WO2022215112A1 - Coil position identification method for non-contact power supply system and parking assistance device - Google Patents

Coil position identification method for non-contact power supply system and parking assistance device Download PDF

Info

Publication number
WO2022215112A1
WO2022215112A1 PCT/JP2021/014480 JP2021014480W WO2022215112A1 WO 2022215112 A1 WO2022215112 A1 WO 2022215112A1 JP 2021014480 W JP2021014480 W JP 2021014480W WO 2022215112 A1 WO2022215112 A1 WO 2022215112A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
power
vehicle
power transmission
peak
Prior art date
Application number
PCT/JP2021/014480
Other languages
French (fr)
Japanese (ja)
Inventor
雄哉 山内
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2021/014480 priority Critical patent/WO2022215112A1/en
Publication of WO2022215112A1 publication Critical patent/WO2022215112A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a coil position identification method for a contactless power supply system and a parking assistance device.
  • Patent Document 1 discloses a parking assistance device used in a contactless power supply system that supplies power from a power transmission unit on the ground side to a power reception unit on the vehicle side in a contactless manner.
  • the parking assistance device refers to a map that defines the relationship between the power transmission voltage of the power transmission unit and the power reception voltage of the power reception unit, and detects the distance between the power transmission unit and the power reception unit based on the detected voltage value of the power reception unit.
  • Patent Document 1 assumes that the power transmission unit on the ground side includes one power transmission coil.
  • a power transmission unit may include a plurality of power transmission coils, and it is desired to appropriately identify the relative positions of the power reception coils even in a plurality of power transmission coils.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a coil position identification method and a parking assist device for a contactless power supply system that can identify the relative position of a power receiving coil with respect to a plurality of power transmitting coils. I will provide a.
  • a coil position identification method for a contactless power supply system detects a power receiving voltage generated in a power receiving coil when a first and a second power transmitting coil are respectively excited, and detects whether a vehicle enters a parking space. Based on the transition of the receiving voltage accompanying, identify the peak of the receiving voltage and measure the number of appearances of the peak, and based on the number of appearances of the peak, the relative position of the receiving coil with respect to the first and second transmitting coils Identify the coil position where .
  • the present invention it is possible to identify the relative position of the power receiving coil with respect to the plurality of power transmitting coils.
  • FIG. 1 is an explanatory diagram schematically showing the configuration of a contactless power supply system to which a parking assistance device according to the first embodiment is applied.
  • FIG. 2 is a diagram showing the relationship between a power receiving coil mounted on a vehicle and first and second power transmitting coils provided in a parking space.
  • FIG. 3 is a diagram showing the transition of the received power voltage as the vehicle enters the parking space.
  • FIG. 4 is a flowchart showing a parking assistance method used in the contactless power supply system according to the first embodiment.
  • FIG. 5A is a diagram illustrating two regions for determining the power reception range and four regions for determining the coil position.
  • FIG. 5B is an explanatory diagram of a map that defines the relationship between the number of appearances of peaks and the power reception range.
  • FIG. 5C is an explanatory diagram of a map that defines the relationship between the number of peak appearances and the coil position.
  • FIG. 6 is an explanatory diagram showing a display image that displays to the user the relative position of the power receiving coil with respect to the first and second power transmitting coils.
  • FIG. 7 is a flowchart showing a parking assistance method used in the contactless power supply system according to the second embodiment.
  • FIG. 8 is an explanatory diagram showing the relationship between the first upper peak and the travel distance of the vehicle.
  • FIG. 9 is an explanatory diagram showing an effective power receiving range.
  • the parking assistance device As shown in FIG. 1, the parking assistance device according to the present embodiment supplies electric power in a non-contact manner between a power transmitting device 101 provided on the ground side and a power receiving device 102 provided on the vehicle 20 side. Applies to power supply systems.
  • the contactless power supply system is composed of a power transmission device 101 provided in a parking space where the vehicle 20 is parked, and a power reception device 102 mounted on the vehicle 20 .
  • the power transmission device 101 includes a ground unit 51.
  • FIG. 1 shows an example in which the power transmission device 101 includes one ground unit 51, the present invention is not limited to this. If there are multiple parking spaces, the power transmitting device 101 may have a ground unit 51 for each parking space.
  • the ground unit 51 includes a power transmission coil unit 11, a power unit 12, a ground controller 13, and a communication section 14.
  • the power transmission coil unit 11 is installed on the ground where the parking space PS is provided.
  • the power transmission coil unit 11 includes a first power transmission coil 11a and a second power transmission coil 11b.
  • Each of the power transmission coils 11a and 11b is a planar winding coil in which an electric wire (conductor) is wound with the vertical direction as the coil axis, and is installed parallel to the ground.
  • the first power transmission coil 11a and the second power transmission coil 11b are arranged in order in the direction in which the vehicle 20 enters the parking space PS, that is, in the direction orthogonal to the vehicle width direction. A space is provided between the coil center of the first power transmission coil 11a and the coil center of the second power transmission coil 11b so that the power transmission coils 11a and 11b do not overlap.
  • the first power transmission coil 11a and the second power transmission coil 11b are located on the near side in the approach direction of the vehicle 20, and the second power transmission coil 11b is located in the approach direction of the vehicle 20. Located on the far side. Therefore, in the course of the vehicle 20 entering the parking space PS, the vehicle 20 first passes through the first power transmission coil 11a and then through the second power transmission coil 11b.
  • the power unit 12 energizes the first power transmission coil 11a and the second power transmission coil 11b respectively to excite the first power transmission coil 11a and the second power transmission coil 11b.
  • the power unit 12 may energize both the first power transmission coil 11a and the second power transmission coil 11b at the same time, or may energize only one of the first power transmission coil 11a and the second power transmission coil 11b. You can also
  • the ground controller 13 controls the operation of the power unit 12.
  • the ground controller 13 is composed of a microcomputer having a hardware processor such as a CPU (Central Processing Unit), a memory, and various interfaces.
  • the memory and various interfaces are connected to the hardware processor via buses.
  • Various functions of the ground controller 13 are realized by causing a hardware processor to execute a program stored in memory.
  • the ground controller 13 can control the excitation voltage for the first power transmission coil 11a and the second power transmission coil 11b. In addition, the ground controller 13 can simultaneously excite both the first and second power transmission coils 11a and 11b, or excite only one of the first power transmission coil 11a and the second power transmission coil 11b. .
  • a vehicle detection sensor 33 is connected to the ground controller 13 to detect the vehicle 20 when the vehicle 20 approaches the parking space PS.
  • a proximity sensor for example, can be used as the vehicle detection sensor 33 .
  • the communication unit 14 performs wireless communication with the power receiving device 102 .
  • the communication unit 14 includes one or more wireless communication interface units.
  • the power receiving device 102 includes a power receiving coil 21 , a rectifying/smoothing circuit 22 , a battery 23 , a vehicle controller 24 , a communication section 25 and a display section 26 .
  • the power receiving coil 21 is installed at the bottom of the vehicle 20 .
  • power receiving coil 21 is shown in the center of vehicle 20 in the direction orthogonal to the vehicle width direction for convenience, but power receiving coil 21 is provided on the front side of vehicle 20, for example.
  • the power receiving coil 21 is a planar winding coil in which an electric wire is wound with the coil axis extending in the vertical direction, and is installed parallel to the ground.
  • the rectifying/smoothing circuit 22 converts the AC voltage received by the receiving coil 21 into a DC voltage and smoothes it.
  • the rectifying/smoothing circuit 22 is connected to the battery 23 and applies a smoothed DC voltage to the battery 23 .
  • the battery 23 charges the power received by the power receiving coil 21 .
  • the vehicle controller 24 controls the operation of the rectifying/smoothing circuit 22 .
  • the vehicle controller 24 is configured by a microcomputer having a hardware processor such as a CPU (Central Processing Unit), a memory, and various interfaces.
  • the memory and various interfaces are connected to the hardware processor via buses.
  • Various functions of the vehicle controller 24 are realized by causing a hardware processor to execute a program stored in memory.
  • a voltage sensor 27 is connected to the vehicle controller 24 .
  • the voltage sensor 27 detects the voltage (power receiving voltage) generated in the power receiving coil 21 when the first and second power transmitting coils 11a and 11b are excited. For example, the voltage sensor 27 detects the voltage across the output terminals of the rectifying/smoothing circuit 22 as the received voltage.
  • the communication unit 25 performs wireless communication with the ground unit 51.
  • the communication unit 25 includes one or more wireless communication interface units.
  • the display unit 26 is a device that displays information to the user of the vehicle 20.
  • a center display arranged on the instrument panel can be used.
  • a bird's-eye view image (around view) showing a bird's-eye view of the entire surroundings of the vehicle 20 is synthesized based on each captured image acquired by a plurality of cameras (not shown) that capture images of the surroundings of the vehicle. image) is displayed.
  • wireless communication is performed between the ground unit 51 provided in the parking space PS and the power receiving device 102 mounted on the vehicle 20 .
  • Pairing processing for pairing the power receiving device 102 of the vehicle 20 and the ground unit 51 of the parking space PS is performed by this wireless communication.
  • the pairing process is not limited to the method using wireless communication, and may be performed by exciting the first and second power transmission coils 11a and 11b.
  • High-frequency power is transmitted and received in a non-contact state by the electromagnetic induction action between the paired power receiving device 102 and the ground unit 51 .
  • the power transmission coils 11a and 11b can be excited by applying an AC voltage to the power transmission coil unit 11 and causing a current to flow through the power transmission coils 11a and 11b. Magnetic coupling occurs between the power transmitting coils 11 a and 11 b and the power receiving coil 21 by exciting the power transmitting coils 11 a and 11 b. Thereby, power is supplied from the power transmitting coils 11 a and 11 b to the power receiving coil 21 .
  • the ground controller 13 excites only one of the first and second power transmitting coils 11a and 11b (second excitation). .
  • the power receiving coil 21, the vehicle controller 24, and the voltage sensor 27 are connected to the parking space PS so that contactless power feeding is appropriately performed between the power transmitting device 101 and the power receiving device 102. It functions as a parking assistance device that assists parking of the vehicle 20 .
  • the parking assistance device also includes a communication unit 25 and a display unit 26 .
  • Parking assistance includes coil position identification processing that identifies the coil position, which is the relative position of the power receiving coil 21 with respect to the first and second power transmitting coils 11a and 11b.
  • coil position identification processing that identifies the coil position, which is the relative position of the power receiving coil 21 with respect to the first and second power transmitting coils 11a and 11b.
  • each of the power transmission coils 11a and 11b is excited by passing a current through each of the first and second power transmission coils 11a and 11b.
  • the excitation here is performed with the first excitation, which is a weaker excitation pattern than the second excitation.
  • the first excitation is referred to as weak excitation.
  • the power transmission coil unit 11 is composed of first and second power transmission coils 11a and 11b arranged in the direction in which the vehicle 20 enters the parking space PS.
  • the power receiving coil 21 passes over the first power transmitting coil 11a and then passes over the second power transmitting coil 11b.
  • it is assumed that the vehicle is parked backward in the parking space PS.
  • the transition of the power reception voltage generated in the power reception coil 21 as the vehicle 20 enters the parking space PS is as shown in FIG. A peak appears.
  • the first upper peak appears when power receiving coil 21 passes the coil center of first power transmitting coil 11a
  • the second upper peak appears when power receiving coil 21 passes the coil center of second power transmitting coil 11b.
  • a peak appears on the second time.
  • the power receiving coil 21 passes through the mechanical center of the power transmitting coil unit 11, that is, the boundary between the first power transmitting coil 11a and the second power transmitting coil 11b (the center position between the coil centers of the power transmitting coils 11a and 11b).
  • the first lower peak appears.
  • the power receiving coil 21 exists on the front side in the approach direction of the vehicle 20 with respect to the coil center of the first power transmitting coil 11a.
  • the power receiving coil 21 is located on the inner side of the coil center of the first power transmitting coil 11a in the approach direction of the vehicle 20 and the first power transmitting coil 11a. It exists on the front side in the approach direction of the vehicle 20 from the boundary between the coil 11a and the second power transmission coil 11b.
  • the power receiving coil 21 is on the far side in the approach direction of the vehicle 20 from the boundary between the first power transmitting coil 11a and the second power transmitting coil 11b. Moreover, it exists on the front side in the approach direction of the vehicle 20 with respect to the coil center of the second power transmission coil 11b.
  • the power receiving coil 21 is present on the far side in the approach direction of the vehicle 20 from the coil center of the second power transmitting coil 11b.
  • the vehicle controller 24 uses the voltage sensor 27 to detect the power receiving voltage generated in the power receiving coil 21 when the first and second power transmitting coils 11a and 11b are respectively excited.
  • the vehicle controller 24 identifies the peak of the received power voltage based on the transition of the received power voltage as the vehicle 20 enters the parking space PS, and counts the number of appearances of the peak. Vehicle controller 24 then identifies the coil position based on the number of peak occurrences.
  • the parking assistance includes a display process for displaying the coil position on the display unit 26, and power feeding to the power receiving coil 21 among the first and second power transmitting coils 11a and 11b.
  • the flow of parking assistance processing used in the contactless power supply system according to the first embodiment will be described below with reference to FIG.
  • the flowchart shown in FIG. 4 is executed by vehicle controller 24 .
  • the vehicle controller 24 communicates with the ground controller 13 and performs pairing processing (step S10).
  • the vehicle controller 24 can acquire information about the power transmission device 101 through the pairing process.
  • the vehicle controller 24 can identify the configuration of the power transmission coil unit 11, that is, the configuration in which the two power transmission coils 11a and 11b are arranged side by side with respect to the parking space PS.
  • the vehicle controller 24 instructs the ground controller 13 to start weak excitation of the power transmission coils 11a and 11b (step S12). In response to this weak excitation start instruction, the vehicle controller 24 starts detecting the power receiving voltage generated in the power receiving coil 21 by the voltage sensor 27 . Further, the vehicle controller 24 controls the display unit 26 to instruct the user to start parking in the parking space PS (step S14).
  • the vehicle controller 24 monitors changes in the received power voltage as the vehicle 20 enters the parking space PS. By monitoring the received voltage, the upper peak and the lower peak can be specified (detected) (steps S16, S20). When the upper peak is detected (step S16: YES), the vehicle controller 24 counts the upper peak (step S18). Moreover, when the lower peak is detected (step S20: YES), the vehicle controller 24 counts the lower peak (step S20).
  • step S24 determines whether the stop position has been determined (step S26). For example, when the user performs an operation to confirm the stop position using an operation switch or the like, or when the elapsed time after stopping the vehicle exceeds a predetermined determination time, the vehicle controller 24 confirms the stop position. judge that it did. In addition, when the vehicle 20 is not stopped, it returns to the process of step S14.
  • the vehicle controller 24 determines the power receiving range in which the power receiving coil 21 can receive power (step S28).
  • the power receiving range is determined by two resolutions consisting of area A and area B.
  • FIG. Areas A and B are defined with respect to the unit center line CC2, which is positioned at the boundary (center) between the first power transmission coil 11a and the second power transmission coil 11b in the approach direction of the vehicle 20 and extends along the vehicle width direction. Defined. Area A is an area on the front side of the approach direction of the vehicle 20 with respect to the unit center line CC2, and is an area where the first power transmission coil 11a exists.
  • a region B is a region on the far side in the approach direction of the vehicle 20 from the unit center line CC2, and is a region where the second power transmission coil 11b exists.
  • the vehicle controller 24 holds a power receiving range determination map that indicates the relationship between the count value (number of appearances) of the lower peak and the power receiving range.
  • the vehicle controller 24 refers to the power reception range determination map and determines the power reception range from the lower peak count value. For example, if the lower peak is zero, the vehicle controller 24 determines that the power receiving coil 21 can receive power in the area A corresponding to the first power transmitting coil 11a. On the other hand, if the lower peak is 1, the vehicle controller 24 determines that the power receiving coil 21 can receive power in the area B corresponding to the second power transmitting coil 11b.
  • the vehicle controller 24 determines the coil position (step S30). As shown in FIG. 5A, the coil position is determined at four resolutions, Region 1, Region 2, Region 3, and Region 4.
  • FIG. Area 1 and area 2 are areas obtained by further dividing the above-described area A into two, and a first coil center line extending in the vehicle width direction through the coil center of the first power transmission coil 11a in the approach direction of the vehicle 20. It is defined based on CC1. Region 1 is a region on the front side of the first coil center line CC1 in the approach direction of the vehicle 20, and region 2 is a region on the back side of the first coil center line CC1 in the approach direction of the vehicle 20.
  • regions 3 and 4 are regions obtained by further dividing the above-described region B into two regions, and are second regions extending along the vehicle width direction through the center of the second power transmission coil 11b in the approach direction of the vehicle 20. It is defined with reference to the coil center line CC3. Region 3 is a region on the front side of the second coil center line CC3 in the approach direction of the vehicle 20, and region 4 is a region on the back side of the second coil center line CC3 in the approach direction of the vehicle 20.
  • the vehicle controller 24 holds a coil position determination map that shows the relationship between the count values of the upper and lower peaks and the coil positions.
  • the vehicle controller 24 refers to the coil position discrimination map and discriminates the coil position from the count values of the upper peak and the lower peak.
  • the vehicle controller 24 generates a display image 200 indicating the coil position based on the determination result of the power receiving range and the determination result of the coil position.
  • the display image 200 shows an image 210 showing the vehicle 20, an image 220 showing the first power transmitting coil 11a, an image 224 showing the second power transmitting coil 11b, and the power receiving coil 21 with respect to a bird's-eye view image around the vehicle. It is a composite image in which the image 230 is superimposed.
  • Image 230 showing power receiving coil 21 is displayed in a state of being positioned with respect to image 210 showing vehicle 20 so that the actual mounting position of power receiving coil 21 mounted on vehicle 20 is reproduced.
  • the vehicle controller 24 displays the generated display image 200 on the display unit 26 (step S32). For example, when area B is determined as the coil position, vehicle controller 24 displays image 230 showing power receiving coil 21 at a position corresponding to area B on display image 200, for example, at the center of area B. FIG. Further, for example, when the area A is determined as the power receiving range, the vehicle controller 24 emphasizes and displays the image 220 showing the first power transmission coil 11a corresponding to the area A.
  • the display image 200 reflects the determination result of the coil position and the determination result of the power receiving range. Therefore, through the display image 200, the user can understand the relative position of the power receiving coil 21 with respect to the first and second power transmitting coils 11a and 11b. In addition, the user can understand which of the first and second power transmission coils 11a and 11b should receive power. This makes it possible to easily understand whether the vehicle 20 should be stopped as it is or should be further reversed.
  • the vehicle controller 24 After displaying the coil position, the vehicle controller 24 returns to the process of step S14 and performs the above-described process again.
  • step S34 determines the final position of the vehicle 20 (step S34).
  • the processing of step S34 is the same as the processing of step S30 described above, and determines the coil position corresponding to the final position of the vehicle 20 .
  • the vehicle controller 24 identifies the excitation coil to be subjected to the second excitation based on the determination result of the coil position corresponding to the final position of the vehicle 20 . Specifically, the vehicle controller 24 identifies the power transmission coil closer to the power reception coil 21 among the first and second power transmission coils 11a and 11b as the excitation coil.
  • the second excitation means excitation with a relatively higher excitation voltage than the first excitation, and is excitation for transmitting power for battery charging from the power transmission coils 11a and 11b.
  • the vehicle controller 24 instructs the ground controller 13 to specify the excitation coil (step S36).
  • the power transmission coils 11a and 11b closer to the power reception coil 21 are subjected to the second excitation, and power is supplied from the power transmission coils 11a and 11b to the power reception coil 21.
  • the power transmission coil unit 11 includes the first and second power transmission coils 11a and 11b.
  • the power receiving coil 21 passes over the first and second power transmitting coils 11a and 11b, a unique waveform having a predetermined peak appears in the transition of the power receiving voltage. Therefore, in the process in which the vehicle 20 enters the parking space PS, the number of appearances of peaks differs according to the coil position corresponding to the degree of entry of the vehicle 20 . Therefore, by using the number of appearances of peaks, the coil positions can be identified even in a situation where the first and second power transmission coils 11a and 11b are arranged side by side.
  • the user can easily recognize the coil position. Thereby, the user can guide the vehicle 20 to an appropriate stop position based on the positional relationship between the power receiving coil 21 and the first and second power transmitting coils 11a and 11b.
  • the power transmission coil that is close to the power reception coil 21 can be instructed to be excited. Therefore, it is possible to prevent a situation in which power cannot be supplied to the power receiving coil 21 or, even if power can be supplied, the power supply efficiency is low. In addition, it is possible to prevent a situation in which a power transmitting coil located far from the power receiving coil 21 is excited.
  • the parking assistance process according to the second embodiment differs from that of the first embodiment in that the processes of steps S100, S102, steps S110, S112, S114, and step S120 are added. The following description will focus on the differences.
  • the vehicle controller 24 starts detecting the receiving voltage generated in the receiving coil 21 by the voltage sensor 27 in accordance with the weak excitation start instruction (step S12).
  • the vehicle controller 24 starts obtaining a voltage map that associates the coil front-rear positions with the power receiving voltage.
  • step S100 If the count of the upper peak is the first time (step S100: YES), the vehicle controller 24 starts measuring the distance Lv of the power receiving coil 21 starting from the first upper peak (S102).
  • step S110 If the count of the lower peak is the first time (step S110: YES), the vehicle controller 24 ends acquisition of the voltage map (step S112). Then, the vehicle controller 24 refers to the voltage map and calculates the peak-to-peak distance Lp from the first upper peak to the first lower peak (step S114).
  • the vehicle controller 24 calculates the coil position when it is determined that the vehicle 20 is stopped (step S120). This coil position is defined by the distance Lv of the receiving coil 21 measured from the first upper peak.
  • the vehicle controller 24 displays the display image 200 (see FIG. 6). Specifically, the vehicle controller 24 assumes that the characteristics of the first power transmission coil 11a are the same as the characteristics of the second power transmission coil 11b. Then, the vehicle controller 24 displays an image 220 showing the first power transmission coil 11a and an image 224 showing the second power transmission coil 11b in a layout according to the peak-to-peak distance Lp. In addition, the vehicle controller 24 shifts the image 230 showing the power receiving coil 21 to the image 220 showing the first power transmitting coil 11a according to the distance Lv of the power receiving coil 21 measured from the first upper peak. display relative to each other.
  • the coil position can be displayed with high resolution by considering the distance Lv of the power receiving coil 21 starting from the upper peak.
  • the user can easily recognize the coil position.
  • the user can guide the vehicle to an appropriate stop position in terms of the positional relationship between the power receiving coil 21 and the first and second power transmitting coils 11a and 11b.
  • FIG. 9 is a diagram showing the effective power receiving range in the voltage map.
  • the effective power receiving range Rp refers to a range in which the power receiving voltage of the power receiving coil 21 is equal to or higher than a predetermined reference voltage Vth. In a range outside the effective power receiving range Rp, the ratio of power supplied from the power transmitting coils 11a and 11b to the power receiving coil 21 decreases, and efficient power feeding cannot be performed.
  • the vehicle controller 24 identifies an effective power reception range Rp in which the power reception voltage is equal to or higher than the reference voltage Vth, based on the voltage map. Then, when displaying the display image 200, the vehicle controller 24 displays images 220 and 224 showing the first and second power transmitting coils 11a and 11b on a scale according to the effective power receiving range Rp. As a result, the display image 200 can indicate a range in which power can be supplied to the power receiving coil 21 at a certain efficiency or higher.
  • the effective power receiving range Rp is displayed together with the coil position, it is possible to grasp the positional relationship between the power receiving coil 21 and the range where power can be supplied from the first and second power transmitting coils 11a and 11b. can. As a result, it is possible to make the user recognize the coil position where the power supply efficiency is high. Thereby, the user can guide the vehicle to an appropriate stop position in terms of the positional relationship between the power receiving coil 21 and the effective power receiving range Rp.
  • the parking assistance device disclosed in the present embodiment also uses the number of appearances of peaks in the same manner as the coil position identification method, so that the first and second power transmission coils 11a and 11b are arranged side by side. can also identify the coil position.
  • the power transmission coil unit 11 includes two power transmission coils 11a and 11b.
  • the power transmission coil unit 11 may be configured such that three or more power transmission coils are arranged in the vehicle approach direction.
  • the concept regarding the peak of the power receiving voltage shown in this embodiment can also be applied to the third and subsequent power transmitting coils.
  • power transmission device 11 power transmission coil unit 11a first power transmission coil 11b second power transmission coil 12 power unit 13 ground controller 14 communication section 51 ground unit 102 power reception device 20 vehicle 21 power reception coil 22 rectifying smoothing circuit 23 battery 24 vehicle controller 25 communication section 26 display unit 27 voltage sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

A vehicle controller (24) detects, by using a sensor (27), a power reception voltage generated in a power reception coil (21) when first and second power transmission coils (11a, 11b) are each excited. The vehicle controller (24) measures the number of peak appearance times by identifying peaks of the power reception voltage on the basis of transition of the power reception voltage associated with the entry of a vehicle (20) into a parking space (PS). The vehicle controller (24) identifies a coil position which is the relative position of the power reception coil (21) with respect to the first and second power transmission coils (11a, 11b) on the basis of the number of peak appearance times.

Description

非接触給電システムのコイル位置識別方法、及び駐車支援装置COIL POSITION IDENTIFICATION METHOD FOR NON-CONTACT POWER SUPPLY SYSTEM AND PARKING ASSIST DEVICE
 本発明は、非接触給電システムのコイル位置識別方法、及び駐車支援装置に関する。 The present invention relates to a coil position identification method for a contactless power supply system and a parking assistance device.
 特許文献1には、地上側の送電ユニットから車両側の受電ユニットに非接触で電力を供給する非接触給電システムに用いる駐車支援装置が開示されている。駐車支援装置は、送電ユニットの送電電圧及び受電ユニットの受電電圧の関係を定めたマップを参照し、受電ユニットおける電圧の検出値に基づいて送電ユニットと受電ユニットとの間の距離を検出している。 Patent Document 1 discloses a parking assistance device used in a contactless power supply system that supplies power from a power transmission unit on the ground side to a power reception unit on the vehicle side in a contactless manner. The parking assistance device refers to a map that defines the relationship between the power transmission voltage of the power transmission unit and the power reception voltage of the power reception unit, and detects the distance between the power transmission unit and the power reception unit based on the detected voltage value of the power reception unit. there is
特開2011-15549号公報JP 2011-15549 A
 しかしながら、特許文献1に開示される技術は、地上側の送電ユニットに含まれる送電コイルが1つであることを想定している。送電ユニットには複数の送電コイルが含まれるような場合もあり、複数の送電コイルであっても受電コイルの相対的な位置を適切に識別することが望まれている。 However, the technology disclosed in Patent Document 1 assumes that the power transmission unit on the ground side includes one power transmission coil. A power transmission unit may include a plurality of power transmission coils, and it is desired to appropriately identify the relative positions of the power reception coils even in a plurality of power transmission coils.
 本発明は、かかる課題に鑑みてなされたものであり、その目的は、複数の送電コイルに対する受電コイルの相対的な位置を識別することができる非接触給電システムのコイル位置識別方法及び駐車支援装置を提供する。 The present invention has been made in view of such problems, and an object of the present invention is to provide a coil position identification method and a parking assist device for a contactless power supply system that can identify the relative position of a power receiving coil with respect to a plurality of power transmitting coils. I will provide a.
 本発明の一態様に係る非接触給電システムのコイル位置識別方法は、第1及び第2の送電コイルがそれぞれ励磁されたときに受電コイルに生じる受電電圧を検出し、駐車スペースへの車両の進入に伴う受電電圧の推移に基づいて、受電電圧のピークを特定してピークの出現回数を計測し、ピークの出現回数に基づいて、第1及び第2の送電コイルに対する受電コイルの相対的な位置であるコイル位置を識別する。 A coil position identification method for a contactless power supply system according to one aspect of the present invention detects a power receiving voltage generated in a power receiving coil when a first and a second power transmitting coil are respectively excited, and detects whether a vehicle enters a parking space. Based on the transition of the receiving voltage accompanying, identify the peak of the receiving voltage and measure the number of appearances of the peak, and based on the number of appearances of the peak, the relative position of the receiving coil with respect to the first and second transmitting coils Identify the coil position where .
 本発明によれば、複数の送電コイルに対する受電コイルの相対的な位置を識別することができる。 According to the present invention, it is possible to identify the relative position of the power receiving coil with respect to the plurality of power transmitting coils.
図1は、第1の実施形態に係る駐車支援装置が適用される非接触給電システムの構成を模式的に示す説明図である。FIG. 1 is an explanatory diagram schematically showing the configuration of a contactless power supply system to which a parking assistance device according to the first embodiment is applied. 図2は、車両に搭載された受電コイルと駐車スペースに設けられた第1及び第2の送電コイルとの関係を示す図である。FIG. 2 is a diagram showing the relationship between a power receiving coil mounted on a vehicle and first and second power transmitting coils provided in a parking space. 図3は、駐車スペースへの車両の進入に伴う受電電圧の推移を示す図である。FIG. 3 is a diagram showing the transition of the received power voltage as the vehicle enters the parking space. 図4は、第1の実施形態に係る非接触給電システムに用いられる駐車支援方法を示すフローチャートである。FIG. 4 is a flowchart showing a parking assistance method used in the contactless power supply system according to the first embodiment. 図5Aは、受電範囲を判別する2の領域とコイル位置を判別する4つの領域とを説明する図である。FIG. 5A is a diagram illustrating two regions for determining the power reception range and four regions for determining the coil position. 図5Bは、ピークの出現回数と受電範囲との関係を規定したマップの説明図である。FIG. 5B is an explanatory diagram of a map that defines the relationship between the number of appearances of peaks and the power reception range. 図5Cは、ピークの出現回数とコイル位置との関係を規定したマップの説明図である。FIG. 5C is an explanatory diagram of a map that defines the relationship between the number of peak appearances and the coil position. 図6は、第1及び第2の送電コイルに対する受電コイルの相対位置をユーザに表示する表示画像を示す説明図である。FIG. 6 is an explanatory diagram showing a display image that displays to the user the relative position of the power receiving coil with respect to the first and second power transmitting coils. 図7は、第2の実施形態に係る非接触給電システムに用いられる駐車支援方法を示すフローチャートである。FIG. 7 is a flowchart showing a parking assistance method used in the contactless power supply system according to the second embodiment. 図8は、1回目の上ピークと車両の移動距離との関係を示す説明図である。FIG. 8 is an explanatory diagram showing the relationship between the first upper peak and the travel distance of the vehicle. 図9は、有効受電範囲を示す説明図である。FIG. 9 is an explanatory diagram showing an effective power receiving range.
 以下、本発明の実施形態について、図面を参照して説明する。図面の記載において同一部分には同一符号を付して説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the drawings, the same parts are denoted by the same reference numerals, and the description thereof is omitted.
(第1の実施形態)
 図1に示すように、本実施形態に係る駐車支援装置は、地上側に設けられる送電装置101と、車両20側に設けられる受電装置102との間において非接触で電力の供給を行う非接触給電システムに適用される。
(First embodiment)
As shown in FIG. 1, the parking assistance device according to the present embodiment supplies electric power in a non-contact manner between a power transmitting device 101 provided on the ground side and a power receiving device 102 provided on the vehicle 20 side. Applies to power supply systems.
 非接触給電システムは、車両20が駐車する駐車スペースに設けられる送電装置101と、車両20に搭載される受電装置102とから構成される。 The contactless power supply system is composed of a power transmission device 101 provided in a parking space where the vehicle 20 is parked, and a power reception device 102 mounted on the vehicle 20 .
 送電装置101は、地上ユニット51を備えている。図1では、送電装置101が1つの地上ユニット51を備える例を示しているが、本発明はこれに限定されない。複数の駐車スペースがある場合、送電装置101は、駐車スペース毎に地上ユニット51を備えていてもよい。 The power transmission device 101 includes a ground unit 51. Although FIG. 1 shows an example in which the power transmission device 101 includes one ground unit 51, the present invention is not limited to this. If there are multiple parking spaces, the power transmitting device 101 may have a ground unit 51 for each parking space.
 地上ユニット51は、送電コイルユニット11と、パワーユニット12と、地上コントローラ13と、通信部14とを備えている。 The ground unit 51 includes a power transmission coil unit 11, a power unit 12, a ground controller 13, and a communication section 14.
 図2に示すように、送電コイルユニット11は、駐車スペースPSが設けられた地面に設置されている。送電コイルユニット11は、第1の送電コイル11a及び第2の送電コイル11bを含んでいる。個々の送電コイル11a、11bは、上下方向をコイル軸として電線(導体)が巻回された平面状の巻きコイルであり、地面と平行に設置されている。 As shown in FIG. 2, the power transmission coil unit 11 is installed on the ground where the parking space PS is provided. The power transmission coil unit 11 includes a first power transmission coil 11a and a second power transmission coil 11b. Each of the power transmission coils 11a and 11b is a planar winding coil in which an electric wire (conductor) is wound with the vertical direction as the coil axis, and is installed parallel to the ground.
 第1の送電コイル11a及び第2の送電コイル11bは、駐車スペースPSに対する車両20の進入方向、すなわち車幅方向と直交する方向にかけて順番に並べられている。第1の送電コイル11aのコイル中心と第2の送電コイル11bのコイル中心との間には、各送電コイル11a、11bが重複しないだけの間隔が設けられている。第1の送電コイル11a及び第2の送電コイル11bのうち、第1の送電コイル11aは、車両20の進入方向の手前側に位置し、第2の送電コイル11bは、車両20の進入方向の奥側に位置する。したがって、車両20が駐車スペースPSに進入する過程では、車両20は、最初に第1の送電コイル11aを通過し、その後に第2の送電コイル11bを通過する。 The first power transmission coil 11a and the second power transmission coil 11b are arranged in order in the direction in which the vehicle 20 enters the parking space PS, that is, in the direction orthogonal to the vehicle width direction. A space is provided between the coil center of the first power transmission coil 11a and the coil center of the second power transmission coil 11b so that the power transmission coils 11a and 11b do not overlap. Of the first power transmission coil 11a and the second power transmission coil 11b, the first power transmission coil 11a is located on the near side in the approach direction of the vehicle 20, and the second power transmission coil 11b is located in the approach direction of the vehicle 20. Located on the far side. Therefore, in the course of the vehicle 20 entering the parking space PS, the vehicle 20 first passes through the first power transmission coil 11a and then through the second power transmission coil 11b.
 パワーユニット12は、第1の送電コイル11a及び第2の送電コイル11bに電流をそれぞれ通電して、第1の送電コイル11a及び第2の送電コイル11bをそれぞれ励磁する。パワーユニット12は、第1の送電コイル11a及び第2の送電コイル11bの両方に対して同時に電流を通電することも、第1の送電コイル11a及び第2の送電コイル11bの一方にのみ電流を通電することもできる。 The power unit 12 energizes the first power transmission coil 11a and the second power transmission coil 11b respectively to excite the first power transmission coil 11a and the second power transmission coil 11b. The power unit 12 may energize both the first power transmission coil 11a and the second power transmission coil 11b at the same time, or may energize only one of the first power transmission coil 11a and the second power transmission coil 11b. You can also
 地上コントローラ13は、パワーユニット12の動作を制御する。地上コントローラ13は、CPU(Central Processing Unit)などのハードウェアプロセッサと、メモリと、各種のインターフェースとを備えるマイクロコンピュータによって構成されている。メモリ、各種のインターフェースは、バスを介してハードウェアプロセッサに接続されている。地上コントローラ13の各種の機能は、ハードウェアプロセッサによってメモリに格納されたプログラムを実行させることにより実現される。 The ground controller 13 controls the operation of the power unit 12. The ground controller 13 is composed of a microcomputer having a hardware processor such as a CPU (Central Processing Unit), a memory, and various interfaces. The memory and various interfaces are connected to the hardware processor via buses. Various functions of the ground controller 13 are realized by causing a hardware processor to execute a program stored in memory.
 例えば、地上コントローラ13は、第1の送電コイル11a及び第2の送電コイル11bに対する励磁電圧を制御することができる。また、地上コントローラ13は、第1及び第2の送電コイル11a、11bの両方を同時に励磁したり、第1の送電コイル11a及び第2の送電コイル11bの一方のみを励磁したりすることができる。 For example, the ground controller 13 can control the excitation voltage for the first power transmission coil 11a and the second power transmission coil 11b. In addition, the ground controller 13 can simultaneously excite both the first and second power transmission coils 11a and 11b, or excite only one of the first power transmission coil 11a and the second power transmission coil 11b. .
 地上コントローラ13には、駐車スペースPSに車両20が接近した際に、車両20を検出する車両検出センサ33が接続されている。車両検出センサ33としては、例えば近接センサを用いることができる。 A vehicle detection sensor 33 is connected to the ground controller 13 to detect the vehicle 20 when the vehicle 20 approaches the parking space PS. A proximity sensor, for example, can be used as the vehicle detection sensor 33 .
 通信部14は、受電装置102との間で無線通信を行う。通信部14は、1つ以上の無線の通信インタフェースユニットを含む。 The communication unit 14 performs wireless communication with the power receiving device 102 . The communication unit 14 includes one or more wireless communication interface units.
 受電装置102は、受電コイル21と、整流平滑回路22と、バッテリ23と、車両コントローラ24と、通信部25と、表示部26とを備えている。 The power receiving device 102 includes a power receiving coil 21 , a rectifying/smoothing circuit 22 , a battery 23 , a vehicle controller 24 , a communication section 25 and a display section 26 .
 受電コイル21は、車両20の底部に設置されている。図1では、便宜上、車幅方向と直交する方向における車両20の中央に受電コイル21が示されているが、例えば、受電コイル21は、車両20のフロント側に設けられる。受電コイル21は、上下方向をコイル軸として電線が巻回された平面状の巻きコイルであり、地面と平行に設置されている。 The power receiving coil 21 is installed at the bottom of the vehicle 20 . In FIG. 1 , power receiving coil 21 is shown in the center of vehicle 20 in the direction orthogonal to the vehicle width direction for convenience, but power receiving coil 21 is provided on the front side of vehicle 20, for example. The power receiving coil 21 is a planar winding coil in which an electric wire is wound with the coil axis extending in the vertical direction, and is installed parallel to the ground.
 整流平滑回路22は、受電コイル21で受電される交流電圧を直流化し、且つ平滑化する。整流平滑回路22はバッテリ23と接続されており、平滑化された直流電圧をバッテリ23に印加する。 The rectifying/smoothing circuit 22 converts the AC voltage received by the receiving coil 21 into a DC voltage and smoothes it. The rectifying/smoothing circuit 22 is connected to the battery 23 and applies a smoothed DC voltage to the battery 23 .
 バッテリ23は、受電コイル21で受電された電力を充電する。 The battery 23 charges the power received by the power receiving coil 21 .
 車両コントローラ24は、整流平滑回路22の動作を制御する。車両コントローラ24は、CPU(Central Processing Unit)などのハードウェアプロセッサと、メモリと、各種のインターフェースとを備えるマイクロコンピュータによって構成されている。メモリ、各種のインターフェースは、バスを介してハードウェアプロセッサに接続されている。車両コントローラ24の各種の機能は、ハードウェアプロセッサによってメモリに格納されたプログラムを実行させることにより実現される。 The vehicle controller 24 controls the operation of the rectifying/smoothing circuit 22 . The vehicle controller 24 is configured by a microcomputer having a hardware processor such as a CPU (Central Processing Unit), a memory, and various interfaces. The memory and various interfaces are connected to the hardware processor via buses. Various functions of the vehicle controller 24 are realized by causing a hardware processor to execute a program stored in memory.
 車両コントローラ24には、電圧センサ27が接続されている。電圧センサ27は、第1及び第2の送電コイル11a、11bを励磁したときに受電コイル21に生じる電圧(受電電圧)を検出する。例えば、電圧センサ27は、整流平滑回路22の出力端子間の電圧を受電電圧として検出する。 A voltage sensor 27 is connected to the vehicle controller 24 . The voltage sensor 27 detects the voltage (power receiving voltage) generated in the power receiving coil 21 when the first and second power transmitting coils 11a and 11b are excited. For example, the voltage sensor 27 detects the voltage across the output terminals of the rectifying/smoothing circuit 22 as the received voltage.
 通信部25は、地上ユニット51との間で無線通信を行う。通信部25は、1つ以上の無線の通信インタフェースユニットを含む。 The communication unit 25 performs wireless communication with the ground unit 51. The communication unit 25 includes one or more wireless communication interface units.
 表示部26は、車両20のユーザに情報を表示する装置である。表示部26としては、例えばインストルメントパネルに配置されたセンターディスプレイを利用することができる。表示部26には、車両の周囲を撮影した複数のカメラ(図示せず)によって取得された各撮影画像に基づいて合成された、車両20の全周囲を俯瞰した様子を示す俯瞰画像(アラウンドビュー画像)が表示される。 The display unit 26 is a device that displays information to the user of the vehicle 20. As the display unit 26, for example, a center display arranged on the instrument panel can be used. On the display unit 26, a bird's-eye view image (around view) showing a bird's-eye view of the entire surroundings of the vehicle 20 is synthesized based on each captured image acquired by a plurality of cameras (not shown) that capture images of the surroundings of the vehicle. image) is displayed.
 本実施形態では、駐車スペースPSに設けられる地上ユニット51と車両20に搭載される受電装置102との間で無線通信が行われる。この無線通信により、車両20の受電装置102と、駐車スペースPSの地上ユニット51とをペアリングするペアリング処理が行われる。なお、ペアリング処理は、無線通信を用いる手法に限らず、第1及び第2の送電コイル11a、11bを励磁することにより行ってもよい。 In this embodiment, wireless communication is performed between the ground unit 51 provided in the parking space PS and the power receiving device 102 mounted on the vehicle 20 . Pairing processing for pairing the power receiving device 102 of the vehicle 20 and the ground unit 51 of the parking space PS is performed by this wireless communication. The pairing process is not limited to the method using wireless communication, and may be performed by exciting the first and second power transmission coils 11a and 11b.
 ペアリングされた受電装置102と地上ユニット51との間の電磁誘導作用によって非接触状態で高周波電力の送電および受電が行われる。送電コイルユニット11に交流電圧を印加して送電コイル11a、11bに電流を流すことにより、送電コイル11a、11bを励磁することができる。送電コイル11a、11bが励磁することで、送電コイル11a、11bと受電コイル21との間に磁気的な結合が生じる。これにより、送電コイル11a、11bから受電コイル21へ電力が供給される。なお、送電コイル11a、11bから受電コイル21への通常の給電動作では、地上コントローラ13は、第1及び第2の送電コイル11a、11bのうち一方の送電コイルのみを励磁(第2励磁)する。 High-frequency power is transmitted and received in a non-contact state by the electromagnetic induction action between the paired power receiving device 102 and the ground unit 51 . The power transmission coils 11a and 11b can be excited by applying an AC voltage to the power transmission coil unit 11 and causing a current to flow through the power transmission coils 11a and 11b. Magnetic coupling occurs between the power transmitting coils 11 a and 11 b and the power receiving coil 21 by exciting the power transmitting coils 11 a and 11 b. Thereby, power is supplied from the power transmitting coils 11 a and 11 b to the power receiving coil 21 . Note that in a normal power supply operation from the power transmitting coils 11a and 11b to the power receiving coil 21, the ground controller 13 excites only one of the first and second power transmitting coils 11a and 11b (second excitation). .
 このような非接触給電システムにおいて、受電コイル21、車両コントローラ24、及び電圧センサ27は、送電装置101と受電装置102との間で非接触給電が適切に行われるように、駐車スペースPSへの車両20の駐車を支援する駐車支援装置として機能する。また、駐車支援装置には、通信部25及び表示部26も含まれる。 In such a contactless power feeding system, the power receiving coil 21, the vehicle controller 24, and the voltage sensor 27 are connected to the parking space PS so that contactless power feeding is appropriately performed between the power transmitting device 101 and the power receiving device 102. It functions as a parking assistance device that assists parking of the vehicle 20 . The parking assistance device also includes a communication unit 25 and a display unit 26 .
 駐車支援には、第1及び第2の送電コイル11a、11bに対する受電コイル21の相対的な位置であるコイル位置を識別するコイル位置識別処理が含まれる。ここで、図2及び図3を参照し、コイル位置識別処理の概念を説明する。 Parking assistance includes coil position identification processing that identifies the coil position, which is the relative position of the power receiving coil 21 with respect to the first and second power transmitting coils 11a and 11b. Here, the concept of the coil position identification process will be described with reference to FIGS. 2 and 3. FIG.
 まず、第1及び第2の送電コイル11a、11bにそれぞれ電流を流すことにより、各送電コイル11a、11bを励磁する。ここでの励磁は、第2励磁よりも弱い励磁パターンである第1励磁で行う。以下、便宜上、第1励磁のことを弱励磁という。 First, each of the power transmission coils 11a and 11b is excited by passing a current through each of the first and second power transmission coils 11a and 11b. The excitation here is performed with the first excitation, which is a weaker excitation pattern than the second excitation. Hereinafter, for convenience, the first excitation is referred to as weak excitation.
 本実施形態において、送電コイルユニット11は、駐車スペースPSに対する車両20の進入方向にかけて並べられた第1及び第2の送電コイル11a、11bで構成されている。車両20が駐車スペースPSに進入すると、受電コイル21は、第1の送電コイル11aの上方を通過し、その後、第2の送電コイル11bの上方を通過する。なお、本実施形態では、駐車スペースPSに対して車両が後退駐車するものとする。 In this embodiment, the power transmission coil unit 11 is composed of first and second power transmission coils 11a and 11b arranged in the direction in which the vehicle 20 enters the parking space PS. When the vehicle 20 enters the parking space PS, the power receiving coil 21 passes over the first power transmitting coil 11a and then passes over the second power transmitting coil 11b. In this embodiment, it is assumed that the vehicle is parked backward in the parking space PS.
 第1及び第2の送電コイル11a、11bがそれぞれ弱励磁されている場合、駐車スペースPSへの車両20の進入に伴って受電コイル21に生じる受電電圧の推移には、図3に示すようなピークが現れる。具体的には、受電コイル21が第1の送電コイル11aのコイル中心を通過するときに1回目の上ピークが現れ、受電コイル21が第2の送電コイル11bのコイル中心を通過するときに2回目の上ピークが現れる。また、受電コイル21が送電コイルユニット11の機械中心、すなわち、第1の送電コイル11aと第2の送電コイル11bとの境界(送電コイル11a、11bのコイル中心間の中央位置)を通過するときに、1回目の下ピークが現れる。 When the first and second power transmission coils 11a and 11b are each weakly excited, the transition of the power reception voltage generated in the power reception coil 21 as the vehicle 20 enters the parking space PS is as shown in FIG. A peak appears. Specifically, the first upper peak appears when power receiving coil 21 passes the coil center of first power transmitting coil 11a, and the second upper peak appears when power receiving coil 21 passes the coil center of second power transmitting coil 11b. A peak appears on the second time. Also, when the power receiving coil 21 passes through the mechanical center of the power transmitting coil unit 11, that is, the boundary between the first power transmitting coil 11a and the second power transmitting coil 11b (the center position between the coil centers of the power transmitting coils 11a and 11b). , the first lower peak appears.
 したがって、上ピーク及び下ピークの出現回数がそれぞれゼロの場合、受電コイル21は、第1の送電コイル11aのコイル中心よりも車両20の進入方向の手前側に存在する。上ピークの出現回数が1で、下ピークの出現回数がゼロの場合、受電コイル21は、第1の送電コイル11aのコイル中心よりも車両20の進入方向の奥側、かつ、第1の送電コイル11aと第2の送電コイル11bとの境界よりも車両20の進入方向の手前側に存在する。上ピークの出現回数が1で、下ピークの出現回数が1の場合、受電コイル21は、第1の送電コイル11aと第2の送電コイル11bとの境界よりも車両20の進入方向の奥側、かつ、第2の送電コイル11bのコイル中心よりも車両20の進入方向の手前側に存在する。上ピークの出現回数が2で、下ピークの出現回数が1の場合、受電コイル21は、第2の送電コイル11bのコイル中心よりも車両20の進入方向の奥側に存在する。このようにピークの出現回数と、第1及び第2の送電コイル11a、11bに対する受電コイル21の相対的な位置(コイル位置)との間には相関関係がある。 Therefore, when the number of appearances of the upper peak and the lower peak is zero, the power receiving coil 21 exists on the front side in the approach direction of the vehicle 20 with respect to the coil center of the first power transmitting coil 11a. When the number of appearances of the upper peak is 1 and the number of appearances of the lower peak is 0, the power receiving coil 21 is located on the inner side of the coil center of the first power transmitting coil 11a in the approach direction of the vehicle 20 and the first power transmitting coil 11a. It exists on the front side in the approach direction of the vehicle 20 from the boundary between the coil 11a and the second power transmission coil 11b. When the number of appearances of the upper peak is 1 and the number of appearances of the lower peak is 1, the power receiving coil 21 is on the far side in the approach direction of the vehicle 20 from the boundary between the first power transmitting coil 11a and the second power transmitting coil 11b. Moreover, it exists on the front side in the approach direction of the vehicle 20 with respect to the coil center of the second power transmission coil 11b. When the number of appearances of the upper peak is 2 and the number of appearances of the lower peak is 1, the power receiving coil 21 is present on the far side in the approach direction of the vehicle 20 from the coil center of the second power transmitting coil 11b. Thus, there is a correlation between the number of peak appearances and the relative position (coil position) of the power receiving coil 21 with respect to the first and second power transmitting coils 11a and 11b.
 そこで、車両コントローラ24は、第1及び第2の送電コイル11a、11bがそれぞれ励磁されたときに受電コイル21に生じる受電電圧を、電圧センサ27を用いて検出する。車両コントローラ24は、駐車スペースPSへの車両20の進入に伴う受電電圧の推移に基づいて、受電電圧のピークを特定して、ピークの出現回数を計測する。そして、車両コントローラ24は、ピークの出現回数に基づいてコイル位置を識別する。 Therefore, the vehicle controller 24 uses the voltage sensor 27 to detect the power receiving voltage generated in the power receiving coil 21 when the first and second power transmitting coils 11a and 11b are respectively excited. The vehicle controller 24 identifies the peak of the received power voltage based on the transition of the received power voltage as the vehicle 20 enters the parking space PS, and counts the number of appearances of the peak. Vehicle controller 24 then identifies the coil position based on the number of peak occurrences.
 なお、駐車支援には、コイル位置識別処理の他に、表示部26にコイル位置を表示する表示処理、及び、第1及び第2の送電コイル11a、11bのうち、受電コイル21に対して給電を行う送電コイル(励磁コイル、)を選択する指令を地上ユニット51に出力する励磁コイル選択処理が含まれる。 In addition to the coil position identification process, the parking assistance includes a display process for displaying the coil position on the display unit 26, and power feeding to the power receiving coil 21 among the first and second power transmitting coils 11a and 11b. includes an excitation coil selection process for outputting to the ground unit 51 a command for selecting a power transmission coil (excitation coil) for
 以下、図4を参照し、第1の実施形態に係る非接触給電システムに用いられる駐車支援処理の流れを説明する。図4に示すフローチャートは、車両コントローラ24によって実行される。 The flow of parking assistance processing used in the contactless power supply system according to the first embodiment will be described below with reference to FIG. The flowchart shown in FIG. 4 is executed by vehicle controller 24 .
 まず、車両コントローラ24は、地上コントローラ13と通信を行い、ペアリング処理を行う(ステップS10)。車両コントローラ24は、ペアリング処理を通じて、送電装置101に関する情報を取得することができる。そして、車両コントローラ24は、送電コイルユニット11の構成、すなわち、駐車スペースPSに対して2つの送電コイル11a、11bが並んだ構成であることを特定することができる。 First, the vehicle controller 24 communicates with the ground controller 13 and performs pairing processing (step S10). The vehicle controller 24 can acquire information about the power transmission device 101 through the pairing process. Then, the vehicle controller 24 can identify the configuration of the power transmission coil unit 11, that is, the configuration in which the two power transmission coils 11a and 11b are arranged side by side with respect to the parking space PS.
 車両コントローラ24は、地上コントローラ13に対して、送電コイル11a、11bの弱励磁の開始を指示する(ステップS12)。この弱励磁の開始指示に合わせ、車両コントローラ24は、電圧センサ27によって、受電コイル21に生じる受電電圧の検出を開始する。また、車両コントローラ24は、表示部26を制御して、ユーザに対して駐車スペースPSへの駐車開始を指示する(ステップS14)。 The vehicle controller 24 instructs the ground controller 13 to start weak excitation of the power transmission coils 11a and 11b (step S12). In response to this weak excitation start instruction, the vehicle controller 24 starts detecting the power receiving voltage generated in the power receiving coil 21 by the voltage sensor 27 . Further, the vehicle controller 24 controls the display unit 26 to instruct the user to start parking in the parking space PS (step S14).
 車両コントローラ24は、駐車スペースPSへの車両20の進入に伴う受電電圧の推移を監視する。この受電電圧の監視により、上ピーク及び下ピークを特定(検知)することができる(ステップS16、S20)。上ピークが検知された場合(ステップS16:YES)、車両コントローラ24は、上ピークをカウントする(ステップS18)。また、下ピークが検知された場合(ステップS20:YES)、車両コントローラ24は、下ピークをカウントする(ステップS20)。 The vehicle controller 24 monitors changes in the received power voltage as the vehicle 20 enters the parking space PS. By monitoring the received voltage, the upper peak and the lower peak can be specified (detected) (steps S16, S20). When the upper peak is detected (step S16: YES), the vehicle controller 24 counts the upper peak (step S18). Moreover, when the lower peak is detected (step S20: YES), the vehicle controller 24 counts the lower peak (step S20).
 車両コントローラ24は、車両20が停車したこと判断すると(ステップS24:YES)、停車位置が確定されたか否かを判断する(ステップS26)。例えば、ユーザが操作スイッチなどを利用して停車位置を確定する操作を行った場合、或いは、停車後の経過時間が所定の判定時間を上回った場合などに、車両コントローラ24は、停車位置を確定したと判断する。なお、車両20が停車していない場合には、ステップS14の処理に戻る。 When the vehicle controller 24 determines that the vehicle 20 has stopped (step S24: YES), it determines whether the stop position has been determined (step S26). For example, when the user performs an operation to confirm the stop position using an operation switch or the like, or when the elapsed time after stopping the vehicle exceeds a predetermined determination time, the vehicle controller 24 confirms the stop position. judge that it did. In addition, when the vehicle 20 is not stopped, it returns to the process of step S14.
 停車位置が確定されていない場合(ステップS26:NO)、車両コントローラ24は、受電コイル21が電力を受電することできる受電範囲を判別する(ステップS28)。図5Aに示すように、受電範囲は、領域A及び領域Bからなる2つの分解能で判別される。領域A及び領域Bは、車両20の進入方向において第1の送電コイル11aと第2の送電コイル11bとの境界(中央)に位置して車幅方向に沿って延びるユニット中心線CC2を基準に定義される。領域Aは、ユニット中心線CC2よりも車両20の進入方向の手前側の領域であって、第1の送電コイル11aが存在する領域である。領域Bは、ユニット中心線CC2よりも車両20の進入方向の奥側の領域であって、第2の送電コイル11bが存在する領域である。 If the stop position has not been determined (step S26: NO), the vehicle controller 24 determines the power receiving range in which the power receiving coil 21 can receive power (step S28). As shown in FIG. 5A , the power receiving range is determined by two resolutions consisting of area A and area B. FIG. Areas A and B are defined with respect to the unit center line CC2, which is positioned at the boundary (center) between the first power transmission coil 11a and the second power transmission coil 11b in the approach direction of the vehicle 20 and extends along the vehicle width direction. Defined. Area A is an area on the front side of the approach direction of the vehicle 20 with respect to the unit center line CC2, and is an area where the first power transmission coil 11a exists. A region B is a region on the far side in the approach direction of the vehicle 20 from the unit center line CC2, and is a region where the second power transmission coil 11b exists.
 車両コントローラ24は、図5Bに示すように、下ピークのカウント値(出現回数)と受電範囲との関係を示す受電範囲判別マップを保持している。車両コントローラ24は、受電範囲判別マップを参照し、下ピークのカウント値から受電範囲を判別する。例えば、車両コントローラ24は、下ピークがゼロであれば、第1の送電コイル11aに対応する領域Aで、受電コイル21が電力を受電することができると判別する。一方、車両コントローラ24は、下ピークが1であれば、第2の送電コイル11bに対応する領域Bで、受電コイル21が電力を受電することができると判別する。 As shown in FIG. 5B, the vehicle controller 24 holds a power receiving range determination map that indicates the relationship between the count value (number of appearances) of the lower peak and the power receiving range. The vehicle controller 24 refers to the power reception range determination map and determines the power reception range from the lower peak count value. For example, if the lower peak is zero, the vehicle controller 24 determines that the power receiving coil 21 can receive power in the area A corresponding to the first power transmitting coil 11a. On the other hand, if the lower peak is 1, the vehicle controller 24 determines that the power receiving coil 21 can receive power in the area B corresponding to the second power transmitting coil 11b.
 つぎに、車両コントローラ24は、コイル位置を判別する(ステップS30)。図5Aに示すように、コイル位置は、領域1、領域2、領域3、及び領域4からなる4つの分解能で判別される。領域1及び領域2は、上述の領域Aをさらに2つに分割した領域であり、車両20の進入方向において第1の送電コイル11aのコイル中心を通って車幅方向に延びる第1コイル中心線CC1を基準に定義される。領域1は、第1コイル中心線CC1よりも車両20の進入方向の手前側の領域であり、領域2は、第1コイル中心線CC1よりも車両20の進入方向の奥側の領域である。一方、領域3及び領域4は、上述の領域Bをさらに2つに分割した領域であり、車両20の進入方向において第2の送電コイル11bの中心を通って車幅方向に沿って延びる第2コイル中心線CC3を基準に定義される。領域3は、第2コイル中心線CC3よりも車両20の進入方向の手前側の領域であり、領域4は、第2コイル中心線CC3よりも車両20の進入方向の奥側の領域である。 Next, the vehicle controller 24 determines the coil position (step S30). As shown in FIG. 5A, the coil position is determined at four resolutions, Region 1, Region 2, Region 3, and Region 4. FIG. Area 1 and area 2 are areas obtained by further dividing the above-described area A into two, and a first coil center line extending in the vehicle width direction through the coil center of the first power transmission coil 11a in the approach direction of the vehicle 20. It is defined based on CC1. Region 1 is a region on the front side of the first coil center line CC1 in the approach direction of the vehicle 20, and region 2 is a region on the back side of the first coil center line CC1 in the approach direction of the vehicle 20. On the other hand, regions 3 and 4 are regions obtained by further dividing the above-described region B into two regions, and are second regions extending along the vehicle width direction through the center of the second power transmission coil 11b in the approach direction of the vehicle 20. It is defined with reference to the coil center line CC3. Region 3 is a region on the front side of the second coil center line CC3 in the approach direction of the vehicle 20, and region 4 is a region on the back side of the second coil center line CC3 in the approach direction of the vehicle 20.
 車両コントローラ24は、図5Cに示すように、上ピーク及び下ピークのカウント値とコイル位置との関係を示すコイル位置判別マップを保持している。車両コントローラ24は、コイル位置判別マップを参照し、上ピーク及び下ピークのカウント値からコイル位置を判別する。 The vehicle controller 24, as shown in FIG. 5C, holds a coil position determination map that shows the relationship between the count values of the upper and lower peaks and the coil positions. The vehicle controller 24 refers to the coil position discrimination map and discriminates the coil position from the count values of the upper peak and the lower peak.
 図6に示すように、車両コントローラ24は、受電範囲の判別結果、及びコイル位置の判別結果に基づいて、コイル位置を示す表示画像200を生成する。表示画像200は、車両周囲の俯瞰画像に対して、車両20を示す画像210、第1の送電コイル11aを示す画像220、第2の送電コイル11bを示す画像224、及び、受電コイル21を示す画像230を重畳させた合成画像である。受電コイル21を示す画像230は、実際の車両20に搭載される受電コイル21の搭載位置が再現されるように、車両20を示す画像210に対して位置決めされた状態で表示される。 As shown in FIG. 6, the vehicle controller 24 generates a display image 200 indicating the coil position based on the determination result of the power receiving range and the determination result of the coil position. The display image 200 shows an image 210 showing the vehicle 20, an image 220 showing the first power transmitting coil 11a, an image 224 showing the second power transmitting coil 11b, and the power receiving coil 21 with respect to a bird's-eye view image around the vehicle. It is a composite image in which the image 230 is superimposed. Image 230 showing power receiving coil 21 is displayed in a state of being positioned with respect to image 210 showing vehicle 20 so that the actual mounting position of power receiving coil 21 mounted on vehicle 20 is reproduced.
 車両コントローラ24は、生成された表示画像200を表示部26に表示する(ステップS32)。例えば、コイル位置として領域Bが判別された場合、車両コントローラ24は、受電コイル21を示す画像230を、表示画像200上の領域Bに相当する位置、例えば領域Bの中央位置に表示する。また、例えば、受電範囲として領域Aが判別された場合、車両コントローラ24は、領域Aに対応する第1の送電コイル11aを示す画像220を強調して表示する。 The vehicle controller 24 displays the generated display image 200 on the display unit 26 (step S32). For example, when area B is determined as the coil position, vehicle controller 24 displays image 230 showing power receiving coil 21 at a position corresponding to area B on display image 200, for example, at the center of area B. FIG. Further, for example, when the area A is determined as the power receiving range, the vehicle controller 24 emphasizes and displays the image 220 showing the first power transmission coil 11a corresponding to the area A.
 このように、表示画像200には、コイル位置の判別結果、及び受電範囲の判別結果が反映される。そのため、ユーザは、表示画像200を通じて、第1及び第2の送電コイル11a、11bに対する受電コイル21の相対的な位置を理解することができる。また、ユーザは、第1及び第2の送電コイル11a、11bのうち、どちらの送電コイルから電力を受電すればよいのかを理解することができる。これにより、車両20をそのまま停止させればよいの、さらに後退させればよいかを簡単に理解することができる。 In this way, the display image 200 reflects the determination result of the coil position and the determination result of the power receiving range. Therefore, through the display image 200, the user can understand the relative position of the power receiving coil 21 with respect to the first and second power transmitting coils 11a and 11b. In addition, the user can understand which of the first and second power transmission coils 11a and 11b should receive power. This makes it possible to easily understand whether the vehicle 20 should be stopped as it is or should be further reversed.
 図4に示すように、コイル位置の表示を行うと、車両コントローラ24は、ステップS14の処理に戻って、上述した処理を再度行う。 As shown in FIG. 4, after displaying the coil position, the vehicle controller 24 returns to the process of step S14 and performs the above-described process again.
 一方、停車位置が確定された場合(ステップS26:YES)、車両コントローラ24は、車両20の最終位置を判別する(ステップS34)。ステップS34の処理は、上述したステップS30の処理と同様であり、車両20の最終位置に対応するコイル位置を判別する。 On the other hand, if the stop position has been determined (step S26: YES), the vehicle controller 24 determines the final position of the vehicle 20 (step S34). The processing of step S34 is the same as the processing of step S30 described above, and determines the coil position corresponding to the final position of the vehicle 20 .
 車両コントローラ24は、車両20の最終位置に対応するコイル位置の判別結果に基づいて、第2励磁の対象となる励磁コイルを特定する。具体的には、車両コントローラ24は、第1及び第2の送電コイル11a、11bのうち受電コイル21に近い送電コイルを励磁コイルとして特定する。第2励磁は、第1励磁よりも励磁電圧が相対的に大きい励磁を意味し、送電コイル11a、11bからバッテリ充電用の電力を送電させるための励磁である。 The vehicle controller 24 identifies the excitation coil to be subjected to the second excitation based on the determination result of the coil position corresponding to the final position of the vehicle 20 . Specifically, the vehicle controller 24 identifies the power transmission coil closer to the power reception coil 21 among the first and second power transmission coils 11a and 11b as the excitation coil. The second excitation means excitation with a relatively higher excitation voltage than the first excitation, and is excitation for transmitting power for battery charging from the power transmission coils 11a and 11b.
 励磁コイルが特定されると、車両コントローラ24は、地上コントローラ13に対して励磁コイルを指示する(ステップS36)。これにより、第1及び第2の送電コイル11a、11bのうち受電コイル21に近い送電コイル11a、11bが第2励磁され、送電コイル11a、11bから受電コイル21へと電力の供給が行われる。 When the excitation coil is identified, the vehicle controller 24 instructs the ground controller 13 to specify the excitation coil (step S36). As a result, of the first and second power transmission coils 11a and 11b, the power transmission coils 11a and 11b closer to the power reception coil 21 are subjected to the second excitation, and power is supplied from the power transmission coils 11a and 11b to the power reception coil 21.
 このように本実施形態によれば、送電コイルユニット11が第1及び第2の送電コイル11a、11bを含んでいる。車両20が駐車スペースPSに進入して、第1及び第2の送電コイル11a、11bの上方を受電コイル21が通過すると、受電電圧の推移には所定のピークを備える固有の波形が現れる。したがって、車両20が駐車スペースPSに進入する過程では、車両20の進入度合いに応じたコイル位置に応じて、ピークの出現回数が相違する。このため、ピークの出現回数を利用することで、第1及び第2の送電コイル11a、11bが並んでいるような状況であっても、コイル位置を識別することができる。 Thus, according to this embodiment, the power transmission coil unit 11 includes the first and second power transmission coils 11a and 11b. When the vehicle 20 enters the parking space PS and the power receiving coil 21 passes over the first and second power transmitting coils 11a and 11b, a unique waveform having a predetermined peak appears in the transition of the power receiving voltage. Therefore, in the process in which the vehicle 20 enters the parking space PS, the number of appearances of peaks differs according to the coil position corresponding to the degree of entry of the vehicle 20 . Therefore, by using the number of appearances of peaks, the coil positions can be identified even in a situation where the first and second power transmission coils 11a and 11b are arranged side by side.
 また、本実施形態によれば、コイル位置を表示することで、ユーザに対してコイル位置を分かり易く認識させることができる。これにより、ユーザは、受電コイル21と第1及び第2の送電コイル11a、11bとの位置関係から、適切な停車位置へと車両20を誘導することができる。 Further, according to the present embodiment, by displaying the coil position, the user can easily recognize the coil position. Thereby, the user can guide the vehicle 20 to an appropriate stop position based on the positional relationship between the power receiving coil 21 and the first and second power transmitting coils 11a and 11b.
 また、本実施形態によれば、送電コイルユニット11を構成する一対の送電コイル11a、11bのうち、受電コイル21との位置が近い送電コイルに対して励磁を指示することができる。このため、受電コイル21に対して給電ができない、或いは、給電ができたとしても給電効率が低いという事態を抑制することができる。また、受電コイル21から遠い位置にある送電コイルが励磁されるといった事態を抑制することができる。 Further, according to the present embodiment, among the pair of power transmission coils 11 a and 11 b that constitute the power transmission coil unit 11 , the power transmission coil that is close to the power reception coil 21 can be instructed to be excited. Therefore, it is possible to prevent a situation in which power cannot be supplied to the power receiving coil 21 or, even if power can be supplied, the power supply efficiency is low. In addition, it is possible to prevent a situation in which a power transmitting coil located far from the power receiving coil 21 is excited.
(第2の実施形態)
 以下、図7を参照し、第2の実施形態に係る非接触給電システムに用いられる駐車支援処理の流れを説明する。第2の実施形態に係る駐車支援処理が、第1の実施形態のそれと相違する点は、ステップS100、S102、ステップS110、S112、S114、及びステップS120の処理が追加されている点である。以下、相違点を中心に説明する。
(Second embodiment)
Hereinafter, with reference to FIG. 7, the flow of parking assistance processing used in the contactless power supply system according to the second embodiment will be described. The parking assistance process according to the second embodiment differs from that of the first embodiment in that the processes of steps S100, S102, steps S110, S112, S114, and step S120 are added. The following description will focus on the differences.
 車両コントローラ24は、弱励磁の開始指示(ステップS12)に合わせ、電圧センサ27によって受電コイル21に生じる受電電圧の検出を開始する。受電電圧の検出を開始すると、車両コントローラ24は、コイル前後位置と受電電圧と対応付けた電圧マップの取得を開始する。 The vehicle controller 24 starts detecting the receiving voltage generated in the receiving coil 21 by the voltage sensor 27 in accordance with the weak excitation start instruction (step S12). When starting to detect the power receiving voltage, the vehicle controller 24 starts obtaining a voltage map that associates the coil front-rear positions with the power receiving voltage.
 車両コントローラ24は、上ピークのカウントが1回目であれば(ステップS100:YES)、1回目の上ピークを起点とする受電コイル21の距離Lvの測定を開始する(S102)。 If the count of the upper peak is the first time (step S100: YES), the vehicle controller 24 starts measuring the distance Lv of the power receiving coil 21 starting from the first upper peak (S102).
 車両コントローラ24は、下ピークのカウントが1回目であれば(ステップS110:YES)、電圧マップの取得を終了する(ステップS112)。そして、車両コントローラ24は、電圧マップを参照し、1回目の上ピークから1回目の下ピークまでのピーク間距離Lpを計算する(ステップS114)。 If the count of the lower peak is the first time (step S110: YES), the vehicle controller 24 ends acquisition of the voltage map (step S112). Then, the vehicle controller 24 refers to the voltage map and calculates the peak-to-peak distance Lp from the first upper peak to the first lower peak (step S114).
 車両コントローラ24は、車両20の停車が判定されたときのコイル位置を計算する(ステップS120)。このコイル位置は、1回目の上ピークを起点に測距される、受電コイル21の距離Lvによって定義される。 The vehicle controller 24 calculates the coil position when it is determined that the vehicle 20 is stopped (step S120). This coil position is defined by the distance Lv of the receiving coil 21 measured from the first upper peak.
 このように追加された処理を前提に、車両コントローラ24は、表示画像200を表示する(図6参照)。具体的には、車両コントローラ24は、第1の送電コイル11aの特性は、第2の送電コイル11bの特性と同じであると仮定する。そして、車両コントローラ24は、第1の送電コイル11aを示す画像220と、第2の送電コイル11bを示す画像224とを、ピーク間距離Lpに準じたレイアウトで表示する。また、車両コントローラ24は、1回目の上ピークを起点に測距された受電コイル21の距離Lvに準じて、受電コイル21を示す画像230を、第1の送電コイル11aを示す画像220に対して相対的に表示する。 Based on the processing added in this way, the vehicle controller 24 displays the display image 200 (see FIG. 6). Specifically, the vehicle controller 24 assumes that the characteristics of the first power transmission coil 11a are the same as the characteristics of the second power transmission coil 11b. Then, the vehicle controller 24 displays an image 220 showing the first power transmission coil 11a and an image 224 showing the second power transmission coil 11b in a layout according to the peak-to-peak distance Lp. In addition, the vehicle controller 24 shifts the image 230 showing the power receiving coil 21 to the image 220 showing the first power transmitting coil 11a according to the distance Lv of the power receiving coil 21 measured from the first upper peak. display relative to each other.
 このように本実施形態によれば、上ピークを起点とする受電コイル21の距離Lvを考慮することで、高い分解能でコイル位置を表示することができる。その結果、ユーザに対してコイル位置を分かり易く認識させることができる。これにより、ユーザは、受電コイル21と第1及び第2の送電コイル11a、11bとの位置関係において適切な停車位置へと車両を誘導することができる。 Thus, according to the present embodiment, the coil position can be displayed with high resolution by considering the distance Lv of the power receiving coil 21 starting from the upper peak. As a result, the user can easily recognize the coil position. Thereby, the user can guide the vehicle to an appropriate stop position in terms of the positional relationship between the power receiving coil 21 and the first and second power transmitting coils 11a and 11b.
 なお、この第2の実施形態に示す方法に加えて、以下に示す方法を採用してもよい。ここで、図9は、電圧マップにおける有効受電範囲を示す図である。ここで、有効受電範囲Rpとは、受電コイル21の受電電圧が予め定めた基準電圧Vth以上となる範囲をいう。この有効受電範囲Rpから外れた範囲では、送電コイル11a、11bから受電コイル21へ供給される電力の割合が低下し、効率的な給電が行えない。 In addition to the method shown in the second embodiment, the method shown below may be adopted. Here, FIG. 9 is a diagram showing the effective power receiving range in the voltage map. Here, the effective power receiving range Rp refers to a range in which the power receiving voltage of the power receiving coil 21 is equal to or higher than a predetermined reference voltage Vth. In a range outside the effective power receiving range Rp, the ratio of power supplied from the power transmitting coils 11a and 11b to the power receiving coil 21 decreases, and efficient power feeding cannot be performed.
 車両コントローラ24は、電圧マップに基づいて、受電電圧が基準電圧Vth以上となる有効受電範囲Rpを特定する。そして、車両コントローラ24は、表示画像200を表示する際に、第1及び第2の送電コイル11a、11bを示す画像220、224を、有効受電範囲Rpに準じたスケールで表示する。これにより、受電コイル21に対して一定以上の効率で電力の供給を行うことができる範囲を、表示画像200に示すことができる。 The vehicle controller 24 identifies an effective power reception range Rp in which the power reception voltage is equal to or higher than the reference voltage Vth, based on the voltage map. Then, when displaying the display image 200, the vehicle controller 24 displays images 220 and 224 showing the first and second power transmitting coils 11a and 11b on a scale according to the effective power receiving range Rp. As a result, the display image 200 can indicate a range in which power can be supplied to the power receiving coil 21 at a certain efficiency or higher.
 この構成によれば、コイル位置とともに有効受電範囲Rpが表示されるので、第1及び第2の送電コイル11a、11bからの給電が得られる範囲と受電コイル21との位置関係を把握することができる。その結果、ユーザに対して給電効率の高いコイル位置を認識させることができる。これにより、ユーザは、受電コイル21と有効受電範囲Rpとの位置関係において適切な停車位置へと車両を誘導することができる。 According to this configuration, since the effective power receiving range Rp is displayed together with the coil position, it is possible to grasp the positional relationship between the power receiving coil 21 and the range where power can be supplied from the first and second power transmitting coils 11a and 11b. can. As a result, it is possible to make the user recognize the coil position where the power supply efficiency is high. Thereby, the user can guide the vehicle to an appropriate stop position in terms of the positional relationship between the power receiving coil 21 and the effective power receiving range Rp.
 また、本実施形態に開示する駐車支援装置も、コイル位置識別方法と同様、ピークの出現回数を利用することで、第1及び第2の送電コイル11a、11bが並んでいるような状況であっても、コイル位置を識別することができる。 In addition, the parking assistance device disclosed in the present embodiment also uses the number of appearances of peaks in the same manner as the coil position identification method, so that the first and second power transmission coils 11a and 11b are arranged side by side. can also identify the coil position.
 なお、上述した実施形態では、送電コイルユニット11が2つの送電コイル11a、11bを含む構成である。しかしながら、送電コイルユニット11は、3つ以上の送電コイルが車両進入方向に並ぶような構成であってもよい。当然、3つ目以降の送電コイルについても、本実施形態に示す受電電圧のピークに関する考え方を適用することができる。 Note that in the above-described embodiment, the power transmission coil unit 11 includes two power transmission coils 11a and 11b. However, the power transmission coil unit 11 may be configured such that three or more power transmission coils are arranged in the vehicle approach direction. Of course, the concept regarding the peak of the power receiving voltage shown in this embodiment can also be applied to the third and subsequent power transmitting coils.
 上記のように、本発明の実施形態を記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。 Although the embodiments of the present invention have been described as above, the statements and drawings forming part of this disclosure should not be understood to limit the present invention. Various alternative embodiments, implementations and operational techniques will become apparent to those skilled in the art from this disclosure.
  101  送電装置
   11  送電コイルユニット
   11a 第1の送電コイル
   11b 第2の送電コイル
   12  パワーユニット
   13  地上コントローラ
   14  通信部
   51  地上ユニット
  102  受電装置
   20  車両
   21  受電コイル
   22  整流平滑回路
   23  バッテリ
   24  車両コントローラ
   25  通信部
   26  表示部
   27  電圧センサ
101 power transmission device 11 power transmission coil unit 11a first power transmission coil 11b second power transmission coil 12 power unit 13 ground controller 14 communication section 51 ground unit 102 power reception device 20 vehicle 21 power reception coil 22 rectifying smoothing circuit 23 battery 24 vehicle controller 25 communication section 26 display unit 27 voltage sensor

Claims (6)

  1.  車両が駐車する駐車スペースに車幅方向と直交する方向に並べられた第1の送電コイル及び第2の送電コイルを含むコイルユニットから、前記車両に搭載された受電コイルに対して非接触で給電を行う非接触給電システムのコイル位置識別方法において、
     前記第1及び第2の送電コイルがそれぞれ励磁されたときに前記受電コイルに生じる受電電圧を検出し、
     前記駐車スペースへの前記車両の進入に伴う前記受電電圧の推移に基づいて、前記受電電圧のピークを特定して前記ピークの出現回数を計測し、
     前記ピークの出現回数に基づいて、前記第1及び第2の送電コイルに対する前記受電コイルの相対的な位置であるコイル位置を識別する
     非接触給電システムのコイル位置識別方法。
    A coil unit including a first power transmission coil and a second power transmission coil arranged in a direction orthogonal to the vehicle width direction in a parking space where the vehicle is parked contactlessly powers a power reception coil mounted on the vehicle. In a coil position identification method for a contactless power supply system that performs
    detecting a receiving voltage generated in the receiving coil when the first and second transmitting coils are respectively excited;
    identifying a peak of the power receiving voltage based on the transition of the power receiving voltage accompanying entry of the vehicle into the parking space, and measuring the number of appearances of the peak;
    A coil position identification method for a contactless power supply system, wherein a coil position, which is a relative position of the power receiving coil with respect to the first and second power transmitting coils, is identified based on the number of appearances of the peak.
  2.  前記コイル位置に基づいて、前記車両のユーザが視認可能な表示部に前記コイル位置を表示する
     請求項1記載の非接触給電システムのコイル位置識別方法。
    The coil position identification method for a contactless power supply system according to claim 1, wherein the coil position is displayed on a display section of the vehicle that is visible to a user based on the coil position.
  3.  前記コイル位置に基づいて、前記第1及び第2の送電コイルのうち、前記受電コイルに対して給電を行う送電コイルを選択する指令を、前記第1及び第2の送電コイルを制御する装置に対して出力する
     請求項1又は2記載の非接触給電システムのコイル位置識別方法。
    A device for controlling the first and second power transmission coils is instructed to select, based on the coil position, a power transmission coil that supplies power to the power reception coil from among the first and second power transmission coils. 3. The coil position identification method for a contactless power supply system according to claim 1 or 2, wherein output is performed with respect to the contactless power supply system.
  4.  前記ピークのうち1回目の上ピークを特定したときの前記受電コイルの位置を起点として前記車両が移動した移動距離を計測し、
     前記ピークの出現回数と前記移動距離とに基づいて、前記コイル位置を表示する
     請求項2記載の非接触給電システムのコイル位置識別方法。
    Measure the distance traveled by the vehicle starting from the position of the power receiving coil when the first upper peak is specified among the peaks,
    The coil position identification method for a contactless power supply system according to claim 2, wherein the coil position is displayed based on the number of appearances of the peak and the movement distance.
  5.  前記受電電圧の推移に基づいて、前記受電電圧が予め定めた基準電圧以上となる有効受電範囲を特定し、
     前記コイル位置とともに、前記有効受電範囲を表示する
     請求項2又は4記載の非接触給電システムのコイル位置識別方法。
    identifying an effective power receiving range in which the power receiving voltage is equal to or higher than a predetermined reference voltage based on the transition of the power receiving voltage;
    The coil position identification method for a contactless power supply system according to claim 2 or 4, wherein the effective power receiving range is displayed together with the coil position.
  6.  車幅方向と直交する方向に並んだ第1の送電コイル及び第2の送電コイルを含むコイルユニットが設けられた駐車スペースに、車両の駐車を支援する駐車支援装置において、
     前記車両に搭載され、前記コイルユニットから送出された電力を非接触で受電する受電コイルと、
     前記受電コイルに生じる受電電圧を検出するセンサと、
     コントローラと、を有し、
     前記コントローラは、
     前記第1及び第2の送電コイルがそれぞれ励磁されたときに前記受電コイルに生じる受電電圧を、前記センサを用いて検出し、
     前記駐車スペースへの前記車両の進入に伴う前記受電電圧の推移に基づいて、前記受電電圧のピークを特定して前記ピークの出現回数を計測し、
     前記ピークの出現回数に基づいて、前記第1及び第2の送電コイルに対する前記受電コイルの相対的な位置であるコイル位置を識別する
     駐車支援装置。
    A parking assistance device for assisting parking of a vehicle in a parking space provided with a coil unit including a first power transmission coil and a second power transmission coil arranged in a direction perpendicular to the vehicle width direction,
    a power receiving coil that is mounted on the vehicle and receives power transmitted from the coil unit in a contactless manner;
    a sensor that detects a receiving voltage generated in the receiving coil;
    a controller;
    The controller is
    detecting, using the sensor, a receiving voltage generated in the receiving coil when the first and second transmitting coils are respectively excited;
    identifying a peak of the power receiving voltage based on the transition of the power receiving voltage accompanying entry of the vehicle into the parking space, and measuring the number of appearances of the peak;
    A parking assistance device that identifies a coil position, which is a relative position of the power receiving coil with respect to the first and second power transmitting coils, based on the number of appearances of the peak.
PCT/JP2021/014480 2021-04-05 2021-04-05 Coil position identification method for non-contact power supply system and parking assistance device WO2022215112A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/014480 WO2022215112A1 (en) 2021-04-05 2021-04-05 Coil position identification method for non-contact power supply system and parking assistance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/014480 WO2022215112A1 (en) 2021-04-05 2021-04-05 Coil position identification method for non-contact power supply system and parking assistance device

Publications (1)

Publication Number Publication Date
WO2022215112A1 true WO2022215112A1 (en) 2022-10-13

Family

ID=83546285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014480 WO2022215112A1 (en) 2021-04-05 2021-04-05 Coil position identification method for non-contact power supply system and parking assistance device

Country Status (1)

Country Link
WO (1) WO2022215112A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012175793A (en) * 2011-02-21 2012-09-10 Saitama Univ Non-contact power supply device for moving body
JP2015116090A (en) * 2013-12-13 2015-06-22 トヨタ自動車株式会社 Non-contact power transmission system
JP2017051071A (en) * 2015-09-04 2017-03-09 キヤノン株式会社 Mobile device and non-contact power transmission system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012175793A (en) * 2011-02-21 2012-09-10 Saitama Univ Non-contact power supply device for moving body
JP2015116090A (en) * 2013-12-13 2015-06-22 トヨタ自動車株式会社 Non-contact power transmission system
JP2017051071A (en) * 2015-09-04 2017-03-09 キヤノン株式会社 Mobile device and non-contact power transmission system

Similar Documents

Publication Publication Date Title
JP6115453B2 (en) Non-contact power transmission system and vehicle
US10622827B2 (en) Non-contact electric power transmission system, charging station, and vehicle
EP2717431B1 (en) Contactless electricity supply device
US8248027B2 (en) Non-contact power transmission apparatus
KR101735986B1 (en) Contactless electricity supply system
WO2015097995A1 (en) Power reception device and vehicle including the same
JP5979125B2 (en) Contactless power transmission equipment
EP3131175B1 (en) Wireless power supply system and wireless power reception device
WO2015151467A1 (en) Power reception device and vehicle including the same
US20180136048A1 (en) Temperature estimation device and temperature estimation method for contactless power-reception device
EP3032687B1 (en) Contactless charger, program therefor, and automobile equipped with same
CN110234534B (en) Parking assistance method and parking assistance device
CN109314409B (en) Coil position detection method for non-contact power supply system and non-contact power supply system
JP6566129B2 (en) Coil position detecting method and power receiving device of non-contact power feeding system
WO2014103795A1 (en) Contactless power supply device and contactless power supply system
WO2022215112A1 (en) Coil position identification method for non-contact power supply system and parking assistance device
JP6939098B2 (en) Foreign matter detection method by non-contact power supply system and non-contact power supply system
JP6885213B2 (en) vehicle
JP6304119B2 (en) Contactless power supply system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21935449

Country of ref document: EP

Kind code of ref document: A1