-analog conversion may be performed, and the baseband signal may be output.
  • channel coding which may include error correction coding
  • modulation modulation
  • mapping mapping
  • filtering filtering
  • DFT discrete Fourier transform
  • DFT discrete Fourier transform
  • the transmitting/receiving unit 120 may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 130. .
  • the transmitting/receiving unit 120 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
  • the transmission/reception unit 120 (reception processing unit 1212) performs analog-to-digital conversion, Fast Fourier transform (FFT) processing, and Inverse Discrete Fourier transform (IDFT) processing on the acquired baseband signal. )) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing. User data and the like may be acquired.
  • FFT Fast Fourier transform
  • IDFT Inverse Discrete Fourier transform
  • the transmitting/receiving unit 120 may measure the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal.
  • the measurement unit 123 measures received power (for example, Reference Signal Received Power (RSRP)), reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)) , signal strength (for example, Received Signal Strength Indicator (RSSI)), channel information (for example, CSI), and the like may be measured.
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • RSSI Received Signal Strength Indicator
  • channel information for example, CSI
  • the transmission path interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, etc., and user data (user plane data) for the user terminal 20, control plane data, and the like. Data and the like may be obtained, transmitted, and the like.
  • the transmitter and receiver of the base station 10 in the present disclosure may be configured by at least one of the transmitter/receiver 120, the transmitter/receiver antenna 130, and the transmission line interface 140.
  • the transmitting/receiving unit 120 may transmit a MAC CE containing information on activation of the transmission configuration indicator (TCI) state of the physical shared channel.
  • TCI transmission configuration indicator
  • the control unit 110 sets at least a plurality of downlink control information to be transmitted on the plurality of downlink control channels.
  • a TCI state field included in one may be used to indicate the TCI state corresponding to the physical shared channel.
  • the transmitting/receiving unit 120 may transmit to the terminal one physical shared channel scheduled by multiple downlink control channels that support application of different control resource set pool indices.
  • Control unit 110 when the offset between at least one of a plurality of downlink control channels and the physical shared channel is smaller than a predetermined value, the default TCI state set for each control resource set pool index in the terminal, or control It may be determined that a physical shared channel is received based on the default TCI state that is set independently of the resource set pool index.
  • FIG. 16 is a diagram illustrating an example of the configuration of a user terminal according to one embodiment.
  • the user terminal 20 includes a control section 210 , a transmission/reception section 220 and a transmission/reception antenna 230 .
  • One or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
  • this example mainly shows the functional blocks of the features of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 210 controls the user terminal 20 as a whole.
  • the control unit 210 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission/reception, measurement, etc. using the transmission/reception unit 220 and the transmission/reception antenna 230 .
  • the control unit 210 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transmission/reception unit 220 .
  • the transmitting/receiving section 220 may include a baseband section 221 , an RF section 222 and a measurement section 223 .
  • the baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212 .
  • the transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure.
  • the transmission/reception unit 220 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit.
  • the transmission section may be composed of a transmission processing section 2211 and an RF section 222 .
  • the receiving section may include a reception processing section 2212 , an RF section 222 and a measurement section 223 .
  • the transmitting/receiving antenna 230 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitting/receiving unit 220 may receive the above-described downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmitting/receiving unit 220 may transmit the above-described uplink channel, uplink reference signal, and the like.
  • the transmitter/receiver 220 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
  • digital beamforming eg, precoding
  • analog beamforming eg, phase rotation
  • the transmission/reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), MAC layer processing (for example, for data and control information acquired from the control unit 210, for example , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing for example, RLC retransmission control
  • MAC layer processing for example, for data and control information acquired from the control unit 210, for example , HARQ retransmission control
  • the transmitting/receiving unit 220 (transmission processing unit 2211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), and IFFT processing on a bit string to be transmitted. , precoding, digital-analog conversion, and other transmission processing may be performed, and the baseband signal may be output.
  • Whether or not to apply DFT processing may be based on transform precoding settings. Transmitting/receiving unit 220 (transmission processing unit 2211), for a certain channel (for example, PUSCH), if transform precoding is enabled, the above to transmit the channel using the DFT-s-OFDM waveform
  • the DFT process may be performed as the transmission process, or otherwise the DFT process may not be performed as the transmission process.
  • the transmitting/receiving unit 220 may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 230. .
  • the transmitting/receiving section 220 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
  • the transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (error correction) on the acquired baseband signal. decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmitting/receiving section 220 may measure the received signal.
  • the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal.
  • the measuring unit 223 may measure received power (eg, RSRP), received quality (eg, RSRQ, SINR, SNR), signal strength (eg, RSSI), channel information (eg, CSI), and the like.
  • the measurement result may be output to control section 210 .
  • the transmitter and receiver of the user terminal 20 in the present disclosure may be configured by at least one of the transmitter/receiver 220 and the transmitter/receiver antenna 230 .
  • the transmitting/receiving unit 220 may receive a MAC CE containing information on the activation of the transmission configuration indicator (TCI) state of the physical shared channel.
  • TCI transmission configuration indicator
  • the control unit 210 selects a plurality of downlink control information transmitted on each of the plurality of downlink control channels.
  • a TCI state corresponding to a physical shared channel may be determined based on at least one TCI state field.
  • a codepoint contained in the TCI state field may be associated with a TCI state activated by a MAC CE corresponding to a particular control resource set pool index.
  • the codepoints included in the fields relating to TCI state are the TCI state activated by the MAC CE corresponding to the first control resource set pool index and the TCI state activated by the MAC CE corresponding to the second control resource set pool index. may be associated with the TCI state to be activated.
  • the codepoints included in the TCI state field may be associated with TCI states activated by MAC CEs that do not contain information about the control resource set pool index.
  • the transmitting/receiving unit 220 may receive multiple downlink control channels that support the application of different control resource set pool indices.
  • the control unit 210 sets the default set for each control resource set pool index. or a default TCI state that is set independently of the control resource set pool index.
  • the control unit 210 may determine pseudo collocation of physical shared channels based on a specific control resource set among the monitored control resource sets in the most recent slot in which the control resource sets are monitored. Alternatively, the control unit 210 may determine pseudo collocation of physical shared channels based on a specific control resource set corresponding to a control resource pool index of a specific downlink control channel among multiple downlink control channels. Alternatively, the control unit 210 may determine pseudo collocation of physical shared channels based on a specific control resource set among control resource sets corresponding to at least one of a plurality of downlink control channels.
  • each functional block may be implemented using one device that is physically or logically coupled, or directly or indirectly using two or more devices that are physically or logically separated (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • function includes judgment, decision, determination, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, deem , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (component) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
  • a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 17 is a diagram illustrating an example of hardware configurations of a base station and user terminals according to an embodiment.
  • the base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
  • processor 1001 may be implemented by one or more chips.
  • predetermined software program
  • the processor 1001 performs calculations, communication via the communication device 1004 and at least one of reading and writing data in the memory 1002 and the storage 1003 .
  • the processor 1001 operates an operating system and controls the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission/reception unit 120 220
  • FIG. 10 FIG. 10
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the control unit 110 (210) may be implemented by a control program stored in the memory 1002 and running on the processor 1001, and other functional blocks may be similarly implemented.
  • the memory 1002 is a computer-readable recording medium, such as Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), or at least any other suitable storage medium. may be configured by one.
  • the memory 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the memory 1002 can store executable programs (program code), software modules, etc. for implementing a wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray disc), removable disc, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium may be configured by Storage 1003 may also be called an auxiliary storage device.
  • a computer-readable recording medium for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray disc), removable disc, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium may be configured by Storage 1003 may also
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD), for example. may be configured to include
  • the transmitting/receiving unit 120 (220), the transmitting/receiving antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these pieces of hardware.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • a signal may also be a message.
  • a reference signal may be abbreviated as RS, and may also be called a pilot, a pilot signal, etc., depending on the applicable standard.
  • a component carrier may also be called a cell, a frequency carrier, a carrier frequency, or the like.
  • a radio frame may consist of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) that make up a radio frame may be called a subframe.
  • a subframe may consist of one or more slots in the time domain.
  • a subframe may be a fixed time length (eg, 1 ms) independent of numerology.
  • a numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration , a particular filtering process performed by the transceiver in the frequency domain, a particular windowing process performed by the transceiver in the time domain, and/or the like.
  • a slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may also be a unit of time based on numerology.
  • a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) transmitted in time units larger than a minislot may be referred to as PDSCH (PUSCH) Mapping Type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms may be Note that the unit representing the TTI may be called a slot, mini-slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum scheduling time unit in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • a TTI may be a transmission time unit such as a channel-encoded data packet (transport block), code block, or codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, or the like.
  • a TTI that is shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • the long TTI (e.g., normal TTI, subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms
  • the short TTI e.g., shortened TTI, etc.
  • a TTI having the above TTI length may be read instead.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain.
  • the number of subcarriers included in the RB may be the same regardless of the neumerology, eg twelve.
  • the number of subcarriers included in an RB may be determined based on neumerology.
  • an RB may contain one or more symbols in the time domain and may be 1 slot, 1 minislot, 1 subframe or 1 TTI long.
  • One TTI, one subframe, etc. may each be configured with one or more resource blocks.
  • One or more RBs are Physical Resource Block (PRB), Sub-Carrier Group (SCG), Resource Element Group (REG), PRB pair, RB Also called a pair.
  • PRB Physical Resource Block
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • PRB pair RB Also called a pair.
  • a resource block may be composed of one or more resource elements (Resource Element (RE)).
  • RE resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a Bandwidth Part (which may also be called a bandwidth part) represents a subset of contiguous common resource blocks (RBs) for a numerology on a carrier.
  • the common RB may be identified by an RB index based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP for UL
  • BWP for DL DL BWP
  • One or multiple BWPs may be configured for a UE within one carrier.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given channel/signal outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples.
  • the number of subframes contained in a radio frame, the number of slots per subframe or radio frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc. can be varied.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information. may be represented. For example, radio resources may be indicated by a predetermined index.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • information, signals, etc. can be output from a higher layer to a lower layer and/or from a lower layer to a higher layer.
  • Information, signals, etc. may be input and output through multiple network nodes.
  • Input/output information, signals, etc. may be stored in a specific location (for example, memory), or may be managed using a management table. Input and output information, signals, etc. may be overwritten, updated or appended. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to other devices.
  • Uplink Control Information (UCI) Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), and the like.
  • RRC signaling may also be called an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
  • MAC signaling may be notified using, for example, a MAC Control Element (CE).
  • CE MAC Control Element
  • notification of predetermined information is not limited to explicit notification, but implicit notification (for example, by not notifying the predetermined information or by providing another information by notice of
  • the determination may be made by a value (0 or 1) represented by 1 bit, or by a boolean value represented by true or false. , may be performed by numerical comparison (eg, comparison with a predetermined value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) , a server, or other remote source, these wired and/or wireless technologies are included within the definition of transmission media.
  • a “network” may refer to devices (eg, base stations) included in a network.
  • precoding "precoding weight”
  • QCL Quality of Co-Location
  • TCI state Transmission Configuration Indication state
  • spatialal patial relation
  • spatialal domain filter "transmission power”
  • phase rotation "antenna port
  • antenna port group "layer”
  • number of layers Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, “panel” are interchangeable. can be used as intended.
  • base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission Point (TP)”, “Reception Point (RP)”, “Transmission/Reception Point (TRP)”, “Panel”
  • a base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
  • a base station can accommodate one or more (eg, three) cells.
  • the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is assigned to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head (RRH))) may also provide communication services.
  • a base station subsystem e.g., a small indoor base station (Remote Radio)). Head (RRH)
  • RRH Head
  • the terms "cell” or “sector” refer to part or all of the coverage area of at least one of the base stations and base station subsystems that serve communication within such coverage.
  • MS Mobile Station
  • UE User Equipment
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , a handset, a user agent, a mobile client, a client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like.
  • the mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a user terminal.
  • communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.)
  • the user terminal 20 may have the functions of the base station 10 described above.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be read as side channels.
  • user terminals in the present disclosure may be read as base stations.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • operations that are assumed to be performed by the base station may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may involve the base station, one or more network nodes other than the base station (e.g., Clearly, this can be done by a Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. (but not limited to these) or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect/embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching along with execution. Also, the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in the present disclosure may be rearranged as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using a sample order, and are not limited to the specific order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG xG (xG (x is, for example, an integer or a decimal number)
  • Future Radio Access FAA
  • RAT New - Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Future generation radio access
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi®
  • IEEE 802.16 WiMAX®
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth®, or other suitable wireless It may be applied to systems using communication methods, next-generation systems extended based on these, and the like. Also, multiple systems may be applied to systems using communication methods, next-generation systems extended based on these, and the like
  • any reference to elements using the "first,” “second,” etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • determining includes judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiry ( For example, looking up in a table, database, or another data structure), ascertaining, etc. may be considered to be “determining.”
  • determining (deciding) includes receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access ( accessing (e.g., accessing data in memory), etc.
  • determining is considered to be “determining” resolving, selecting, choosing, establishing, comparing, etc. good too. That is, “determining (determining)” may be regarded as “determining (determining)” some action.
  • connection refers to any connection or coupling, direct or indirect, between two or more elements. and can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other. Couplings or connections between elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • radio frequency domain when two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-exhaustive examples, radio frequency domain, microwave They can be considered to be “connected” or “coupled” together using the domain, electromagnetic energy having wavelengths in the optical (both visible and invisible) domain, and the like.
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean that "A and B are different from C”.
  • Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示の端末の一態様は、物理共有チャネルの送信コンフィグレーション指標(TCI)状態のアクティベーションに関する情報が含まれるMAC CEを受信する受信部と、異なる制御リソースセットプールインデックスの適用がサポートされる複数の下り制御チャネルにより1つの物理共有チャネルがスケジュールされる場合、前記複数の下り制御チャネルでそれぞれ送信される複数の下り制御情報の少なくとも一つに含まれるTCI状態に関するフィールドに基づいて、前記物理共有チャネルに対応するTCI状態を判断する制御部と、を有する。

Description

端末、無線通信方法及び基地局
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
 将来の無線通信システム(例えば、Rel.17以降、Beyond 5G/6G以降)では、1つ又は複数の送受信ポイント(Transmission/Reception Point(TRP))(マルチTRP)が、1つ又は複数のパネル(マルチパネル)を用いて、端末(user terminal、User Equipment(UE))に対してDL送信(例えば、PDSCH送信)を行うことが想定されている。
 かかる場合、所定のチャネル(例えば、PDCCH)に繰り返し送信(例えば、repetition)を適用することが想定される。例えば、マルチパネル/TRPから繰り返し送信(例えば、repetition)が適用される複数のPDCCHを利用して、DL伝送/UL伝送(例えば、1つのPDSCH/PUSCH)のスケジュールを制御することが考えられる。
 しかしながら、既存システム(例えば、Rel.16以前)では、1以上のTRPからの繰り返し送信されるPDCCH/DCIを利用してPDSCH/PUSCHのスケジュールをどのように制御するかについて十分に検討されていない。
 そこで、本開示は、1以上のTRPから繰り返し送信されるPDCCH/DCIを利用してスケジュールを行う場合であっても、通信を適切に行うことができる端末、無線通信方法及び基地局を提供することを目的の1つとする。
 本開示の一態様に係る端末は、物理共有チャネルの送信コンフィグレーション指標(TCI)状態のアクティベーションに関する情報が含まれるMAC CEを受信する受信部と、異なる制御リソースセットプールインデックスの適用がサポートされる複数の下り制御チャネルにより1つの物理共有チャネルがスケジュールされる場合、前記複数の下り制御チャネルでそれぞれ送信される複数の下り制御情報の少なくとも一つに含まれるTCI状態に関するフィールドに基づいて、前記物理共有チャネルに対応するTCI状態を判断する制御部と、を有する。
 本開示の一態様によれば、1以上のTRPから繰り返し送信されるPDCCH/DCIを利用してスケジュールを行う場合であっても、通信を適切に行うことができる。
図1A-図1Dは、マルチTRPシナリオの一例を示す図である。 図2は、PDCCH繰り返しによりPDSCHをスケジュールする場合の一例を示す図である。 図3は、TCI状態のアクティブ化に利用されるMAC CEの一例を示す図である。 図4は、PDCCH繰り返しによりスケジュールされるPDSCHに適用されるTCI状態を説明するための図である。 図5A-図5Cは、第1の態様に係るMAC CEの一例を示す図である。 図6A-図6Cは、第2の態様に係るMAC CEの一例を示す図である。 図7A及び図7Bは、第2の態様に係るTCIコードポイントとTCI状態IDのマッピングの一例を示す図である。 図8A-図8Cは、第3の態様に係るMAC CEの一例を示す図である。 図9A及び図9Bは、バリエーション1に係るMAC CEの他の例を示す図である。 図10は、バリエーション2に係るPDSCHに適用するTCI状態の一例を示す図である。 図11は、PDCCH繰り返しとPDSCH間のスケジューリングオフセットを説明するための図である。 図12は、第4の態様に係るPDSCHに適用するデフォルトTCI/QCLを説明するための図である。 図13は、第4の態様に係るPDSCHに適用するデフォルトTCI/QCLを説明するための図である。 図14は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図15は、一実施形態に係る基地局の構成の一例を示す図である。 図16は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図17は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の例を示す図である。
(マルチTRP)
 NRでは、1つ又は複数の送受信ポイント(Transmission/Reception Point(TRP))(マルチTRP)が、1つ又は複数のパネル(マルチパネル)を用いて、UEに対してDL送信を行うことが検討されている。また、UEが、1つ又は複数のTRPに対してUL送信を行うことが検討されている。
 なお、複数のTRPは、同じセル識別子(セルIdentifier(ID))に対応してもよいし、異なるセルIDに対応してもよい。当該セルIDは、物理セルIDでもよいし、仮想セルIDでもよい。
 図1A-1Dは、マルチTRPシナリオの一例を示す図である。これらの例において、各TRPは4つの異なるビームを送信可能であると想定するが、これに限られない。
 図1Aは、マルチTRPのうち1つのTRP(本例ではTRP1)のみがUEに対して送信を行うケース(シングルモード、シングルTRPなどと呼ばれてもよい)の一例を示す。この場合、TRP1は、UEに制御信号(PDCCH)及びデータ信号(PDSCH)の両方を送信する。
 図1Bは、マルチTRPのうち1つのTRP(本例ではTRP1)のみがUEに対して制御信号を送信し、当該マルチTRPがデータ信号を送信するケース(シングルマスタモードと呼ばれてもよい)の一例を示す。UEは、1つの下り制御情報(Downlink Control Information(DCI))に基づいて、当該マルチTRPから送信される各PDSCHを受信する。
 図1Cは、マルチTRPのそれぞれがUEに対して制御信号の一部を送信し、当該マルチTRPがデータ信号を送信するケース(マスタスレーブモードと呼ばれてもよい)の一例を示す。TRP1では制御信号(DCI)のパート1が送信され、TRP2では制御信号(DCI)のパート2が送信されてもよい。制御信号のパート2はパート1に依存してもよい。UEは、これらのDCIのパートに基づいて、当該マルチTRPから送信される各PDSCHを受信する。
 図1Dは、マルチTRPのそれぞれがUEに対して別々の制御信号を送信し、当該マルチTRPがデータ信号を送信するケース(マルチマスタモードと呼ばれてもよい)の一例を示す。TRP1では第1の制御信号(DCI)が送信され、TRP2では第2の制御信号(DCI)が送信されてもよい。UEは、これらのDCIに基づいて、当該マルチTRPから送信される各PDSCHを受信する。
 図1BのようなマルチTRPからの複数のPDSCH(マルチPDSCH(multiple PDSCH)と呼ばれてもよい)を、1つのDCIを用いてスケジュールする場合、当該DCIは、シングルDCI(S-DCI、シングルPDCCH)と呼ばれてもよい。また、図1DのようなマルチTRPからの複数のPDSCHを、複数のDCIを用いてそれぞれスケジュールする場合、これらの複数のDCIは、マルチDCI(M-DCI、マルチPDCCH(multiple PDCCH))と呼ばれてもよい。
 マルチTRPの各TRPからは、それぞれ異なるコードワード(Code Word(CW))及び異なるレイヤが送信されてもよい。マルチTRP送信の一形態として、ノンコヒーレントジョイント送信(Non-Coherent Joint Transmission(NCJT))が検討されている。
 NCJTにおいて、例えば、TRP1は、第1のコードワードを変調マッピングし、レイヤマッピングして第1の数のレイヤ(例えば2レイヤ)を第1のプリコーディングを用いて第1のPDSCHを送信する。また、TRP2は、第2のコードワードを変調マッピングし、レイヤマッピングして第2の数のレイヤ(例えば2レイヤ)を第2のプリコーディングを用いて第2のPDSCHを送信する。
 なお、NCJTされる複数のPDSCH(マルチPDSCH)は、時間及び周波数ドメインの少なくとも一方に関して部分的に又は完全に重複すると定義されてもよい。つまり、第1のTRPからの第1のPDSCHと、第2のTRPからの第2のPDSCHと、は時間及び周波数リソースの少なくとも一方が重複してもよい。
 これらの第1のPDSCH及び第2のPDSCHは、疑似コロケーション(Quasi-Co-Location(QCL))関係にない(not quasi-co-located)と想定されてもよい。マルチPDSCHの受信は、あるQCLタイプ(例えば、QCLタイプD)でないPDSCHの同時受信で読み替えられてもよい。
 マルチTRPに対するURLLCにおいて、マルチTRPにまたがるPDSCH(トランスポートブロック(TB)又はコードワード(CW))繰り返し(repetition)がサポートされることが検討されている。周波数ドメイン又はレイヤ(空間)ドメイン又は時間ドメイン上でマルチTRPにまたがる繰り返し方式(URLLCスキーム、例えば、スキーム1、2a、2b、3、4)がサポートされることが検討されている。スキーム1において、マルチTRPからのマルチPDSCHは、空間分割多重(space division multiplexing(SDM))される。スキーム2a、2bにおいて、マルチTRPからのPDSCHは、周波数分割多重(frequency division multiplexing(FDM))される。スキーム2aにおいては、マルチTRPに対して冗長バージョン(redundancy version(RV))は同じである。スキーム2bにおいては、マルチTRPに対してRVは同じであってもよいし、異なってもよい。スキーム3、4において、マルチTRPからのマルチPDSCHは、時間分割多重(time division multiplexing(TDM))される。スキーム3において、マルチTRPからのマルチPDSCHは、1つのスロット内で送信される。スキーム4において、マルチTRPからのマルチPDSCHは、異なるスロット内で送信される。
 このようなマルチTRPシナリオによれば、品質の良いチャネルを用いたより柔軟な送信制御が可能である。
 マルチTRP/パネルを用いるNCJTは、高ランクを用いる可能性がある。複数TRPの間の理想的(ideal)及び非理想的(non-ideal)のバックホール(backhaul)をサポートするために、シングルDCI(シングルPDCCH、例えば、図1B)及びマルチDCI(マルチPDCCH、例えば、図1D)の両方がサポートされてもよい。シングルDCI及びマルチDCIの両方に対し、TRPの最大数が2であってもよい。
 シングルPDCCH設計(主に理想バックホール用)に対し、TCIの拡張が検討されている。DCI内の各TCIコードポイントは1又は2のTCI状態に対応してもよい。TCI状態に関するフィールドのサイズはRel.15のものと同じであってもよい。
(PDCCH/DCI繰り返し)
 Rel.17以降では、1以上のTRPから送信されるPDCCH(又は、DCI)に繰り返し送信(PDCCH repetition)が適用されることも想定される。例えば、1以上のTRPから送信される複数のPDCCH(又は、DCI)を利用して、1以上の信号/チャネルのスケジュール又は送受信指示を行うことが考えられる。
 繰り返し送信が適用されるPDCCH/DCIは、マルチPDCCH/マルチDCIと呼ばれてもよい。PDCCHの繰り返し送信は、PDCCH繰り返し、PDCCHの複数送信、マルチPDCCH送信又はマルチプルPDCCH送信と読み替えてもよい。
 マルチPDCCH/マルチDCIは、異なるTRPからそれぞれ送信されてもよい。異なるTRPは、例えば、異なるCORESETプールインデックス(以下、CORESETプールIDとも記す)に対応していてもよい。
 当該マルチPDCCH/DCIは、時間多重(TDM)/周波数多重(FDM)/空間多重(SDM)により多重されてもよい。例えば、時間多重を利用してPDCCHの繰り返し(TDM PDCCH繰り返し)を行う場合、異なるTRPからそれぞれ送信されるPDCCHが異なる時間領域に割当てられる。
 図2は、PDCCHの繰り返し送信により1つのPDSCH(例えば、同じPDSCH)のスケジュールを行う場合の一例を示している。PDCCH#1は、DCI#1の送信に利用され、且つ第1のCORESETプールID(ここでは、#0)に対応する場合を示している。PDCCH#2は、DCI#2の送信に利用され、且つ第2のCORESETプールID(ここでは、#1)に対応する場合を示している。ここでは、PDCCHの繰り返し回数(又は、繰り返しファクタ)が2の場合を示しているが、繰り返し回数は3以上であってもよい。
 各PDCCHでそれぞれ送信されるDCIの内容(例えば、DCIペイロード(DCI payload)/符号化ビット(coded bits)/CCE数)は同じ構成であってもよい。なお、各DCIの符号化/レートマッチングは、各繰り返しに基づいて制御されてもよい。
 繰り返し送信される各PDCCH(例えば、PDCCH#1、PDCCH#2)は、PDCCH候補(例えば、PDCCH candidates)と呼ばれてもよい。各PDCCH候補は、明示的に関連づけ(又は、リンク)されており、UEは、復号処理を行う前に、PDCCH候補のリンク(又は、関連付けられたPDCCH候補)を把握してよい。
 PDCCH繰り返しに対して、複数(例えば、2つ)のサーチスペースセットの関連づけ(又は、リンク)が上位レイヤシグナリング/MAC CEにより設定されてもよい。2つのサーチスペースセットは、各繰り返し送信にそれぞれ対応するCORESETに対応してもよい。PDCCH繰り返し用に利用されるCORESETは、2つのリンクされたサーチスペースセットに関連付けられた2つのCORESETに相当してもよい。
 PDCCH繰り返しにおいて、2つのサービスペースの2つのPDCCH候補は、同じアグリゲーション(AL)と同じ候補インデックスを有するようにリンクされてもよい。リンクされた2つのサーチスペースセットは、各ALに対して同じ数の候補で構成されてもよい。つまり、PDCCH繰り返し用の2つのリンクされたPDCCH候補は、2つのリンクされたサーチスペースセットにおいて同じアグリゲーションレベル(AL)と同じインデックスを有する2つのPDCCH候補であってもよい。
(MAC CEによるTCI状態アクティブ化)
 既存システム(例えば、Rel.16以前)では、CORESETプールIDが設定されている場合、PDSCHのTCI状態のアクティブ化は、CORESETプールID(例えば、TRP)毎にアクティブ化される。つまり、TCI状態のアクティベーションの通知に利用されるMAC CEは、CORESETプールID(例えば、TRP)に関連付けられている(図3参照)。
 図3に示すMAC CEにおいて、CORESETプールIDが1に設定される場合を想定する。かかる場合、アクティブ化されたTCI状態と、MAC CEにより指定されたDCIに含まれるTCI状態用フィールドのコードポイントと、のマッピングは、CORESETプールIDが1となるようにスケジュールされたPDSCHに適用されてよい。
 図3に示すMAC CEにおいて、CORESETプールIDが1に設定される場合を想定する。かかる場合、アクティブ化されたTCI状態と、MAC CEが示すDCI内のTCI状態用フィールドのコードポイントと、のマッピングは、CORESETプールIDが1となるようにスケジュールされたPDSCHに適用されてよい。
 図3に示すMAC CEにおいて、CORESETプールIDが0に設定される場合を想定する。かかる場合、アクティブ化されたTCI状態と、MAC CEが示すDCI内のTCI状態用フィールドのコードポイントと、のマッピングは、CORESETプールIDが0となるようにスケジュールされたPDSCHに適用されてよい。
 このように、既存システムでは、CORESETプールID毎にTCI状態のリスト(ここでは、2つのTCI状態リスト)が設定される。
 図4に示すように、PDCCH繰り返し用の2つのリンクされたPDCCH候補(例えば、PDCCH#1とPDCCH#2)が、異なるCORESETプールIDを有する2つのCORESETを利用してそれぞれ送信されることも考えられる。例えば、PDCCH#1が第1のCORESETプールIDに対応し、PDCCH#2が第2のCORESETプールIDに対応することも想定される。
 このように、PDCCH繰り返し送信において、異なるCORESETプールIDに対応する複数のPDCCH(例えば、リンクされたPDCCH候補)でPDSCHがスケジュールされる場合、PDSCHに適用するTCI状態をどのように制御するかが問題となる。
 例えば、UEが、DCIのTCI状態用フィールドのコードポイントと、アクティベートされたTCI状態のマッピングをどのように想定/解釈するかが問題となる。あるいは、UEは、DCIのTCI状態用フィールドのコードポイントに基づいて、PDSCHに適用されるTCI状態をどのように判断/決定するかが問題となる。
 あるいは、繰り返し送信されるPDCCH(例えば、異なるCORESETプールIDを有する複数のPDCCH)と、当該複数のPDCCHでスケジュールされるPDSCHとのオフセットが所定値より小さい場合、PDSCHに適用するTCI状態/QCL(例えば、デフォルトTCI状態/デフォルトQCL)をどのように制御するかが問題となる。
 そこで、本発明者らは、繰り返し送信が適用されるPDCCH(又は、マルチPDCCH/DCI)により共有チャネル(例えば、PDCCH/PUSCH)がスケジュールされる場合の制御方法について検討し、本実施の形態を着想した。
 本開示の一態様は、異なるCORESETプールIDの適用がサポートされる複数のPDCCH/DCIにより1つの物理共有チャネル(例えば、PDSCH/PUSCH)がスケジューリングされる場合、UEは、複数のDCIの少なくとも一つに含まれるTCI状態に関するフィールド(TCI状態用フィールド)に基づいて、物理共有チャネルに対応するTCI状態を判断する。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各態様(又は、各態様に示す構成/無線通信方法)は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 本開示において、「A/B」、「A及びBの少なくとも1つ」、は互いに読み替えられてもよい。本開示において、「A/B/C」、「A、B及びCの少なくとも1つ」、は互いに読み替えられてもよい。本開示において、セル、サービングセル、CC、キャリア、BWP、DL BWP、UL BWP、アクティブDL BWP、アクティブUL BWP、バンド、は互いに読み替えられてもよい。本開示において、インデックス、ID、インジケータ、リソースID、は互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できる、は互いに読み替えられてもよい。
 本開示において、設定(configure)、アクティベート(activate)、更新(update)、指示(indicate)、有効化(enable)、指定(specify)、選択(select)、は互いに読み替えられてもよい。
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。本開示において、RRC、RRCシグナリング、RRCパラメータ、上位レイヤ、上位レイヤパラメータ、RRC情報要素(IE)、RRCメッセージ、は互いに読み替えられてもよい。
 MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
 本開示において、MAC CE、アクティベーション/ディアクティベーションコマンド、は互いに読み替えられてもよい。
 本開示において、プール、セット、グループ、リスト、候補、は互いに読み替えられてもよい。
 本開示において、DMRS、DMRSポート、アンテナポート、は互いに読み替えられてもよい。
 本開示において、特別(special)セル、SpCell、PCell、PSCell、は互いに読み替えられてもよい。
 本開示において、ビーム、空間ドメインフィルタ、空間セッティング、TCI状態、TCI想定、QCL想定、QCLパラメータ、疑似コロケーション、空間ドメイン受信フィルタ、UE空間ドメイン受信フィルタ、UE受信ビーム、DLビーム、DL受信ビーム、DLプリコーディング、DLプリコーダ、DL-RS、TCI状態/QCL想定のQCLタイプDのRS、TCI状態/QCL想定のQCLタイプAのRS、空間関係、空間ドメイン送信フィルタ、UE空間ドメイン送信フィルタ、UE送信ビーム、ULビーム、UL送信ビーム、ULプリコーディング、ULプリコーダ、PL-RS、は互いに読み替えられてもよい。本開示において、QCLタイプX-RS、QCLタイプXに関連付けられたDL-RS、QCLタイプXを有するDL-RS、DL-RSのソース、SSB、CSI-RS、SRS、は互いに読み替えられてもよい。
 本開示において、TRP ID、TRP関連ID、CORESETプールID、DCI内のフィールドの1つのコードポイントに対応する2つのTCI状態のうちの1つのTCI状態の位置(序数、第1TCI状態又は第2TCI状態)、TRPは、互いに読み替えられてもよい。
 本開示において、TRP、送信ポイント、パネル、DMRSポートグループ、CORESETプール、TCIフィールドの1つのコードポイントに関連付けられた2つのTCI状態の1つ、は互いに読み替えられてもよい。
 以下の説明では、PDCCHの繰り返し送信において、各PDCCHでそれぞれ送信されるDCIの内容(例えば、DCIペイロード(DCI payload)/符号化ビット(coded bits)/CCE数)は同じ場合を例に挙げて説明する。例えば、第1のPDCCHで送信されるDCIのTCI用フィールドのコードポイントと、第2のPDCCHで送信されるDCIのTCI用フィールドのコードポイントとが同じに設定されてもよい。なお、本実施の形態は、これに限られず、DCIのコードポイントが異なる場合において適用されてもよい。
(第1の態様)
 第1の態様は、異なるCORESETプールIDに対応する複数のPDCCH(又は、PDCCH候補)により1つの物理共有チャネルのスケジュールがサポートされる場合、UEは、PDSCHに対して1つのPDCCH候補(又は、CORESETプールID)を参照してTCI状態を判断する。あるいは、UEは、特定のCORESETプールIDに対応するMAC CEに基づいて、PDSCHのTCI状態を判断する。
 本開示(又は、他の態様)において、PDCCH(又は、PDCCH候補)は、DCI(又は、DCI候補)と読み替えられてもよい。また、本開示(又は、他の態様)において、物理共有チャネルは、PDSCHを例に挙げて説明するが、PUSCHに対しても同様に適用されてもよい。
 UEは、TCI状態のアクティベーション/ディアクティベーションに関する情報を受信してもよい。TCI状態のアクティベーションに関する情報は、MAC CEで受信してもよい。MAC CEは、既存システム(例えば、Rel.16)におけるPDSCH用のTCI状態のアクティベーションの通知に利用されるMAC CE(例えば、TCI States Activation/Deactivation for UE-specific PDSCH MAC CE)が利用されてもよい。
 図5A、図5Bは、TCI状態のアクティベーションの通知に利用されるMAC CEの一例を示している。図5Aは、CORESETプールID=0が指定される場合を示している。また、図5Aでは、TCI状態#0、#10、#12、#13がアクティブ化される場合を示している。なお、アクティブ化されるTCI状態は一例でありこれに限られない。
 図5Bは、CORESETプールID=1が指定される場合を示している。また、図5Bでは、TCI状態#1、#3、#4、#5がアクティブ化される場合を示している。なお、アクティブ化されるTCI状態は一例でありこれに限られない。
 異なるCORESETプールIDを有する2つのCORESETにおいて、関連づけ(又は、リンク)されたPDCCH候補により1つのPDSCHがスケジュールされる場合を想定する(図5C参照)。図5Cは、PDCCH#1/DCI#1(CORESETプールID#0に対応)と、PDCCH#2/DCI#2(CORESETプールID#1に対応)とにより、1つのPDSCHがスケジュールされる場合を示している。ここでは、各PDCCHのDCIのTCI状態用フィールドのコードポイントとして0(例えば、“000”)が指定される場合を示している。DCIに含まれるTCI状態用フィールドのコードポイントは、TCIコードポイントと呼ばれてもよい。
 当該PDSCHについて、MAC CEによりアクティブ化されたTCI状態をDCI内のTCIコードポイントにマッピングする際、複数のPDCCH候補のうち1つ(又は、特定)のPDCCH候補が参照されてもよい。複数のPDCCH候補のうち1つのPDCCH候補(参照PDCCH候補、参照PDCCHと呼ばれてもよい)は、以下のオプション1-1~オプション1-6の少なくとも一つが適用されてもよい。
<オプション1-1>
 第1のCORESETプールインデクス(例えば#0)、又は第1のCORESETプールIDに対応するPDCCH候補が参照されてもよい。第1のCORESETプールIDが参照されるとは、第1のCORESETプールインデクスに関連付けられたPDSCHのTCI状態が選択されることを意味してもよい。
 UEは、各CORESETプールIDに対応するアクティブ化されるTCI状態に関する情報(例えば、図5A、BのMAC CE)を受信している場合、第1のCORESETプールインデクス(#0)に対応するMAC CEでアクティブ化されるTCI状態を適用してもよい。つまり、UEは、第1のCORESETプールインデクス(#0)に対応するMAC CEでアクティブ化されるTCI状態が、DCIのTCIコードポイントにマッピングされると想定してもよい。
 例えば、第1のCORESETプールインデクス(#0)に対応するMAC CE(図6A参照)でアクティブ化が指示されるTCI状態#0がTCIコードポイント“000”にマッピングされ、TCI状態#10がTCIコードポイント“001”にマッピングされてもよい。
<オプション1-2>
 TCIコードポイントとして0(“000”)が指定される場合、UEは、TCI状態#0をPDSCHに適用してもよい。第2のCORESETプールインデクス(例えば#1)、又は第2のCORESETプールIDに対応するPDCCH候補が参照されてもよい。
 UEは、各CORESETプールIDに対応するアクティブ化されるTCI状態に関する情報(例えば、図5A、BのMAC CE)を受信している場合、第2のCORESETプールインデクス(#1)に対応するMAC CEでアクティブ化されるTCI状態を適用してもよい。つまり、UEは、第2のCORESETプールインデクス(#1)に対応するMAC CEでアクティブ化されるTCI状態が、TCIコードポイントにマッピングされると想定してもよい。
 例えば、第2のCORESETプールインデクス(#1)に対応するMAC CE(図6B参照)でアクティブ化が指示されるTCI状態#1がTCIコードポイント“000”にマッピングされ、TCI状態#3がTCIコードポイント“001”にマッピングされてもよい。例えば、TCIコードポイントとして0(“000”)が指定される場合、UEは、TCI状態#1をPDSCHに適用してもよい。
<オプション1-3>
 複数のPDCCH候補(又は、複数のPDCCHモニタリングオケージョン)のうち、1番目のPDCCH候補(又は、1番目のPDCCHモニタリングオケージョンのPDCCH候補)が参照されてもよい。1番目とは、時間領域において最も早く送信される(又は、UEが最初に受信する)ことを意味してもよいし、モニタリングオケージョンのインデックスが最も小さいことを意味してもよい。
 あるいは、複数のPDCCH候補(又は、複数のPDCCHモニタリングオケージョン)のうち、最後のPDCCH候補(又は、最後のPDCCHモニタリングオケージョンのPDCCH候補)が参照されてもよい。最後とは、時間領域において最も遅く送信される(又は、UEが最後に受信する)ことを意味してもよいし、モニタリングオケージョンのインデックスが最も大きいことを意味してもよい。
 UEは、1番目のPDCCH候補(又は、最後のPDCCH候補)に対応するCORESETプールIDを指定するMAC CEを利用してPDSCHのTCI状態を決定してもよい。例えば、UEは、当該MAC CEでアクティブ化されるTCI状態が、DCIに含まれるTCIコードポイントにマッピングされると想定してもよい。
<オプション1-4>
 最も低いCORESET IDを有するCORESETのPDCCH候補が参照されてもよい。あるいは、最も高いCORESET IDを有するCORESETのPDCCH候補が参照されてもよい。
 UEは、インデックスが最も低い(又は、最も高い)CORESETに設定されるCORESETプールIDを指定するMAC CEを利用してPDSCHのTCI状態を決定してもよい。例えば、UEは、当該MAC CEでアクティブ化されるTCI状態が、DCIに含まれるTCIコードポイントにマッピングされると想定してもよい。
<オプション1-5>
 最も低いサーチスペースセットIDを有するCORESETのPDCCH候補が参照されてもよい。あるいは、最も高いサーチスペースセットIDを有するCORESETのPDCCH候補が参照されてもよい。
 UEは、インデックスが最も低い(又は、最も高い)サーチスペースセットに対応するCORESETプールIDを指定するMAC CEを利用してPDSCHのTCI状態を決定してもよい。例えば、UEは、当該MAC CEでアクティブ化されるTCI状態が、DCIに含まれるTCIコードポイントにマッピングされると想定してもよい。
<オプション1-6>
 参照PDCCH候補の決定方法が基地局からUEに設定されてもよい。例えば、オプション1-1~オプション1-5のうち複数のオプションがサポートされ、どのオプションを適用するかについて上位レイヤシグナリング/MAC CE/DCIにより、準静的又はダイナミックに設定/指示されてもよい。
 上記のオプションにおいて、リンクされたPDCCH候補のうち1つが参照されることは、DCIに含まれるTCIコードポイントとアクティブ化されたTCI状態とのマッピングにおいて、CORESETプールIDが参照PDCCH候補と同じCORESETプールIDに設定されたTCI状態アクティベーション用MAC CEが適用されることを意味してもよい。
 TCI状態指示のための基準を決定するルールは、タイミングオフセット/HARQコードブック/DAI/PUCCHリソース決定用の基準を決定するルールと一致させてもよい。あるいは、TCI状態指示のための基準を決定するルールは、タイミングオフセット/HARQコードブック/DAI/PUCCHリソース決定用の基準を決定するルールと異なってもよい。
 このように、第1の態様では、複数のPDCCH候補のうち1つ(又は、特定)のPDCCH候補を参照してアクティブ化されるTCI状態とTCIコードポイントのマッピングを行う。これにより、異なるCORESETプールIDに対応する複数のPDCCHにより1つのPDSCHのスケジュールがサポートされる場合であっても、PDSCHに適用するTCI状態を適切に決定することができる。
(第2の態様)
 第2の態様は、異なるCORESETプールIDに対応する複数のPDCCH(又は、PDCCH候補)により1つの物理共有チャネルのスケジュールがサポートされる場合、UEは、各CORESETプールIDに対応するMAC CEを考慮してTCI状態を判断する。
 UEは、2つの異なるCORESETプールIDを有するPDCCH繰り返しでスケジュールされたPDSCHについて、MAC CEでアクティブ化されるTCI状態と、DCIのTCIコードポイントとの間のマッピングを既存システムと異なる新たなルールで解釈してもよい。
 例えば、UEは、第1のCORESETプールIDに対応するMAC CEでアクティブ化されるTCI状態と、第2のCORESETプールIDに対応するMAC CEでアクティブ化されるTCI状態と、の両方がTCIコードポイントにマッピングされると想定してもよい。
 UEは、TCI状態のアクティベーション/ディアクティベーションに関する情報を受信してもよい。TCI状態のアクティベーションに関する情報は、MAC CEで受信してもよい。MAC CEは、既存システム(例えば、Rel.16)におけるPDSCH用のTCI状態のアクティベーションの通知に利用されるMAC CE(例えば、TCI States Activation/Deactivation for UE-specific PDSCH MAC CE)が利用されてもよい。
 図6A、図6Bは、TCI状態のアクティベーションの通知に利用されるMAC CEの一例を示している。図6Aは、CORESETプールID#0が指定される場合を示している。また、図6Aでは、TCI状態#0、#10、#12、#13がアクティブ化される場合を示している。なお、アクティブ化されるTCI状態は一例でありこれに限られない。
 図6Bは、CORESETプールID#1が指定される場合を示している。また、図6Bでは、TCI状態#1、#3、#4、#5がアクティブ化される場合を示している。なお、アクティブ化されるTCI状態は一例でありこれに限られない。
 異なるCORESETプールIDを有する2つのCORESETにおいて、関連づけ(又は、リンク)されたPDCCH候補により1つのPDSCHがスケジュールされる場合を想定する(図6C参照)。図6Cは、PDCCH#1/DCI#1(CORESETプールID#0に対応)と、PDCCH#2/DCI#2(CORESETプールID#1に対応)とにより、1つのPDSCHがスケジュールされる場合を示している。
 当該PDSCHについて、MAC CEによりアクティブ化されたTCI状態をDCI内のTCIコードポイントにマッピングする際、異なるCORESETプールIDにそれぞれ対応する複数のMAC CEが考慮されてもよい。マッピングルールとして、以下のオプション2-1~オプション2-2の少なくとも一つが適用されてもよい。
<オプション2-1>
 TCIコードポイントは、CORESETプールIDの順に最初にアクティブ化されたTCI状態にマッピングされ、TCI状態IDの順番に同じCORESETプールIDがマッピングされてもよい。
 例えば、第1のCORESETプールID(#0)が設定されたMAC CEのTCI状態フィールド(Tiフィールド)が‘1’に設定された1番目~(x+1)番目のTCI状態は、TCIコードポイント値0~xにマッピングされてもよい。第2のCORESETプールID(#1)が設定されたMAC CEのTCI状態フィールド(Tiフィールド)が‘1’に設定された1番目~y番目のTCI状態は、TCIコードポイント値x+1~x+yにマッピングされてもよい。
 図6A、Bに示す場合、第1のCORESETプールIDに対応するMAC CEでアクティブ化されるTCI状態#0、#10、#12、#13が、TCIコードポイント0、1、2、3にそれぞれマッピングされる(図7A参照)。第2のCORESETプールID対応するMAC CEでアクティブ化されるTCI状態#1、#3、#4、#5が、TCIコードポイント4、5、6、7にそれぞれマッピングされる。
 図7Aでは、第1のCORESETプールIDに対応するMAC CEでアクティブ化されるTCI状態の数と、第2のCORESETプールIDに対応するMAC CEでアクティブ化されるTCI状態の数が同じ場合を示しているが、これに限られない。
<オプション2-2>
 TCIコードポイントは、TCI状態IDの順に、アクティブ化されたTCI状態にマッピングされてもよい。
 例えば、第1のCORESETプールID(#0)が設定されたMAC CEのTCI状態フィールドが‘1’に設定されたTCI状態と、第2のCORESETプールID(#1)が設定されたMAC CEのTCI状態フィールドが‘1’に設定されたTCI状態と、がTCIコードポイント値0~xにマッピングされてもよい。
 図6A、Bに示す場合、第1のCORESETプールID対応するMAC CEでアクティブ化されるTCI状態#0、#10、#12、#13と、第2のCORESETプールID対応するMAC CEでアクティブ化されるTCI状態#1、#3、#4、#5と、がTCI状態IDの順序でTCIコードポイント0~7にそれぞれマッピングされる(図7B参照)。
 図7Bでは、第1のCORESETプールIDに対応するMAC CEでアクティブ化されるTCI状態の数と、第2のCORESETプールIDに対応するMAC CEでアクティブ化されるTCI状態の数が同じ場合を示しているが、これに限られない。
 オプション2-1/オプション2-2において、TCI状態用フィールドのサイズは3ビットに設定されてもよい。かかる場合、第1のCORESETプールIDと第2のCORESETプールIDに対するMAC CEによりアクティブ化されるTCI状態の最大合計数は8であってもよい。
 TCI状態用フィールドのサイズは3ビットより大きいサイズ(例えば、4ビット)が適用されてもよい。この場合、各CORESETプールIDに対応するMAC CEによりそれぞれアクティブ化されるTCI状態の最大数は8であってもよい。
 あるいは、第1のCORESETプールIDと第2のCORESETプールIDに対するMAC CEによりアクティブ化されるTCI状態の最大合計数は8に設定され、各CORESETプールIDに対して、最大4つのアクティベートされたTCI状態がMAC CEから選択されてもよい。例えば、第1のCORESETプールID#0/#1のMAC CEにおいてアクティブ化されるTCI状態の数が4より大きい場合、TCI状態フィールドが1に設定された最初(又は、最後)の4つのTCI状態がDCIのTCIコードポイントにマッピングされてもよい。
 非リンクのPDCCHによりスケジュールされたPDSCHの場合、MAC CEによる8つのアクティブ化されたTCI状態が、DCIのTCIコードポイントへマッピングされる既存システムのルールが適用されてもよい。
 このように、第2の態様では、異なるCORESETプールIDが設定されるMAC CEでそれぞれアクティブ化されるTCI状態をTCIコードポイントにマッピングする。これにより、異なるCORESETプールIDに対応するアクティブ化されたTCI状態をDCIで指定することができるため、PDSCHに適用するTCI状態を柔軟に設定することが可能となる。
(第3の態様)
 第3の態様は、異なるCORESETプールIDに対応する複数のPDCCH(又は、PDCCH候補)により1つの物理共有チャネルのスケジュールがサポートされる場合、UEは、CORESETプールIDに対応しないMAC CE(又は、CORESETプールIDフィールドを含まないMAC CE)を考慮してTCI状態を判断する。
 UEは、2つの異なるCORESETプールIDを有するPDCCH繰り返しでスケジュールされたPDSCHについて、新規のMAC CEでアクティブ化されるTCI状態を適用してもよい。新規のMAC CEは、既存システムのMAC CE(例えば、CORESETプールIDフィールドを有するMAC CE)と別に定義/設定されてもよい。
 例えば、新規のMAC CEは、CORESETプールIDを指定するフィールドが含まれない構成であってもよい。UEは、2つの異なるCORESETプールIDを有するPDCCH繰り返しでスケジュールされたPDSCHについて、新規のMAC CEでアクティブ化されるTCI状態が、TCIコードポイントにマッピングされると想定してもよい。
 UEは、TCI状態のアクティベーション/ディアクティベーションに関する情報を受信してもよい。TCI状態のアクティベーションに関する情報は、MAC CEで受信してもよい。UEは、既存システム(例えば、Rel.16)におけるPDSCH用のTCI状態のアクティベーションの通知に利用されるMAC CE(例えば、TCI States Activation/Deactivation for UE-specific PDSCH MAC CE)と、新規のMAC CEの両方を想定してもよい。新規MAC CE(例えば、Enhanced TCI States Activation/Deactivation for UE-specific PDSCH MAC CE)は、所定条件(例えば、上位レイヤシグナリングで設定された場合)にのみ適用されてもよい。
 図8A、図8Bは、TCI状態のアクティベーションの通知に利用されるMAC CEの一例を示している。図8Aは、CORESETプールIDを通知するフィールドが含まれるMAC CEを示している。また、当該フィールドにより、第1のCORESETプールID又は第2のCORESETプールIDが設定されてもよい。
 図8Bは、新規のMAC CEの一例を示している。新規のMAC CEでは、CORESETプールIDを通知するフィールドが含まれない構成であってもよい。また、図8Bでは、TCI状態#6、#8、#10、#11がアクティブ化される場合を示している。なお、アクティブ化されるTCI状態は一例でありこれに限られない。
 異なるCORESETプールインデックスを有する2つのCORESETにおいて、関連づけ(又は、リンク)されたPDCCH候補により1つのPDSCHがスケジュールされる場合を想定する(図8C参照)。図8Cは、PDCCH#1/DCI#1(CORESETプールインデックス#0に対応)と、PDCCH#2/DCI#2(CORESETプールインデックス#1に対応)とにより、1つのPDSCHがスケジュールされる場合を示している。ここでは、各PDCCHのDCIのTCIコードポイントとして0(例えば、“000”)が指定される場合を示している。
 かかる場合、UEは、新規のMAC CE(図8B参照)でアクティブ化されるTCI状態を考慮してPDSCHの受信を制御してもよい。例えば、UEは、新規のMAC CEでアクティブ化されるTCI状態が、DCIのTCIコードポイントにマッピングされると想定してもよい。
 図8Bに示す場合、UEは、新規のMAC CEでアクティブ化されるTCI状態#6、#8、#10、#11・・・が、TCIコードポイントにそれぞれマッピングされると想定してもよい。例えば、TCI状態#6がTCIコードポイント0にマッピングされ、TCI状態#6がTCIコードポイント0にマッピングされ、TCI状態#8、#10、#11・・・がそれぞれTCIコードポイント1、2、3・・・にマッピングされ、TCI状態#6がTCIコードポイント0にマッピングされてもよい。
 TCIコードポイントとして0(“000”)が指定される場合、UEは、TCI状態#6をPDSCHに適用してもよい。
 繰り返しのない(又は、他のPDCCH候補/CORESET/サーチスペースセットとのリンクがない)PDCHでスケジュールされるPDSCH、又は同じCORESETプールインデックスが適用される複数のPDCCH候補でスケジュールされたPDSCHに対して、図8Aで示したMAC CEが適用されてもよい。
 このように、Rel.16から拡張されたTCI状態アクティベーション用MAC CE(又は、新規のMAC CE)は、CORESETプールIDが異なる2つのCORESETにおいてリンクされた2つのPDCCH候補によりスケジュールされたPDSCHに対して選択的に適用される構成としてもよい。
 第3の態様では、異なるCORESETプールIDに対応する複数のPDCCHにより1つのPDSCHのスケジュールがサポートされる場合に、新規のMAC CEを利用してTCI状態のアクティブ化(又は、アクティブ化されるTCI状態とTCIコードポイントとのマッピング)を行うことができる。PDSCHに適用するTCI状態を柔軟に設定することが可能となる。
<バリエーション1>
 新規のMAC CEは、異なるCORESETプールIDを有する2つのCORESETにおいてリンクされたPDCCH候補のPDCCH繰り返しによりスケジュールされたPDSCHのTCI状態のアクティブ化と、特定のCORESETプールIDに対応するTCI状態のアクティブ化とに利用されてもよい。
 MAC CEの所定フィールド(例えば、Xフィールド)は、CORESETプールID=0(“00”)、CORESETプールID=1(“01”)、又は、異なるCORESETプールIDを有するPDCCH繰り返しPDCCH(例えば、PDCCH repetition with CORESETPoolID=0 and CORESETPoolID=1)(“10”)を示してもよい(図9A参照)。この場合、UEは、新規のMAC CEのみを想定し、既存のTCI状態アクティベーション用のMAC CEを想定しなくてもよい。
 図9Aでは、TCI状態#6、#8、#10、#11がアクティブ化される場合を示している。なお、アクティブ化されるTCI状態は一例でありこれに限られない。
 異なるCORESETプールIDを有する2つのCORESET内のリンクされた2つのPDCCH候補によりPDSCHがスケジュールされる場合を想定する(図9B参照)。かかる場合、XフィールドにPDCCH repetition with CORESETPoolID=0 and CORESETPoolID=1が設定されるMAC CEでアクティブ化されるTCI状態が、DCIのTCIコードポイントにマッピングされてもよい。
 図9Bに示す場合、UEは、新規のMAC CEでアクティブ化されるTCI状態#6、#8、#10、#11・・・が、TCIコードポイント0、1、2、3・・・にそれぞれマッピングされると想定してもよい。ここでは、TCI状態用フィールドのコートポイントとして0が通知されるため、UEは、PDSCHにTCI状態#6を適用すればよい。
 繰り返しのない(又は、他のPDCCH候補とのリンクがない)PDCHでスケジュールされるPDSCH、又は同じCORESETプールインデックスが適用される複数のPDCCH候補でPDSCHがスケジュールされる場合を想定する。PDCCHがCORESETプールID=0に対応する場合、XフィールドにCORESETプールID=0が設定される新規のMAC CEでアクティブ化されるTCI状態が、DCIのTCIコードポイントにマッピングされてもよい。PDCCHがCORESETプールID=1に対応する場合、XフィールドにCORESETプールID=1が設定される新規のMAC CEでアクティブ化されるTCI状態が、DCIのTCIコードポイントにマッピングされてもよい。
<バリエーション2>
 シングルTRPのPDSCH用のTCI状態(例えば、TCI state for PDSCH for S-TRP)と、マルチDCIベースのマルチTRPのPDSCH用のTCI状態(例えば、TCI state for PDSCH or M-DCI M-TRP)との両方が設定されてもよい。この場合、異なるCORESETプールIDに関連付けられたPDCCH(例えば、リンクされたPDCCH、繰り返しPDCCH)によりスケジュールされるPDSCHに対して、シングルTRPのPDSCH用のTCI状態が選択されてもよい(図10参照)。
(第4の態様)
 第4の態様では、PDCCHの繰り返しにおいて、PDCCH/DCIと、当該PDCCH/DCIによりスケジュールされるPDSCHと、の間のオフセット(スケジューリングオフセットとも呼ぶ)が所定値(例えば、timeDurationForQCL)より小さい場合に、PDSCHに適用するTCI状態/QCL想定について説明する。
 既存システム(例えば、Rel.16)では、PDCCH/DCIとPDSCH間のオフセットが所定値(例えば、timeDurationForQCL)よりも小さく、異なるCORESETプールIDを有するCORESETが設定され、所定の上位レイヤパラメータが設定されている場合、PDSCHに対して所定のQCLが適用されてもよい。所定の上位レイヤパラメータは、CORESETプールインデックス毎にデフォルトTCI状態を設定する上位レイヤパラメータ(例えば、enableDefaultTCIStatePerCoresetPoolIndex-r16)であってもよい。
 例えば、CORESETプールID=0のPDCCHによりスケジュールされたPDSCHについて、最新のスロット(たとえば、latest slot)においてCORESETプールID=0のCORESETのうち、CORESET IDが最小のCORESETのQCLがPDSCHのデフォルトQCLとして利用されてもよい。最新のスロットは、CORESET(例えば、CORESETプールID#0に対応するCORESET)のモニタを行った直近のスロットであってもよい。つまり、CORESETプールID=0に対するPDSCHのデフォルトTCI状態/QCLは、最新のモニタリングスロットでCORESETプールID=0に関連付けられた最小のCORESET IDに基づいて決定されてもよい。
 例えば、CORESETプールID=1のPDCCHによりスケジュールされたPDSCHについて、最新のスロット(たとえば、latest slot)においてCORESETプールID=1のCORESETのうち、CORESET IDが最小のCORESETのQCLがPDSCHのデフォルトQCLとして利用されてもよい。最新のスロットは、CORESET(例えば、CORESETプールID#1に対応するCORESET)のモニタを行った直近のスロットであってもよい。つまり、CORESETプールID=1に対するPDSCHのデフォルトTCI状態/QCLは、最新のモニタリングスロットでCORESETプールID=1に関連付けられた最小のCORESET IDに基づいて決定されてもよい。
 このように、既存システムでは、CORESETプールインデックス毎にデフォルトTCI状態を設定する上位レイヤパラメータが設定され、DCIとPDSCH間のオフセットが所定値より小さい場合、当該DCI(又は、PDCCH)に対応するCORESETプールIDを考慮してPDSCHに適用されるデフォルトQCLが決定される。つまり、PDSCHに適用されるデフォルトQCLは、当該PDSCHをスケジュールするPDCCH/DCIに対応するCORESETプールIDに基づいて決定される。
 一方で、PDCCH繰り返し用の複数のPDCCH候補(例えば、リンクされたPDCCH候補)が、異なるCORESETプールIDを有する2つのCORESETで送信されることも想定される(図11参照)。
 図11は、PDCCHの繰り返し送信により1つのPDSCH(例えば、同じPDSCH)のスケジュールを行う場合の一例を示している。PDCCH#1/DCI#1は、第1のCORESETプールID(ここでは、#0)に対応し、PDCCH#2/DCI#2は、第2のCORESETプールID(ここでは、#1)に対応する場合を示している。ここでは、PDCCHの繰り返し回数(又は、繰り返しファクタ)が2の場合を示しているが、繰り返し回数は3以上であってもよい。
 図11において、繰り返し送信されるPDCCH/DCIの少なくとも一つ(又は、全部)と、PDSCHとの間のスケジューリングオフセットが所定値(例えば、timeDurationForQCL)より小さい場合、PDSCHに適用するデフォルトQCL(又は、デフォルトビーム)をどのように決定するかが問題となる。
 本実施の形態では、繰り返し送信されるPDCCH/DCIの少なくとも一つ(又は、全部)と、PDSCHとの間のスケジューリングオフセットが所定値より小さい場合、以下のAlt.4-1~Alt.4-3の少なくとも一つを適用してもよい。以下の説明では、繰り返し送信されるPDCCH/DCIのうち、少なくとも一つのPDCCH/DCIとPDSCH間のオフセットが所定値より小さくなる場合(スケジューリングオフセット想定#1)と、複数のPDCCH/DCIとPDSCH間のオフセットが所定値より小さくなる場合(スケジューリングオフセット想定#2)のいずれにも適用されてもよい。
 Alt.4-1は、繰り返し送信されるPDCCH/DCIの少なくとも一つ(又は、全部)と、PDSCHとの間のスケジューリングオフセットが所定値より小さい場合、CORESETプールID毎のデフォルトTCI状態の設定を行わないように制御する。Alt.4-2/4-3は、繰り返し送信されるPDCCH/DCIの少なくとも一つ(又は、全部)と、PDSCHとの間のスケジューリングオフセットが所定値より小さい場合、CORESETプールID毎のデフォルトTCI状態の設定を行うように制御する。
<Alt.4-1>
 UEは、異なるCORESETプールIDを有する2つのCORESETにおいてPDCCH繰り返し用の複数(例えば、2つの)PDCCH候補(例えば、リンクされたPDCCH候補)が設定される場合、CORESETプールインデックス毎にデフォルトTCI状態を設定する所定の上位レイヤパラメータ(例えば、enableDefaultTCIStatePerCoresetPoolIndex-r16)が設定されることを想定しなくてもよい(図12参照)。言い換えると、PDCCH繰り返し用のリンクされた複数のPDCCH候補が、異なるCORESETプールIDを有する2つのCORESETで送信される場合、UEは、CORESETプールインデックス毎にデフォルトTCI状態が設定されないと想定してもよい。
 所定の上位レイヤパラメータが設定されず、PDCCH/DCIの受信と対応するPDSCHの受信との間のオフセットが所定値より小さい場合、UEは、CORESETプールIDに関わらず(又は、CORESETプールIDを考慮せず)、CORESETのモニタを行った最新のスロット(たとえば、latest slot)のCORESETのうち、CORESET IDが最小のCORESETのQCLがPDSCHのデフォルトQCLとして利用してもよい。
 つまり、PDSCHのデフォルトTCI状態/QCLは、CORESETプールIDを考慮せず、最新のCORESETのモニタリングスロットにおいて最小のCORESET IDに基づいて決定されてもよい。
 なお、UEは、既存システム(例えば、Rel.16)において、所定の上位レイヤパラメータ(例えば、enableDefaultTCIStatePerCoresetPoolIndex-r16)が設定されていない場合のUE動作を適用してもよい。
 UEは、サービングセルのアクティブBWP内の1又は複数のCORESETがUEによりモニタされている最新のスロットにおいて、最小のCORESET ID(例えば、lowest controlResourceSetID)を有するモニタされたサーチスペースに関連付けられたCORESETの、PDCCH疑似コロケーション指示(例えば、PDCCH quasi co-location indication)に使用されるQCLパラメータに関して、サービングセルのPDSCHのDM-RSポートがRSと疑似コロケーションされていると想定してもよい(the UE may assume that the DM-RS ports of PDSCH of a serving cell are quasi co-located with the RS(s) with respect to the QCL parameter(s) used for PDCCH quasi co-location indication of the CORESET associated with a monitored search space with the lowest controlResourceSetId in the latest slot in which one or more CORESETs within the active BWP of the serving cell are monitored by the UE.)。
<Alt.4-2>
 UEは、異なるCORESETプールIDを有する2つのCORESETにおいてPDCCH繰り返し用の複数(例えば、2つの)PDCCH候補(例えば、リンクされたPDCCH候補)が設定される場合、CORESETプールインデックス毎にデフォルトTCI状態を設定する所定の上位レイヤパラメータの設定がサポートされてもよい(図13参照)。言い換えると、PDCCH繰り返し用のリンクされた複数のPDCCH候補が、異なるCORESETプールIDを有する2つのCORESETで送信される場合、UEは、CORESETプールインデックス毎にデフォルトTCI状態の設定がサポートされると想定してもよい。
 CORESETプールインデックス毎にデフォルトTCI状態を設定する所定の上位レイヤパラメータは、例えば、enableDefaultTCIStatePerCoresetPoolIndex-r16であってもよいし、新規の上位レイヤパラメータであってもよい。
 所定の上位レイヤパラメータが設定され、PDCCH/DCIの受信と対応するPDSCHの受信との間のオフセットが所定値より小さい場合を想定する(図13参照)。この場合、UEは、異なるCORESETプールIDを有する2つのCORESETにおいて、リンクされたPDCCH候補によりスケジュールされたPDSCHについて、リンクされたPDCCH候補のうち1つ(又は、特定)のPDCCH候補を参照してデフォルトQCL/デフォルトビームを決定してもよい。
 複数のPDCCH候補のうち1つのPDCCH候補(参照PDCCH候補、参照PDCCHと呼ばれてもよい)は、以下のオプション4-2-1~~オプション4-2-6の少なくとも一つが適用されてもよい。
[オプション4-2-1]
 第1のCORESETプールインデクス(例えば#0)、又は第1のCORESETプールIDに対応するPDCCH候補が参照されてもよい。第1のCORESETプールIDが参照されるとは、PDSCHのTCI状態が、最新のスロットでCORESETプールID=0に関連付けられた最小のCORESET IDのTCI状態/QCL想定であることを意味してもよい。
 UEは、繰り返しPDCCHでスケジュールされるPDSCHについて、最新のスロット(たとえば、latest slot)においてCORESETプールID=0のCORESETのうち、CORESET IDが最小のCORESETのQCLがPDSCHのデフォルトQCLであると想定してもよい。最新のスロットは、CORESET(例えば、CORESETプールID#0に対応するCORESET)のモニタを行った直近のスロットであってもよい。
[オプション4-2-2]
 第2のCORESETプールインデクス(例えば#1)、又は第2のCORESETプールIDに対応するPDCCH候補が参照されてもよい。第2のCORESETプールIDが参照されるとは、PDSCHのTCI状態が、最新のスロットでCORESETプールID=1に関連付けられた最小のCORESET IDのTCI状態/QCL想定であることを意味してもよい。
 UEは、繰り返しPDCCHでスケジュールされるPDSCHについて、最新のスロット(たとえば、latest slot)においてCORESETプールID=1のCORESETのうち、CORESET IDが最小のCORESETのQCLがPDSCHのデフォルトQCLであると想定してもよい。最新のスロットは、CORESET(例えば、CORESETプールID#1に対応するCORESET)のモニタを行った直近のスロットであってもよい。
[オプション4-2-3]
 複数のPDCCH候補(又は、複数のPDCCHモニタリングオケージョン)のうち、1番目のPDCCH候補(又は、1番目のPDCCHモニタリングオケージョンのPDCCH候補)が参照されてもよい。1番目とは、時間領域において最も早く送信される(又は、UEが最初に受信する)ことを意味してもよいし、モニタリングオケージョンのインデックスが最も小さいことを意味してもよい。
 あるいは、複数のPDCCH候補(又は、複数のPDCCHモニタリングオケージョン)のうち、最後のPDCCH候補(又は、最後のPDCCHモニタリングオケージョンのPDCCH候補)が参照されてもよい。最後とは、時間領域において最も遅く送信される(又は、UEが最後に受信する)ことを意味してもよいし、モニタリングオケージョンのインデックスが最も大きいことを意味してもよい。
 1番目のPDCCH候補(又は、最後のPDCCH候補)に対応するCORESETプールID=0の場合を想定する。この場合、UEは、繰り返しPDCCHでスケジュールされるPDSCHについて、最新のスロット(たとえば、latest slot)においてCORESETプールID=0のCORESETのうち、CORESET IDが最小のCORESETのQCLがPDSCHのデフォルトQCLであると想定してもよい。
 1番目のPDCCH候補(又は、最後のPDCCH候補)に対応するCORESETプールID=1の場合を想定する。この場合、UEは、繰り返しPDCCHでスケジュールされるPDSCHについて、最新のスロット(たとえば、latest slot)においてCORESETプールID=1のCORESETのうち、CORESET IDが最小のCORESETのQCLがPDSCHのデフォルトQCLであると想定してもよい。
[オプション4-2-4]
 最も低いCORESET IDを有するCORESETのPDCCH候補が参照されてもよい。あるいは、最も高いCORESET IDを有するCORESETのPDCCH候補が参照されてもよい。
 最も低い(又は、最も高い)CORESET IDを有するCORESETのPDCCH候補に対応するCORESETプールID=0の場合を想定する。この場合、UEは、繰り返しPDCCHでスケジュールされるPDSCHについて、最新のスロット(たとえば、latest slot)においてCORESETプールID=0のCORESETのうち、CORESET IDが最小のCORESETのQCLがPDSCHのデフォルトQCLであると想定してもよい。
 最も低い(又は、最も高い)CORESET IDを有するCORESETのPDCCH候補に対応するCORESETプールID=1の場合を想定する。この場合、UEは、繰り返しPDCCHでスケジュールされるPDSCHについて、最新のスロット(たとえば、latest slot)においてCORESETプールID=1のCORESETのうち、CORESET IDが最小のCORESETのQCLがPDSCHのデフォルトQCLであると想定してもよい。
[オプション4-2-5]
 最も低いサーチスペースセットIDを有するCORESETのPDCCH候補が参照されてもよい。あるいは、最も高いサーチスペースセットIDを有するCORESETのPDCCH候補が参照されてもよい。
 最も低い(又は、最も高い)サーチスペースセットIDを有するCORESETのPDCCH候補に対応するCORESETプールID=0の場合を想定する。この場合、UEは、繰り返しPDCCHでスケジュールされるPDSCHについて、最新のスロット(たとえば、latest slot)においてCORESETプールID=0のCORESETのうち、CORESET IDが最小のCORESETのQCLがPDSCHのデフォルトQCLであると想定してもよい。
 最も低い(又は、最も高い)サーチスペースセットIDを有するCORESETのPDCCH候補に対応するCORESETプールID=1の場合を想定する。この場合、UEは、繰り返しPDCCHでスケジュールされるPDSCHについて、最新のスロット(たとえば、latest slot)においてCORESETプールID=1のCORESETのうち、CORESET IDが最小のCORESETのQCLがPDSCHのデフォルトQCLであると想定してもよい。
[オプション4-2-6]
 参照PDCCH候補の決定方法が基地局からUEに設定されてもよい。例えば、オプション4-2-1~オプション4-2-5のうち複数のオプションがサポートされ、どのオプションを適用するかについて上位レイヤシグナリング/MAC CE/DCIにより、準静的又はダイナミックに設定/指示されてもよい。
 上記のオプションにおいて、リンクされたPDCCH候補のうち1つを参照してデフォルトQCLが決定されることは、当該参照されるPDCCH候補に対応するCORESETプールIDを考慮して、最新のスロット(たとえば、latest slot)において当該CORESETプールIDのCORESETのうち、CORESET IDが最小のCORESETのQCLがPDSCHのデフォルトQCLとして決定されることを意味してもよい。
 具体的には、UEは、サービングセルのアクティブBWP内のPDSCHをスケジュールする2つのリンクされたPDCCH候補間の「参照PDCCH候補」と同じCORESETプールIDに関連付けられた1又は複数のCORESETがUEによりモニタされている最新のスロットにおいて、当該PDSCHをスケジュールする2つのリンクされたPDCCH候補の間の「参照PDCCH候補」と同じCORESETプールIDが設定されたCORSETの中で、最小のCORESET IDを有するモニタされたサーチスペースに関連付けられたCORESETのPDCCH疑似コロケーション指示に使用されるQCLパラメータに関して、異なるCORESETプールIDに関連付けられた2つのリンクされたPDCCH候補によりスケジュールされるPDSCHのDM-RSポートがRSと疑似コロケーションされていると想定してもよい(the UE may assume that the DM-RS ports of PDSCH scheduled by two linked PDCCH candidates associated with different CORESETPoolID are quasi co-located with the RS(s) with respect to the QCL parameter(s) used for PDCCH quasi co-location indication of the CORESET associated with a monitored search space with the lowest controlResourceSetId among CORESETs, which are configured with the same value of CORESETPoolIndex as the “reference PDCCH candidate” between the two linked PDCCH candidates scheduling that PDSCH, in the latest slot in which one or more CORESETs associated with the same value of CORESETPoolIndex as the “reference PDCCH candidate” between the two linked PDCCH candidates scheduling that PDSCH within the active BWP of the serving cell are monitored by the UE.)。
 TCI状態指示のための基準を決定するルールは、タイミングオフセット/HARQコードブック/DAI/PUCCHリソース決定用の基準を決定するルールと一致させてもよい。あるいは、TCI状態指示のための基準を決定するルールは、タイミングオフセット/HARQコードブック/DAI/PUCCHリソース決定用の基準を決定するルールと異なってもよい。
<Alt.4-3>
 UEは、異なるCORESETプールIDを有する2つのCORESETにおいてPDCCH繰り返し用の複数(例えば、2つの)PDCCH候補(例えば、リンクされたPDCCH候補)が設定される場合、CORESETプールインデックス毎にデフォルトTCI状態を設定する所定の上位レイヤパラメータの設定がサポートされてもよい(図13参照)。言い換えると、PDCCH繰り返し用のリンクされた複数のPDCCH候補が、異なるCORESETプールIDを有する2つのCORESETで送信される場合、UEは、CORESETプールインデックス毎にデフォルトTCI状態の設定がサポートされると想定してもよい。
 CORESETプールインデックス毎にデフォルトTCI状態を設定する所定の上位レイヤパラメータは、例えば、enableDefaultTCIStatePerCoresetPoolIndex-r16であってもよいし、新規の上位レイヤパラメータであってもよい。
 所定の上位レイヤパラメータが設定され、PDCCH/DCIの受信と対応するPDSCHの受信との間のオフセットが所定値より小さい場合を想定する(図13参照)。この場合、UEは、PDCCH繰り返し用に設定され、異なるCORESETプールIDを有する別のCORESETとリンクしているCORESETの中で、最小のIDを有するCORESETに基づいてQCL/デフォルトビームを決定(又は、当該CORESETに対応するTCI状態/QCLをデフォルトQCL/デフォルトビームとして適用)してもよい。
 例えば、CORESETプールID=0に対応するPDCCH#1/DCI#1と、CORESETプールID=1に対応するPDCCH#2/DCI#2とによりPDSCHがスケジュールされる場合を想定する。UEは、当該PDCCH#1に対応するCORESETと、PDCCH#2に対応するCORESETのうち、最小のIDを有するCORESETに対応するTCI状態/QCLをPDSCHのデフォルトQCL/デフォルトビームとして適用してもよい。
 具体的には、UEは、サービングセルのアクティブBWP内でPDCCH繰り返し用の異なるCORESETプールIDを有する別のCORESETとリンクするように設定された1又は複数のCORESETがUEによりモニタされている最新のスロットにおいて、PDCCH繰り返し用の異なるCORESETプールIDを有する別のCORESETとリンクするように設定されたCORESETの中で、最小のCORESET ID(例えば、lowest controlResourceSetID)を有するモニタされたサーチスペースに関連付けられたCORESETのPDCCH疑似コロケーション指示(例えば、PDCCH quasi co-location indication)に使用されるQCLパラメータに関して、異なるCORESETプールIDに関連付けられた2つのリンクされたPDCCH候補によりスケジュールされたPDSCHのDM-RSポートがRSと疑似コロケーションされていると想定してもよい(the UE may assume that the DM-RS ports of PDSCH scheduled by two linked PDCCH candidates associated with different CORESETPoolID are quasi co-located with the RS(s) with respect to the QCL parameter(s) used for PDCCH quasi co-location indication of the CORESET associated with a monitored search space with the lowest controlResourceSetId among CORESETs, which are configured with linkage with another CORESET with different CORESETPoolID for PDCCH repetition, in the latest slot in which one or more CORESETs configured with linkage with another CORESET with different CORESETPoolID for PDCCH repetition that within the active BWP of the serving cell are monitored by the UE.)。
 あるいは、所定の上位レイヤパラメータが設定され、PDCCH/DCIの受信と対応するPDSCHの受信との間のオフセットが所定値より小さい場合、UEは、CORESETのモニタを行った最新のスロット(たとえば、latest slot)のCORESETのうち、CORESET IDが最小のCORESETのQCLがPDSCHのデフォルトQCLとして利用してもよい。最新のスロットは、CORESET(例えば、CORESETプールID#0/#1に対応するCORESET)のモニタを行った直近のスロットであってもよい。
 例えば、繰り返し送信されるPDCCH/DCIの少なくとも一つ(例えば、図13におけるPDCCH#2)と、PDSCHとの間のオフセットが所定値より小さい場合(PDCCH#1とPDSCH間のオフセットは所定値以上の場合)を想定する。かかる場合、UEは、PDCCH#1(CORESETプールID=0)に対応するTCI状態/QCLに基づいてPDSCHに適用するデフォルトTCI状態/QCLを決定してもよい。例えば、PDCCH#1(CORESETプールID=0)に対応するTCI状態/QCLをデフォルトTCI状態/QCLとして利用してもよい。
(UE能力情報)
 上記第1の態様~第4の態様において、以下のUE能力(UE capability)が設定されてもよい。なお、以下のUE能力は、ネットワーク(例えば、基地局)からUEに設定するパラメータ(例えば、上位レイヤパラメータ)と読み替えられてもよい。
 マルチTRP(例えば、M-TRP)のPDCCHの繰り返しをサポートするか否かに関するUE能力情報が定義されてもよい。
 異なるCORESETプールIDを有する2つのCORESETでリンクされたPDCCH候補を利用したマルチTRPのPDCCH繰り返しをサポートするか否かに関するUE能力情報が定義されてもよい。
 スケジューリングオフセットが所定値(例えば、timeDurationForQCL)より小さい場合、異なるCORESETプールIDを有する2つのCORESETにおけるPDCCH繰り返しによりスケジュールされたPDSCHに対してデフォルトQCL/デフォルトビームをサポートするか否かに関するUE能力情報が定義されてもよい。
 第1の態様~第4の態様は、上述したUE能力の少なくとも一つをサポート/報告するUEに適用される構成としてもよい。あるいは、第1の態様~第4の態様は、ネットワークから対応する上位レイヤパラメータが設定されたUEに適用される構成としてもよい。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図14は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
 図15は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
 送受信部120は、物理共有チャネルの送信コンフィグレーション指標(TCI)状態のアクティベーションに関する情報が含まれるMAC CEを送信してもよい。制御部110は、異なる制御リソースセットプールインデックスの適用がサポートされる複数の下り制御チャネルにより1つの物理共有チャネルがスケジュールされる場合、複数の下り制御チャネルでそれぞれ送信する複数の下り制御情報の少なくとも一つに含まれるTCI状態に関するフィールドを利用して、物理共有チャネルに対応するTCI状態を指示してもよい。
 送受信部120は、異なる制御リソースセットプールインデックスの適用がサポートされる複数の下り制御チャネルによりスケジュールされる1つの物理共有チャネルを端末に送信してもよい。制御部110は、複数の下り制御チャネルの少なくとも一つと、物理共有チャネルとの間のオフセットが所定値より小さい場合、端末において、制御リソースセットプールインデックス毎に設定されるデフォルトのTCI状態、又は制御リソースセットプールインデックスに関連づかずに設定されるデフォルトのTCI状態に基づいて、物理共有チャネルが受信されると判断してもよい。
(ユーザ端末)
 図16は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
 送受信部220は、物理共有チャネルの送信コンフィグレーション指標(TCI)状態のアクティベーションに関する情報が含まれるMAC CEを受信してもよい。
 制御部210は、異なる制御リソースセットプールインデックスの適用がサポートされる複数の下り制御チャネルにより1つの物理共有チャネルがスケジュールされる場合、複数の下り制御チャネルでそれぞれ送信される複数の下り制御情報の少なくとも一つに含まれるTCI状態に関するフィールドに基づいて、物理共有チャネルに対応するTCI状態を判断してもよい。
 TCI状態に関するフィールドに含まれるコードポイントは、特定の制御リソースセットプールインデックスに対応するMAC CEよりアクティブ化されるTCI状態に関連づけられていてもよい。あるいは、TCI状態に関するフィールドに含まれるコードポイントは、第1の制御リソースセットプールインデックスに対応するMAC CEよりアクティブ化されるTCI状態と、第2の制御リソースセットプールインデックスに対応するMAC CEよりアクティブ化されるTCI状態とに関連づけられていてもよい。あるいは、TCI状態に関するフィールドに含まれるコードポイントは、制御リソースセットプールインデックスに関する情報を含まないMAC CEよりアクティブ化されるTCI状態に関連づけられていてもよい。
 送受信部220は、異なる制御リソースセットプールインデックスの適用がサポートされる複数の下り制御チャネルを受信してもよい。
 制御部210は、複数の下り制御チャネルの少なくとも一つと、複数の下り制御チャネルによりスケジュールされる物理共有チャネルとの間のオフセットが所定値より小さい場合、制御リソースセットプールインデックス毎に設定されるデフォルトのTCI状態、又は制御リソースセットプールインデックスに関連づかずに設定されるデフォルトのTCI状態に基づいて、物理共有チャネルの受信を制御してもよい。
 制御部210は、制御リソースセットをモニタした直近のスロットにおいて、モニタした制御リソースセットのうち特定の制御リソースセットに基づいて、物理共有チャネルの疑似コロケーションを判断してもよい。あるいは、制御部210は、複数の下り制御チャネルの中の特定の下り制御チャネルの制御リソースプールインデックスに対応する特定の制御リソースセットに基づいて、物理共有チャネルの疑似コロケーションを判断してもよい。あるいは、制御部210は、複数の下り制御チャネルの少なくとも一つに対応する制御リソースセットのうち特定の制御リソースセットに基づいて、物理共有チャネルの疑似コロケーションを判断してもよい。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図17は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定のチャネル/信号を送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1.  物理共有チャネルの送信コンフィグレーション指標(TCI)状態のアクティベーションに関する情報が含まれるMAC CEを受信する受信部と、
     異なる制御リソースセットプールインデックスの適用がサポートされる複数の下り制御チャネルにより1つの物理共有チャネルがスケジュールされる場合、前記複数の下り制御チャネルでそれぞれ送信される複数の下り制御情報の少なくとも一つに含まれるTCI状態に関するフィールドに基づいて、前記物理共有チャネルに対応するTCI状態を判断する制御部と、を有する端末。
  2.  前記TCI状態に関するフィールドに含まれるコードポイントは、特定の制御リソースセットプールインデックスに対応するMAC CEよりアクティブ化されるTCI状態に関連づけられている請求項1に記載の端末。
  3.  前記TCI状態に関するフィールドに含まれるコードポイントは、第1の制御リソースセットプールインデックスに対応するMAC CEよりアクティブ化されるTCI状態と、第2の制御リソースセットプールインデックスに対応するMAC CEよりアクティブ化されるTCI状態とに関連づけられている請求項1に記載の端末。
  4.  前記TCI状態に関するフィールドに含まれるコードポイントは、制御リソースセットプールインデックスに関する情報を含まないMAC CEよりアクティブ化されるTCI状態に関連づけられている請求項1に記載の端末。
  5.  物理共有チャネルの送信コンフィグレーション指標(TCI)状態のアクティベーションに関する情報が含まれるMAC CEを受信する工程と、
     異なる制御リソースセットプールインデックスの適用がサポートされる複数の下り制御チャネルにより1つの物理共有チャネルがスケジュールされる場合、前記複数の下り制御チャネルでそれぞれ送信される複数の下り制御情報の少なくとも一つに含まれるTCI状態に関するフィールドに基づいて、前記物理共有チャネルに対応するTCI状態を判断する工程と、を有する端末の無線通信方法。
  6.  物理共有チャネルの送信コンフィグレーション指標(TCI)状態のアクティベーションに関する情報が含まれるMAC CEを送信する送信部と、
     異なる制御リソースセットプールインデックスの適用がサポートされる複数の下り制御チャネルにより1つの物理共有チャネルがスケジュールされる場合、前記複数の下り制御チャネルでそれぞれ送信する複数の下り制御情報の少なくとも一つに含まれるTCI状態に関するフィールドを利用して、前記物理共有チャネルに対応するTCI状態を指示する制御部と、を有する基地局。
     
     
     
PCT/JP2021/014548 2021-04-05 2021-04-05 端末、無線通信方法及び基地局 WO2022215141A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/014548 WO2022215141A1 (ja) 2021-04-05 2021-04-05 端末、無線通信方法及び基地局
CN202180096279.6A CN117044342A (zh) 2021-04-05 2021-04-05 终端、无线通信方法以及基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/014548 WO2022215141A1 (ja) 2021-04-05 2021-04-05 端末、無線通信方法及び基地局

Publications (1)

Publication Number Publication Date
WO2022215141A1 true WO2022215141A1 (ja) 2022-10-13

Family

ID=83545246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014548 WO2022215141A1 (ja) 2021-04-05 2021-04-05 端末、無線通信方法及び基地局

Country Status (2)

Country Link
CN (1) CN117044342A (ja)
WO (1) WO2022215141A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210014931A1 (en) * 2019-07-11 2021-01-14 Samsung Electronics Co., Ltd. Method and apparatus for performing communication in wireless communication system
WO2021024494A1 (ja) * 2019-08-08 2021-02-11 株式会社Nttドコモ 端末及び無線通信方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210014931A1 (en) * 2019-07-11 2021-01-14 Samsung Electronics Co., Ltd. Method and apparatus for performing communication in wireless communication system
WO2021024494A1 (ja) * 2019-08-08 2021-02-11 株式会社Nttドコモ 端末及び無線通信方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ETRI: "Potential PDCCH enhancements for NR URLLC", 3GPP DRAFT; R1-1900686 POTENTIAL PDCCH ENHANCEMENTS FOR NR URLLC - FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Taipei, Taiwan; 20190121 - 20190125, 12 January 2019 (2019-01-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051576226 *
ZTE: "Enhancements on Multi-TRP for PDCCH, PUCCH and PUSCH", 3GPP DRAFT; R1-2100286, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 19 January 2021 (2021-01-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051970901 *

Also Published As

Publication number Publication date
CN117044342A (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
JP7171926B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2020245973A1 (ja) 端末及び無線通信方法
JP7193549B2 (ja) 端末、無線通信方法及びシステム
WO2020240868A1 (ja) ユーザ端末及び無線通信方法
JP7244545B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2022176091A1 (ja) 端末、無線通信方法及び基地局
JP7323607B2 (ja) 端末、無線通信方法及びシステム
JP7335329B2 (ja) 端末、無線通信方法及びシステム
JP7337848B2 (ja) 端末、無線通信方法及びシステム
JP7330598B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7299300B2 (ja) 端末、無線通信方法、基地局及びシステム
JPWO2020166024A1 (ja) ユーザ端末及び無線通信方法
JPWO2020166025A1 (ja) ユーザ端末及び無線通信方法
WO2022220109A1 (ja) 端末、無線通信方法及び基地局
JP2023100757A (ja) 端末、無線通信方法、基地局及びシステム
WO2020230860A1 (ja) 端末及び無線通信方法
WO2022102605A1 (ja) 端末、無線通信方法及び基地局
WO2022215142A1 (ja) 端末、無線通信方法及び基地局
WO2021210108A1 (ja) 端末、無線通信方法及び基地局
WO2021205608A1 (ja) 端末、無線通信方法及び基地局
JP7265001B2 (ja) 端末、無線通信方法及びシステム
JP7321251B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7330597B2 (ja) 端末、無線通信方法及びシステム
WO2021053734A1 (ja) 端末及び無線通信方法
WO2023022162A1 (ja) 端末、無線通信方法及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935949

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180096279.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21935949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP